
ABSTRACT MACHINE DESIGN FOR INCREASINGLY MORE
POWERFUL ALGOL-LANGUAGES

Hamish Iain Elston Gunn

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1985

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13461

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13461

ProQuest Number: 10167227

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167227

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

ABSTRACT MACHINE DESIGN FOR INCREASINGLY MORE POWERFUL
ALGOL-LIKE LANGUAGES

by
Hamlsh Iain Elston Gunn

A thesis submitted for the degree of Doctor of Philosophy

Department of Computational Science
University of St. Andrews

St. Andrews
September 1983

Declarations

I declare that this thesis has been composed by myself and that the work
that it describes has been done by myself. This work has not been

submitted in any previous application for a higher degree. The research
has been performed since my admission as a research student under Ordinance
General Nr. 12 on 1st October 1976 for the degree of Doctor of Philosophy.

Hamish Iain Elston Gunn

I hereby declare that the conditions of the Ordinance and Regulations for
the degree of Doctor of Philosophy (Ph.D.) at the University of St. Andrews
have been fulfilled by the candidate, Hamish Iain Elston Gunn.

Dr. R. Morrison

Abstract

This thesis presents the work and results of an investigation into

language implementation. Some work on language design has also been
undertaken. Three languages have been implemented which may be described

as members of the Algol family with features and constructs typical of that

family. These include block structure, nested routines, variables, and
dynamic allocation of data structures such as vectors and user-defined
structures.

The underlying technique behind these implementations has been that of
abstract machine modelling. For each language an abstract intermediate

code has been designed. Unlike other such codes we have raised the level
of abstraction so that the code lies closer to the language than that of
the real machine on which the language may be implemented. Each successive

language is more powerful than the previous by the addition of constructs
which were felt to be useful. These were routines as assignable values,
dynamically initialised constant locations, types as assignable values and
lists.

The three languages were,

Algol R

a "typical" Algol based on Algol W

h an Algol with routines as assignable values, enumerated types,
restriction of pointers to sets of user-defined structures, and
constant locations.

nsl a polymorphic Algol with types as assignable values, routines as
assignable values, lists, and type- and value-constant locations.

The intermediate code for Algol R was based on an existing abstract
machine. The code level was raised and designed so that it should be used

as the input to a code generator. Such a code generator was written
improving a technique called simulated evaluation. The language h was
designed and a recursive descent compiler written for it which produced an
intermediate code similar in level to the previous one. Again a simulated
evaluation code generator was written, this time generating code for an
interpreted abstract machine which implemented routines as assignable and

storable values. Finally the language nsl was designed. The compiler for
it produced code for an orthogonal, very high level tagged architecture

abstract machine which was implemented by interpretation. This machine
implemented polymorphism, assignable routine values and type- and value-
constancy. Descriptions of the intermediate codes/abstract machines are
given in appendices.

Contents

Chapter 1 : Abstract Machines. and Programming Languages. 1

Chapter 2 ; Implementation of a typical Algol. 26

Chapter 3 ; Intermediate Code and Code Generator for Algol R. 42

Chapter ,4 : The .Programming Language h i 63

Chapter 5 : The Implementation of h 85

Chapter’6 : The ,Polymorphic Programming Language nsl. . 101

Chapter 7 : The Tagged Architecture Machine Implementation of nsl.
.....".,....... ,... t..,.. 117

Chapter 8 ; Summary, Conclusions and Further Work.140

Appendix A •; Algol R Intéfmediate Code *......... v.... - 154

Appendix B : h Intermediate Code....... k 168

Appendix-G ; Other nsl Abstract Machine Instructions. ..k........... 188

Referehces # i . . k k=... 203

CHAPTER 1

Abstract Machines and Prograinmliig Languages!

This thesis presents the results of an investigation into the
implementation and design of general purpose programming"languages (we use
the ahbreviatipn GPPL). The object of the work was twofold. Firstly it
was to investigate a way of improving the implementation + of these

languages. This was to be achieved by using the technique of abstract
machine modelling. [Newe72] Secondly, the aim was to add to the power of

these languages, still keeping them straightforward. Thus the
implementation, of additional features was investigated. In this
introduction we first consider what is meant by an "abstract machine" and
how they have been used in relation to programming language implementation.
We then define the kind of language to which we restrict ourselves.

Finally we attempt to catégorise additions to such a language in order to
make it more powerful. Subsequent chapters present the work and results in
chronological order. ̂ ■

Abstract Machinés•

A, high level language should be designed to formulate algorithms
within a specific problem area. Given such an algorithm expressed in the

language, it is executed oh a computer in order to give

solution, ideally this computer should obey directly the commands of the

+ Before any program may be submitted for execution, it must be checked
for syntactic and type correctness. These are problems-which were foremost
in computer science research but which were not machine related and now
should occupy less of our time since earlier work has gone a Tong -Way to
solving them. Thus we do not propose to dwell upon this aspect of language
implemehtatiori. ,*

language. For example, a program written in Algol 60 [Naur63] should be

executed by an ideal computer whose machine language is Algol 60, We
require the existence of a real machine which is the ideal machine. An
attempt at such a situation is the SYMBOL [Smit71] system. A research goal

was to design a computing system with substantially improved performance
over conventional systems, along with a reduction in the cost of computing,:

by directly implementing a high level language and virtual storage, time­
sharing operating system in hardware. Only one system was constructed.
The SYMBOL programming language (SPL) is similar in nature to FORTRAN but

typeless. The SYMBOL system translates (by hardware) SPL into a one to

one reverse polish representation. The SYMBOL system is not truly a case
of making the ideal machine the real machine since SPL is translated into a
directly executable (high level) code.

This is a difficult problem to solve, yet the language implementor
must give the programmer the impression that such ideal machines exist.
With oiir present-day machines a program must ultimately be executed by a
real machine in an equivalent form in that real machine's code. The
problem before the language implementor is to perform the mapping between

an ideal machine and a real machine, that is, the production of real
machine programs from ideal machine programs. The closer the real machine
is to the ideal machine the easier will be the implementation. In fact

this principle should be a guiding light for those architects who design
our real machines. The Burroughs B6500 [Cree69] was designed jointly by a
hardware and software team, but unfortunately this trend seems not to have

continued. A new machine should be designed to make the mapping above easy
and efficient for all ideal machines supported by it. One way of easing

this mapping as we have seen is to have a machine which is close to the
ideal machine. In fact, this machine need not exist except on paper or as

a program. Such a machine is called an abstract machine. The use of
abstract machines is not only restricted to programming language

! ' - . ' ̂ , ' ' ' ' "' ' ' . / < \;T) .̂ 1

implementation but may be extended to other problems,

We may depict the situation thus,

ideal -> abstract -> real

meaning either

a) A program in the ideal (high level) language is converted to a
program for some abstract machine which in turn is converted into a
program on a real machine
or ' T : '

b) The ideal machine is realised In terms of an abstract machine which is
realised in terms of a real one.

The technique of abAtfact machine modelling for the implementation of

software stems from the idea that the problem can be regarded as one of

hardware design. We try to ..specify a machine which is ideally suited to
the task being implemented. Neweÿ: [Newe72] puts it thus -

■ 1

"Abstract.'machine modelling : is based dn the concept that the
fundamental operations and data types required to solve . af ■ : • *

particular problem define a special purpose computer which is
ideally suited ; t that problem. In order to obtain a running
version the abstract model: is realised on an existih^ computer by]

. . , ' . - " '
implementing its basic operations and data types^" /;

, . Il'l
Eodle ; [Pool7 4] g ay s.

' ' "
"The architecture of the abstract machine forms an environment in ‘I

which the modes arid operations interact to model the language.
""V ' ' : _ _ j

Unlike a real machine whose architecture is governed by economic
considerations and technical limitations,M the abstract .machine has

a structure which facilitates the operations requited by a given i
programming language. The designer of the abstract machine must
plan the architecture sd that it can be efficiently implemented on I

a real machine."

In particular we wish to examine the use of abstract machines in the
implementation of high level prograràning languages. Like any other

p r oblem, ; when " s ol v ing it in a single step proves difficult, a common
technique is to break it dowh- into a -serieâ.of steps.

"The designer must balance the convenience and utility of these
operations against the increased difficulty of implementing an
abstract machine with a rich and varied instruction set." [Newe72]

With our single mapping above this involves breaking it into a sequence of

mappings from the ideal machine to the real machine.

ideal -> abstract 1 -> ... -> abstract n -> real

Poole [Newe72] has called this a hierarchy of abstract machines.

"instead of realising the initial abstract machine A1 directly on a
reaT computer, design a second abstract machine A2. The operations
of A1 are then defined in terms of A2 operations. Such a
définition is independent of the realisation of A2 itself arid hence
A1 may be realised by 'realising ,A2. The hierarchy can be carried

to any depth by defining A2 in terms of A3 etc. The basé machine
of the hierarchy Ak is then realised on a real computer."

An abstract machine then is like an ideal machine in that it is not
realised in,hardware, but is at a. level closer to the real one. The levels
of abstraction should naturally be chosen so that each mapping is
straightforward. In terms of ease of implementation it may prove that such

a technique involves less work< than the single mapping. However the very

number of mappings involved may contribute t o c onfus ip n e or inefficiency
in the overall process. 4% ,

*' ,5

Mappings.

A mapping from (source) machine S to (target) machine T may be
considered ' to he the process of arranging that, given a program in S
machine code, an equivalent program in T machine code;- is produced.
"Equivalent " means that if machines S aid T; were realised in hardware both
programs run on their respective machines would produce the same result.

If one tèrm̂ ^ , the other should with the same result. The mapping will
have à "quality" associated with it related to the size and speed of the<= 8
an T programs. Size is the factor more readily measurable and is more
dominant due to this tangibility. -

We consider four common kinds of mapping between machines S and'XT
where S may be an ideal or an abstract machine and T may be an abstiract or
a real machine* .

1. Code Generation:(Translation)•

In this method a program in 8 machine code is directly translated into
an equivalent program in T machine code. The translation takes place once

for each 8 program which then takes no part,in any subsequent mappings.

i.e. 8code program — > equivalent Tcode program

The ease with which this translation mapping takes place is closely related

to the similarity between machines 8 and T. «Another factor involved is the

quality of the mapping - if the machines are grossly dissimilar then T
programs produced by the mapping may be very inefficient with regard to the
T machine. Thus with this kind of mapping, the implementor requires a fair
degree of skill to minimise this possibility or else employ a translation
technique which aids the production of good Tcode. The niapping can be
considered to take place at trausiation time.

■ - ■ ■•"/
-1

' ' . # 1

2. Interpretation ('Siinulatloii)•

In this method, a program in Scode is fed as data? to a program in
Tcode. This Tcode interpreter simulates the execution of the S machine..

This program is the same for every S program thus it need only be written
once for a particular machine. This would appear to be a point in favour
of interpretatfqn. In addition, since the S machine is well’ defined no
great skill is required to write it, although the programmer should be

skilled in writing T programs to make an efficient interpreter.

ike. Scode program — > Scode program + Tcode program

The simulation process involves -the interpreter fetching, decdding and

carrying oUt S,instructions from.the S program in the Tcode software model
of the S machine. The fetching and decoding can add significantly to thhr
time ^required to interpret an S program, especially if the S imChine
instruction format is complexj of the T machine instructions are not suited

to the decoding process. The mapping can be considered . to take place at
execution time,.

Klint [KlinSl] classifies four kinds of interpretation.

Type 1
This is .direct interpretation (̂: the sdurce text. As examples he
cites macro.processors and-some ; BASIC implementations. The latter may

be inefficient and have the undesirable property that syntax errors

can only be detected at run time.

Type 2

This is interpï^dtation of a high level intermediate code. He means
that there is a one^one mapping between thé source and the
intermediate language and cites LISP [McCa62] as only being lexically

preprocessed. In this case syntax errors are detected before
execution. Since the intermediate language depends on the source

language and not on the underlying machine Klint states,

./f

"maximl f lexibiTity, is

provide diagnostics and

ïé level."

at/run time and it is easy to

facilities, at the source

The SYtffiOL system would be Type, 2.

Type 3 ...
This, is interpretation of a low level intermediate code close, to
machine level, there being a one-many mapping from the. source to the
intermediate code. Again syntax errors are detected before execution.

Flexibility is lost at run-time but these systems arevmore efficient

than .the previous types. Portability is improved since only a simple

interpreter needs to be written for each machine.

Type. 4 ̂ ̂ ^
This is just direct execution of a low level code by a real machine.
The interpreter is a microprogrammed instruction set. This is the
most efficient of all but perhaps the most difficult for which to

generate code. "

3. Macro Expansion.

The mappings are related,insofar as thati given a simulation mapping,
a special kind of translation mapping can be produced. Each S instruction

is treated as à macro and is replaced by the Tcode which Simulates that
instruction in the simulation mapping. Thus the new mapping produced is a
translation mapping performed by macro expansion. This combines some of

the advantages of both kinds of mapping, namely that there is no longer the
overhead of fetching and decoding of S instructions. The disadvantage is

the increase in size of the produced T program compared with ah equivalent
one produced by better^ tfahSlatiqh téchriiquesv The macro expansion; can be
performed either by the compiler during the production Of Sçode or by a
macrogenera tori as a later phase. : ’

. ... ''' '''

I

;. u

4. inüéadjWg;

Waite [Wait?3] describes one of the early and simple abstract machine
modelling {techniques known as imbedding. An existing host procedural

language is used to support the opérations of the abstract machine. He
observes that in many abstract machihes the flow of control constructs are

usually indépendant of the data*' Thus, they are essentially invariant from
one abstract machine to another., Imbedding involves the use of procedures

and functions written in the host language which implement the procedural
operations and data operations of the abstract machine. SLIP [RussôSJ is
an example-of list processing features imbedded in FORTRAN. ‘

Compilation.

In considering the use of abstract machine modelling in language
implémentation we must consider how it fits in with the goals of compiler
design. Horning [Horn?4] describes these as .

- correctness (more realistically reliability)

- efficiency of runtime space! ahd time /

- efficiency of the compiler development process .

efficiency of program development using the compiler (including the
efficiency, of compilation) • :

- efficiency of target programs produced by the compiler

Hunter [Hunt81] also adds

keeping the compiler as small as possible

Perhaps another goal would also be

- to allow the easy implementation of the language on another
architecture.

Poole [Pool?4] describes how most of these aims, especially the last,
can be achieved by considering the compiler to be made up of two parts

a) a language dependant translator (LDT) which depends on the
characteristics of the source* This typically performs lexical

analysis, syntax analysis and abstract machine code generation.

and

b) a machine dependant translator (MDT) which depends on the target
machine.

The interface between these two phases of compilation is an abstract
machine. The LDT is written entirely in terms of the abstract machine.
Information flow is from the LDT to the MDT although some may flow in the

reverse direction. This natural and simple organisation helps the writing

of the compiler k The mapping from ideal to abstract machine (or from,
source to abstract machine language) takes place in the LDT. An interface
procedure for an abstract machine instruction is called when that
instruction is needed. What these interface procedures do depends on how
the mapping between the abstract machine and the real machine is to be
achieved. For example, the interface procedure could simply write out an

encoding of the instruction or indeed perform the abstract to real mapping
by generating a sequence of real machine instructions. In the latter case
the MDT would probably just be the assembler for the real machine. This
organisation allows a choice of mappings - to change the mapping only the

interface procedures need to be rewritten. Now, should the language be
ported to another machine, all that is necessary is to rewrite the MDT to
produce code for that machine.

Â consideration of the. four techniques.

We now consider these mappings in relation to each other in the
context of implementing a GPPL. The technique of imbedding is generally

10

applied [Wait73J when the host is itself a high level language. For
example we could imbed*list-processing procedures in FORTRAN and translate

a list-processing language into FORTRAN. This then necessitates a
translation of the FORTRAN into real machine code. Alternatively we could
write them in assembly language but this would then be almost a form of
interpretation. This does not appear to be a good way of implementing a

GPPL especially when compared with the other techniques. Therefore we will
not consider it further.

The use of macros to implement abstract machines has been well
covered [Wilk64,Brow69,Wait70,Newe72] with reasonable results. The

languages implemented during the work for this thesis did not use macro
mapping. It was considered but rejected in favour of examining either a
translation or simulation mapping. Macro mapping seems principally a

portability technique. This leaves us with perhaps the two most popular
methods of implementing languages. Efficiency appears to be a prime reason

for choosing a translation mapping. Interpretation is chosen when an
easier implementation is needed or where portability is a major concern.
Code generation according to Hunter [Hunt81] tends to produce larger, more
complex, slower compilers. The two techniques may be combined in a
compromise [Daki7 3,Daws73] where the most frequently executed program
sections can be code generated and the rest interpreted.

One of the aims of this work is to use abstract machine modelling with
compilers split into LDT and MDT parts. This should allow the implementor
a choice between which mapping he feels is appropriate. In order to do
this however we have found that particular attention must be paid to the

level of the abstract machine whose code is generated by the LDT. Thus we
now look at a number of intermediate languages/abstract machines and then

consider intermediate language design. Klint [Klin81] feels that we should
be Considering type 2 interpretation, that is, a high level intermediate
code. His reasons are based on the growing need for portability amongst a

11

wide rang%Xp£,/(micro)processors but more relevantly to this;thesis is

"the current trend towards 'very ' high level languages ? In such
languages the primitive operations are so complex and time
consuming it is irrelevant (with regard % to execution time)
whether they are compiled or interpretedv"

Abstract Machine Exaiqples. , ,

We now look at fairly typical examples of abstract machines, in an
attempt to see where they lie in relation to the ideal machine.

[Steeôl] and SLANG [Sibl61] are families of abstract
machines * UNGOL was proposed to solve the préblem Of running n languages
on m machines. This would require n * m translators but this could be
reduced to n 4- % if all h translators producedyUNCOL code which in turn was
mapped onto each of the m machines. UNCQL was never properly-implemented

but Steel [Stee61..] .proposed how it might l̂ ê The$UWCOL abstract machine

was fairly low level, that is it was closer to real machines than ideal
machines. It had an accumulator but no stack. There .were twenty

instructions consisting of an operator and an operand. The meaning of

these instructions t depended on the mode of the operand. Interestingly,
operands were specified by a location only, there was a separate data
description for them. Additional flow information was passed from the
translator in, orderx to allow,.optimisation. The* project was 'abandoned but

Coleman [Gole74] doubts that this was because the basic idea was unsound,
just that at the time "compilation techniques were not clearly understood,

and that adaptable,translators were, difficult to write."

SLANG arose from a project to develop a compilef-rwritihg language. It
was similar in approach to UNGOL but the translators knew Something about
the target machine. This was not strictly an UNGOL because, given
different machine descriptions the translator would produce different

a

" XX' ^

instruction sequences. Again this was low level. However it does
illustrate an alternate approach to only allowing information flow from the
LDT to the MDT. There is also information about the machine flowing back
to the LDT. As will be seen we do not use thiS approach^ because wer try to

write‘ the LDE {in complete ignorance of the machines the source language
will Compile to, and ixhat mapping will be used. r

Jàmis Janus [Cole?4] hasibeen called a standard abstract machine. That
is one which has Xbee around a model which may be used for many

similar programming languages in ttie UNGOL imhner. Janus is implemented by
macro expansion to assembly language. The authors ca.me to the conclusion
based on previous work [Newe72] that

"major problems are associated with the design of a suitable
abstract/machine model (s and its programming language) for a given
application. The task is not easy" even for experienced
programmers."

■ ■■ .

JanUs was desighed by examining existing programming languages and real

machines. The intention was to find what was common to them all. The
Janus machine w^s made up of an accumulator, an index register and a stack.
The operations of the machine are all based on features of real machines
which support high level languages. Also included areX"pseudos" which are
used to reserve data space. Thus again this is a low level abstract
machine. Coleman gives the following exiample.

VaCi

F(1 ;A;B+G,%E%3^i^ a procedure call " *■;

CALL RE\L PROG F() • ,
ARGIS INT.CONST Gl() A 1

' ' ARGIS y R # L LOCAL A() :
LO#j REAL LOCAL B() ' , .

' , ADD REAL LOCAL C()
STARG REAL TEMP Tl()

X LDX INT LOCAL l()
MPX-INT CONST G2() E REAL
LC&D ' I W t LOCAL :D(3* REAL)+
STARG ADDR ARG L 1(3* ADDR)
RJMP REAL PROG F()
SPACE ADDR ARG Ll(4)+
:SPACE A D # # G ; (1) A Cl ' ^
SPte ADDR"ARG X(1) A A
SPACE ADDR ARG (1) A T1 ' '
SPACE ADDR ARG (1)
ÇEND REAL PROG F()

The code as. may be seen is fairly complex. We %lieve that this is the

case because of the attempt to be all things to all machines and languages.

6-code This is an intermediate code for a specific language and does not
suffer from the complexity of Janus. 0-code/[Rich?1] is the intermediate
code for BGPLv [Rich69] This systems language has been ported to a wide
range of miSchines. It is similar to Algol 60 [Naur 63] but has only one
size of data item. All items are bit patterns, which may be interpreted as
addresses, integers, characters or truth values by appropriate operations.

The compiler is split into a LDT and MDT. Richards suggests that the

interface between, them should: not be a macro language - "a compiler so
produced wi 11/ he very slow being limited by the inefficiency of the macro

generator". /Hè; recommends the MDT be written by hand - "the implementor
may find it easier to generate optimised code ; sinCe he can optimize by
algorithm rather than by a complicated, set of mac to definitions". 0-code
is designed to be compact ̂ easy to generate by the LDT and easy to
translate by the MDT which could be a simple non-optimising code generator.

The design aims of 0-code hold many attractions. However it again is
at a somewhat low level. The 0-code machine consists of a linear"meimory of
words and two address registers : to support a stack, S addressing the top

: -, c:

f :x"' : k l ' ; : -
< ' 14X . %

Stack élément and P addressing the base of the current stack frame.
Lpcatiohs are ; addressed either absolutely or relative to P. Thé LDT in

addition to generating abstract mâchiUe cpde/alSo, passes space information

to the MDT.; For example it is sometimes-necessary for,, the LDT to indicate
where the top of stack is relative to the current frame,basé. > This happens
when yectors are declared or at - the ends of blocks. À directive is also
provided which indicates where the dividing point occurs between
declarations and the body of a block. The MDT then generates cede % to
ensure that all stack items are held in their appropriSte ;’stote locations
as opposed to being in registers for example; Richards ; states "Without
such a directive it would be difficult for an optimising code generator to
know when stacked items could be héld safely in machine registers." Another

example is a directive which on entry to a routine indicates the initial
stack frame size. . /

Richards is primarily concerned with portability but also shows how a
MDT can bé written to produce good code.

"0-cbde relies oh its simplicity to be effective as a bootstrapping
tool since otherwise the initial code generator for a new machine
would be too difficult to write. But it is important to note thàt

itX may bë compiled into efficient' code , using an optimising code
generator."

Richards gives the following example of O-codé ;X

STACK 5
LSTR 11 70 40 37 78 41

32 61 32 37 78 10
LP 2 '

, STÀCK 9
LP-2 :LL L3: FNAP 7
LG 76 RTAP 3

0-code then is low level with a heavy reliance on directives to the MDT but

suitable for a translation mapping to a real of simulated machiné*

, ...

■'.a

.’M

'//; ' % % / : : / / / / : : - / / / / / : / ' / / " / # % ' , '• /'-,. / •■, / . 'r'(̂. ''/Y- ' ■"■' ' ' ' . .- ■ ID ■

P-code P-rcqde [Nor174] is the intermediate 'code produced by the
Pascal [jens74] compiler. The; authors suggest three implementation
strategies using P-code. If the expected use was for teaching purposes or

small /programs only then they recommend that the simplest method is by
writing an efficient assembler/interpreter. For bootstrapping the compiler
then P-code should bé/macro expanded then the code gehefation; routines of

the compiler should be rewritten for the garget kmàchihë; i Finally they

suggest that if storage space is the main constraint "a judicious mixture

between interpretation and machine execution can be used", recommending the.
technique of /threaded code. [BeTi73] P^codé in similar to' 0-code except

that it has a larger instruction, sët to handle a larger set of types. An

example of P-code follows. v

-, a: '

procedure print_tree(head : ref) ;
begin .

if head O nil then
print_tfee(head@.left)
wfIbe(head@.val:12)
write(eol)
priht_J:ree(head@.right)

end;
end;
ENT 4
LOD 0 4
LPCN,.
N E #
FJP 94
MST 1
LCD 0 4
IND 2
CUP 1 74
LOD'b|#4
IND:'"0
LDCr 12
CSP WRI
LDCI 0
LDCI 1
CSfekWRG ,
MST 1 X
LOD 0 4
IND 1
CUP 1 74
RETP

P-code is medium level but designed for simulation or macf6/mapping. It is

16

not suitabie for code, generation. A similar code, S-code [EailSO] has been
used primarily for interprétation and also for code generation. This
latter mapping is by a form of macro expansion and as such suffers from
increased; size ; and little, if any, optinMsation. it" is faster than
interpretation due to the removal of the decode loop.

I-code ; I-cbde [RobeSl] is the intermediate code generated for the
IMP77 [Robe77] programming language. Its designer, Robertson noted that

the emphasis on abstract machine design was pn enabling : compilers to be
quickly ’ boots trapped onto a new machine either by interpretation or by

macro expansion. He felt that this did not allow the production of highly
optimised code.

"Apparently considerations of portability and machine indepettdence
have caused problems of optimisation to be overlooked.

He was concerned with the level of abstract machines feeling that they were
too low level and attempted to put machine independence and optimisation on

an equal footing, regarding the intermediate/code as directives to a code ;
generator.

"Instead of the intermediate code describing the computation to be
performed, it describes the operation of a code-génefator which

, wf11 pboducP; a "program to perform the required computation.

In essence I-code attempts to describe the results/ requif^e in a
way which does not constrain the method of achieving those
results."

I-code is completely machine independent. Robertson's work;is related to
the early part of our work however his emphasis was on optimisation whereas
ours was on high level abstract machine code design* The code generation
method is similar to another technique described in a Ister chapter which

y.c: Y //■,-

I-co# isï:;rëgardèd'by RobertsoiïV as a sequence of Instructions to a
stack orientèd machine which produces programs for specific computers. It
describes the compilation process neceSsâiÿ to generate an executable form
of a program, not the computation defined by the programs We feel however
that this is simply a way of stating that I-code is an intermediate code
designed for code generation. It is not clear from his thesis what:lie
feels the difference is between "describing the compilation process" and
"the cbmputation defined". His I-code must define the computation implied
by the source. ,

Source language objects are defined by descriptors in a block
structured manner. The stack holds copies of descriptors for the
computation. The only example of generated I-code he gives is.

' - - - ./ ' , . serves as a basis for our work. Thus we will limit this discusSibn tb/ a ^

brief sunmkryX: . , ‘ ' - |
■ / ■ ' ■ v-3

Robertson concludes, that using a high level intermediate code is a -
viable/tëCÜnique, having been used for several IMP77 compilers. Space-wiseJ ^
they compare favourably with other compilers but seem to be/ a little slow • /j
in execution time. As far as portability is concernéd' Robattson's method / i
takes longer to write compilers than does 0-code or P-cbde but once one
compiler has baen written it may be used as a: template j- new bptimising / J
compiler can be written in the space of a fewmbuths**, Xt

' .' -' ' ' ' r^ - /' -. . ' '"-#g
;■■ ' 18

"'.. ' r. X^0integer X -H
X . ACJ) . j
X = 0 it X < 0 .1 .: .
1ÆF; ia l'X̂ V IOTÉGER SIMPIÆ ■ - '' 'S

DÉFWÏr kONE NONE - /
PUSH :12
PUSH 6
PUSH 7
ACCESS
ASSVAL
PUSH 12
PUSHI 0
COMP >= IVV ;
BGE 1 ':

 ̂ : PUSH 12
PUSHI 0
ASSVAL
LOC 1

It is medium level and reverse polish in nature. However, more
important ly, we how see a change in viewpoint of an abstract
machine/intermédiate language - describing a code generation process rather
then something to be regarded as potentially a real machine•

Abstract Machine Intermediate Code Design*

From the above we note that historically abstract machines have tended
to be at a rather low level although Robertson has raised the level -

somewhat. The emphasis behind abstract machine design hhs: been portability
and with Robertson s work, optimisation. It was our intention in this work
to consider the implementation of very high GPPLs from the point of view of
abstract machine design. Portability and efficiency certainly must be

, ; considered but also one objective was to develop a method which allowed a
choice of mapping between code generation and interpretation. As will be
seen, the compiler is broken into the LDT and MDT parts and we now consider

the abstract machine level which forms the interface. . /-
.i ' . .

