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Abstract

This thesis presents the work and results of an investigation into
language implementation. Some work on language design has also been
undertaken. Three languages have been implemented which may be described
as members of the Algol family with features and constructs typical of that
family. These include block structure, nested routines, variables, and
dynamic allocation of data structures such as vectors and user—-defined

structures.

The underlying technique behind these implementations has been that of
abstract machine modelling. For each language an abstract intermediate
code has been designed. Unlike other such codes we have raised the level
of abstraction so that the code lies closer to the language than that of
the real machine on which the language may be implemented. Each successive
language is more powerful than the previous by the addition of constructs
which were felt to be useful. These were routines as assignable values,

dynamically initialised constant locations, types as assignable values and

lists.

The three languages were,

Algol R

a "typical" Algol based on Algol W

h an Algol with routines as assignable values, enumerated types,
restriction of pointers to sets of user-defined structures, and

constant locations.

nsl a polymorphic Algol with types as assignable wvalues, routines as

assignable values, lists, and type— and value-constant locations.

The intermediate code for Algol R was based on an existing abstract

machine. The code level was raised and designed so that it should be used




as the input to a code generator. Such a code generator was written
improving a technique called simulated evaluation. The language h was
designed and a recursive descent compiler written for it which produced an
intermediate code similar in level to the previous one. Again a simulated
evaluation code generator was written, this time generating code for an
interpreted abstract machine which implemented routines as assignable and
storable values. Finally the language nsl was designed. The compiler for
it produced code for an orthogonal, very high level tagged architecture
abstract machine which was implemented by interpretation. This 'machine
implemented polymorphism, assignable routine values and type- and value-
constancy. Descriptions of the intermediate codes/abstract machines are

given in appendices.
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_CHAPTER 1

" Abstract anhines,andyProgranhing Languages§~

!

fhis' thesis presents the results -6f"an investigation into the

implementation‘and design of general purpose progranming languages ( we use
the abbrev1ation.GP?L . The object of the‘workrwas twofold..vFrrstly.it
was to investigate> a lway of .improving the; implementation + of these
1anguages.' fhis was to be achieved by using the technique of abstract
machiﬁéamodeliing.u[Newe7g]‘Secondly,'the aim was to add’ to the power of - -
these _languages, still héepingd» them 'straightforward. .-Thns the
implementation of additional features was investigated. In this
introduction we first- consider what As meant‘by an, abstract machine" and
‘how they have been used in relation to programming 1anguage implementation.
We then define the kind of language to which we: restrict Xourselves.
Finally we attempt to categorise additions to such a 1anguage in order to

make it more.powerful. Subsequent chapters present the work and results in

chronological order.-
Absttact-ﬂachines.-
A high 1level Ianguage should'-be designed to formulate algorithms

within a specific problem area. Given such an algorithm expressed in.theg

language, it ds executed on a computer in order “t6 give the desired.7

. S

solution. Ideally this computer should obey directly the commands of the

+ Before any program may be submitted for execution, it!must.be ¢hecked
for syntactic and type correctness. These are-problems;which-were foremost
in computer science research but which were '‘not machine related“and now
should_occupjkless of our time since earlier work has gone a*long3Wayhto

solving them. Thus we do not propose.to dwell upon this aspect of language

implementation.




language. Fof-éxaﬁple, a program writtem in Algol 60 [NauréSl.éhould be
executed by an ideal computer whose machipe 1agguage 418. Algolj 60. We
require the existence .of a real machine which is'tﬁe-idéal machine.  An
attempt at such a situation is the SYMBOL [Smit71] system. A research goal

was to design a computing system with substanﬁiaily improved performance

over conventional systems, along with a reduction in the cost of computing,:

by directly impiementing’a'high level language’ and virtual. storage, time—

sharing operating system in hardware. _Oniy one system was constructed.

' The SYMBOL programming language (SPL) is similar in nature to FORTRAN but.

typeless. The SYMBOL system translates ( by hardware ) SPL into a one to
one reverse polish representation. The SYMBOL system is_hot truiy a case
of making the ideal machine the real machine since SPL is translated into a

directiy exeﬁutable ( high level ) code.

This is a difficult problem to solve, yet the language implementor
nust give’ihe programmer the impression that such ideal machiné§4ex1§t.
With our present—day machines a program must ultimaéely be executed by a

real mdchine in an_ equivalent form in that real machine’s code. The

problem beforelthe language implementor is to perform the mapping between-

an ideal machine and.a real machine, that is, the production of real
maching programs from ideal machiﬁe programs. The closgr.théfreal machine
is to:thé ideal machine the easier will be the implementation. In fact
this principle_Should be a guiding light for those a?chitects whq design
our real machines. The Burroughs B6500 [Cree69] was designed jointly b& a
hardﬁaré énd software team, but unfortunately this trend seems mnot to have
continued. A new machine should be designed to make the mapping above eas&
and efficlent for all ideal machines supported by it. One wa& of easing
this mapping as we have seen is to have a machine which is close to the
ideal machine. In fact, this machine need not exist except on. paper or as

a program. Such a machine 1s called an abstract machine. The use of

abstract machines 1s mnot only restricted to prograﬁming language

Vo SR ORI eani




implemen't'ation but may be extended to other p‘roblems,’- st " C et By
We may‘.depict the situation thus,
ideal -> abstract -> real
- meaning either

a) A program in the ideal (high level ). language ‘is converted to a
program for some -abstract machine which in turn is converted into a -
program on‘a real machine
: or ;

b) The ideal machine is realised:in terms of an abs’trac't machine vzhich_ is

_realis_e_d_in terms of a real oné.

The technique of abstract machine modelling for the implement'ation of

software stems from the idea that the problem can be regarded as one of
hardviai:e design. We try to specify a machine which is ideally suited to

s the task being implemented. New'ey [Newe72] puts 1t thus -

"Abstract machine modelling is based io"n the ‘co'ncept that the

fundamenta—l -operation ;and data types required’: to solve ..
particular problem define a spec1a1 purpose computer which is

idea—llyv suited~‘-=;;"to.' that problem. In order, to obtain a running

version ’ th'e abstract model is realised. on. .an e:g_ist.;f_i"ng :’comput'er”\b‘y

gk R

impl'eilienting its basic operations ‘andada't,a types."

Bodle‘*«.','[::PoolTA ] says,
"The architecture of the abstract machine forms. an 'environment in
which: the modes and - operati"ons,-interat:t to" model'-the"'i'langua‘ge.
Unlike a real machine whose architecture' is governed‘ by economic

considerations and technical limitations, the abstract machine has

a - structure which facilitates the operations required by a given

programming 1anguage. The designer of the abstract machine must

plan’ the architecture so that 1t can be efficiently implemented on




a real machine.”

In particular we wish. ‘to examine the use of abstract machines in the
implementation of high ‘level programming languages. ’ Like any other
ki problem;tywhen*‘solving it in a single step proves difficult, a common

technique is to break it dovn%into a“series,éfﬂsteps. £ s

. "The des1gner must balance the convenience and utility of these

operations against the increased dlfficulty of 1mplementing an

abstract machine w1th a‘rich and varied- instruction: set." [Newe72]

With our single mapping above this involves breaking it into a. sequence of

umappings from the 1dea1 machine to the real’ machine.
idealvr>‘ahstract 1 > ... => abstract n > real. <.
./ Poole [Newe72] has called this a hierarchz of abstract machinés,

"Instead of realising the initial abstract machine Al directly on a

real computer design a second abstract machine A2, The operations

of Al are then defined in terms of A2 operations. Such a
def1n1tion is independent of the: realisation of A2 itself and hence
Al may be realised by realising A2. "The hierarchy can be carried
to any depth by defining A2 in terms of A3 etc. The base. machine,
of the hierarchy Ak is then realised on a’ real computer.

@

An abstract machine then is 1like an ideal«machine in,that it -is not .
reallsed in hardware, but is at .a:level closer to the real one. "The’ levels
of abstraction " should naturally be chosen so that each mapping is

straightforward. In terms -of ease of implementation it may prove that such

a technique involves less work than the single mapping. However the very -

3

number-of mappings involved may contribute to. confusiin%and/or inefficiency

in the pverall process.




Mappings.

A uapping from ( source ) machine S to- (.- target ) machine T may be
considered to be the process of arranging that, given a progranl in 'S
machine code;' an equivalent program in ‘T machine code is produced.
"Equivalent" means that if machines i and 'T: were realised in hardware both
programs run on their respective machines would produce the same result.
If one terminates, the other should: with ‘the same result.. The mapping will
have a “quality" associated with At related to the size: and speed of. the S’
an T ~programs. Size is the factor more readily measurable and 1s fore

dominant‘due to ‘this tangibility,A k. 1

We consider four K common kinds of mapping between- machines S - and T
where S may be an ideal or an abstract machine and T may be an abstract or
a real machine.

1. Code Generation ( Translation ).

Va4
S -

: In thiéfmethod a program in S machine code is directlidtranslated into
an eqniQEIEnt program in T machine code. The-translation‘takee place once
for each S program which then takes no part.in any snbseduent mappings.

iae. Scode program 3~> eqnipalent Tcode program
The ease with which this translation mapping takes place is closely related

to the similarity between machines S and T.'&Another factor 1nvolved is the

quality. of the nmpping-- if the!nmchines are;grOSSly dissimilar then T

programa\produced by the mapping may be very inefficient‘mith regard to the’

T?machine. Thus with this kind of mapping, the implementor requires a fair

degree of skill to minimise this possibility or. else employ a translation

'technique which aids the production oﬁ.good Icode. The mapping can be

considered to take'place,atftraneiationwtime}

AR R S
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2. Interpretation ( Simalation ).

FIn this method, a progran in Scode is fed‘as data~ to a program. in
Tcode. Thisficodé interpreter.sinulateeﬂthe execution\of the;S'nabhinem
-This progranlis the same for every;S progran'thus=it need onIy be written
once forla;particular machine. ‘This would appeer,torbe a pdint in favour
of interpretation. In addition, since the S machine is.well defined o
great stili:i;-required to write it,  although the progranmer;sﬁould‘be

skilled in writing T programs to make an efficient interpreter. A

i.e. Scodesprogram —=> Scode program +1Tcpde program

The simulation process involves-the interpreter:fetching, decoding and
carrying out S instructions from. the S program in the Tcode software model
of the S machine. The fetching and decoding can add significantly to the:::
time ;re&uirEdeto interpret an S nprogram,{ espe01ally 1f the S machine\
instruction format 18 complex; or'-the T machine instructions are~not suited.

to the decoding process. The mapping can be'considered(to take place at

execution time.
Klint [K1in8l] classifies four kinds'of interpretation.

Type 1
This aiswﬁdirect interpretatidn of the ‘source text. As exaﬁplesﬁihe
cites macro. processors and some BASIC implementations. The latter may"
be inefficient and have the unde81rable property that syntax errors

can only be detected at run time.

Type 2
This is interpretation of a high level intermediate code. He means
tnet' there 1is a one-one mapping . between the source' and the
internediate language and cites LISP [McCab2] as only ‘being -lexically
preprocesseda In. this, case syntak~“errors are fdetected before
execution. Since the 1ntermediate 1anguage depends on the source

,1anguage and not on the underlying machine Klint states,




maximal flexibility is’ possible at run time and 1t is easy to-

’,ﬂgprovide diagnostics and debugging facilities "at the. source

-ﬁlanguege level."

TR #

The SYMBOL systém would be Type, 2.

Type 3
This. 1is interpretatienm of a low levell intermediate code close, to.
n;chine level, there being a one—many mapping’ from the source to the
intermediete‘code.. Again syntax errors are detected before execution.
Flexibility is lost at run—time but these systems are: more:: efficient

5

than :the previous types. Portability is improved since only a simple

interpreter needs to be written for each machine.

‘Tgpe,h
This is Just direct execution of a .low. level . code by a real machine.
The interpreter is a. mdcroprogrammed instruction set This,is the -
most efgicient of all but~perhaps the most d1ff1cu1t.for;which to
generete codekfl o
3. Macro Eipen;ion.
. 2 7
The mappings are related insofar as - that, ‘given.a simulation mapping,
a special kind ‘of translation mapping can be produced. Each S instruction'
is treated as a macro and:- is replaced by the Tcode which simulates that
instruction in the simulation mapping. »Thus;the new mappiné produced is-a
transletion'uhpping performedlbf macro expansion. This combineSQSOme_of
the adyentages’of both kinds of mapping,namely that there.-is. no longer the
overhead of~fethhingzand decoding of S'inStructions. The disadvantage is
" the increase in’ size of the produced T program compared with an- equivalent

“

one produced by better‘translation techniques. The:macro expansidn”can be -

.»q.

performed either by the compiler during the production of Scode or by a

-w.

macrogenerator as a later phase.




4. Tabedding;

Waite [Wait73]‘descrfbes oneicf'thégéériy and eimp;e_abstrect machine .
modeliinéz;techniques known as Inhedding. An existing host prbée@ural <
1an§uage isfosed1to sopport.the,dperatégne»of'tﬁe?§b§tract maéh;ﬁé; He
observes' that in man&:Ebstract machinee}the flow of control constructslare
usuelly independant'of the dataah Théé#they are_essentiarlyAinvanrent'fron
one abstract machine>to another.q’imhedﬂrng-1nrolieegthe'use'ofdﬁfocedures
and functions‘written L the host langoeée’nhich implement»the procedoral :
operations and data operations of the abstract machine. 'SLIP [RussGS] ls

an example of list processing features imbedded in FORTRAN.

~Coppiietion.

In considering the use of- ‘abstract machine modelling in language

1mplementat10n we must consider how it fits in with the goals of compiler

des1gn. Horning [Horn74] describes these as

= correctness ( monerrealistically reliabilit;is
- efgrciency of runﬁidefepéceiéﬁditime 5

= ~be£ficiency_of‘the.compiler development process - .::; =

= efficiency of program development -using the compller (.. including the

eff%cfency of" compilation )

- efficiency.of téfgé; programs produced by the compiler.

'Honter'[HontSi]\also adds

ke keéning the compiler as gneil»as possible

¢

Perheps another goal would also be

cE S allow: the easy implementation of the language -on another

architectnre.

S B




Poole [Pool74] describes how most of these aims, especially thellgst,

can be achieved by considering the compiler to be made up of two parts

a) a language dependant translator (LDT) which depends on the
characteristics of the source. This typically performs Ilexical

analysié, syntax analysis and abstract machine code generation.

and

b) a machine dependant translator (MDT) which depends on the target

machine.

The interface between these two phases of compilation 1s an abstract
machine. The LDT is written entirely in terms of the abstract machine.
Infofmation flow is from the LDT to the MDT aithough some may flow in the

reverse direction. This natural and simple organisation.helﬁs the wiitidg

of the compiler. The mapping from ideal to abstract machine ( or from:

source to abstract machine language ) takes place in the LDT. An interface
procedure for an abstract machine instruction is called when that
instruction is needed. What these interface procedures do:depends on how
the mapping between the abstraét'ﬁachine and the real machine is to be

achieved. For example, the interface procedure could simply write out an

encoding of the instruction or indeed perform the abstract to real mapping -

by generating a sequence of real machine;instructions. In the latter case
the MDT would proﬁably-just be the assembler for the real maghine. This
organisation allows a choice of mappings — to change the mapping only the
intgrface procédures need t6 be.re&ritten. Now, shéuldithe language be
ported-t6 another machine, all that is neceséary is to;reﬁrite the MDT to

produce code for that ‘machine.

A consideration of the four techniques.

We now consider these mappings in relation to each other in the

context of ihplementiqg a GPPL. The'techniQﬁe of imbedding is generally




10

applied [Wait73] when the host is itself a high level language. For
example we cpdid‘imbed”iist*processing procedores in-FORTRAN:and translate
a list-processing '1anguage into FORTRAN. This then necessitates a
translatioh or the FORTRAN into real machine code. Alternatively we could
write them in assembly lanéuage but this would then be almost a form of
interpretation. This does not appear to be a good way of impiementing a'
GPPL especially when compared with the other techniques. Therefore we will

not consider it further.

The use of macros to implement abstract machines has been well
covered [Wilk64,Brow69,Wait70,Newe72] with reaeonable results. The
languages impiemedted"during the work:for this thesis did not use macro
mapping. it was considered but rejected in favour of examining either a
.'translation or simulation vmappingg Macro ‘mapping seems principally a’
Eportabiiity technique. This leaves us with perhaps‘the tro dost popular
methods of implementing languages. Efficiency appears'to be a prime reasod
for choosing a translation mapping. -1Interpretation ‘is. chosen when an
easier 1mp1ementation is needed or where portability is a.major concern.
Code generation according to Hunter [Hunt81] tends to produce larger, more
complex, slower compilers. The two . techniques may be. combined in a

compromise [Daki73 Daws73] where the most frequently executed program °

sections can be code generated and the rest interpreted.

One of the aims of this work is to use abstract machine-modelling with
compilers split into LDT and‘MDT parts. Tﬁié soould allow the implementor
a choice . between which mapping he feels is appropriate. In order to do
this however ‘we haVe found that’ particular attention must be paid to the
level of the abstract machine.whose code is generated by the LDT. Thus we
now 1ook’at a.nhdber of intermediate'languages/abstract machinesdand then.
' consider intermediate ladguaée desiga. Klint [KiihSl];feels that we should
be c¢onsidering’ type 2 interpretation, that is? a highflevel intermediate"

code. His reasons are based on the growing_need for portability amongst a




wide ranéf:ofafmicro)proceSSors but. more relevantly t0xth{§,thesis-is

"the'current trend towards very high level languages. ~In such

languages? the primitive operations’ are 80 complex- and time

consuming it is 1rrelevant ( with’ regard to execution time )

Cal 4

whether they are complled or 1nterpreted D

ay e

" Abstract Machine Examples. = . . . G o
ﬁe'noﬁ*look at fairly‘typical'examples’of abStract machines, in an
'attempt to'see-Where‘they lie in_retat;onxto the ideal machine.

syt

5

;fmcor./suuc 'ﬁNtﬁL‘[StééGl] and. SLANG"»[srbl'é’l]:'are'.fa'inil'ie's of abstract

machines. UNCOL was proposed to. solve the problem of running n languages

kN
LR

on. m‘machines. This would requlre n * m translators but this could be

reduced to n +*ﬁ if all m translators produced UNCOL code which in turn was

mapped onto each of the m machlnes. UNCOL was never properly implemented
. but Steel [Stee61..] proposed how it- might be. TherNCOL ‘abstract machine
was fairly loW“leVel, that is it was closer to real machines . .than ideal

machines. It had an accumulator but no stack. There .were twenty

instructions'jconsisting of an operator and an operandys T@9, meaning of-

these instructdona{depended on the mode of:  the operand. Interestingly,
operands Were ‘specified b& a 1ocation only, therefawas} a 'séparate data
description for them. Additional flowfihformation was passed from the

translator in order to allow optimisation. The project was abandoned but

Coleman [Cole74] doubts that this s because the basic idea was unsound 2

just that at the time "compilation technlques were not c}early understood,

and that adaptabiegtfanslators were, difficult to write«“

SLANG arose from a progect to develop a compiler—writing language. It

was similar in approach to UNCOL but the translators knew something about

the target machine. This was not strictly an . UNCOL because, given

Ot

-different Umaﬁhi“e descriptions,_the translator WOuld produce different




based on previous work [Newe72] that

instruction sequences. Again this was low level. However it does

illustratefan.alternate;approach;to only allowing information flow fromtthe

LﬁT.toythe'MﬂT; Eherefis;also information about the machine flowing back

b Ao pue i

to thefipt; ‘As will be seen we do not use this approabhfﬁééadseﬁﬁELtry to

: writewthe LD?fin“complete"ignorance of the“'machines the source language

will compilefto;<and what;napping will be used.

'k
s

Janusi{ Janus.{ColeZ4].ha3ybeen called'a standard abstract machine. That

is one which’ has been designed around a model which may be used for many.

:~

similar progranming languages in the" UNCOL manner. .Janus 1s'1mplemented by-

* :
&

macro- expansion to assembly language. The authors came . to- the: conclusion

major problems are associated with the design of - a suitable

or

abstract machine model ( and its programming language ) for a - given

s

application. The. task is not easyff even for experienced

programmers."

~Janus was ‘designed byfexanining existing'programming“langQages and real

machines. ‘Theaintention was t&-find what was common to them-all. The

Janus nachine ‘was made up;of‘an accumulator, ‘an index regiéter and a stack.

»;The operations ‘of the machine are all based on features of real machines:

3

”which support hlgh level languages. Also included are pseudos which are

used to reserve data space. Thus again this 4s. a lOW’ level abstractﬁ;

>

machineuu Coleman gives the following example.




F(l ‘A_’ B+CD[I+3]) : a procedure call

CALL REAL PROC F() “

~'ARGIS -INT CONST C1() A 1

“ ARGIS§’;I' REAL, LOCAL A()

LOAD: REAL LOCAL B()

ADD REAT LOCAL C()

'STARG REAL :TEMP T1()
- "LDX.INT-LOCAL I1()-

"MPX:'INT CONST C2() E REAL
LOAD," T REAL LOCAL:D(3% REAL)
STARG ADDR ARG'L1(3* ADDR)
RJMP REAL.PROC F()

SPACE ADDR ARG L1(4)+

-8, ACE . .ADDR ARG'(1) A Cl
SPACE, .ADDR ARG (1) A A
SPACE. ADDR ARG (1) A T1 el
SPACE ADDR ARG (1)

CEND REAL "PROC F()

et

‘l‘he':.'c'ode as . may be seen is fairly complex.- We believe that: this is . the
cese because of the attempt to be all things to all machines and languages.
O-code This;:i}s an intermédiate code for a "speci__ficzilang_uage'.and’Lf,does not
suffer from the complexity of Janus. 0—c0de'.[-Rich71} is the 'intermediete
code : for BCPL. [Rich69] This systems 1anguage has been ported to a wide;:
‘_range of machines. It is similar to-Algol 60 [Naur63]. but has ‘only- one
- osize ofidat—a ‘-item. All items. are bit patterns, which may be interpreted as
addresses, integers, characters or truth valies- by appropriate Operations.
The compiler is split into a LDT and' MDT. Richards suggests that the
‘1nterface between them should not be a macro language "a compiler 80
produced will’ be very slow being limited by the inefficiency of the macro
generat‘or . u'l-le- recommends the MDT. be written by -hand- - "the' implementor
may find it easier to generate optimised code: since he can optimize by
algorithm rather than by a complicated set of macro definitions O-code

is designed to be compact, easy to. generate by the LDT and easy to
translate by .1;-_he MDT which could ‘be a simple non—optimising code generator.

The design. aims of O-_code': hold many attractions. However'it again is
at a somewhat low lével. The O-code machine consists of ‘a linear 'meniory of

words and two address’ registers: to support a stack, S e.ddr-ess'vinfg the top -




stack eleﬁentw-and PT addressing the wbase of the'”current' stsck frame.

Locations, are addressed either absolutely or relative ‘to P. The LDT in

addition.to generating abstract machine codehalso passes~space information

;. P

to the MDT. _For example it is sometimes necessary for the LDT to indicate

where the t0p of stack is relative to the current frame base. ,This happens

when vectors are declared ‘or aL the ends of- blocks. pA dir,‘tive is also

prOV1ded which indicates ‘where dividing point occurs Pbetween

declarations,;and ~the body of a block. The MDT - tbenf generates code -to

ensuredthat all stack dtems are: held in their. appropriate store locations-

as opposed to being in - registers for example. Richards states "Without

such a directtve 4t would be difficult for' 0. optimising code generator to -

know when stacked items could be held safelylin machine registers." Another
example is a directive which on entry to~a routine indicates the initial .

stack'ﬁramexsize,

Richards is primarily concerned with portability but also ShOWS how aﬁr

MDT can be written to produce good code.

"b€c0de relies on its sinplicity to be eftective as:a bootstrapping
tool since otherwise the initial code“generator for'a‘new machine
would be too difficult to write. Bnt it is'important to note-that
it,may be compiled 1nto efficient code using an optimising code

generator__.

Richardsrgives the following example of é-code

STACK 5 _ 5
LSTR ‘1170 40 37 78 41 ‘ . ;
32 61 32 37 78 10 : :
P 2
... STACK'9
. LP2 .LL. L3 FNAP 7
LG 76 RTAP 3

0~code'then iS‘low'level‘with a heavy reliance on directivesjto the'MDT‘but'

suitable’for a translation mapping to a-real or simulated'macﬁinew‘

K




P-code . P-code LNoxi74l is the 1ntermediete ‘ code produced by -the
PascalftJens74TfKcompiler. The"authors suggest -three implementation
-strateﬁiee using P-code. If the. expected use was for teaching purposes or>
small programs only then they recommend that the: 81mplest method is byj'

lfwriting an efficient assembler/interpreter. For bootstrapping the compiler

then. P-code should be macro expanded then the code generation ‘routines, of

the compiler should be rewritten for: the target machin wuiFinally they“

suggest'that.if storage space_is the main constraint a judicious mixture"

between interpretation and machine execution can be used", recommending the".
technique of threaded code. [Be1173] P-code is similar to 0O-code except
that it has a 1arger 1nstruction set to handle a 1arger set of types. An - ;

example ‘of P—code follows.

procedure print_1 tree( head : ref )~
begin D1
if head O il then
begin.
print_tree( head@. left )
write( head@.val:12 )
write( eol )
Liprint_tree( head@.right )
end,
end;

ENT 4 : B 3
onp 0-4 . ‘ -
LDCN. ;
NEQA

FJP™
MST
10D
IND
CUP."
LOD i
‘IND0
LDCI 12
CSP WRI B RS ! : 528
LDEL 0. " ek s : .
- LDCIL: 1 , & :
" C8Ps wac

MST 1 -

0D 0 4.;

IND 1

CUP 1 74

RETP.

4

74
T4

OO'—'NO'H.\O
\l\l

P-code;is'medium level but designed for simulation or,maerotmappiﬁgz It is

3




not suitable for ‘code. generation. ‘A similar code, S—code [Eai1801.has ‘been .

used primarily for interpretation and also for code generation. ‘_This
latter mapping is: by a form of uacro expansion and as such suffers from

. increased 81ze and little, 4if any, opt1misation.~ It is faster . than

interpretation due to the removal of the decode loop.

'fI—code l-code‘[RobeSi] is the intermediate code generated for the
“IMP77 [Robe77] progranming language. Its-designer; Robertson noted that

the emphasis on abstract machine design was - .on enabling compilers to ‘be

quickly bootstrapped onto a new machine either by interpretation. or by
macro expansion. He felt that this did not allow the production ofuhighly
optimisedxcode.
*"Apparently considerations of portability and machine independence
have caused problems of optimisation toébe overlooked."

By

)

He was concerned with the level of abstract machines feelding that: they were -

t-oo low level and attempted to put machine independence “and. optimisation on

+

an equal footing, regarding the intermediate code as directives to a code

generator.
"Instead of the intermediate ‘code describing the computation to ‘be
performed, it describes the operation of . a code—generator which

;will produce a- program to- perform the required computation.

In essence I-code attempts to describe the results required in a

way which does not constrain the method of achieving ‘those

results.

I-code is- completely machine independent. Robertson’s work, is related to

the earl§;part*pf our work however his-emphasis-was’on optimisetion'nhereas

ours ‘was on high ‘level abstract machine code design. The code generation

method is similar o another technique described in' a later chapter which

T
ST
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serves as a basis:for our work. Thns we will. 1imit this. discussion to a

R u 3
i »

brief summary;gr

Robertson concludes.that using a high level intermediate'code-is a

3

v1ab1e technlque, having been used for several IMP77 compilers. 'épace-wisef°

--they compare favourably with other compilers “but seem to beda little slow

e

in execution time. As far as portability is concerned Robertson s method

5,takes 1onger to write compllers than does O-code or . P-code but once one

lycompiler haS»heen written it may be ‘used as ajtemplate:fgna?nen§0ptimising

EA

compiler can be »Writ.-'t(_en in the space of ;a?f'ew z-mont-h'sir".,

stack orientedfmachine which produces programs for speclfic computers. It

'describes the compilation\process necessary to generate an executable form:

Pl

'of a program, “hot the computatlon defined by the program. e feel however
that this is simply a ‘way of stating that I-code is an: intermediate code
deslgned for code generation. It is not clear from<his thesis what[he]f
feels the difference is between '"describing the compilation .process" and-

"the computation defined"f_ His Ifcode must define the Q?WP?tananimpli;dfi

by the source. % o -;;?44

Sonrce lanéuage objects are defined by descriptors in a block
structnied manner. The stack holds copies of descriptors for the

computation. The only example of generated I-code he gives is,




§

x = A@3)
=0 if X < 0

DEF 12 "X“ INTEGER: SIMPLE
; DEFAULT NONE NONE :
PUSH-12 °
PUSH 6
PUSH 7
ACCESS
- ASSVAL
PUSH 12
PUSHI 0
COMP >= 1.
BGE 1 Ko
PUSH 12
PUSHI 0
ASSVAL
LoC 1
It is-\medium level and reverse polish in ' nature. However, more
importantly, we Tnow . see .a change in viewpdéint of an abstract
.machine/intermediate language - describing a, code generation process rather

then something to be regarded as potentially a real machine.

dbstractiunchine'Internediate Code;Desigﬁé?’ﬁ(. '5%;§"

From the above we note that'historically abstract machineS'have.tended
.to be at a rather low level although Robertson has raised the 1evel :
somewhatu “The emphasis behind abstract machine design has been portability
' and w1th Robertson s work optimisation. It was our intention in this Work'
to consider the implementation of very high GPPLs from the point of view of
abstract machine design. Portability and ‘effic1ency certainly' must' be
considered but also one objective was to develop a’ method which allowed a
choice of mapping between code generation and interpretation. As will be“.
seen, “the compiler is broken into the LDT anduMDT parts and wegnow'consider

"the abstract machinexlevel which ‘forms the interface. 7;‘. 2

?(,:

Hunter [Hunt81] suggests that the UNCOL/Janus type approach should be '

restricted.

"It w0uld?‘ppear that, to accommodate a. wide range of languages the:

target language has to’ ‘be at too low ay level to be’ implemented




efficiently on all#machines. It seems better to- design a’ target
language for translating a particular high leVel language 1nto or
'-for~implementing on a particular‘machine.-f
‘That is, all}LDTs for languages running on7a~ﬁpe@ific”makefofﬂnQChine,
shouldfall'produce,the same abstract machinercode. Then only one MDT need

,be‘written.for-that machine. The alternate:’ approach 18 "t Rat one “LDT be

- written'ﬁor a particular language producing an intermediate code, and that' a-

MDT‘be written for every machine on which the language is to run. This is
the approach- taken : by '0-code» or P-code. ,'Such‘“approaches however have
.relied‘on some information’about.the target'machine being paSSed bach‘to
the LDI so it: is not"Atru1§'findependent. Bfown [Br0w72] discussea the
relative merits of using high level intermediate languages. His work is
‘primarily concerned with macrogenerators, but using’pabstract machine‘
modelling to ‘achieve~'portability. ﬁe describes _some attempts at
implementing a high level intermediate language. One way.was‘to.umcro
expand it into PL/l "but the resulting implementation «es Was soO large and
slow that it was totally unusable". A program in a high level language is
;Tmore machine independant than one at a lower level o “Looking down from onlg
-ﬂhigh it'is possible to" ‘see over a wider area ‘than when one is' close to the
ground". But he'warns that the differences in machines are not~so great.
_{After comparing a. high and low level intermediate language whlch implement
a‘umacrogenerator Brown concludes that the advantages of a} high level,
intermediatedlanguage~are}not very great in practice. -Low.level.codes

alloﬁba,quicker implémentation.

iy paper published after our w0rk on.-high level intermediate code was
completed had ‘a similar intent. : Kornerup [Korn80] investigated the
possibility of supporting high level languages with intermediate languages

which could be-used both for direct-interpretation;and code generation.

b ¥ - would” ‘be advantageous to be able ‘to. use such . intermediate




languages directly to -give . efficient ~code . gggepgpion' onf'
minicomputers; . This requires that the intermediatéulangnage?( the
bhypothetical machine ) is fbeing designed not- dni§“ for
interpretation but: also snch that sufficient information for code

generation is available'

Kornerup first designed a new form of P-code” for Pascal. A LDT produced
this and it'was%implemented by a.microprogranmed interpreter. ‘A MDTVinithe

form of a code generator was also writteh. o v

The abstract machine was at a similar level to:- the original P—code=

although it differed in its. ‘architecture. For example it” had thr*
one for 3procedure calls, omne for addresses and one for real values.

Essentially it was reverse polish.in nature but

s doesi not contain special Vinstructions reflecting control

strnctures:'like repetition or conditionals, ‘nor does it have
Vinstructions for accessing components of structured data."

"By this they mean-that.such constructs are implemented by sequenges of low

level instructions such -as Jumps (sas is I-code, S-code, O-code ).  The

resultsm f this work were’ that P-code was . successful as a microprogrammed'
implementation however it was less useable. P-code apparently had some

deficiencies making ‘some generated code .sequences absurdly complicated"

because.‘ome“rnformation was 10st‘in its generation,

Their conclusions concur with~ours and we summarise them here. A
ma jor. problem for a code generator is in recognising the structure of the

source 1anguage. ' ' - ' e

W

"For instance to make efficient use of the registers, .one: must know'
whether a’ 1abel in the intermediate form 1s part of an if-statement

or can be branched to by a gotojstatemenq;"

fstacks,=f5




They also propose that no storage allocation should be performed by the

compiler.‘ The .intermediate. form should contain all the declarative

infdrmatiOn:of the source program. They conclude that their attempt at a

form suitable for both code generation and interpretation fails but say

that if we relax the requirement that the intermediate form has to be

immediatelz interpretable a solution is possible. .This re‘ax'tion in their

view 1s-reasonab1e because '"some processing before execution of.such a form
will always be ‘necessary ( e.g. assembly, linking and possibly loading )".

Thus the intermediate form has to. be transformed by someqﬁkind. of “code."
generationp before . execution. The following criteria must .then be
satisfied. No binding should discard information. useful in generating
efficient. code for classical machine architecture of ‘a Wlde variety. The

intermediate 1anguage should be language dependant but:;. machine independant.~
Storage allocation should be left to the‘ (fJ All declarative information

on the data has to be accessible and all referencing of " data dnust have the

form of.a‘reference to the appropriate declarative information.

'The subsequent chapters describe three abstract machines/intermediate'

7]

codes. Further discussion on this topic is left until then.

Properties:ofﬂlanguages under,censideration.

In general we may say that the Algol family of languages satisfiesii

broadly the - criteria we use to define Ma =general purpose .programming---

1anguage ! There is . a wide variety of 1anguages currently inluse and we
must restrict‘our investigations to a realistic subset. We believe the
Algols to have "lasted the course", evolving through the 1960 s and 19707 s.
They appear to be the starting point for many new languages, and if that is
not the case, at least they ‘have much in common with them (e. g. ADA;ﬁ

Modula, S-Algol IMP-77 Euclid).




. The Algﬁi fdnily.

A number of headings are introduced here under - Which Algol 1ike-

prograuming languages will be classified. These headings are chosen for
their.usefulhessrin~the ‘cotitext of this thesis."'The.choice of headings: is

explained and those features considered to be necessary in a GPPI. are

outlined under those headings.

Pﬁmit—ivéf.dat_a‘; types" ;
The* programmer manipulates objects in some universe of discourse. :We
may separate what he manipulates,from‘how he does‘sd although‘the two

are cldéely related.’ To an extent the choice of primitive data type

defines the application area of the language. These data typesqare'

primitivegin that they -are simple'and contain no strueture. In a GFPL

Q.

we would expect some representation of numbers, truthvalues, and text.

/The language wouldﬁneed:operations on these.

Data structures.

The'> primitive ~objects alone are insufficient “to 'support‘

representations of object colleCtionsi ~We need ,data, structures to
aIIOWWJtEei'modelling of collections. uTwo conhon data struciuring

facilities are the array and the record ( also called - a structure )

l.. '
X .(,,-

The array is a collection of homogeneous locations each 1dentified by

integer subscripts. The structure is composed of heterogeneous

1ocations called fields each identified by name .

“Control structure.,%.