Hunter [Hunt81] suggests that the UNGOL/Janus type approach should be
/.Î restricted. -

"It would appear that, to accommodate a wide range of languages the X/.
target language has to be at too low a level to be implemented

. ' ' / - V ̂ . ' X . '

' , ,; ,v, , ,, , - 19

■efficiently on all ; machines. It seems better to design a target
' • ■■ \ ■' ' language for translating a particular high leyel language into or t:i

for implementing on a particular machine."

that is, all LKCs for languages running on a Jspecific make of .machine,

should all produce.the same abstract machine code. Then only one MDT need
be written for that machine. The alternate approach is bha one LHT be

. ' writ ten for à partieular language producing an intermediate code and that a

MDT be wtifcten for every machine on which the language is to run.* This is
the approach taken, by 0-code or P-code. Such approaches however have
relied on some information about the target madhine being passed back to
the LDT so it is not truly independent. Brown [Brow72] discusses the
relative merits of using high level intermediate languages^ His work is

. primarily conOerned with macrogenerators, but using abstract machine
modelling to achieve portability. He describes some attempts at
implementing a high level intermediate language. One way was to macro

: ' expand it into PL/1 "but the resulting implementation ... was so large and
slow that it was totally unusable". A program in a high?leyel lahgnage is
more machine indépendant than one at a lower level - "Looking down from on
high it is possible to see over a wider area than when one is close to the

ground". But hè warns that the differences in machines are not so great.
After comparing a high and low level intermediate language which implement

vk a macrogenerator Brown cdncludes that the advantages of à high level
intermediate language are not very great in practice. Low level bodes
allow];a quicker implementation. '

A paper published after our work on. high level intermediate code was î
completed had a similar intent. Rbrnërüp [KornSO] investigated the ;]

possibility of supporting high level languages with ihtefmediate languages]
which could be used both for direct interpretation and code generation. :{

"it would be advantageous to be able to use such intermediate ' " ;l

érq

languages directly to give efficient code generation on<
minicpmptiters. This requires that the intermediate .language (the
hypothetical machine). is being designed not dnly for
intèrprètâtion but also such that sufficient information for code
generation is available.''

Kornerup first designed,a new form of P-cbde for Pascal. A LDT produced
this and it was implemented by a microprograimed ihterpreter. A MDT in the
form of a code generator was also written.

The abstract machine was at a similar level to : the original P-code
although it dif fered in its; architecture^ For example it "had thr^f stacks,

Their conclusions concur with b^rs and we summarise them here. A
raajOrV problem for a code generator is in recognising the structure of the
source language. t

"For instance to make efficient Use of the registers, one must knbw
whether a label in the intermediate form is part of an if-statement

or can be branched to by a gotprstatement'."

one for procedure calls, one for addresses and one for real values.
- '-"j

Essehtially it was reverse polish in nature but ,|
' . . ' ' . '

"it does not contain special instructions reflecting Control
structures like repetition or conditionals, nor does it have
instructions for accessing components of structured data." J

By this they mean that such constructs are implemented by sequences of low
level instructions such as jumps (as is I-code, S-code, O-code). The
results^ Of this work were that P-Code was successful as a microprogrammed
implementation however it was less use able. P-code apparently had some
deficiencies making some generated code sequences "absurdly complicated" Î

■ ■ . . ■>.. /„ ■
because some information was lost in its generation, i

t . , - ' ‘ ' , ' ' ; ' "

. Z \ - ' .. ' • • * . . . - ‘ ■ • ■ * . '] ' 2 1 I . : ' :

They also propose that ho storage; allocation should be performed by the
compiler. The intermediate form should contain all the declarative
information of the source program. .They conclude that their attempt at a

form suitable for both codé, generation and interpretation fails- but say

that if we relax the requirement that the intermediate form has to be
immediately interpretable .a solution is possible. This .rMexatibh in their
view is reasonable because "some processing before.e^Kecutioii of such a form
will always be necessary (e.g. assembly, linking and possibly loading)".
Thus the intermediate form has to be transformed by some :kind of code
generation before execution. The following criteria must then be

satisfied. No binding should discard /information useful in generating
efficient code for classical machine architecture of a-Iwide variety. The
intermediate language should be language dependant but machine indépendant.
Storage ; allocation should be left to the" MDT à All declarative irifprmation
on the data hàs to be accessible and all referencing of ;data must have the
form of a reference to the appropriate declarative information.

‘The. subsequent chapters describe three abstract machines/intermediate
codes. -Further discussion on this topic is left until then.

Properties of languages under consideration.

In general we may say that the Algol family of languages satisfies/
broadly the criteria we use to define a general purpose programming

language". There is a wide variety of languages currently in use and we 1
must restrict our investigations to a realistic subset. We believe the ̂ î
Algols to have "lasted the course", evolving through the 1960/s and 1970's.

' They appear to tie the starting point for many new languages, and if that is
not the case, at least they have much in coimnon with them (e.^4 ADA/ i
Modula, S-Algol, IMP-77, Euclid). ^

' ' . ' ' '

î .

22

' ' ... ' :- ■ ... ' * '

The Algol family.

A number of headings are introduced here under which Algol-like
programming languages will be classified. These headings are chosen for
their usefulness : in the context of this thesis. The choice of headings is
explained and those features considered tOy be necessary in a GPPL are
outlined under those headings. /

Primitive, data types . i
The"programmer manipulâtes objects in some universe of discourse. We

may separate what he manipulates,from how he does so although the two
are closely related. To an extent the choice of primitive data type

defines the application area of the language. These data types are 1

primitive,;in that they are simple and contain no structures In a GPPL ̂ ,1

we would; expect some representation of numbers, truthvalües, and text. .. -:i
Thé language would!t.need operations on these. {. ̂ ' J_ 'Data structures. {
The primitive objects alone are insufficient to support - t

representations of object collections. We need data, structures to 1
. ' " ' ''. Y'- ' ' " ; / ' T. ' ' * '

allow, the modelling of collections. Two common data structuring
: " ' ' ' " '' 'facilities are the array and -the record (also called a structure),, ’

Thé array is a collection of homogeneous locations each identified by
integer subscripts. The structure is composed ; of heterogeneous j
locations called fiélds each identified by name. - I

■ .. : . "

Cpntrpl structure-. ... ^
Programs are essentially algorithms thus our GPÉL must support

facilities for sequencing, choice and repetition. Note we exclude .-jî
parallel éxecution. Much has béeh written in the literature about , q

which control constructs are best. Those which do not easily And " 1

naturally express our ways of thinking'ultimatély may die out? leaving '
a surprisingly small, number of cOhstructs. Although very few are

1

actually needed [Bohm6 6] it may be desirous to provide others which
.: reflect in a more obvious manner ï the abstractions of pur problems.

pur GPPL should support the one and two armed "if " ' cdhstruct for
choice ; ahd the "while" construct for répétition.

Abstraction mechanisms. ' -
;This'' is one of the most important features in programing: languages. ,

> In thé development of programs the desirability- hf , specifying the'
"what" leaving the "how" aside, has long been realised^ tThat is, we
put/:aside inessential details at a particular level of abstracbion and
concentrate on the main theme. Thé, practice of abstraction is
realised in programming languages by the procedure or function. Oür
GPPL must support both with parameterisation. These'éritities lie at
the heart of:' the way we should write programs and how we under stand •*

them. We will see that important as they are, they are not fully

exploited by the Algol family and it is» part of thé purpose of this/
work to elevate their high status still, further. This poses problème
in their implementation. . /Î V

Security.
Any language must have a clear policy about protecting the programmer
from himself. Although it must provide him with the tools he needs

for his task, it must be aware that he will make mistakes. Perhaps
the most important area of security is that of type -checking. Some
languages [Guhn80,Rich69] determine type by context. In these, for
example if you add one value to another they are treated as integers*
This is very much the assembly language approach and in fact such

languages are regarded as low level. Their reasoning is that the
higher level language approach to the store is too restrictive and nqt '
powerful enough for certain kinds of progrananing. Most of our présent

day machine architectures, still adopt this contextual approach to data
types . Arguments may exist about whether type checking should be ; y

r'y '" A; " '. '. ' ;?/' % - ./'' - ::\

; "'" / , .' . ..;:■■■ . ' \.

performed ,at compile time or run time, but it is agreed that
nonsensical operationd such as dividing a character by a bdolean
should be trapped. Other security areas are arithmetic exceptions,

/ - '/ bad data structure accesses, use of uninitialised variables, nil

pointers, array bound checks and so on.
'9 •’ . •’

Store.
We may separate the programmer's view of storage allocation into two

parts, one for simple variable allocation and -ohé if or data structure
allocation. The former is handled by the concept of scope and block
structure. The latter embodies the concept of a heap where space is
dynamically allocated without reference'/tb the static layout of the
program. Some languages allow this for structures but not arrays. We

i? considers both desirable iii our GPPL.

We have outlined the desirable features in a GPPL. Not everyone will
agree with them, but we feel they are typical of mqny languages in current
use. This then was our starting point. We attempted to find a way of

implementing such a language which wbiild be,straightforward and reasonably
efficient. That is, we try to find an appropriate mapping from a language
to a machine. '

Levels of increasing language power.

We look at three kinds of language; each more powerful than the
previous by the introduction of novel, little-known or little-used

features, and examine the implementation by abstract machine of these
languages. The first language is a fairly typical member of the Algol ’
family (Algol R). From there we look at a language similar f o' the first, ‘ '

but which elevates procedures to the status of assignable values and which
sets out to rationaiise somb other aspects of language features (h).
Finally;,.5we look at the implementation of a languagè which sets out to
exploit/type polymorphism (nsl). JThe abstract machines/for the first two

25

languages are designed with a view to code generation: or interpretation,
the third is so very high level - that we felt code generation was
inappropriate. Therefore we designed its abstract ttiactiine with
interpretation in mind. ' ̂ -

Summary.

In this introduction we have said that we wish to make life easier for
the language implementor;. : An examinâtion of prëviouÀ work has led us in the

direction of an implementation l>̂̂ y a language dependant translator and a
machine dependant translator. One interface between these programs has been

the abstract machine. We have described the nature of an abstract machine
and explained, ; on the basis of other researchers' work why this is a gpod
technique for implementing a language. We have concentrated bn two kinds of
mapping a language onto a machine - translation and simulation. An abstract

machine approach is feasible for both kinds. We have examined existing
abstract machines and pointed out their weak poihts. The properties and
characteristics of a high level general purpose programming language have
been discussed.

In the f bllowing bhapters we describe how we have implemented three
increasingly more powerful languages by means of abstract machine
modelling. From an initial experience-gaining implementation we attempted
to develop a technique based upon the concept of abstract machines which
would allow the implementor to design his own high level abstract machine

language and use it as the input to a MDT. For this MDT we improved and
expand a code generation method to complete our technique. We then showed
that the technique could be applied to other language features and be used
to output code for interpretation. Finally we used our abstract machine
language design methbd to produce a very high level, interpretable abstract

machine for a pbwerful polymorphie language.

The Algol R lAni^ge.

This is a reasonably typical member of ,the Algol family, much better
than Algol - 6 0 and îs - a good example of a GPP Lé Here, the main features
with respect to implementation and the class if ication in the' 'introduction

are discussed.

Primitive Data Types. " \ " I'""
Algol M supports the primitive data types integer, real, boolean

character and struct. The usual operators are provided for the
primitive types.

Data structures.
A struct is a pointer to a user defined data structure similar to the

CHAPTER 2

Implementation of a typical Algol.

Since the Algol family is widely used,and recognised as being elegant,
powerful examples of GPPLs, it was decided to implement Algol R. [Morr78]
This language was based on Algol W [Site71] a language taught; as a . first *
programming language to undergraduates. It "cleaned up" a lot of the less

desirable 'features of Algol W. An implementation for if* did however exist
so any subsequent one had to be an improvement. We consider this to be of
average difficulty of implementation in terms of our scale of more powerful
Algols; We mean by average that a reasonably competent programmer with a
knowledge of language implementation techniques should be. able to produce
an implementation. This chapter will brief ly .describe the features of the
language which make it a typidal member of the. Algol family and then

describe its previous implementation. We also consider.the code generation
technique which was used. The next chapter is devoted to the work on its

improved implementation.

26

27

is manifest to the compiler. Run time checks must he-imposed for some
operations such as data structure accessing; where array subscripts

must, lie within bounds, struct values must not be nil on accessing and
field names must correspond to the class of structures accessed using
them.

Store. ,
Variables of all data types are declared at the head of a block. This

record OÊ -Algol W and Pascal. The programmer writes a named template
which then defines the pattern for creation of instances of that data
structure. The other kind of data structure is the array. This is an
object of one or more dimensions with a primitive as the base type.

Control structure.
Algol R is a sequential language, One/action being performed after
another. ' It supports choice in two main constructs - the "if"
statement and the "case" statement. Repetition appears as the "while"
statement and the usual sugared form, the "for" statement. An

important and useful feature of Algol k is that the choice ' control

constructs may also be used in expressions. The "if" and "case"
expressions have arms which give values. The block expression is a
block whose last component is not a statement but an expression which /sa
is evaluated to give the result of the whole block. 33

Abstraction Mechanisms. :fî
Procedures and functions take a fixed number of formal parameters and r'|

are the abstractions of statements and expressions respectively.''' . Aj
Passing of parameters is by value only. A procedure or a function

. . -name is allowed to be passed, in on a call but these entities are not '

exprèssible values in the language. i |l

Security.
Algol R is, mainly compile time type checked. The type of a construct /I

I

28

reserves storage for the time control resides in the block. When
control leaves the block these locations disappear. Arrays and
structures, {being allocated on the heap remain accessible only as Ibhg

as a pointer to them resides in an accessible storage.locatiqn.

These then are the high level language features which the implementor ,,
must satisfy in a reasonable; fashion. , {

The first liq»le^atatlon.

The existing implementation was a compiler which generated
PL360 [Wirt6 8],code. / This was a systems language giving the user lew level |

facilities but with high level control constructs. The prior |

implementation was moderately successful both in its design and maintenance
' ■ ■ . ■ , V ' ; / ' Iand in its execution. i

The compiler called code generation routines each based on an ; 4

instruction for an abstract machine. Instead of\thése routines outputting ff
a representation of the abstract machine instruction for interpretation, a
section of BL360 cbde implementing the instruction was generated. It is a
form of macro.mapping. The effeet is similar fo intërpretatibn except that / 1

the bodies of code which Would have been in the interpreter main loop for

each instruction, are now in line. Thus the overhead of repeated decoding
is removed, This approach is well proven [Amma73] and excellent for a
first or even permanent implementation. It has thé disadvantage that it
can ,generate large code. Code may be optimised by either "peephole"
optimisihg the abstract machine instructions generated [Tane82] or on the
generated machiné code. [McKe65]

Approaches to code generation.

Most compilers during the syntax analysis phase also translate the
source into a language intermediate in complexity betweëh the high level
language and real machine code. This is the machine code of the abstract

%

:Xf: v.::" A:" 'Ü ''-'A ', ">'' ' ."; / : - v-y "' "" . ' -/.'tw -̂' r - % x /. "
. . ' . ;29:

compiier-génerated temporary names. op is an operatorV For example;»
' -K'L (-a+b)*(c+d) gives

:.Tl:=-a , '
T2:-Tl+b
T3:;»od-d
T|i=T2*T3 ' .. -

Cattel ICattSO] states that

"Code generators, which typically translate an intermediate
notation into target machine code in one or more steps, have been

relatively ad hoc as compared, to the first phase of compilers,
which translates a source language into the intermediate notation."

machinei - It is done because translation in a single step

"makes generation of optimal or even relatively good code a
difficult task" [Aho77] ■

The varieties of intermediate code all stem from an abstract syntax tree

representing the source. There are some common representations such as,

Trees
An abstract syntax tree may be . built explicitly and trayefsed during /
code generation as in [Baue73] or a representation of the tree may be •
produced for processing by a separate pass.^

Reverse ppliSh

This is a linear representation of the abstract syntax tree produced
by a post order traversal,

n-tuples (typicaliy triples and quadruples)
Here sequences of n-tuples [Grie71] are produced (we will confine
this discussion to quadruples). A quadruple is a statement of the
form,

A ; - B op C ;

where A, B, 0 are either ptCgfammer-defined names / literals or

30

and discusses some implementations based bn trees and n-tuples. We however

decided-' to investigate an iniplementation based on reverse polish
intermediate code. Our reasons are summarised in the following.

We wished to produce a code generator which was a separate pass
because only this pass would need to be partly rewritten when porting the
language to another machine. Such a split into LDT and MDT parts keeps the

compiler logically and physically manageable. From a more? practical point
of view a compiler capable of producing such intermediate code already
existed.

Building à tree would have been inappropriate and perhaps inefficient
due to calls on a space allocator and the initialisation of the fields of
nodes. The output = of- a tree to disk and its reconstitution by the code
generator would have been time consuming* McKeeman [McKe7A] -states,

"tree trahsf ormations ' consume more computational- resources . than
most other phases of translation both because the tree occupies a

lot of memory and following the links takes a lot of time" '

The use of n-tuples appeared to be more long winded due to the number
of temporary variables which must be described. As will be seen we feel
that it should not be the function of the first phase of the compiler to
perform storage allocation.

The generation of reverse polish is very simple and does not require
the tree to be explicitly built. Perhaps the most important reason for
using ‘ à reverse polish intermediate code was the exis tënce of a codé

generation technique based on this format, which appeared to be a good
candidate for improvement.

The new implémentation.

The next implementation of Algol R, which is the subjéct of the
following chapte , is based on a code générâtion technique for expressions

,..; and assignments described by Jensèn. [Jens65] It was used in the code
generator of the Gier Algol [Naur63., , . compiler. ..Similar techniques
have been rised in BCPL and- IMP compilers. The paper describing it showed

how code could be generated for a single accumulator machine with some
dedicated registers. the technique appeared to be useful when writing a
code/generator for a particular machine on an ad hoc, one o^ . To
implement the 'same language on another machine, the code generator had to
be rewritten. ,

It was decided to investigate this little known or used technique in
its application 16 Algo1 R running on an IBM/360 even though it was limited
to expressions. The hope was that an improved method of code generation

might arise by"extending the technique to marry with the code generation of
control structures.

The Method of Pseudo Evaluatlbh; as applied to Algol 60.

The input to Jensen's code generator is an intermediate form of
expressions in reverse polish. This is very easy to generate and. ideal for
stack /machine evaluation. For those machlhes which do ‘hot support a,
hardware stack, the code generator must output code whose, end {ef f eĉ ̂ is
the ' same as exécution of stack machine code- Jensen/describes the ; method
generating code for a single accumulator machine stating, /a /

"However, in a machine which has built in floating point operations
' but ao spècial facilities for working on a stack, it will normally

be faster to perform operations directly in the accumulator of the
machine and to use named working locations instead of the anonymous
ëneé which reverse polish implies ;"

Waite [Wait?4] describes code generation as simulating the évaluation
procedure in the environment (register organisation and addressing
structure) of the target machine. The code,generator ^ a description

reverse polish on a stack macM in a similar way to an interpreter for
/ such a machine. Instead of using actual operands on the stack, it works
/ with' descriptions of the operands. In perfbrming the/simulation, code is

generated, which yhén executed at/ run time effects the changes in the
// model. Note that there is a code generation/model of a stack, abstract
/ maqhine and a run time model. The latter may not mimic; the actual stack

ïiké the code generation model but it still produces the same result.
&./ \e- ^ /IK, The algorithm.

/The reverse polish is considered to be the machine language of a stack
machine, which Jensen interprets as follows.

1'
(1) Proceed through the reverse polish form of the expression from left to

Ky. right ;

of the run time contents of the enyirohment, code being emitted and the
/ ' ''' . . " ̂

description updated when advised by the simulation. In the same manner I!
Jensen's method models at. compile time, the run time execution of the |

I (2) When an operand is encountered, place its description On top of the
I stack.

(3) When an operator is encountered, perform the corresponding operation
on the top element (s) of the stack. This involves the generation of

I code to perform the action at run time, using the information in the
V operand descriptions. Change the stack of descriptions to reflect the
J

/ result of the operation. v

f . ■ ■ : .
I The operand descriptions.

. . I .S Jensen divides his operand description into two parts, the class
(X ' ,

> information and the address information. The former; describes what kind of

;1 Operand it is. It for example may determine wÉich machine instructions are

f generated. The address information tells where the operand ;wlliAlie at run
g; ' " .. ' ' ^ ./ time. This may be implicit in the class informatioii ahd thus will be ' |
g: " . V : . ' ' = '{
A / ,/ I:,
L . . . c . ^ _ L______ LAj__ . . ; . ■ ___ ' :__________ :____ :_______M

33

irrelevant in the corresponding address part. Some of the classes are :

variable where value is required ;
working Storage where value is required ‘ •
constant

' the accutiiilëtor
the floating point accumulator

These direct the code generator in what code to generate for operations.
For example, the machine may not have an instruction to add the contents of
two storage locations. Should both operands of an add operation lie in
storage locations , then code must ; be generated to load One into the
accumulator. Then an add store to accumulator instruction must be
generated. This is determined by examining the classes of the Operands.

The address information is not necessary for classes which are
accumulators since the class Is also the address. For constants, the
address information contains the value, and for variables and working

storage it is a block number, block offset pair ;

.-IJ,

S':

■

An e x a ^ e

The following example is typical of the method
abbreviations are used.

Thé following

, , ,:./;■ \J % . .:'A- ’■■ Aï'-- ■■ ' ' , “ \ # 9
’■'■•'’" ' / S - , '; . ■'̂.'. .’.. ■.,, , ,/•'"■■■ ■ ■' '' 34-

vx - , va rjL able? named x
wl -yworking storage cell 1 ,.
A - adcumuiator . 4.'
Source
reverse
Modél ;
Input

: (a + b) *
polish : va \

Output

(c + d)
n ,+ VC vd +,

Stack ->

*

Comment

va A va push description

vb ■ ■ : va vb II II A--
+ A : = b •

A ;= A + a
Va A
A

■■ ' , ;
load tob of stack into A
add a to accumulator

VC A VC puëh description
vd A yc vd
+ wl := A

A := d
A A + c

wl VC vd
wl VC A
wl A

need A so store it
load A with d
add

* :---
A := A * wl A multiply

The inputs va. and yb cause their descriptions to be pushed on the

stack. When the + is met the code generator must output code which will
add a^and b leaving the result somewhere* Where will depend on: the; target
machine architecture and the run time support of the language* In this

example/we assume an adbumulator^ machiné* The éode generator model must be

updated to reflect the operation. Note that the code generator models a
stack thus it pOps the operand descriptors and pushes the result,

descriptor, that is, of the accumulator. At run time jb is loaded into the
accumulator and/then â is added to it. The descriptors for ĉ and ^ are
pushed. Addition is as before except the accumulator must be stored in a
working location before it is free to use. The descriptor is updated to
reflect this. Finally code is generated to/perform the"multiplication, the
result being in the accumulator.

V„

{ ,,-. "', ;- .- /. yv . ' 'v r. .- . - - v-".'. "4 r ,',v. z'̂ . ' t -.

/ ; : / ■--■■: /■ / _ "■' ■ ■ , ■ ■

Assignment using the moàql.

The example above dealt with operand values only. In the case of
assignment to a simple variable we care about its location not its
contents. A further class is added for this - "variable where address is
required". When generating code which may involve a side effect of
changing a value in a variable then operands whose class is "variable ..
value .,.. " on the simulated stack must be saved in working storage. This
involves a search up the stack. It must be done since we are concerned

with the values in the variables. If the variable might, be/updated then we
must preserve this value, Operands whose class is "variable .. address ..
" need not be saved since we are interested in the location not its
contents.

Comments on the method.

Pseudo evaluation/is a- cOn,veiiient means of keeping track of operand
values and addresses. The stack model supporting this is well understood
and effective for expression evaluation. The quality of the code^ generated

for a particular machine depends to some extent on the writer of the code
generator and not bn the model. The value ofrpseudo ^valuation lies in its
organisational enforcement. . 5.Ttïere is little in thé technique which
automatically causes the generation of optimal code sequences.

However it does have something to offer because it is simple, readily
understood and provides an excellent framework onto which mây be built some
simplb optimisations . It can. be improved* upon by embedding it in a method
for generating code for all language facilities not just expressions. The
improved, method has to be designed bearing pseudo evaluation in mind and
must cafer for] all features of the language it is used to implement. We
must not forget that the level of the enhanced intermediate code for Algol

R must also be as high as possible and the code generation technique should
not overly limit this. ,

■ - . ' ' - ■ 9'V ■ • , ■ ■' ^

PoBsibie I and Extensions tb the j^tbod.

It decided that pseudo evaluation was a reasonable way of
generating expression code either for a real machine or an interpreter.
There also was scope for improving and extending the technique. If this

was dohe, combining it with a method of code generation for other language
features, perhaps a reasonable code generation technique might evolve.
With this goal in mind'the first task was to analyse pseudo evaluation and

examine the areas which could be improved. These are discussed below;

Control and Data Structures
Jensen states that

/"The basic method is a pseudo evaluation of expressions in the
text;" (my emphasis). .

He does n°t mention flow of control or data structure création.

Pseudo eynluation is .only used when expressions are ; met. The work in

hand was to deèign a coherent technique for a complete language using
pseudo évaluâtion as much as possible, perhaps even"in code generation
for control and data structures.

Types
Jenseri gives examples using arithmetic operations alone. The Boolean
operators in some Algols are hybrid control structures. In Algol 60
they are strict. [Naiir63j Later Algols have more complex data

structurés and a wider range of types. The new method must be able to
cope with some of these. No/type information is used by Jensen's code

generator, his descriptions contain class and address information

only. As Hoare [Dahl72] says, a type determines the-répresentation of
a value. Surely this is a concern of the code generator as well as
the compiler. \

• I'i

•‘i

:'j- ■■ ' À - -., ■ Î ■ ’ ■ ‘ -'■ , ■■ ' ’ J./ >

Storage Allocation • . , -
Jetisen's method is very weak in this area. First of 'all, his values

: of whatever type take up the same amount o^ space. This makes for a
very , s imp le imp lement a t ion hut : may be inadequate and unrealistic on
machines with limited address space such as mini- and’microcomputers.
Secondly, his compiler does the space allocation for variables whereas
the code generator does it for working storage. Each uses a different
method of referring to the respective storage. As will be seen later,
thé ; code generator should do all ,stora,ge'allocation in à unif orm way -

using type information provided/by the compiler.

Registers % "
Jensen describes code generation for a single accumulator machine. A
number of architectures support several general purpose

registers. [DEC81,PEC71,TBM70]. While some of these may be dedicated in
a particular implementation some may not. These should take part in
expression evaluation to act as fast working stora.ge where possible.

This will involve the additional task of finding a register allocation
algorithm.'

Heap

Algol 60 does not employ a heap. The later Algols do have side effect

problems involved with the non deterministic nature of garbage
collectiori. For example, in Jensen's model a dedicated register

; points at elements of arrays at each level of subscription. That*is,
it points into the middle of the array. Now he knows by the nature of
Algol 60 that the array will still be there when he accesses that

element ; This may not be the case with an Algol such as Algol R where
arrays are assignable values; For example.

The Interface between Jensen's compiler/and code 1 generator is reverse
fpolish. His description of a variable in this interface codé amounts
to nothing apart from its name. As we have] seen, type inf ormation
should be included also. We note that other entities such as

procédures should be described and perhaps take part in the
simulation.

Portability . ‘
Jensen describes a technique used for the implementation of Algol 60
Oh/a particular machine. It is desirable to make available a good

38

begin / r '
■ integer array (1 : : 10) fred ;
integer array (40 ; ; 60) jim ;
fred(1 0) := begin fred ;= jim ; ... 6 end ;

In the above program fragment a value is assigned to.the 10th element
- of the array currently in "fred" just before calculation of the

assignment value. However the array value in "fred" is changed by the'

side effect. The ellipsis code could cause a garbage collection in ^
which case the old array in "fred" might no longer be accessible. Now
Jensen keeps a pointer (UAa) directly to the array element being

accessed. After the assignment , to "fred" the original array is ^

"floating around" with nothing referring to it - thus it might be .i
garbage collected. If so, no harm is done since thé assignment to the /
tenth element will change a location in the free space of the heap.
But, if the space is reallocatéd it will have the nasty effect of
changing a value in a new data structure. Another consideration]
involving a heap is the identification of /yalues which are pointers].v/1
and thé following of these during the marking phase of garbage
collection. Thus a heap involves considerably moté work in ensuring :
its consistency at run time.

■ ■■ ■ -ii
Descriptions v/J

J

high level language on a variety of machines. Thus the new code
generation technique must consider portability % with respect to the
compiler ,and the code generator ; In the implementation of a language
there are three levels of abstraction, the source, the underlying

abstract machiné and the real machine. As far as portability is

/cpncernedvWe must investigate the mapping between the source and the
abstract machine code and between the at)stfact and the real machine.

Optimisation

"The process of object code optimisation can be* considered in
two forms, eftén referred to as local and global optimisation.

/.;/»The first technique jlnvplves the opt imisa t iqh of small
subsections of the geiierated coding without being concerned
with any overall features displayed in the program. The

second form on the other hand, considers the whole source
;■ program in an attempt to improve the efficiency of the object

code generated." [Bril72]

The technique of pseudo-evaluation lends itself to both local and
■ / ' % .global Optimisation. Richards [Rich71] says /-

"Good global organisation is often a better way of achieving
efficient code than any amount of local optimisation."

He suggests that general, design.decisions such as register dedication, K
. '"'Il

procedure calling mechanisms, data representation, stack organisation,
variable allocation and addressing are>all very important. These all i
can be done with pseudo-evaluation and to some extent help form the

. .. , ' '
simulated run time environment. The technique allows a reasonable
level of local optimisation, mo r e than - pe epho 1 e optimisation would {

. -i ' . ■ ' ' , - '‘"/jallow. Tbis may be/achieved by the fact that data is described in the- 1

simulation. Instead of emitting code for an opération we need only ; i

' ■ 'i

's

] . ̂ ,v; : 40

%-'' '-^K'XK/ ' '" ' * . - . " ' "y ' : ' : .
{ change the description of the result. This reflects that code

production for some operations has been delayed and provides
/. information on what must be done. This goes some way towards the

K: situation in producing code., from a tree where all subnodes are/K" ' i'-- ' ' ' A K/ ' - ‘
H available at the same time as- a nqde. , Here, because/ of the postfix I
1 " -'A'-/' ' . .V notation We only meet the node after the. subnodes have beén processed. - ;l

Better code may be generated in the light of a wider context thus by IJ
K . ' ! ' ' y ' - ' iy - y '' - ' /y ' - . .
/ building up enough information we are " in a stronger c position to J
kr . .A'. ' "y- ' ''yyy'^"%:'.''