¢

Prograﬁs‘ are essentially algorithms thus our GPPL must support

facilities for sequencing, choice and repetition. “'Note we exclude

parallel execution. Much has been written ‘in the literature aboutj‘

which. control céonstructs are best. Those which d0wnot—easily-and

naturally express our ways of thinking- ultimately may die out! 1eav1ng

a surprisingly small number of constructs. rAlthough' very . few are

‘ A

R
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actually needed [Bohm66] it may be desirous . to. provide others which ;

reflect in a more obvious manner, the abstractions of our problems.
Our GPPL should support the onme and two armed B ""c_o’ns.téruct for

choice, and the wh:tle construct for repetition. &

Abs tra'ction mec‘hanisms S ;

',This is one of the most important features in progranming languages.

"

In the development of programs the desirability of specifying the

"what" leav1ng the “how" aside, has long been realised.' That is, we

put asuide inessential details at a particular level of abstraction and
concentrate on the main theme. The. practice of abstraction is
realised in programing languages by the procedure or function. Our .
‘GPPL must support both with parameterisation. These entities lie at 2
the heart X of¥ the way 'we_ should write programs and. how we u‘nders,tand

them. We will see that important as. they are, they are not fully

exploited. by the . Algol family and it is part of the purpose of this"’ ¥

work to elevate their high status still. further. Th_is, poses ‘_p,robl'_ems

in their implementation.

Security.

Any language must have a clear policy about p}ro‘teccin.g“thej programmer
from himself. ‘Although it - must ‘”‘provide him with the xtool's' he needs
for his 'task,‘ it must be aware that he will make "mifs’takes. Perhaps
the most "important area of.‘}"security “is-.that of t'ype—lchecl'cing‘. Some
languages. {éunnSO Rich69] determine type by context. In 'these, for
_example if you add one value to another they are treated as integers.
This is very much the assembly: 1anguage approach and An fact such
languages are regarded ,as: * low 1evel. Their reasoning is that the
higher level 1anguage approach to the store is too restrictive and not
powerful enough for certain k:mds of progranming.‘ .Most of. our present :

day mchine architectures still adopt this contextual approach ‘to data

types. Arguments may- exist about whether type checking should:. be




performed at compile time or run time, but it is agreed that

-monsensical operations suchq‘as dividingv a character by a iboolean
shouldfbe trapped. Other §ecurity areasjare arithmeticbexceptions,
bad .data structure accesses, use .of uninitialised variables, nil
pointers;'array bound checks and ‘86 on;

Store.
We ‘may separate the programmer s view of storage allocation into two

‘

parts, one for’ simple variable allocation and o_g?for data structure

‘e:

.allocation.. The former is handled by the concept of . scope and block
structure.. The 1atter embodies the concept of a heap where space is
dynamically allocated without reference to ‘the static layout of the ’
program.' Some languages allow this ‘for structures but not arrays.' We

consider both de81rable in our GPPL.

‘ :Weﬁhaye'outlined the'desirablesfeatures in a GPPL. : Not everyone will
agree'uithithem, but we feel they are typical of many languageS’in current
' *use;, This then was our starting p01nt. We: attempted to findia way of
implementing such a language which would be. straightforward and reasonably
efficient. That is, 'we try to find an appropriate mapping~from a_language

to a machine.

Levels bf increhsing language.power.

We look at three kinds of 1anguage, each"more-,poﬁerful than the

previous;rby Y the ‘introduction ~of novel 'little*knoWn,”orf'little-used

features;' and examine the implementation by - abstract machine_ of. ‘these
Jlanguages. The first language is a fairly typical member of the Algol
family (Algol R)s From there we look at a language similar ‘to’ the firstzgﬁf

but which elevates procedures to the status of assignable values and which

sets out to rationallse some other -aspects:, of 1anguage features (h)

*Finally e look at the 1mplementat10n of a language which sets out to

exp101t type polymorphism (nsl) The abstract machi' s;for the first two'




languages are designed with a view to code‘generationnor:internretation,
the ,third:;is so'-very high level . that we felt code’ generation was
inappropriate. . iherefore we .designed its 'Eahstract machine ‘ with

interpretation‘in,mind@

Sun-ary;
In this introduction we have said that we wish to make life ‘easier for
the language implementor. An examination of previous work fias led us in the

s

direction of an 1mp1ementation by a language dependant- translator and a

machine dependant translator. One 1nterface between these programs has been~“'

the abstract machine. We have described the mnature of an abstract machine
and explained,;fon the basis of other researchers’ work why this is a good f.
'techni&ne.forximnlementingﬁa lanéuage. We have concentratEchnstwo kinds of
mapping a language onto a machine — translation and simulation; An abstract
machinet-apbroach is feasibleifor both kinds. We have 'examined existing B
abstract machines and * pointed out thedir Weak points., The properties and
characteristics of a high level general purpose programming language have

been discussed.

pinfthe;'rbllowing-chapters we describe how we have implemented three
increasingly more powerful languages by  means of abstract machine
modelling. From an 1nitial experience-gaining implementation we attempted
to devélop a techniqne based upon ‘the concept of abstract machines which
would allow 'the implementor to design his own high level abstract machine
1anguage and use- it ds the input to a MDT. For this MDT *wé improved and
expand a code generation method to complete our technique. We then- showed

that the technique could be applied to other 1anguage features and be used-i

to outpnt 'que for interpretatiqn. Finally we used ourrabstract machine

N

iangdage'design;methdd_tovproduce a very high level, interpretable abstract

machine for aipowerful polymorphi¢ language.




CHAPTER 2

Implementation of a typical Algol.

Since the Algol family is widely used. and recognised as. being elegant,
powerful examples of GPPLs, it was decided to implement Algol R. [Morr78]
This language was .based on Algol W [Site71] a' language taught as. a. first.
.programming language to undergraduates. .lt_ 'cleaned up" a lot'of the less

desirable;f ’tures of Algol W. An implementationafor it-did however exist

80 anyvsubsequentuone had to be ‘an. improvement. We consider this to be oi“
average diffieulty of implementation.in ‘terms ‘of our scale of:more powerful
Algols; We mean by average that a reasonably . competent programmer with a
knowledge of language implementation techniques should be able ‘to produce;'
‘an implementation. This chapter will briefly .describe the: features of the

language which ‘make it a typical member of ‘the. ":Algol family and then s

describe its previous implementation. We also consider the code generation

technique which was used. The next cnapter:is devotedfto the;work on its .

{mproved: implementation.

"The Algol Rﬁliﬂéﬁﬁﬁe-

s

This is a reasonably typical member of the Algol family, much better”

-‘than Algol 60 and is™a good example of a GPPL Here, the main features-

with respect to implementation and the classification in the introduction

are dfseusseg.,

Primitive Data Types. g y X ’_,_‘;?:"' kY
Algol R. _supports the - primitive data types integer, real, bdolean
character and struct, The usual - operators are provided for the
primitive types.”

DataﬁserCtures. : % ' .

A struct is a pointer to a user - defined data structute“similar to the &

K




record of Algol W-and Pascal. The progranmer writes a named’témplate

l'A, oy

which ‘then defines the pattern for creation of instances of that data
structure. The other kind of data structure is the array. This 1sv5n

object of one or more dimensions with a primitive as1the base type.

Control structure.
Algol R is a sequential language, ome gaction being performed after -

another. ° It supports. choice in two main constructs —-- the "if"

statement and the "case" statement.. Repetition appears as the’ "while"
statement and thef‘usual sugared form, the “for" statement. An
iumortant and useful feature of Algol R is that the choice " control

constructs may  also be used in expressions. The "1f“ and 'case"

égp%éss;6n9~have drms which give values. The block expressioh is a ’
block whose last component is not a statement but an expression which

bt is eveluatedato give the result of the.wnole block.

Abstractioﬁ Mechanisms.
Procedures and functiomns take a fixed number of formal parameters and
are’ the - abstractions of statements and expressions. respectively.

Passing of parameters is by value only. A procedure or-a‘function

Serh
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name is allowed to be passed in on a call but these entltles are not

expressible values’ in the language.

Security.
Algol R 1s mainly complle time type checked. The type of a comstruct
is manifest ‘to the compiler. Bun-time checks must’be*lﬁposed”for some

operatidns such as data structure accessing‘where array subscripts

must,lie within bounds, struct values must not be nil on eccessing and

.field names must correspond to. the class of structures dccessed using

them.

Store.

Variables of all data types are-declared at ‘the head of .2 block. This

P




\reserves storage for the time control resides’ in the block. " When

ontrolé3leavesr the - block . these. locations disappear. Arrays and

B

;structures, ‘being allocated on the heap remain accessible only as long'

'5.

jAaS»a pointer to‘them resides‘in anvaccessible Storagedlocation;

ir
5

These then are. the high level language features which the implementorﬁ

-.must satisfy in a reasonable fashion.
‘The first iiiplegije_ntétion.

The. existing implementation was a compiler j:nhich generated
PL360 [Wirt68] code. ' This was a systems- language giving,the uéerflow level

facilities . but with high " level control -constrncta. The - .prior

implementation was moderately successful both in its deaign and maintenance -

¢
2.

.-and in its execution.'

The compiler called code generation -routinesifeach based . on "an -

instruction for an’ abstract machine. Instead of these routines outputting

a representation of the abstract machine instruction for interpretation, a

section of PL360 code implementing the instruction was generated. ItJiS'a

* form of macro. mapping. The' ffect is similar to interpretation except that

the bodies of code which would have been in the interpreter main loop for
each instruction; are now in-line. Thus the- overhead of! repeated decoding'
iSn»remoVed;: This approach is well proven [Amma73] and excellent for a
‘first or. even permanent implementation. It has the disadvantage that it
can genérate' large code. Code may be optimised by either ; peephole

optimising the abstract machine instructions generated [Tane82] or on the

generated machine code. {McKe65] $ A ; gﬁ

Approaches to code generation.

Most compiler34dnring the syntax ‘analysis phase also translate the
source-into a language intermediate in complexity ‘betweén’ the high level

language and real machine code. This is the machine code of the abstract



-

~machine. « It ;s‘deﬁe because translation in a;éingle step .

"makes generation of optimal or even .relatively good qede a

difficult task” [Aho77]

The varieties of intermediate code.all stem from an abstract syntax ‘tree
representing the source. There are some common representations such as,
Trees

An abstract syntax tree may be .built explicitly and traversed during

code generatlon as in {Baue73] or a representation of the tree may: be%’

produced for processing by a separate pass. .
Reverse_pplish»
This is a linear représentation- of the abstract syhtax tree produced

by a post order traversal,

n-tuples ( typically triples and quadruples )
Here seduences of n—teples.[Grie71] are produced ( we will confine
this discussion to quadruples ). A quadruple is a étatement of the

form,

A :=B op C

wﬁgyé” A, B, C are either ptééfanmer-definedb naﬁes;ﬁfliterals or

compfier;generated temporary names. op is anaopergténQJ-For example ;:

(~a+b)*(c+d) gives i o

.,.;, T1 :=~a o g
T2jfT1+b ' ’
T3:=ctd
T&i=T2%T3 °

Cattel’{CattSO] qtateevthat¢f

"Code generators which* typically translate an intermediate
notation into target machine code in one or more steps, have ‘been

relatively' ad hoc as compared;eto the..first fphase, of éompilers, -

which ‘translates a source language into the intermediate notation."
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and discusses some implementations based on trees and n-tuples. 'We however

Y it

deci@edfjto investigate an implementation besed on reverse polish’

interq:ﬂiete.cpde. Our reasons are summarised in the follow1ng.

i

We*ﬁﬁishedg to produce a, codew:generator which “was a separate pess

-

beceusesonly.this pass would-need.to be partiy rewritten when porting‘the
language to another machinea Such a split into LDT and MDT parts keeps the
compiler logically and phy31cally manageable. From a nore:practical point
of view a compiler capable of- producing sueh interqediate code already

existed.

BuiiginéﬂeTtreerwould have been inabpropriate and, perhaps inefficient
due to: -calls on a space allocator and the initialiSation of the fields of
~nodes s The output: of ‘a” ‘tree to dlSk and its reconstitution by the code

-

generator would have been time consuming. McKeeman“[McKeZ4]zstates,

"tree transformations consune --more computational resources . than
most other phases of translatlon both - because the tree occupies a

>

lot of memory and following the links takes a, Lot of time"

The use of n~tuples appeared to be nore long winded due. to the.npmber
of temporary variables which must be describeds As will be seen we feel
that it should not be the function of the first phase of the compiler. to

perform storage allocation.

E s Y :"’-'.,.-— A 5 s 1 L ]
“The generation of reverse polish is very simple and does not require

=the tree to. be explicitly built. Perhaps the most 1mportant reason for
using a reverse polish intermediate code was. the existence of a -code’
_ generation technique based on this format, whichvsppeered to be ‘a- good

candidate for improvement.

,fhe new. implementation.

The ’next"inplementation, of Algol* R, which. is - the ssbjebt of the

followinéfehapter, is besed.op e;code generation technique for expressions




and assignments described 'by Jensen. [Jens65] It was used in the code

generator of. the Gier Algol [Naur63.....] compiler. Similar techniques

have been ised in BCPL and-IMP compilers. The paper describing it showed -

how code could be generated for -a single accumulator machine with some:.

: dedicated registers. The" technique appeared to be-. useful when writing a
code generator for a particular machine on an ad hoc, one off basis. To
implement the ‘Same language on - another machine, the ‘code generator had to

be rewritten. g

« At was decided to investigate this little known or used technique in
its application.té Algol R runming on an IBM/360 even though it was limited
to eipressions; The hope was that an improved method of code generation
mightfarisetbpiextending the technique to marry with the code generation of
control structures.

The Method of Pseudo Evaluationfas applied to Alg&i-so;
The input to Jensen s code generator is an intermediate form of

expressmons in: reverse polish. This is ‘very easy to generate and - ideal for

stack~;machine“\evaluation. For "those machines which do not support -a.,

hardware'Stack, ‘the’ code generator must output .code whose"end effectAis

the’ same as execution of stack machine. code._ Jensen describes the method

e,

generating code for a- single accumulator machine stating,

uﬂawéver, in a machine which has Bullt in Eloating poliit operations
but npispecial facilitieslior working on.a stack,iithwill ndr@ally
he{faster to perform operations directly in the-accumulator 5% the
machine and to use named working locations: instead of the anonymous

ones which reverse polish 1mplies

Waite [Wait74] describes code generation as simulating the evaluation:
procedure in 'the environment ( register organisation and addressing

structure ) of the target machine. The codexgenerator holdsta description:{




of the run. time contents of- ‘the e‘nviron'ment':, code being emitted -and “the

description updated when advised by the simulation. In-the same manner

-Jen n,s method models at compile time, the run time: execution of the

reverse polish on. a stack machine, in a similar way to an interpreter for
such a uwchinei. Instead of. - using actual, operands on . the stack it works
with descriptions of the operands. In performing the simulation, code is
x! generated which' when "exeCuted natw'run time ‘effects -the hchanges in the
model. Note that there is a code‘generation;model ofvanstackdabstraESL
machine and a'run time model. . The latter ma§ not mimic:thewactual.stack

:1ike 'the code generation model but it still produces the same result.

R

The algorithmq
f{Tﬁe reverse polish is considered_to be the machfne,language-ofra stack

-

machine, which"Jensen interprets as follows s

(1) Proceed thrOugh the reverse polish form of the”expreSSion from-left to
-right. A

(2) When an oéerand is encountered, place . its description -on top of the

stack.

(3) When an operator is encountered, perform the corresponding operation
on-the,tob element (s) of the stack. This involves' the generdtion of
code to perform the action at run time, using: the information in the

{operand descriptions. Change the. stack of déscriptions to reflect the
'result‘oftthe operation.

The ogerand{descriptions.'

Jensen divides his operand description into two parts, the class
information and the address information. The former*destribes:what'kind of

operand it is. It for example may determine which machine instructions are*l

generated. The address information tells~where the operand Will 1ie at run

time. <" This may be implicit in the class information_.and thus will be




irreleyant;in the cogrespondfné address part. -Some of the classes are :

variable where value is required
;working storage where value is" required
,constant . :
*'the accumulator « 3

the floating point accumulator

These direct the code generator in what code to generate-for operations.
For example, the machine may not have an instruction to add the ‘contents of
two storage 1ocations.* Should both operands of an add-operetion lie in
storage 1ocations, then code most: be generated to 41oad; one into the

accumolatot. Then‘ an add store to- accomuletor> instruction mest be

generéted;p'This is determiped by examining the classes of the oPerands.

%3, R

‘f@he" address information is not necessary for classes which are
accumnlators Since the ClaSS*ziS also the address. For constants, " the
address 1nformation contains the value, and for variables  and working

storage it 15 a block number block offset pair.

An example.

The following example 1s typical of the metﬁod. iheJ'following

abbreviations are used.




VX —‘variable named x |
wl =% _orking storage cell 1
A - accumulator 3

Source.: (a+Db ) * (c +d)

revetsé‘ﬁpolish : va vho+ ve vd + %

-

Model :
Input |. Output Stack —> | Comment
va | - va | push deecription
vb i s ' va vb {2 W
A :e’b'i‘i va A load ‘top. of stack into' A
o A= A+ oa A add a to accumulator
ve | lave | push description
vi % o Tl Eyewy v [
+ wl =A i wl ve vd need A so store it
: A :=.4d wl ve A ~load A with d
A = Ate |{WLA add
% A 1= Akywlifa ‘multip Iy

‘The inputs -v'a.-_-adH‘ ¥b cause their deecriptions to\.he. pus-hed on -th‘e

stack., When the +'is met the code generator must output code which will

add.a and b -leaving the reSurlt 'somewhere-. Where will depend on; the. target"
machine architecture and the run time support of the language. In: this_

»examplenwe-assume an accumulator machiné. The code generator model -must be_ £

"'4',» i e

updated to reflect the- operation. “Note that the code. generator model‘s“a“:.

stack thus it pops the operand descriptors and pushes the result.

des‘cj:iptor, t:hat is, of the accumulator. At run time b is loaded into the

. accumulator andthen a is added to it. The descriptors for c and d are

pushed.‘ Addit_i_on' is - as ,bef_ote. except the acc'umulator ‘must be- stored in a. .

working 1ocation be;‘.ore: it is free to use. The descriptor is updated to.

re_fflect thie. Finally code is generated to- perform the multiplication, the

resuit being in the accunulator.

%,
&




Assignment using the model.

Thehexamgle above dealt with operand values only. In the‘case of

assignment to. ‘a simple variable we care about it$ location mnot its

contents.' A further. class is" added for this - "variable whete address is

required". When generating code which may involve a side > effect of

changihg a value in a nariable then'operands whose class ‘is "variable .o
valuei;f " on the'simqlated stack must be sayed in working@storage. This
involvesfa'search up the stack{' It must beldonefsince we are concerned
rwithqﬁhe.values in the variahles. If the variable might be updated then we
must presetve this valué;4h0oerands whose class is "variable .. address oo

-contents.

c&iﬁgﬁﬁggqn the method.

,Esepdo"evaluation is'aiconvenient means of keeping track ofnoperand

valhes'and addeSSéSi The stack model supporting this is well understood-

and effective for expression evaluation. The quality of the code generated_

;-for a. particular machine depends to “some extent on the writer of the code
generator and;not«on the model. The ‘value of: pseudo evaluation lies in its
organisational enforcement. . .There is little in .the_‘technique which

e
i

automatically causes the genefatfon‘of'dptimal code sequencesu

Howeverzit does have something to'offer*becauSe it is simple, readily :

understood ‘and prOV1des an excellent framework onto which may be built some °

simple optimisations. It can.be improved‘upon'byfemhedding,it in a method
for generating~code for all language.facilitiES'hot just expressions. The

improved,method:has to bevdesighed bearing pseudo eyaluation‘ih mind and

¢

must cateraforfall ﬁeatures of the language it is*uSedrto implement. We

‘ must not forget that the 1evel ‘of the enhanced intermediate code for Algol

R must also ‘be’as’ high as possible and the code generation technique should "

not pyerly limit this.

need 'not. be saved since we are interested in ‘the location not its

2 ’;“.»'4




‘yrdsslhleiinpngyepente‘and Extensions. to qhe'hEFhédQ".

iészé gidecided that pseudo evaluation was a reasonable way of

generating expression code either for a real machine or an interpreter.;

Theré also Was&scope for improving and extending the teehnique. If this

was Hene,wpbmbiniﬁg it with a method of code éeneration“for other language

-features, perhaps a reasonable code generation technique might evolve.
'Wlth this goal in. mind the first task was to analyse pseudo evaluation. and

examine'the'ateas which could be improved. These‘are discussed below.

Conﬁfdl and Data Structures

.Jensenistates that .

j"The basic method is a pseudo evaluation- of ggressions in ‘the

text. " ( my .emphasis ).

- He does not. mention flow of :control or data structure creation.

Pseudo’ evaluation is ,only used when expressions ave ‘met. The work in .

]
L

hand.waSwto design a coherent technique for a complete language using

‘pseudo evaluation as much as p0391b1e, perhaps even” 1n code generationﬁ

: for control and data structures.

Types
Jensen glves examples using arithmetic operations alone.- The Boolean
operators in some’ Algols are hybrid control structures. In‘Algol 60
they are stritt. [Naur63]i Later Algols' have mere'~c3mplex data

'ééfgg£upeg and a wider range of types. The new method must be able to
cope with some ofﬂthese. No type information is used by Jensen’ s.code'
) genepahqr, his ‘descriptiqns;;cnntaln 'ciass and address _information
_\only; ,As-Hoare [Dahl72] says;“a type.&eéefmlneé'theirepresentation of

«a:value; Surely this is a concern of the code generator as. well as

the compiler.




, Storage Allocation

};of whatever type take up the same amount of space. This makes for ai'

Jensen s method is* very Weak in this area. First-of*all hisﬂvalues

’Jvery sim:le 1mplementatlon but ‘may be inadequate and unrealistic on

e

machines with limited address space such as; mini— and- microcomputers.‘

ﬁSecondly, his compiler does the space allocation for variables whereas

the code generator does it for working storage. Each_uses a--dif ferent

:method of referring to the respective storage. As will be seen 1Ater,,

ithe code generator should do all storage allocation 1n a uniform way -

u31ng;type information providedfby the‘eompiler.

Registers : nﬂi ‘ ‘ “”;“ﬁ”

Jensen describes code generation for a single accumulator machine. A

L;number gof archltectures support several general purpose

Heap

fproblems involved with the non deterministic nature of garhage

registers. [DECSI DEC71. IBM70] Whlle some: of these may be dedicated in

a particular implementation some'may not . AThesevshonldvtake:part,in

'expresSIOn“evaluation to act as fast working storage where possible.

This will involve the additiOnal task of finding a register allocation

algorithm,

“Algol 60 does not employ a heap. The  later- Algols do have side effect

LI

zcollection. For example, in Jensen s model a dedicated register -

,?points at elements of arrays at each level of: subscription. That: is,

1t pointS'into-the middle of the array. Now he knows by the nature of

jAlgol 60 that the array will still be  there when he accesses that

element, This may not be the case with an Algol. such as Algol R where

‘arrays are assignable valies: For example,




begin
" integer: array (_1 :

10 ’5:"fred .
5 60 ) Jim

in‘tege'r ‘ér’r’a’y '('—

fred( 10 5w 'g v 1% 3K % won B end ;

‘énd"’

——

In ‘the above pfogram fragment & value is assigned to ‘the 10th element e

i . of the array currently . in“ -“frl'ed" "'-'“just before calculation of - the .
assignnieht -value. . However- the array value in "fred" is changed by, the
81de effect. The ellipsis code could cause " a garbage ‘collection in

.which case the old array 1n "fred" might no longer be accessible. Now' .-

Jensen keeps a pointer ( UAa ) directly to’ the. array element being

o SN e s B

-acc_es_sed. After the assignment to "fred" the original .array is

"float_i"h_é-*'atound-" with nothing referring -to .it = -t—hus_ it might ‘be vt s

garbage c‘ol‘lect:ed. If so, no harm is done sincethe asei7gnment to’ the
tenth element will change a 1ocation in the free space. of the heap.
But, if the space is reallocated it will have the nasty effect of
changing a -value in a new data .structure. :Anothér "consi.deration

involving a- heap is the identification of values ‘Whlch are’ pointers

and the following of these during the marking phase of - garbage
collection. Thus.a 'heap inyolves cons.idera_bly;‘ more work in ensuring -

-its consistency at run time.
Descriptions . E : ) ‘ »
The interface between Jensen s compiler and code generator is _reverse

,polish. His deseription of a variable in this interface code amounts

to nothing apart from its name . As we have seen, ,type information
"should be included also.' We _note that other entities such as
-ptécédurés should 'be described and pex‘haps t_al;e i part' in the
‘simulation.

Portability - L5 ol by Ow g

Jensen ‘d»escribea‘ a technigue used for .the implementation of ‘Algol 60 .

on ’ia- particular’ machine.’ It is desif'a?ble to make,avai"lah‘l‘e a 'qua:




5 high level language on a vari'e,ty _of machines. Thus the new code,

.generation technique must consider portability-with respect to the

compiler and the code generator. In the vim_plement.ationfof .aj.langu,age.

1

: there are three 1evels of abstraction, the _sourc_e; the -underlying

abstract m’achine‘ and the- real machine. As far»"‘as 'portabili‘ty is
-:‘!‘concerned ‘We must investigate the mapping between the source and the

'.abstract machine code and between the abstract and the feal machine.

.

Optimisation - -

"The process of v"ob-ject 'codea Optimisatio'nsban bé':cons’idered in

. two forms, often referred to as local and global optimisation.
The first technique involves the‘ ioptimisation of small
»subsections of the generated coding without being concerned
-.':‘:with any overall features displayed in the - program. p.\The
second form on the other hand consider_’s,, the -wwhole source

. program in an attempt to improv,e the: efficiency of the o.b'ject'

code’ generated . [Bril72]

,The technique of pseudo-evaluation lends itself to both 1ocal and

global optimisation. »Richards [Rich71] says

"Good global organisation :i-s. often a better way of_-:‘achieving

efficient code than any. amount of local‘-optimisation.l"'

‘He suggests that general, deé:i-gn.‘_decisions such as reg'i's't'é-r.‘rd'edica-tion, -

procedure calling‘mechanismé,'_"data representation, stack organisation,

S S

variable allocation and” a:ddressing are. il very important. These all.

can be done with pseudo-eva'lnatio'n and‘to some _e;‘:tent"'fhelp, £form the °

simulated run time environment. The technique allows a. reasonable

level of local optimisation, n,\ore-'-';'!_:l-ha(n?:' peephole optimisation: would

allow. Tﬁis may be: achieved 'bv the fact: that -data i"e‘_v'.de'scri‘bed in 'the: '

‘ éimulati'on'. I'netead Jof emitting codé for an operation we need only

Vo dad vt ety ®
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'chang‘e the dés”cription of: .the result. This ré'f.‘]_.ec,_t::_»s _sthat . code
production for some oper'ati‘o‘ns has been de"layed and provides
.information on what mus"t be done. This goes some way towards ‘the
situation in- producing code from a tree where all subnodes are
mavailable at the same time as” a.'node. Here, because of the postfix

e

notation we only meet the node after the subnodes have been processed.

Better code may be generated- in-the 1ight of, ‘a: wider context thus by :

building up enough information we are in ‘a strongerg*posit:.on to

optimise. . We suggest that this is better than peephole optimisation-

on generated code . because :itn is easier ‘to .»save* descriptio‘ns, - o -

further pass 'is'-’ necessary and the context may be wider th‘en' a

practicable peephole window._ The technique hOWeVer ;does not lend -

‘itself to control ,or data “flow an_alysis. Similar optimisation

techniques are outwith the scop.e" of thi"sf/thesis.»

Su-_aryv.

¢

Our aim was to provide a method of code generation. 'which*"jf“

is .readily

‘understandable ,-‘:: implementable without much difficulty, able to provide.-:

reasonably good code and able to have optimisation added if necessary.. ‘One

of the problems with local optimisation is the number of ad hoc- rules

\

introduced [Robe81] which tend t:o obscure the underlying technique. “We
feel that a straightforward pseudo-evaluation code generator should be-

written after some ‘time considering global:- organisation. Some measurement o

. -should ‘be taken of the code produced and. then local optimisations layered

on top.

Jensen’s _»pseudo-evalifstion technique- ‘certainly seemed: to .-pote"nti'a'll'y' \

fit the criteria above. Other code generation techniques were considered.

and rejected due mainly to t‘neir difficulty of understanding " or

impl_ementation. The existence of a simple improvable technique ';such as

Jensen-"s- proved to be a high__ly ‘attractive magnets. - The next chapter
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describes the ~imple:ﬁeqéat19n of Algol R 'ﬁsiné-:pse‘ti&é'-ﬁeav;l:hiagion. .
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Intermediate Code and Code Gemerator for Algol R. -

‘This chapter describes the'dmplementation of7ﬂlgol}R. lt is in two
main“sectiong,fthe first dealing'withjtheadesign of the:abstract-maChine»a»

intermediate code andﬂthe second dealing;mithvthe.code,generator.
The désign.of'thejintermediate code.

A compiler written by R.Morrison producengLSEO-[Wirt68] code. for an
existing. abstract machine. This. code~was used'as;austartingApoint.in the
design of the new. .. intermediate code.,‘ it was chosen because of its:

similarity to Jensen s code, . being reverse polish in - nature and because it

alreadyw:existed. It  was .thought that mwdifying'\it{ would be -a

straightformard tash. - Although' muchfiﬁ .,learned at this stage the

1ntermediate code should. really have been designed 'rom scratch. The

instructions for expressions. The abstract machine operators are described

in. [Morr76] $he vintermediate >code ; described in ;Appendix A, The
relationship between the Algol R source and the 1ntermediate code is also
shown. > The major changes were to the flow of control-instructions which -
were -ralsed from the’ status of jumps and labels closer to the high level.'
language constructs they implemented. A means “of describing source

entities had also to be added.

A'7Where:an abstract machine is to be interpreted thezcompiler performs
the code optimisation with all the knowledge of the .source to hand .. A~code
generator, “in the: . same way, ‘must have this knowledge also, thus the
intermediate code must represent both the algorithm given by ‘the source and:
the description of the data. This, simplifies ‘the compiler s task, passing

on the responsibility of ‘code optimisation to the code generator. Should

'the compiler make optimisation decisions and generate an 1ntermediate code

iy
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which has lost some of the _essential“'so'u:f{ce' ‘information .then the code
generatbr cannot be expected to produce better code than if it had all the
information available. [Brow69 Brow72 Korn80] The compiler must produce an
intermedlate ‘code which is in a° convenlent form for subsequent processing
and loses little 4 1f any, ‘of the source information. Most important_ly it

must have no implementation decisions. imposed on it. It must perform the

usual analysis and generate an intermediate code at a level of'a_bstraction

which does not limit the implementation. It is thus very important that

the implementation be split into an LDT and MDT.

As an example of this approach, consider .the original abstract machine

for Algol R.. This was implemented by outputting PL360 code by the code’

generation procedures : which each "implemented" an abstract machine

instruction. . Variables which were to contain pointers to heap entities

were-~a1'].ocated" on a separate stack. This was to allow the' ¢ollecting -

together .of p01nter values for easier handling of garbage collection. The
abstract machine then had to have two stacks although there is nothing
inherent in the source 1anguage which forces this. Had this aspect of the
abstract machine been used in the design of an intermediate code then.all
code' generators using that code would have been -forced‘ t_o implement two

stacks.

_ Now- it is conceiv_able that the language could have been implemented on
soxixe radical or movel architecture ,. for . example 'aa-y one with
tagging. [111f68] All values, including pointer values could then reside on
-a aingle stack, pointers being differentiated by a unique tag. Thus the
compiler ‘mast tell the code generator that space for a pointer value is to
be allocated but it must not tell it' where and how much - this is the code

gen‘erator s decision alone.

We now describe some of the fundamental design aspects of the
intermediate code: which preserve such information and ‘also make it easy to

handle in the code generator.

LuEh
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Interie&idté code and control structures.

A tfénd {Righ7l,Rohe81,Nor174;3gi180] in intermediaf; cdde:de;ign is
to tﬁfoﬁ awa& ‘the essential structufe of control stfuctures. ( Tree
intermédiate forms by their nature do not fall into :tﬁié trap ). The
abstractibn of say a "while" loop is lowered by genéfating jumps and
labels. It may seem that in doing S0 a meagre amount of"informatiop is
lost, since after all the real machine code will itself'be'in fermé of
jumps. Unfortuna;ely‘in supposedly simplifying such a control structure,
the c;de generator ié made more difficult to 'write purely because the

structure, is lost: An analogy could be drawn with the use of

goto’s. [Dijk68]

"It is very important that the original conStruCtiohs from the
source language ‘can ‘be recognised. For 1nstance, to make efficient
use of’ registers, one must know Whether a label in the Antermediate .

form is parttof an if-statement or can be branched to by a goto~

statement" [Korn80]

In the design of the intermediate cqﬂe the structure»was‘pfésérved, in fact
it  appears véry;much like the source code. This had the advantage thatl
debuggiug'theAintermediafé‘code generated was very easy in this respect.
The actual syntax of the 1ntérmediate_¢bde is simple and straightforward to

process by the code generator. An example of the code genérdted follows.

while a + b < 6 do while _
stack 3 stack 4 plus.op
stackconst 1 6 ls.op
endbool
begin ... end block ... endblock
Ay - endwhile ‘

Variable illocation and referencing.-

Another area in which the intermediate code hust not be too low level

is that. of }éferring to variables. At the highest level of abstraction,




the ‘s"ESurce -lan'guagei wo‘rks: in terms of typed“""va‘-li.xes reéiding in locations..

The, objects of .different types- may eventually ‘take up different amounts of .-

i 1"

storage in the

compil’er ( for example {Nor174] ) allocates space in 'terms ‘of " these

objects and the addressing structure of the machine. For example it may

decide that a real is. four bytes long,;a boolean one byte long. It then.

c;-. i

calculates addresses on this basis . If this is passed ‘on to a code

then no optimisation ‘,is. possible by that: code generator. Of

genera-torr :

‘course, one of the two passes must decide. If it is the compiler then that'

'r must be rewritten if the sizes are /changed. . If it -is; }t-he code

E generator then only it needs to be changed.

Every variable in' an Algol R ‘source program has a type. It is the

responsibility of the compiler to check that it will only contain values -of
that type- throughout_ its lifetime. As has been mentioned the type
information- i required by -‘i't_he_ % co'de 5 generator" ”to‘ determine what
representation a. value will have‘ atx run time, and perhaps where it w111
reside. Variables ‘are named the scope rules sorting out references to

s et

thems This name is not necessary for the code generator unless say some

re‘ad‘able form' ~'of run time error dump is. re"quired. Yet t-he code generator

Y-

‘must have a means of uniquely determining variables.- In 'an~-abstract

F machine designed for interpretation, variables -are accessed by their'

LS Fu

loca:tjion' in t_‘h_e.v store. Several variables perhaps share the ‘same location :

.at .'different”t-inies. As we have seen. the compiler must not allocate storage

'for variables and so cannot allocate - addresses. Inste"ad" it associlates a

number- with each variable' and uses this number in all references to that
variable. In the same way as names” need not be unique ( because of the

scope rules ), the numbers allocated need not be unique.

':real mach‘ine. “In generating code for an, abstract machine, a -

I
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Descriptors.

“Variables are mnot the only entities which need to be described and
uniquely_‘reférred ‘to.  Procedures are typed, named entities “ag.  are o

structﬁretfields.~ Wergeneralise this by saying that“any entityuwhich needs

E 'unique identification and has certain attributes, must be described to the

codeggenerstq'";gThis associates ‘a "reference number with:. the entity and,

v

allows the’ code generator ,to build an internal description both from 5
attributes provided by the source description and. attributes determined by
itself perhaps in terms of the real machine. This.description is held
internally by. the code generator in the form. of descriptors. 'The‘Algol'Ra

'compilersfmgenerates gartia1A 'descriptions for 'variables, procedures,

A

structure.clesses?end strncture fields. Complete descriptors will be bullt
by the code generator for these ‘and ‘for transient values arising Erom the

proceseﬁofnpseudo'eveluation.

For example, variables within a block are described and referred to ‘as’

follows, 5
begin ~ © block’
integer x 3§ ° . ‘declare 5 :x integer
char y ; ¥ "declare 6 y char
e -enddecl . s
ese - X .‘.._,_y e R Stackf_5~ « s+ Stack 6 v e
end € sk free 5 6 o

endblock

The.Code Genergtor;'_

Code is'generated according to. the intermediate form' of the source~5

program and some run time support. The latter- reflects ‘some ‘of the higher

aspe ts of the abstract machine such as the implementation of a heap - and

inpu /Output facilities. Usually these interface with the generated codebz

>

'Athrough calls of assembler routines. Theﬁrun time support‘will be assumed'

ite o v 3 v sk %P . . "
A o > . PR s . : .
3 =% f, set s ] 3 . . "

in the following. V*:Q,{




._the code generator depends on: the under;

. "target maching

" such as." f" and“'wmile", and those which are reverse

The Algol R code generator is itself written in Algol R. ItﬁdutputSﬂ

*

assembly code for the IBM /360 model 44 JAs far as possible it will be'_

described Without reference to this machine because it was designed with a

v1ew to, portability and general technique

S

ng- abstract machine and .not # on

the target machine._ Such a design means xhat ‘d large part of the ‘code

generator is machine independant and ‘need’ not. be rewritten for a different

Theyjstructure of thef code generator s dictated by two main

3

; considerations. One is the procedural nature of Algol R, the other is the

stack architecture of the 51mulation. The source main program is compiledy'

into a- segment "of 1ntermediate code as is each procedure and function body.

-It is convenient to consider the main progranl as a procedure of the ;

‘ operating system because it no 1onger is a . special case. Thus "the code«

generator basically consists of a call of a routine called segmentﬂ to

vgenerate code for an. intermediate code segment.‘ It generates entry, body

and exit code. Within the intermediate code” will be’ nested segments (- one

i

for each procedure ) produced by the compiler so this routine is recursive.

~

Thekovéralinstructure of the codeygenerator 1éf eminiscent of that ‘of

a recur81ve descent compiler. There are routines for each syntactic entity

vy

of the intermediate code Whose function is W generate code‘ for that-

c

entity. ( In a recursive descent compiler we ' also parse the code. ) The -

‘intermediate code instructions fall into two groups, those w1th structure,

<,

The latter have somefeffect on the run time stack either%tohchange it or to
j push a single value on’ it. They are treated by handling them one. after the'

other using a pseudo evaluation algorithm similar to Jensens until-

':'7‘

-directed to stop by a delimiter. A routine called "generate produces“code

Y l

and:; handles the simulation of .a: sequence of‘reverse polish intermediate

code instructions. It takes as a parameﬁ :the*delimiterfmhfchgmarksﬁthe

The operation and structure of

olish 1nﬁhature.;
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end of the"seduence..‘ASequences -of reverse polish instructions and

structured instructions form the subcomponents of structured instructions.

??“'"Generate

repeatedly reads an -instruction and simulates its evaluation possihly

Agenerstingécode~for it. Those routines handling structured instructions

Ly

"w1ll recursiufly call generate ’for-their subsequences. We do not propose

s e

to describe code sequences generated but intend to’ con51-er what happens in

:Jthe code'generator for various features of Algol R. This is to demonstrate:G

."v" . -j

o the validity of{the intermediate code design in the conte" of imprementing.

a typical Algol. In the following ‘the 1ntermediate-code:description in

'Appendix A‘may be referred ‘to. . {j.tflf g e

i

Descriptor Creation.

A'”declareh-inStruction causés{the‘creation”bf:a?héscriptor.by the

codeﬁgeneratpr. All such descriptors:are modelled by structure'instances

and pointers-toﬁthemiafe'held in an array.. The descriptor'number is used':

to 1ndex this array to access the descriptor.- This array is called the

descriptor definition stack. It is a stack because of_the LIFO-nature of
the allocation»and deallocation of descriptor numbers as the ‘code generator'

progresses through the intermediate code.

Descriptors also reside on the simulated‘evaluation stack.- This again

is an array of pointers. Here, they descrrbe'transient entities whereas

the descrip or definition stack contains the descriptions of those declared

entities currently accessible at that point in,the intermediate code.

nvA descriptor of a value has-threewcomponents.

Declared e i Bl :.fﬂ
This boolean field determines whether the value lies in a declared
variable or a temporary storage 1ocation ( this is only relevant if the

.\. 5-~~1

s value is _resident -‘on - 'the run time stack since both variables ande'

temporary,results reSide there ). It is false When stack values are

e
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temporary, being the result: of a subexpression. When no: longer required ":""

the space on the stack used for temporary values can be made available

¥

for. reuse immeédiately. Variable space can. only be released on block

exlt,” v T ¢

s ] v - B ' ey &7

A value is classed ‘as primitive, array,- procedure,ﬂf‘structure‘ or field .

depending on. its Algol R type. E_ach kind: has its own’ descriptorof the

type.; These dre, ¢ S

Primitive ¥ .

The types integer » real, boolean, character ‘and struct ( p01nter to

' _:structure ) are each described by a primitive descriptor. - This has
three components, the type name “( not. act:ually used but could ‘be
for debugging purposes ), the byte boundary on which values of the

type must lie ( this would only be relevant for - certain

_architectures such as the /360 ) and the size in - bytes of the

values.’ These are used in space allocati‘on. o

Lt

Array._:Arraiijpe descriptors have_tWo;components, the’base}type and. the

number of dimensions. = eyl ¥ '

Procédpre .

'l‘his has four components, the procedure name, 1ts result type,

| list of its parameter types and an indication of whether it is

present, J.nterface or external ( see’ 1ater e

¥

Structure. , ' "j *

"~ This has three components. One’ 1s the number of" the descriptor -of.

o SR,

SOk %
Rt Ak A SR,

- the. first field of the structure and the other _two relate b

__:housekeeping 1nformation used at run time. One of these is ,a

unique trademark for the structure class. This - 1dentifies all'-'

., 8tructures of* t_hat class  at. -r,un-‘time. The other ‘is garbage

; c'o_'l'leét-'or- fj’]_.‘ag_ 'settin'gts .




Ve

Field. Thls 'ii;;s threei-'comoonent's. One is" tljl,'e offset of’ ;(the"field\'nifth-i-n‘-"'

1ts structure. Another is a; link to a- descriptor of its following

5 Mgt 1inked together via the type descriptors.

Locatibn -

Tﬁ'ls ‘component ,of a descriptor is perhaps}i tli'e most -machi;he' -'&e'péndant: . it

being a description of Where th

1ue% 11e§‘ at- run tiﬁié. A value- is not

'restricted to permanently res' ding in one place +and may not even exist

rf-

as a 'bit pattern ‘at run time but as’ a represent:atlon ( g a condition :

v

code '),. * ‘Even though the: 1ocation is heavily machine dependant we- ’may

_reduce this by abstracting over common architectures in. the*

of*. "code g‘en‘era—tor construction. - Th1s means looking- typlcal

‘istics ,of real. machines in relat,lon to the :Lntermediate code

and Algol R objects. From these observations déyelop" 3 th‘e "location

"desc ptions for Algol R values.

Manifest Locatfon % oa , e o ,

We first note 'that-”'some values may ‘be niani'f-es't" at:'co"r;up‘:tle‘ time‘..

There 18 no need to generate code ‘to evaluate these values since we ..

- may generate them’ directly in store, possibly as immediate ‘operands

5 v

of 1nstructions. ~Also_. Jensen points out -that in'pseudo\ eva-luation

2.

'the code generator may perform expression evaluation where the -

'operands aré manifest values. Th'is is known as congtant_:f-iﬁolding-.-:'

"

independant . Ty’pes_ which may have manifest locations in the Algol

nsional a:-:r-rays -of manifest characters and procedures. The’IBM

L 360 :&ééé"-v not'- allow'._: iulnediate' -.o'perands except- fo'rf"' small values..

eight bits or less ( move" iumediate 1nstruction [IBM70] Yo ;;La_rger'

A X 'fleld. The third is the trademark :of its containing structure\_,-_-"'

class.-% Descriptors‘of fields of" the same structure . class are'

design phase'

'l’ﬁere_fore one class of location is manifest. Note this:;-‘:i"s_r’dachine‘

R code generator are boolean, character, - integer, .real, one-

The

5
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5 Register Location

.

Stack Location

?

mpurpose regxsters.: Instructions u81ng these are shorter and faster
/specific function throughout the life of the program. For example,
»contents may change but notfits,function. Dedicated registers may
: must themselves be identified to the code generator by'register

) descriptors. These contain components such as the register number,,

"vaLlocation.).

- one for‘pointer valﬁes,~however‘for reesons.giveu:preyiously'the

©,. and offset“wiehinmﬁrame. As With register descriptors, ‘there are~

also components used in the modelliﬁg of location allocation.

51

A T g o]

In common w1th other makes of machine the IBM‘/36O has’ general

\ /__

7than those employing store. Another class of.. location is t erefore

5
XLy

register. Registers may be dedicated that isy they may perform a

-1n the /360 implementation of Algol Ry a register is dedicated to

.always p01nt at the base of the topmost frame on - the stack. «1¢§"‘

s

'hot.inhgeneral tskeapart in-expression evaluation. Those‘which do

3

its type ( on . the /360 there ‘are two kinds, floating poxntaand

i

fixed\;:'apoin_t' ), “and others,.' to aid’ the simul‘at’ion ( see .register

Variables and temporary values reside on the -stack. '-in..the;:
implementation of Algols these are“-uSUally 3identified by a
procedure ( or block ) level number and an offset. [Rand64] The

level number is-converted atwrun_timeito a frame ppinter by means

of R display or static chain mechanism. ~There is one‘class,fstack,

describing values on' the stack., In fact two stacks are supported, ¢

locationisdescriptions' ihvolve only :‘one stack claSs. This has

components such as which stack ( pointer or- maln ), procedure 1evel

b

*




Heap‘Location

o

Locations may also be in arrays or structures. As'has been seen it |

ks

,is not sufficient to simply point at a location ‘on thé heap ( we

“may lose the array .0r structure on garbage collection ). We must;

refer ‘to it by a base, offset pair where the base is a pointer to

. .the start of the array or’ structure. There is a class for such

r‘<

heap locations with a component for the: base and the offset.‘.The
baSefcomponent will be a reglster or ( pointer~) stack:descriptor,

zdescribing where the base pointer is held at. run time. Offsets may

-be manifest. L T &

Boolean Location
.There are three final classes of location all to do w1th boolean “
values. These are not- descriptions -of physical 1ocations at: run

‘~time'hnt‘representations of boolean,valnes.'

Condition Code Re@resentationﬁ
After test instructions; machines._usually set  some. flag in the
% brocessorbstatusxword which'reflects the,resnltlﬁ;aaY:éerosor nond

zero. This condition code- may be ‘used as a representation of a

‘Qb001eanﬁvaluerabut only up toggenerationfof;someuinstruction which;

g

_feﬂanées the:flag!' The flag has two states, each being able to

represent true or false. The 1ocation-qescription then is apair

<‘f1ag'state, hoolean;valne7repreéented‘>.

For example, < on, true > represents true "if .the condition code

flag is on’ and false if lb{ls off. This representation is.. neededﬂﬁ
'a?for the generation of short code sequences as w111 be “seen later,’
"however it does need‘vigilance on the code generator writer 8- part

f{tOAgenerate code to*cpnvertpit tola'ppre permanent representatlon»

gbeéstﬁiﬁg;generatesfcoge~Which.conf&1chanéeithe”flagff;




Label Reprtsentation

'The boolean values false and true are commonly represented by zero

“and non-zero values respectively. ;Mbst'machines.have instructions

Vetk,
"~

'.-tp testna value and subsequently Jump to ‘a- label or not depending

e

on the ‘result of whether it wastzero or not.‘ Thus a value may be,

’fconverted to a representation.as a label with an . associated boolean'

.,_:t

test R 3 z ‘ fexe
jump- 1f f : ; 4
non .zero .
“to abel T

is a representation of‘a Boelean Value. True' is represented by

landing at.. the label T yet to be planted false is represented by

carrying on after the jump. Let us define this representation to

be a "true‘label“ representation and:depict_it as

AN

i seeaer NN g T 3 s My S

e

or "bQQllabel( true, T )Y. ,Npte'this}iﬁplies-“carrypon‘in 1ine_if€

false". We could have generated the sequence
test R " fa T ._"T 3
Jump 1if WG P
ZETOo : “

to label F-.

T

- in which case we have a “false label" representation of the same’

‘-._ o

value-depigted'as

R

5 Given such a representaticn we .can reverse the process and get a.

%s.storable value. This%isgdone by

l')_f"beol‘lsbel( true, T ) => Register( R )+

—t-->  => R

R <~ false
goto Xt ;
T: R <~ true o ‘ it
Xz «

(2N




'-:'-Obviously in simple assignments there is no point 1n converting a

value to a label representation and vice versa.. They are’ best used

in the binary logical operations and, and ‘or. which are "lazy" in

] ,v'that only the minimum number of- operands are evaluated to determine

b

! the -result.

The §i;i;niatéf51: Evaluation stack.

“,Each call _of the generate toutine has "its own simulated evaluationj;‘f’

'st'ar‘tis off empty, grows and'contracts as-' code“"'is 3 ﬁi&‘c‘é'ésed up to ‘a

delimiterw. -On meeti‘ng the delimiter, the stack will be" empty or contain a

~.k"

of memo'y locétion contents or: »both. The generate routine returns this

description to’ its caller, which may stack At on its private stack. Each

I

procedure which g"nerates code for a 0 ntermediate 1ns1:ruction, on entry

will use the stack..for descriptions of that instruction s operands.~ On

exit, it w111 adJust the stack - to reflect the run time results of the

"gene:rat’ed - code: auThe stack 1s: not used in between these times. "‘F"o’r

i",'tvhile" S instruction ( see lAppendi'-x A) contains  two

)

.subsequences, oné.- for the boolean- condition and .one if:or-‘the body. "The

gener te' - routine is called twice recursively with appropriate delimiters

£

for es.ch"; The first call returns- a descriptor of the boolean value. - This




'Fraﬁe53pace‘hlloeatiqn.

"for variables and temporary values is allocated on either the main stack or 2

1 Qwn frames At run- time the address of the base of the topmost frame is

? yet unused location for the type.' It may be desired to ‘use as: little space

‘,descriptor is 'not ‘pushed on the evaluation stack but thrown away after

v

appropriate code is generated for the test jump. The second call does nottsi

return a descriptor since the loop body does not return a Value.

S e 3
e

v 1mp1ementation, fori the same reasons as the :preyious- abstract

~uses: two stacks, one being for pointer values.~aSpace-at run tineﬁ“

-

the pointer stack. A simulation of these stacks is held for each segment

7

during code generation since a routine may only allocate space within;itsi'

A;temporaryin

results is performed us1ng this base register and a byte offset.‘ Values -of
the different types are of different sizes on the /360 and start on

_different byte boundaries as given by the follow1ng table._

: Slze Boundary
:;1nteger 4 T

real: 4

character main - 1 ro
boolean', main - 1
: :3_pointer 4
_ pointer 4
8

“procedure © main

T

When the code generator needs the address of.s

\ ‘

allocate routine is called with the type as. a parameter. Itﬂexamines the

£

space 31mulat10n‘on ‘the approPriate stack and returns the offset of an as -

as possible requiring values to be optimally packed in a frame.. When'such"

space is to be made available for reuse say on block. exit’ or 'when. a.

B

'temporary' result »has “"been: used; a correSpondingv deallocation routine g;

adjusts’the space simulation..

i ue 3 a - D < 3 SRR t




implementation criteria. ‘ What is more . important is- that the rest of the

TR s

code generator should not depend on how or where space’ is allocated within

. a-frame. It provides a type and expects the offset of ‘ah-aréa of space of

the required size, on the correct byte boundary and on .the - appropriate

i*

stack. The'current-simulation involves a first fit algorithm, searching‘

ithe fmame mov‘l from .the bottom-until an appropriate "hole“ is found. ThiS:

is ed as allocated in the model and 1ts address returned. Deallocation

simply 1nvolves marking the areafin the model ‘as unused. :-ﬁd

Regr;;“eeé."ma_j_&:" tion.
'fA'similaF_model is that of register allocation. ‘Fegistersﬂare:faster‘
than store soTit is desirable tolkeep‘as many operands in themfas“possible.}

In fact, Adepending on the architecture, ydperands‘ may need' to be in

registers for particular instructions.- The Algol R code generator employs

a reasonably -simple but powerful 'model for ,non dedicated registerﬂg

allocation.‘ (there are 6 dedicated 8 non dedicated registrs) On the /360"

there ate two. sets of registers, one for floating point, one for generalu,

ot J

purpose.. We Will con31der the latter since a similar 91tuation ex1sts for

: allocation of floating point registers. The code generatorsmaintains two
lists,‘one of registers in use and one of free registers.!‘On entry to a
routine, all non dedicated registers are available for use, "thus’ the segment
routine creates an empty use 1iSt'and a full freemlist.- Each register is
described’by a structure which has‘a field which may contain'a pointer to a
descriptor on, the srmulated stack. Every register on thebuse'list has this -
field  pointing at operand descriptors on the simhlstethstack.é These *
‘operands 1lie in the corresponding:registers; that is the locgtion:fields

point to‘the-rEgister-descriptors.

When a- register is required he topmost on’ the free list is removed;

If there ‘s not one the bottommost on the use list is moved to the top,of

.the. use list, it now being the most recently used. A.temporarxdstorage

“

The -space~'51mulation can be: simple or complex-Tdeﬁending':on the & - o .3




location is allocated and code generated to‘storeﬁthe'fegistet.contente'
into it. The:descriptor is ‘updated to reflect the new ipcatiéﬁ of the ..
operand value. Instead ' of searching ~the.-simu1ated ‘stack for - the

correspondlng operand descriptor, thlS is obtained 1nmed1ate1y from'the'“

register descriptor and updated to ref lect the store - — thet-is‘its néﬁf:

location fie;d ié_"stack“. Thus storageﬁlhcations are;oniy used :when ‘a

register. is needed= and: allu are; infjnse.* When a PartICular.-reéister is

>

required which is on. the use list. a’ similar: procedure is followed except

that its contents .are saved in a; reglster from the free list if that 13 not

eﬁpEy; or in storage otherwise.

Contrq;-ﬁtrqctures.

Control ‘Structures have a major effect on: the simﬁietioni.' As we

proceed through_ra réverse polish . idtermediate'“code, sednence in the

prdceddfe‘"generate", the simulationﬁchanges-its privﬁtéﬁéﬁaluatidn stack.
Most importantly;“the lOCations of operand valueé

controlled by the dec1sions taken by the simulatxon and the instructions.

When .- 'hoice instruction " is met we mmst somehow freeze the simulation

?sthck, Let us first c0n51der a multl—armed choice \construct such as

“ceseﬁﬁ jForzexample, : A ' = o R DR ¢

* case stack' 6 of .
<arml“eode>.
endswitch:3+1 9°8
<arm2* code> o
endswitch 1 5 :

2*<arm3 code) Tt
?endsw1tch 0

,SW1tchop - ;
endcase a

The code generator first meets the selectlng value code then the arms in
turn. The code generator must save the run. time. state simulation after the

seledtrng veluegcbdeJhas been processed. It must reproduce this state

before processing each of the arms in turn... The. armis must’ also be’ made, to.

: prodocefidentdcal states ‘after code hasfheenfgeneratedﬁﬁbr them; This is




A.because a- common piece of code - is executed after the multiway constructf“«

it may chOostho.SaVe the state.producedvby it _and generate code at the end

of the other atms to conform to thisi~ Its operation would then be
generate code for test ,

save state ( call it state 1 )

generate ‘code. for arm 1

save state (:call it state 2 )

restore state 1L

generate code for arm 2

generate code to adjust to state 2

3 hra
.

'restore state'l
generate code for last arm

generate code to adjuSt'tb state 2

Now the savingnand.restoring involves copying complete data structuresfin,

Gt

the simulation, not just pointers to them. Furthermore, the state of- the

31mulation locations after arm 1 may- be nothing like those after the other"

arms. Arbitrarily complex code may need to be generated to'reStore the arm

1 state. Note states will not dlffer in the operands on the simulated .

stack but ~only in their 1ocations.

s

oy

This situation was unsatisfactory7 and it seemed that a marriage

between control'structures and pseudo evaluation mightﬁdnv61Ve‘a great deal

Netd

of overhead in the code .generator. Furtherfanalysis did however come up

w1th i solution. Two questions were;-asked.. How do‘ we ,avoid possihly'"

complex adJustment code and how do we av01d copying when saving states?

The answer to the f1rst~helped solve the second.

All that could change in. the code generatlon of an arm were the

,registers.“ These might be reallocated, their contents being,dumped during
arm sxmulation and would need to- be reloaded with the dumped values to.
readﬁnst the state. ' Also. .an aru1 ot a control_ construct Whlch.'was an
expression would produce a new ralue in some appropriate location. The

solution was - quite simple - dump all .the reglsters “in use 1mmed1ately after

the: test.: Now, there waSono need to save the _state after the test because

i

-thatever branch has been taken. Since the code generator meets arm 1 first‘




the sinulation 1of the arms could not change it ;

register. The - code adjustment ‘at the end of each arm is only necessary 1f

the armafproduce values. . Even then, all that is required is to ensure that ’

the result-ofﬂatm‘l“is in a reasonablé 1ocation, say a,register,AORﬁa =

label‘nalue fof&booleans, and’ to generate trivial: adj”';nent code:at'thee_

ends' of the, other arms to conform to this. By i i e R

Repetition becbmea”even simpler with this, method. - Theipgoblem in thiafw

case is to ensure:-that- the 'state afterﬁtheﬁloop body ieﬁthe;samewaenthe?'

g

3 state befote“the test. This state must also be the ‘one immediatelyfafter .

the construct.' By- dumping the registers before the test nothing can be.

changed by the simulation of the body.' This time there is no new value to

worry abouta- It is believed that - the overhead of dumping_‘egieters will

o e

not be 91gn1f1cant and the ease of implementation Warrants its use.

,* - - Data-Structures. : ’ .

‘Algol RfeupportsPstrﬁctureé“andcarraysm' These are both allocated on

the =heap. Arrays‘ are built in array declarations by . the -

instruction & see Appendix A). This is a compfei opefation.and raéhéf

;-T” than generate in llne code, a call is generated to an interface procedure

to allocate space on the heap; Structures are built nsing a similar call

3 *

but with in line code for initialising the fields. The intermediate code

specifies the class of structure to be bullt by a stacking of the structure

“ ¥

descriptor and: a structured 1nstruction'“formvec Thi“ l tter instruction

has subsequences for the 1n1tialising values Y the: fie ds.

7 The routine generating code for "formvec" uses the' structurée

'descrlptor to/determine the size of :space needed on the hea »and generates'

a call of an interface procedure-to allocate’ it. Then 1t4calls~"generate
for each of the fields producing -code to store thejresulting-value~in the:

run ‘time structure. ( Note that values are packed in structures to

minimise space. On meeting the "declare" for a structare and its fields,




.+ . on the simulated stack.

theif. offsets within the structure are. calcilated ‘and form part of their

deseription. ) Finally a descriptor of the’struct value resnlting is pushéd*;

2

N

.~ :Accessing of an arrayiaelenent‘for strncturef'field is dome -by the

“subLop”.instrnction. On ‘top of the simulated stack are the descriptors of -

the 1ndex and array or the field and "the pointer to the structure. The -

code: generator determines which by examining the type of the second top of

the evaluation stack which will be array 40T struct. W1th the former, the“
Utop ! will be a descrlptor of an 1nteger offset and for the lattér,: ‘a field

descriptor._ACode 1s generated .to perform the.necessary_checks and acceSs,;

'the'eienentﬁdr‘field, all~the‘informatidn;necesSary being obtained by means

of the-descriptors. > g W

S . ¥
AR LE% )
) ’

’iihus?eXtendingfnseudO‘evaiuation to "include data -structures:poses no

probiems, the descriptors being

>

type and 1ocat10n information conclsely.

hlnatnral and convenient way of .holding

Pf‘océ_du:e ca'ilu'ng- and Runtime Supports:

A procedure call has four iustructlons ( see Appendlx A ) One stackS'

its descrlption, another prepares :a new frame, a third evaluates the

parameters if any and the” last calls 1t.; A call is a simple control

*

structure to. the code generator.

of the existing one and it is not known which register s. contents will

change, the code generator must arrangé for all: values not already in store

P

to begdumped to ‘store. It is at this point that it knows from where the

”-;;new frame can start -and allocates space. there for the run. time housekeeping‘

information such as the return address and frame links. The allocat;on

"‘;

‘model is adjusted so that any spaCe-:allocated willﬂﬁhe above this

-housekeeping space, that-is, in the:yet to be completed frane}, Code is

generated “to store the parameter in"anﬁﬁalihcéted“”1qcatign;' and ‘the

descriptor.popped. ; L e g ) ; JUL,'u_i;.:'

;48 new. frame is to be built on top

\
i
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this’

Generating code for the call also involves a restoration ~of the

storage allocation:,fodel to the point ubefore the housekeeping Space

/

allocatrpn. Having popped all the descriptions to- do withfthe call the. =

.. simulated stack<w111,be-as-it was before theﬁcall.o Function calls involve

pdshihg:a;deécriptot;éﬁﬁﬁhé returned value. This is‘returned in--.a fixed

register,”codevhaving been generated at the end of the function to ensure

The run time support is.a number of procedures and functions to carry

out such duties as allocating space .on. the heap, garbage collection,(and

\array building. These had ,already been written by R.: Morrison for the

prev1ous implementation. Some were. written in Algol R calling machine code

routines. ; The Algol R routines -Went =through' thé~-code generator. This

meant hav1ng -a- few ad hoc - sections of the ‘code generator to deal With such

«A

external (' ive.. machine code ) 7% and interface ( 1.e.-A1gol R ) run. time'

3

v support. Even 80, it greatly reduced the amount . of ‘Low level programming‘

which wasPneeded.,A$heftechnique copedwwith:it admirably;“intormation as to

(4 A
w1 3.

whether a procedure was interfaceé, external' or not*fheing held ~in'a .. -

desériptor. . . .

Summary .

We thinkx that the technique of pseudo evaluation is suitable for

‘\,v.

languages like Algol R but it must be married ‘to. a, means of code generationt

¥

for. teatures of the 1anguage other than just expressionsyi.Wejbelieve we

haye¥shown,~by the design of a suitable intermediate code that this can be -

done, allowingd“a\-sinple structured code generator. The level of this

intermediate code shOuld be higher than that of: previous .codes-.in order to

o

reflect’the-structure,of theﬁsource.language. This allows the’design of. a-

'\

code generator which is structured according to the intermedlate code in

the ‘same"manner .as a recursive. descent ,code, generator is structured

‘according to‘the~sourceyitjparse51 By;having reverselpolishilike sequences'

Py IS Yy
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in the intermediate code we may use. a stack simulation as proposed. by-

‘Jensen. This proved simple to do and understand .

The entitles held in this Simulation. are descrlbed by descriptors:
which are easy to build and:, manipulate.  They effectively model the source

andwrun timéﬁattributes of obJects.: On top of thlS it 1s straightforward

Zea

to superimpose models for allocatlng space w1thin procedure frames and for

’

allocating non~dedicated registers. Drawbacks involved with the method arey
associated w1th the difficulty of retaining informatlon across - several

‘intermediate code instructions. This is des1rable 1f a high level of local

optimisation is to be achleved. A balance must be found where the quality 4

u

of code generated is acceptable and the code generator is not too difficult'ﬁ

to handle because of complex information representations and optimisation

dependancies across instructions.




CHAPTER 4

. The, Programming Language“h.

4vahe techﬁique'of pseudo evaluation proved to ‘be a reasonablefway of-

1mplementing What might be called an "ordinary" Algol. “The Algol family

however has been enriched with more sophisticated kin, such as Pascal and_

Algol 68. [WiJn75] -Other advances have appeared in the functional languages

such’ as SASL [Turn79] Furthering our aim to investigate languages_,and

their implementation, it was decided to design-‘an Algolrlike -language '

called h which incorporated novel and state—of-the-art features found in-

- =

some. current languages. There were two objectives, one a minorveXercise Ain

language de81gn, the other to investigate 1mplementation techniques for ;

such powerful languages. We stress that the language design aspect of this

work is secondary to implementation. It has been embarkedron~to:providewa=

vehicle for the mainﬂtopic, however we feel that we may'have;adﬁed'to the

features whichk may * be included. in. programming languages.~: This chapterx.

describes aspects of the language, the next covers its: 1mp1ementation.

'Already existing languages were considered but they weré'not powerful"'

enough or did not embody all of the features whose implementation needed to'

be investigated. -Some did however, but w1thout implementing them*--

complételx ( for egample procedures as values in Algol 68. [W13n75]

Davie [Davi79] explains and gives an example of how Alg01?68»restricts.the'

use of first class procedures ).

Language Design

The language de81gn aspect involved producing a member of the Algol“

"'attributed to Tennent, [Tenn77]

¢

Landin [Land66] and Strachey. [Stra67] Morrison [MorrSO] identified these

and brought them together in: the design of a- 51mp11f1ed Algol. “The three - .

principles are, b ‘.3- ~ 'j_ i :i:;' - V",f“




The principle of correspondence

Thls prlnciple states that the way: names ‘are introduced and used - in A

language should ‘be the same. everywhere in a- program. The.fway names

R Y i

’hould be a one to one

,,ar_e :i;fnti.‘Qduced by declarations;_‘_;:g

_’correspond.e.r{ce.with the way names are introduced .as pa..rameters. They ..

' need not _share a ';:oniuio’n 'syntax but for each kind of declaration there:

should be ‘%fn equ:l:valent* kind‘of parametér declaration: h ‘applies this

»p‘rin'cip'le except in the area of structure declarations.

The principle of abstractlon

‘?Abstraction means ignoring unimportant detail and concentratlng on the.

-essential structure and nature of a problem. As far as language

: design is concerned it means recognlsn.ng the semantlcally meaningful

'-syntactlc categories in a language and allowing abstraction: over them.
For example, abstracting, _over ‘expressions gives. functions, abstracting

ov_e_r ‘._._s_tat_:em'ents 'gives procedures.

The principle of data type completeness
All data types must have the same- civil rights in a Ilanguage.  The
‘rules for us:mg data types must be complete ‘with no exceptions. For

;example if we are allowed arrays of a specific type then we. should be

‘allowed arrays of - all types. If we mayphave sets of a specific type

(

"then: we sh’ould .allow sets of all types. If one type is /allowed to be .

a parameter ‘or‘ result of a function then all. types should be allowed.

The b Programlling Language.

":'A'numbe‘r- of langua'ges were used as. a foundation for h. These include
' .Algol .60, [Naur63] CPL, [Barr63] Pascal, [Jens74] Algol W, [Site71] and
Algol S.[Turn76] It attempts to embody ' the better ” feature_s_- .of these

languages. The language is desc-ril:ed “in  full din 1its reference

manual -[Gunn7;8] but its ‘syntax_jmay be seen in Appendix B where it is

related “to the abstract machine code ‘generated for .it. ' We give here- a




brief overyieWVof the language and concentrate on three main areas which

may ‘be considered to be important from either a language‘ design”-or'

implementation_point‘of viewa We omit'discussionfof ahyltoplc'coyered in
prev1ous chapters where it arises invthe h language or . its implementation.
‘'The main top1cs of interest are user deflned structures; routines as wvalues
and constancy of locations. We?begin.by'describing the.types manipulated
by the language. h is statically type checked, all fgypé errors betng

detected at compile time.

-Void;Type This is included to simplify the syntax at a small expense in:-

the type rules. Void type is the. type of what is known as a statement in

other languages, that- is, a construct in the language which does - not

produce ar value and which may affect the flow of control in a program, such

as a,loop._ A procedure type which has no result is said to return void

type. e Py i w3 =
. Primitive Types.
The basic types are integers, characters and logicals. Reals could

alsoqhayefbeenjincluded but they were implemented in Algol R and would not

have contributed to the Wwork.

Enumerated types.

> In h, an enumerated type is an ordered”$Eries'of yalues'defined by an
enumerated type‘definition which lists names in order.. .This implicitly
hinds%thEEnanes to the values.

e.g.ftzpeuweatﬁer = ( rain, snow, sun )

These are ordered types and they may be used‘as subscrlpt values for vector
accessing. -The relational ’operators, "suce" C'successor») 'and pred"

( predecessor ) operators may be used with enumerated types. The operator

ord" ( ordlnal number ) gives the positlon in the definition list for - an

4




enumetatéd type value.

Files;

h supports a simple input-outpﬁtuinterface which is adequate foria‘
wide variety of needs, Files are ordered sequences\of characters existing
1ndependantly of the program. A value of type file is ‘a connection to a

phys1cal file.
Vectors.

These are the simpler of the two data structuring facilities which h
provides. A vector value is a reference to a compound entity composed of
an ordefed-sequence of 1ocations all of which hold values of a particular
 type called tﬁe element type. Element types of vectors nay‘be‘anx‘h type’
including Vector types. TThhs‘two dimensional;arrays may be represented by

vectors, of,dvectors. Subscript types may be integer or a ‘user ‘defined.

enumerated type.

Vector creation involves specifying the bounds and initialising values
for each element. ( All locations in -h ‘must be initialised ‘when they come
into existence. ). Vectors may also be made wup of constant elements.”

( Constancy is .described later ). There are two ways of creating a vector.,
a) Enunetétion

e.g. at x make t"a',‘chl,.chZ.]

This creates'a vector of three character locations initialised in turn by

the results of evaluating the initialising code. ‘Tne‘lower bound is x and

the upper bound is x + 2.

e.g. at 2 make [ at 1 make [ "by", "be", "eo" 1,

at 1 make [ ”the“, "for™ 1 1

This creates»aivector of vectors. Note that the bounds are not part of the-.




type of a. vector thus we may have elements of a vector which are vectors.of

difféfing lengths.

b) Repeatéd Evaluation.
e.g. vector m :: n val £( %)

Thin'creates a”vector-with lower bound n and upper bound n. Each element

in turn is initialised by re—evaluating the initialis:.ng code thus allow:.ng' ’

the prospect of a different in‘iti-'alising, value for ‘each element . v

e.ge let 1 <~ 0 ;.q := vector 1 :: 10 val

T

begin i s=1i+1; i end
Here the vector elements are iInitialised with'values from 1 to 10.

Strings.

A ,s’t'ring is a possi‘bly ‘empty sequence of charanfers treated as‘ a
collection. It is composed ‘of wvalues not - locations thus unlike a -vector

the components of a strlng cannot be- updated. A ‘new string value must ~ be

created-' from élreaidy eXi:éting ones. This contrasts with ,lder ways of

considering strings as. single dimensioned arrays of chanacter locations
with statically ( Algol W ) or dynamic.ally ( Algol R ) known lengths and
with ‘lower bounds of zero or one. ~h, by, v1rtue of . orthogonallty han
‘vectors’ of charocters in addltlon to strings.\ These of course only have
the 'pi'opertles- of vectors. Compared to these, stritfés érg ‘muo_.h more
powerful .en,tities with a richer set of -:ope:rations such ﬂ as length,
concatené.ttion and substring. Wii:h ‘hindsight, it is over complex to have

character vectors and strings. Characters should be eliminated from the

language retaining strings.

R inipy
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Struétures and Pointers. +

This is the first of the major parts' in the design of h. We spend.

some time here on a discussion of it. The followiﬁg Sectibns show how we
consider structures and pointers to- them should be treated in programming
languages. We demonstrate how some approachés are ééecial cases of the
genergl approach taken by h. We show how structure élasses and field
accessing are usually treated and describe an h construct which redupes the
run time classvvchecking of structure instances against field names, by

performing most of the checks at compile time. [Gunn82]

Structure Classes and Pointer Types.

-There are three approaches to the types of variables or constants

allowed to contain a pointer value.

- Al) They may contain pointers to any class instance. Thié approach is
- adopted by S-Algol. [Morr79] The type is simply "pointer to

structure".

A2) They may contain pointers to instances of a specified single class as
in Pascal. The type is "pointer to class x" where "x" is a class

name.

A3) They may contain pointers to instances of a specified set of classes.

The Algol W reference is restricted like this. The ﬁype is "pointer

! " i 1"

where "x", it ot

.to x, y, z etc.' z'" etc. are class names.,

b 4

Appfoach'3, and the Pascal variant record allow thg'bfbgrémmér the
flexibility of referring to different ‘''shapes!" of structure under
protection of the type ruies;.'Apﬁroach 1 gives ﬁimLCOmplete freedom, which
is probably not what he wants all the time. There will be comﬁile or run

time checks that only pointers to instances of the allowable classes are

+ The material on structures and pointers is published in [Gunn82]



stored in appropriately typed locations.