' optimise. We suggest that this is better than peephole optimisation
y.. on generated code because it is easier to save descriptions, no
ri further pass is necessary and the context may be wider :t̂^̂ a |
y practicable peephole window;' The technique however does not lend : ib

itself to control\ or data flow analysis. Similar optimisation
4/ techniques are outwith the scope of this thesis. ir ,1

K ; ' ■ . ,, \ , y 4 , .
y . Our aim was to provide a inethod of code generation which lis readily . ̂i
i ' / y ' 4 . . ' . ' i 'y: _ understandableimplementable without much difficulty, able to provide/y //]
f reasonably good code and able to have optimisation added: if necessaryé One
y of the problems with local optimisation is thé number of ad hoc rules
| 4 - ;y, , ; : / / / / _ i
1' introduced [RobeSl] which tend to obscure the underlying techtiique. We

feel that a straightforward pseudo-evaluation code generator should be ?
'% '% writténf aitér";'séme time considering; global {organisation. Some measurement
// should be taken of the code produced and then local pptimisatiohs; layered /
i ^ I" ' ' ' Jon top.I/

' X-.'
y Jensen's pseudo-evaluation technique certainly seemed to pptehtially

■S-. :

fit the , criteria above. Other code generation techniques were considered
and rejected due mainly to their difficulty of understanding or
implementation. The existence of a simple improvable technique; isuch as

Jensen's proved to be a highly attractive magnet. next chapter /Il

\ 4 ' \ \ X"; ' /U

a

describes the implementation of Algol R using psendp-revaluation,

41

yjÀ.s ya-v /- : . ,,

.cHAPTOR-/.a;a" y -', yy. ,

intermediate Codé and Code Generator for Algol R.

This chapter describes the implementation of Algol ;■ R. It is in two

main sections*, the first dealing with the design of the abstract machine,
intermediate code and the second dealing?with the code,generator.

The desigh of the intermediate code.

A compiler written by R.Morrison produced yPL360 [Wirt6 8] code for an
existing, abstract machine. This code was used as a starting point in the
design of the new] intermediate code. It was choseh because of its'
similarity to Jensen's code, being reverse polish ift*hathre and because it
already existed. It was thought that ymodifying it would be a

straightf orward task. Although much was/ this stage the
intermediate, code y should really have been desigriedyyfroit scratch. The
exis ting y abstract mathine was a stack ̂machipe using «reverse polish like

instructions for expressions. The abstract •machine operators» ate described

in. [Morr76]/ The intermediate code /is»’ des cri bed in &Appéndix A. Thé
relationship between the Algol R source and the intermediate code is also

shown. 4 The major changes were to the flow of control instructions which
were raised from the status of jumps labels closer to/the high leyel
language constructs they implemented. A means of describing source
entities had also to be added. 4 4

Where an abstract machine is to be interpreted, the compiler performs
the code optimisation with all the knowledge; 6 f thé source to haiid; A code

generator, in the same way, must have this knowledge also; thus the
intermediate code must represeht both thé"algorithm given/by the source and
the description of the data. This, simplifies the compiler's task, passing

on the responsibility of code dptimisation to the code generator. Should
the compiler make optimisation decisions' and,generate an/intermediate code

!y V 42

43

which has lost some of the essential source information then the code
generator cannot be expected to produce better code than if it had all the

information available. [Brow69,Brow72,Korn80] The compiler must produce an

intermediate code which is in a convenient form for subsequent processing

and loses little, if any, of the source information. Most importantly it

must have no implementation decisions imposed on it. It must perform the

usual analysis and generate an intermediate code at a level of abstraction
which does not limit the implementation. It is thus very important that
the implementation be split into an LDT and MDT é

As an example of this approach, consider the original abstract machine
for Algol R. This was implemented by outputting PL360 code by the code
generation procedures which each "implemented" an abstract machine
instruction. Variables which were to contain pointers to heap entities
were allocated on a separate stack. This was to allow the collecting
together of pointer values for easier handling of garbage collection. The
abstract machine then had to have two stacks although there is nothing
inherent in the source language which forces this. Had this aspect of the

abstract machine been used in the design of an intermediate code then all
code generators using that code would have been forced to implement two
stacks.

Now it is conceivable that the language could have been implemented on
some radical or novel architecture, for example say one with
tagging. [Ilif6 8] All values, including pointer values could then reside on
a single stack, pointers being differentiated by a unique tag. Thus the
compiler must tell the code generator that space for a pointer value is to

be allocated, but it must not tell it where and how much - this is the code
generator's decision alone.

We now describe some of the fundamental design aspects of the
intermediate code which preserve such information and also make it easy to
handle in the code generator.

44

Intermediate code and control structures.

A trend [Rich71,Robe81,Nori74,Bail80] in intermediate code design is
to throw away the essential structure of control structures. (Tree
intermediate forms by their nature do not fall into this trap)• The
abstraction of say a "while" loop is lowered by generating jumps and

labels* It may seem that in doing so a meagre amount of information is

lost, since after all the real machine code will itself be in terms of
jumps. Unfortunately in supposedly simplifying such a control structure,
the code generator is made more difficult to write purely because the
structure, is lost ̂ An analogy could be drawn with the use of
goto's. [Dijk6 8]

"It is very important that the original constructions from the
source language can be recognised. For instance, to make efficient
use of registers, one must know whether a label in the intermediate

form is part of an if-statement or can be branched to bÿ a goto-
statement" [KbrnSO]

In the design of the intermediate code the structure was preserved, in fact
it appears very much like the source code. This had the advantage that
debugging the intermediate code generated was very easy in this respect.
The actual syntax of the intermediate code is simple and straightforward to
process by the code generator. An example of the code generated follows.

while a + b < 6 do while
stack 3 stack 4 plus.op
stackconst i 6 Is.op
endbool

begin ... end block •.. endblock
endwhile

Variable allocation and referencing.

Another area in which the intermediate code must not be too low level
is that of referring to variables. At the highest level of abstraction.

. -, ' i

, -; ‘ ■‘■... • ■' ' . /"L ' ■. ■■ .V -. . ,.* % 45

' the source language wdrks in terms of typed Values residing in locations.

; The objects of different types may eventually take up dif ferent amounts of
t storage in the real machine. In générating code for an abstract machine, a
Ï' compiler (for example [Nori7 4]). allocates space in terras of these
Ï'. . objects 'and the addressing structurerof the ;machine. For example it may
w . decide that a real is four bytes, long, a boolean one byte long. It them
C : ̂r'- ' ■" J
L" . calculates addresses on this basisi; : jif this is passed on to a code

generator then no optimisati6 n̂ ^̂ %̂ possible by that code generator. Of

course, one of the two passes must decide. If it is the compiler then that
compiler must beî ,;iéwritten if the sizes .^e <‘changed. ; If it is ; the code

. generator then only it needs to be changed.

Every variable in an Algol R source program has a type. It is the
fis respohsibility of the compiler to check that it will only contain values of
f that type throughout its lifetime. As has been mentioned the type

information . is required by 'the .; code generator' to détermine what
representation a value will have at ruu time, and perhaps where it will

Ç reside. Variables are named, the scope rulés sorting out references to

v;;; f thém; This name is not necessary for the, code generator unless say some
readable form of run time error dump is required. Yet the code generator
must have a means of uniquely determining variables. In an abstract
machine designed for interpretation, variables are accessed by their

t v - ' t ; ; V - '
t location’ in the store. Several variables perhaps share the same location
I; at different timés. As we have seen the compiler must not allocate storage
 ̂ for variables and so cannot allocate addresses. Instead it associates a

tv number with each variable and uses this number in all references to thatk"' ■ - ' ' ' -
R" ’ • ■variable. In the same way as names need not be unique (because of the
f.ÿ: scope rules), the numbers allocated’need not be unique.

I’-t!;

I

... ^ ... , 46^

Descriptors•

V ' Variables are not the only entities which need to "be described and

uniquely referred to. Procedures are typed, named entities :as are

structure fields. We generalise this by saying that any entity which needs
unique identifiention and has certain attributes, must be described to the
code genera.tqr. if This associates a reference number with .the entity and
allows tbe-:: c generator to build an internal description both from I ;Vj

' . : ' ' -
attributes provided by the source description and attributesf determined by

itself perhaps in terms of the real machine. This description is held /A/ -A' ■ , ■■■r. , : . , ' 'V: . . .-v Jinternally by the code generator in the form of descriptors. The Algol R
compiler . generates partial descriptions for variables, procedures, '
structure classes/and structure fields. Complete descripters mill be built '
% /' ̂ ^
by the code generator for these and for transient values arising from the ̂ ^
process of pseudo évaluation. £:|;1

For example, variables within a block'are,described*and referred to as ̂

follows;.. ' ' K-

begin ' block
integer X ; declare S x integer
char y ; declare 6 y char

end dec 1 .. ' f •
X ... y stack* 5 ... stack 6$■!

end : free 5 6
endblock •

The Codé Generator.

9Code is generated according to the intermediate form of thé source
program and some run time support . The; latter reflects*some of the higher
aspects of the abstract machine such as the implementation of a heap and

input/output facilities. Usually these interface with the generated code
. through calls of assembler routines. The run time support will be assumed
• in the .ipllowing.' ''-/9 ;

1;

'V .. ;VVr;V-;=: V;'.,,.; ■’ './■ ■■■. ;

%

\ The Algol" R code generator is itself written in Algol R. It ./outputs
£; asseinbly code for the IBM /360 model 44, . : As far as possible it will-be ’

described Without reference to this machine because it was'Adesighed with a
V ; view to portability and- general technique./ The operation and structure, of

. the code generator depends on the uhderlying abstract madhine and not ' on

the target 1 machiné. Such a des i gh heansl /that a large, part; bf the code
H generator is "machine indépendant arid heed not be rewritten for la different
r/' 9 - "V; - : '• : \ : .

2 : 9, machine. \ ̂ ' --

V The structure of the code generator is dictated by two main

i| .9 considerations. One is the procedural" ria tu ré .of Algol R, the other is the
stack architecture of the simulation. The source main program is compiled

into a segmérit of intermediate code as is each procédure and function.? body.
It is convenient to consider the main program as a procedure of the
operating system because it rio longer is a special case. Thus the code
generator basically consists of a call of a routine cailed ■•segment" to

£; generate, codé for Sri intermediate code ségmenf ; , It generates entry, body

; and exit codê ;. Within fhe intermediate codé will be nested segments (one
for each procedure,).produced by theVcompiler so this routine is recursive.

9 ‘ Thé overall structure of the code generator is fémiriiscent of that of
I; .. 2 ; V'/v ' . , . ; „ ; ■ ̂ ■ , '

a recursive des cent compiler r There are routines fpr each;syntacpic entity
2:;̂ of the. intermediate code whose function is to generate codé for that

entity. (la a recursive descent compiler we also parse the épdb\2) The
y intermediate code instructions: fall into two groups, those with structure,

' such as "if " and“ "while", and those which are reverse pplish ini nature.
.1 The latter havë some effect on the run time stack either to; changé it or to

’ push a single value on it. They are treated by handling them; prie after the
 ̂ other using a pseudo evaluation algorithm similar to Jensens'; until
; directéd to stop by à delimiter. A routine called "generate" prôduces code
£ and handles thé simulation of, a sequence of I réverse polish intermediate

code instructions. It tajkes as a parameter the delimiter which marks the

48

end of the sequence. Sequences of reverse polish linst ructions a n d ^
8 1 ruetu re d ips t ructio ns form the subcomponent s of structured instructions %
"Generate" consists ' of a loop similar to an interpreter iobp I which
repeatedly ; reads an instruction and simulates its evaluation possibly *
générâtingcpode for it. Those;'rbutines handling structured instructions

will,?recursiyely29 call "generate for their subsequences, We do hot propose
to describe code sequences generated but intend to consider in
the code generator for various features of Algol R. This is to .demonstratef t
the validity of the intermediate code design in the context of implementing
a typical Algol. In the following the intermediate code description in
Appendix A"may be referred' to

Descriptor Cîpeâtlon.

A "declare instruction causes the c^Gation of a descriptor .by the
code generator. All such descriptors are modelled by structure instances
and pointers to theË ̂ held in an array. The descriptor nûmber is used' i '
to index this array to access the descriptor. This array is called the
descriptor defipition stack. It is a stack because of the LIFO nature of
the allocation^and deallocation of descriptorV numbers as the code generator; >

progresses through the intermediate code.

Descriptors also resideIon the simulated evaluation Istack.\ This again
is an array of pointers. Here, they describe transient entities whereas
the descriptibr definition stack contains the descriptions of those declared
entities currently accessible ;at that poiiit in* the Intermediate code.

• A descriptor of a value has three^components.

Declared
This boolean field determines whether the value lies in a declared
variable or a temporary storage location (this is only relevaht if the
value is resident on the run time stack since both variables and

temporary results feside there). It is false when : Stack values are . £

49

I

temporary; Being the result of a sul^xpression, When no longer required :
the space on the stack used for temporary values can Be W d e available
for reuse immediately. Variable spadercapr only be released on block
exit.

m . ? " ■ V . . g * ,. * . I
A value is; classed as primitive, array, procedure, ̂ structure or field

depending bn its Algol R type. Each kind; has its own des crip tor of the
type. . These are, -

Primitive.
The types integer, real, boolean, character and struct.(pointer to
structure) are each described by a primitive descriptor4 This has
three components, the type name (not actually used but could be
for debugging purposes), the byte boundary on which values of the

type must lie (this would only be relevant for certain

architectures such as the /360-) and the size in bytes of the
values.' These are used in space allocation.

Array. Array type descriptors have two, components, the base type and the
number of dimensions. ■■

Procedure. ''
This has four components, the procedure name, if s result type £ a
list of its parameter types and an indicatibn of whether it is -
present, interface or external (see Ilater).

Structure. ;
This has three components. One is the number of the descriptor of
thé first field of the structure and the other two relate to

housekeeping information used at run time. One of these is; a

/ ' uriique trademark.yfbr the structure class. This identifies' all *
, structures of ? that class at run time. The othér- is garbage 4
Collector flag settings.

50

Field. This has three: components. One is the offset bf'the field* wit hiiv

fieldif ' Thé' third is the trademark of its containing structure
class 4 ; Descriptors of fields of the same structure class are
linked tbgetheh via the type descriptors.

Location

Manifest Location
We first note that some values may be manifest at compile time.
There is nb need to generate code to evaluate these values since we

’ £ may generate them directly in store; pbssibly as immediate operands

R code generator are boolean, character, integer, real, one

diWnsibnal atiays .of manifest characters and procedures. The ' IBM
/360 does not allow; immediate operands except- for small values

eight bits or less (move/immediate instruction [IBM70]). Larger

values are held in an area of store called the literal pool. The

its structure. Another is a;link to a descriptor of its following |H

a
This component of a descriptor is perhaps the most machiné dependant, it
being; a.description of where the value liés at run time. A value-is not
restricted to permanent ly residihg in one place and may not even exist
as a bit vpattern at run time but as a representation f ébgv a; condition
code/),. Even though the Ibcatipn is heavily machine dependant we may
reduce this by abstracting over common architectures in<the design phase
of code generator construction. This means . looking^/at typical & I
characteristics-.of real machines in relation to the intermediate cbde
and Algol R objects. From these observations develppedl/the location
desCfiptiPns for Algol R values. ! I"'

of instructions. Alsb Jensen points out that in pseudo evaluation
the; code. generator may perform* expression evaluation where the *

9 . ■ ' ■■■- . -M
operands aré manifest values . This is known as cohstaht ifolding. ?
Therefore one class of location is manifest* Note thisuis machine
indépendant* Types which may have manifest locations in the Algol

A

Stack Location ' -I? -
Variables and temporary, values reside on the stack. In the
implémentation of Algol's these are usually identified by a
procedure (or block) level number and an offset. [Rahd64] The

’ . level number is converted at run time to a fràmé pointer by means

of a display or static chaitt mechanism* There is one class, stack,
-describing values on the stack. In fact two stacks are supported,

r one for, poinfer valb.es,' however for reasons given ptèyiously thé

location descriptions involve only one stack class. This has
components such as which stack (pointer or-main), procedure level

. V , and offset within ̂ frame. As with registef descriptors, there are
also components used in the modéllihglof location aliocàtioh»

; 51 .

' 2 I/code generator e that only one copy of à large manifest value ;
resides in the literal pool. - ■ /

Register Loçàtién
Ip coirandn with other makes of machine the IBM /360 has général
purpose registers. Instructions using these are shorter and faster
than those employing store. Another class of;location is therefore
register. Registers ' may be dedicated^, that is, they may perform a
specific fuhCtion throughout the lifé of the programs For example,

in thé /360 implementation of Algol R, a register is dedicated to
always - point at the base of the topmost frame on the stack. Its

contents may change but not its functiCn. Dedicated 'registers may i
hot in general take part in expression evaluation. Those which do i

.. must themselves be identified to the code generator by iégister
descriptors. These contain components such as fhe register number,; *
its type (on the /360 there are two kinds;, floating point , and * ‘' il

fixed point), and otheis to aid * the simulation (see register
allocation). ^

H é a p ' i ; d c à # () i i \ ' ' f : ' " ']

Locations may also be in arrays* or structures i As, has been seen it I *[

. : i to simply: point at a location on the heap (we]
may lose the ar ray . or structure on gatba'ge , collection) . We must |

refer to it by a base, offset pair where the basé is a poipter to £
the start of the array or structure. There is a class for such t

heap locations with a component for thé base and thé: offset. The
base component will be a register or (pointer) stack descriptor, |

describing where the base pointer is held at run time. Offsets mdy
be manifest. * ,

• - ' - 3Boolean Location
 ̂; ' ' . . . ' . '

There are three final classes of location all 2to: do with boolean ~

values. These are not dèscriptions of physical locations at run
time but representations of boolean values. I

Condition Code Representation :
After : test instructions; machines, usually set some flag in the

processor status word which ref lects the result i- say zero or non-
zero.: This condition code may be used as a representation of a

/ boolean value, but only up tb: generation I of. some ins truction which

. changes the flag! The flag has two states, each being able to
represent true or false. The location description then Is a pair

< flag state, boolean value'represented >.

For example; < on, true > represents true if the condition code
flag is; on and false if it/ib off . This representation is needed
for, the genera t ion of short codé sequences ; as , will be : seen later,

' howeved it :4oes need vigilance on the code generator writer's part
to generate code to convert .it to a more permanent r epres ént at ibn '
bef ore he generates code which could change: the f lag. - \

I

: *. . The boolean values false and; true are commonly i r ep r es ént é d by zéro

and non-zéro values respectively. Most machinéslhave instructiops ‘ /H
toi-'tebt a value and subsequently jump to a label qr not 4ep,ehding
on the result of whether it wasl zero or not. Thus a value may be , =%

% . c to a representa.tion as a label with an associated boolean , 'fl
tag. ;:Fbf example the code sequence, ’ , ' ; .-f.t]

test R
, ̂ , ... ' ■ / ' - .v-;v l i

t / ; - : .9 ' ' \ 1

is a representation of a. boolean value. True is represented by “
landing at-;.the labél T yet ;2to be, planted, ' faisé is iéprésented by .
carrying on after the jump. Let us define this representation to

be a "true label" representation and depict it as ;

or "boq.llabel (true, T)!'. Note this implies "carry on in line if
false". We Could have generated the sequence -

' ' ■ test R i -
jump if " \
zero _ ' ■ ■
to label P ;,

in which case we have a "false label" representatidn of the same
; value depicted as -

Given sUch a representation we can reverse the process and get a:
storable value. This is done by

1) boo 11abel(true, T) -> Register(R)‘I - /9
 1-- > -> R

R <- false . - 1 1 3.1- ir .' j
. , I

54

Î) boollabel(fàllse, F) -> register(R)
s f— -> ! R

' . R <- true :r , . .
:,8gto:X , . -

- ' F: R <-.false ; " '

■ ; ' 71

Obvious ly in simple assignments there is no point in.. converting a ' ' d
value to a label representation and vice versa. They are best used
in the; binary logical operations and^,and' or which are "lazy" in

that only the, minimim ̂ number of- operands are evaluated °to determine
the result.

The Simulated/Evaluation,stack. .

Each hall of the generate routine has its own simulated evaluation ;
stack. ...The na%re df reverse polish and . the intermediate Icpde is such that
a code sequence processed by the generate routine does not affect objects
lower# dbwh/̂ . Thus a private stack may be used. This : of course
starts off 7 empty, grows and contracts as code' ' is processed up to a '

delimiter . On meeting the delimiter ; the stack will be empty or contain a
single:/descriptor of the result of the code sequence. ' All sequences -j

; correspond, to" the run : time effect;of producihg,a value or :causihg a change

of memory location, /contents or both. - the generate routine returns this - i
description to its' caller, which may stack it bn its private stack. Each Î
procedure which 2 generates code f of ;,an>intermediate instruction, on entry !

will use the staCkll f or dés crip t ions of that instruction's operands. On

exit, it will adjust the stack : to reflect the fun pime results of the
generated code*# stack is not used in between these times . For ;#l

example, a "while" ' instruction (see Appendix À) contains two

subseeuehcesl,. bnb , for the boolean condition and one fbr the body. The ̂ #|l
generate' routine is called twice recursively with appropriate delimiters £
for each# The first call returns a descriptor of the bbolean value. This

55;

descriptor is not pushed on the evaluation stack but thrown away after
appropriate code is generated for the test jump. The second call does not

return a descriptor since the loop body does not return a valhe.

Frame Space Allocation»
^ ^ '

The implementation, for the same reasons as the ; previous abstract
machine; - uŝ es two stacks, one being for pointer values . ,Spàcè at run time
for variables and temporary values is allocated/On èitËër the main stack oi
the pointer stack. A simulation of these stacks is held for eaçh segment
during code generation since a routine ; may only allocated space within '%is

own framey At run time the .address of the base of the topmost frame is

held*/ in# a ' dedicated register ahd addressing of variables Kand/: temporary
results is performed using this basé register and a byteIpffset. Values of

the ;differeht types are of different sizes on the /360 arid start on

Stack Size Boundary '
: .integer:— main 4
real ' main 4 4
character mairi ■ ' 1 1
boolean main 1 , 1
St] uct pointer 4 ' /Kk,array pointer 4
prpceaure. main 8

When the code generator needs the address/
allocate routine is called with the type as a parriniétÇr « It examines the
space simulation on the appropriate stack and returns thé* off set of an as
yet uni:&ed plocatipn for the type. It may .bé desired to use as little spaCe
as possible requiring values to.be optimally packed in fà frame. When such
space is to be made available for reuse say on block exit or when a

temporary result has been used; a corresponding deallocation routine
adjusts; the Space simulation. ' -

different byte boundaries as given by the following table, ' 'i\

Register Àiïbéati^.

. / - -- ';#y-̂ - . . . '- "' .- '. ;56%'

The space, simufation can be simple or complex depending on the
,.J impTementation criteria. What is more important is that, the rest of the g

code generator should not depend on/how of where,space is/’allocated within ’
, ' a frame* It provides a type and expects the offset of ah area of space of S||

the required size, on the correct byte boundary and on the appropriate

stack. The current simulation involves a first fit algorithm, searching ; 7
,2 '̂ the, frame 'mode 1 from the bottom until an appropriate "hole" is found. This-

is marked,, as allocated in the model and its address returned. Deallocation
C ' ■ f - .'1
/ ' simply involves marking the area/in the model as unused. t

vi

1 ;2 A Similar model is that of register allocation. Registers; are?faster |
: " ' - " " " . / . ' ' \ .than store so it is desirable to keep as many operands in them as possible. -

In fact, depending on the architectiire, operands may need to be in ’*>#

registers for particular instructions» The Algol R code generator employs 2#|
a reasonably simple but powerful model - fof/pen dedicated register

allocation. (there are 6 dedicated b non dedicated registrs) On the /360
there are two! Sets' of registers, one for floating pointy one for general
purpose. We will consider the latter since a'Similar situation exists for
allocation of floating point registers. The code genera t or maint a ihs two
lists, " one of registers in use and one of free registers *£ On entry to a
routine all non dedi^ registers are available for use, thus.the segment

routine creates an empty use list and a full free list. Each register is
described by a structure which has a field which may contain a pointer to a
descriptor bn,the simulated stack. Every register on the,use list has this
field pointing at operand descriptors on the simiulated stack., These
operands lie in the corresponding registers, that is the Ipcatibn fields
point to the register descriptors.

When a register is required; the topmost on the free lisp is remove
If there is not one the bottommost on the use list is moved to' the top. Of ,,2;:%}
the use list.,: ib now? being the most recently used. A temporary#;,storage

____ ___________

57 P:

pr

■fl

%
location is allocated and code generated to store# the register contents •
into it. The descriptor is updated to reflect the new locatidh of the

operand value. Instead of searching the , simulated /Stack for the
cor respohd ihg ope rand descriptor, this is obtained iimediately f rpm the
register descriptor and\updated to/ref lect the store - that is its new -

location field is "stack". Thus storage ; locations are only used when a
register, is needed* and all are/ in# iise. When a particular register is f

required which is on the use list a similar procedure is followed except
that its contents are saved in axregister from the free list if that is not ;
empty, or in storage otherwise. ? |

Control Structures. #

Control Structures have a major effect on % the simulation. As we -
proceed through a reverse polish intermediate code sequence in the

procedure "generate", the simulation changes its private#evaluation^ stack.
Most importantly / the locations of operand values change throughout,
controlled by/the" decisions taken by the simulation and i the? instructions.

When ;a#Choice instruction is met we must somehow freeze the simulation
stack. Let#us first consider a multi-armed choice'/construct such as
"case" ii For example, , ‘ ^

case stack 6 of _ ' - mp
<arml.cod% _
endswitch 3 1 9 8 f#
<aln[2\c(%>;: ## " ' . -
endswï4cü#l;5' ' , 'AA

\'<a'::&3#;co.&̂ ̂ 'c- , # #: ' ' vg
iWsMech- O ' - ' ' .. # '#
ehdçàse#

The code generator first meets thevselecting value code then the arms in
turn. The code geherator must save the run-time statevSimùlàtipn after the ■ .
selecting value cqde * has beeh processed. It must reproduce this state
before processing each of the arms in turn. The arms must; also be made/to =

produce identical states after code has 'been generated;ibr them. This is

58

because : a - coirànbn piece of code : is executed/af ter the ‘multiway construct r
whatever branch has been taken. Since the code generator-meets :,arm 1 first

it may choose to save the state produced by it add generate code at ,the, end
of the other arms to conform to this/. Its operation would then be

generate cpde for test ,, '
save state (call it state 1) ■ ' ^
generate Icbde.,for arm 1
save state (call it state 2)
restore state 1
generate code for arm 2
generate code to adjust to state 2

restore state 1 -- ;
geherate Code for last arm
generate code to adjust to state 2

'V'

Now the saving and restoring involves copying complete data structures in
the simulation, not just pointers to them. Furthermore, the state of the -
simulation locations after arm 1 may be nothing like those after the.other -î

arms, Arbitrarily complex code may need to be generated to restore the arm - ’

1 state. Note states will not differ in the ope rand s - 2 on < the simulated
stack but only in# theif locations . .4

This situation was unsatisfactory ahd it seemed that a marriage
between control structures apd pseudo evaluation might/invblve a great deal i
of overhead in the code generator. Further analysis did however come up
with a solution. Two questions were asked. How do we avoid possibly
complex ad justment code and how do we avoid copying when saying - states ?
The answer to the first helped solve the second.

All that could change in, the ‘code generation of , an arm were the
registers.' These might be reallocated, their contents being dumped during
arm simulation and would need to be reloaded with the dumped values to
readjust the state. Also an arm of a control construct which was an
expression would produce a new value ip some appropriate location. The
solution was quite simple -dump all the registers in use immediately after

the -test. Now,, there was no need to save the state af ter the test becahba i

59

the simulation of the arms could not change it, nothing being in a
register. The èqde adjustment at the end of each arm is tonly necessary if
the arms produce values. Even then, all.that'is required is to ensure that

the result of arm 1 is in a "reasonable" location, say a register, or a
label value for ibobleans, and to generate . trivial adjustment code at the

ends of the other arms to conform to this. 2 2 ? #; ' 7

Repetition becomes even simpler with this, method. The problem in this:
case is to ensure that the state after the 2 Iqop body is/ bhe I;same as ; the

2
state before the test. This state must also be the one immediately# i

the construct. By dumping the registers before the test; nothing can be
changed by the simulation of the body. This time there is no2hew value to

. ■ V.- ' ■ '■ ? '■ 2 : ' • ' 2 #
worry about. It is believed that the overhead of. dumping registers will
' ,2 - r - . 2':2 2 ' 2 , . k'/' ■:#not be significant arid the ease of implementation warrants its Use *

' ' ' ; :# . " ' .