"ngﬁécessing fields however,..only approach 2 allowsa compile time

check that the field name belongs to the same claés gsiﬁhé‘iﬁstance being

accessed.« For examplé, let "p" be a p01nter £ 2 instance and“

'p{ helght }"‘be a proposed accéss to a fleld "helght" in an 1nstance of

class "box". Consider the three approaches.in turn Withﬁxqspect to this

field acdeégt;@

Al) The compiler canonly checkvthat "p" is of type pointer. “The check

. that-it contains é@ﬁalﬁe,?ﬁiﬁfing to a "box" instance must be done at

'

Tun éime,

A2) .The compiler checks that "p" is of type pointer. to "box" instances.
fgd%rbﬁftime check is ‘needed, since the cﬁmpiler guarantees that no &
Apointer to an instance of class other than "box" will reside in a

loca;iop of type ‘"pointer to box".

;~ﬂA3) The compller checks that "p" is a poiﬁter with a claéFJSet and further . %
that “box is a member of this set. At run time however, a check must 5

stlll be: made that "p" contains a pointer to a "box" instance.

These run time checks- will involve a "trademark" ‘generated by. the

compiler for each class and carried round as part of each instance.

In h, all approaches are "allowed. Values :sf type "ptr" may be
,pointers to any. class instance. Values of type "ptr{ X }f/;ay only point
to iﬁstéﬁéés ofrclassv"x". Values of type ptr{ X5 y, z }"'may only point
to "x" or "y" or "z" instances. In féct, it may be seen that gﬁpfpaches-Al
and A2 are cases of A3 with ah infinite class set and a classtset of . one
member respectively. ::Lgt us define fhis scﬁe@e' to . be pointer~;xpe

rest;iétion.




Structure Creation.

¥

To create an instance of :a structure -in h,:tﬁehprogrammer must specify

the class name and. supply expressions which will be evaluated to initialise -

the fields. Note that uninitialised:structures-are not allowed. The class
name is manifest to the compiler,‘that is, class names are not values but

denotatidns in the same way as procedure~names in‘most languages. - The type

of the value returned by ‘a structure creation s "ptr{ x }" Where " is

the: class name. This is the only way to* create pointer values, we will see

1ater how valués acquire a restrlcted class set of more than' one member. '

TYPe“Checkingﬁon Stores.

In a completely compile-time type checked language where pointer types.

also includé a set of classes, theh'compiler_gmust check that a stored

pointer valueﬁmetches the type of the location. This means that the class

set ‘of the value must equal or be a subset of the location class set. For

example, if "b" is of type'"ptr{”x, y }" and "a" is of type "ptr{ x, vy,
z }" then the assignment "a := b" is allowed but "b := a" ‘is not. This is
n_n

because "a" might contain a pointer to a "z" instance and would violate the

restriction "{ x, y }".

Creation of pointer types restricted to more than one class.

A structure creation results in a pointer type restricted to the

single specifled class. Multiple class " pointer types“'ere obtained§3

implicitly by expressions involving cholce, or ‘explicitly by declaratlon of

initfalised‘ygriébles or constants such as,procedure formal parameters or
structureifield declarations..
Pointer tjpesiresulting from choice constructs‘

Although h also has a "case construct; let us con81der an example of

an "if" expression resulting in a pointer type.




if ... then box{ 3 31} i
else if ... then triangle{ 3 3 3}

else:circle{ 3 T

There are two nested "if".ekpressions each with-tno arms. Let us consider
the secoﬁd " expressiqn. Its-Afirst arm produces a- value of type
"ptr{ triangle . Its decond produces one of  type '"ptr{ circle }". The
type of the Wnole expression * is \"ptr{-triangle, cirele }". | Where a
construct involving choice gives a poilnter value on its arms;'the resulting
pointer ‘type of that construct ‘is the unlon of the class sets of the arms.
Thus the firstu"if" expression aboVe.returns a value of type ptr{ box,

triangle, circle }".

Accessing of"structure fields.

.ln some - languages whether they sdﬁport class restriction.ior class
freedom, a rnn-time_check'takes blace on £ﬁe“%cdés§ to check Fof a*nil
pointer and also that the value points to an’ instance of the class defining
the~field name:used. For those languages which restrict pointer types to a
single;ftlasé,' no such. .class check need be mage Rsince the compiler
guarantees'that'tne-valne'willﬁonly point to;inStanceslof a*particnler

.-

class.

The h compiler only allows a field access where the pointer type-is
restricted to a* ‘single -class and the field name is defined by that class.
For example, "o { height } = 6", If "heignt" is a "berifield, this is
only allowed - if Wph  1g of type "ptr{'bggj}"., No -@uﬁt time checks are

theréfore‘necessary other than that "p" is not nil.

Sineeﬂhfalso-allows pointer restriction to more than omne class it
must have some'méchAniSm.for?"filtering"'out3unwanted classes' to gqarantee

a restriction to a single desired class. - If "v" is _of type "'ptr{ box, -

circle, triangle Fi and we Wish to=access the "height" field of "', we

must ensure "v" péints at a "box" instance”an& satisfy the"compiler by

ok >




restricting its -type.

Restriction refinement. ! v e

A typical 'case" statement has- an evaluated expression, - several

labelled arms and a possible default arm. A. simllara;cgnstruct “in h

performs the refinement ‘of p01nter class sets. It is related more ..

speclflcally to the case" and union modeé of Algélﬁﬁﬁ.:IWijh75] However
this conspruct'is pyopoSed:as a limited form for usé-iﬁ'ianguages'with
poinferg and strqcturéé but not upiqﬁSwinvolving'qther types. (A similar
discuséfonfoﬁétheée may be ﬁound in Berfy'an& Séhwantzf [Befr79] )} The

syntax in h of the conétruct is given ‘in- the metalénguagé' p;opOSed by

5,

Wirth. [Wirt77]

0

‘ teétclaﬁéé*L‘"test" clause "ig"
is—arm ";" { is—arm 1ile }
"isnt" restrict -

is—arm = name { "," name } restrict .
restrict = ( "use" name "in" | ":" ) clause .

€ege

test p{ left } is
" box’ use. pbox in begin ... pbox{ height } ... EBQ 3
.circle), triangle use pect in get.height( pct ) ;

. line : output( "line has no height" ) ;

isnt : output( "bad structure class" )

The clause after.'test" must be of a pointer type. The clauses on the ‘arms-

must all be of the same type. ( As with other choice“construefév_the arm"

clauses, if all pointer types, need not have{theZSamé:g;aés.sets- ) The arm

labels are structure class naméé.' The arm itself has two férMats. The.

"use" format performs refingmént, the other does not. With the latter, the

effect is thgmsame as a normal "case'" except the selection is- made on the
class of a pointer value not:the valte itself. The arm containing*;he‘name

of the selecting value class is executed. Each clasé.naﬁehghy~aﬁpear once

only in the'iﬁbels of the "test" clause. No class name which_is”th in" the.

gset of the selecting value may appear.

“
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In the "use" format, the name after "

use" is a neﬁycdﬁstant of type

pointer‘whicﬁlis restricted to the-classes in the 1abéij1i§t"of the .arm.. .
Its scope is.the arm. It is iniéialiéeg'with the selecfing value: Let us
call thié ‘gq” arm const§ﬁt. In the above example, “p@pgh;”is of -;ype
"ptr{'boij}“ én& "pct"AEQ of type "ptr{ girele, ﬁriangie }".‘ Th6se afm -
constants ‘restricted to a single'élasé may then be used'tpgéqcéss fields dfk:
instances bf_that clags - without a run time class ché;k; Sh@ﬁld none of
the’ arms beiiéxecﬁéeq?\then the last, -fhe .?isnt’! 4ym,"i8 executed as a
defaylt. If the default arm has.an arm cons;én£ £hen this has a'poiﬁtef':'
type with é éi;és set ‘which is the selggtiqg ValQQ,Cl?§9 set minus. the arm
classes. ”ihe_compiler does'n&t élléw?aﬁzegpty clasé's%tg

: Comparison‘wfiﬁ‘;ﬁofhér-apquach.

i

Algol W also allows pointer type restriction but‘ﬁgt cémplete freedom.
To access a field, at compile-time the Algoi'W'compiiér chéﬁkslthat the
field name belongs to a member of the class set of the-pgiﬁﬁén value. At
run: time a check is made that the class of the instance.is‘thg same as the
class of the.field. The user -may also‘exp};citly check that a pointer

value refers to an instance of a specific class by means -of the "igﬁ

operaﬁof. This takes a pointer value and a class,ﬁame.o“itgreturhsﬁtrue or’
false depending on whefﬁer-or not'fhe-pointgr refers to an instance of that
class. -A fuller example is now given comparing the h approach with that of

Algol W.




.h l
1et structure valu be { vi : integer }.; .

~1étstructure, unary be o

“unrator :. char 33
unrand : ptr{ unary, binary, valu }
"} ek Y
let stricture binary be
- birator : char ;
. ‘birandl, birandr : ptr{ unary, binary, wvalu }
? 3

test:tree is
unary: use tu in
evalunary( Ttuf unrator },
‘eval( tu{ unrand } .
binary use tb in
evalblnary( tb{ birator- }, 3
eval( tb{ birandl } R
eval( tb{ birandr } ) )
valu use tv in tv{ vi } g
isnt : error( 'bad structure" )

b comment Algol W N
g Eal record valu (. integer vi 3

string( 1 ) unrator

g reference( unary, binary, valu ) unrand

9) T
record binary
(

string( A ) birator ;
reference( ‘unary, binary, valu® ) birandl birandr

g
if trée.is unary then
evalunary( unratbr( ‘tree ),
ceval( unrand( tree ) ) )

else

if tree is binary then

evalbinary( birator( tree ),

" eval( birandl( tree ) ),
~eval( birandr( tree ) ) )

else

if tree is valu then vi( tree )

,else

" error( "bad record" )

In. the examples, '"tree" is assumed to be an apprépriately typed

poinrer variable. ‘The 'eval..." are integer returning functions, as is

"error'.




No run time class checks are performed on the h field accesses. The

only: run timé~work dnvolved is switching on the class’ of  the instance’

pointéd at by "tree". In the Algol W example; every fieidFaCCeSSNinvolveg
a run time check' that the field'gnd instanceieI;ssés_match. There is also

the run time direi'h'éad of the "is" operations. The "test" clause is a more-

readable construct in the same way, as ‘-'cg,zse"" constructs:are an improvement

on’ hégteﬂ Ui f Vs,

% . Summary of structures and pointers.

The advantages of pointef*fypes restricted to a single structure class

is that no run time check on field accessing 1s needed’ to ensure that the

.instance class and the field ciag’g are the same. However these single

class pointer types can be restrictive. It is desirable_\"t'o' _é-llow a pointer . _"i":.
. to: refer to ins'tan-c'es of, more than one clasg. The compiler checks " ﬁhat
'pointé'r _variables or constants fa_ré' iimitéd to. -czqnta_‘\irl_it}-'g-.value’s of the - ot
spe,ci’f’ied- classes when a value is assigned to them.- Lang:pages having
pnrestfictéd pointers or multiple classes impose upon their users run time
| class checks on fielgv;_-acc_eAsses, Tﬁis may be avoided by the introduction of
a construct al'lowil;lg i;;e_t-"inément of pointer_,leass sets to ones with single
memb@gs, in the manner of the Aigol 68 union modes. Hﬁjp?Sl It has the

advéntagé of reducingf'. the ‘amount of run time overhead " and. making the

&0 .

Ak * San ERp % ;
structure.of the program more readable.

Pi‘ocei&'ure Values.

""W_'e.co.nsi-cilér' the i_r‘itXroduct'ié_n of procedureé:-_fhs values to an Algol our

second major feature of the language. One of ‘the major differences between -
h and other "Algols- is the : status of . procedures. 'Wé‘first consider

procediires in Algbl—like languages " and define some terms.

Strachey [Stra67] states

"A procedure, ..., may only appear in a‘r’ié}t_:her‘proceduife call either
as’the operator ... or as one of the actual parameters. Thé}:e are

A ¥ e PR




no p‘;t::h‘e’f“expres:_sions involving ' procedures or whose results are .
procedures. Thus in a sen_sgj(‘-prlf_?i_::edui'és in Algol arfé';s';('::hnd"clasft};. X
éj‘.il_.iz‘ensv:"—':,the:‘y always have: to appear ih pefso,n and .can- never be
rel):rés.ented by a'variable or expression ( except in the “c.:'as_.i_a'v of a
i_fhx;;nal’ fié_gémeter ) «.. nor can we write a typé, procedure ( A'l'gol’sw_~
néé?‘e’st approach to a. function ) with a resﬁlt whi_f:h itself is a

procedure."

'y

He a&ydca_tes the raising of the status of procedures and says

..; I found .both from personal éxperience and from thiking to
others., th_at it is remarkably difficult to' st:op looking on-
functions: as second class o_b-jects. This is partlcularly
unf‘drtunéﬁe as many of the ~more 1nteresting dei)élopments of
programing é;nd programming languages come f~ro'm“ the unres't-‘r‘ict.ed /.
use of functions, and " in " périt:ictillar .of fun‘c‘:.ti’:on's;» which have
f_‘u'fgcft«i’dns" as a result: As usual witha ‘new or unfahiliar* ways of
lo’oicing aéi"things, it is harder for the teachers tg ‘change their
habits than it is for their :"pupils to follow them. The’dif»ficulty
is considerably greater in the case of practlcal programmers for "
whom an abstract concept such ‘as:, a function has little real:Lty

until they can clothe it with a representation and so understand

what it.is they are dealing with."

A_inu\rvnber of languages have adopted the idea of first class procedures.

We may diWic'leﬁ them into three groups for ~the ' purposes. of this th‘es'i‘s',

namely * Algols, the functional“ ~in'ogr:aux‘ming Jlanguages - and the .

experim‘en‘tal languages. The prime use of first class fii'njctidns. is in the
functional . languages which eliminate assignment 'aﬁd' the - store from the
language. In our classification we. include languages with assignment -and

store §ince their ‘use is primarily in a truly wfhnc;tiqﬁa’l '?méfr{ne;:. Languéges

i

1




o7

falling into . this category ere,, LISP, [McCaGZ] PAL- [Evan68] and

SASL.-[Turn79I Experimental languages are, Gedanken [Reyn70] and
EL1._[Wegb74] We regard Algol 68, [Wijn75] Euler, [Wirt66] Oregano [Berr71] L

and C?L'[BarrdB] as Algols aS'having first class procedures in some foru. x

L )

In 1anguages where :procedures are not first - class  ¢itizens, a
procedure is named in a declaration. Procedures may be nested within each .

other, , the ‘scope rules determining which 'vaniebles ‘and , constants are

accessibie‘fron d procedure. AThe:following example may oe of4he1p.

proc X non~local

{ int xvar - ‘ environment b
proc y°} declaring proc for "z" | for "z"

{ 4int yvar
proc z{ proc par )
{ int zvar

par | call proc param ! | Bl k

z(y )
y

- Let us defi'ne: the innermost procedure { or mein program ) containing a
declaration of a procedure P to be the declaring or creering procedure for
P, Furthennore} let{us.defiue:the veriablesﬁend conStanos‘accessible to By
in ourer' ﬁrocedures ¢ or. the nain progeéﬁ ), .to be P’‘s non 1ocel
environment. ' With Ordinary procedures, this environment is built wup
'dynamically through the * calls of its outer procedures ( that is, those * =
within which it is nested’ Yoy _culminating in a call of the declaring
procedure. Afn’fECt several calls -of rne;same routiné may be pendiné‘at'
any oﬁe tiue, each with its own different env1ronment conforming to thee

static layout “of the declarations in the progranl text. [Rand64] When a

procedure is passed ‘as a parameter, its mon . 1oca1 environment is. Stlll in-

existence. ( This is ‘ensured by the scope rules. ) This environment breaks

up and dieeppears on thelreturn from. the declering~andlouter‘procedureeu“’




A lengthier ‘explanati’on‘ of procedures as valies-is given in. [Weiz68].

briefer description_' here. In. h'-,? :the.v': above - a'p'p;jli_e‘s ‘to

' _ procedure values ‘except thdt they are anonymous assignable entities.  That

is, the& are expressihle ‘values which canfheistored' passed’as parameters'

«and wreturned as rresults Just 1ike any other type as demanded by the

princ1p1e of type completeness. The value of a procedure may be - thought of-.

as its body of code and 1ts non«local environment as described above. “ﬁ~”

e’mploys- staticv;-bind-ing 4 the meaning of dn Aidentlfier 1s determined from

the text of the program surroundlng 1ts use according to the scope rules.

‘.
5.

A procedure value comes into existence at: the point An the ‘program where
its code is found. Note that-thls occurs each time control reaches this
p01nt so that it is p0351ble to have several procedure values in existence@

.each having the same body part but with distinct envuonments conforming to’

- the same static te plate. For example,

let:constant-make.adderv<F W

procedure ( constant v.: integer
P proc( 1nteger -> integer 29D
procedure (t: integer ~> integer )

t+v
le t'addl &= make adder( 1) ; let x.<~ addl{ 5 )
let subl <- make adder( et I Y >:='Subl( x)

Here we have a procedure value which takes an integer parameter "',
( Calling of procedures in h is by value ). It is actually a function and:
initialises the'constant”10cation- make.adder". It- returns, when.Called,
another procedure value-created on the call}. On the first call.; of - the
value in "make.e;dder" the procedure value returned has, as ‘part of,"'..'_its'_?_-"
environment , "vh initialised to 1. The result of calling{"make,gdderﬁ the
first tiﬁe’iéﬁassigned to location “addl™. ‘This value=in¥hadgl" is called
With*parameterﬁitﬁ initialised to 5. Its result is "t '+ v" which evaluates .
to 6:‘ Now “make.adder is called again but- this “time the environment of

the resulting procedure differs in that "v" 1s not the,same‘one as was




created‘on?the previous call ( although the outer environment is the same

nY

¥ vy
b

Yo fhis Yyt containe"~l so when ‘the value .in "subl" ‘is called, "t"

contains Q and y‘contains -1. THus we see that even-though the outermost

procednre?Vélﬁeﬂhad returﬁéa unlike ordlnary procedures its contrlbution.

“to the environment is: retalned and "does not disappear.. This is because Tyt

is needed'on?thefcall of the innermost procedure value.

Bécauée*ﬁf“the anonymity of procedure values, the concept of recursion’.

can no longer be ‘treated as a static concept. An example of -such dynamic

K ipy
recursion is as follows,

let-pl §ffprOCeduref(—>) begln veo end ER
Tét p2 <~ procedure (=) if ok do p"T“

T a call of p2 would fiot be recursive !.. = -~ . .
pl = p2 ; ok := true ;

! a call of p2 would now recurse ad’ infinitum !

%fWith ordinary procedures we may - see by examining the statlc text, which=- ’qu;d

3 Lo

procedures refer to. each other. The scope rules of h, say that 4 name is

‘-?

not known untll after 1ts 1n1tlalising clause. ('Thls e;iminetes let .x <~

\\\\\\\

:'r.

X problems )a, ThlS means however that - we . cannot erte,

% let fac <- Erocedure( §os integer -> integer o 3 .ﬂA

Y

1f 1 > 1 then fac( 1 -1 ) % 1 else 1

”_?since.the name "fec wis’ not known until after the initialising procedure
:value. Not only that, but iteﬁtype is<unknownannt11jthat time as well.
Our éolution to this is to introdﬁce éhhforwardﬁﬁcieﬁse:whiCh;introduces
the name and the type of any yet to be initiallsed procedure value. It
‘must precede the initlallsatlon in the same sequence.';FQr:the factorial

function above it would be,

let forward}fh&.&g;proc( integer'—> integer )

Should "fac" be called before its inltialisatlon then fa” run time exrror

would occur._“-“




“Sequences;tﬁeclaratiunsﬁand,CIausesa

A sequence is a series of declarations and ciauses. It is made into a
clause by enclosing it in "begin", "end" or "("; ")".'1 A program is a
sequence. Clauses are the ~main ~means of"carrying'Aout the aléerithmic
processes infanfh-progran: They previde the means.whereby actions canfbe
repeatedl&‘or selectively executed and values: produced..—ihe clauses making
up 4 sequence°may not returnya value, that is they must be of type wvoid,
except for the clause terminating the sequence which may 'be of any type
includingqvgid. ' The type ‘of the sequence is’ the type of the clause which
terminates: the sequence. Declarations' blways return void gb‘ if a
declaration terminates ‘the sequence, then the sequence is of type void. A

¥

sequence is,thewunit of scope in an h program.

Flow of Control.

In addition to' supporting normal”sequential executiOn.as embodied' by -

sequencesiéh.supportsvchofce;hrepetition and procedure calling;

Variable and cbnstant-iocacions; +
Our third ma jor feature in-® h is the ability to dynamically initialise
a location on its creation and to dlsallow updating of - that location. A

:1ocation may _be-'created and named in a declarationa,“fThe declaration

implicitly specifies‘what type of value the location may contain by means
of an initia1131ng value. There are two forms of.such a declaration, an

in—line declaration appearing in g sequence, and a: formal parameter

declaration appearing in a procedure value heading.

e.g. let count <- next( sum )

The initialising value may be any non-void clause, its type-being_kndnn to:

the compilerQhGCause of the complete compile time FYPgiFhéQking- B§'thia

Elle

.*+fThe material pnchnstancy has been published in [Gunn79j"




means the language ‘excludes "uninitialised~variable" errorei;;

¢

.For a . procedure value formal parameter the initialising value is

supplied on each call thus the type ofathe value mustcbe present in the

heading.

Py
L

e. g.‘let add <~ Erocedure (i, “ﬁtzinteger =3 integef.j;f?
v j : RN Al :

It had. been noted [Gunn79] that - sometimes 1ocations purposely retain

the same initial value throughout their lifetime. 7 These "are known ~as.

»constants in h and: are declared like all ordinary variable’ locations except

" the declaration is quaiifiedgbyﬁthe?reServed-wbrd constant".; AgCOnstant

location .is - created. and--initialieedi like a wvariable, but cannot ”pe:

1

subsequently'updeteusi;Strachgv [St¥a67] originated this idea stating
“Coﬁhtancy.-is anfiattrihute, of the‘ L-value, and is’ moreover an

invariant property. “Thus whenfwe create 'a” new L-value, ..., we

must decide whether it is varlable or constant . H

v

'fThiS~ coﬁtrasts with what are termed constants in other languages.

These typically are- values manlfest to the compiler which may have a name

¥

bound to them, They are static in that this. binding takes place at compile

ﬁThe constants in h are dynamic because the initialising value is
evaluated at run time and may be dlfferent on- different incarnations of ther
constant. :For‘example'ln Pascal we may say,

cdnetflength = size — 52 /* size must also be const /.

a

"1engthﬂ_iefalwavs'boundhto the same value. In h,‘wegeoxnpt_have.this

restrietion. For example,

let i <~ 1

whlle i < 10 do

begin Yo we




“Tet constant.c <= 1:% 1

‘end

: & : e
-Each;time round.thegloop e ig ihitialiséd by a different value. It may
not-tsﬂbsequentiy be assigned to within its scope. This eliminates the
possibility which would exist if Me" wag. a variable, of erroneously

assignintho_it. Constancy may be used wherever.variabie'locations are:

used, such as procedure formal parameters, structure fields and vectors. -

Constancy may also be=applied to vector elements and structure fieldsw

Vectors of constant locations,- being assignable values cannot have the

constancy checked“at compile tine, tﬁéreﬁoersome'overhead'of checking is

needed'on assignment'at run-time‘to Vector'eléments.'vFor structures the .

constancy can be checked at compile time because field names ( and thus

G

their attributes ) are manifest to ‘the compiler.,

T

An Example. : " i ; - 5

To finish this brief description of h we give ‘a short example of how
abstract data-types may be - supported by. the language, An abstract data
ftype may be regarded [Lisk74] as a collection of operations made available

to the user, _while the object operated on remains\ protected. -'This is -

possible in h by having a function which represents the abstract data type.

When»called this function returns the operations. The representation of

the” abstract obJect is made part of the .environment of these operations but

is not passed out but protected so that only the operations may access it. %

We glve»anfexample of a stack. : ’3

1et structure -STACK be
{ constant POP': proc( ~> integer )
constantﬂPUSH 1 proc( integer =2 )
Fee, v

1et constant stack. instance <- ;
procedure( constant limit integer - Q r{ STACK }_

begin e g i
’ let constant stackint = vector l




1et 8 ackptr <~' 9.

R

5, ' _STACK{ procedure( =5 integ )

A% error( "STACK Underflow. 'n")
i, BOd BT b

' stackint[ stackptr + 1 4],
end;

‘procedure( constant item : Lnteger -> )
begin e %
stackptr t= stackptr + 1 ;
if stackptr > limit do
: begin 4
: stackptr := limit ;
- .error( "STACK Overflow. n" )
end’
stackint[ stackptr } := ftem. .
end

O

let’ constant opstack <= stack.lnstance( 10 o &
.constant popop <— opstack{.POP } & - 8
constant pushop <= opstack{ PUSH } ;

pushop( % [ T
pushop( 76 )

There are five outer level declarations. The first describes a
"struéture class MSTACK" ‘which, when_ created contalns " two constant
returns an integer.l ‘The other takes ‘an . integer parameter and does not

ot

oy Psa-<k
v =

"STACK" structure. When called the body .of this procedure creates - a’

vector -of the required size, whlch is the stack 1n1tialises a top‘of stack-

A L

index;ang returns a pointer to a structure.j This structure conteins the
two stack maintenance‘procedures.

The third declaration, that of "opstack" is initialised with a. pointer

to _such ia ,ﬂSTACK"; structure as descrrbed ;above. . The remaining two

e

declegetions initialise constant procedure locations with the fields of the

locations. One is for a procedure value which takes ‘no parameters and-

return a result.' The second declaratlon initialises stackiinstence ' with'

‘a procedure which takes an integer "limit" and returne a pointer to a




- structure.

'--.(Tl_{'e ‘points worthy of note in th'isi"'é:iample are that a different stack

is created for 'each call of "stack.instance!;- and that the only way "to-

access such a stack is by means of the proceduré"‘éléfétﬁi'hed- in .the :""STACK"

structure. The stack itself and it,é top of stack index are not éiﬁail@bilé :

for use except by these procedures.

s
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-Thejlmpiemedtationﬁofwh. ‘_1Q?1f i

We describe three aspects "ok the implementation of h on the PDP 11/40

running under the UNIX operating system. These are-~ the compiler, the

intermediate code and the 1mp1ementation of procedure values. Othervy

aspects ‘of the implementation haver either been covered in previous chapters =

or are unlmport&nt in the context of this thesis.

The h conpileri

The compiler was written with a view to%portability. It proddces an

intermediate code suitable for a code generator as described in chapter 3.

We brlefly outline its “structure and operation since the compiler plays an:

import“nt part. in the implementation of. a- programming language. “

The-'compiler ‘is ‘single pass, using the technique of vrecursiyel

descent [DaviSl] for parsing the source. . It consists of theA phases of_

lexical‘ analysis, syntax 'analysis, context sensitive checking and codefﬁ

generation. ““These: were layered on top of each other in the‘ manner

described. “For -Pascal. [Jens74] It also employs a simple and reasonably

‘efficient errdr reporting and - recovery technique. [Turn77] Initially thegt

compiler was‘written in Algol'R; however on its completion it was rewritten
in h as: a large working example of the language. The-languaée proved to be

perfectiy“adeguate for :the task.

The-lnternediate Code.

This was. designed using the lessons learned in the. implementation of:

Algol R but was free of ‘the restriction of having ‘to convert‘an already

existing low-level abstract machine code. It still had to convey. the

' information content of : the -source but differed somewhat from ‘the Algol R

intermediate code due ‘to the language differences and the lack of thlSﬂ




e

constraint.

o

The intermediate -code . and code.. generator are not described here. 'We‘:

concentrate on those aspeetsihhiEH”differ from the Algol R implementatiOn.Z“

TheAintermediate code is given in full in Appendix B. Also included in

that appendix-dis the relatiOnghip between the source and the intermediate

code generated.

The ompiler prodﬂces three files which describe - the soutce

information necessary for the code generator.ﬁ These are, -

i

(1) The size file. This 2contains three numbers, the number of varlables

'and constants, the number of" structure definitions and the number of
3 ,r,, - s

procedure{segments. Each of«these entltdee-( structurea, prdcedures

etc. ) is uniquely- identified in.the-other‘two files by a number in:

the defined range. : : - B oo

(2) The data file. This contains descriptions. of all variableSQTCOnstanté.

and -structures declared in the program. The informationﬁis structured

aecordingyto«the nesting offbfbeedure values in the_eourhe. This is

to retain environmént information. Each < "of ﬂthese “entities is

implicitly numbered according to its relative occurrence in the file.

‘r r

At the end of the data file are.- descriptions of all, the literals used .

in' the source and the procedure types.

(3) The code'fiie. This contaihs,the intermediate form of the code. This

is very simple and could be ‘described as a kind of Reﬁerse Poliéh'forfﬁ

fexpressions together with an extremely simple and regular syntax forA'

‘control structures. Code . output in segments,; one -for each

3 |

{froeedure-value ( the laet for the-main:programf); fsegnentsyare.not“"

neéted. Edch segmernt has an implicit number.

This separation of code and data makes the layout. of the * code

generator sl'hhtly.Pbetter than previously with Algol R, but has the.

Vogmia,

disadvantage that all ‘the data descriptions are’ held throughbut the code

<
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generation. In the Algol R. implementation,”

3descriptors depended solely on the static nesting depth of the source. »On»

reflection we: think perhaps the Algol R«method of combining data and code,

although perhaps less aesthetically ple331ng,\1s more efficient from a code

generatorfpointgof view.

The r‘nni implementation.

Having de31gned h and: written a compiler producing an 1ntermed1ate

3code,othe next step was to implemenb the 1anguage on an actual machine. In,v

particular certainﬁ“features of;hthe language not in Algol R. had to be
'investigated’ especially procedure values. Inltial investigations showed

that . 1t would not be feasible to: generate 1n—line code for a number of H's

constructs ‘on the machine available. “This_’ was S0 because of its - 64K

addressability,,iItvwasfespecially true of first class_proceduresgand so it

was decided

interpreteraA ‘This ‘had the advantage that effort could be concentrated on

34

areasqnot already covered by the Algol R 1mp1ementation ( thus avoiding

duplication. of work ). In fact, the’ .intermediate code and interpreted -

abstract nmcﬁine code were very simildr so that the- code generator was

simple and straightforward to write.

Férfa great many of the intermediate code instructions there 1s a one.

to one relationship between ‘them’ and the abstract machine instructions. We

will . not describe thea-nterpreted abstract machine in full. It is stack

N

based for the ‘evaluation of expre331onsi and employs a heap. storage -’

allocator and: garbage collector. We concentrate entirely on the

1mp1ementat10n. of - procedure values and begin by briefly describing the

Storagefsbructure necessary in the abstract machine for suppotting h. This
structure would have been neceesary even if in-line code had been

.generated,’ General purpose registers do not form part -of the abstract

machine;fit béing a stack machine =~ in any case their treatment would not

LS T

'he space requ1red to hold -data -

;jto~ generate code'=for fan.‘abstract machine 'SUpported by an’
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“have differed from that in the Algol R implementation.

Organisation'ofMStore.

“In the abstract machine for h, store is not necessarily considered”to - 5

be one contiguous, continuous seduence of storage locations. Store is-

divided into several areas. The areas are :—

CodefArea i
Here'the'ebstrect”machine code is 1ocate¢a
L1teral Pool

This 1s an area which contains all the 1itera1 values Which cannot be

made 1mmed1ate ( contained in’ instructions as operands ) At the head '
i‘of;the Literal Pool arerthe Eroceﬂure‘and Structure Tablesjcontaining”
'static information about each procedure.body and kind of structure in

- ithe program; These will be discussed later. .

Heap-This is an area in which space is allocated: by explicit requests and. - N

reclaihed-when a request cannot be fulfilled. _Only‘space which is no

.longer.accessible from the entities in ekistence is reclaimed. If.the -

~

request -

?'stil'l . cannot - be fulfilled the program ‘terminates

;( abnormally ). Frames, structures,_displays, vectors -and strlngs are

kept on “the: heap. They are called heap. obJects and have space within--

themselves for storage reclamation 1nformation.. At any_polnt in the
execution of the program, the firstﬂ,frame- and last frame in . the

dynemic chain are known and are referred to from special upurpose.

‘registers. .. Y e B R s O k:

- In the execution of a program, values arise as a result :of expression

evaluation. These .are stored on one of three stacks each of which contains

values of a certain class and organlsatlon. Two of these stacks contain

i

values which contain pointers into the heap, and are searched when markingg

i e

heap obJects during garbage collection.‘




Pointer Stack“
This is @ stack which contains temporary values of entities which

pdint into_»the heap ( pointets;~gstrings,' vectorsgj.; That 1is they

contain the addresses ofsheap‘objects.

‘Ptocedure‘Stack

WO

AThis stéck*cOntains temporary procedure values. It is implenented as’

a separate stack for the .same reason as we have a separate p01nter
Nstack. This allows procedure values to be separately identified when

garbage;collecting. A procedure value contains a pointer part and'a

FERT A

‘"nbnzpoinﬁer part, thus could not go on the pointer stack.

eligihle"for placement on;~the¢'otherl*stacks ( booleans, -characters;f_i

files, integers, enumerateds ).

The implementation of'routine values.

We now. consider in detail the implementation of routine values, first

in general then’ specifically their implementation in h. By the term

routine we mean either a procedure or a function, Athat: is, the

parametefised abstraction of a statement or an eipression respectively. We .

will. see that prohlems arise inithelinplementation because when a rodtine-*

s

is assigned around in the same -manner as say an ‘integer, a spraiéhtﬁofyaid:f

implementation,based on a stack is not possihle;ﬁ We emphasise~that the

binding.éof ‘identifiers in h 'is"static. This - requires a different
*ihpienentation from that employed by languages such’as LISP [McCa62] which

have.dynaﬁicﬁbinding.

Routinthalues.

The .1mplementation of routines as ' assignable entities is best

approached by . considering what we mean by a routine value.‘.ﬁgain we refer

W

This. stack contains temporary values - of entities which are hot

3
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to WéizenbéumJ[Weiz68] for a more detailed explanation of the nature and

implémentatioﬁ problems of procedure values. Traditionally, routines are
considered to'be.control structures nqq3data. In fact they are a hybrid
control and data structure. As a control structure, routines are podies of
‘code yhich may be called from points in the program. There. is ﬁbwéver, a
data structure implicit in the call. Each fouting on a call requires
housekeeping aﬁd local variable space. Let us assume for simplicityAthat
this data space is a block of storage, calléd a frame; all§catéd on the
call which diéaﬁpéars on the returﬁfsiﬁée'it no longer is reqﬁired. 'Sucﬁ
épace 0quld of course be ailoéa;éd on an individual basis for each

variable.

Routine;'may call other routines in a manner coﬁtrplled by the static
embedding of‘iheir declarations and the language’s Scobe'?ules. We obtain
a frame:forveéch pending routine cgll{ -Tﬁese make up the dynamic chain.
The most :eceﬁtly.calleq routine may acéess data: in those frames of pending
callé of 'statically surrounding _fouﬁines gnd_ its 'own local fréme.” the
deable chatm de o the el sil nencloeal variableg-and constants of
the routine reside. The most: recent frame need oniy'réﬁainAin existence
until its owﬁing routine returné.' Because bf'the st;tic.nafqre 6f fbutine
declarations, a routine may only be célle& when its sﬁgfouﬁding routines
have been caiied,‘that is whgn their frames are 'in existence. Thus,.a
foﬁtiﬁe may 6nly-Be éalléd when it. is guaﬁéntééd to have a completé non-
local environment. Becéuse of the LIFC nature of calls and frame
allocation/deallocation, a stack 1s traditionally wused to implemenf
routines, the frame of -the most recently called routine being allocated on
top of the stack. This topic is well treated in the literature [Rand64]

and we will not elaborate it here.

A routine value is therefore both a control.strugture ( a callable
body of code ) and a data structure ( its non-local environment ). Taken

together these two have been called a closure. [Land64] The environment is
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augmented ‘on a call of a routine by the local data frame. A foufirie value
ciosure tt;eri can Aonly come into‘existem‘:e eéch "t'it_ﬁe,_its declaratioq is me;t,
that is, when its non-=local enviroﬁment has been built up.  This is»done by:
a histor& of calls terminating in a ca;l. of the deepest routiﬁe body
( statically ) containing that declaration. If certain limiting conditions
of use are met, A(.non—assi.gnable procedures ) such a value may b‘e'x'(;,alled as
normal- (éven passed in as a parametér to aﬁother ) and the implementation
may then make _usé of a stéck. Morr_ison [Morr77] has shown how such
c'losﬁfes may be simply created, called and passed as parameters in a stack

based implementation. .
Assigiiabié “Routine Values.

Having gonsidered ‘the nature of a'-routing value, we have in h given it
full ."c'ig.v\i]‘._ z,lijf.'.ghts". It 'ﬁ\ay. therefore be créated and freely.étored like
any other value, complex in nature or simple. However, it is the ability
to store.s.;gcjri' a val‘uve‘w_i(th complete freedom which causes implementation
problems. In the traditional Algols where routine values are not freely
assignable, a routine value -comes into existence at iiiiis déélar_ation. It
then fe:ﬁains iﬁ 'e‘xistence only as long as its creator’s :frame is in
existence. Even if it is.péséed as a parameter, the froqtir;e using that
parameter has to return, losing the value, before the ecreator. routine
returns. Thué a routine value in such languages has a lifetime shorter
than the time its creator takes to execute. It is this fact which allows a

stack based implementation of frame allocation.

However when a routine value may be freely stored as in h, its

lifetime may exceed that of its creator’s execution time. For example, a
routir;e value created on a call of a deeply'n'ested routine may be‘ assigned
to an outer 1ével variable. Des.pite.the return of those calls which had
culminated in its creation, .the value still exists,‘ living in the outer

level variable.




e.g. * % o
let P T e

‘... proc{ «ss Proc { ees p 3=-proc {
-But what of.the*frames making up its non-local environment? If we had a
stack based implementation then they would be long gone, having been -popped

from the stack on the returns of their owners. This presents a dilemma,

Y

3 .Vp

( otherwise where would the’ free varfables‘"be? ).’ Some me thod of'

retention [John71 Weiz68] of its env1ronment is therefore essentlal. This

\ g

can’ be achieved in a straightforward manner, - borrowing from the stack-

implementation; the display or the static chain mechanism, or for singly

allocated'veriableag.theienvironment list of the SEéD machinem [Land64]

-‘ A%

"‘Frames now must be allocated from*a heap, where. retention is. possible..‘fhef

natural process of garbage collection of a- heap can. mark those frames

,formlng part of a routine value which 1s,acce531ble in the program_at that

point in its execution. Ahything not marked'is4made available»for re—use.*

T6 get round this problem of environments of procedures, 1anguages are

sometimes restrictedu One restriction is to allOW' procedure values to,

'access any ‘free variable in the f£frame for‘ the outer block and local

Variables in its own frame' since thESe 'frameSo are always: accessible

o

. [Rich69 Gunn80 Turn76] Space for .a frame -can then be allocated in a LIFO

3 '):.

‘manner in exactly the same way as when procedures Were not: values. “Another

restriction is not to allow aséignmenﬁ:of a procedure value to objects;

which may “live 1onger than its creator s frame e Algol 68 ).’ That is, it

can’ only be called while the frames- in its environment are - .on the static

chain. Furthérmore, on exit'from a-eall ﬂthe frame.corresponding to that =

call ( the head of the dynamic chain ) «can’ be thrbwn away.- g1v1ng the same

LIFO 1mplementation as when procedures were not values.

Our simple implementatioh_althoughﬁgd}ficiént, can be optimised to

save space retained in environments. One of the -advantages of a §tack is

because&fa~iroutine value ‘cannot be called wunless its environment exists.:




that the frames are dynamic in length, only being as big as: they need be at -

each, point 1n the program. We can also superimpose expre991on evaluation

on the%same stack. Unfortunately in our implementation, frames must be of

fixed sizeman& have a unique cell for every local variable® ( including'thé;

parameters. ). Whereas'witn'afstack, variables*coul&vne~ﬁllocateq only as

necessary and shate the same space.

1§L...~then %) e
- else g T

begin let y <~ 0 ; ...géﬂd

-fInffﬁe.nbpve example, "x" and o could share'the same space‘dn a stack

base&'implemedtation.h With a heap implementation of a language supportingl

routine values this may not be possible., In the example assume the

: .ellipsis code: of each branch created a routine value respect1vely accessing .

Lt -and g g globally. The frame containing "x" and "y“ would form part .of

the environment of each of these - routine values. l'vx" and "y" must

therefore ekistAindependently in. the" frame since they may each bé,accéssedx"

by the routine’values created-in their respective branches..

Aty

"'This procedure value in the aﬁétract machine for ‘h’ is a pair

conslsting of

(1) the address of a table);whichw contains information relevanr‘ to the

féxénution of the3procédnre such a5 the start address of the procedure::

4

‘Segment ; ) -

(2) _a‘pointer to an object_éalledﬂa display which contains the addresses

of the frames comprising the. procedure value’s environment.




" J’routine valué closure

> procedure table

i > level n frame

L i | > level n~-1 frame

vaariable and ConbtantnAddressing

Each variable and constant, whether it be 1oca1 to-a routine or not

must be 1ndividually addressable.‘ The compiler;allocates for each one a
unique position. (::for reasons_giveniabove ) inrits:local frame. Since each

routine body’isiat soﬁe,Static level,of nesting,Athe'code generator kinows

statically the 1ocation of all variables or constants accessed by’ the
routine. These are addressed by pairs made up of.a. 1exicograph1c routine
level difference and a position within the frame. The difference +in

routine 1evel between a use of a non“local variable and its declaration in

*

a surrounding routine, is used at run timenas-an index into the current

~di§playgto access the-cortééﬁohding frame. The level difference for local

vafiables is. of course ZEero. This is- similar to the corresponding

situation in a stack based implementation of a traditional Algol. [Rand64]
Contents_of frocedure Tables.
The use of tables is a device to save space and eliminate duplication

iR

of 1nformation and 1ts associated movément between copies. The..space which

the information would have occupied is now . reduced to a reference to a

tablefawEach procedure table contains,

(1) 8ize of ﬁrocedure frame.

(Zd'fFrame_layout information ( that is, where the variables Of_each;type“

‘are stored )s




(35?§?rocedure'éegment;start“eddressu

(4) xin@or@ation-releyent to the optimising of frame space.

v

__ Proc_fe&lu;re vel'ue' Assignment.’
‘This;is:dene by copying the closure value.

' Procédure Calling.

Callipgfinvolves four stages.

gt s

(1) Whlch procedure to call? This is simply established by an approprlate

procedure value pushed on the closure stack.

(2) Obtain 'local data ispace. for the procedure. This. is '"cre'etion of a

freme. The det:ails’ need'ed are obtained- from the proéedure table whose
address is- 1n the flrst part of the closure on tOp ‘of the procedure

value stack. Fill in the relevant house—keeping information ‘such as

. ‘the dynamic link, di‘sp‘ley poi-nter._;\and'pro_cedure segment start address.

(3) Evaluate the parameters to the procedure in the current environment-

i 0

and dssign ‘them to their r"e'épe'eti-ye~.':p6‘sitions' in. ‘the newly created

frame. ..

(4) Transfer control to the procedure 5 saving the return address in the R

‘:frame and make the change to the.. new ‘env1ronment by making the new

"-fr_au_ie th‘e cu'rtent ufraxile. :

(2)'—(4) are handled ‘by the: intermediate code~ instruction "eall". The code
generator produces an equivalent abstract machine 1nstruction which is

lnterpreted .

Procedure Valué' Creation.

A closul‘re is created by ‘the "makeproc instructlon Whose argument is.

the . number of t:he procedure table correspondlng to the procedure body.‘.

1 "t
"

This® d4s an abetract machine instruction which the 2‘cod,e_,_-' j,.g'e'nerator has

“. produced. from'-an equivalent intérmediate . instruction:

el e asinte T

e AR ARF I
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accessed and its address 19 made ithe first part of .the closure. The:'se:cond“

part is. a pointer to.a display. The d1splay is a block of pointers,"one

% ,-fori e"ach outer.- procedure value. The non local env1ronment of the create

procedure : value is 91mply the non local environment of the ‘~creating

procedure ( that is, the one containing the makeproc instruction ). plus the

L%

'frame ;Aof:“’.t-heﬂ._» c‘reat_ing procedure. This’ frame is ‘on’ top of the dynamic,

chain. fThe.ﬂﬁﬁfloeAIGenvironment'is held in the housekeeplhg area of the
creator’s frame. 'Thus the 'displa'}'r‘ is: one ‘longer than that. of the creating

routime.

Optiu{aation.

We reconsidered the above scheme, which while having simplicity ' in

its .fayour,, suffered from the ineffic1ency that signiflcant amounts of

3

space"" could be 'used. It could be optimlsed to save some space. What we

intended was. - to elim1nate the retention of unneeded variable space in
envlg'{qnments’.f Davie’s. approach [Dav-i7,_9] does »away wlth L, pr,dce‘dure frame
allocation of ‘space ‘and allocates space for each block. A block . descriptor

consists of a pair of references, one to a block frame containing the

variables of .that block, the other to a frame containing referencés to the

non_'l{;oca*l variables of outer blocks. On blockentr.y -'s_ﬁace is allocated for

these and the references filled im. This ultimately means that only the

variables needed are retained, not whole frames although "a viable garbage

Acol'le'c'to"'r oo Will have to be moderately sophisticated"—.._ It seems to be an -

P

attractive solution but has the space overhead of additional housekeeplng-

informat:.on for the garbage collector. It has the time ov.erhead of

allocat_iou and garbage i~'col’1ection, for a greater number -_of :alloc_ated units

and operations=.' With cheap store now availab_le Ehe_spac'e_f_p'roblem is not so- - -

cr‘itical as. it might have been. Bobrow [Bohi-7.3‘v]i:'“puts forward a proposal -

for a stack. implementatio'h-. o stack is more. efficient- in- terms of space
allocatlon/deallocatlon when this takes place at the top of the stack.

Bobrow s proposal however 1nvolves copying of frames on the stack and is

Ar e K

)




based on complex data structures . We ’f:eel “that any advantage' gaine-d by

us:.ng a stack in that manner is outwelghed by ' the time overheads involved

- N

in copying £ e, ‘Hie”method is'extremelyudifficult to.follOW.

3

".We* agree with the spirit of these ‘spa'ce oi)t:i"misation's. but adopt ..the-
attitude ’thet;"a straightforward, easy to 'imb,lement pa"r.tial"solution is a t
good coinpremiée. Our scheme only keeps: those frames which are actually.

needed. We feel that this is acceptable for the. following reasons .

(1) Store is eil‘%vays becoming cheaper and ‘larg‘er"amcunts-":ere .available on'"

machines.

¥

(2) "Prbgramniers are .e‘ncoutaged to~keep -pro"c’:edure"s’ short«’ I-f«,procedures

are say 30 lines long at most then they are-. unlikely to have many
1oca1 variables. ( an- interestlng statistlc from [Br0082] ds that a

,third of variables in Pascal programs are” declared at the outer{'

Ve

level. ) -

(3) 'The imﬁl'ementation should not be -designed %‘Jl’thi:"wo'rst 'case»" in mind, -

that is, monolithic nrocedureis*"»ewlith many vetiables,-h,eespe’c'i’iallﬁy i:f this

[ Lty SRS SR

means a:solution which is more complex or burdensome ‘in resources than

a solution for the "typical" case.,

For a particular procedure value we may view its non local environment
as a collection of frames, one for each procedure within which it is

nested. On execution of the body' of code for this procedure -value certain

locations in this collection will be accessed. If a particular frame in .
this i'lenvironment is never accessed then it need not'be referred to in the
dis’pléy’, That is, its ‘corresponding display entry could be ,the‘~nil-'

pointer. The frame would. then be garbage collected. : "For eicample, l‘et-‘-"

A,B,C,D be procedure values nested within each other, D being the deepest. :




proc 1Al <=——-- accesseés

4 N |

¢ proc !Bl {==m=—— accesses . o B
proc I1CI =| I 2 % 7_,',..;,:_; ge A

If C’s code does not access any variables declared in BE then-by the above

reasoning a pointer- to B’s frame‘perhahs-deed not’appearrih Cis display

when‘procedure-value'c is createdﬁ However if D does access B s variables,

- > 1
i «

a pointer to B s frame must be part of D’s display. But, D s display is

g

made up from C’s local frame plus .C’s display, thus g% s dlsplay ‘must

contain a reference to B's frame, even though it does not access, it 1tself.

Simllarly, A's" display ( let us assume it is not aty ;the outer level )

» mnst contain all those frames referred to by itself, B, C and D. If no

i

’asacreated in this closure s : diSplay for each global frame accessed

by these 'nested procedure .values, then .wheda“these* valﬁesiﬁcame into

'existence their environment could not be completed.

'Nowkwefﬁayvgeneralise ‘and formulate some ruleSwahout'display creation

‘~makeproc instruction. The display created:for a'orocedure'value P is

formed from the display of the creating value C plus possibly the frame of

the c'eating tvalue. Thls latter is only needed if P 0T nested procedures’ -

W1th1n dt access C 5 local Variables. P’s display uses only those frames
in C’s display which it or: procedures nested within it,'need to access.

Thus,

P’s disﬁlay some-or all of C’s display +
‘ possibly C’s frame"

Thesfollowingtiﬁpoftant'condition i1s arrived at. A procedure’s frame must:

‘be part of every display créated for p;oceddre values nested within that

procedure, tpto théfmoSt deeply nested procedure whichfa_cesses local data

within that frame.




Display Creation.

‘On procedure creation, making up the new display part of the value,

thére are two actions to be taken with regard to frame pointeré.

(D) possibly add the creator’s frame pointer to the new display and
(2) copy'certain frame pointers from the old display to the new.

So for each, procedure value at creation time we need to know, (A) whether

to put the creator’s frame into the new display, and (B) which frames in

the creator’s non local environment - to copy into the new.

At compile time this static infopmat¥onrmust be bﬁilt up. for each
procedure vvalué. The compilerv.keeps. information about each ;procedure
value. (A) above is a'ﬁobléan flag, thévcbﬁy creator frame flag. One flag
is ﬁeedéd for each level of nesting. (B) is a booleab vector, the copy

display entry flags. One vector is kept for each level of nesting.

proc

let x <~ 0 ! level D !

proc '

{ ¥ | level D + 1 1
“see proc

{ ¢o¢ X oo ! level U !

Thus when the:compiler looks up a vafiable, used at proce&uré level U,

declared at procedure level D it -does,

copy.creator.frame( D + 1 ) := true ;
! level D frame is needed !
for 1 :=D + 2 to U do
copy .display.entry( 1, D ) := true
!'D fréme must be retained up to level U !

The information is put with other relevant data in the procedure table..
Summary .
We believe that h bfings together feapureé usefully employed in a

programming language. TFor example strings have'.been-;limited entities

implementedv as'character arrays. Some languages -émploying- user defined




actually the case having the advantage of making the program more readable

'

and efficient. The p"roce'dixre» can -su'ccessful-ly be an as:sijgnable value' and.

add to the power and- expre531vity of a 1an,guage. Its 1mplementation can be

very straightfbj:’Ward, space probably being allimlting factor. .- However we

‘have" shown that a simple optimlsation ccan reduce this problem. We-‘hav’e

‘introduced the 1dea of a constant location which may be- 1n1t1alised at run .

ooa

e

time and not subsequently updated.. This is a useful addition to; a language

since it is the cagse that many varlables" are not updated. ¢

F




. CHAPTER 6
‘The Polymorphic Programming Language asle

i

ﬁ‘had"'primarily investiga-i:e_d the incorporati'on:vand;= :i.ftfplé‘mentation of

" first class routines in a general 'Tpurpose pro'gramming' 'language'. One .

rea of languages and their 1mplementat10n Whlch ‘we! felt deserved

further 1nvest1gat10n was that of type polymorphlsm. That is, the ablllty
of programs to process values dynamically according to the type of . the
valu'e.'- The polymorphism refers mainly to the ability ‘of locations to

-contaln values of more than ‘one type but also to a ‘minor extent to  the

abilicy,bfwoperators to take operands of differing type51

The nsl programming: langgiagea

‘A '-procese: cont-rol language called PROTOCOL [HarlSl] ihad -been developed

which employed polymorphism and it was dec1ded to develop a new 1anguage
ba,sed;o_[_n Hy develoPing the polymorphism of PROTOCOL. This new langua_g_e, -

call‘ed-;nsl, also a’tt'empt'e to rationalise and:’ improve"‘ the: data structu-riinig“

faci'li:t;i"ee_ in h. nsl. ‘was designed in - collaboration with D.M. Harland, the

1atter‘ :'aljso ;i“writing *th‘ég compiler - for it. - The-_ abstract machine--

implementation of nsl Is presented as the final part of this thesis. ~We

stress again ‘hat the language design was embarked upon as a vehicle for

1nvest1gation .\of 1mplementat10n techniques and is of minor. relevance. An
overview of nsl is g'iven in thie chapter, ’co.ncentrating on those features -
Whicl'l"‘disﬁingui’éh it from its pfedecessors. It is :verv 'si-mi-l'ar to ‘h in its-
control structure therefore we will illustrate the language by means of-

example except where novel features or constructs different from h are’

employed..' The control’ structure .uses sequences, declarapions ) ~choice and

repetition constructs similar td‘t‘;h;‘\‘, 2.5




Polymorphism. wfhe Sl R a R WL

"Most:.pfigtoday;s- programming -languages forcev theﬁluser to rigidly”
‘ specify the types of value” which a location may contain. 6ther. languages.-
impose ‘no checvking on the programmer, treating a value. as'. a. bit—pattern .to.
be interpreted according to the operation in which it is employed. We feel-
that there 13 a mlddle course in.languages where the user at some times
w1shes to be‘ restricted in the types he manipulates and— at other times
wishes to. be free.. Whichezer the case,jhe gtillL must‘befprevented from
.nonsens:ical operations such'- as "é'_l‘dding i -'a' logical to a ,furrction-.
:‘Milner tMilg?@j;states i i |

"A widely employed style' of programming ces entails,:defining
procedures which work well on objects of a Wide variety

flexibillty is almost esgential in this style of programming

We refer toﬁthe ahility of a location t°“9§13“v§19é5'9f&£;f¢'than\°ﬁe=type:
as :polymorphéshh' It has also been’ interpretedi.to, meanp the_hahility of .
p.roce-dures- ' to take parameters of diffe‘rent typ'es' ; on different calls.
Strachey [Strra67] considered ; polymorphism__‘;.-i‘n; two - wayg, ad- hoc .and

parametric o

ad hoc y
Here there is ;1. 51ng1e systematic way-: of determining the type of the ;
result of an operation from the type .of the arguments. -‘He-‘.gi'ves‘all e
the ordinary arithmetic operators ‘and functions R examples stating

. "there may be several rules of 1imited extent ..f.i';but ‘ these are

themselves ad hoc both An’ scope and content“ We. -interpreit"this to -

j mean polymorphism dn its' -,mos-t general form._

Parametric
This is a more limited form of polymorphism With regular rules.~

Strachey illustrates it by example. If we have a. function




£ : alpha => beta

which maps values of type alpha into vax;ég of type beta and a list of

“ valués of type.alpha

1: alpha-lieti

_'then.the3application of the fqﬁction map ,

map(- £;1 ) = beta=1ist

_éives a'betawlist‘ Now this is the case whatever the types alpha and |

beta. Thus we may say that the type of map is T

map : ( alph¢f=> beta, elpha—list )-5> beta-list

The type of the funct{oprcontaiqs named-patameters. Its polymorphism

“-ie of ‘a simpie quametric kind, alpha and betaigouigﬁbe~regarded as

type-variables‘standing for tﬁe.actueth&pes_on avcalhej This is a

festpictéd;form of the more general polymorphism because it does not

“handle:the.case-where say the list, is made up of'values of different

o

type. Some. work [M11n78 BursSO Barb80] - has . been done on parametric
polymorphlsm and we do not -consider it further - except where it arises

{fin the dlSCUSSiOﬂ of our polymorphism. i . s

.Straehey}?goes on to say ”"Polyhorphieul of Both classes presents a

considerable challenge to the language de51gner but: it is not one . which we i
shall take up here". . We consider ad hoc polymorphism by.. allow1ng types to ' -ﬁ

become first class citizens. of a language. This approach has also been

adopted by EL1 ( "The inc1u81on of modes . among the - legitlmate values 1n ‘yl
language al}oys umdes to cogputed;f prov1d1ng a very pOWerful

-definitional capabiiity" [Wegb741‘-),and the purely functidﬁéimxanguage of

Barbuti and‘Maytelli._Jperh8DJu

Primitiyeptypes.

- The types. of nsl may be split into two, the pfimitiye;types and?the'

data-structdteé,Jfor discussion purposes. All values; ofJWHeteVerjtype in

N, ¥o5



nsl, have the - same - rights. The primltlve types are, int:eéer, che‘racter-,
logical user defined enumerated +, procedure, function and type. The data
structures supported are - lists, vectors and user defined structures . These :
are Hiscussed in -a : later section.'ﬁ Nétef>that: characters have not

diseppeared as:was‘suggESted intthe h sectionik.This is because stringstcanw‘
be s1mulated unot by vectors, but by lists - of Acharacters as in -
‘SASL. [Turn79] Also procedures ‘and . function types are not qualified by;:
Jtheir: parameter and result types as in he This’-.simpiifies the 1enguage

considerably without reducing its pOWer. This is ‘a»lso"':the' ap'pr‘oa'ch. taken,_

by the polymorphic language SASL . [Turn79] The introduction of” type "type
is a. simple way of -allowing ~polymorphism so that the type". of_ a Value may be
determined dynamically and processed accordingly. Thas‘ vav'e-*havye ‘elevated
type to first class citizenship. With the introduction of type "type"
: comes operators for dealing with such values.~ For example 5 there is the
‘monadic operator “typeof" which takeSfany value“and returns a value of type
_"type .j We may then switch on this type value to an appropriate plece of
code to handle ‘values of that type.; This is similar to what happens during .
4pointer type restriction in.h, but is not a special case and is treated
uniformly by existing choice constructs. W_e do not. need to 1ntroduce;- an .
analogue of the h "test" nor do we nee“d?-?“a p‘l-'ethor‘a of predicate fcnct;i-ons ;
('isint,‘ischér etc. ). For example, consider’a poiqurphic prqcedure in
nsl “which '“prettyprintsi values. A list must - %ea printedf ediiosedl'in‘

brackets and its elements comma—separated.

+ ‘a discussion . of: user -'def“i'ned .enume‘rat’e‘d types - in nsl may ‘.be ‘igeen. .

in [Har_l82]




_1et pretty const

procedure - xe (- v )a

~begin®
case tygeof v of

> int .

‘char BN
list:: N
begin T

T s

if “.nil v do

i reEeat T

begin -
pretty( hd v )

e.nd s ;
antil nil v do
5, & ompl Rt Y =
cout{ 7))
end

As will be seen, the implementation supbcrte type 'type" in a wvery

straightforward manner.

Polymorphic Vafiahles3and(Cbnetants.u+

Polymorphism extends to 1ocations. In nsl, every location, whether it

be in*a data structure ot in*line, has attributes affecting its constancy

and the - fype of the values it may containm We have defined these

attributes to be value constancy and type constancy respectively.- We give !
the scheme below using 1n~11ne declarations as examples, but stress thatr
the attributes belong to all locations. In keeping with h,. all locations_

:_afé‘ initielised cn :creation, this being reflected in ;tnefldeclaration-

syntax.

We define a location ( also' referred to as a cell ) which is non~

updateable after initialisatlon to be value—constant. éThiS is Tike the

) i L, g e
constant in h. We define a cell which is restricted td containing values

of a specified type to. be typefconstant. We see "that four kinds.of cell

may be ‘&ecléteg‘yin. nsl.‘dependfng on the type and degrée of" constancy.

+ the material on polymorphic variables and constants has been published

in [Gunnﬁl]

o5
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These are,

(1) :Aigene;eieégfﬁQSe cell with?ﬁe attributes_of_ednstency;
Ce.gy let e =,= eéi?p(-)- h |

- {i"c"imay--ﬁefaupdateé by values of any‘ type.‘ It isv a. polymorphlc 2
,veriab;e. ‘It is ' the variable of GEDANKEN [Reyn70] and Euler.; [Wirt66]

(2). .4 typee

éoﬁStant céii..'
€8s IEt c_int 1= exp()

“"The cell 15 an integer varlable which must be initialised -and updated

\;w1th only integer values.’ It is the variable of such languages as=
fPascal. In fact,* the declaration is more powerful than at-. first

',appears. The: type which appears after the "let" is a. type 1iteral but

,;may be any type—valued expre351on. This is illustreted <by ~ the._.

R slightly contrived ) example‘-'

let“c ( i£ i=6 thenftypeof q else int ) ;=_egpQ)
iDépending on the value of "i", "c" will be allowed to contain only
" ll

integers or values the same type as that in* "q

(3) :Aﬁveiee:constant cell.

e.g. let.c const := exp()

The cell may be iqitialised by a vglue of-fapy -type, pﬁt once
initialised cannot be subsequently wupdated. This is the dynamic
constant of h, except that the type of “the initialising-veiqe may not

 be known until run time.

.(4) A type—~ and value—constant cell.

e.g. let c conmst int := exp()

This cell may only be initialised by  a value of the type specified -

( either statically or, dynamically ) and subsequently can not be-
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It “may be seeh that: our scheme differs from other“'epproaches ‘to

polymorphism, for example the union of. Algol 68. [W13n75] Wes heve adopted
'the approach that a cell may be restricted to a single type or be free to :
contein any type. Thls contrasts with the ‘idea of cells belng restricted
to ¢é£§5iﬁisuﬁééts of types'(funione ). We think our scheme 1s sinpler and’

b

" does, not 1oée:expressiyity through its generality;-

A

Type C ‘e:'akins-. | L p®, ey Tt
At this" point it is perhaps Worth examining the static and dynamic

5

nature of our. polymorphism with respect to type checking. We demonstrate &

‘our method of type-checklng with some. examples. First we 1ntroduce the;3

T e' any "Any" 8" our complle time notion of polymorphism, that ' is, it
JPE .

is the ty‘e of a value whose type is. not known unt11 run time. . We use a

¥ type rul__ eeoc1ated Wlth a syntactlc construct to define how types are .

treated. These rules determine the. types: requlred in. and produced by such;:

27 LY

a -constricts: We ‘give a rule for =n nsl “i£" expression whose syntax is

";b?that for h.

"if" { boolean } "then“ Ti "else'" T2
o if ‘Tl = T2 then Tl else { any }

; "Tl"fendi"TZ"*may be régarded as-type variables. The rule states that the

4 clause after the "ie" must be of type. boolean, since thls may not be known

at compile‘tv :the compller checks, that it is of type?any. If it isva

type other Ueh.these a compile'tlﬁe error is given. If the type is any,
then a run tine error is given if the type turns out not to be boolean when
the expression is evaluated. The result type is T whereﬁboth_ares are of -
type,iiy or any where they differ. Our scheme detects type errors at;

compile tiﬁeTWhere it can, otherwise at run time. For example,

Iet@t.charL;é'i a pr b then

’
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s and “b" are. known to be booleans then there w1ll be no run time type check -
at allw Furthermore, the compiler need not generate a run—time check that
the value produced before‘"then" isg’ boolean because the use of "or" will

ensure this. "

.y

viﬁwe'believeCOur“apprOachﬁis simpler although not aS~powerfully'COmpile
time. type checked as others. [BarbSO M11n78 Deme80] In ‘these approaches the

above "y f" clause would be 1llegal if the- types of each arm were different..‘

Checking at’ run or compile time is a de31gn tradeoff. The authors mention
above »do not. have any run—~time type checking since they wish type errors 0, " %
be detected as early .as possible. "a further advantage of static type g
checking is :}. computational efficiency, since run time checks are no-
1onger' necessary" [bArbSO] In return for this seeming advantage they

. acknowledge that their polymorphism has to be restricted.

"it isx very important to be able. tol“perform type checking at

compile time, even if this entails some restrlctions on the type

structure" [Barb80]

Your viewdofAtypes precludes run-time type-checking. Thus we have

. been»led'to'devise language restrictions" [Deme80]
;?everything'concerning'types is done at compile time. ... although
it does impose constraints on the. use of%types“ [Miln78]

$E.

We, like the authors of ELl, [Wegb74] do not restrict thevprogrammer
to only performing actions type' checkable at compile time only. Dynamic

checks are imposed ‘where 1nsuffic1ent information is available at compile

time to. deduce and check types-. We refer to Strachey [Stra67] who says

 "The decision in ' CPL to make types a manifestf7property of .

' expressions was.'a. deliberate one of  language design .. The




opposite eXtreﬁe is - also worth examining. voe Thisﬂﬁscheme “of
dynamic type determination may ‘seem to: involve a great deal of

extra 'work, at run time, and it is true that in most existing

;computers it would slow down programs considerably. HoWever'the
design of - central processing units is ‘not immutable and logical
hardware of the sort required to do ‘8 1imited form e typeff.:
;determination is relatively cheap. We should not. reject a system

RO

s,computers

’

which is lngically satisfactory merely because today

are unsuitable for it.!' "

% e ‘ )

<

We also feel that such a scheme should be considered, then ‘perhaps. in’the

1ight'efﬁekﬁerience using it, lessons may bellearntfahent‘itS'usefulness.

:JDataUStrpcturinghin nsl:

particular characteristics ‘but all of which are treated in -a uniform manner

in:otnef,areas,f They are vectors, user defined structures and lists. The

fornér ‘two are descendants -of « h g data structures, - the - latter is  an
. B VR

'addition'ftoﬁ.the “language. The 1list has lbeen imﬁlicitl& used in a

_Arestrigt5§‘fofm in other languages. . Its worth has been recognised and
exnioited in nsl. Tn-addition teiheing-able:to access data structures in

the_ usual" mmy' ( e.g. integer subscripts, fieids ). we also allow the

2

elements of any data. structure to he accessed by -its ( integer ) position.v

. Normal ‘access is called selection to distinguishcit from p031tiqnaliaCCess.'

+

Therecisiafs&ngahtic~differentiationLbetﬁeen'thése kinds of access.

e.g. p{ £1 } - selection

~p{[ 6 |} - position

nsl provides three kinds of data ‘structure each of which has its own

S SR

'

g wATR




Vectors.

Vectors consist of polymorphic variable locations { doess neither type— B

nor value~constant ) selected by integers ‘within certain bounds.

LiSES(?" B ey ‘.' ] ‘s?;f;\;;
Lists consist of a series of polymorphic values - ( ‘i.e. elements are
dot updateable since _they are mnot locations ;)I' Although lisgts are

characterised by:. head and tail operations in the manner of SASL [Turn79] we

aksofellow selection by integer in the range one to,thewlgngth;of the list.

ot
v . {

-Structures.

S e

~ﬁser defined structures differ from h in that - -~

‘g(L)/{they.add-towthe types of the language

(2) they may contain type— and value-constant locatiqhsu Typé constancy’

“Htmuet be manifest to the compiler.

(3) field selectors are ‘values of a new. type with all the »rights and

: _privileges of other values..

fCoﬂeider the follqwing example of a structure-definitionz.

1

-

“struétureﬁtree ( element ;dleft, right tree )

This Jintroduces two new types, tree ( a p01nter to a tree structure ) and

fld. tree ( field of tree ¥ Each tree .structure has three fields, two..of

which are type constant and must be tree ‘S Five literals are introduced.

tree, fld.tree of type type

element, left, right of ‘type fld.tree

Note we. prefer that new--literals shsreu

names. [Har182] Also type values are underlined by the compiler. Thus.- we

may'write expre5310ns such as,

A, syntak ‘and &cope with”




let fixity const fld.tree :=
if postfix then right else left.
tree.ptr{ fixity }_ 25 e

Here a field selector initialises" a type—vand_value-constant location., We

know of no other Algol which allows~ field-

structures‘to be first cless citizens.’

Null Data Structures.

'Eaeﬁtdeta:structure type bas a single null value of that ‘type, that is
there” is" a amll vector, a null list:and a null for all of the user ;

structures. The section on enumerated initialisation shows how they may be’

written.

Creation of Data Structures.

;creetlonifend initialisation of data 'structures is by one ‘of two
constéucts‘common.fo all types -of data structures. These~spécify what kind
of data structure is to! be created and provide initialising values for each
element. Vectors need additionally to have their bounds specified. A
missing lower bound - is taken to be one. Because the creation constructs
may.be used to bﬁildnllsts and user,structures;.if bounds are specified for

these, the lowar bound'must be onew" The.upper bound”must be the number of

fields for a user structure or else is 1nterpreted as the length of a list..

These constructs are,

Enumeration .

.The ﬁronlsion of an‘individually“calculated initialising valve for
each element in the data structure. This constrnct needs a. list of
initlelising expressions and'e value of tyne "typé”hwhich nust be a

~data structure type. A lower bound may optionally be specified.

vf'Should the initialising-list be empty then this is taken ds the single

z

nullivelue of the data structure.

selectors .of: user defined¥

43
3
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e.g. vector at'm [ a, a+a, a *a]

" ( if x then list else vector ) [ m, q, 1 + 2 ]

" treel 6; tfee[v4, tree[]l, tree[] 1, treeL] 1

1ist [ fsl’ Itl, Irl, Iil’ lnl’ Ig’ ]

Lists of characters have a convenient syntax. The above-example may -
be written "string'".

‘list []

vector []

tree [J

These are the null data structures for the corresponding types.

Replication

Each element is initialised using a single expression. There are two

“forms. The first is where the expressidn is evaluatéd once only, its

result initialises every element of the data structufe. In the
second, the initialising expression is re—evaluated‘for each element.
In both the lower bound may optionally be specified as above after

"at" and the upper bound is optionally evaluated after "size" or

v "upto". Examples are now given of the first kind.

vector at m upto'n 'value a +'b

list size 20 value ’~

tree size 3_valué treel]

Examples of the second kind are,
vector at 1 upto n eval £()
let i :=1; let j :=k

h := list size X eval begin i :=1i * j -> 1 end.

In the latter example "h'" is assigned a. list of the powers of j. A
variation of this second form of repliéétioﬁfaliowé the position of

theelement to take part in the initialising expression.




‘e.g. list size 5 with k eval k * k.

 This produces the list of squares 1, 4, 9, 16, 25. For each’ element

*iﬂtegeﬁ;ﬁahstant " is initialised Wifhkiéénbosition;iéfj"

g A

€e8s V 1= vector ggfﬁ upto n with p eval p +m ~ 1

“For this latter vector "w", v{ i } =i, i =m,n.
There are a vériety»bf?oﬁérators on data structures such as,

ffuﬁb, iﬁb-i'upper_and lower bounds bfig-veétor

sizeof - size of a.data structure
nqil7— a predicate testing,fogfa null data structure

hd, tl, append, -prefix, join - for lists.

Lists may also be "supliéféﬁ", ‘that is, a list may be extracted from.

another. .

In nsl, general purpose routines may be written to handle all the data
struétufés_ingg program. ;Aé an example we give a fﬁnttioﬁnvalue which

returns true if all values in an arbitrary data structure are of the same

4

type.

let issametype :=

’ function( ds )
begin ™ v :
.~ let top const int := sizeof ds- :

- Tet ty const type := typeof ds{} 1 [}
let.pos int. :=1

let same bool := true. .

while: pos < top and same do .

begin '
pos := pos + 1

_same := ty = typeof ds{| pos |}

end ‘

~> same

end

H

The function takes a parameter ‘which is any data structure: ( we have

: Qmitted-'checks”-for it being a data structure type for clarity .). The

constant "top!~is initialised with its size and "ty" withjﬁﬁe tyﬁé'pf_its.

first ' element.  "pos"

7

. 1s a counter which is usgd} ﬁdi;determine which" -

il v




position in the data - structure we use 1n our check for ‘type. The loop

consists of stepping up the data. structure comparing the type. of eachv

“:element with that of the first until we reach the end.or one is found which

‘differs.. The value of same" is returned as® the result of the function.

Note that "1ssametype" may be applied to any data structure.

For example,:‘
v,issametype( 1ist[ 1 2,3,4 1) gives true

structure itree( el : int S s itree )-

- let P i= itree( 6, pl, p2 )
issametype( p' ) gives false

Routine values ‘in nsl.

These afé similar to h in that they are wvalues in their own?right.