Data Structures. ■ -1 ' #1

Algol R supporté structures and arrays. These are both allocated on
the heap » Arrays are built in array declarations by the ;-"i'Iif fe .Op"
instruction (seè Appendix A). This is a complex operation and rather

than generate in line code, a call is generated to ah Interface/procedure
to allocate space on the heap. Structures are built^ using a similar call

but with in line code fbr initialisihg, the fields w : iThe ihfef media te code

specifies the class of structure to be built by a stacking of the structure y
descriptor and a structured instruction "formvec". This latter instruction
has subsequences for the initialising values 'of the: fields,..#//, ':£]

- ' ' .The routine generating code for "formvec" uses the structure ’-111
descfiptbr to; determine the size of space needed on the heap and generates

a call of an interface procedure to allocate’it. Then it#calls "generate"
for each of the fields producing code to store the2resulting value in the:;
run time structure. (Note that values are packed in structures to ’/.I
minimise space. On meeting the "declare" for a structure and its fields.

: % .. .# .. . 2 V ' " / / / y " ,...#/: v y # : . y -.. : . J # y r ' v : '
#:##/: ; . : ' -#y' ' # ##' ' '. ' ' :/'. -/y, , " # 5 0

their offsets within the structure are calculated and fofm/part of their
description,) Finally a descriptor of the Struct value resulting is pushed
on the simulated stack.

/Accessing of an array element or structure field is done by the
"sub.op"instruction. On top of the simulated stack are the descriptors of
the index and array or the field and the pointer to the structure. The
code/generator determines which by examining the type of thevsecond top of
the evaluation stack which will be array tor 'struct. With the former, the
top will be a descriptor of an integer offset and for the latter,#a field
descriptor. Code is generated tp perform the necessary chedks and access
the element or field, all the information necessary being : obtained by means
of the descriptors. ~

; //Thus extending pseudo evaluation to "include data structures-/poses no
problems;, the descriptors being /?a natural and convenient way of .holding
type and location information concisely.

Procedure Calling and Runtime Sujpporb.

A procedure call has four instructions (see Appendix A). One stacks
its description, another prepares à new frame, a third evaluates the
parameters if - any . and the last calls if. A call is a simple control

Structure to the codé generator## Since b hew frame is ; tb be built on top
of the existing one and it is not known which register s contents will
change, the. code generator must arrangé for all:values hbt * already in store
to be dumped to store. It is at this point that it knbws /from where the
new frame pan start and allocates space there/for the run time housekeeping
information such as the return address and/if ramé links#- The allocation

model is adjusted so that any space: allocated will be above this
housekeepihg/ space, that is, in the yet to be completed frame. Code is
generated to store the parameter in an #allbcatéd locatibh, apd //the
descriptor.pppped.

■

 ̂ ' '

— .,9V
61

j . .. V.'

Generating code for the call also involves a restoration of the . J:
storage - allocation,l/mpdel to the point before the housekeeping space

allocation. Having popped all the - descriptions to do with the call, the
simulated stack will be as it was before the/call. Function/calls involve
pushihk Uydescriptbr pfiithe returned value. This is returned in a fixed #■

 '
register, code having been generated at the end of the funGtibh to ensure #

this# - ' V#'

Thet run time stippbrt is a number of procedures and functibns to carry
out such duties as allocating space on the heap, garbage collection,, and
array. building. These had , already been written by R. -Morrison for the
previous implémentation, Some were written in Algol R :calling machine code

 ̂2 , ' ' 2. , . '' , ' - ' routines. The Algol R routines went - through the code generator. This 2-I

:

meant'having ,a-few ad hoc sections of /the code generator? to deal with such
external (i;e. machine code) and interface (i.e. Algol R) run, time
support 4 Even so, it greatly reduced the amount _ ofr Tow level programming

which was needed. The technique coped with it admirably, /information as to
whether a procedure was interface, external or not * being held in a
descriptor. /'

Summary.

We think,.;,that the technique of pseudo , evaluation is suitable for
languages like/Algol R but It imst be married/Co*a means of code generation
for features of the language other than just expressions.; We believe we

haye:/shown, by the design of a suitable intermediate code that this can be
done, allowing a simple structured code generator. The level of this
intermediate code should be higher than that of previous codes in order to

reflect, the structure of the:source language. This allows the design of a
code generator which is structured according to the intermediate code in
the same I manner as a recursive descent , cpde generAtor is structured

according to the source'it‘/parses. By having reverse polish like sequences

' ' ' ' # y ciyyyvv .---y'-j
. . .'. ' -' ' : # ' 6f

V/'

in the intermediate code we may use a stack simulation as proposed by
Jensen. This proved simple to do and understand.

The entities held in this simulation are described by descriptors
which are easy to build and, manipulate. They effectively#model the source
and fun time attributes of objects.- On top of this it is straightforward
to superimpose models/-for allocating space'Within procedure frames and for

allocating non-dedicated registers. Drawbacks involved with;ihe ,method* ape
associafed with the difficulty of retaining information across several

intermediate code instructions. This is desirable if a high level of local

optimisation is to be achieved* A balance must be found where thé quality
of code generated is acceptable and the code generator is not too difficult
to handle because of complex information representations and optimisation
dependancies across instructions.

'- ', ' ,. - " ;,' —'y ''* .V * /V W". V/ ' :' V " ' ; . ‘ ' ■ => >, -- v •'. . ‘ ' . -" fV ' 'V f

CHAPTER 4

. The ProgramnLlng Lanj^age h. , S

The technique of pseudo evaluation proved to be a reasonable way of
implemèhting: what might be called an "ordinary" Algol. The Algol family
however has been enriched with more sophisticated kin, such,-, as Pascal and
Algol 68, [Wijh75] Other advances have appeared in the functional languages
such as SASli. [Turn79] Furthering our aim to investigate languages and
their "implémentation, it was decided to design an Algol-like ianguage

called h which incorporated novel and state-of-the-art features found in
some current#languages. There were two objectives, one a minor exercise in
language desigh, the ; other to investigate implementation techniques for

such powerful languages,. We stress that the language design aspect of this
work is secondary to implementation. It has been embafked; on to?provide-^a

vehicle for the main topic, however we feel that we may have added to thé

features which may be included in programming languages. - This chapter
describes"aspects of the language, the next covers its impiementatioii#

Already existing languages were considered but they weré not. powerful"
enoUgb or did not embody all of the features whose implementation needed to

be investigated. Some did however, but without implementing :,them
completely (for example procedures as values in Algol 68 . . .[Wijn7 5]
Davie [Davi79] explains and gives an example of how Algol 68 restricts the

use of first class procedures). ' *.

Language Design »

The language design aspect involved producing a mehber.of the Algol
family,' following well known principles# attributed tb# Terinent,2[Tehn7,7;]
Landin [Land66] and Stfachey. [Stra67] Morrison [Morr80i identified these
and brought them together in the design of a simplified, Algol * The three

principles are , ̂ - 9 / ,y : ,

9 9 - - . x-/'-.*/ -'■■■■ - - ' ■ , - :*%, " .
9 . '■■ ■ ' V , ;.v . - ; v - • : ' •" 69?, ■ "

The principle/of correspondence ' ?
This principle states that the way names are introduced .and used ip a ‘

language should be the same-everywhere in a prégram. The way names

are introduced by declarations should Ibe .. in a one to one
correspohdence with the way names are introduced as parameters. They

need not share a comAbn syntax but for each kind of declaration there
should be'an equivalent kind \of parameter declaration, h applies this
principle except in the area of structure declarations.

The principle, of abstraction
Abstraction means ignoring unimportant detail and concentrating on the
essential structure and nature of a problem. As far as language

V, design is concerned it means recognising the semantically meaningful
syntaptic categories in a language and allowing abstraction over them.
For example, abstfacting over expressions gives functions, abstracting
oyer statements gives procedures.

The principle of data type completeness
All data types must have the same civil rights in a language. The
rules for using data types must be complete with no exceptions. For

example if we are allowed arrays of a specific type then we should be
’V - allowed arrays of all, types. If we may have sets of a specific type

then we should allow sets of all types. If one type is allowed to be
a parameter pr result of a function then all types should be allowed.

The h Programming Language.

A number of languages were used as a foundation for h. These include
Algol 60, [Naur63] GPL, [Barr63] Pascal, [Jens74] Algol W, [Site71] and

Algol S. [Turn76] It attempts to embody the better features , of these
languages.' The language is described in full in its reference
manual [Gunn78] but its syntax , may be seen in Appendix B where it is

related to the abstract machine code generated for it. We give here a

65

brief overview of the language and concentrate on three main areas which
may be considered to be important from either a language design? or

implementation point of view. We omit discussion of any topic covered in
previous chapters where it arises in the h language or its impie ,
The main topics of interest are user defined structures, routines as values

and constancy of locations. We begin by describing the types manipulated

by the language. h is statically type checked, all type errors being
detected at compile time.

Void Type This/is included to simplify the syntax at a small expense in
the type rules. Void type is the type of what is known as a statement in
other languages, that is, a construct in the language which does not
produce a value and?which may affect the flow of control in a program, such
as a loop. À procedure type which has no result is said to return void
■type. ^ : '■ ■./,

Primitive Typés.

The basic types are integers, characters and logicals. Reals cduld
alsp have, been included but they were implemented in Algol R and would not

have contributed to the work.
' '

Enumerated types.

In h, an enumerated type is an ordered series of values defined by an
enumerated type definition which lists names in order. This implicitly
binds the names to the values. ,

e.g. type weather - (rain, snow, sun) -

These, are ordered types and they may be used as subscript values for vector
accessing. Thé relational operators, "succ" (successor) and "pred"
(predecessor#) operators may be used with enumerated types. The operator

"ord'V (ordinal number) gives the position/in the definition list for an

I%
■ l i

..'3

" 9 # l # ' 2 ‘ '66''- ■ ? /. ■'■■/''

emmérated type value, , _

Files*

h supports a simple input-output interface which is adequate for ,av i.
wide variety of needs. Files are ordered Sequences of characters existing
independant ly of the program. A value of type file is a connection to a

physical'/file..

Vectors.

an ordered sequence of locations all of which hold values of a particular
type called the element type. Element types of vectors may be any h type

including vector types. -Thus two dimensional arrays may be repfeserited by
vectors of vectors. Subscript types may be integer or a user defined
enumerated type. ,*

Vector creation involves specifying the bounds and initialising values
for each element. (All locations in h must be initialised when they come
into ..existence,). Vectors may also be made up of constant elements.
(Constancy is described later). There are two ways of creating a vector.

a) Enumeration

e.g. £t X make ['a', chi, ch2.]

This creates a vector of three character locations initialised in turn by
the results of evaluating the initialising code. The lower bound is x and
the Upper bound is x + 2.

e.g. at 2 make [^ 1 make ["by'’, "be", "to"],
at 1 make ["the", "for"]]

This creates a vector of vectors. Note that the bounds are not part of the

These are the simpler of the two data structuring facilities which h
provides. A vector value is a reference to a compound entity composed of », i j

V;, ■ . ■ ■: .■ . ■ -/#■'■'•/-■■; ' 6i '

type of a, vector thus we may have elements of a vector which are vectors of
differing lengths.

b) Repeated Evaluation.

e.g. vector m : : n val f(x) -

This creates a vector with lower bound m and upper bound n. Each element
in turn is initialised bÿ re-evaluating the initialisihg code thus allowing

the prospect of a different initialising value for each element.

e.g. let i <- 0 ; tq :- vector 1 : : 10 val
begin i := i + 1, ; i end

Here:the vector elements are initialised with values from 1 to 10.

Strings.

A string is a possibly empty sequence of characters treated as a
collection. It is composed of values not Ibcatiohs. thus unlike a vector
the components of a string cannot be updated. A new string value must’be
created from already existing ones. This contrasts witb older ways of
considering strings as single 'dimehsioned arrays ? bf character locations
with statically (Algol W) or dynamically (Algol R). khbwn lengths and

with lower bounds of zero or one. h, by virtue of. orthogonality has
vectors of Characters in addition to strings.. These of course only have
the properties of vectors. Compared to these, strihgs are much more
powerful entities with a richer set of operations such as length,
concatenation and substring. With hindsight, it is over complex to have
character vectors and strings. Characters should be eliminated from the
language retaining strings.

68

Structures and Pointers. +

This is the first of the major parts in the design of h. We spend,
some time here on a discussion of it. The following sections show how we
consider structures and pointers to them should be treated in programming
languages. We demonstrate how some approaches are special cases of the
general approach taken by h. We show how structure classes and field
accessing are usually treated and describe an h construct which reduces the
run time class checking of structure instances against field names, by
performing most of the checks at compile time. [Gunn82]

Structure Classes and Pointer Types.

There are three approaches to the types of variables or constants
allowed to contain a pointer value.

Al) They may contain pointers to any class instance. This approach is
adopted by S-Algol. [Morr79] The type is simply "pointer to

structure".

A2) They may contain pointers to instances of a specified single class as
in Pascal. The type is "pointer to class x" where "x" is a class

name.

A3) They may contain pointers to instances of a specified set of classes.
The Algol W reference is restricted like this. The type is "pointer
to X, y, z etc." where "x", "y", "z" etc. are class names.

Approach 3, and the Pascal variant record allow the programmer the
flexibility of referring to different "shapes" of structure under
protection of the type rules. Approach 1 gives him complete freedom, which

is probably not what he wants all the time. There will be compile or run

time checks that only pointers to instances of the allowable classes are

+ The material on structures and pointers is published in [Gunn82]

.pointers to any class instance. Values of type "ptr{ x }" may only point
to instances of class "x". Values of type *’ptr{ x, y, z }" may only point
to "x" or "y" or "z" instances. In fact, it may be seen that approaches A1

and A2 are cases of A3 with an infinite class set and a class set of one
member respectively. Let us define this scheme to be pointer-type

r ' x:/ ' ;69

; ̂.

P , stored in appropriately typed locations. , .

On accessing fields however, only approach 2 allqws a compile time
; check that the field name belongs to the same class as the instance being
; accessed./ For example, let "p" be a poipter to an instance and

"p{ height }" be a proposed access to a field "height" ih An instance of ,

; class "box". Consider the three approaches in turn with respect to this .J-\

field access.
: - ' V / , ■ i
: Al) The compiler can only check that "p" is of type pointer i “ The check vq

that it cdntaihs a value, ppinting to a "box" instance must be done at :/
' - ' S. - 'run time.

A2) .I'he compiler checks that "p" is of type pointer to "box" instances.
5 Np^ run time check is needed, since the compiler guarantees that no

pointer to an instance of class other than "box" will reside in a
location of type "pointer to box".

■ \|. A3) the compiler checks that "p" is a pointer with a class set and further . i ,
s ■ . . ■ ■ ■•1

that "box" is a member of this set. At run time however, a check must .'i

stili be made that "p" contains a pointer to a "box" instance. |

These run time checks* will involve a "trademark" generated by the ■ v-|

compiler for each class and carried round as part of each instance.
' - ' : #'MIn h, all approaches are allowed. Values of type "ptr" may be /||

restriction. |

70

aaei
y-'l

Structuré^Creation.

To create an instance of,a structuré in h, the programmer must specify
the class name and supply expressions which will be evaluated to initialise -

the fields. Note that uninitialised structures are not allowed. The class
name is manifest to the compiler, that is, class names are not values but
denotations in the same way as procedure names,in most lahguages. The type i

of the value returned by a structure creation is ,"ptr{ x }" where "x" is
the class ,name . This is the only way to"create ipointer values ; we will see

- ^later how values acquire a restricted class set of more than one member.
' 'X

Type (Decking on Stores• ' *

In a completely compile-time type checked language where pointer types
also include a set of classes, the compiler must check that a stored
pointer valu^ymatches the type of the location. This means that the class

set of the value must equal or be a subset of the location Class set. For
example, if "b" is of type "ptr{ x, y }" and "a" is of type "ptr{ x, y,
z }" then the assignment "a :== b" is allowed but "b := a" is not. This is

because "a" might contain a pointer to a "z" instance and would violate the

restriction "{ x, y }".

Creation of pointer types restricted to more than one class.

A structure creation results in a pointer type restricted to the
single specified class. Multiple class pointer types' are obtained;/ '
implicitly by expressions involving choice, or explicitly by declaration of .-1

initialised variables or constants such as procedure formal parameters or /-I
structure field declarations'.

t--_x

. ... '(Pointér typés# resulting from choice constructs.

Although h also has a "case" construct ̂ let us consider an example of
an "if" expression resulting in a pointer type.

3̂*

.' ' ' '-- ' ;■ -v. - '• . " "-■ . ■ .■•- .': . - ,."%- • •'- :'̂.: : . . 'r ' ' .71

if ... then hox{ 3 , 3 }
else.,'if ... then triangle{ 3 ̂ 3, 3 }
else, circle{ 3. }

There are two nested "if" expressions each with two arms. Let us consider
the second "if" expression. Its first arm produces a value of type

"ptr{ triangle }". Its second produces one of type "ptr{ circle }". The
type of the whole expression is "ptr{ triangle, circle }". Where a

construct invblving choice gives a pointer value on its arms, the resulting
pointer type of that construct is the union of the class sets of the arms.
Thus the first "if" expression aboVe returns a value of type "ptr{ box,
triangle, circle }".

Accessing of structure fields.

In some lahguages whether they support class restriction or class
freedom, a run time check ’ takes place on the access to check for a nil
pointer and also that the value points to an^instance of the, class defining

the field name used. For those languages wbidh restrict pdintef types to a
single class, no such class check need be made since the compiler
guarantees that the vàlhè will only point to instances of a particuMr

class.

The h compiler only allows a field access where the pointer type ' is
restricted to a 'single class and the field name is defined by that class.
For example, "p{ height } :== 6". If "height" is a "box’L; field, this is
only allowed if "p" is of type "ptr{ box }". No run time checks are
therefore necessary other than that "p" is not nil. ;' ‘

Since h also allows pointer restriction to more than one class it
must have some mechanism for "filtering" out unwanted classes t6 guarantee

a restriction to a single desired class. If "v" 'is Vpf type "ptr{ box,
circle, tridhgle }" and we wish" to* access the "height"- field of "v", we

must ensure "v" points at a "box" instance and satisfy the compiler by

r:'

restricting its type.

72

Restriction refinement.

A typical "case" statement has an evaluated expression, several
labelled arms and a possible default arm. A similar Lcqnstfuct in h
performs the refinement of pointer class sets. It is related more,

specifically to the "case" and union modes, of Algol - 68. [Wijn75] However
this construct is proposed as a limited form for use in languages with

pointers and structures but not unions"involving other types. (A similar
discussion of /these may be found in Berry and Schwartz. [Berr79]) The
syntax in h of the construct is given in the metalanguage proposed by
Wirth. [Wirt77]

testclause = "test" clause "is"
is-arm ";" { is-arm ";!' .}
"isnt" restrict .

is-arm = name { "," name } restrict .

restrict = ("use" name "in" j ":") clause •Î
e.g.
test p{ left } is

box use pbox begin ... pbpx{ height } ... end ;
circle, triangle use pet get.height(pet) ;
line : output("line has no height") ;

isnt : output("bad structure class")

The clause after "test" must be of a pointer type. The clauses on the arms
must all be of the same type. (As with other choice construcis y the arm’

clauses, if all pointer types, need not have the same class sets.) The arm
labels are structure class names. The Arm itself has two formats. The

"use" format performs refinement, the other does not. With the latter, the
effect is the same as a normal "case" except the selection is made on the
class of a pointer value not the value itself. The arm containing the name
of the selecting value class is executed. Each class name- may appear once

only in the labels of the "test" clause. No class name which is not in the
set of the selecting value may appear.

_;' -'' : ' ' ' -'̂ . .) ;̂' - V - ' .; V:Sa"' . ' ' '*' ' . -'%. ' ̂ .' ' ' -"' : ŷ./ ' ; " "k\ \
: ' ■ ,:' . ; ■ : ' 73

In the "use" format, the name after "use" is a heWj constant of type
pointer which is restricted to the classes in the labpl Tist of the arm.
Its scope is ;thé arm. It is initialised with the selecting valuei Let us

call this an arm constant. In the above example, '(pbox'' is of type
"ptr{ box }" aAd "pet" is of type "ptr{ circle, triangle }". Those arm
constants restricted to a single class may then be used to/access fields of
instances of that class - without a run time class check. Should none of
the arms be executed then the last, the "isnt'(arm, is executed as a

default. If the default arm has an arm constant then this has a pointer

type with a class set which is the selecting value class set minus the arm
classes. The compiler does not allow an empty class set;

Comparison with another approach.

Algol W also allows pointer type restriction but not complete freedom.
To access a field, at compile time the Algol W compiler checks that the
field name belongs to a member of the class set of the pointer value. At

run time a check is made that the class of the instance is the same as the
class of the field. The user may also explicitly check that a pointer

value refers to an instance of a specific, class by means of the "is"
operator. This takes a pointer value and a class name. It returns true or
false depending on whether or not the pointer refers to an instance of that
class. A fuller example is now given comparing the h approach with that of
Algol W.

H

let structure valu bê { vi : integer },;
1 et 8€ructurë = unary be

unrator : éhàr ;
ünrand : ptr{ unary, binary, valu }

} î y
let structure binary
{ ■ ; V - ' ;

biràtor : char ;
birandl, bifandr : ptr{ unary, binary, valu }

} ;
test tree is

unary use tu ^ '
, evalunary(tu{unrator },

eval(tu{ unrand })) ;
binary use tb in

evalbinaryC ;.tb{ birator
ëval(tb{ birandl }),

. evalÇ ,tb{ biraridr })) ;
valu use ty ty{ vi }

isnt : error("bad structure")

comment Algol W./; '
record valu (integer vi) ; y yfî
record unary ' . . ' '

string(1) unratpr,;; ' / -
rëferehce(unary, binary, valu) ünrand ■ =#

') ' ̂g- / -- - ' ' ' ' ̂ '. : 'record binary . 3

string(1) birator ; / , /
reference Ciunary, binary, valu) birandl, birahdr

) : ^ ' . . ' - ^' , ' ' . .' ' ' ' f/' . V >;if tree îë unary then : 4
evalunarÿ(■ühràtpf(tree),

eval(unrand(tree)))
else

if tree binary then
eyalbinaryC birator (tree), '

evalC birandl(tree)),
evalC birandr(tree)))

else '
if tree is valu then vi(tree)
,else ■ "

error("bad record")

In the examples, "tree" is assumed to be an appropriately typed

pointer variable. The "eval..." are integer returning functions, as is
"error ('.

r " ̂ ■■ 7̂ "-:“’,(7; -'■■•• ■ ■/'-'■ ■ “■■'- '"■■■’’■ "Y/,: / ' ' .» '
. ' ' '- ", /^ ' : 75

No run time class checks are performed on the h field accesses. The
only run time work involved is switching on the class , of the instance
pointed at by "tree". In the Algol W example, eyery field access involves

a run time, check that the field and instance classes match. There is also
the run time overhead of the "is" operations. The "test" clause is a more

readable construct in the same way as "case" constructs-are an improvement
on nested "if"s.

summary of structures and pointers.

The advantages of pointer types restricted to a single structure class
is that no run time check on field accessing is needed to ensure that the

instance class and the field class are the same. However these single

class pointer types can be restrictive. It is desirable/to allow a pointer
to refer to instances of, more than one class. The compiler Checks that
pointer variables or constants are limited to containing values of the
specified classes when a value is assigned to them. Languages having
unrestricted pointers or multiple classes impose upon their users fun time
class checks on field.accesses. This may be avoided by the introduction of
a construct allowing refinement of pointer class sets to ones with single

members, in the manner of the Algol 68 union modes. [Wijn75] It has the
advantage of reducing the amount of run time overhead and making the
structure of the program more readable.

Procédure Values.

We consider the introduction of procedures as values to an Algol our
second major fea,ture of the language. One of the major differences between
h and other Algols' is the status of procedures. We first consider

procedures in Algol-like lahguages and define some terms.
Strachey [Stra67] states

"A procedure, ..., may only appear in another procedure call either

Vf-

as the operator ... or as one of the actual parameters. There are

 :fc

'" :/■
,.'!x-«■•'.. 76

ho other expressions involving procedures or whose results' are
procédures. Thus in a sensé procedures in Algol are second clssh.
citizens “ they always have to appear in person and can never be
represented by a variable or expression (except in the case of a
formal parhmeter) ... nor can we write a type procedure (Algol's

nearest approach to a function) with a result which itself is a
procedure."

He advocates the raising of the status of procedures and says

"... I found, both from personal experience- and from talking to
ethers, that it is remarkably difficult to stop' looking:» on

functions as second class objects. This is particularly

unfortunate as many of thé ■ mOre interestihg : devélopmeht s of
programming and programming languages come from the unréstficfed

use of functions, and in phrticular ,pf functions which have
funetions as a résulté As usual with new or hnfaniiliar ways of
looking at things, it is harder for the teachers to change their

habits than it is for their pupils to follow them. The difficulty
is considerably greater in the case of practical programmers for
whom an abstract concept such/ as a funètion has little reality

un.til they can clothe it with a representation and so understand
what it.is they are dealing with."

A, number of languages have adopted the idea of first class procedures.

We may divide them into three groups for the purposes of this thesis,
‘ namely the Algols, the functional programming languages and the

experifflèrttal languages. The prime use of first class functions is in the

functional languages which eliminate assignment and the store from the
languagé. In our classification we include languages with assignment and

store since their use is primarily in a truly fuuctional manner. Languages
/ . ' / ■■ ■ ; ' , ,

' î"' 77

falling into this category are , LISP, [McCa62] PAL, [Evan6.8] and
SASL, [Turn79i Experimental languages. are Qedankén [Reyn70] and
ELI. [Wègb74] We regard Algol 68, [Wijn75] Euler, [Wirt66] Oregano [BerrXl]
and GPL [Barr63] as Algols as having fifst class procedures in some form.

In languages where procedures are not first class citizens, a
procedure is named in a declaration. Procedures may be nested within each
other/ . the scope rules determining which vaqiaîjles and , constants are
accessible from à procedure. The following example may be of help.

proc X
{ int xvar

proc y I declaring proc for "z"
{ int yvar

proc z(proc par)
{ int zvar

par ! call proc param I

non-local
environment
for "z"

}
z(y)

H-
y

}
Let us define the innermost procedure (or main program) containing a
declaration of a procedure P to be the declaring or creating procedure for
P. Furthermore', let us define the variables and constants accessible to P;
in outer procedures (or the main program), to be P's non local

environment. With ordinary procedures, this environment is built up

dynamically through thé - calls of its outer procedures;’ (that is, those
within which it is nestéd), culminating in a call of the declaring

procedure. In fact several calls of the same routiné may be pending at
any ônè time/, yeach with its own different environment conforming to the
static layout of the declarations in the program text. [Rand64] When a
procedure is passed as a parametér, its non local environment is still in
existence. (This is ensured by the scope rules.) This environment breaks

up and disappears on the return from the declaring and outer procedures'.

78'

À lengthlet: explanation'of procedures as values is given in. [Weiz68]
We attempt: Ù:’ briefer description here. In h, 'the above applies to

procedutè/Vhlués except that they are ahonyMphs assignable entities. That
is, they are expressible values which can be stored, passed as parameters
ahd ytretuihied̂ ̂'â results just like any other type as demanded by the
principle of type completeness. The value of a procedtire'may be thought of
as its body of codé and its non/ local environment as described ;above. / h
employs static' binding - they meaning of an Tdehtif 1er is determined from

the text of the program surrounding its use according to the scope rules.
A procedure value comes into existence at the point in the program where
its code is found. Note; that this occurs each time control reaches this

point so that it is possible to have several procedure values in existeiicet
each having the same body part but,With distinct ehVironments conforming to
the same static template. For ekample,

let constant m a k e . a d d e r •%

procedure,, (constant v ; integer
-> procC integer -> integer))

/procedure (t : integer -> integer)
t + V

let add1 <- make.adder(1) ; let x <- addl(5)
let subl <- makeiadder(-1 X ,; x : = subl(x)

Here we have a procedure value which takes an integer /parameter "v".
(Calling of procedutes in h is by value). It is actually a function and
initialises the constant location "make.adder". It returns/ wheh called,

another procédure value créated on the call.. On the first call, of the
value in "make.adder" the procedure value returned has , as part of . its y
environment, "v" initialised to 1. The result of calling' "make.adder" the
first time is assigned to location "addl". This value in "add!" is called
with'parameter "t" initialised to 5. Its result is "t + y" which eyaluates
to 6. Now "make.adder" is called again but this "time the environment of
the resulting procedure differs in that "v" is not the same one as was

79

created on thé previous call (although the outer environment is the same
). This "v" contains -1 so when the value in "subl" is called, "t"

contains 6 and v contains -1. Thus we see that even though the outermdst
procedure /value : had ,returned., unlike, ordinary procédures ̂ its contribution .JS
to the environment is retained and does not disappear. This is because, "y" ÿ|i

is nééded on the call of the innermost procedure value.

,s. Because of the anorijqiilty of proéeduré; values, thé concépt of recursion
can no longér be treatéd as a static concept. An example of such dynamic

recursion is/as follows, / /% --

let p 1 /procedure (-/) begin ... end > '
let p2 <-̂ procedure (->) if ok pi ()
! a call of p2 would hot be recursive !
pi := p2 ; ok ;= true
! a call of p2 would now recurse ad infinitum ! .

■ 'With ordinary procedures we may see by examining: the static texty which ' «/./j
' ̂ ̂ ̂ ' L * I

procedures refer to each other. Thé écopé rules ol h, say that a name is ///i
not known until After its initialising clause. (This eliminates let x <- W
X problems). This means however that we éannot write, ■ ' ’

L V let fàc <- procedure(i : integer -> integer)
if i ,> 1 then- fac(i - 1) * i else 1

since the name V’fac":Vis not known until after the initialising procédure
value. Not only that, but its /type is ̂ unknown until that time as well.
Our solution to this is to introduce a "forward clause which introduces
thé name and the type of any yet to be initialised procédure value. It

must precede the initialisation in the same . sequérice . For the factorial

function above it would be,

let forward fac be proc(integer -> integér)

Should "fac" be called before its initialisation then a run time error
would occur. ' '

80

Sequences, Déclarations and Clauses.