However unlike the myried .of possible .proceaure types- ip-.h because of

differing,peréﬁeter_and result types, there are only two,in nsi, procedure'

and»function: Values,of the latter_returnra value when called. Since
functionsiarevpolyporphic and’ can return -any type,"the-type:of the result
dOes- not f;ruﬁ‘pqrt .ofl.function type. That. is, a function may return
different t?pep.on different calls."Similarly,’the par;meter type does not

form-}pert of the routine type; This 1is the‘ approach adopted by

SASL. [Turn79] Routine values take zero or one parameter, however this

parameter may be‘a data structure if several values are to be .passed in.

x

Parameter passing, as in h, is:call~hyfvélue. Some examples are now given,.

procedure () z :=z + 1

function( z const int ) y + 'z

let sum ;=
function( 1s const - llSt )

- begin ;
-, let s At v= 0 3
for p = =1 to 51zeof ls do
T B =g+ 1s
i g
end

rion 00T i




€
Multiple Pai‘ainetex:‘_s.

A convenient syntactlc form of a llst whlch 1s an actual parameter s 7 *
" to separate the elements with commas. ‘ "" - E
e.g. sum( 1,2,3 ) is equivalent to ’ : p
‘ ;.'suni( 1istl 1,2,3 1 ) o _A
However if a single value is passed it is of course ‘not made into a list. £
On entry to the routine ‘value ‘type’ checking takes place if the formal : J
. ] 4
parameter _is type—-constant . :
: §
Similar to'the actual parameter list syntax. sugari.ng'a-i__s:';_fone_»-for formal .
param'et'er's".- 1 1t is "desf:'i'.'red to 'pass in fixed leng-th actual p,a'li:'amet'er_‘_ “
lists, then a familiar syntactic ‘form of -a formal parameter list may be ..
'give'n'.- For exalllipj';éf,‘,‘,_} i }

procedure (Aci'-"v; m const”’; € int 3 x comst: char )
This heading means_that the actual pardieter value. must be passed as & 4= %
list. Four 1}6q31:"‘¢fé115 called "g", "m", "t" and "x" are declared with the ’
attributes stated, each iinitialised'vh'.th.(_the;‘_gﬂcorresponding element of the ;

list--.. Type checlé'ing ""Ztake_s" -place on .ini"t;ialigat‘ion. This mechanism we

Vbelieve allows the progranmer complete flexibility  or- rigidity,- whichever

he Wants o

_;'fype'checlcl-ng '-i_s'perf_ormed on the.call if the formal parameter.is type &
cons;tan't-.‘ A"'y\pointr to note is that - the type con's.ta‘n_cy; of the formal. '
parameter may also be calculated on the call. This allows a form of -
parainet.ric polymorphism. For example, . ‘

let ty type 1= int

let f: function ( par ty ) g

f( 6 ) = char 3 f(7) :
The second call of £ would fall because the type constancy expression

.y EN
Vv

result -(:.h;,;th,_e.- ‘_eva_l\ua-tio._n of "ty" ) 'would give charact'er. Another example

2 %

is,
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”;lgg fred :='fgnction ( t type ;;vAt )
The ‘type - of gt 13,Aetefmiﬁedvby the act;di parameter paéée@@f& i 3
To comple;e this-sec;ion_we:give an ex;ﬁple of'an nsl program ﬁhich
pfé@}deﬁ the éﬁack‘ébstract data typeféiveﬁlin the h sectdion.

! a polymorphic stack !
let. new.stack
function( s const int )

begln : S A .
o sk " let stack const := vector size s value 0
o 1et sp int 3= 0 i -

b Aist
5 : ._ [

function P tos. 1()
if sp > Othen stack{ sp } else 0.

Qrocedure I push A x )

begin end. else stack{ sp } = x
- end ,

procedure ! pop ! ()
if sp > O then sp := sp - 1 else begin end -

& 4
end
- begin . -
let' tos; push, pop := new.stack( 15 )
PUSh("999 ) . -
let a = tos() 41
push( a Yo

’A.éall~5{""new.stack" ‘takes a limit and returns a list of the stack
maintenance routines. WNote that there 1s no‘need to declgré;é structure in

whiéhﬂ;o'return'them, a list is all that is neceSsary.:iSqéh*a list is

routine 'variables.

returned in the call abo&é‘agd'strippéd, iﬁs'elemedtsAiﬁitialisiﬁé'three :

T

P o
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- Thé Tagged Architecture Machine Implementation of:mnsli

This section describes the implementation of nsl from the standpoint
of those . features rarely found in other languages. -'I‘hese are_-:j_constancy,
pOlymor_ph__ism, ’ user-:de"»fined X t_ypes;, 'orth‘o"gq_nasl"-(;_ data struct‘uré's-‘.,: and ~field
selec\éo'r’s ,a_nd routines as assi'gnable S TII ‘It - examines the
characteristics of these features in order to subsequently show'how they -
3 are' im' lement'ed._ They greatly influence the architecture of- the underlying-'" -

'S

abstract machine which 1is- described. - Flnally 1t highlights several

‘important instructions such as ‘those for routine calling. Appe'nd‘ix"-C'
additionally describes instructions for data: structure management. + It also

shows.: how the ‘Iist as a data type in a language can be exploited.

J lﬁin;'l)esign Influences. '

The machine was designed for the implementation of Algol=-like

polymorphic programming 1anguages in general and of nsl in particular. .;It-s

1nstructions therefore reflect the hlgh 1eve1 operations -1n such languages,
and - are not primarily intended to be hand generated. The nature of the-
machine draws from traditional archltecture ( especially stack machines for«..-k
expression evaluation ) but is mostly 1nfluenced by the characteristlcs and
data snace reduirements of _polymorphism, - routine ”values and- data
structures. These mainly show their 1nfluence 1n the structure of the

st:ore Which is not a totally linear store but is segmented in. the manner of

a heap.

In .character, the machine is related' to :the ~SECD machine [Land64]
however it attempts to minimlse ‘some of the inefficiencies inherent in that
machine “iwhien it is realised on’ current architectures. The SECD machine

implements applicative languages w1th ‘mo a951gnment whereas ours is . for X

, Algol 1ik ;'languages in which assignment and the store play a maJor part.




118

‘“'fAPQr tagged architecture ‘model ( TAM ) is an ‘5ebstract machine

1mp1emented by an intérpreter. The compller generates this code directly-

because it 1s radically dlfferent from today s architectures and could not
resﬁl:istically"'be generated in-line by a‘code generator. The following were

major-considerations in the store design.’

Routine Valuesi

As we” have seen for h, a routine closure comprises a table, a dlsplay

T

and‘the body of code. Space for.: these must be allocated from a heap.

Data;Structgres;5~

¢ g

-'collection of locations or values. Again these data structures need

to be allocated from a heap.

Run.tlme type- and constancy~checking.

”:A program written in. a polymorphic programming language, by its very
‘Fature may not' be able to be completely type checked- at compile time.
This means that any machine supporting‘that\langnage must be .able to
check types at run time, that.is};tipés must be identifiable- at. run

time. This is usually performed by some kind of

| tagglng [111f68 Myer78 Feus73 Feus72] mechanism whére  a value carries_’

t

round an indication of which type it belongs to. The compiler maysf

elso nop~ be ;sble- to check whether a constant: locaﬁion' is: being

ot

assigned to or not, whether it be type='or value—constant. In ‘this .-

case some run—time check must be performéd by the implementation.

~'The‘abovefconsiderations mainly reflectvthefaspects of a ‘polymorphic -

programming language which differentiate it from traditional atchitectures.

Although-mucﬁnof nsl is traditional it was felt-that its ihplementation .

should be designed from the position of those aspects cons1dered to be

novel. This approach proved encouraging because the traditlonal aspects of

" the 1anguagegifitted easily on top. We thus" designed an ideal 'machine

Broadly speaking, a data ‘structure may be considered to be a

A




taking heart from ,Strachey s comment [Stra67] "We should not' re'jéct a

“system whlch 1s logically satisfactory merely because today s computers are

unsulta‘bl'e; for it". Myers [Myer78] is of a similar opinion saying

"“Tﬁe}simllarity of the architectures of toQay'e'systens;to-that of

 earlier SYStenm can cause-lns to' become complacent“fabont the

subject; “we look about us and see ... that the architectures of

current systems are wvirtually the same as those of earlier systems.

«++ As a_result, the architecture of future systems remains the

same."

Feustel [Feus73] encourages self ‘defining data‘anﬁ saysf

all data elements in a computer memory [should] be made to .self-

identifying by: means of a tag ... such a machine- arch1tecture may

_Well be: a suitable replacement for the traditional _von: Neumann

; ardhitectnre."

Storéfbrgéﬂisatlon.

Fundamental to the de81gn of the machlne is the organlsatlon of its -

store. With its 31mple organlsation. 1t is found that many high level

1anguage features may be supported. The store design was based on the

observation that data:could be held as collections of locations, each of

which needédfto'be individually accessed.. The store is segmented dinto

allocatable, arbitrary length-blocks of cells.

Cells,v

Cells are all the same size and contain type-tagged values.

Each cell

is divided into-three individually accessible components,}two‘of'whicnfare

one bit flags, the other containing ‘a Value. Figure l"shows a cell and its

' ;components. The two flags are : the value-constant (v) flag and the type—-

constant (t) flag.




Figure 1s
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I1f theEVelue—constant flag'isﬂset'then the cell value coﬁtents may not be

updeteﬁfby-certein,lnsiructione. If theftypeeconetant fleéiis,eetgthe cell

value may Onlflbevupdated by another: value of theaegme type as that of the

value alreadY'in the ‘cell. Each value belongs to a. single ‘type. This. type

is carried round as part of the value. All valuesgere-thegsame~siZe. Thus °

a value is made up.of an*actuel value part and A”typewtag. “We depict them

separately in flgure 1 but emphasise that they are inseparable.

‘rﬂ

Bloéks}, '-

A block is ‘a linearly ordered sequenoe of cells. Blocks are accessed;ff

u51ng values whose ‘tags must be one of a- special subset of the types S

'I'

supported by the machine:and whose actual value part is a reference to ‘the

bloek in store. -There are machine instructions which -result in the

“Acreation of -a block together with an’ appropriately typed reference value.

This;

l@ck reference«value must be held in some cell, - Flgure dehows a

bloch.

L ey ST
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Figure 2.

] ) 2“*r"— ey

Blocks disappear ( via garbage collection ) when no value references them.
Cells within a block may only be accessed by specifying a block reference
value and a position within the block or a selector value. These two
values constitute an address in the TAM machine. There is no way to refer

directly to any cell within a block.

Values.

Values are made up of a type tag and an actual value. During certain
instructions and operations this type tag may be checked for consistency.

In non-tagged machines, the type of a value is determined solely by the




‘e P

cpntext pf}its ese;. A"tagge§ machine hbwever can cetermine that rhe type
is valid in the conteit_of its use and furthermore'can‘support pdlymorphic
1nstructiohs which use that tag to determine the course of actibn of an
instruction: The machine supports a wide range of implicit tyﬁes, some of
which are eESential for its own operation, otﬁers are the types.provided
»for_uee by the polyﬁorphic programming,lenguage. The user may also define
his own® types by means of the Structure and Enumerated Tables described in .
a later section. We differentiate between the non block reference types

and the block reference types.

Non-Reference Types.

These are the values whose actual value part is not a block reference,
that is the value is totally contained in one cell and is not a. reference
to a block. Some are__stralghtforward such as '"boolean", character
"integer", "position" and "type". A.'value of type "position" can .be
considered to be an unsigned, non-zero integer which is the position of at
celi in a b}cck.! The first cell is at position one. Orher tagsi'ere
provide& forlthe internal consistency of the machine ; these are "errqr“
‘ and a speciéi type "any". New data types may be.defined. This allowe the
supported language tolgeherate new tags an& prcvide tables to support the

new types. For a discussion of these see later.

Block References.

As mentioned above, a number of values have an actual value part which
is a block reference ( depicted as a.pointer in the figures ). These’
reference values;have type tags reflecting the use for their corresponding
blocks. These values are solely internal to'the machine in that the user
is not aware of them, such as "frame", "stack" and “"environment'", or they
are the implementation of wuser data structures, such as '"list" and.
"vector'. A epecial- actual value, nil, is used where no block is

referenced.
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Registers.

The program in execution is represented by a single block reference
value. This points to a block, the same size for every program, containing
values used as implicit operands in certain instructions. That is, each
cell within this block has a special function in the operation of the
machine. We will call these cells, registers and give them mnemonic names.
There are three groups of register, namely, for stack handling, for program
operation and for data description. Figure 3 shows the Register Block for

a program.

Figure 3.
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The Stacks:: .
i A D

‘Y

-Ihere‘ are two stacks, 7one for‘ expression'oeValnation called : the

o v f Wy

evaluation stack, ‘and . one - for routine execution housekeeping caLled the

control stack. A stack is a doubly linked 1ist of blocks, Each cell’ in
the blocks ( apart from a linkage cell at either end ). contains a value on

the stack. Each stack is maintained by three registers. qlhese are i—

,'..‘

SB 2 . evaluation stack base ( type "stack" )

STJl : f{e:alnatlon stack top ( "stack“ )

'éﬁ i . evalnation stack position (S position ﬁg
cSB : control stack base ( "stack"a)a <

(2 S % cont’rol‘..-‘:sst'ack t_o;p' & "stac:k" ) y
Ccsp $ control stack position ( hposition“') 3

The. stack base register refersato thfﬁ

; 1

stack top register refers to the highest block.- All blocks within a stécki

aregthe=same'size; although-the evaluation and-control stack'block"size may

be dffférent. All blocks except the’ ‘top. stack block are - considered to be{

’

full.,;The st ‘k position register contains ‘the p061t10n within the top

block of the highest used cell. The lowest cell in each block contains a

reference -to the previous block. - The highest cell in .each’ full block

.-1-,_

‘3;

‘refers to the next’ block. in the stack. Figure 4 shows the: evaluation,

stack.
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lowest block of the stack. The '+
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When a block is -about to overflow, that ‘is, before a push there is
only one free cell left in the block a new. block is- allocated and the

apprOpriate,housekeeping-cells and registers are updated. Similarly, When

the,top“block»empties, it disappears and thexsecdnd‘ton;blockghecomes the:

new top.

The ?rOgram.

The code executed ‘by-, conventional machines and their data .are both:

‘seen as bit patterns residing in locations. Gode may ‘be treated as- data'

-and vice versa since _'the 4treatment of the contents of a 1ocation is-

\ =

determined by context - That is, if the. machine program co nter is pointing

at it then it is. an instruction, Whereas if it ;isﬂ

accumulator then it is integer data. Our machine differs<from conventional-

machines in that its tagging mechanism is exploited to give an high degree.

ode is treated as.

of protection. It is ‘also orthogonal in that .a’ body- of a5

~

a typ§d3§aiue. In fact, it is treated much: like the data structure At may'

be considered‘to be. Such a body resides in a block and is accessed by a

"*r The instructions within it are themselves values=

reference“pf type ' code

WhiéhquY onlx_he executed. It is this alone which differentiates them

‘from hther\vaide There isno .way that code in a.,cod dvblock can .be

changed‘- the cells containing it are made value constant. Nor can it be

’;vs data - there are ‘no instructions to treat it in such a manner.

Furthermore, the machine will only execute . the . contents of’"code blocks.

‘,code block contains ' values which are. instruction fields. An’

' .*A v

instruction may extend over several cells. ~Ea¢h-codeAblock’correspondsfto

»

a;single source langUage routine body. Theumainyprograméis consideredﬂto

belafroutine;:alled at the end of the loading phase.

I, 3 c o
N GBI sty :
FNATE

Orthogonality demands that aj‘program' definition in the machine’ is

-

itself'a’ block whose cell values are references to blocks containing code.‘

This contains;as'many values as there are routines.' This:reference'is held

4 o‘ be added to an. -

2
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in register PB, the program block. Its type tag is "program"; in fact it
is the only value of that type during execution. All accesses to routines
are performed by means of their position within the program block. At any
time, only one routine is being executed. A reference to its code block is
held in register CR, the current routine register. The position of the
current instruction within this block is held in register CRP, the current

routine position ( see Figure 5 ).

Figure 5.
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The first cell in the program block is a reference to a code block known as
the "boot" segment. On starting execution the machine sets CR to point at
the boot segment. This code block is actually just a normal procedure call

to one of the other code blocks which is the main body of the program.
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Routine bodies‘aré;accessed by means of a positibn‘in the’Program
Blogk; élloWing the compiler .to geheiaté~code using them'§ithout knowing
. whefe«they’ﬁiil‘lighat‘run time. This o;gaﬁisétion lends_itsélf to a form
of segmentation. The code for a routine body could remaiﬁ'ph disk until
that routine is required for’tﬁe Tiréﬁ time. A nil block reference in its
cofrespondiﬂg:Pngram Blocg cell woﬁld‘indiqate that the code'is mnot in
storé"gn& must be pulled;ih; Thus foutines ﬁbt,callédfwould not take up
any -space., Although the store seems t0‘be_infinite, this is'gchieved by a
garbage- gollection model oﬁ_ a finite store. FEven if -fﬁis pseudo—
sggmentatioh.w;é noé extended to include thé freeing df gérdly used code
blocks, the limitations of a finite store and'the fitting in of wvariable

_sized”Blocks'wouid'still be present.

Instruction Tags.

The two components of a.valu;,.tﬁe tag and actual value parts, are
distinct but in;eparable.f'fﬁé ﬁagh%ﬁe sees an instruction as a series of
valuéé in successive ‘cells. The _ﬁag part of the first wvalue of the
instrucﬁiqn is thé-opeiation code ‘for the instruction. The.papaméters,~if
any, for the instruction lie in the actual value part ofithis and following
cells. Theée other cells each have a tag type ‘'continuation of:
instruction" (‘thé moemonic is "CONI" ). The machine will not execute this
so it cannot start executing "between" operatiéh ‘codes,- Figure 6

illustratés a three field instruction.
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Figure 6.
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Some instructions have literal values following the operation code cell
rather than operand fields. These values are the same as those appearing
elsewhere in the machine except they are generated directly by the
compiler. This means of course that they are manifest to the compiler and
not created at run time. That is, all literal values planted in the code
are not block references. Figure 7 shows a "load literal" instruction
( mnemonic "LDL" ) where the first operand is a count of the 1literals

following.
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Figure 7.
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Thus instructions, being made up of sequences of values, are treated in

exactly the same way as other data within the machine.

Jumps are simply instructions whose operand is a new position value
within the same block of code. The type checking mechanism of the machine
does not allow anything except a valid op—code to be executed so it is
impossible for bad jumps to take place to the middle of instructions. It

is still possible however to jump to the wrong instruction!

Data Description.

A feature of the TAM machine is that it allows the user to define his
own scalar and structure types. These are handled uniformly due to the
orthogonality of design and are not special cases. Two tables may be
constructed to implement these and ranges of tags are reserved. We will

deal with each kind of user definition in turn.
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Enumerated Types.

There is a range of tags which defines new scalar types, specifiable
by the supported language. These tags are called the enumerated types and
are basically similar in character to the enumerated types of Pascal.
Associated with them is a block of cells called the Enumerated Table. A
reference to it is held in register ETB. The machine treats the actual
value of an enumerated type as an unsigned integer. Values of the
enumerated types are ordered. These run from one to the user defined
maximum. Each cell in the Enumerated Table contains the maximum value of
each defined enumerated type. The compiler passes on to the machine how
many enumerated types are needed and what their limiting values are. It
allocates a new enumerated tag for each enumerated type declared by the
user. Figure 8 shows a typical enumerated table for the nsl declarations

in the next example.

Figure 8.
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datatype colour( red, green, blue )
datatype symbol( plus, minus, times, divide, power )

datatype staff( fred, jim, arthur, john,
patrick, peter, louis )

minus has the value < etype2 : 2 >

staff has the value < type : etype3 >

r

= W

e e,



The only allowa‘ble~ope'rations on enumerate‘d' types are r'elational o:'pe‘rati‘o"ns_,--:

7

and the addition and subtraction of an integer value., The: latter twd"‘.. ;

'operations check that the resulting value of the) same’ enumerated type* 1s.

still Wlthln range.- The same addition instruction is used for adding an:'.

integer to an- integer or an enumerated type. This poly;nor»phic_ add uses the *

tags to differentiate between them.

,,,,,

Structures -

The high level language user define,é‘»‘.».;diff‘er.ent"-': éi’éé;geg o’f.."s_‘tructure.

In . nsl ""'ea‘ch ;clas's is "a value: of ty.pe- ."-ty‘p‘e". It is f#the' .t'ype‘ of all:

references to incarnations of. structures belonging to that class. The "

machlne supports a structure type and a‘ field type for each class. Two

Y

ranges ‘of tags related to each other ‘are - reserVed and spec1fiab1e by the:

A field value :Ls a position withi i tructure and is used to.. se_“lect,_xa

.component .fi' ds. 'lLike'”the.-_enumera;t_ types, there is a- Structure Téhle'., a

reference to* which is. in’ register S'I’B.,-» There- is one va-lu'e with a unique -

33 ey,

structure tag in this table for each structured type ( structure class »)

specified by the user. These each po:mt to different blocks‘of cells-’

called' struc‘ture templates(.- - template is a pattern for creating new-

-

structure values of the correspondlng type. - The flags ‘and the type tags
are fllled in" for each template by the compiler according to the user’s

definition. The type tag ' any ‘is. used if ‘no type constancy ‘was, spec:.fied

*otherwise it Will " be the specified type. Figure 9 .shows a typicalﬂ

structure table for the nsl declarations the-next example.
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structure unary( urator const char ; urand const )

structure binary( brator const char ;

urand

brandl, brandr : const )
has the value < ftypel : 2 >

binary has the value < type : stype2 >

$ /R Qc -\c_-,\\f A f\\ /‘-.\;‘\h 7

Figure 9.
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A "unary" structure has a block reference as its actual value and stypel as

its tag value.

Routine Implementation.

Here

we wish to focus on the implementation of the routine values in

nsl on the TAM machine. We will consider five topics.

e L B e e T e T T e R e D ST (T Tt L b 3T 0) e TV i s R e T R I N ¥ T S R By (
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" . Routine value creation.

‘Routine value assignment.

. Routine value calling.

Compile Time Information.
THe compiler must provide the ‘information needed to creaté and call
routine values, and to access ‘variables and. - constants . in their

environmeutsﬁ- The.iuforpattou.necessaty:mey‘be summariseduee;£Ollows.

» ¥ DAL 5 - : : * %

- Fraﬁefﬁize
This is needed for the alldéation of a frame blockioﬁ a-c&i&. It is

readlly obtalned by the compller on .a - sxngle pass thﬁ'ugh the source.

B ) becomes part of a routine value when that value is~created.

s

Variable and Constant Addressing fipd i,

-1

-These are addressed by pairs made up ds in- Tii. frcmge 1exicographicA

Hltoutiue level diffetence and a position: within the irame37

’Routine'Bodies ' os ;" o { _ M s

_ The compller does not know at run time where the body of code will

’31de, so 1t allocates a: unique segment number to each routine value.

e 1s‘is used as:a}positlon in the Program Table to find the body ‘of
;code on closure creation. - These table entries Wlll'_be set up

dynamically on 1oad1ng..zf e . & | R

Run Ilne:lufer9tion.

ﬁ.Call Information i

Although frames must be allocated from a heap, :the mechanics,'of

routine calllng 1skst111 LIFO. . We may'thus;meke use. of a stack to?

handle the'housekeeping of routine calls. THiS“is‘thé*control stack.




;rmhtionee;aboye. There  are five-registers used to implement'rgutine
o A ';j : vealls. ‘
J“CST;‘Jthe;controlistack top ‘ f%
€SB -~ the controlietack@paee“
;EIT'CSP'- sogkpal, pinek poeftion.
CR Tfthe current routine code block o

--wbgP“i‘the current'r%utine position

The first ‘three ‘are the usual stack housekeepingA eg

“the evaluation stack. The control stack consists of a series ‘of

triples, three values pushed on it durlng a routlne call. On return

-from the call these are pOpped. The control stack'therefore behavesh
Aike the--traditionel>'stack; implementation, only here environmental

; information iélfgéaiﬁéﬂ:‘it being off stack;aslpartioffroutine;Values.

In fadt:the evaluetidnrani-control-stacke could be cpﬁbihé& but we
prefer to .usé;a- sepdrate stack. CR dand CRP determine the current °

instruction. Together they form the TAM machinefs'grograﬁ couriter.”

Environment Information

& A new kind of block asgociated w1th routines is  an environment block.'

It is: referred to by a block reference of type ‘env1ronment" and is a

block of cells containing values  of type "frame ":“Environment"

: blocks.

S

old the non—local environments of routine'vagues,'forming part

of these values. They also hold the complete environments of the5‘

. currently executing routine and of the pending calls of routine

values. References to these are. on the control stack.

RoutinenvaiueQCreation.

. AC routine value is created by executing a make-procedure or'"make~

e

function" instruction ( mmemon1¢s "MKP" and,‘ @); These instructlons'

% L

=¥ - have two ope ands, The first is the-segment number of the correspondlng

¥
S g




routine body:"TheVSecond is the size>of'the'frameito.be_created to- hold

. the»localwvariables of”that routine on its call.

" The' run time representation of a routine value is ‘a blockfbfvthree
. ‘cells’’; its code,'non—local environment and 1ocal frame size. ( .Its full
environment 1nc1udes its own local frame which does not come into existence

until the value is called. ) A1l but - the environment may be copled or

derlved from the instruction operands. The~code reference is obtained by

b

using the segment number as a: position in the Program Block.fQThe non—local

environment of ‘the routlne value being created 1s made up of all the frames

currently- acce331b1e. This latter environment is already'held on:top of.

the control. stack as the total environment of the current routine ( which
of course contains the »make * instruction ).' As will be seen on calling a

routine value, its non=local envifonment and- its local frame are made into

Ay

a new complete env{ronmentfwhich is‘pushed%onto the‘control stack.

- The routine value is: a block reference with a type tag 'procédure" or

"functlon 5 referring“to the blockuof three cells. As a result of the make

instruction; the value is pushed on the evaluation‘staek.
Routine Value Aesignnent;

f;Thiegnay be, done freely in the éame,contexts as.other values, for

exampleE.étraléht assignment, data structure - initialisation,  parameter -

Il

passing and so on. - Theré are no restrictions or special -cases. The .value

. is treated the?same>as.any.other.

Routine Value Calling.

5

All routines requlre a single actual parameter on a call. This

simpllfies the calling mechanism yet. does not ‘reduce the power or

flexibility of parameterisation. The nsl conpiler willlgenerate a value of

This will ‘be examined-

1967

A




an-expected parameter.. The parameter must. lie . on top "of . ‘the evaluation4

stack above the routine value to be called. The instruction executed is a

call—procedure or call—functiOn ’@‘mnemonics “CLPY; ”CLF"%). This hae”a

codé’ operand which is the number of actual parameters supplied. ~1f this is

greater than one” then the instruction pulls them off the stack Creates a;é‘

list” from ‘them and pushes the - list Value. Thisvghe"omes;»the_ actual

parameter. The wsecond top value: is then“ cheékédg to:'verify it is a -

i “oget

procedure ( for a "call—procedure )}or a function ( for a "callffuﬁction“~“

Y. The return address is pushed onto the control stack.' This-is'just the

contents of CR and CRP.

‘A hew completed environment must be created for the routine. It may

PO

access local and intermediateafree variables, so the full envirbnment is i

made by creating a local frame and storing dts reference. and the non—local

environment references supplied as part of -the routine value.. The non-

local environment,.eSuhas heeh seen, 19 Lhe”complete environment of the

routineg;mhichijcreated~ the” called value. Note this need not be the

1

currently 'executing :roﬁtinew The main program has an empty,.non—local eis

env1ronment. The new ( complete ) env1ronment is thus one cell larger thann’

the creation ( non—local ) environment, This completed environment is’

pushed on the ' control stack. It determinee,ﬁthe frames" currently-

accessible, that‘is; mhile thepcalled routinejs*code‘is being'executed.

Those'instructions which access celis%in frames willpmakeAuse of it.

The actual:parameﬁer’is'copied into the first..cell in the local frame.

If the routine was celledJWith no parameters-then'the compiler:will have:

generated an "error" value as the actual parameter.

.The last act of the cell is to set CRP to the first.pbsitionxand CR to

point at the code block of the routine value.. This is in effect a jump to?

:*the\:first inétfﬁétibnm of the routine. ThiS' first inStruction?“has the

simple task of checking the consistency of- the actual/formal combination,

that 1s, whether a parameter was. expected and one  was- supplied. The return

v




instructionfis the same for procedures and'functions;ﬂsince a function will

have 1left its result on the‘evaluationustacks_ﬁTheﬂxeturn:simply4pops off

the environment onﬁthe.control stack and restores CR‘and_QRP'popping-them;P

as it does so.

4

We see, therefore that the 1mp1ementation of routines as’ values in an-

.

Algol like 1anguage 1s quite straightforward with a" suitable architecture.

g

The TAM machlne demonstrates the advantages of’the orthogonal treatment of

Lblocks and type tagglng.

Other;?ﬁp Instructfons. ' S

e
¥

We leave further discussion of the: remaining TAM instructions .to

Appendlx c. These cover data structures, accessing of cells and list. .

exploitation;

We have preSented-:an_.architecture .whlch implements a powerful

s

polymorphic programming language. This. machlne makes use of’ facilities

little. seen in the -architectures_~of;-present' day computers :and must - be:-

iii{pi'einented"’by.,-means- of an interpreter. We have exploited.'lists to aid the -

implementation of parameter pa331ng and nmltlple assignment._ To- support

1

routines as. values and data structures we tse-a’ storage handling mechanismw

which is orthogonal 1n 1ts treatment of both and which simplifies the

acce351ng of values contained An - routine variables and constants, or reside

in data3structures; This same storage‘mechanism'is‘alsozused to organise<

the internal "housekeeping of program execution. We have introduced two

«

constancy flags with each location which with tagging allow a high degree

of data protection and con51stency checking.‘ o

S

F . e

In addition to the 1nstructions described here are a number which

<

exploit the informatlon avallable at compile time. For example where theﬁt

type of'a value being stored matches the type restriction of : ‘a variable,

oming




both being known at.:compile time, the?cbﬁﬁi erxcaﬂ:geﬁefate'a vef%ioh Bf,l

the '"étbfe;ffeme" 'instrﬁction ’whieh?"dbes not perform type checking.

Ly Simllarly an add operation need not be polymorphic where'the types of its

1nteger operands are known at compile time. These sugared" instructlons:

are faster but add.to the éize of the.interpreter,el;hdpghfnot ;o its‘-
acomplexity. “The advantages of "large" hiéh'level-abétfﬁ&t;iﬁstfﬁcfidne as

advocated by Myers [Myer78] may be: summarised as follows ; there are less

‘8

«instructlons ‘overall to implement resulting in smaller interpreters, and

the;fmore..compact code is fsxmple; to generate resulting in~ sme%lef'

compilers. .We lieveﬁthat the,imﬁlémenfing'of:powerful lenguages‘éuéh'ae'?

b

';*nsl requlres new architectures which can handle and exploit polymorphlsm.

They should manlpulate tagged data and at 1east have theusimple storage

organisation:deseribed above.
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Summary,zConcldsionbaand-Further Work.

Our work has 1ed us. to propose an approach to language 1mplementation

based on. an abstract machine interface between the LDT and MDT

8

The ..O_verall Techniquea. ]

ey,

‘We have- developed a (methodology or technique consisting of the&“i

following actions which may take place in some logical order or ,in

parallel. The‘details have been covered in the previous chapters and the

appendices should be referred to for example material ‘We concentrate here

tia, % _,;, 3

t“simplified in

on the overall:- approach. The methodology may ‘seem somewha

doing this. It is our belief that any methodology uld

»

5apart from
‘producing the de31red results, attempt to be 'intuitive. ‘That is, the user
should feel confident with it even to the extent that it seems obvious. The

- .‘.d

meaaure of success is whether it can -beée applied easily and perform its

task. ﬁnfdrtunately,wlikeva methodology forxlanguage de51gn {MorrSO], the

results of its application initially are subJecLive until such time as 1L

e 2

is applled by others when it may ‘be obJectively Judged We have in this

work developed the technique and shown its applicability to 1ncrea31ngly ;

more poherful languages. We. see the tasks involved as -

e

Analysis of the source language to determine 1ts -,

- abstract properties - R ~
_De91gn of ‘the: 1ntermed1ate language s

* Examination of ‘the. target machine configuration
'Dec131on on ‘the approprlate mapplng e \
Writing the compiler, code generator/interpreter 2

P

Analysis of ‘the language.

" 'The ‘user of .a languages(i.e. the programmer ) is concerned to a large

partKWith itsi~concrete syntax. The_”implementor.has avaiiable ‘to himeell

proven; methods of analysing the concrete SyﬁtaX?and:@e( exclude them from




dour}discussion. The implementor.must consider*the - language in a very mich ..
more abstractrform s0 that'itS'properties, character and sb‘on'stand-out. . 3

‘He muSt try to eliminate concrete syntax yet must be able to easily convert

from con ret"syntax to a much more abstract form. In”particular we feel . '~
the language}should* be-examined from .the<f0llowing points of view; these

L

beiné-most important to the-implementation.

§

a) batawTY5¢s.

' These are of'particulariimportance'being*the gropertiesﬂqf the objects
4”the-'programmer. Data types are bestﬂsplit%'into two areas,

o i
@

manipulated by
'primitivezan structured. In ‘the: maln- primitlve ‘types are straightforwardv- PR
to 1mp1ement. Examples .are numbers and characters. They: have simple. storage-‘ e

requirements ‘and are produced by monadic or. dyadic operations in:f“

expressions. The 1mp1ementor must decide Which are the primitive types,'

what ,their storage requirements are and what operations are valid with
them.. For .the- Algols at least storage for primitives will be either on a'ﬂj

stack or within a data structure: allocated on a heap. by o s &5 <

At this oointhin the methodology, the implementor is concerned with_~_ 5

.building some kind of abstract model With which he may understand: :the

-underlying storage requirements of objects in the language He is perhaps & ;

attempting to formulate some - ‘kind of operational semantics which w1ll be of

some use to. him when actually - implementing the :language on some real 65

machine. Toia*lesser extent he is becoming familiar With the operations“ : dﬁ

Wthh may be’* performed ‘on objects. OFf these the most important are those

.

related to the storage structure- namely those concerned- w1th the addressing. : ?

(lof objects and?the;assignment*of,obJects:f

;For example an integeriin a lahguage may” be considered~thus;l

nalways accessed as a unit )

L z"'

large' enough to hold the required rangehﬁf’values. This may be allocated ; i

¢ Storage - requires ‘an  atomic cell (i e,.1s

w1thin a data structure or.“for the duration &f a routine. ;-_, 3*?_’3‘» T

a




Operatlons = i " —> i ( addition ) e

a. [ i ] -> base type of ‘a ( array index1ng )

® i must be within the bounds of a 'ett.

Data structures are separately treated because they have more complex

storage requirements and operations.v Data : structures“

¥y 7

under the headings of storage creation, accessing and operatlons

:“~ Cow

'Storage - A data structure requires storage to hold its collection of data.“

Thls w111 remaln in ex1stence for a perlod determlned by the rules~ofytheﬁ

1anguage., Usually storage is reserved on. entry to a procedure and released

PE R

on exit Otherwise storage is reserved explicitly -at some' point during

execution and 1s automatically released when not referred to.

Creation = the 1mplementor must consider what information is available at

theFtime of‘creatlon of a data'structure. This w11l be used to determine ,

perhaos the size of the data structure-and its initial values.

Accessing = Data ‘Structures comprise of collections of data which may be:g

.r,

either values or cells containlng data;'“The data may be primitive .or.

structured. e % . , Q'lfi‘n"' s Tﬁ,iiw

For ‘example a Pascal record may be considered thus : -

Storage — the record consists of locations each of whichG hold”primitive

values} It may have variants determined by the value in-one of its flelds.t

Its total storage requirements depend on these values.

03

Creation - a record may be created as part of the. local data of a routine

(e

or as an array element. No informationhabout;the yalues in’ the field are-

available. Airecordimay also‘be created dynamiCally,where”somefof the field

values -are available.

Accessing-- a record may be accessed in total »or}fhaye its fields

individually accessed. '‘Accessing -of a dynamically allocated record is by

means. of a pointer to it. ' . e A

Operations-— a-record may be assigned. E

)can be 'con31dered‘
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' to: help the implementor ‘think about the language more abstractly. We may be

- structure of the language. We suggest the v1ew‘that an’ object‘resides in Vﬁz

W

KE7-this’point”the'impleméntor(TWill have some Rindﬁldf ‘féel' for the

underlying storage structure for: his abstraction~“There would appear to be

two requirements in an abstract model for storage of' high level 1anguage

obJects. Either storage is: allocated in a stack-like manner or a heap-like

& -,';

manner. These models are well proven and understood Given our intentlon to .