A sequence is a séries of declarations and clauses. It is made into a
'/ '. '-\,y :

clause by 'enclosing it in "begin", "end" or "(", ")". A program is a

sequence. Clauses are the main means of carrying out the algorithmic
processes in ah' ĥ program. They provide the means whereby actions can be

repeatedly on; selectively executed and values produced. The clauses making
up a sequence may nOt return a value, that is they must be of type void,
excépt for the clause terminating the sequence which may be of any type,
including void; The type of the sequence is the type of the clause which
terminates the sequence. Declarations always return void so if a
declÂfatloh terminates the sequence, then the sequence is of type void, A
sequence is ttie unit of scope in an h program.

Flow of Control.

In addition to supporting normal sequential execution as embodied by
sequences//h supports choice,,repetition and procedure calling.

Variable and Constant Locations. +

Our third major féature in" h is the ability to dynamically initialise

a location on: its creation and to disallow updating of. that location. A
. location may ; be created and named in a declaration. j The declaration
implicitly specifies what type of value the location may contain by means
of a,n initialising value. There are two forms Of such a declaration, an
in-line declaration appearing in a sequence, and a formal parameter
declaration appearing in a procedure value heading.

e.g. let count <- next(sum)

The initialising value may be any non-void clause, its type being knoWri to
the compiler . because of the complete compile time type checking. By this

+ The material on constancy has been puiblished in [Gunn79]

-i L

81

means the language excludes "uninitialised variable" errors'".

,For a procedure value formal parameter the initialising value is •
supplied on each call thus the type of, the value must, be present in the
heading. •

e.g. let.add <- procedure (i, j : : integer -> integer)
1 j " ' - :'T ' ^ . '

; It had been noted. [Gunn79] that sometimes locations purposely retain
the same initial value throughout their T lifetime. These are known : as.
constants in h and* are declared like;all ordinary variable locations except
the declaration is qualified by/the reserved W r d "constant". A constant v*
location, is created and initialised like a variable, but cannot be >ij

subsequently updated. Strachey:/[Stfa67] originated this idea stating

"Cohétâricy is an' attribute of the L-value, and is moreover an
invariant property. Thus wrheh we create a new L-value, ..., we

must decide whether it is variable or constant."

This cohtrasts with what are termed constants in other languages.
These typically are values manifest to the compiler which may have a name 1

bound to them. They are static in that this binding "takes place at compile ;

time;//The icbiistants in h are dynamic; because the initialisihg. value is *j
evaluated at run time and may be different, oh/different incarnations of the |
constant. For example in Pascal we may say, 1

' V - . ' . ' .const length = size - 52 /* size must also bq const */ i?|
' > /J

"length" is always bound to the same value. In h , we do not have this ' |
restriction. For example, , ' .

let i ■<- 1 ,
while i < 10 do ' .#1

begin/..é

g

An Example.

let atfucture, .STACK W ' " ■
{ cons tarif/ POP: ' : proc(->. integer) ;
constant iPUSH ; proc(integer ->)

} } ' . (
let constant stack.instance <r
; ; procedure (const Ant : limit integer -> ptr{ STAl?K,

82

let constant c <- i * i

■
end

Each time round the loop "c" is initialised by a different value. It may
not subsequently be assigned to within its scope. This eliminates the

possibility which would exist if :."c" was a variable, of èirroneously ■
- ' ' ' : ' ' ' ' ' '

assigning, to it. Constancy may be used wherever variable locations are //I
used. Such as procedure formal parameters, structure fields and vectors.

Constancy may also be applied to vector elements and structure fields.
Vectors of constant locations, being assignable values cannot have the ’f|
constancy checked at compile time, therefore some overhead of checking is
needed on assignment at run time tO vector elements. For structures the

constancy can be êheckéd at compile time because field names (and thus 'jH

their attributes,) are mahifest to the compiler. ' f -/i

■To finish this brief description of h we give a short example of how
abstract data types may be supported by, the language,. An abstract data .';î
type may be regarded [Lisk74] as à collection of operations made available
to the user, while the object operated on remains | protected'. This is/
possible in h by having a function which"represents the abstract data type.
When@ called this function returns the operations. The representation of
the abstract object is m d e part of the environment of these operations but

is not passed out but protected so that only the operations may access it.

We giye an example of a stack.

let constant stackint <- Vector 1. limit val 0 ;

/as

let sÊackptr <f P ; .
STACK:{ procedure (-> integer)

stackptr = stackptr - 1 ;
if stackptr < 0 M

stackptr := 0 ;
error (''STACK Underf low, 'n")

^ .Stackint [stackptr +1%],,
end;
procedure(constant; item :.integér ->)

;1 stackptr stackptr, + 1 ; '
if stackptr > limit do,

' ' -Stackptr := limit ;
error("STACK Overflow.'n")

V - stackint [stackptr] := itém , - ;ii
 ̂ eiui ' ' . 4

end ;
let constant opstack <- stack;instance(10) & /

constant popop <- opstack{ POP } & ./
constant pushop <- opstack{ BUSH } ; •/

pushoisX .1, ,), ;

There are five outer level declarations. The first describes a .
structure class "STACK" which, when created contains two constant , \ !
locations. One is for a procedure^ value, which takes no parameters and

■' ̂ ■. , ' ■ ’ returns an integer. The other takes an integer parameter and does not
return a result. The second declaration initialises "s fack;ins tance" wi th
a pibcedure which takes an integer "limit" and returns a pointér tb a • •'

"STACK" structure. When called,: ,the bodyof this procedure creates a
vector of the required size, which is the stack, initialises a top of stack ''/
index.and returns a pointer to a structure. This structure contains the |

two stack maintenance procedures. /

The third declaration, that of "opstack" is initialised with a pointer »
to such a "STACK", structure as described above . The reniaining two 4
declarations initialise constant procedure locations with the fields of the #1/

t ; Y " ' / ̂ ' :.. - - ̂)4
' ' f

structuré. . . .

The points worthy of note in this example are that , à different stack
is created for each call of "stack, instance", and that the only way to

access such a stack is by means of the procedures .returned in the ^̂ "STACK"
structure. The stack itself and its top of stack index are not available
for use except by these procedures.

I L !

CHAPTER 5

The of h.

We describe three aspects of the implemehtation of h on the PDF 11/40
running under the UNIX operating system. These are the compiler, the

int ermedia t e / code and the implementation of procedure values. Other

aspects of the implementation have either been covered in previous chapters
or are unimportant in the context of this thesis.

The h compileré

The compiler was written with a view to /portability. It produces an
intermediate code suitable for a code generator as described in chapter 3.
We briefly outline its structure and operation since the compiler plays an;
important part,in the implementation of a prbgramming language. ■

The compiler is single pass, using the technique of recursive
descent, [DaviSl] -for parsing the source. It/ consists of the phases of
lexical analysis, syntax analysis, context sensitive checking and code"

generation. These were layered on top of each other in the manner

described for Pascal. [Jens74] It also, employs a simple and reasonably
efficient error reporting and recovery technique. [Turn77] Initially the

compiler: was written in Algol'R, however on its completion it was rewritten
in h as a large working example Of the language. The language proved to be
perfectly adequate for/the task.

The Intermediate’ Code.

This was-designed using the lessons learned in the implementation of
Algol R but was free of the restriction of having to convert an already
existing low-level abstract machine code. It stilf had to convey the
information content of the source but differed somewhat from the Algol R

intermediate code due to the language differences and the lack of this

85

 J
constraint.

The intermediate code and code generator are not described here. We ■
concentrate on those aspects which differ from the Algol R implementation.<
The intermediate code is given in full in Appendix B. Also included in %%l
that appendix is the relationship between the source and the intermediate |
code generated.

The compiler proditces three files which describe the source
, information necessary for the code generator. : /These are,

(1) The size file . This contains three numbers, the number of variables
and constants, the number of“ strdCture definitions and thé number "of
procedure segments. Each Of these entities (structures, procedures
etc.) is uniquely, identified in the other two files by a number in

thé defined range » / . v %

(2) The data file. This contains descriptions of all variables, constants
and structures declared in the program. The information is structured
according to the nesting of procedure values in the source. This is
to retain environment information. Each Of these entities is
implicitly numbered according to its relative occurrence in the file.
At the end of the data filé are descriptions of ali the literals used

in the source and,the procedure types/ '

(3) The code flie. This contains the intermediate form of the code. This
is very simple and could be described as a kind of Reverse Polish for

expressions together with an extremely simple and regular syntax for
control structures. Code:? is output in segments, one for each
Î procedure value (the last for the main program). Segments; are not

nested.'Each segment has an implicit number.

This separation of code and V data makes the layout of the code
generator slightly better than previously with Algol R, but has the
disadvantage that/;all the data descriptions are held throughout the code

an

' -L '.%/s _;:Y ; /' .i- L"- L"'v-r X i ̂ ̂ -\'. . :: //' ' ' .- V " ' ' '. - '% ' X " y 4 y - '
. , . , •■ .: - ■■ ' 87

generation. In the Algol R implémentationj/tbe space required -to hold data
descriptors depended solely * on the static nesting depth of tie source. On
reflection we think perhaps the Algol R;method of combining data and code,

although perha,ps less aesthetically pleasing, is more efficient from a code
gene rat b r p oint: o f view. . //

The PDF11 implementatlon. ‘

Having designed h and written a compiler producing an intermediate
codeV the next:;step was to implement the /Language on an /actual machine. In

particular certain features of the language not in Algol R had to be
investigated; especially procedure values. Initial investigations showed
that^it would not be feasible to,generate in-line code for à number of h s
constructs on the machine available. This was so because of its 64K
addressability, it wasLespecially true of first class procedures and so it
was decided'/to generate code /for an abstract machine supported by an
interpreter. This had the advantage that effort could be* concentrated on
areasi not already covered by the Algol R implementation (thus’ avoiding
duplication of work). In fact, the intermedia te code and interpreted
abstract machiné code were very similar so that the code generator was
simple and straightforward to write.

For à great many of the intermediate code instructions there is a one

to one relationship between them# and the abstract machine instructions. We
will not describe the i interpreted abstract machine in full/ It is stack
based for the evaluation of expressions ; and employs a heap storage

allocator and garbage collector. We concentrate entirely on the
implementatibh of procedure values and begin by briefly describing the
storage structure necessary in the abstract machine for supporting h. This
structure would have been necessary even if in-line code had been
generated. General purpose registers do hot form part of the abstract

machine, it being a stack machine - , in any case their treatment would not

:' ' , " Y:// - ‘•■'s
88

have differed from that in the Algol R implementation.

Organisation of Store.

In the abstract machine for h, store is not necessarily considered to
be one cqhtigiious, continuous sequence of storage locations. Store is
divided into several areas. The areas are :-

Code Area V '
Here the abstract machine code is locatedé

Literal Pool
This is an area which contains all the literal values which cannot be
made immediate (contained in instructions as operands). At the head
of the Literal Pool ate the Procedure and Structure Tables ' containing -1
static information about each, procedure body and kind of structure in
.the program. These will be discussed later.

Heap This is a,h area in which space is allocated by explicit requests and

reclaimed when a request cannot be fulfilled. Only space which is no
longer accessible from the entities in existence is reclaimed. If the

request still cannot be , fulfilled the program terminates
(abnormally). Frames, structures, displays, vectors and strings are
kept on the heap * They are called heap, objects and have spàce within
themseives for storage reclamation information. At any point in the

. execution of the program, the first frame and last frame in the
dynamic chain are known and are referred to from special purpose

registers. . ■ •

In the execution of a program, values arise as a result of expression
evaluation. These are stored on one of three stacks ,èdch of which contains
values of a certain class and organisation; Two of these stacks contain
values which contain pointers into the heap, and are searctled 'when marking.;
heap'objects-during garbage collection. ,

 % . . ■-î. ' ' ';■ - '-r'■.--̂ /w-ù" ' ' :: # ./ " ' / ' :##
Pointer Stack -

■This is a stack which contains tempprary values of entities which

point into the heap (pointers; strings, vectors). That is they

contain the addresses of heap bbjects.

Procedure Stack ..V
îhis stack?-contains temporary procedure values. It is iqiplemented as
a separate stack for the same reason as we ;have a; separate pointer
stack; This allows procedure values to be separately idéhtified when

garbage collecting. A procédure value contains a pointer part and a

non pointer part, thus could not go on thé pointer stack.

Main Stack ' ;
This stack contains temporary values of entities which are hot
eligible for placement on ;they other stacks (booleans, charactersi

files, integers, enumerateds).

' \. ,
The implementation of routine values.

We now consider in detail the implementation of routine values, first
in general then specifically their implémentation in h. By the term
"routine" we mean either a procedure or a function, that• is, the

parameterised abstraction of a statement or an expression respectively. We
will , see that problems arise in the y implementation because when a routine
is assigned around in the same raianner as say an integer, a straightforward
implementation based on a stack is not possible. We emphasise that the

binding -of identifiers in h is static. This requires a different

implementation from that employed by languages such as LISP [McCa62] which
have dynamic binding.

Routine Values.

The . implementation of routines as assignable entities is best
approached by considering what we mean by a routine value.. .Again we refer

90

to Wéizenbaum- [Weiz68] for a more detailed explanation of the nature and
implementation problems of procedure values. Traditionally, routines are
considered to be control structures not data. In fact they are a hybrid

control and data structure. As a control structure, routines are bodies of
code which may be called from points in the program. There is however, a

data structure implicit in the call. Each routine on a call requires
housekeeping and local variable space. Let us assume for simplicity that
this data space is a block of storage, called a frame, allocated on the
call which disappears on the return since it no longer is required. Such
space could of course be allocated on an individual basis for each
variable.

Routines may call other routines in a manner controlled by the static
embedding of their declarations and the language's scope rules. We obtain
a frame for each pending routine call. These make up the dynamic chain.
The most recently called routine may access data in those frames of pending

calls of statically surrounding routines and its own local frame. The
static chain is where the local and non-local variables and constants of
the routine reside. The most recent frame need only remain in existence

until its owning routine returns. Because of the static nature of routine
declarations, a routine may only be called when its surrounding routines

have been called, that is when their frames are in existence. Thus, a
routine may only be called when it. is guaranteed to have a complete non­
local environment. Because of the LIFO nature of calls and frame
allocation/deallocation, a stack is traditionally used to implement
routines, the frame of the most recently called routine being allocated on

top of the stack. This topic is well treated in the literature [Rand64]

and we will not elaborate it here.

A routine value is therefore both a control structure (a callable
body of code) and a data structure (its non-local environment). Taken
together these two have been called a closure. [Land64] The environment is

91

augmented on a call of a routine by the local data frame. A routine value
closure then can only come into existence each time its declaration is met,
that is, when its non-local environment has been built up. This is done by
a history of calls terminating in a call of the deepest routine body
(statically) containing that declaration. If certain limiting conditions
of use are met, (non-assignable procedures) such a value may be called as

normal (even passed in as a parameter to another) and the implementation
may then make use of a stack. Morrison [Morr77] has shown how such

closures may be simply created, called and passed as parameters in a stack
based implementation.-

Assignable Routine Values.

Having considered the nature of a routine value, we have in h given it

full "civil rights". It may therefore be created and freely stored like
any other value, complex in nature or simple. However, it is the ability
to store such a value with complete freedom which causes implementation
problems. In the traditional Algols where routine values are not freely
assignable, a routine value comes into existence at its declaration. It

then remains in existence only as long as its creator's frame is in
existence. Even if it is passed as a parameter, the routine using that
parameter has to return, losing the value, before the creator routine
returns. Thus a routine value in such languages has a lifetime shorter

than the time its creator takes to execute. It is this fact which allows a
stack based implementation of frame allocation.

However when a routine value may be freely stored as in h, its
lifetime may exceed that of its creator's execution time. For example, a
routine value created on a call of a deeply nested routine may be assigned

to an outer level variable. Despite the return of those calls which had
culminated in its creation, the value still exists, living in the outer
level variable.

92

. . .., let p .
: ■ n ;/■ -
... proci ... proc { ... p := proc { ...

But what of the frames making up its non-local environment? If we had a
stack based implementation then they would be long gone, having been popped
from the stack on the returns of their owners. This presents a dilemma, /
because a routine value cannot be called unless its environment exists

(otherwise, "where would thé f ree variables be ?). Some method of
retention.[Jokh71,Weiz68] of its environment is therefofé esséhtial. This

can be achieved in à straightforward manner, borrowing from the stack
implementation, the display or the static chain méchénism, or for singly
allocated variables, the environment list of the SECD. machine. [Land64]
Frames now must be allocated from'a heap, where-Retention is possible. The

natural process of garbage collection of a : heap can mark those frames
forming part of a routine value which is accessible in the prpgreni at that

point in its execution. Anything not marked is made available for re-use.

To get round this problem of envirohments of procedures, languages are
L sometimes restricted. One restriction is to ,allow procédure ? values to

access ;/àny free variable in the frame for, the outer block and local
variables in its own frame since these frames- are always: accessible
. [Rich69,Gunh80,Turn76] Space for à frame can then be allocated in à LIFO
manner in exactly the same way as when-procedures were not values. Another
restriction is not to allow assignment of a procedure value to objects'
which may live longer than its creator's frame (Algol-68). That is, it
can only be called while the frames in its environment are on the static

■ chain. Furthermore, on exit from a call, the frame corresponding to that
call. (the head of the dynamic chain) can be thrown away giving the same
LIFO implementation as when procedures were not values.

Our simple implementation although stifficient, can be optimised to
save space retained in environments. One of the advantages of a stack is

#: . ; ." . . ' '' ' - " 3' - / ' 93

that the frames are dynamic in length, only being as big as they need be at
each point in:-the program. We can also superimpose expression evaluation
on the ! same stack. Unfortunately in our iniplementation, frames must be of

fixed size and have a unique cell for every local variable (including thé
parameters). Whereas with a stack, variables could be Allocated only as
necessary and share the same space.

if. ... ____
begin let X <"■; 0 ; ... end :
: else ' , ' • '
begin let y <- 0 ; .. .y énd

In# the .above example, "x" and "y" could share the same space on a stack
based implementation. With a heap implementation of a language supporting
routine Value’s: this may not be possible./ In the example assume the
ellipsis code of each branch created a routine value respectively.: accessing
"x" and "y" gibbally. The frame contaihing "x" and "y" woUld form part of
the environment of each of these routine values. "x" and "y" must

therefore exist independently in? the frame since they may each be accessed
by the routine-Values created in their respective branches.

This procedure value in the abstract machine for 'h' is a pair
consisting of

(1) the, address of a table which,, contains information relevant to the
execution of the procedure such a!s the start address of the procedure
segment,

(2) a pointer to an object called a display which qontains the addresses
of the frames comprising the procedure value's environniént.

.a

94

-routine value closure
-> procedure table

display —
-> level n frame
-> level n-1 frame

Variable and Constant Addressing

Each variable and constant, whether it be local to a routine or not
must be individually addressable • ' -Che compiler allocates for each one a
unique positibh,([for reasons given above) in its local frame. Since each
routine body is at some static level of nesting, the code generator knows
statically the location of all variables or constants accessed by the
routine. Thèse, are addressed by pairs made up of a lexicographic routine
level difference and a position within the framed The difference in
, -, X. ■' ■. ' - '■■ ■

routine level between a use of a non-loCal variable and its declaration in
a suprbunding: routine, is used at run time as an index into the current

display to access the eprresbonding frame. The level difference for local
variable^ is of course zero. This is similar to the corresponding
situation in a stack based implémentation of a traditional Algol. [Rand6,4]

Contents of Procedure Tables.

The use of tables is a device to save space and eliminate duplication
of information and/its associated movement between copies. The space which

the information would have occupied is now reduced to a reference to a

table.: : Each procedure table contains,

(1) Size of procedure frame. I,,, V

(2) Frame/layout information (that is, where the variables of each type
are stored).

/ I

-'A

95

(3)1 Procedure segment start address.

(4) Information relevant to the optimising of frame spacer

Procedure Value Assignment.

This is done by copying the closure value.

Procedure Calling.

Cailing involves four stages. ,

(1) Which procedure to 'call? This is simply established by an appropriate
procedure value pushed on the closure stack.

,(2) Obtain local data tspace for the procedure. This is creation of a
frame. The details needed are obtained from the procedure table whose
address is in the first part of the closure on top of the procedure
value stack. Fill in the relevant house "-keeping information such as

: the dynamic link, display pointep and procedure segment start address.

(3) Evaluate the parameters to the procedure in the current environment
and assign them to their respective positions in. the newly created
frame.

(4) Transfer ; control to the procedure, saving the return address in the
frsme and make the -change to the .new 'environment by making the new

frame the "current' frame.

. (2)-(4) are handled by the intermediate codevinstruction "call". The code
generator produces an equivalent abstract machine instruction which is
interpreted. /

Procedure Value Creation-

A closure is created by the "makeproc" instruction whose argument is
the 'number of ihe- procedure table corresponding to the procedure body.
This is an abstract machine instruction which the code generator has

' produced from an equivalent intermediate . instruction. The j/iable .̂is

. -
96

accessed and its address is made(the first part of .the closure. The second
part is a pointer to a display. The display is a block pt pointers, one
for each outer, procedure value. The non local envirbnmeht of the created^
procedure value is simply the non local environment of the creating
procedure (that is, the one containing the makeproc instruction) plus the

frame ; of thé creating procedure . This frame, is oh top of " the ' dynamic

chain. The. tioh local environment is held in the housekeeping area of the
creator/s frame. Thus the display is' one longer than that of the creating

routine.

Optima.nation .

We reconsidered the above scheme, which, having simplicity in

its favour, suffered from the inefficiency that significant amounts of
space could be used. It could be optimised to save some space. What we
intended was to eliminate the retention of unneeded variable space in

environments^ Davie's approach [Davi79] does away with ; procedure frame
allocation of Space and allocates space for each block. A block descriptor
consists of a pair of references, one to a block frame containing the
variables of that block, the other to a frame containing references to the
non local variables of outer blocks. On block entry space is allocated for
these and the references filled in. This ultimately means that only the

variables needed are retained, nOt whole frames although "a viable garbage
collector ... will have to be moderately sophisticated . It seems to be an
attractive solution but has the space overhead of additional housekeepihg
information for the garbage collector. It has the time overhead of
allocation and garbage collection, for a greater number of allocated units
and operations. With cheap store now available the space .problem is not so

critical as it might have been. Bobrow [Bobf73]: puts forward a proposal
for a stack implementation. : A stack is more efficient in terms of space
allocation/deallocation when this takes place at the top of the stack*.

Bobrow's proposal however involves copying of frames on the stack and is

% : / W , ,//:::;:gr:Y-'--:-

based on complex data structures. We feel that any advantage gained by
using a shack yin that manner is outweighed by the time overheads involved

in copying frames. His method is extremely difficult to follow.

We agree with the spirit of these space optimisations but adopt the-
attitude that a straightforward, easy to implement partial solution is a

good compromise. Our scheme only keeps those frames which are actually

needed. We feel that this is acceptable for the following reasons.

(1) Store is always becoming cheaper and larger amounts are available on .
machines. ’‘ ^

(2) Programmers are encouraged to keep procedures short/ If ^procedures
are say .30 lines long at most then they are unlikely to have many
local variables. (an interesting statistic frdm [Broo82] is that a
Ithird of variables in Pascal programs ̂ afe .declared at%% the outer
level.) '

(3) The implementation should not be designed with "worst case" in mind, r
that is, monolithic procedures with many variables, especially if this
means a solution which is more complex or burdensome in resources than

a solution for the "typical" case.

For a particular procedure value we may view its non local environment
as a collection of frames, one for each procedure within which it is
nested. On execution of the body of code for this procedure value certain
locations in this collection will be accessed. If a particular frame in
this environment is never accessed then it need not be referred to in the
display. That is, its corresponding display entry could be the nil
pointer. The frame would then be garbage collected^ /\For example, let
A,B,C,D be procedure values nested within each other, D being the deepest

98

proc !AI <---- accesses
{
proc IB I accesses

proc ICI -
{
proc IDI

' {

If G's code does not access any variables declared in B, then by the above
reasoning a pointer to B's frame perhaps need not appear in C's display

when procedure value C is created. However if D :dqes'access B's variables,

a pointer to B's frame must be part of D's display. But, D's display is
made up from C's local frame plus C's display, thus C's display must
contain a reference, to B's frame, even though it doesiriot access it itself.

Similarly, A's display (let us assume it is not af/the outer level)
must, contain all those frames referred to by itself,, B, C and^t^i If no
entry/^aë created/in this closure's display:for each global frame accessed
by these nested procedure values, then wheri < hhese values' riame into

existence their environment could not be completedi

Now we may generalise and formulate some rules about display creation
iri'afimakeproc instruction. The display created for a procedure value P is
formed from the display of the creating value C plus possibly the frame of
the creating value. This latter is only needed i:&;P or. ries ted procedures
within it access C s local variables. P s display uses only those frames
in C's display which it or procedures nested within it, need to access.
Thus,

P's display = some or all of C's display +
possibly C's frame'

The foilowing ;im;)ortant condition is arrived at. A procedure's frame must;
be part of every display created for procedure vaines nested within that

procedure, ripto the: most deeply nested procedure which:accèsses local data
within that frame. .

■’Ü

99.

Display Creation.

On procedure creation, making up the new display part of the value,

there are two actions to be taken with regard to frame pointers.

(1) possibly add the creator's frame pointer to the new display and

(2) copy certain frame pointers from the old display to the new.

So for each, procedure value at creation time we need to know, (A) whether
to put the creator's frame into the new display, and (B) which frames in
the creator's non local environment to copy into the new.

At compile time this static information must be built up for each
procedure value. The compiler keeps information about each procedure
value. (A) above is a boolean flag, the copy creator frame flag. One flag

is needed for each level of nesting. (B) is a boolean vector, the copy
display entry flags. One vector is kept for each level of nesting.

proc -
{
let X <- 0 ! level D ! .
proc
{ ! level D + 1 !

... proc
{ .. X .. ! level U ! |

V.-

Thus when the compiler looks up a variable, used at procedure level U,
declared at procedure level D it does,

copy.creator.frame(D + 1) := true ; !
i level D frame is needed !
for 1 ;= D + 2 U do

copy.display.entry(1, D) := true
! D fràme must be retained up to level U !

The information is put with other relevant data in the procedure table.

Summary.

We believe that h brings together features usefully employed in a
programming language. For example strings have been limited entities
implemented as character arrays. Some languages employing user defined ,

\ 10.0

structures claim.to be completely compile time type .checked. . In b this is
actually, the case having the advantage,of making the program more readable
and efficient. The procedure can successfully be an assignable value and

add to the power and expressivity of a language ; Its implementation can be
very straightforward, space probably being - a limiting factor. However we

have shown that a simple optimisation can reduce this problem. We have

introduced the idea of a constant location which may be initialised at run
time and not subsequentiy updated. This is, a useful addition to?a language
since it is the case that many "variables" are not updated. 1

1

--

CHAPTER 6

The Polymorphic Programqing Language hsl.

' K ’had "primarily investigated the incorporation and; implementation of

first class routines in a general purpose programming language. One

further area of languages and their implementation - which we felt, deserved
further investigatibn was that; of type polymorphism. That is, the ability
of programs to process values dynamically according to the type of the
value; The polymorphism refers mainly to the ability of locations to
contain values of more than One type but also to a minor extent to the
ability of/operators to take operands of differing types.

The nsl prograBmdng langage;

A process control language called PROTOCOL [HarlSl] had.been developed
which employed polymorphism and it was decided tO develop a new language
based on h, developing the polymorphism of PROTOCOL. This new language^
called nsl, also attempts to rationalise and'improve; the data structuring,
facilities in h. nsl was designed in collaboration with D.M.HarMnd,*" the

latter also writing the compiler for it. Thé abstract machine

implementation of nsl is presented as the final part of this thesis. " We
s tr es s ; again / that the language design was embarked upon as a vehicleî for
inves t i gat ion qf impTement a t ion techniques and is of minor r elevance. An
overview of nsl is given in this chapter, concentrating on those features

which distinguish’it from its predecessors. It is very similar to h in its
control structure therefore we will illustrate the language by means of
example except where hovel features or constructs/.different from h are
employed. The control structure uses sequences, declaraiiohs, choice and

repetition constructs similar to h.

101

:///.!,' . ■ ' : 'f '■ ■ ■ . _ " '

Most of . today's programming languages forcé thé./user to rigidly
specify the types of value which a Ipcation may contain. Other, languages
impoëé ho checking on thé programmer, treating, a value as a hit-^pattern to
be interpreted according tO the operation in which it is employed. We feel
that ' there is a middle course in languages where the user at some times

wishes to be ; ; res t rl c t ed in the , types he manipulates /and; at other times
wishes to be free. Whichever the case, he still must ' be * prevented from
nonsensical operations such as adding a logical to a function.