3

'make the implementation straightforward -we find them useful -at this stage fﬁ

e 7 f
criticised in~ that an 1mplementatlon model is forced too early. This is

partly justified because a combined stack/heap storage mechanism is the

baeraof,Athe maJorityi of Algol like language 1mplementatious.J*The stack’ .
model could 1begeliminated“andyexpressedfin terms of a heap. It could then

be,reintroduce"ﬁ t a. later stage,f?sayl'when- deciding"on the run—time

- ..« ‘z

env1ronment,’as a’ more efficient way of’ storage allocation for<a particular

class of objects. (This is what happened 1n the implementation of nsl).

" ! ke

'Closelyfrelatéd to the abstract storage' model is the“faddressing B

one of several

g some klnd of abstract collection of

obJects related by one. or more properties. .Theflanguage may be said to

impose rules upon which spaces may’-be accessed at any point in theu'

on.of the program. For the Algols in; partlcular,'the collectlon of

yariab es  in a~block=may be»regarded as a- space. They are related in that

they disappear on exit from. the. block. " They do not all necessarily“come

1nto existence at the start of the block." This may -even be regarded as a

’,

sobspace of the space of all the variables allocated for ,a. particular

invocationﬁ=of a; rocedure. Each. data structure may be regarded aSQa space

o3

: contains a collection of related variables. One impOrtant space

'itself It is & collection;of objects which remain 1n existence




vaéia,lé“ withinlthe block. Eor«‘a-field of a data structure this means
identifying which structure -and which field. The implementot at this stage

may choose ;to separate out the-“spsces assOciated “with blocks fromfthat

structures) This was done Wlth Algol R but with- h-and nsl, which needed to g

..\.

retain variables in blocks, all spaces were subspaces of the heap space.

b) Control sttuctures'_.i

At their lowest 1evel control structures may ‘be 'modelled?nith jumps

and boolean tests. However we have noted that doing so ‘too early in the

1mp1ementation means: that information may be lost which could have been"

useful in- later optimisation. It is better to abstract over the control

structures, ridding them of concrete syntactic differences: and”.to
categorise them into familes of sequence, choice, -repetition and
Lo o - . "% | oof”

abstraction.
3 e

Choice constructs;may~be separated into 1=, 2= and n-armed (e.g. if-and-

Repetition constructs may be boolean controlled with the test at’.the

sterpg_ middle, or end of the loop.. It may- be also be range controlled’ (e.g.
for 1oop).
Procédural or functional abstraction is .also an inportant control
structure. |

§

fwith this abstraction over -each kind of control"structure it is

important to identify the overall properties of the family. This may assist'

in sinplifyingfthe implementation. For example with boolean controlled
repetition the loop may be considered to be constructed frbm;three pants, a
sedﬁence, a test and another sequence. In  order to simplifp the three
possiblefboolean"controlled loops we say that the firstcsequence is empt&

in the case where the test.'is,at the start of the: loop and the second

'sequencé is empty where thegtest is at the end of thé‘loopggwe=then, in the

the heap (i.e. the . space of dynamically allocated data_

ot
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" abstract forn"have only one 'kind‘ of ‘boolean controlled loop.} This
siqplificationvextendsmto'.Li andiJZQarned boolean controlled choice in a

similar manner} The-reasonifor’thisfiﬁind of simplification is that it‘

fms1mplifies. the:abstract machine 1anguage into Which the source will~ be~

- ¢compiled. | -
Desighfof the‘lnternediate Language. .

Hav1ng considered the source language thoroughly the next step is toi
‘design the abstract machine language (AML)- which will be produced by the
compiler. Its purpose is to convey “the: data .and algorithmlc 1nformat10n 1n
the source to the next stage of processing. This intermediate 1anguage 1s:

envisaged as the input to a code-generation pass-:howeveruthe_implementor_

may. . alréadyrhave decided on a simulation mapping. Evenii Zfﬂﬁr 5

chosen, the abstract machine 1anguage for a translation napping should be<
designed fir_stT The?abstract machine language for.sus%mulation mapping is -
at a lower leiel than that for a translation mapping.’ltvshould~be,designed
‘as ahrefiﬁémenb-of that for a-translation mapping. This»iSmbecéuSe'the.same
anal&sis and design which goes towards a higher 1EVelf AML also“should go
toward one. which is almed specifically at direct interpretation. The two
1anguages would be: very closely related the lower level language having
'hderivable constructs and 0perations from the hlgher. We have noted that the

1ower level interpreted language is easily produced from the higher. Also

r3

at a later date the' mapping may be changed to ‘a translation one or the

so;;ce language may be put onto aumachine where a translation mapping is
more appropriate.‘ The compiler need not produce theehigher level:code but
may directly output abstract machine code for interpretation however this
restricts implementations~on other machines to be simulation mappings.

The abstract machine 1anguage5is a 'descriptive language primarily in
that it is a set of!dnstructions to a code geherator. lt-may be.read‘as the

machine code of & very high leyel -abstract :machine betweenfﬁlint’s type 2 -




"and- 3¥describEdzin thefintroduction. Honever such a machine;is.at'too high
a ,1é&ei,;b beiimplemented'thus we translate the AML into a - lower level AML

or to real machine code.

AOne' function‘of~the AML is to convey information aboutythe data used

by the program, another is to represent theralgorithm of the program. None
of the informatfon’;content of the sourcé'.program‘ should be wlost in

produéing this=‘AML.' The data 'description may be' separated fromj the

algorlthm. This may make the code generator easier to- write however at the

cost _of a slightly more complex compiler. On balance- 1t is probably better '

to have the structure of the AML program isomorphic to that of the source’

program.

For the Algols, the idea of scope and related variable lifetime must
be conveyed in the AML. It is best to use similar nested possibly bracketed

constructs“ as is used in ,the source (e.g. begin—end pairs ). The data
descrrptiona are generated when declarations ’are ‘met in the source. The

data description for a-variable should consist of the sameﬂinformation as

T

is cqntained inftﬁehsource_ubut in a form much more convenient for later

procebsing5by3 a code-geherator.wThe‘name'of N variable is not relevant in

the execution of the’ program but may be carrieddover to*be‘available*during

run time debugging. Each named entity in the language is best referred to

by a number. This. need not- be unique if the data descriptions are contained:.

in mnested structures reflecting the scope/lifetime of the source entities.

Should~tnrs bracketing not be- used then'.references to named entities must

be’distinct and some means must:.. be provided in the*'AML offspecifying the '

; lifetime ofﬁtheSe entities.

Each named entity then should be described in ‘the AML w1th a reference

,q:
sk

“it. For a procedure (or function) it is” the list foprarameter types (and

result type). For an array it is its base typ

of these ent1t1es will make use of the reference number, as ‘a parameter to_i

146 1.5

. number and 1nformation about it. This is usually the type associated with~ &

'nd‘its index type. All uses

L -




the - use.: Examples of these deSCripEions‘are givenuinu Appendices A and*B. 2

These- detail the relationship between the source and.the AML.

*

. In translation to an abstract representation, control, constructs mustse

S

retain their structure and not be . broken - down into lower level jumps.

Although they usually have a fairly Simple syntax -at the‘source level at

the AM 1eve1 the syntax should be . as 31mple and regular as possible.

i
:.\ ..‘,,‘

=ZShbuld be

Expressions, data structure"acceSSing' andtvas pnment-

converted into reverse Polish This higher level AM ‘is’ inherently stack and

irestrict the code generated to u31n: stack} Chapter 3 shows why this is

E

an excellent representation. A simple but effective technique called pseudo «{

evaluation may be employed to generate optimised code. This~technique forms E

gthe basis of our proposed code generator. L

The AML will be very similar to that used in hs One exception is that “ ;é

th data descriptions should be embedded in: the algorithm code as: was done

in ‘the. AML for Algol R. This 1s eaSier touproducenby'the cOmpiler in that

separate files need not be: maintained for code and data parts of the AML

A,he code generator may thenwwemploy a ‘stack <of«descriptor3'which
represent the data currently being described at any. point in the program,
as opposed to ‘a vector of descriptions of each separate entity in: the whole s

&

program.
Decision on the appropriate mapping.

The choice ofumapping is determined by“a numberfofﬁ:factorSJ-Thesef

include -




'Favailability of tools B s =0T : B P g ] % ol

4 idesire for portability.
£ 4 torage available 'nftarget machine F
whether it has av ‘stack : g 2
_speed of machine ¢ Bn L *
number” of registers 5
. .word:size . . = e S &
i "addre331ng nodes TR T s
A0 runtime facilities desired )
ease of- implementation - iy
efficiency .of desired implementation“ ¥ : T
level ‘of features 'in source language (e.g. lst class procs/types)

Writing of-combilet,‘code generator/interpreter. u;(j;::

‘:We feel that an effective implementation can be produced by using a

recur51ve descent one pass compiler outputting the AML code which is passed“

AL

to a pSeudo evsluation code generator. This second pass;may eithervproduceu

real machine code or a lower level AML which w1ll then be interpreted The

compiler may even produce this interpreted code directly but this -approach °.

is 1ess flexible. The design of this code should however be. a refinement of

B

the. higher level AML Whlch is o 1onger produced ‘by. the compiler.

: fgihe,ressons for~ choosing.the* technique'of pseudo eveluationx.and'to;

extend it were

-; ; At was’ successfully used. in a working compiler
b). it was readily understandable

c) it -satisfied the’ need of .a code generator to simulate the run time

environment of a.language

d) it fitted in:with. our, 1ntuitive expectations of an abstract machine for

SER Algol-like language

ff) it ~could be : extended and developed to deal w1th Lall: our high 1eve1

abstract machine 1anguage constructs, ‘not just expressions.

: ApﬁEd‘;i};ié;teﬁess of the- j_recﬁﬁique;

4

The technique has been applied particularly to threer members of the

~Algol family. Each language employed different, additional or more powerful
features than the previous. The characteristics of the. Algol family have

-.been outlinedpin Chapter One.

-

it seemed Aideal for its originator s professed purpose = expression code

AP A
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The technique has also been applied to a pu%elylfuﬁcticnal languag;;
SASL [Turn79],'1nsofar as -an- AML was des;gned for _iﬁtetpfetation. No
difficulty»'was found in doiﬁg this pbssitly because the-cheracteristics of
the - functional 1anguage were mainly those of expressions. That is, many ofjf
the, features of the Algols such as. assignment and control structures were

missing from the language.

We feel therefore that if a language embodies similef characteristics
to those'-outlined in the 1ntrodﬁction then the technique should be
applicable to its implementation. These characteristics cover a very eide
range and belong to many languages. The 1anguage may‘contaiu other data’
types,.operatlons ‘and data structures. This would not exclude the use of
the technique since the AML is high 1level. The operatlons and data
management only become relevant when the code is beingqgeherated. Even at
that . stage the pseudo evaluation-technique Aisewelis suited td_jeésing'the
problem Eecaese of its organisational and descristive'}ﬁfeﬁetgies. "The -
‘ teéhnique-meygElso.”be_applicable to other language featufes.'not covered

such as parallélism, however this has not ‘béen done.

Appltcetiqn'ofithe Technique.

The technfdue may be applied when a quick yet effectite -and easii?:i
portable-impleqeﬁtatioﬁ'is.required. The first task “is 'to see if 'the:
technique .1s-épﬁropriate for the language concerned.-The Iegguege must at

least be analysed and the decision based on whether it has similaftfeatutes;

to those which have been covered.

It -is our experience that a code generetor without-much optimisation :
wculd take as . much time to write as, the compiler. Should. a greater degree ¢
of optlmlsatlon be required then a more complex 1nternal description of the

data could be employed by the ’code generatqr.A This is ‘the most ~ time"

consumlng part of the 1mplementation.




s e

Jgeneration and effort spent 3in their de31gn‘ is": well

AThlS will hav

The internal descriptions are the most crucial part of - thef'code

recommended strongly that a very 51mple code generator be written first.

even thoughpthe intention.is. to have a highly optimised implementation.

'he-fadyantages*rthat -an- implementation can’wbe~ prov1ded

reasonably quickly, and familiarity w1th the ‘code generation technique will=n

make easier the writing of a second one.

v‘;.

It i also recommended that the compiler produce an AML au1tab1e for a

code ! generator. Even if the mapping will ‘be’ a simulation ‘on the proposed

machine, ;’

the * &

AMI» for interpretation should be very straightforward. This is a simple -

application of;Poole ’s hierarchy of abstract machines. '
Assessment: of the iechnique.

“THe ‘mainJLadvantage -that ' .the technique offers- is its inherent

simplicity'anddappeal to the intuition of -the\implementor. The abstract

o

machine language iss readily designed and produced from ‘the‘ source. It

requires very 1ittle 'in  the way of experience on -the part of the .

implementor.

Most " of the work has been involved ~in showing that- it ‘may be

applied to ‘la range of Algol—like 1anguages. The L measure of its

effectiveness has been the ‘ease: of implementing a 1anguage without recourse .

to Specialised knowledge or. training.

It- 1is difficult to quantify the results of-thisbtechnidue.‘Rohertson

[RobeSIal has shown that the code produced by a similar approach to code

generation from .a high level intermediate language is efficient' We haVe'

‘ not dOne:any comparative studiea because of time, the lack of available

implementations of similar gource’ languages and" because of RbbertsOn's

encouraging results. We . feel . that Our_ technique producea 'acceptable

results;'this observation being'based upon. experience with other high level;}

ewarded; It - is ..

later date it may be desired to use a, translation mapping on

nother machine., The code generator to produce:a lower level

v

&
%
!,1
b

"
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1aﬁg£§ges on ‘the machines upon which the work was undertaken.

It has been OurﬂintEntion to simplify language implementation not to
develop a technique which will guarantee highly optlmised code even though
thisl is possible. The results are subjective in that the technique has not
been applied hy others. In order to measure'its success or feilure‘we feel
that an Algol like language should be implemented using this technique and
others. The crlteria‘ for. such» a 'comparative study ‘of implementation

techniques “:might be time to write and get working correctly the

cOmoiler/code generator, its siie¢73nd -speed andi‘Its Workspace,‘ The ]

resulting -code from these implementations should also be compared from the-

pqiqtsgof viewi-of space and speeﬂ. An.addifiqnal,-consiﬂerétion should ‘be @?
how, portable the resulting implementation is.’ Such. a studyﬁhaé not been %
undertaken as ueffeel_thet not enough time was available both to develop B/

the technique an&fﬁeasure it effectively.

We make no . claim that it enables the 1nplementor to. handle language
. features which cannot he handled by other techniques.i.ltxﬁhasf been our
intention to show that it is effectiﬁeﬂ;for. those”'feetﬁteé which
~chetee€éii§e the Algol family. Agegn3fsubjecti§ely wétfeel that‘it"has done
S0 and;has:coped'with features-notiuéually essocieted withsthe;elgols such
ési fitet class_procedutés”and first:class*t§pes. We have no measuteias to
how.well‘it hés3doné =Ye) becaﬁee _of”theﬂ lach of availabillty of other
lanéuages with these features on the machine on which our languages wereh
‘implemented_(BDPll). In the case of procedures as ‘veluee, another two ﬁ
Algols, Algéiéé_ [Turn76] and IDEA " [Davi79] with that %feeture .were

’ayeilable‘ on-enother_ machine. One eliminated the nprphleﬁ;py a language

1

restriction which @e&pced the imﬁleﬁéntation probleme“ to those of a

straightforward Aléol. The other used less space at funﬁtime than h but at
the expense of more complex runtime information and garbqge‘cpllectbr.
In summary, the technique dis siuple};.straightﬁotwatd"and highly

ofégnisational. It can be wused to develop optimisédi-codeﬁéhoulﬂ;wthis be

iy-
-
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desired,-but at the expense of greater feffort in the code geﬂerator. A
quicker implementation cen-be preduced by eithet a simple code generator ot
an interpreter; The language'would ‘be portatle by writiﬁg a new code
generatot/iﬁterpreter for each machine. No comparative study - has been

undertaken as to the quantified effectiveness of ‘the. technique.

Direction for fufthet Work.

At pfesent the design of the AML depends on the implementor. Analysis
of source lenguages shows that although the concrete.syntax, deta'typee and
structures ~may differ, at the abstract~le§e1' ﬁany of. these differencee-;
either are eliminated or become less apparent. Thus it- wouid appear that
the AMLs for these 1anguages would be very similar. This may suggest that a
more formal study take place with a view to des1gn1ng a framework AML Whlch
could be- used as the basis  of AMLs for languages with 51m11at
characteristics. This is not quite a return to the UNCOL'pﬁilosophy or evee
.that of Janus. It Would be a very much more high level abstract machine.

Its main purpose would be a guide to the implementor.

We believe that languages ‘of the nature of nsl shdcld be exemined.

ngsl itself Wae a. vehicle t0'ihvestigate-language implementatioq; In this
| sense itvwas éxperimental, and perhaps too different frdﬁ'the more popular
Algois tb be readily acceptable. It should be redesigned with emphasis on

the following.

(1) Routine types should include the types of parameter and result. We
still. feel that only one parameter to a routine is'neceseary, given
the flexible data structures and syntactic sugaring .for. perameter i

lists implemented in nsl. The current types proc and £n would then ‘be

_ proc(‘hene ), proc( any ) and fn( énz —>‘anx').Where none isvthe type

-of the ehpty objeCt.

. (2) .The data structures vector and list could have types associated with'

5

them. For example, vector( int - ), llBt( char ). and list( gz )
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(3) This.still leéaves us with the problem of specifying the type of a
parameter 1ist. One possible solution is to have. another iist type
'say a fixed list where the types of each element and the: number - of

elements -are’ known. Then the type of

function ( ¢ char ; x 3 m, n int => int )-
is ;
£n( flist( char, any, int, int ) => int )

(4) At the moment structure field, types in- declarations must be manifest
to the compiler.r This makes for a simple implementatlon { see
" Structure Tab}es') but. there is no reason. why they should not be

dynamically specified.

Eefe
1et ty XE

structure tree ( element EY 5 see )

As far as the abstraet machine is congerned, ,sucﬁ:-source: language
changes ﬁay involve a tag perhaps becoming a reference to a block
containipg a description of the type. The storage structure of the
eﬁsttact ﬁeehine should also be re-eXaminedfﬁith respectvto whether it is
moreeefticient ( time and space wise ) to allocate small single size blocks
such- as feehs" pairs, or stay with the current scheme. This would involve:

an investigation of fragmentation.
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APPENDIX A~

" Algol R Intermediate Code.

In this appendix the intermediate code is described with reference to

the source and associated abstract machine intermediate code.

Descriptions.ul‘

TﬁeA"&eclgre" instruction in ‘the -intermediate code is.uséd:to inform
the c&de générator of the att?iﬁutes of Variablés, procedures and
strﬁctures of tﬂe source program.. It gives.a ﬂﬁmbep with which tb refer to
tﬁe entity described. Each such entity has é'type ah&bé name. The types
of Alééi R aré;éxtended by "prbcedure" and “structure" for the purpose of
éodé.géneration. The "declare™ instruction takes the form; -

"deqla;eﬁ ﬁ@m@er-name type
This is a dirggtiyg to the'code generator to build a descriptbr'for'the
entity. AThe ngmberg are alidcated.by-the compi;er-in qrder-and are used in’
all réferencg#F_to  the described entities. The I''declare' statement

corresponds to a declaration in . the source. These appear at the head of

blocks.. For example,

Sd;fce.. % Code

begin : block

< declarations > < declares 5..
epdﬁegl

< statements > < codé fér.statements >
freenm

end | ,eqdblock

The structure of the program is preserved by delimiting blbcks by the-

"block ... enddecl .;{l'endblock"'.cdhstruct. Immediately preceding. an
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"eﬁabiock" may ‘be a "free" instruction. 'This:Spgcifiéé'an upper and lower

limit of the descriptor numbers” allocated in. that block. This directs the

codé¢ﬂg§neragqt: to throw away. the cofréépgpding descriptors since the

P ¥

numbers will be reallocated for subsequent '"declares".. The "free"

instruction is also used at the en&.of procedure code to deallocate- the -

descﬁibtors of the formal parameters.

" is that given in the soqrte. It need not- be

The name in the "declare
used by the code generator. The type is in a.similar format to the source.

The typést@ai"bg grouped in four sections and we give ei@mples?of each.: -

.Primitivgs
:kS6urcé . ©© Code
.intéger a, b declare 1 a integer - »
) . qgciéée 2b intégep
ré;l'r declare 3 r real : )
. boolean bl deciargﬁﬁ bl: boolean
l;haf'; _ deciare 5 ¢ char:
struct s2 - declare 6 s2 sthCt
Arra;; %

An érr@y type is array" followed by its  Dbase tjﬁe‘ and

diﬁensionﬁliﬁy.'-An ar:hy creation dinstruction, iliffe.op may precede

thg declare if théi3ﬁouhds . are specified in the- declaration. Its

Fpépamefers are the base type ‘of the array, its dimensionality,?the'

v

-n‘_\’xlmber’ of specified dimensions ‘and the number of such arrays to be
. created.
Source

'?3"“'iqteger arréy('Eif

.9

S ey
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(Bl

(E2 )

ili'ff.eA.p'p\ integer 1 1 2
ldeciare'7 al array intéger 1

declare:é.bl érray‘integen ks,

Tﬁé bbﬁnd'ifst in the source specification may have astgrisks in it
representing: unknown bounds. If the bound list is éll}aSterisks'tﬁen
no "iliffeﬂop" is producgd since only space need “be reserved But no
afray is to be -bqilt. Folloﬁing‘ the type, dimensiéﬁélify and
sﬁecifiéd dimensions gf'the "iliffe.op" is the number of such arfays
to.be built. If theAbquﬁd listéﬁés:éome but,not all*boun&s sﬁécified
then tﬁeseuspecified bounds are’staéked fo% use by "iliffe.opf. For
example, |
Sodrce

char array(*) string

Code

declare 9 string array char 1

Source

struct array( 1l :: 5, %, * ) ptr

Code

sgéékconst 1: A
stackconst i 5‘
iliffe.op struct 3 1 1

declare 10 ptr array struct 3
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Prqcedﬁrés

A procedure type is repfesented_ by 'procedure" "fOIIOWEd -by the
pafameter types folloﬁed by "—>"_;ﬁd the result type. Procedures '

-_‘whiqh are’ not functions have "vpid" result tyﬁe. The-nproceduré
deééfiption is.terminated.by ah-indication of whéther'thé Bo&y followé "
or not. .Tﬁe procedure declaratioﬁ may be "forward" in whicﬁ case the
actual declaration appears later. The same declare'statemgnt, apart
from the terminators “forward" and ‘"present" appears at both
declaratiéns. With a present procedure, the bod& immediately folléwél'
This is bracketed with "segment ... enddecl ... endsegmeﬁtf. fhe

declares for the formal parameters lie before the "enddecl".

Source
integer procedure pl
( integer a ; struct point )

: source ‘code for body.

gggg

declare 20 pl ﬁrocedure integef stFuct
-> integer present |
segment |
- declare 21 a integer

declare 22 point struct

enddecl

: code for body

endsegment
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Example of forward procedure :
Source

procedure p2 ; forward
ﬁrocedure P2 ;

: Source code for p2

Code

'déclare 12 p2 procedure ~> void forward
'@éclare 12 p2 procedure —> void present
segment

enéaecl

: code for p2

endsegment

Structurés
A structure definition defines the template. The structure class name

and fileld names are used in the source and must have descriptors. built

for them.

Source..

structure jim

( struct result,'list H
integér array (*) size ;

boolean isempty ) .
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- declare 12 jim structure-
declare 13 result'étruct
dééiﬁre 14 list st?uét
declare 15 size array-infeger-l
deélare 16 isempty’boolean

endfield

Use of descriptor numbers.

Wh;£‘é¥§agiable, brocedure, field, or structure is required for somé
purpose; it is: referred to by itéxdeécribtbf number. A deécrfptdfﬁnumbéf
iq_éssigned pﬁva,fﬂec}are" statémenb. On lexical exit fromjg block or
segment;.those:deScriptor pumbers assigned in that Dblock or segment are

made available for use again, by means of the "free" statement. Thus the

descriptor number: is a convenient way of réferring'¥t§ aﬂy_}véfiable:-

procedure, fieid or structure which is in scope in'.thé source . text.
Wherever a descrlbed entlty is needed, the "stack" 1nstruct10n is used.

This has a single parameter which is the descrlptor number of the entity.

Source Code

X ‘stack < descriptor number for x >

Array or structure element values.

Source Code

"EL(E2 ). ( El ) ( E2 ) sub.op O

Constanyg.

. Coﬁstants are loaded . using the ‘'stackconst" dinstruction. This

specifies the type of thé constant and its value.




- Source ‘Code:

23 i ‘stackconst i =3 ) ;
3;01 stéékpoﬁst=r 3@01 j

stackconst b true - st

Sﬁaé&cqnstzb false L S 5 ’ s

iZAV’ bt

% stackconst ¢

a stackconst ¢ %a [ ¢

5

stackconst s 5 Zabe’

nil stackconst n.

A sihgle chéfacterjﬁsﬁpréceded.by a péféent,tgstrings are ppeceded_by their

1

length and a percent marks the start of the string.

.

'Exi§§§81bﬁ?h 8

B

_Let E with or without ‘a subscript standgfdﬁ%éféoufce.express%&n;*théﬁ:c

( E,j is. th “ééde geénerated, A g A : ?5f~P

' Unary.operators. .

Sou céjj?dode'

TMEC L (CE) Rét.op

" And similarly for the following :-




e o A . ) 5
Source-Opgratof‘ Code Operator
- ,. neg.op .. ok, 2

 abs 8 absldp"

tode code.op

-decode - decode.op - ° .

g upb ; upb.op
'Iﬁb ' % ..j. lwb.op’ . o = ;

flﬁaﬁf; . float.op n

i truncate ‘. . truncate.op
~If the integer with "ffﬁa;“;is "2" float the second.top:of stack otherwise.
float‘:l"the‘;t;op." T iy o s ? | ; - . ® o
Binary operators.
Source (f'iCode .
El + E2 ( El ) ( E2 ) plus.op - o g
And similarly- for the following t=




%

x . §ource5bpéfétor deg Operator . = . -
it o i o minus.op . '
div : .div.op

rem.op
'/:l: ) V divide.op
'ﬁ*ﬁ.ii>.“_l' : times .op
i R eq.op
" u ne.op
? :  | 3 1s.op
>‘ | fwgt.op
<=f«_ . % le.op
g?=.':-  ige.op

1s . iéQopa

"eqs;oﬁh is uééa7fqr\équality'of strings.

Exceptions :—

El iént ﬁZ' ( E1 ) ¢ E2 )'is.bp‘qo;.opm

El o ( E1 ) or.op ( E2°) endor

B2

IS

Note the latter two are hybrid control structures. - . : - g

Absfgnmenfi"4 - o ' ; -

The lef;;handﬁs;de of an assignment denotes the. 1-value ('addressl)¢df o E

a'varigb}é;‘Tﬁﬁé for“agbécriptihg on the left hand side of an assignment -

- the last subscript operation must specify the address of ‘the resultant Y

varﬁéble. This is done by'sﬁégifying a,di@féient parameter to "sub.op" from

that when thé'ﬁéluéiis required.

“Source

% =R




Sy 2

é_i:ai:::k.agldneé's < descinr. of x > x o T eint




Sfruéture creation.

. number - ) and each of'the‘field*valueé. E.g. using- the Structﬁfe declaration

"‘Stackp<,de§¢€nrwof proc EO >‘ . e
mark;stackb‘_ ¢ Tk

‘parlist

CEL)

‘ep " o s 3

P

apply.op

Souxce

EO 5

i,

‘éode

stack < desc. nr. for proc EO0 >
mark.stack

apply.op

This. is done/by'ppecifying the structure ( by means of its.descriptor

i

¢

shown previously:

" Source’

i L

jin( void, nil, limit; false )

L~ RO
e




% =<

Y

"—““ ‘ Code r-. »» . g _;».

" "..stack <.desc. nr. for structure jim 2>~ Lk e 1=

z

They

“‘stackconst n .- o ) B = alE

wr

P :‘ ) ef

stépk < desc. nr. for array limit > %f;‘sri‘} .

;uef J
3stgckcqn§§¢b false

% - 5 AN T

" -Source- - - d Uk N S

_if El then E2 else E3 . : ' MR T

Code | B &

. Source _ - : ety

© if El do E2 T




]

if (El ) e_ndboqi

,w,,',g'_io_-."(:l 'E2‘ ) endif
’Wil'ilg statement. ] A
}Soiifi':cé’ e .
. while El'do E2 :
Code iowg
while ( El ) endbool ) 3 i X
(B2 ;‘)'fehdwhile- _-."-l_
For statement. = )
Source | | s
for i := El' to E2 by E3 do S
Code’ ° 4
‘ "f".f_or ;
(EV) rL. :
to # o
o CE2),
~by. ¥

JCES)
declare 6 i integer

(.8 )

endfor B T P s o &




Case statement. i : - e

REA

: “Source g .
case i of '1,2,3 : §1 ;.0 : 82 }*default* e '-
; " %
of ;
-"er'ldsvgni‘tr"cﬁiuii 123 ' 4
;082 )y ‘& e P T Do, e h
- endswitch. 1 0
s R 'f;-endswitcﬁ 0
swit ch. op.-
endcase. Lo ; S p
An integer - giving " the number of constants precedes their ‘values. The . .=
cqhg{gégtsz may' be integersy .-,,-";c'ﬁa'xjact‘ers. or .'strings -and, have the same
-repi:‘gs'enj:'ation‘f-aa 'é:'tacke‘d constants. ( -see béf"c_bré bR




'“-,,langﬁgée:’féiﬁﬁav.vaguely fsﬁecified ‘stack ' and heap 'based"coﬁputer;' Thehz:;*

. APPENDIX B -~

h Intefﬁédiaté Code.

4

The intermediate code“ﬁey ﬁe.considerédﬁto.be a‘ﬁe&iuyﬁto-ldw level.-

A

instructidns;effectjtheir"fesdlts by means of\maﬁipclating degctiptors of

their data.

SQOE}A-‘ ﬁaits*execution of the program.

'

Siégkrﬁnumbef" - Push the descriptor referenced by the nﬁmbéf%]bnto-‘tﬁéﬁJ

evdihation'stack. Vi, i ' gt ;

ADD%]*L: Consider as address. The de5criptor on ‘top of the stéck\isgused‘

‘ﬁcsiy:tb.get the addfess of the entity described'mot the value. - .

ASS - Assign the value described on’ top of the stack to the entity , 4_f

described beneath it. Pop both descriptors. t ‘,‘:“

e

STACKL number C- Push the " descriptor of the&iiteral peﬁepred to by tﬁe;

number onto the evaluation 'stacki -

“

CLOSE. ~ Close ‘the stream described . on “top  of ‘the stack;' Remove its
descriﬁtqr.

READ e ReplaCe the stream deScripfor ongtdﬁlof the stack by a'descriptor

of a character input from that ‘Stream. The'cﬁaractetuhej have been output
by a WBITE or WRITEBiinstruction since for characters the effect is the

same.

£ o U8

'READI - Replace the- stream descriptor on top of the:stack: by a descriptor

of an integer built from characters input from the stream. e

s f

‘READBI =~ Replace . the streegf;descgiptof~-on top . of the stack by a i




descriptor of an"integer “input. from the stream and: output: by -a
corresponding WRITEB instructions :
READBS Replace the stream desdriptor on top of the stack by

descriptor of “a string 1nput from the stream,/*which Was 3output by

. m

corresponding WRITEB instruction.
'}POP_ - Pop the top'descriptor on the stack%

WRITE = Pop the top two or " three descriptors on the stack. : These

descrlbe an, entity output to the data stream descrlbed beneath it on thev

=stsck. On top is the Width field in which to rlght Justify the
;representation of ‘the entity. All entities whatever their type are- output

as a stream “of: one’ or more printable characters.

ZWRITEB = Pop‘the‘top descriptor on the stack Whichudescribes"an entity'(
char, integer or. string ) output to the data stream described beneath: it on
the stack. The entity is output in a - form readable only’ by READ, READBI or

. T

READBS instructions.-

BinaryiOperators.‘

The two. descriptors on top of the stack are replaced by a descriptor:

of the result of the operatlon; These operators are as follows.

ngum%,mmrmw,mmC@ywm,mm,ﬁm/@m,mmgmmp

biThe relops are "#“ i LA b LUN ">=" $“<" and f{;", Note¢§ﬁCC‘takes aﬁfange

end limit as<we11 as its normal operand.

o ;m.
. e e
Fom v

uoﬁgdic;OPeiaéatsi#:

The descriptor on top of. the stack is .replaced: by a descriptor of the

result of: the operation..

'
L

Ass;'consginscons,'upa, LWB, NOT, EOF, STL, PRED, ORD, SIOV, STOC, - VIOS;

m

g
%
%
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Thérel'are a number of ..control structures which consist-..of a

5,

combination of operators and stigdms*of"instru¢fiaﬁsgaﬁg gst which may be

3

other control structures.

OR - Perfori a boolean inclusive :‘or’.

OR stream

On top of the stack-is’a descriptor of a boolean, if the wvalue is true do

not%byaiuatéwthe'Stréam but carry on with' the -next instruction after the

'-stréam.n If the value is false, “pop the stack and evaluate thémstream

pushing its result on the: stack.

AND f‘rPexform a boolean '“and” operation.

4o F

: “AND;stréam'

SR

On .top df:phg gfack~is thg~dé§ériptor'of'a bddiean. If it is false, do not
evalu%ﬁe“théifollowing\s;reém but parry:bn-with the.gextfiﬁspﬁgctiop.afger:
i;,rii} it is true;ﬁpoﬁ the stack, e@alﬁate the_gtfeam énd“pusﬂ;és;the
rgg;ltti |

IF = .This control structure causes execution ;of “one or other of two

stréams.debendihg on the result of a booleaﬁysfream.

IF streamb streaml

ELSE stream?2

Streamb is ‘evaluated. The boolean -described on top of ‘the stack is tested

andjfifé descriptor: popped. If the™ result . is Mirue" thén streaml Isi:

executed and control commences after the code for stream2: If the result
is. "false", control commences with the code for stream2.

Tk

LOO? & This causes rqﬁéatedjexecutioﬁsdf coae,gntil_q'bpolean_BVéluaies

Pl




to: false. The booleat. controlling the exit from the loop-liestetween“two
streams” of..code.

LOOR’streaml'streamb stream?

. 3

Streaml'isﬁexecuted. Streamb is evaluated and the boolean result described

3

on t0p of the stack is tested and its descriptor popped. <If - the test is

"false ,eXecutipn\pommences_afterfstreamZ, otherwise stream2~is~eyaluated-

.and execution recommences at the start of streaml. This continues: until
streamb evaluates to "true"

Tagan B = °R
. )

" FOR' - This is" another loop-type clause. The condition;.for exit is an

arithmeticjcomparison.

FOR istream sstream lstream number cstream

The number is the descriptor’number of a control varlable for the loop.

EY

Istream i

descriptor. Sstream.;s evaluated and saved in a ‘hidden’ ( to the«userl)

location. Its descriptor is popped.: Lstream is evaluated and also saved ‘in
another hidden location. Its descriptor. is popped. The control variable is
companed withsthe result of lstream. If the value of sstream is'posltiye
then;‘ if the 1control"varfahle :lsl less than or equal - to the fegﬁit 40f
’1st%eau{egecution continues:after the forﬁstatenent. I.e: it is exited. : If
the'value.ot;BStrean is negatiﬁe}then, if the control variahle is greater
thanuor\edual tofthe resultwofrlstream, execution700ntinues with.cstream,

e

otherwisejexecution'continues after_the,FOR'statement. 'After evaluation of

cstream:the controlayarlahle is incremented with the: result of sstream..

Execution recommences with the ’comparison of ‘the control variable and the-

result of}lstream as'de8cribed.ahove.‘

e

CASE. = In the CASE statement the value of a stream determines whlch one

of several streams of code is executed.

valuated and assigned to" the. control variable popping its.




CASE. sstream |,

cstream ... cstream : bstream

cstream ... cstream : bstream

DEF bstream

The sstream- is ‘evaluated and compared for equality with the . results of

evaluating the cstreams in order of appearance. Should 1t match one thenf-

the : following first bstream is evaluated to glve the result of the whole,”

CASE. . Igjnoneimatch then the bstream following DEF’ie/evaluate¢3to-give‘

the CASE result.