Milnér [Mlln7 8] s tates "

"A widely employed, style of programming ... entails/ defining
procedures which work well on objects of a wide' yariety ,...

flexibility is almost essential in this style of programming"

We refer to the ability of a location to hold values of more than/one type '''If
as polymerpéism . It has also beeh; interpreted to mesh the ability of
procedures to take parameters of different types ; hh.{ différent calls.
Strachey [Stra67].. considered polymorphism k.in' two ways, ad hoc and
parametric; %;

ad hoc
Here there isr,no single systematic way Of determining the type of the

result of an operation from the type of the arguments. He gives all
the ordinary arithmetic operators and functions as examples stating -'K/

"there may//be * several rules of limited extent ... but these are ’f]

themselves ad hoc both in scope and content". We interpret this to
mean polymorphism in its most general form. , , y

Parametric
This ; is a more limited form of polymorphism with regular rules.
Strahhey illustrates it by example. If we have a function

103

f : alpha => beta

which,maps values of type alpha into values of type beta and a list of

1 : alpha-list

then.the application of the function map,

map(f, 1) -> beta-list 1

gives a beta-list. Now this is the case whatever the types alpha and
beta. Thus we may say that the type of .map' is j,

map : (alpha: => beta, alpha-list) => beta-list

Primitive types.

The types of nsl may be split into two, the primitive types and; the

data structures, for discussion purposes. All values, of whatever type in

values of type-.alpha * . /rf

The type of the function contains named parameters. Its polymorphism
is of a simple parametric kind, alpha and beta^ could̂ ^̂ b̂̂ ^̂ regarded as
type-variables standing for tlie , actual types on a call.- This is a
restricted >fOrm of the more gètteral polymorphism because it does not
handle the case where say the list is made up of yalues of different

type. Some, work [Miln78,Burs80,Barb80] has been done on {parametric

polymorphism and we do not consider it further except where it arises vi
in the discussion of out polymorphism. - ‘ ' j

Strachey goes on to say "Polymorphism of both classes presents a ,'̂i

considerable challenge to the language designer but it is not one which we ’/'j
shall take up here". We consider ad hoc polymorphism by allowing:, types to //i
become, first class citizens of à .language. This approach has also been

adopted by ELI ("The inclusion of modes amohg . thé legitimate values Iff fa t
language allows modes to be computed,j / providing a very powerful
definitional capability" [Wegb74]'). and the purely functional language of
Barbuti and Martelli. ,,[Barb80] .

•■■a

1 -' '': ' - "t. . / ' ' " / :': i/'". ' ' -' ': :: ':td4 -'-/ ' ' .' - - ': ̂ -' '̂' , ̂ ̂\ ̂. . \ÿ.. : .

y nsl, have^ thé same rights. The primitive types are, integer, character,

j logical, user defined enumerated procedure, function and type. The data ;
structures supported are lists, vectors and user defined structures. Tbese
are discussed in a ; later section. Note that characters have not

/ ' disappeared as was suggested in the h section. This is because strings can/
' be simulated, not by vectors,, but by lists ' of characters as in /
; SASL> :[Turn79] Also procedures and. functioff types are ’ not qualified by
s/ ' their parameter and result types as in h. This’ simplifies' the language

considerably without reducing, its power. This is also the approach taken

■ Vy by the polymorphic language SASL. [Turn79] The introduction of/type "type"
is a simple way of allowing polymorphism so that the type of a value may be
determined dynamically and processed accordingly. Thus we have elevated

type to first class citizenship. With the introduction of type "type"
comes operators for dealing with such values. For example, there is the

■ monadic operator "typeof" which takesfany value and returns a value of type
"type". We may: switch on this type value to an appropriate piece of

/ code to handle values of that type. This is, similar to what happens during .

pointer type restriction in h, büt is not a special case and is treated

unif ormly by existing choice constructs. We' do not need to introduce an ,
analogue of the h "test" nor do we need/ a plethora of predicate functions

(isint, ischar etc.). For example, consider a polymorphic procedure in
nsl which "prettyprints" values. A list must he printed enclosed in
brackets and its elements comma-separated.

+ a discussion of ■ user defined enumerated types in nsl may /he Iseên
in [Harl82]

105

let pretty const :=
)rocedure (v) /

case typeof v of
int ; ...
char : ...
list :

if ~ nil V do
repeat
begin ’

pretty(hd v)
V ■; ='-t'l: V

until nil v do
out(')

out(')f)
end

As will be seeh, the implementation supports type "type" in a very
straightforward manner.

Polymorphic Variables and Constants. +

Polymorphism extends to locations. In nsl, every location, whether it
be in-a data/structure Of int-line, has attributes affecting its Constancy
and the type of the values it may contain. We have defined these
attributes to be value constancy and type constancy respectively. We give
the scheme below using in-line declarations as examples, but stress that
the attributes belong to all locations. In keeping with h,. all locations

are initialised on : creation, this being reflected in the declaration

syntax.

We define a location (also referred to as a cell) which is non-
updateable after initialisation to be value-constant. This is like the

. , f
constant in h. We define a cell which is restricted to containing values
of a specified type to be type-constant. We see "that four kinds,, of cell

may be declared in nsl depending on the type and degree of constancy.

+ the material on polymorphic variables and constants has been published

in [GunnSll - , .

%/ : ;;%/// -y ' , '/^ " - . - ^ y ' '///^^ /%'/.'
/ - ' '. ' . -. " ... \ ' .. ' /' ' ' . :/ 'ïoë '
7. . ' ' : ' > 7: .3^/ - - ' ' : :/'-_r... ;; .

1- / ^ ̂ ' r-
7'- ,r These are,

/'.' , (1) A general purpose cell with ho attributes of constancy.

/ e.g. let c := exp()Ù
M. t ̂\-. %y '"c" may be updated, by values of any:,-.type. It is a, polymorphic
f Variable. It is the variable of GEDANKËN) [Reyn?0] and Euler./[Wirt6 6]

(2), A type-constant célî.
' - \ ; '

e.g. let c int := exp()

The ceil is ah integer variable which must be initialised, and updated
,/with forily integer v a l u e s . It is the variable of such languages, as
Pascal. In:/fact', the declaration is more powerful than at . first

appears. The type which appears after the "let" is a type literal but

.may be any type-valued expression. This is illustrated by the
(/slightly contrived) example.

let c (iT i = 6 then typeof q else int) ;= exp()

fDepending on the value of "i", "c" will be allowed to contain only
integers or values the same type as that in "q"n »• i•/rf

(3) A value-constant cell. ■ , . - .
- 'I

e.g. let c const := exp()
. ■ ' . ‘1 The cell may be initialised by a value of any type, but once

1
itiitialised cannot be subsequently updated. This is the dynamic
constant of h, except that the type of the initialising value may not

\ . be known until run time.

/ - (4) A type- and value-constant cell.

e.g. let c const int ; = exp() /’ lf|

This cell may only be initialised by a value of the type specified
(either statically or dynamically) and subsequently can not be

updated. ■ . 1 |

A'-.//;-' '' / / : S " ' " ' T ' /' ' '.' '
 ̂ ̂ -107'

/> It*'may be seen that our scheme differs from other approaches to
/ " ■ , . .„■ , / / W . " '.• ,7. polymorphism, for example/the union of, Algol 6 8 , [Wijn7 5] We have adopted

the approach that a cell may be restricted to a single type of be ffee to
,. contain any type. This contracts with the idea of cells being restricted

, to certain subAets of types' (unions). We think our scheme is simpler and

7 does not lose expressivity through its generality.

4 '

i/ ;
-:r:

treated. These rules determine the.types required in and produced by stich

a construct./ We give a rule for an nsl "if" expression whose syntax is

similar;to that for h.

"if" { boolean } "then" T1 "else" T2
=> if T1 = T2 then T1 else { any }

"Tl" and "T2" may be regarded as type variables. The rule states that the
clause after the. "if" must be of typê boolean, since this may not be known

at compile time, the compiler checks that it is of type any. If it is a
type other fhah these a compile time error is given. If the type is any,
then a run time error is given if the type turns out not to be boolean when

the expression is evaluated. The result type is T where/both arms are of
type T, of any where they differ. Our scheme detects .type errors at
compile time where it can, otherwise at run time. For example, •

let t char : = if a or b then
' ; else'y'

■^e/ctéàking,,^ - J

' : At this point it is perhaps wqrth" examining the static and dynamic li||
nature, of bur; polymorphism with respect to type checking. We demonstrate 7 J|f|

C our ^method of type-checking with some examples. First we introduce the; :/// ' '- 'ff' :'• ■ ' r .V • 4 . ■ * • \ \ \ y '
) type, "any". "Any " is our compile time notion of polymorphism, that is, it " I

is the type of a value whose type is not known until fuff time. We use a t
fev,// , . ' ■ ■ *3/-. . . :/ - type rule' associated with a syntactic construct to define how types are i

/. ' - ' '3^^ :/ y " . . ' . /. ^
The compiler can/tell that this produces a character at run, rime. If "a" 3j

'vM''7/ . 3 -3/3 '.7;
........

3 7 ̂' ' '. - ' ' - . . ' - %;
' / lÜB

and "b" are known to be booleans then there will be no run time-type check
at all. Furthermore, the compiler need not generate a run-time/check that
the value produced before "then" is boolean because the use of "or" will

ensure this. -, , % ^

 ̂we believe'i bur apprOach is simpler although not as powerfully compile
time type éheckèd âs others; [Barb80,Miln78,Deme80] In these approaches the
above "if" claiise would be illegal if the typés of each arm were'different
Checking at run or compile time is a design tradeoff . The authors mention

above/dO not have any run-time type checking siribe they wiSh/type errors to
be detected as early as possible. "a further advantage of static type
checking is ... computational efficiency, since run time checks are no
longer, necessary". [BarbSO] In return for this seeming advantage they
acknowledge that their polymorphism has to be restricted.

"it is very important to be able to perform type checking at

compile time, even if this entails some restrictions on thé type
structure" [Barb80]

73 . ̂ ' - '"pur view of types precludes run-time type-checking. Thus we have
been led to devise language restrictions" [Deme80]

•,7/
■1'

"everything concerning types is done at compile time.('v although
it does impose constraints on the use of types" [Miln78]

We, like the authors of ELI, [Wegb74] do not restrict the programmer
to only performing actions type checkable at compile time only. Dynamic

checks are imppsed where insufficient information is available at compile

time to deduce and check types. We refer to Strachey [Stra67] who says

."The decision in GPL to make types a manifest/ property of
expressions was / a* deliberate one of■ >■ ' ' " " ' design The

e.g. p{ fl } - selection
6 j} “ position

opposite extreme is alsO worth examining. This --scheme of
dynamic type determination may seem to , involve a great deal of ...

extra work at run time, and it is true that in - most ,i existing
computers it would slow down? programs considerably. However the
design of central processing units is "not immutable and logical

hardware of the sort required to do a limited form of type ./t
determination is relatively cheap. We should not,reject a system / <
which is logically satisfactory merely because today s / computers 7|
are unsuitable for it."

We also feel that such a scheme should be considered, then perhaps in the

light of'léxpèriehce using it, lessons may be learnt about its usefulness.

Data Structuring In nsl.

hsl .provides, three kinds of data structure each of which has its own
particular characteristics^but all of which are treated in a uniform manner

in other.areasThey are vectors, user defined structures and lists. The

former “two are dès cendant s of h ' sg data structures, the latter is an
addition tof. the language. The list has been implicitly used in a

restricted form in other languages. Its worth has been recognised and
exploited in nsl. In addition to being able to access data structures in

the "usual"/way ’ (e.g.* integer subscripts, fields) we also allow the
elements-of any data structure to be accessed by its (integer) posi tion ;
Normal access is called selection to distinguish it from pbsitiqhàT access.
There is a syntactlc differentiation between these kinds of access.

..w
fl

:7>. s ■■ / ,V
7 3 3 : 1 1 0

Vectors*

Vectors consist of polymorphic variable locations (i.e. neither type-
nor value-constant) selected by integers within certain bounds.

Lists. 3,

Lists consist of a series of polymorphic values (i.e. elements are
not updateable since they are not locations). Although lists are
characterised by.head and tail operations in the manner of SASL [Turn?9] we
also allow selection by integer in the range one to the length of the list.

Structures.

User defined structures differ from h in that

C1) they add to,the types of the language

(2) they, may contain type- and value-constant locations.% Type constancy
must be manifest to the compiler. ; ' f-

(3) field selectors are values of a new type with all bhe rights and
/privileges of other values.

/Consider the following example of a structure definition.

'structure'/tree (element ; left, right tree)

This :'introduces two new types, tree (a pointer to a tree structure) and
fid.tree (field of tree);/ /Each tree structure has three fields, two. of
which are type constant and must be tree's. Five literals are introduced.

tree, fid.tree of type type
element, left, right of type fid.tree

Note we prefer that new literals share a syntax and scope with

names. [Hari82] Also type values are underlined by the compiler. Thus we
may write expressions such as,

;- / ■
. --'y."' ■■

1/ ' ^ / 3 . ; -'7^^ - ' / 43

let fixity const fid.tree :=
if postfix then right else left ; . ;

tree.ptr{ fixity } :ÿ ...

Here a field selector initialises ia: type- and valhe-cOnstant location. We
, / .. '/■ ' ■'"'3 ;:3 ■ - 3v,

know of no other Algol which allows field> selectors of user defined
structures to he first class citizens.

Null Data Structures*

Each data structure type has a single null value of that type, that is
there is a null vector, a null list and a null for all of the user
structures. The section on enumerated initialisation shows how they may he-
written. '

Creation of Data Structures*

Creation and initialisation of data structures is by one of two
cohstfùbts common to all types of data structures. These specify what kind
of data structure is to be created,and provide initialising values for each
elemept. Vectors need additionally to have their bounds specified. A
missing lower bound is taken to be one. Because the creation constructs
may be used to build lists and user structures, if bounds are specified for

these, the lower bound must be one. The upper bound must be the number of

fields for a user structure or else is interpreted as the length of a list.
These: constructs are, - 3y

Enumeration
The provision of an individually calculated initialising value for
each element in the data structure. This construct needs a, list of
initialising expressions and a value of type "type?'; which must be a
data structure type. A lower bound may optionally be specified.

Should the.initialising list be empty then this is taken as the single

null value of the data structure.

112

e.g. vector at m [a, a + a, a * a]
(IT X then list else vector) [m, q, 1 + 2]

tree[6 , tree[4, tree[], tree[]], tree[] 1
list ['s', 't', 'r', 'i', 'n', 'g']

Lists of characters have a convenient syntax. The above example may

be written "string".

list []
vector []
tree []

These are the null data structures for the corresponding types

Replication
Each element is initialised using a single expression. There are two
forms. The first is where the expression is evaluated once only, its
result initialises every element of the data structure. In the
second, the initialising expression is re-evaluated for each element.

In both the lower bound may optionally be specified as above after
"at" and the upper bound is optionally evaluated after "size" or

; "upto". Examples are now given of the first kind.

vector at m upto-n value a + b
list size 2 0 value ' '
tree size 3 value tree[]

Examples of the second kind are,

vector at 1 upto n eval f()
let i := 1 ; let j := k
h := list size x eval begin i i * j -> i end

In the latter example "h" is assigned a list of the powers of j. A

variation of this second form of replication allows the position of
the element to take part in the initialising expression.

e.g., list size 5 witth k eval k *. k , •

This produces the list of squares 1, 4, 9, 16, 25. For, each element
integer cphstant "k" is initialised, with its position: ,3

e.g. V := vector at. in upto n With p eval p + m - 1

For this latter vector "v", v{ i } = i, i - m,n.

There are a variety of operators on data structures such as,

upb, Iwb ..- upper and lower bounds Of, a vector

sizeof -size of a data structure
.nii - a predicate testing for a null data structure
hd, tl, append, prefix, join - for lists.

Lists may also be "sublisted", that is, a list may be extracted from
another,

In nsl, general purpose routines may be written to handle all the data
structures in a program. As an example we give a functioti value which
returns true if all values in an arbitrary data structure are of the same

type. '

let issametype :=
function(ds)

" - begin ' " . t,
let top const, int := sizeof ds //
let ty const type := typeof ds{ | 1 |) y.
let pos int := 1 /■,
let same bool := true -
while* pos < top and same do 3 /
begin

pos := pos + 1
same := ty = typeof ds{| pos |}

end ‘ .
-> same
end

The function takes a parameter which is any data structure (we have
omitted checks for it being a data structure type for clarity 7). The
constant "top" is initialised with its size and "ty" with the type of .its

first element. Vpos'h is a counter which is used., to determine which

M ' M)

position in the data structure we use in our check f of "type. The loop
consists Of 7 Stepping up the data structure comparing the type = of each

element with that of thè first until we reach the end or one is found which

differs, The value of "same" is returned as the result.of the function.
Note that "issametype" may be applied to any data structure*

For example, ,
issamétypeÇ list[,1 ,2,3,4]) gives true
structure itree(el : int ; 1 , r : itree)

let p := itree(6., pi, p2)
issametype(p) gives false

Routine values in nsl.

These are similar to h in that they are values in their own right.
However unlike the myriad of possible procedure types in h because of
differing parameter and result types, there are only two in nsl, procedure
and 7'function. Values of the latter return a value when called . Since
functions are polymorphic and can return ; any type, the type of the result
does not form part of function type. That is, a function may return
different types on different calls. Similarly, the parameter type does not
fofm part of the routine type. This is the approach adopted by

SASL. [Turn?9] Routine values take zero or one parameter, however this
parameter may be a data structure if several values are to be passed in.
Parameter passing, as in h, is call-by-value. Some examples are now given,

procedure () z := z + 1

function(z const int) y + z
let sum : =

function(Is const list)

let s int := 0 /
for p := 1 to sizeof Is dC

s ;= s + Is 1 p)
-> S , " 7
end

let ty typé := int
let f- := function (par ty) .
£(6) ; ty char ; f(7);i

The second call of f would fail because thé type cOhstancy expression
result C; t^ evaluation of "ty") would give character. Another example

is, -,

■ ... 115

Multiple Parameters.

A convenient syntactic form of a list which is an actual parameter is
to separate the elements with commas. * 7 ̂' ,/|

v i

However' if a single value is passed it is of course not made into a list.
On entry to : the fohtine value type checking takes place if the f ormal /j
parameter is type-constant. , .

Similar to the actual parameter list syntax sugaring âs/ôĥ ^̂ ^̂ formal / - ,
/ - ■ . 7 ■ " 7 7 ?jparameters. If it is desired to pass in fixed length actual parameter

lists, then a familiar syntactic form of a formal parameter list may be /]
given.- For exampÀ/. ■ i ' J

procedure (q 3 m const / t int ; x const? char) /I

This heading means that the actual parameter value must be passed as a 4- 7^1
list. Four local cells called "q", "m", "t" and "x" are declared with the
attributes stated, each initialised with the7\Corresponding element of the
list .. Typer checking " takes place on initialisation. This mechanism we

believe allows the prograniner complete flexibility or rigidity, whichever
he wants. . •

Type.checking is performed on the.CaTl if the formal parameter is type
constant . A point to note is that the type constancy of the formal,
parairieter , may also be calculated on the call. This allows a form of
parametric polymorphism. For .example , • ,. ,

y

■' . r -,'■ >Vï< / -.. *' / ' . -. ' '--A-.-. '- - - ,,-.• ,- -r ' . - - ,t - , ? .'>-.-,.f .-,

■ri- 116

‘ let fred ;= function (t type ; v t)

The type of‘ 'V' is determined by the actual parameter passed To "t".

To complete this section we give an example of an nsl program which
provides the stack abstract data type given in the h section. -

! a polymorphic stack,!
let hew.stack :='

function(s const int)
begin "/i;

let stack cohst := vector size s value 0
let sp int :r 0
list ■% -

]
end

function ! tos !()
‘ IT sp > 0 Then stack{ sp } else 0 ,

procedure ! push Î(x)
begin

sp := sp + 1
if sp > s then
begin end else stack{ sp } x . /

end ,
procedure ! pop I ()
IT sp > 0 then sp := sp - 1 else begin end

begin
leff tosj push, pop := new. stack(15)
phsh('9%?)
let a := tos () H- 1
push(a)

end " -

À call of "new. stack" takes a limit and returns a list of the stack
maintenance routines. Note that there is no need to declare a structure in
which to return them, a list is all that is necessary. /; Such a list is

returned in the call above and stripped, its elements initialising three
routine variables.

7

^ yv. .. / ; : ' , "- :., , .,x

g;:":" - J .//' ' . . ./ ' - .3-/7^- : </%/' \'
3 , ' ■ ' ' .

CHAPTER 7 >

r": y' : : ■ ' ,3,. 7:y ■The Tagged Architecture Machine Implemehiàtiùn of nsl;

V. '-: This section describes the implementation of ,ns 1 from the Istahdpbint
/ of those features rarely found in other languages* These are/constancy,

/ polymorphism, use redefined types:, orthbgcmaCL ; data structurés, and * field
selectors and routines as assignable values.3 ̂ ' It examines the
characteristics of these features in order to subsequently show how they

are implemented. They greatly infduerice/the/architecture of the7underlyihg'
abstract machine which is described. Finally it highlights several
important instructions such as those for routine calling. Appendix C'
additionally describes instructions for data structure management./ It also
shows how the list as a data type in a language can be exploited.

/' ' ”

Main; Design InflnenCes.

The machine was designed for the implementation of Algol-like
3 3/ ; ' ' ' t : . - : . ' ' . - ' ' - . . " / : 3 ''■ polymorphic programming languages in/general and of nsl in particular* Its ||

instructions therefore reflect the high level/operatiohs ih such languages, |i||
and are not /primarily intended to be hand generated. The nature of the

' ' " . '/ ; machine draws,from traditional architecture (especially stack machines for, , !
expression evaluation) but is mostly influençed by the characteristics and //I

data space requirements of polymorphism, routine values and data '\i

structures. These mainly show their influence in, the structure of the

store/which is not a totally linear store but is segmented in thé manner of

a heap. :

In character, the machine is related to the SEpD machine [Land64]
however it attempts to minimise aome of the inefficiencies.inherent in that
machine/w^ it is realised on current architectures. The SECD machine

implements applicative languages with no assignment whereas ours is for
A1go1- l i k e g e s in which assignment and the store play a major part. "

3 ' ' ' ' . - " , ' ' - - ' - : ' - ' - - 7 1 1 7
' ' ... 3:_____ ' ' .7 . ' . . __________________

- I
y

3 / / ' ■' " " ‘- / TV ■■ ■' ■ - ■ ' \ - . ., - ■' ■ 118
1

Our tagged architecture model (TAM) is an abstract machine '1' ' // ' ' ' ' :/3
implemented by an interpreter. The compiler: generates this code directly -7

- ^ ' f 'because it is radically different from’today's architectures and could not

realistically be generated in-line by a code generator. The following were
major considerations in the store design. ' ‘

Routine Values' - ■
As wé have seen for h, a routine closure comprises a table, a display
and the body of code. Space for .‘these must be allocated from a heap.

Data Structures.
Broadly speaking, a data structure may be considered to be a
collection of locations or values. Again these data structures need
to be allocated from a heap.

Run time type- and constancy-checking.
A program written in a polymorphic programming language, by its very

nature may not be able to be completely type checked at compile time.

This means that any machine supporting that language must be able to
check types at fun time, that is,: typés must be identifiable at. run
time. This is usually performed by some kind of
tagging, Ellif68,Iifyer78,Feus73,Feus723’ mechanism where ; a value carries -
round ...an indication of which type it belongs to. The compiler may
also not be able to check whether a constant location is; being

assigned to or not, whether it be type- or value-constant. In This - -/ ' "̂1
case some run-time check must be performed by the implementation.

The above considerations mainly reflect/the aspects of a polymorphic
programming language which differentiate it from traditional architectures.

Although much of nsl is traditional it was felt that its implementation
should be designed from the position of those aspects considered to be j*
novel. This approach proved encouraging because the traditiqhâl aspects of
the language, fitted easily on top. We thus designed an ideal machine

:̂; . -T--̂ ;%ÿ̂ -' ^-/\:'^ -"'%' -i:v:\.""' " .'-'A.:.' " ..%r- (. . .. ' k _\ - . : ' /%y r.' . ,' : ;;
>ÿ: JS.

taking -heart from .Strachey's comment [S,tra67] "We should hot reject a
system"which is logically satisfactory merely because today^s computers are
unsuitable for it". Myers [Myer78] is of a similar opinion saying

"The similarity of the* architectures of today's systems-to that of
earlier systems can cause us to become complacent about the

subject; we look about us and see ... that the architectures of

current systems arg virtually the same as those of earlier systems.
... As a result, the architecture of future systems remains the

FeuStel [Feus73] encourages self defining data and says

"all data elements in a computer memory [should] be made to .self-
identifying by means of a tag ... such a machine architecture may
well be a suitable replacement for the traditional: von Neumann
architecture."

Storé Organisâtion.

Fundamental to the design df the machine is the organisation of its
Store.'/ With/its simple organisation it is found that many high level
language features may be supported. The sfore design w;as based on the
observation that data could be held as collections of locations, each of
which needed to be individually accessed. The store is segmented into
allocafable, arbitrary length blocks of cells.

Cells•

cells are all the same size and contain type-tagged values. Each cell
is divided into three individually accessible components, two of which are
one bit flags, the other containing a value. Figure 1 shows a cell and its
components. The two flags are the value-constant (v) flag and the type-
constant (t) f la g. >

V.. . ' . .

-t; '̂ ''/C' ... -{/ . " v% ''" v;::' . ''̂ .J y--- -
I "- < ' ' ' ' ' / ' . ' ' ̂ ' ' 1 2 0

Figure 1

r .

;

t % C L U C k L

If the value-constant flag is set then the cell value contents may not be
updated by certain instructions. If theC type-constant flag is set,the cell
value may only be updated by another value of the .same type as that of the
value already in the' cell. Each value belongs to a single type. This type

is carried round as part of the value. All valuesgare the same size. Thus
a value is made up of an actual value part and a type tâg% We depict them
separately in figure 1 but emphasise that they are inseparable.

Blocks.

A block is a linearly ordered sequence of cells, .flocks are accessed -
using values whose tags must be one of a special subset of the types

supported by the machine and whose actual value part is a reference to the
block in store. There are machine instructions which result in the
creation of a block together with an appropriately typed reference .value.
Thisàiblbck reference value must be held in some cell. Figure % shows a

block!

■>'r

'v:,

121

Figure 2,

I !

Blocks disappear (via garbage collection) when no value references them.
Cells within a block may only be accessed by specifying a block reference
value and a position within the block or a selector value. These two

values constitute an address in the TAM machine. There is no way to refer
directly to any cell within a block.

Values.

Values are made up of a type tag and an actual value. During certain
instructions and operations this type tag may be checked for consistency.
In non-tagged machines, the type of a value is determined solely by the

122

context of its use. A tagged machine however can determine that the type
is valid in the context of its use and furthermore can support polymorphic

instructions which use that tag to determine the course of action of an
instruction. The machine supports a wide range of implicit types, some of
which are essential for its own operation, others are the types provided

for use by the polymorphic programming language. The user may also define

his own;types by means of the Structure and Enumerated Tables described in
a later section. We differentiate between the non block reference types

and the block reference types.

Non-Reference Types.

These are the values whose actual value part is not a block reference,
that is the value is totally contained in one cell and is not a reference

to a block. Some are straightforward such as "boolean", "character",
"integer", "position" and "type". A value of type "position" can be
considered to be an unsigned, non-zero integer which is the position of a

cell in a block. The first cell is at position one. Other tags are
provided for the internal consistency of the machine ; these are "error"

and a special type "any". New data types may be defined. This allows the
supported language to generate new tags and provide tables to support the
new types. For a discussion of these see later.

Block References.

As mentioned above, a number of values have an actual value part which
is a block reference (depicted as a pointer in the figures). These

reference values have type tags reflecting the use for their corresponding
blocks. These values are solely internal to the machine in that the user
is not aware of them, such as "frame", "stack" and "environment", or they
are the implementation of user data structures, such as "list" and

"vector". A special actual value, nil, is used where no block is
referenced.

123

Registers.

The program in execution is represented by a single block reference
value. This points to a block, the same size for every program, containing
values used as implicit operands in certain instructions. That is, each
cell within this block has a special function in the operation of the
machine. We will call these cells, registers and give them mnemonic names.

There are three groups of register, namely, for stack handling, for program
operation and for data description. Figure 3 shows the Register Block for
a program.

Figure 3.

SB o---

ST

ST
....j

C S T

C -R c_o

S T ' S

124

The Stacks. ,■ - ,■ „ / ■ ' ' /-

There are two stacks, one for expression. eVailiiktion called the

evaluation stack, and one for routine execution housekeeping called the «1
0 / r' " . ' F ' ' ^

control stack. A stack is a doubly linked list of blocks. Each cell in

the blocks (apart from, a linkage cell* at either end) cbntaihà a value on ;.'H

the stack. Each stack is maintained by. three, registers, ^Tbese are .ei- ' /vT
SB : evaluation stack base (type "stack”)
ST- - ... : ; ZevMuation stack :to:p- (' "d̂ ack!'̂ ') -

SB : evaluation stack position ("position")s '£à

CSB : control stack base ("stack").
CST , controlAsiack top ("stack")
CSP : control stack position ("position")

The stack base register ref ers to Tthe Ibwest block of the stack. The r
stack top register refers to the highest' block. All blocks witkin a stâdk
are* the same size, although the evaluation and control stack block size may

be différent. All blocks except the top stack block are considered to be"
full. The htpck' posit ion régis té r contains the position within the top

block of : the ; highest ubed cell. The lowes t cell in each block contains a
reference to the previous block. The highest cell in each full block
refers to the next block in vthe stack. Figure 4 shows the evaluation
stack.

ÎÎ

Figure 4
sVocV :

I -
i :

s L cV ; ■ •"

I

I c^:c.cV ".

■ sVc'V-

j-'..» B 9

i sIa cV:

.X/

/

slo.cV A&/W.su.
cV.

It * #
• * *4 4 !

î\.’cV- -Ŷ a1 1I

\f> P r: A . C X c V \"\yO C V

*x I ; 1

\ %' i ̂126

‘ Wbën a block is about to overflow, that is, before, al/push 'tĥ is
only. one free cell left in the block, a new: block is ailodated and the
appropriate housekeeping cells and registers are updatedi Similarly, when
the top block empties, it disappears and the second top block bécomes the
new top. . ' ’

The Program.

The code* executed by conventional machines and their data are both •
seen as bit patterns residing in locations. G6de .vniay be treated as data
and vice versa since,;; the treatment of the contents of a location is
determined by context. That is, if the machine program counter is pointing
at it then it is an instruction, whereas if it is,:Tib be added to an ' i

accumulator then it ià integer data. Our machine differs from conventional

machines in that its tagging mechanism is exploited to give a high degree i
of prelection. It is also orthogonal 'in thàtf a body of code is treated as

a typedTÿalué. In fact, it is treated much like the data structure :;it may
be considered to be. Such a body resides in a block and is;; accessed by a ' j

reference M type Code";: The instructipns within it are thëmsélves values
which : may only be executed. It is this alone which .differ entiates them ;
from oiher v a l u e s. There is no ,way that code in " a: "cbd% block can be , . !'l
changed - ; -the cells containing it are made value dons tant. Nor enn it be ;/!
accessed , a s ■* there are no instructions to treat it in : such a manher.
Furthermore, the machine only execute the . contents of' "code" blocks . .ii
A: : "code" block contains values which are instruction fields. An" ?;‘ll

instruction; may extend over several cells. Each code block corresponds'to .v
a single source language routine' body. The maini program^is considered to q
be a routine -Called at the end of the loading phase. • . ^

Orthogonality demands that a program definition in the machine is "H
itself a blbck whbse cell values are references to blocks containing code* j

This contains as many values as there are routines. This reference is held

127

in register PB, the program block. Its type tag is "program"; in fact it
is the only value of that type during execution. All accesses to routines
are performed by means of their position within the program block. At any

time, only one routine is being executed. A reference to its code block is

held in register CR, the current routine register. The position of the
current instruction within this block is held in register GRP, the current

routine position (see Figure 5).

Figure 5.

VJ
T>wV-,

C . - R Ç- o ® -------------

C T ?

'

The first cell in the program block is a reference to a code block known as
the "boot" segment. On starting execution the machine sets GR to point at

the boot segment. This code block is actually just a normal procedure call
to one of the other code blocks which is the main body of the program.

128

Routine bodies are accessed by means of a position in the Program
Block, allowing the compiler to generate code using them without knowing
where they will lie at run time. This organisation lends itself to a form

of segmentation. The code for a routine body could remain on disk until
that routine is required for the first time. A nil block reference in its
corresponding Program Block cell would indicate that the code is not in
store and must be pulled in. Thus routines hot called would not take up
any space. Although the store seems to be infinite, this is achieved by a

garbage collection model on a finite store. Even if this pseudo­

segmentation was not extended to include the freeing of hardly used code
blocks, the limitations of a finite store and the fitting in of variable
sized blocks would still be present.

Instruction Tags.

The two components of a value, the tag and actual value parts, are

distinct but inseparable. The machine sees an instruction as a series of
values in successive cells. The tag part of the first value of the
instruction is the operation code for the instruction. The parameters, if

any, for the instruction lie in the actual value part of this and following
cells. These other cells each have a tag type "continuation of
instruction" (the mnemonic is "CONT"). The machine will not execute this
so it cannot start executing "between" operation codes. Figure 6

illustrates a three field instruction.

Figure 6.

129

] i
1■■ -1 1
1 orcoDS '

1

k o H T i
1
I Co Ml
1____

iti S
Some instructions have literal values following the operation code cell
rather than operand fields. These values are the same as those appearing
elsewhere in the machine except they are generated directly by the
compiler. This means of course that they are manifest to the compiler and

not created at run time. That is, all literal values planted in the code
are not block references. Figure 7 shows a "load literal" instruction
(mnemonic "LDL") where the first operand is a count of the literals
following.

Figure 7.

130

% — \ 0

Thus instructions, being made up of sequences of values, are treated in
exactly the same way as other data within the machine.

Jumps are simply instructions whose operand is a new position value
within the same block of code. The type checking mechanism of the machine
does not allow anything except a valid op-code to be executed so it is

impossible for bad jumps to take place to the middle of instructions. It
is still possible however to jump to the wrong instruction!

Data Description.

A feature of the TAM machine is that it allows the user to define his
own scalar and structure types. These are handled uniformly due to the

orthogonality of design and are not special cases. Two tables may be
constructed to implement these and ranges of tags are reserved. We will

deal with each kind of user definition in turn.

131

Enumerated Types.

There is a range of tags which defines new scalar types, specifiable
by the supported language. These tags are called the enumerated types and
are basically similar in character to the enumerated types of Pascal.
Associated with them is a block of cells called the Enumerated Table. A
reference to it is held in register ETB. The machine treats the actual
value of an enumerated type as an unsigned integer. Values of the
enumerated types are ordered. These run from one to the user defined
maximum. Each cell in the Enumerated Table contains the maximum value of

each defined enumerated type. The compiler passes on to the machine how
many enumerated types are needed and what their limiting values are. It

allocates a new enumerated tag for each enumerated type declared by the
user. Figure 8 shows a typical enumerated table for the nsl declarations

in the next example.

Figure 8 .

OC'f̂

(ZSa-WVc. • 6 ,
1

^ 5 I
: 7

datatype colour(red, green, blue)
datatype symbol(plus, minus, times, divide, power)
datatype staff(fred, jim, arthur, john,

Patrick, peter, louis)
minus has the value < etype2 : 2 >
staff has the value < type : etype3 >

132.

The only allowable ̂ opérations on enumeratéd types are relational opetatiohs -
and)the addition and subtraction of , an integer value. , The, latter two .. |

operations check that the resulting ‘value of ; the< sâmé enumerated type is
still within fange.*The same addition instruction is used for adding an' "'7]
integer to an integer or an enumerated type. This polymorphic add uses the - /'"i

tags to diffefehtiate between them. , V * ||

Structurés.

The high level language user define%̂ .̂ d̂ ̂ cïâàâës of structure.
In nsi, each class is a value of type "type". It is‘ the type of all •
references to incarnations of structurés belonging to that class. The \H
machine supports a structure type and a' field type for each class. Two \'î
ranges of tags related to each other are reserved and specifiable by the
compiler. One range is the structure tag range. The othef is the; field

tag range. These, ranges are of the samer:. length and * each - f ield)7tag is 7 -
associated ;./̂ ith : a unique structure7 tag. . A source, language' re is

implemented “as a block of cells and a field î > a cqmpbnent̂ ^̂ c of a
structure. A structure value,is a reference to such a created structure.
A field value .is a position within a structure, and is used to select a
component, field Like the enumerated typesthere is a Structure Table, a
reference t0 ‘which is in .register STB.; There is one value with a unique
structure tag:, in this table for each structuredf type* (-structure class) ,

specified bÿ the user. These each point to differeht blocks of cells .'.4 7S
called structure templates.. A template; is a pattern for/* creating new ..5i.1l

structure y a lues of the corresponding type. The flags and the type tags 7 %
are filled in for each template by the compiler according to the user's ''7̂
definition. The type tag "any" is Used if no type constancy was specified, .■
otherwise it will be the specified type. Figure 9 shows a typical
structure table for the nsl declarations the next example.

-?i

133

structure unary(urator const char ; urand const)
structure binaryC brator const char ;

brandi, brandr : const)
urand has the value < ftypel : 2 >
binary has the value < type : stypeZ >

Figure 9

S T B

c_nour •

i

A "unary" structure has a block reference as its actual value and stypel as

its tag value.

Soutine Implementation.

Here we wish to focus on the implementation of the routine values in
nsl on the TAM machine. We will consider five topics.

J:134

Routine Bodies . <
The compiler does not. know at run time where the body- of ' code will

/réside,>so it allocates a unique segment number to each routine value.
: This ie,used 'as;'-&-positibn ih 'the^ErogramvTable to find the body of
: code on closure : creation. These table entries will be set up

dynamically on loading ., . \ ' .■

Run Time Information.

C a ir liÉ W h a tio n

Although frames must be allocated from a heap, /the mechanics, of
L rdUtine calling is still: DIPb; We may thus make use of a stack to
handle the housekeeping of routine calls. This is the control stack

1) Compile time informat^ril^/;' , t '
2) : / %ih time inf or mation ̂
3) . Routine value creation. v

Routine value aSsignmerit . . ’ , ̂/ ; ;

' Routine value calling. 1

Compile Ti6e Information.

'The compiler must provide the information heeded to create and call
routine values, and to access variables and> constants in their

environinents The information necessary may be summarised as follows.

Fraiüe'ÿlze ' '. / " ' : " : ‘
This is needed for the allocation of a frame block on a call. It is
readily obtained by the compiler on a single pass through the source.,

It becomes part of a routine value when that value is created.

Variable and Constant Addressing
These àre . addressed by pairs made up as in h, from a lexicographic
routine level difference and a position within the frame/.

,r\. " " % % ^ 4:::T -- ■■- - y t - K ; ̂ y.
135

mehtiqhed above. There are five registers used to implement routine
calls.

CST - the control stack top f
CSB - the control stackAbasc

V CSP - control stack position -
CR ” the current routine eohe block

\CRP - the current routine position

The first'three are the usual stack housekeeping register's similar to
" the évaluation stack. The control stack consists of a series of
triples, three values pushed on it during a routine call. On return

from the call these are popped. The control stack therefore behaves
like the traditional stack implementation, only here environmental
information is-retained, it being off stack as part of routine values.
In fact the evaluation and- control stacks could be combined but we

prefer to usé a separate stack. CR and CRP determine the current
instruction. Together they form the TAM machine's program counter.

Environment Information
" A new kind, of bloCk associated with routines is an environment block.
It is/referred to by a block reference of type "ënvirônment" and is a

block of cells containing values of type "frame". "Environment"
bloc% 'hold the/npn~local environments of routine values Informing part
of these values. They also hold the complete environments ' of the
currently executing routine and of the pending calls of routine
values. References to these are on théyçontrol stack.

Routine Value Creation. .

A routine; vaiiie . is created by executing a "make-procedure" or "make-
function" instruction (limemohiCs '"MKF" andy "îfiCF"t). i Ttese:î instructions
have two operands, Thef'first is the segment number, of tie; corresponding

136

routine body. The second is the size of the frame to be created to hold
the local variables of that routine on its call. •

The run time representation of a routine value is a block of three
cells/; its code, non-local environment and local frame size. (Its full

environment includes its own local frame which,does not come into existence
until they value is called.) All but the environment may be copied or

derived from the instruction operands. The code reference is obtained by
using the segment number as a position in the . Program Bldck^ nonrlocal

environment of the routine value being created is made up of all the' frames
currently accessible. This latter environment is already held on top of
the control stack as the total environment of the current, routine (which
of Course contains the "make" instruction). As will be seen on calling a
routine value,y its nonflocal environment and its local frame are made into
a new complete environment which is pushed onto the control stack.

. The routine value is' a block reference with a type tag "procédure” or
"function", referring to the block of three cells. Asya result of the make
instruction, the value is pushed on the evaluation’ stack.

Routine Value Assignment•

. Thisy.may be done freely in the same, contexts as other values, for
example straight assignment, data structure initialisation, parameter
passing and so on. There are no. restrictions or special cases. The value
,is treated the-same,as any other.

Routine Value Calling*

All routines require a single actual parameter on a call. This
simplifies thé calling mechanism yet does not reduce the power or

flexibility of parameterisatidn. The nsl compiler will generate a value of
type/"error" if no source actual parameter is given. This will be examined

on routine entry which means that the type checking can detect the lack.of

.,.4

1

a

137

an expected parameter. The parameter must lie pn top of the evaluation
stack, above rthe routine value to be called. The instruction executed is' a

"call-procedure" or "call-"function" (: mnemonics "CLP", "CLP"/). This has à

codé operand which is the-number of actual parameters supplied* If this is
greater than one then? the instruction pulls them off the stack, creates ay

list y from them and pushes the list value. This hecpmeSf the actual

parameter. The second top value is then' checked to verify it is a
procedure (for a "call-pfqcedure") or a function (for a "caUrfunction"

). The return:address is pushed onto the control stack. This is just the
contents of CR and CRP.

The actual parameter is copied into the first cell in the local frame.
If the routine was called with no parameters then the compiler will haye
generated an "error" value as the actual parameter. .

,The last act of the call is to set CRP to the first position and CR to
point at the code block of the routine value.,. This is in effect a jump to
the fit St instruction of the routine. This first instructiori- has the
simple task of checking the consistency of the actual/formal combination,

that is ; i^hethef parameter was expected and one;was supplied.. Thevreturn.

;

A new completed environment must be created for the routine. It may ;
' ' ' ̂ ' - . ' ' access local and intermediate free variables, so the full environment is -

made by creating à local frame- and storing its reference and the non-local
' : - ' y ' : ' ' ' "environment references supplied as part of the routine value. The non- -

local environment , as has been seen, is the 4complete environment of the
routine which cfeated the called value. Note -this need not be the . yy
currently executing routine. The main program has an empty non-local'

environment. The nê :y(complete) environment is thus one cell larger than .
the creation (non-local) environment. This completed environment is
pushed on the control stack. It determines , the frames currently '

accessible, that is>, while the .called routine'slcode is being executed.
Those instructions which access cells-in frames will make use of it*

4:: ' ' -'rT/ - y -....W'WTT?' ' ' . ' -ffy-' . ■. ::'-■ ' /138 %

instruction, is the same for procedures and functions, since a function will
have left its result on the evaluation stack. The return simply pops off
the environment on the control stack and restores CR and CRP popping them

as it does so. - . '

We see,therefore that the implementation of routines as values ih an
Algol^^like language is quite straightforward with a suitable architecture.
The TAM ma/chine demonstrates the advantages of the orthogonal treatment of
blocks;andytype tagging.

Othet TAM Instfuctfons.
^ 'y: ;. \ ' '.We ieave/: furthef̂ ^̂ 4d sion of the remaining T M ■instructions to

Appendix C. These cover data structures, accessing of cells and list

exploitation. r

Summary.

We have presented an architecture which implements a powerful
polymorphic programming language. This, machine makes use of facilities
little, seen in the architectures /of present day computers and must bey
implemented bÿymeans of an interpreter. We have exploited,lists to aid the
implementation of parameterÎ passing and multiple assignment. , To support
routines as values and/data structurés we use a storageyhandling'mechhnism
which is orthogonal in its treatment of both and which simplifies the
accessing of values contained in routine variables and constants, or reside

in data structures. This same storage mechanism is also used to organise

the internal "housekeeping" of program execution. We have introduced two
constancy flags with each location which with tagging allow a high degree

of data protection and consistency checking.

In addition to the instructions described here are a number which
exploit the information available at compile time. For example where the
typ# of a value being stored matches the type restriction' of a variable y

,4-4

both being known at compile time, the compiler can generate a version of.
the "store-frame" instruction which? does not perform type checking.

; Simiiariy an add operation need: not be polymorphic \Mere vthe types of its

integer operands are known at compile time. These "sugared instructions
are faster but add to the size of the interpreter although not to its
complexity. The advantages of "large" high level abstract instructions as
advocated by Myers [Myèr78] may be ; summarised as follows ; there are less
instructions overall to implement resulting in smaller interpreters, and '
the more compact code is simpler to^ generate resulting, in smaller

compilers ; W&Jbelieve-ythat the .Implementing of powerful languages such as
■ nsl requires hew architectures which' can handle and exploit^polymorphism.
They should manipulate tagged . data and at least have the simple storage

organisation described above.

I
.'4

i

/I

;

CHAPTER 8 < _

Summary, Conclusions and Further Wprk.

Our work has. led us to propose an approach to language implementation ,
based on an abstract machine interface between the LDT and MDT,

The pyerall Technique.

'We have developed a methodology or technique consisting of .the/'
following actions which may take place in some logical order or in

parallel. The idetaiis have been c in the previous chapters and t W ,,
appendices should be referred to fot example;material. We concentrate here
on the overall approach. The methodology .may'/seem somewhat;|simplified in

doing this. It is our belief that any methodology ̂ ShqMdf /apart from

producing the desired results, attempt to be intuitive. That is, the user
should feel confident with it even to the/extent that it seems obvious. The

measure of success is /whether it cén be applied easily/and perform its
task. ÜnfbrtU^Àtely, like a methodology for Tangudge design [MorrS.O], the
results of its application-initialiy:are subjective until such time as it

is applied>/by/others when it may be objectively judged. We havé in. this
work ?developed the technique and shown its appiicability to increasingly
more powerful languages. We see the tasks involved as -

Analysis of the source language to determine its
; abstract properties

.. ybesign of iheiintermediate language
: \ Examination of the target machine cqn|aguration *'/,

Decision on-the appropriate^mapping
Writing the compiler, codé generator/interpreter,.

Analysis o£ the languajge. . ■

The user of a language;(i.e. the programmer) is concerned to a large
part,with its concrete syntax. The ' impieméntor has available to him well
proven,methods of analysing the concrete Syntax and wè exclude them from

' Ï4Ô
.4 ' y

141

our/diseussion. The implementor must consider the language in a very miich
more abstract-form so that its properties, character and so on stand out•
He;must try to eliminate concrete syntax yet must be able to éàsily convert
from concrete.syntax to a much more abstract form, In particular we feel ,
the language should be examined from the following points of view; these

being most important to thé implementation. ■

a) Data Typés.

' These are of particular importance being/thé properties,of the objects
manipulated by/the programmer. Data types are best splits into two areas,

 ̂' primitiye/^d)i/structured/Tri the/main primitive types are straightforward
to implement. Examples are numbers and characters. They have simple storage

requirements and are produced by monadic or ^dyadic operations in,
expressions. The implementor must debide which are the primitive types,
what their storage requirements are and what operations are valid with

them. For the Algols at least storage for primitives will be either on a
stack or within a data structure/allocated on a heap.

At this point-in the methodology, the implementor is<bbncerhed jffith
building some kind of abstract model with which he may understand the
underlying//storage ^quirements of objects in the language./He is perhaps
attempting to formtilate some kind of operational semantics which will be of
some use tq him when actually implementing the la:nguage on some real
machine/ To a/lesser- extent he is becoming familiar with the operations -

which may bé performed on objects. Of .these the most important are those
related to the storage structure namely those concerned with the addressing
of objects And/the assignment' of - o b j e c t s , / /

For example an integer in a language may' be considered thus/'T:.

Storage requires an atomic cell (i\e. is ; alwa^ accessed as a unit)
4 /■:. large enough to hold the. required range-.of values. This imy be allocated

within a data structure dr for the duration of a routine. - ' \ - v

142

Operations - i + i /-> i (addition)' . “
a [i j -> base type of a (array indexing)

' - i must be within the bounds of a etc.

. Data structures are separately tréàted bècàuse;they.have more complex
storage/requirements and operations. Data structures can be considered
under the headings of; storage creation, accessing and opefatidns i'

Storage A data structure requires storage to hdld its cdllectidn of data.
This will /remain in existence fdf a period determined by the rules of the
language,; .Usually storage is reserved on,entry to a procedure and released

dn exit. Otherwise , storage is reserved explicitly at some point during
execution and is autdmatically released when not referred to.
Creation - the implementor must: consider what information is available at
the time of creation of a data structure. This will be used to determine .
perhaps the size of the data structure and its initial values.
Accessing - Data Structures comprise of collections of data which may be .
either Values or cells containing data .;/* The’>\data. may ybe ; primitive or

' structured, y./ y -- - '/ '

, . For example a Pascal record may be considered thus :
Storage - the record consists of locations each of which/ hold primitiye
values. It may have variants determined by the value in one of its fields.
Its total storage requirements depend on these values.
Creation - a record may be created as part of the local data of a routine

or as an array element. No information?about the yalhes in the field are
available. A record may also be created dynamically where some of the field

values are available.
Accessing - a record may be accessed in total or ; have its fields'
individually accessed.Accessing of a dynamically allocated record is by

means of a pointer to it.
Operations - a record may be assigned.

- - ' .
- " , ,

143?

At? this point the impieméntor'/will have some Rind / 6f 'feel' for ttie
underlying :sforage-structure for his abstractioni yfhere would appear to be

two requirements in an abstract model for/stotage of high level language

objects. Either storage is allocated in a stack-like manner or a heap-like
manner.'These models are well prbveri-and understoodv Given our intention to
make the implementation straightforwardlwe find them useful .at this stage
to help the.implementor think about the language more abstractly. We may be.
criticised,in that an implementation model is forced' too eàrly. This is

partly justified because a combined stack/heap storage mechanism is the
basis of the majority of Algol-like language"implementations. /The stack
model cbuld . be eliminated and expressed in terms of a. heap./It could then

be reintroduced at a later stage, : say when deciding on the run-time

environment, as a more efficient way of storage alibbatiqnfot^
class of objects,, (This is what happened in th^ implementationyof nsl).

' Closely related to the abstract Storage -mbdai is the addressing'
s t r uc tn re : ; o f ; (t he language. T^e suggest the view that an objeçt resides in'
one of sUveral ’'spaces’/, a space being some .kind of abstract collection of
objects related by one-or more properties. Theylanguage may be said to
impose rules upon, which spaces may be accessed At any point in the
execution of. the .program. For the Algols ÿ in/particular, the collection of
variables in a block may be,regarded as a-space. They are related in/that

they. ; disappear oh? exit from the block. They do not all necessarily come
into existence at the start of the block. This may evén be regarded as a
subspace of the spacé of all the variables allocated for ,a,, particular

invocation of a procedure. Each data structure may?bêyf space
because it contains a collection of related/yariables. One important space
is the heap itself. It A collectiqnyqf objects which remain in existence
accbrding Adythb rules of the

%A/simple way of addressing these objects is to specify which space and
which dbjecb. For a variable this»will , mean identifying the block and the

AI

I

- .-:'c»"vf-'; ■ : va;:#;;;,.- '-'V . ■— •■ a
r_H - y-- - ' -f V- . *!' > ■* ' ' ' I 144

variable withiri the block. For a field of a data structure this means
identifying , which,structure and which field. The impieitientpr at this sf^ge

may choose to separate out the spaces associated with blocks from that

whic&y; is the heap (i.e. the space of dynamically allocated data
structures). This was done with Algol R but with h and nsl, which needed to
retain#variables in blocks, all spaces were subspaces of the heap space.

b) Control structures.

At their lowest level control structures may be mode1led with jumps
and boolean tests. However we have noted that doing so too early in the

implementation means'that information may be lost which could havei been

useful in later optimisation. It is better to abstract over the control

structures, ridding them of concrete syntactic differences, and V to
categorise them into familes of sequence, choice, repetition and
abstraction.
Choice constructs may be separated into 1-̂ , 2- and n-armed (e.g. if and

case). ' - :
Répétition; constructs may be boolean controlled with the test at the
start, middle, or end of the loop. It may be also be range controlled (e.g.
for loop).
Procedural or functional abstraction is also an important control
structure.

With this abstraction over each kind of control structure it is
important to identify the overall properties of the family. This may assist

in simplifying;the implementation. For example with boolean controlled
repetition the loop may be considered to be constructed from three parts, a
sequence, a test and another sequence. In order to simplify the three

possible boolean controlled loops we say that the first sequence is empty
in the case where the test is at the start of the ■ loop and the second

seqhence is empty where the/test is at the end of the loop.fWe then, in the

. ̂ :— - y

, 145

abstract form have only one kind of boolean controlled loop. This
simplification extends to 1~ and .2Harraed boolean controlled choice in a

similar manner. The ;reasoh for this kind of simplification is that it

simplifies ..the abstract machine language into which the source will be
compiled. , - ' ̂ ;

Design of the Intermediate Langage.

Having' considered the source language thoroughly the^next-step is to
design the abstract machine language (AMj) which will be produced by the
compiler. Its purpose is to conyey'the data and algorithme information in
the source to the next stage of processing. This intermediate language is

envisaged as the input to a code generation pass however; the.implementor

may aiready;have decided on a simulation mapping. Even'ify this has been
chosen, the abstract machine language for a translation mapping should be
designed first. The abstract machine language for a ̂ simulation mapping is'
at a lower level than that for a translation mapping. It should be designed
as a refinement of that for a translation mapping. This is because the same
analysis and design which goes towards a higher level also should go
toward one. which is aimed specifically at direct interpretation. The two

languages would be very closely related, the lower leyel language having
deriyable constructs and operations from the higher. We have noted that the
lower leyel interpreted language is easily produced from the higher. Also
at a later date themapping may be changed to a translation one or the
sp^^ language mayt be put onto a machine where a translation mapping is
more! appropriate. The compiler need not produce the higher level code but
may directly output abstract machine code for interpretation however this
restricts implementations on other machines to be simulation mappings.

The abstract machine language is a descriptive language pfimafily in
that it is a set of instructions to a code generator. It may be read as the
machine code of a very high levèl abstractImachine between Kliht's type 2

146

constructs^ as is used in the source (e.g. bègin-end , pairs X The data
descriptions are generated when declarations .*are met in the source. The
data description for a variable should consist of the same information as

is contained in the souice. -but in a form much^more convenient for later
processing by a code generator. The name of a variable is-not relevant in

the execution of the program: but may be carried over to be ̂ available during
run time debugging. Each named entity in the language is best referred to

I
and 3 described in the introduction. However such a machiné is at too high -4
a level té bé "implemented thus we translate the AML into a lower level AËL
or to real machiné .code. : ,

One function of the AML is to convey information about the data used
by the program/ another is to represent the; algorithm of the program. None

of the information ,. content of the source program should be lost in
producing this : AML. The data description may be separated from the

algorithm. This may make the code generator easier to write however at the
cost of a slightly more complex compiler. On balance it is probably better

to have the structure of the AML .program isomorphic to that of the source
program. ' ' . '

:. For the Algols, the idea of scope and related variable lifetime must 'f]
be conveyed in the AML. It is best to use similar nested possibly bracketed

by a number. This need not be unique if the data descriptions are contained#

in nested structures reflecting the scope/lifetime of the source entities. T
Should, this bracketing not be Used then references to named entities must
be distinct and some means muSt%.be provided in thé" AML of specifying the

lifetime of these entities.

Each named entity then should be described in the AML with a reference
number and information about it. This is usually the type associated with -
it. For a procedure (or function) it is the list /of parameter types (and t#,|
result type) . For an array it is : its base type andj its; index type . All uses

of these' entities will make use of the ref erence -number ̂ aSi; a parameter tp#; :

147

the use.;Examples of these ,descriptious are given,in :Appendices A and B .
These detail the relationship between,the sourde and'the AML.

In translation to an abstract representation, control, constructs must:;
retain their structure and not be broken .down into lower level jumps.
Although theÿ/usually have a fairly simple syntax at the sonrce level, at
the AM level the syntax should be as simple ath regular as. possibles

Expressions, data structure accessing and assignment should be
converted into reverse Polish. This ;higher :iével '‘ÀM is inherently stack and
heap based. The stack is used only for expression evaluation^and dOOs holt
restrict the code generated to using a stack. Chapter. 3 shows: why this is
an excellent Representation. A simple but effective technique, called pseudo
evaluation may be employed to generate optimised code. This teéhnidue forms
the basis of Our proposed code gehetstdr. ^

The AML will be very similar to that used in h. One exeeptl.̂ Û is that
the data descriptions should be embedded in-the algorithm code as; was done

in the AML for Algol R* This is easier; compiler in that
separate files need npt be maintained for code and data parts of the AML
prOgram.yi% code generator may then ̂ emp̂ a stack of - descriptors which •
represent the data cutrently being : des cribed at any point in the program,
as opposed to> vector of descriptions of each separate entity in the-whole h!|

program. - -, ■ 1 ■■

Decision,On thé appropriate mapping. : /

The choice of mapping is determined by a number Of-" factors. These ,-f]

include -

148.

Writing of cpn^iler, code genefàtor/intêrprétërè ; m /, ^

:We feel that ah effective implementation can be produced by using a
recursive des cent" one pas s compiler output ting ithe AML code which,is passed
to a pseudo evaluation code generator. This second pass'.muy either produce
real machine code or a lower level AML which will then be interpreted. The
compiler may ':,eyen produce this interpreted code dlreçtlÿ but this approach
is lesS flexible. The design of this code shpuld however be a refinement of
the higher level AML which is ho longer produced by. the compiler. *

/The reasons for choosing the technique of pseudo evaluation and to
extend it were

a) it was successfully used in a working compiler ' v .
bi) it was readily understandable
c) it satisfied the need of à code generator to simulate the run time
environment of a language
d) it:’fitted invwitb our intuitive expectations of an ;abstract ..machine for

/ an #gol-like language y ; ■ X \ V:
e)yit seemed ideal for its originator's professed purpose - expression-code
generation . '
yf) it " could be# extended and developed to deal with .all our high level
abstract machine language constructs,-not just expressions.