TEST.: = This is exactly the same 'as CASE except the-cstreams'areASTACKp's

of a structure trademark and the sstream evaluates to a 'pointer to a
structure. The comparison is on that structure trademark and the liferal’s
valie.

" 2,

MAKEPR@C{nnnBer - Push on to the stack a descriptor of the protednre.

value created and referred to by tne.number.
ATVEC = Puts values ihto.a,yector.
ATVEC streamlb streaml ... streamN MAKE RD

The stream after the ATVEC is the lowar bound of the vector to be created.
An vector 15 created of the correct size and each element. starting with the
one at the lower'boundgié initialised with the result of the corresponding
streamn The RD may not be present. If RD:follows the elenents of the

inltlallsed ‘vector are only allowed to be read.

BUIﬁﬁVEC» - Creates a vector 1nitiallsed by repeated evaluation of a

section of code.

&
4




BUILDVEC streami streamu streami RD SR

z

‘ The first two streams‘after the BUILDVEC are the Tower and upper bounds of_g

a vector of the type specified which 1s created.c Each element of the_‘

vector is initialised by evaluating afresh the third ‘stredm. The RD may

not, be present Just as’ in ATVEC. 1f RD~fqllgws then the elements of‘themﬁi;

inltialised vector may only be read.

SEG - Thﬁs-statement describes a self-contained bodyrof code called a -

procedure or segment .
SEG number stream

The:nnmber is the table number for this body of code or procednre. ,SdG,is
always .reached by a procedure call and together with other house-keeping
operations; saves tlie place to which control must returh?iont;exit, igei
after5 enecution of the stream. ‘A segment may mnot ‘contain embedded

segments.
CALL = :éétinp local data space for a procedure and Call“it{
CALL number stream +.. stream

Each call of a procedure- evaluates the stream in that procedure’s

corresponding SEG statement. However new local data spaceemust be found

onto Which the local variables are mapped. The number}is that . of the

mﬁ'description of parameters ( offsets within ‘their type areas ) which this

frame will-contaln. If there are parameters, then for each one, the’ result
of evaluating the ‘stream 1s assigned to a parameter in the frame created.

Which _parameter depends on the number of parameters in the table whose

number follows ‘the CALL. The first value is assigned to the first 4
\paraneter and so on. The descriptor on the stack resulting from evaluation‘

of each parameter is popped. After all parameter streanm .have wbeen :

‘processed the procedure whose descriptor is on the stack 1s called. l.e{

w Nweoed o e
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exg@utidn starts: at the SEG statement for the procedure using the new data
frame created. After the execution of the procedure control recommences
after the CALL instruction. The procedure descriptor is popped. If it

returns a result then the result descriptor is pushed on to the stack.
SUBV — Subscript vector.

On top of the stack is a descriptor of an entity of type scalar, integer or

character. Beneath it is a descriptor of a vector. The top element is
converted to an integer if it is not already and used to subscript the
vector beneath - it. The two descriptors are replaced by a descriptor of the

element of the vector accessed by the subscript operation.
SUBS = Subscript structure.

on top of the stack is a descriptor of a field of a structure. Beneath it
is a descriptor. of a ptr. They are replaced by a descriptor of an entity
of the 'same type as the field which describes the field acceésed by the

subscription operation.
MAKESTR ~ Build a structure.
MAKESTR“numberﬁstreaml «oe streamN

The number is the descriptor number of thée structure. It is followed by one

stream per field in the structure. A descriptor of the ptr pointing to the

structure created and initialised by the streams is pushed onto the stack

Syntax of Intermediate Code.

code = segment { segment }
segment = "geg" number opt.stream
stream = element { element } ";"
opt.stream = { element } ";"

eletent = single ' 2
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| -snum number
| "orM™ stream
| "and" stream
| "if" stream opt. stream
"else" opt.stream
| "loop" opt.stream stream opt.stream

.| "for" stream stream stream number opt.stream

| ( "case" | "test" ) stream

stream { stream. } ":"

opt .stream

{ stream { stream } ":" opt.stream.}

"def" opt.stream
| "atvec" stream stream { stream } "make" [ "rd" ]
| "buildvec" ;tream stream stream [ "rd" ]

| "call" number { stream }

| "makestr" number stream { stream }

single = "addr" | “stop" | "close" | "ass" | “pop"

| "subv" | "subs" | '"read" | "readi" | "readbi"

| "reédbS" | "write" | ."writeb" | "succ" | "ord"

| "plus" | "minus"™ | "mult" | "idiv" | "rem"

| "cat™ | "repl" | "sstr" | "open" | "abs" | "code":

| ﬂdééoée" ["upb” | "lwb" | "not" | "get" | "eof"

| "sti™ | “stov" | "stoc" | "vtos" | "ctos" | “estr"
soum = "stack" J "sfébkl" | "mass" | "relop" | "makeproc"

Reiationship between Syntax and Code Generated.

In the following, the angle brackets '<" and ">" in the code generated

section represent '"code generated for" the syntactic entity between them.

syatax: sequence ''¥%

code; < sequence > "stop" ";"
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syntax: [ "constant" ] name "<-" clause

code: < clause > "stack" number "addr" "ass"

The numbers after the "stack" instructions are:the descriptor numbers

corresponding to the names .
syntax: "if" clause "then'" clause "else" clause

code: "if" < clause > ";" < clause > ";" "else" < clause > ";"

The corresponding single branched "if" statement is ;
syntax: "if" clause "do" clause
code: "if" < ciaﬁse > %" < clause > "' Melge" 3"
syntax: "while" clause hdo" clause
code: "loop" ";" < clause > ";; < clause > ";"
syntax: "repeat" clause "while" clause "do" clause
code: "loop" < clause > ";" < clause > ";" < clause > ";"
syntax: "repeat" clause '"while' clause

code: "loop" < clause > ";" < clause > ";" ;"

In the three above syntactic forms, if the "while" is replaced by an
"until" fhenlin the code generated a "not" is inserted after the "until™

clause and before the semicolon.

syntax: "for" name "<-" < clause > "to" < clause >

"by" < clause > "do" < clause >

code: "for" < clause > ";" < clause > ";" < clause > ";"

number < clause > '";"
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" When there is no "by" clause i.e. :
syntax: "for" name "<-" < clause > "to" < clause > "do" clause
“"pby" 1 - is assumed in the source.

syntax: ''case' clause "of" case_list "default" ":" clause

where
case_list = clause { "," clause } ":" clause ";"

[ case_list ]

code: "case'" clause ";"
< clause > ";" { < clause > ";" } ":" < clause > ";"

..

.
..

< clause > ";" { < clauge > ";" } ":" < clause > ";"

"def" < clause > ";"

syntax: "test' clause "is" is_list

"isnt" ( "use" name "in" | ":" ) clause

where

is_list = name_list ( "use" name "in" | ":" ) clause ";"
[ is_list ]

AThis gives the same structure of code as the "case" clause. However
"test" instead of "case™ is generated. The code generated for a structure
name in the name list is
stackl number ";"
where number ié‘the number of the'descriptor of the trddematk corresbdﬁding

to.the structure name.
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syntax: "write" clause -"," .clause [ ":" clause ]

{ "," clause [ ":" clause ] }

»ébde: < clause > < clause > < clauée } "write"

{ < clause > < clause > "write" } "pop"

If the first clause, that is, the one specifying the stream,\should be

" absent then code to stack the file for standard output is generated. If
any of the width clauses, that is those following the colon, shogld bé
’missing thén code to stack the appropriate width value is generated{ The

width value used is determined by the type-of the clause to be Qufput..
syntax:.hWriteb“ clause "," clause { '"," clause }

code: < clause > < clause > "writeb" { < clause > "writeb" } "pop"
syntax: ( "read" ‘ "feadi" MM clause ﬁ)"

code: < clause > ( "read" | "readi" )

If no clause appears then code  is generated to stack the variable
containing the -file descriptor for standard input. The corresponding

operation is generated for each of the read typés.
syntax: ( "readbi" | "readbs" ) "(" élause Al
code: < clause > ( "readbi" | "readbs".)k

syntax: "open" “(ﬁ-qlause """ clause ")"

code: < clause ; < élause'> "open"

syntax: "close" "(" clause ")"

code: < clause > "close"

syntax: lvalue ":=" clause




179
code: < lvalue > "addr" < clause > "ass"

syntax: "null"

code: does not generate any code

syntax: "at" clause "make" [ "comstant" ] "[" clause { v clause } "I"

code: Matvec" < clause > ";" < clause > ";" { < clause > ";" }

"mékg" [ “ed™ ]
The "rd" is gegera;ed only if "cons;ant" appears.
syntax: "vector" clause "::" clause [ '"comstant" ] "val" clause
code: "buildvec" < clause > ";" < clause > ";" < clause > o[ et ]
The "rd" is generated only if "constaﬁt" appears..
syn;éx: "procedure" "(" [ Proc_gpec_}iStA]"?—>" [ type 1 ™" clause

code: "makeproc' number

Code for the clause is genérateq and output at this point.

The code generated and output for the procedﬁre is

code: "seg" number < clause > ";"

The number in both cases is one with which to refer to information

about the procedure.

syntax: exp "or"

exp
code: < exp > "or" < exp > ;"
syntax: exp "and" exp

code: < exp > "and" < exp > ";"

syntax: exp relop exp
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éode: < exp > < exp > "relop" < relop >

The code generated- for-a relop i1s as follows.

Source Code
= wen
" et
> b
>= ="
<= | ng=l

syntax: [ addop 1 exp addop exp { addop exp }

code: exp [ < addoﬁ > 1 <exp > K< addépi> { < exp > < addop > }

The code generated for the optibﬁal addoplpreceding the first exp in

the syntax is as follows.

Source Code
tn no code generated
o nnegn

The code generated for the dyadic addops are :°

Source Code
u+nl : : "plus "
m._n "minus n

syntax: exé multop exp { multop exp }

code: < exp > < exp > < multop > < exp > < multop >
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- " The multop codes are : o S : F i
Source : Code SR
. . RREEN B *
--'n[ktr ; Mmule" . S
"div" : ¥ "idiv" ¢
"'-rém‘" "yom" :
- "cat“-f ' , Magt it
"repl" : "repl"
2 ore M ,n' ¢
syntax: :succ exp
code: € exp > Ystackl" nr "succ" -

The number after the stackl is the number of values .in the scalar type
' oSy
of the scalar expression.

syntax: monop exp.

code: < exp > < monopi>=

The monop codes are : * ; ‘




Source Code
"ébéﬁ "abg"
"code" "code"
"decode" "decode"
"upb" "upb"
"1wp" "1wb"
et "not"
Ngrl " et
"pred" | "pred"
"ord" nord
"stov'™ ﬂ;tov"
"stoc". "stoc"
Mytosg" Uytos"
Yetos™ "etos"
"eo%" "eof"

syntax: simple {

code: < simple >

ll( "
11 [II
ll{ll
i Ill

[ clause { "," clause } ] ™"

clause

clause

clause

clause

{ ll’ll Clause } "]Il
{ ",“ Clause } Il}ll
" Ill

Il," Clause "|I' }

{ "eall™ number [ < clause > ";" { < clause > ";" }]

| < clause > "subv" { < clause > "subv" }

| < clause > "subs" { < clause > "subs" }

182"
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|.< clause > < clause > "sstr"

| < clause > "estr" }

Depending on the form and type of simple one of the above is
generated. After the '"call" is the number of the description of the

parameter types. There is one special casé'éf the above viz,
syntax: simple "{" clause { "," clause } "}"

code: '"makestr" number < clause > ";" { < clause > ";" }

This is the case where the "simple" is a "name" ; i.e. the name of a

structure. The number is the trademark number of that structure.
The code for "simple" is as follows.

Source - Code

name "stack" number

"stackl" number
literal ' "stackl" number .
(" sequence ")" < sequence >

"begin" sequence "end" < sequence >

For the "stack" instruction the number is that of the descriptor for
that name. For the "stackl" ( stack literal ) the number is that of the

descriptor for the literal.

Where Ilvalue syntax matches the above syntax, the same. code is

generated.

Syntax of Data Informa;ion.
data_info = lex param desc literal desc "!"

tex & Mex" Rinber { info } "endlex" typé

flag number { flag }



ne I llvfl} & ,

flég; &
i€ - =:'tyé;'gj_ struct_desc | lex
type' f :siﬁ%lé;pre | proc_type | vector_type
fs;mﬁég;;ype - "int" | "char" | ,dﬁool"
h | 'f;."ptr" | “string" |- "f‘ifle". | "woid"

| "scalar" number

\b;oc;;yée = -'proc" .type

Nectof_ﬁype - "vector" simple_type

( simplé_type | proc_type: )

strucpﬁﬂggg; "structure" type ‘{ type } "endstructure"
parantﬂésé = number { number type { type } }

literal desc = .numbe:ﬁi{ literal }

Relatidﬁship between.Syn;ax and Data Déhgriptions‘Genetated.

e ST
syntax: Seéqueénce %%
-

. data: hleguhintegqr.< sequence > "endlex" "void"
;KkgﬁfﬁlT "fé ) number { "t" | "E" }

péram_ﬁesé 1it_desc "I"

The main program is treated as a routine value. The compiler outputs

details of thefparameter lists and literals used in the program, Only one
. copy of each different\bne is output. . The parameter lists are a space

saving device used by-fhe'code generator ( see CALL-ihstnﬁgtion )
syntax: "procedure" "(" [ proc_spec list ] > [ type 1 ™)' clause

data:,"lex"_;ntgéép { <'proc_§pec_}ist.> 1 € clause > "endlex" < type >

( " I "£1 ) number { .‘"t" { ﬁfu }

The integer ‘after the:'"lex" is the routine value’s identifying’ number.

The first'fxgg-iw the-cbpy creator'framg flag. Then follows a count and

* the .copy disblay'eﬁ;ry fiags.
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syntax: [ "constant" ] name { "," name } ":" type [ proc_spec list ]

data: < type > { < type > } [ < proc_spec_list > ]

Each variable or constant parameter type is output. This is also the

case for %n—line variables and constan;s or structure fields.
syntax: "structure" name "be" "{" structure_spec_list "}"
data: "structure" < structure_spec_list >‘"endstructure"
syntax: name { ﬁ," name } ":" type [ structure_spec_list ]
data: < type > { < type > } [ < structure_spec_list > ]
syntax: [ “constant" ] na@e W=" clause [ "coerce" type ]

data: < type >

If within the -same seqﬁence a name has already been specified in a
"forward" declaration then nothing is generated for that name otherwise

< type > is generated for each such name. The type is the same throughout
for this. It is the type after the "coerce" if present, the' type of the

clause if not.

syntax: [ "forward" ] name { "," name } "be" type

data: < type > { < type > }

syntax: "for" name "<=" clause "to" clause [ '"by" clause ]
data: type

ﬁame "

" n

syntax:

use
data: type

Code generated for types is as follows.
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Type. : Output

.integer "int"

_char "éhér"

boolean "bool"

ptr O Mptx™

strihg "string"

file "file"

scalar "scalar" integer
procedure "proc"'type_
veétor "vector" tyée type

void "goid"

The integer after the "scalar" is the number of the scalar type.
The type generated after the "proc'" is the result type of the procedure.
The types following the '"vector" is first the subscript type then the

element type.

Literals are output as follows.

Type Qutput

integer "int" integer_value

‘string "string" string_value

scalar "scalar" integer integer_ value
char Yehar" char_value

The literal value in the case of integer is the integer itself.

The 1ite;al value in the case of string is the length of the string,
followed by. the cﬁaracters of the string.

The iﬁteger iﬁ the scalar is the number of values in the scalar type.
The,literal value in the case of scalar is the number of the scalar literal

in the list of names describing the scalar type.




- '

No iiteraléﬂare output for "nil", "trué? or "false". . - .
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The:;iteral value in the case Qf'char is the character value itself.




APPENDIX C

Other nsl Abstract Machine Instructions.

.These are instructions of the TAM machine not covered- in chapter 7.
Data'Stru¢§ure-iibleﬁentatioh.‘

The TAM machine supports:a wide range of data,sttuctures. These are
all blocks and thus are treatéd in-a similar manner. 'Some;of,the data
structures, like "stack" and "code" blocks are purely for intérnal,working
bﬁt>9thers are provided;for the implementation of data sttuctures of a
polymorphie?'ﬁtogranming language. We will concentrate on the latter.

Thegefgfe“three, directly reflected in nsl. They are the list, the vector
ane;the struetere.
Liets,

A:liét is an oreered collection of heterogeneous objects characterised
by "head" and "tail" operations. One of the conventional ways to implement
them is.. by a "cons" [McCa62] pair. In our machine, this would mean that
each’member of the ‘list needs two cells in a block, the first being the
head, the second being the tail a list. Ih fact we have chosen a
different organisation ‘more in. keeping with: the abstractions over. all data
structures and slightly more efficlent for certain list operations. We
believe that list- manipulation in nsl will exploit the iterative constructs.

supportlng creation rather than the recursive addition of elements. to

lists.

A list value is a reference teia block of two -cells. . The first cell
vvalue/is a reference of type_"list block" to a hiock of wvalue-constant
cells. containihg values of any type. The second is a pbsitien. The
pdeittep.is thétiof the first element of the list ( which need not be the

first' in the block of values ). This and fdliowing cells in the 1ist block

4188~ -
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comﬁriée the 'me;ﬁb_g_r;s‘-'of the -list. A* "head" operation on this list will.
puéﬁ- that element on the evaluation stack ( having popped the list value ).

A tail op’era'"t'i"q_n: creates a new two cell list with the position value one.

gredter but the same list block value. An empty list does not have a block

reference as its actual value .but a nil value. - List head. and tail
operat'ion_s___"a_t_“é not expensive since mno copying of the list members 1s done,

4 -

and 'i:hey are Iesé"was#eful i-of space tlvlan;xif‘ "eons" pairs were used. List
e-it_aments may- also be a‘c;-‘ce's'sed of ' coux"s;e by usingé.‘;‘aé:gitlic;n_a,;]:' 'ac‘céslsing:
Acgg,ss‘-;pg- an arbitrary mé'mber of a list by 'positibn would be more
re;i:;ig;ti’ve if "éoné" pairs - were used. Note that ‘,:tp.e“féopstancy flags on

the elemc_a’pt': cé-l'ls_.,ensure list cells are not updat.e_.ab;fe', __»,l_:Tl_'xhi'sris, becau',s_é

nslAi'_inte;'lf;i"e_é;:éf3"l.ists as ‘being collections of values and not l&caf:ion_s.

Figure 10 shows: ‘a "tail" operation on a list.

T
e
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VectorsQ

A vector is an ordered collection of heterogeneous objects
characterised by selection of individual cells by an integer selector
limited by defined bﬁunds. A vector value is either nil or is a block
reference. The first céll in this block is the lower bound, the second ;s,
the upper bound; Bound vaiues are of type "integer".  The remaining cells -

are the vector ' elements each corresponding to a selector value.

Structuresf

A structure value is a reference to a block of cells each of which is
selected by a unique value of a field type directly associated with the
structure type. Every created structufe is based on a temﬁlate held in the
Structure Tabie. A template block defines the . .types ‘and flag settings of
the component cells. A structure valﬁe is a reference to a copy of such a
template block, but with the actual values filled in. The field cell tags
determine how the fields may or may not change their value and type, aﬁd
whether the initialising anid subsequently assigned values supplied for ;he
fields are the correct type. Each structure template reﬁresents a unique
structure type. -Structures modelled on a part;cular:template may only have -
thei? fieldsﬁseleCted by a value of a unidue selector field ‘type. Values
of vthis seiecfﬁr type may not select cells of any othef type of data
structure. In particular they may not be used to select a.field oflanother

structure value.

Data Structure Space Allocation.

Data structure space allocation and initialisation is performed in a
single instruction. However we separate these processes only for the

purposes of discussion.

To allocate a data structure there must be provided a type, and

possibly a lower and an upper bound. The type is that of the desired data




structure. This is of .course a value of type "type". The lower and upper

bounds . are values of, type 1nteger .‘ Spec1fication of bounds is not

‘necessary iﬁ ell data structure creations. Where they aregprpviged, in the

most general of the data structure creating instructiées; thEy must conform

to what one gggldjékpect. Vectors- need both, to determine the size' of

vector to;creete'and the range of allowable selecting values.; Lists and

structures must have a lower bound of one. .. The upper bound'isfused.to

determirie the number of elements in the list. For structures the“bounds.

are not actually necessaryzelthough, if . specified, .the lower‘beund must be

v

one and the upper bound must match -the size of'theAcorresponding”témplate.'

ThlS is really a.check that all the fields will be 1n1tialised.u‘Their

number is determined by the corresponding template.

Vector’end list creation simply involves the creation'of approvriEte1§

‘@

sized ~blocks; Created structures are copies of" the template thus have

their .flags  and tags filled‘ in where specified. In wall creation:

instructions, when'a zero sized block would result, the actual value part

is made a nil block treference giving a nil data structure es.the result of

the operation.

Initialisation.

There: are severel initialisatioe‘ schemes‘ common to all data
structures; Tﬁese characterise the data structure creating operatioﬁs aed
each is performed by a single instruction. Operands for creation. and
1nit1alisation either re31de on the evaluation stack or in the code. In
some ' cases they may be implicit. We will pow.describe the"schemes and

their instructions;

Enumeration.

The "datarstructure-enumerated" ( "DSE" ) instruction takes as  an

opéfahq in ‘the code, the number of values on the stack to be used.in

initialisihg,the date;structure;' On the steck, beneath these initialising

T192
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values lie the- lower boundyahove the data structure type.- The upper bound
for vectors '1s determined from theléiZe andgihe lower bound.

. A data structuire of the specified type is created. Its cells are
initialigedu in. turn from ﬁthe_.loweSt inltiélising’ value, on: the “stack.

Should the number of initialising values “be- zero, ‘then a nil data structure

velue~w1ll result. The type of | each initialising value is checked against'

the'cot?esponding'type restrlctlonS»( if any ) of the data structure. All

values”down to and including the type. are popped and the data structure

value is pushed. The DSE instruction would be generated. for each of the
constructs in the. next example.

list [ k, l, m ]

( if x then dst&{-l_} else vector ) at 1 [ "label", 5, w*4 ]

wbinefy["+), exp( 4 ) ]

Literal.

The --"_“ds,ta.'—stmcture-literaf. Y. TDSLY ) instructipn is provided for

data structureé whereﬁthe data structure ‘type and its initialising values.

are known at compile time. These- are therefore generated in "code" blocks
as literals by the compller. This eaves pushing the literal values on the
stack and then ecreatrng a ldata -structure. The initialising values are

extracted directly from the codé}' The operand in the code’ is a -count of

the literals following the instruction in the code. Immediately preceding

these is the data structure type as a type literal. The loweribound'is
implicitly{oneuand'the upper bound is the’ number:of literals. The‘data
structure ié created jangl inltialised with the usual,,checking being
.pegformeu. A DSL instruction would be generated for the ’nsﬁ. consttuct

"abe", - that is, a list of literal characters.
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'Replication.
The ”data-structure—replicateﬁ ( "DSR" ) instruction uses a single

value which is replicated over the whole data structure. That'is, each

s

cell is initialised w1th that value. It takes ' no dberands-in the code but

on the‘stack lie the initialising value,abcvéran'upﬁer-abound above a

lower bound, above-the data structure type. The data structure is created»

with each cell initialised with the specified value. The instruction would

be generated for the nsl comstructs in the: next examplé.

list size a + b value init()

vector at -m upto +m value 0 -

binary size 2 value "+’

Position Controlled.

A newly created data structure is completely.initialised.cn creation
( since it is not sensible to allow. use ofgthejdata structure until this
has héen done ). This is a philosophy recognised in some, of the later
1anguages [Morr79] which impose it .on data structures and variables. ‘The

simple default 1nitialisation of the creating instructions given\above can

be subsequently updated to re~initialise" a complete data structure With--

" an individually calculated value for'each element.' ‘This refinitialiaation
is available to the nsl programmer in the form of a powerful nsl‘cénatruct

as' shown here.

list size 40 with pos eval pos * pos-

This example;builds.the 40:e1eméntwlisti:

Ly hy 9y 36, 25,86, o

This construct is supported by avloop determined by .a set of three

instruCtibns which take an alréady’existing«daéafstructure_and control the

assigning of values to its elements in order of their position. An nsl

data structure will have been created with' the ‘DSR. instruction and a dummyi*

LAY, O 4
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initialising value. A position value determines’the:current-cell to be

“re—initialised" The position value starts at one and steps up by one to -

the’ number of elements in the data structure. It is held in a- value-‘

constant cell of the local frame.‘.Throughout the operation'of thése three

instructions the data structure value will be on the- stack..

" "The "daté-structure-initialise" (."'DSI" ) instruction has the position
in the local - frame of.this controiling cell)as an operand in' the code.
The function-of‘the_instruction is to initialise the control'celtho one,

that is, the position of the first element in the data\structure.

The ﬁdata—structure4jump" ( "psJ" ) instruCtiOnmhés as. code operands a

label - ( a’ position in the current code block ) and the- position of the

“control cell in 'the Iocal - frame. On top of the stack is the partly-'

reinitialised data structure value. The position value inﬁthe control cell

A
Jhy

is .compared .with thefnumber of eIements in the data StruCturefh If it is

greater- than it then ‘a jump takes place to ‘the . specified label. The

completely- reinitialised data structure is left on the stack from where it

“

make tak ,part in any valid. operation such as assignment.

FolloWingcthis-inStruction will be code to generate, for the current
cell ; in the data structure, a new 1nitiallsing ‘vilue on the stack. Thén
comes ;. the'"data-structure*store ('“DSS" ).1nstruction>ﬁhich has -a label
and a control cell p051tion as code operands. The‘vaihetabove the data
structure on the'stack is popped to “the cell in the data structure whose
position is given by the value in the control cell.- ~ThiS‘ value is
incremented by one.- A backward jump is then taken to. the label at’ which

Will be a data—structure Jump instruction. The example shows where code is

generated for a position~controlled initialisation.

5
3 \s
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generate DSR replicating O !

list size s !

with 1 .. ! generate DSI initialising i !

eval &1 @ DETa, 121 ¢

£() 7 ! code for call leaving result on stack !
! DSS i, Ll !
] L2 ¢}

Loading and Storing of values.

Values residing in blocks may be transferred to the évaluaﬁionlstagk
and. vice veré;. 'A cell in a particular block‘ié accessed by a selection or
position value, and 'a value whose actual value part is a block reference.
There are load and storé‘instructions which do this, calculating these
values from implicit values, code operands and values on ‘the stacks. A
load is the moving_of,é value'from a cell in a block onto the evaluation
stack. A store is thétreverse'operation. The load and store instructions
fall into two groups. One group assumes implicitly that the ioads and
stoéés involve frames of the curren; environment: The other makes no such
aséumption but relies on block reference values on. the stack, or im other’
blodksf "Because of the orthogonality of the étofagéjstfucture,,both groups
utilise the same internal "micro—-operations". Frames. are. really data

structures supporting routines.

Frame Cell accessing.

On top of the conﬁrol stack lies the current.envi#bnmenf. Each of the
cells in this environment block in turn égntain réferencés to the frames of
cails of routine‘ values statically surrounding the current one in the
source. These contain the accessible:variébles‘and constants. The first
cell in the environment block contains a referencé o Wi Bliesne L5l
daté frame. Tﬁe'“idéd-frame" ( "LDF" ) instruction has two code operands.
One is the number of frames down the current environment from the top to
find the required frame. The other is the position-wifhin that framé of

the cell. If the cell is in the local frame of the current routine then

the number of frames down will be zero and so on. To»obtain the particular w0
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frane the_:machinenrconverts\'this value to a position. in the environment
block. ‘The contents oﬁ,the-cell,at the specified-cellldduthe particular
block'are pushed on the evaluation stack. Note that the uniformity of the
machlhe means - that frame cell accessing is the same as data structure
positional accessing ( see later ) apart from the conversion of a routine- -
1evel"1differenceA to a .block reference. In fact, all cell accessing “is
ultimateiy coerced. into positional'xacceseing for proceeatngi hyt{dnternal';f

"micro—operations".

’fhe.”etorehframe"t(‘“STF" ) insttruction doesathe oppositehof this. Igg-w
haa}thé same code operands and the narticular cell is located in the same
wayj‘“%he value<on top~of - the evaluation stack~i§'nopped into this cell. A.
check is made that the final cell is not value constant. ‘if it is type
constant then a check is made that the type: of the value being stored. is
the eamejas that already in the cell.'

Initialising Frame Cells.

A ehecial‘case ofdstoring is «the initialising. of local frame -cells.
This corresponds to the declaration of nsl variables and constants. It
combines the storing ,oﬁf;a value with a setting of the type and value
constancy.flags. The~"etorefframeiinitialise" ( "STFI" ) instruction has
two}code operands and a possible-third. One is the poSition of the cell.
The'current7frame is implicitly tahen to he'the one containing the cell.
The second operand is the constancy flags in an encoded- form.g“The flags in
the cell are set according ‘to - this operand. Af the type-constant flag was
setwthen“a type value is expected specifying how: the cell. is to!belmade
type;constant. Thls ‘is either a third operand in the code ( statically
determined by the ‘compiler ) or is already -on the - stack ( dynamically '

evaluated;)zunderneath the 1n1t1a1181ng~value.- The.machine exploits its

tags to determine whether there is a third operand. . T€ so,-thergzwill'be a

value of - typec "type in tHe .cell following _the .other"tﬁo”foperande;nﬁi
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" otherwise there will be an instruction. Thus the type, if needed, may be
specified statically or dynamically. Whichever it is, the machine checks

that the value supplied is of type "type".

General Block Loads/Stores.

Wheh éddfeésing a cell within a block two values are needed, a block
reference and a means of specifying ﬁhe cell within the bloék. This is
either selectioﬁ or pbsitional accesé. In fact selectors ére converted
into;p;sitions:for use by internal "micro—operatibns",du?igg the éctual_
acéeés,  Checkiqg is performed, ensuring that a selecting value is valid
for ‘the block 'reference value. For examplé, integers select cells in
véctofs, chegkingnagainst the bounds, and field values select cells of

matching structures.

It often happens that we want to string‘togethér several successive
selections or positional accesses terminating in a single cell access. For
exampie, a vector element may be a structure value, one of whOSe fields is
a vector, one of whose elements we wish to access. _The process of
accessing the last celi is one of Trepeatedly wusing a block
reference,selectiqn/poéition value pair to extract from a cell a new block
reference value. Tﬁis value ié then used és the next block reference
together with the next selector/position value. Initially, a block
reference and a 'series of seleétor/pdsition values are mnecessary ;
interﬁedia;e bloék réference.values are extracted from cells determined by
all but the lést selection/position operation performed. The last block

reference value and selection/position value address the cell required.

The "loaﬁ*stack" ( "LDS" ) dinstruction performs precisely this
function. It takes as a code operand the number of selector/position
values on the evaluation stack. Beneath theég will be the initial block
reference. These are popped and the value extracted~from the last cell is

pushed.

|
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The 'store-stack” ( "STS" ) imstruction is the corresponding store.

It differs in_phat above the selector/position values on the stack is the
value:to be stored. The block acceséing takes place as before except that
the vélue on top of the stack is stored in the last céll, rather than its
value‘being extracted. As.with other stores, a check is made that the cell
being accessed is not value-constant and that the value béihg stored

matches the type comstancy of the cell.

Exploiting Lists.

The load and store instructibns are adequéte for the implementation of
a polymorphic programming language like nsl. However, by taking ﬁultiple
values residing in 1lists, instead of single values, shorter, faster
instrugtiqné may be psed‘ in certain cases. The .foilowing instruction
descriptions may be divided into the four families, general list stx;pping,
mulfiple initialisgtion, multiple stores and parameter stripping. These

involve operations on éeveral values possibly held as a list.

General List Stripping.

It is necessary to be able to take a list value on the stack and
replace ‘it with its component values, ﬁhese being pushed in order of
appearance in the list. The instruction "strip" ( "STR! ) does this, and
takeé as a code operand the expected size of the list. The actual size of

the list must match this.

Multiple Imitialisation.

This occurs when a several initialisations are perfqrmed.together. "On
the stack willlbé é number of §alues. These may have beeﬁ pﬁshed there by
a number of successive expression evaluations or by the use of the "strip"
instruction on a single list value. These values are used: to initialise
adjacent local»éélls by the "multiple initialise" instruction ( ﬁnemouic

"™MI'" ). It takes a count and a starting~poéition as code operands.  The




number of stacked \ia-lu'es given by the count are stored in turn imn: the cells-

of the local frame starting at the specified position. The l‘oif:rest value is

storéd firstand so on.

Celfls‘ ini_‘tialivsed” by this ins_\t;‘ruc'ti’on have their flags set inlhat'ches“--
by ,}rz.epeate_d nse of th"a;a ""siet':-f\lags" ( "SEFL" ) .'.',.instructi'on.'-l” It takes at
least‘ thteer code operands, a count of the number of cel-ls, a starting
, po'sition and the encoded flags for each cell. If the type=-constancy flag
is set the type appears on top of the. stack or as a fourth operand' as
prev1ously explained in the store-frame-initlalise 1nstruction. The
cells ‘determined by the co‘unt and starting position have ‘their flags set
according ° ‘to,. those "specified - by the instruction. If. the type-—constancy
flag s set, the type tags in ‘the cells are checked- again/e}'tii the- specified
"type\ ‘value. The f:oll‘owin_g example shows where these instructions are

generate;i for a piece of nsl code.:.

let a, b, c const int.:
‘s code to push list 1 !
! STR !

PMI L _ i

| ‘SEFL 3, pos, f1, < type :int »> !

Multiple Stores.

In _the;‘ same way that se\ger,al;"initialisations of . local cells may be
performed. hy'a single instruction, several .as_signments-uiay;?hev»:pe-rf:ormed at
once. Each individual assignment. needs an address and a ‘value. The.
"multiple—-store" ( "MS" ) i:n-struction has as a,'\code_;-:'.ippe;rand an integer
count. On’ the-stack are a number of values abovein.‘thel‘f—‘Same' number of
addresses. The nﬁmber of eachti‘s‘ the. sam_;e:".'as- the count-. op_erand. A cell
address refl‘e;ct-s:'th'e way a cell is accesised. .'.fhe addréss*,, p‘n'"the stack is a
pair, a base value which is.a block reference, bene’ath'""a"”selecﬂtor‘ value.
Note there is no concept of pointing directly into the middle of ‘an block.
Thesei ,addresses are generated by 1nstructions similar to the "‘load—frame

and "load—stack“ instructions except they push the addresses of the cells




not. their contents. - The values on ‘the sfaek_ are stored in._ the cells

specified"by“tﬁe corresponding address pairs, the lowest ﬁalﬁe"going into

the cell addressed by -the lowest pair on the stack. ThewMS instruction

would be generated for the nsl code in the follow1ng example.

a, b, ¢ t=¢, a, b

Paraﬁeter Stfipping. e

.

»EVery routine takes exactly, one parameter. This resides in ‘the first

cell‘ofba_local frame ﬁiwhén seVerai'Values are to be pa§sed.in,. the user

may exbiiditlY'pass'iﬁ‘a datelétfuéfufe. Once inside the routine, using
the ~generalffload instruction 'described above, he‘-mey extract its
components, explicitly initialising 1ocally declared cells as in the next

example.

1et'p':=1procedure ( v : const-vector )
begin )
let a, bint :=v{ 1 }, v{ 2 }

“end

?(.vector[ m, n ] )

This however “may be done 1mpliéit1y by ‘high level stripping gﬁd.

initialisation insﬁrpction33

Oﬁ a eall instruction, the machlne determlnes whethef more than one
parameter was supplled by inspectlng the operand. It»automatlcally builds
a list if there is more ' than .one, Lthia being passed as _the actual
parameter. Iﬁsdde a routine ;here can be planted an Tinetrdé&idnp which
automaticallf breaks this 1list wup. This 5de ‘the" "stripéﬁill"- ( "SF" )
instruction which takes ias a code’operand a‘eount of the expected length of
the actual paremeter which must be a list. The parameter is checked for
being a list of the required length.and isletripped apart, each element
value being stored in tdrn, into the cells following the first in the

frame. These cells are in fact being initialised and still must have theirA




value ‘and type constancy subsequently specified by repeated use of the SEFL

.

instf@ction. The follbwinglexam§1e~sﬁows these instructions generated for

a pié@é_éffné} code.

)

.'ét:p := procedure ( a,.b int )

begin . = - g
! The instructions are generated at entry !
1'SF 2 ! N g
! SEFL 2, 2, < type : int > !
end : . ) .
ptm, ).
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