Appropriateness of the Techniquei

t# The technique has been applied particularly to three members of the
Algol family. Each language employed differenti additional or more powerful
features than the; previous.. The characteristics of the Algol family have
beeh outlined in Chapter One. ‘

‘■availability.-:6f tools
desire for portability * J ^
storage available on target machine - , ■
whether It has, a stack , ; . '' ' , , ; .. # #
speed of machine ' • y
number of registers . yi , , . .. -"'j

/.wordyslze^y- ̂ ̂ ; --V' . j'. . ^
^addressing modes - %
: runtime facilities desired • , # #
m A of i m p l e m e n t a t i o n v ';.//%. ■ ^
efficiency of desired implementation / , ' - _ ■' îiHj
level of features in source language (eVg. 1 st class procs/ types) .v illi

4.V »' ..'••■ • " - ̂ % *.'• " ■■•••• "■' • -• •■ . >X%. f %. ' ;
m / ; - , ';' - Æ : . .- ' ' V ' é - -'149 " ".4̂'

The technique has also been applied to a purely functional language,
SASL [Turn?9], insofar as an AML was /designed for interpretation. No
difficulty was found in doing this possibly because the characteristics of

the functional language were mainly those of expressions. That is, many of
the,,features of the Algols such as assignment and control structures were

missing from the language.

We feel therefore that if a language embodies similar characteristics
to those outlined in thé introduction then the technique should be
applicable to its implementation.'These characteristics;- cover a very wide

range and belong to many languages. The language may contain other data

types, operations and data structures. This would not exclude the use of
the technique since the AML is high level. The operations^ ' and data
management, only become relevant when the code is being generated. Even at
that.stage the pseudo evaluation technique is well suited to 'easing the
problem because of its organisational and descriptive .properties. The
technique may also -be applicable to other language features not covered

such as parallelism, however this has not bëén done.

Application of the Technique.

The technique may be applied when a quick yet effective and easily/
portable implementation is required. The first task is to see if the

technique is appropriate for the language concerned.■The language must at
least be analysed and the decision based on whether it has similar features

to those which have been covered.

It is Our experience that a code generator without much optimisation
would take as much time to write aŝ the compiler. Should a greater degree
of optimisation be requited then a more complex internal description of the
data could be employed by the code generator. This is : the most time

consuming part of the implementation. ,

150

' Thé internal descriptions are thé mostférucial part bf the code
generation and effort spent in their design is': well rewarded. It is
recommended strongly that a very simple code generator be written first

even though the intention is to have a highly voptimised implementationi

This will hâye/the advantages that an implémentation can y he provided
reasonably,;quickly^ and familiarity with the code generation technique will

make easier the writing of a second one.. . ' -

It is also recommended that the compiler produce; an AML suitable for a
code/ generator. Even if the mapping will be a simulationvon the proposed
machine, at,a later date it may be desired to use a translation mapping on
the same/of Another machine. The code generator to produce a lower level

AML for interpretation should be very straightforward:'. This is a simple

application of;Poole's hierarchy of abstract machines. *

Assessment of the Technique.

The main /advantage that the technique offers is its inherent
simplicity and appeal to the intuition of thé implementor. The abstract
machine langnagé is readily designed andV produced from the ’ source. It

V;., requires very : lit tie in the way of experience on the part of the
implement or.,Mos t of the wprk has been involved in showing that it may be

applied to 'a range of Algol-like languages. The measure of its

effectiveness has ibéèn the ease'of implementing a language without recourse
to specialised knowledge or training.

It is difficult to quantify the results of this technique. Robertson
[RobeSla] has shown that the code produced by a/#similar approach to code

generation from a high level intermediate language is efficient. We have

not done any comparative studies because of time, the lack of available
implementations Of similar source languages and because of Robertson's
encouraging results; We feel , that our technique produces acceptable
results ; this observation;being ibaséd upon ,experience; with other high levél;

ly , i _L ______ 1.

/:/# ':"/:. v p ' - ' . . -' /'- '---- . --yr.
i. ' - / V ■ ■■■#,:- 151

languages on the machines upon which the work was undertaken.
>' ' ' . . ' Î, It has been our intention to simplify language implementation not to

develop a technique which will guarantee highly .optimised code even though
this , is possible. The results are subjective in that the technique has not

V- been applied by others. In order to measure its success or failure we feel
that an Algol-like language should be implemented using this technique and

I#' others. The criteria for suchf a comparative = study of implementation

/r" techniques might be time to write and get working correctly the
compiler/code generator, its size and speed, and its workspace. The

resulting code from these implementations should also be compared from the

points of view! of space and speed. Ah additional consideration should be
V how portable the resulting implementation is . Such a study has not been
’ r V V undertaken as we.f eel ,that not enough time was available both to develop
‘ the technique and measure it effectively.

We make no claim that it enables the^implementor to handle language
t features which cannot be handled by other techniques. It##has been our

intention to show that it is effective; for those features which
1̂# , characterise the Algol family. Again, subjectively wë feel that it has done

so and has coped with features not usually associated with: the Algols such
as first class procedures and first class types. We have no measure; as to

t how well it has done so because of the lack of availability of other

languages with these features on the machine on which our languages were
implemented (PPPll). In the case of procedures as values, another two
Algols, Algol-8 [Turn?6] and IDEA [Davi?9] with that feature were

f" available on another machine. One eliminated the prOblem/by a language
' restriction which reduced the implementation problems to those of a

straightforward Algol. The other used less space at run» time than h but at
the expense of more complex runtime information and garbage collector.

; In summary, the technique is simple, straightforward and highly

// . organisational. It can be used to develop optimised codé:should ;- this be
r; /: ̂ _

152

desired, but at the expense of greater effort in the code generator. A
quicker implementation can be produced by either a simple code generator or

an interpreter 4 The language would be portable by writing a new code
generator/interpreter for each machine. No comparative study has been
undertaken as to the quantified effectiveness of the, technique.

Direction for Further Work.

At present the design of the AML depends bn the implementor. Analysis
of source languages shows that although the concrete syntax, data types and

structures may differ, at the abstract level many of these differences
either are eliminated or becOme less apparent. Thus it would appear that
the AMLs for these languages would be very similar. This may suggest that a
more formal study take place with a view to designing a framework AML which
could be used as the basis ̂ of AMLs for languages with similar
characteristics. This is not quite a return to the UNCOL philosophy or even
that of Janus. It would be a very much more high level abstract machine.

Its main purpose would be a guide to the implementor.

We believe that languages of the nature of nsl should be examined,
nsl itself was a vehicle to investigate language implementation* In this
sense it was experimental, and perhaps too different from the more popular
Algols to be readily acceptable. It should be redesigned with emphasis on

the following.

(1) Routine types should include the types of parameter and result. We
still feel that only one parameter to a routine is necessary, given
the flexible data structures and syntactic sugaring for parameter
lists implemented in nsl. The current types proc and J6n would then be
procC none), proc(any) and fn(any -> any) where none is the type
of the empty object.

(2) The data structures vector and list could have types associated with
them. For example, ,vector(int), list(char) and list(any). ,

153

(3) This still leaves us with the problem of specifying the type of a
parameter list. One possible solution is to have another list type
say a fixed list where the types of each element and the number of
elements are known. Then the type of

function (c char ; x ; m, n int -> int)
is
fn(flist(char, any, int, int) -> int)

(4) At the moment structure field types in declarations must be manifest
to the compiler. This makes for a simple implementation (see

Structure Tables) but there is no reason why they should not be
dynamically specified.

e.g.
let ty type :== ...
structure tree (element ty ; ...)

As far as the abstract machine is concerned, such source language

changes may involve a tag perhaps becoming a reference to a block
containing a description of the type. The storage structure of the

abstract machine should also be re-examined with respect to whether it is
more efficient (time and space wise) to allocate small single size blocks
such as "cons" pairs, or stay with the current scheme. This would involve

an investigation of fragmentation.

Acknowledgements.

I would like to thank everyone who helped in some way with this work
and thesis. Special thanks are due to the authors of the UNIX operating

system, its editing, filing, referencing and text formatting facilities,
without which this thesis would have taken longer and been much more
difficult to produce. I would also like to thank my wife, Yvonne, who
looked after me, and David Harland who provided both intellectual stimulus
and moral support. I appreciate and acknowledge the financial support of

" f/ the Science Research Council of Great Britain.

APPENDIX A

Algol R Intermediate Code.

In this appendix the intermediate code is described with reference to
the source and associated abstract machine intermediate code.

Descriptions.

The "declare" instruction in the intermediate code is used to inform
the code generator of the attributes of variables, procedures and

structures of the source program. It gives, a number with which to refer to

the entity described. Each such entity has a type and a name. The types
of Algol R are extended by "procedure" and "structure" for the purpose of

code generation. The "declare" instruction takes the form;

"declare" number name type

This is a directive to the code generator to build a descriptor for the
entity. The numbers are allocated by the compiler in order and are used in

all references to the described entities. The "declare" statement

corresponds to a declaration in the source. These appear at the head of
blocks. For example.

Source
begin
< declarations >

< statements >

end

Code
block
< declares >
enddecl

< code for statements >
free n m
endblock

The structure of the program is preserved by delimiting blocks by the

"block ... enddecl ... endblock" construct. Immediately preceding, an

154

y

V :

155
'■ -• .

"endblock" may be a "free" instruction. This specifies ah upper and lower
limit of the descriptor numbers allocated in that block. This directs the

code- .'generator,; to throw away the corresponding descriptors since the

numbers will be reallocated for subsequent "declares". The "free"
instruction is also used at the end of procédure code to deallocate the

descriptors of the formal parameters.

The name in the "declare" is that given in the source 4 It need not be
used by the code generator. The type is in a.similar format to the source.
The types may be grouped in four sections and we give examples of each.

Primitives
Source

integer a, b

real r

boolean bl
char c
struct s2

Code

declare 1 a integer
declare 2 b integer
declare 3 r real
declare 4 bl; boolean
declare 5 c char
declare 6 s2 struct

Arrays
Ah array type is "array" followed by its base type’ and
dimehsiohâlity. An array creation instruction, iliffe.op may precede
the declare if the ‘bourids are specified in thei declaration. Its

/ parameters are the base type of the array, its dimensionality; the

number of specified dimensiohs and the number of, such arrays to be
1 created.

integer array(Ep E 2) al, bl ■ .

156

.. Code
(El)
(E2)
iliffe.op integer 1 1 2

declare 7 al array integer 1

declare 8: bl array integer 1.

The bound list in the source specification may have asterisks in it

representing unknown bounds. If the bound list is all asterisks then
no "iliffe.op" is produced since only space need be reserved but no
array is to be built. Following the type, dimensionality and
specified dimensions of the "iliffe.op" is the number of such arrays

to be built. If the bound list has Some but not all"bounds specified
then these specified bounds are stacked for use by "iliffe.op". For
example,

Source
char arrayC*) string

Code
declare 9 string array char 1

Source
struct array(1 :: 5, *, *) ptr

Code
Stackconst i 1

stackconst i 5

iliffe.op struct 3 1 1
declare 10 ptr array struct 3

157

Procedures
A procedure type is represented by "procedure" followed by the

parameter types followed by "->" and the result type. Procedures
which are not functions have "void" result type. The procedure
description is terminated by an indication of whether the body follows

or not. The procedure declaration may be "forward" in which case the

actual declaration appears later. The same declare statement, apart
from the terminators "forward" and "present" appears at both
declarations. With a present procedure, the body immediately follows.

This is bracketed with "segment ... enddecl ... endsegment". The
declares for the formal parameters lie before the "enddecl".

Source
integer procedure pi
(integer a ; struct point)

: source code for body.

Code
declare 20 pi procedure integer struct
-> integer present
segment

declare 21 a integer

declare 22 point struct
enddecl

; code for body

endsegment

158

Example of forward procedure ;
Source
procedure p2 ; forward

procedure p2 ;
: Source code for p2

Code

declare 12 p2 procedure -> void forward

declare 12 p2 procedure -> void present
segment
enddecl

: code for p2
endsegment

Structures
A structure definition defines the template. The structure class name

and field names are used in the source and must have descriptors built
for them. #

Source
structure jim
(struct result, list ;
Integer array (*) size ;
boolean isempty) .

159

Code
declare 12 jim structure

declare 13 result struct
declare 14 list struct
declare 15 size array integer 1

declare 16 isempty boolean
endfield

Use of descriptor numbers.

When a variable, procedure, field, or structure is required for some
purpose; it is referred to by its descriptor number. A descriptor .number
is, assigned oh a, "declare" statement. On lexical exit from a block or
segment, those descriptor numbers assigned in that block or segment are
made available for use again, by means of the "free" statement. Thus the
descriptor number is a convenient way of referring to any variable,

procedure, field or structure which is in scope in the source text.

Wherever a described entity is heeded, the "stack" instruction is used.
This has a single parameter which is the descriptor number of the entity.

Source Code
X stack < descriptor number for x >

Array or structure element values.
Source Code

El(E2) (El) (E2) sub.op 0

Constants.

Constants are loaded using the "stackconst" instruction. This
specifies the type of the constant and its value.

Source Code ■

-3 stackconst i -3
3.01 stackconst r 3#‘01 ' , t

true • • stackconst b true ' ' ;
; fàïsë stackconst-.b false ■ = -• V'il

stackconst c /, V.:. » 'v-# , #

Source Codé - —
+E ' (E)
~E (E) not.op

And similarly for the following

'a' stackconst c %a ■! "
: . ' ' '"abc' ' " stackeohst s 5 %abc' ■

nil stackconst n - /jj

A single character ia preceded by a percent. Strings are preceded by their
length and a percent marks the start of the string. , ,/Vj

: , , : , ^
Let E with or without a subscript standrJorj à source expression, then .

(E) is..vthé/>cpd:e' generated. , ■■■

Unary': operators. i-M

161
‘n/

Source Operator Code Operator

abs
do de
décode
lipb

Iwb
float .
truncate

neg.op
abs iop

code.op
decode.op
upb.op

Iwb. op
float.op n
truncate 4 op

If the intégér with "float".is "2" float the second top of stack otherwise
float the top.

Binary operators.

Source Code :
El -f E2 (El) (E2) plus.op -

And similarly for the following

1
tl

I

/I

'1
: 4

:: .' l,- ' ■=- ' , • ■ - :. - <-,#■ \,-i' V, i .*'-■ v - . x X 0 2 - "

#'■*

S ource;Opërat or Gode Operator
- minus/op

^vaiv;#
rem

/ : . V

<

>

<=

>=
is

div.op
rem.op
divide.op
times.op

eq.op
ne. op
Is . op

gt.op
le.op

gë .op
is. op

"eqs.op" is used for equality of strings.

Exceptions :
El isnt E2
■ . . -a :,
El - or ;E2.
El: and: e 2

(El) (E2) is.op not.op
(El) or.op (E2) endor

://(': El) and.op (E2) endand

Note the latter two are hybrid control structures*

Assignment.

The left hand side of an assignmëht denotes the l-vaiue (address)„.of /' . , ' = , V . , ' ̂ - '
a variable. Thus for subs crip tihg oh the left hand side of an assignment

the last subscript operation must specify the address of the resultant
variable. This is done by Specifying a different parameter to "sub.op" from
that when the value is required.

‘Source
X : = % ' / "

;.N.

Code
stack.address < desc.nr. of x >

ass .op

Source
En+1

Code
(EO

sub.op 0

sub^op 1

(En+1)
ass . op

Procedure calls

Source
ÉÔC El

Æy
164

void, nil, limit, false)

y":).

Code
stack < desc.nr.of proc EO > ,

mark.stack ' ;. * . ; '

pâ
(El) . '

*P , VL- . " '

K ' - |
" ' / ■ I

ep ' ..:■. ' ■'■1
endpar . /, «' * . - y
apply.op -r ■ • ' ,A

Source
EO

Code j
stack ̂ desc. nr. for proc EO > î

. '■ 1mark.stack i
"%!apply.op ̂ 1

■ ■ ' 'i

Structure creation. .t

This is done by specifying the structure (by means of its.descriptor -
number) and each of the field values. E.g. using the structure declaration

shown previously. . ‘̂1

SourcSF'

I

. ,-:ri
. ; 1

;i:' ;■■ ■ ■ ■ . ,

's-r ' ■ ' ; < 6 / Z g %

Gode
:. s tack < de s c. rir. f or s t r üctu r e jim >

fomnvèd:^
stack < desç.: nr. for struct void >

stackconst n

ef
stack < desc. nr. fpr array limit >

Tj
ef
stackconst b false
ef

f ormend

If statëméîit and expressions

Source
if El then E2 else E3

Code

if

ehdbbdl

then

else

end if

Source

if El do E2

166

Gode
if (El) endboql
,,do ;C E2) endif

While statement.

Source ■ <- ' '■
. ..while El do E2

Gode
while (El) endbool
(E2) endwhile

For statement.

Source
for i := El to E2 by E3 do S

Gode

for

(Ü1) '
to
(É2)

(-E3)

declare 6 i integer
(S)
endfor

a . '. y...;.\ :T'fry%: . - ' f : - : . V ; % - . f / y y : ./. V'.' . '\ " =

Case statement.

■ Source ;. . .

r. r

case i of 1,2,3 : SI ; 0 : S2 ; default : :s3
' / ' ' ' ' ' ..' ' '" '

■A-

Code

case '
(E) .. /

of

endswitcli 3 1 2 3
■ U : , " =
82) ' ̂ y
y. '

endswitch, 1 0

■ endswitch 0
"switch.op
eridcase

uyr-

An integer giving the number of constants precedes tlieir values. The
constants may be integersy ̂ characters or strings and, have the ssfme
representation:as stacked constants;, (see before).

APPENDIX B

h Intermediate Cbde<

STOP ~ halts exécution, of the program.

STACK number' -, Push the descriptor referenced by the numberf onto the
evaluation stack.

ADDR Consider as address. The descriptor on top of the stack is used
only:to get the address of the entity describedynot the value. : r

READ - Replace the stream descriptor on .top- of the stack by a descriptor
of a character input from that stream. The character may have been output

by a WRITE or WRITEB instruction since for characters the effect is the

same. \

READ! - Replace the stream descriptor on top of the.stack-by a descriptor

168

The intermediate code may be considered ■ to bë a medium-ito-low level,
language f{or; a . vaguely specified stack and heap based computer. Thh\%,:ÿ'
instructions effëct their results by means of manipulating descriptors of

their data* •

a

ASS - Assign the value described on top of the stack to the entity ; : 'A

described beneath it. Pop both descriptors. • >. , '' 4
' ■

STACKL number “ Push the descriptor of the literal referred to by the . /i
number ohto ihe eyaluatioh stackl " • ‘i

CLOSE, - Close the stream described bn top of the stack. Remove its VyJ
descriptor.

of an integer built from characters input from the strehm, . •

REÀDBI - Replace the stream descriptor on top of the stack by a
II

4f

? descriptor of an integer input from the stream and output by a
, ■ ' '■■ - . corresponding ^ITEB instruction; ., -

:r;.̂ REÀDBS y j- Replace the stream descriptor on top of the stack by a y
r, -y descriptor of ya string input from . the streamy^ which was output by a

corresponding WBLITEB ,instruction. •

y ' " ^
: POP - Pop the top descriptor on the stack, ^

WRITE - Pop the top two or three descriptors on the stack. These
describe an entity output to the data stream''described',beneath it oh the

stack. On top is the width field in which to right' justify the .

representation of the entity. All entities whatever their type are output
as a stream of one or more printable characters.

WRITEB - Pop the top descriptor on the stack which describes an entity (
char, integer hr string) output to the data stream described beneath it on
the stack. The entity is output in a form readable only by READ,. READBI or
READBS instructions.

Binary: Operators.

The two descriptors on top of the stack are replaced , by a descriptor
^ of the result of the operation. These operators are as follows.

1. . ■ ■

PLUS, MINUS, MULT, .IDIV, REM, CAT, SUCC, REPL, SSTR, QPm, RELOP relop

The relops are "~=", and "<=". Note :^CC takes arrange

end limit as well as its normal operand.

"ÿ\. "y-' y-ÿ; - ' ' "''"yy Mohadic- Operators ;

The descriptor on top. of the stack is replaced; by a descriptor of the «
result of the operation.

' ' ' ■ ■■ , - ■■ ■ ;-y .. ,
ABSj CODE, DÉCODE, ÜPB, LWB, NOT, EOF, STL, FRED, ORD, STOy, STOC, VTOS*

- . - y: ' . ' . .. y-'" / A..ÿ \ L L. . . \ r - . '

%

l.'' ' " .:/: -'-rrr ' ' - - / % : - % v / r : . - . . . - ' ' ., - - ; r/^ . -\:' -= - ' y , - \\ .\- ' -. :.' A-x\' ' ' .: ' - /"X- '. \ - ..s-'
-y: ÿ: U70

y \.result.,

IF ~ This control structure causes execution iof one or other of two
streams depending on the result of a boolean stream.

IF streamb streaml
ELSE stream2

Streamb is evaluated. The boolean described on top of the stack is tested
and, its descriptor* popped. If the result is "true’' then streaml isH

executed and control commences after the code for stre'am2. If the fesult
is"false", control commences with the code for stream2.

LOOP “ This causes repeated execution of code until a boolean, ëvélüates
• • ,y ,y : ' ;y"L■■à ■ ; ■ ■’ ■. '1

I

ctos, ESTR ‘ j

There are a number of control structures which consist of a « ",
combination of operators and streams * of instructions^ â ̂ may bé '*1

other control structures. \ j

OR - Perform: a boolean inclusive 'or' *
y y y . ; - ;

OR stream

On top of the stack is a descriptor of a boolean, if the value is tpue do
not evaluate the stream but carry on with the next instruction after the
stream. If the value ds false, pop the stack and evaluate the ‘ stream

pushing its result on the stack.

AND - Perform a boolean 'and' operation. /

AND s tr earn ... '-y
'y -. ' ' - ' .

. \On top of the stack is thé descriptor of a boolean. If it is false, do not
evaluate thé following sfteam but carry on with the next instruction after '
it. If it is true,., pop the stack, evaluate thé stream and push on the j

‘"1

171

to false. The bpoleah,controlling the exit from the loop lies between two
streams of %c6de. ' .. , '

on top of the stack is tested and its descriptor popped. If the test is

"false" executionyCbmiiences after stfeam2, otherwise stream2 is evaluated
and execution recommences at the start of stteaml. This continues' until

streamb evaluates to "true".

FOR - This is- another loop-type clause. The condition for exit is an
arithmetic comparis on.

FOR istream sstream 1stream number cstream ■

The number is the desCriptof'^^nuraber of a control variable for, the loop.
Istteam is evaluated andA assigned to the control variable; popping its

descriptor. Sstream is evaluated, ahd saved in a hidden (to the user)
location. Its descriptor is popped. Lstréam is evaluated and aisp saved in
anofhef hihden;1^cation. Its descriptor is popped. The contrpl variable is

compared with the result of Istream. If the value of sstream is positive

then, if the control 'variable is less than or equal to the result of
Istream executipn continues after the for 'statement. I.e. it is exited. If

the value of ;sstream is negatiÿe then, if thé control variable is greater
than or equal to the result of Istream, execution continues with cstream,
otherwise execution continues after the FOR statement. After evaluation of
cstream the contrpl variable is incremented with the result of sstream..
Execution recommences with the;; comparison of the control yariable and thé

result of Istream as dèscribéd above.

CASE - In the CASE statement^ the value of a stream determines which one
of several streams of code is executed. ’ ■

4̂
LOOF streaml streamb stream2 / -

Streaml is executed. Streamb is evaluated and the boolean fesult described 1

.VI.

172

CASE sstream ,
cstream cstream : bstream

TEST,: - This is exactly the same as CASE except the cstreams are STACKL's
of a structure trademark and the sstream evaluates to a pointer to a

Structure. The comparison is on that structure trademark and the literal's

value.

cstream ... cstream : bstream ' yj
DEF bstream .

The sstream is evaluated and compared for equality with the results of Vi
evaluating thei? cstreams in order of appearance. Should it match one then *'{
the ifpliowing first bstream is evaluated to give the result pf the whplp : yl

CASE . If none match then the bstream following DEF is . évaluâtedy to give ,

the CASE Wsuit.; ' ; .

MAKEPRÔC: number - Push on to the stack a descriptor of the procedtire
value created and referred to by the number. |

ATVEC - Puts values into a vector. :|||

ATVEC streamlb streaml ... streamN MAKE RD

The St ream after the ATVEC is. the lower bound of the vector to be created. •.!
An vector is: created of the correct size and each element, stârtihg; .with the

one at the lower bound is initialised with the result of the corresponding .. rii
stream. The RD may not be present. If RD follows the elements of the ‘/j
initialised vector are only allowed to be read. #1

BUlfiDVEC - Creates a vector initialised by repeated evaluation of a . ry!
section of code. .

vp;-''- ' :.y;/:yy - . ..y ;iKy;\;"yy-L '/■«■/yy

BlilLDVEC streaml streamu stream! RD . yX .;

The first' two streams after the BUILDVEC are the lower â ad hpper bounds of
a vector of the type specified, which is created. X Each element of the
vector is initialised by evaluating afresh the third stream. The RD may
riot be' present just as; in ATVEC. If RD follows then the elements of the; ?.y
initialised vector may only be read.

SEG - This statement describes a self-contained body of code called a

procedure or segment.

SEG number stream

The number is the table number for this body of code or procedure. SEG, is
always reached by a procedure call and together with other house-keeping
operations, saves the place to which control mrist return on;exit, i.e.
after execution of the stream. A segment may not contain embedded

segments.

CALL - Set. up local data space for a procedure and call it ;

CALL number stream ... stream ;

Each call of a procedure evaluates the stream in that procedure's
corresponding SEG statement. However new local data space must be found
onto which the local variables are mapped. The number is that of the
description of parameters (offsets within their type areas) which this
frame will contain. If there are parameters, then for each one, the result

of evaluating the stream is assigned to a parameter in the frame created.
Which, parameter depends on the number of parameters in the table whose
number follows :the CALL. The first value is assigned to the first
parameter and so on. The descriptor on the stack resulting from evaluation
of each parameter is popped. After all parameter streams : have been

processed the procedure whose descriptor is on the stack is called. I.e.

174

execution starts ; at the SÉG statement for the procedure using the new data
frame created. After the execution of the procedure control recommences

after the CALL instruction. The procedure descriptor is popped. If it

returns a result then the result descriptor is pushed on to the stack.

SUBV - Subscript vector.

On top of the stack is a descriptor of an entity of type scalar, integer or
character. Beneath it is a descriptor of a vector. The top element is
converted to an integer if it is not already and used to subscript the

vector beneath it. The two descriptors are replaced by a descriptor of the
element of the vector accessed by the subscript operation.

SUBS - Subscript structure.

On top of the stack is a descriptor of a field of a structure. Beneath it
is a descriptor of a ptr. They are replaced by a descriptor of an entity
of the same type as the field which describes the field accessed by the
subscription operation.

MAKESTR - Build a structure.

MAKESTR number, streaml ... streamN

The number is the descriptor number of the structure. It is followed by one
stream per field in the structure. A descriptor of the ptr pointing to the
structure created and initialised by the streams is pushed onto the stack

Syntax of Intermediate Code.

code = segment { segment }
segment = "seg" number opt.stream

stream = element { element }
opt.stream = { element }
eletaent = single

1

175

I snum number
I "or" stream

I "and" stream

I "if" stream opt.stream

'-Ï''

: ■ • 1
"else" opt.stream yj■ !

I "loop" opt.stream stream opt.stream j

I "for" stream stream stream number opt.stream
I ("case" I "test") stream y|

yXstream { stream } ":" opt.stream Xi
-i

{ stream { stream } ":" opt.stream }
"def" opt.stream

I "atvec" stream stream { stream } "make" ["rd"]

I "buildvec" stream stream stream ["rd"]
I "call" number { stream }

I "makestr" number stream { stream }
single = "addr" | "stop" | "close" j "ass" j "pop"

"subv" I "subs" I "read" j "readi" | "readbi"
"readbs" | "write" | "writeb" | "succ" j "ord"

"plus" I "minus" j "mult" | "idiv" | "rem"
"cat" I "repl" | "sstr" | "open" | "abs" | "code"

"decode" |"upb" | "Iwb" | "not" | "get" | "eof"

"stl" I "stov" I "stoc" I "vtos" I "ctos" I "estr"
snum = "stack" | "stackl" | "mass" | "relop" | "makeproc"

Relationship between Syntax and Code Generated.

In the following, the angle brackets "<" and ">" in the code generated
section represent "code generated for" the syntactic entity between them.

syntax: sequence "**"

code: < sequence > "stop" ";"

syntax: ["constant" 3 name clause

code: < clause > "stack" number "addr" "ass"

The numbers after the "stack" instructions are the descriptor numbers
corresponding to the names.

syntax: "if" clause "then" clause "else" clause

code : "if" < clause > ";" < clause > ";" "else" < clause > ";"

The corresponding single branched "if" statement is :

syntax: "if" clause "do" clause

code : "if" < clause > < clause > ";" "else" ";"

syntax: "while" clause "do" clause

code : "loop" ";" < clause > ";" < clause > ";"

syntax: "repeat" clause "while" clause "do" clause

code: "loop" < clause > ";" < clause > ";" < clause > ";"

syntax: "repeat" clause "while" clause

code: "loop" < clause > ";" < clause > ";" ";"

In the three above syntactic forms, if the "while" is replaced by an
"until" then in the code generated a "not" is inserted after the "until"
clause and before the semicolon.

syntax: "for" name "<-" < clause > "to" < clause >
"by" < clause > "do" < clause >

code : "for" < clause > ";" < clause > ";" < clause > ";"
number < clause > ";"

177

When there is no "by" clause i.e. :

syntax: "for" name "<-" < clause > "to" < clause > "do" clause

"by" 1 - is assumed in the source.

syntax: "case" clause "of" case_list "default" ":" clause

where
case_list = clause { "," clause } ":" clause ";"

[case__list]

code : "case" clause ";"
< clause > ";" { < clause > ";" } ":" < clause > ";"

< clause > ";" { < clause > ";" } ":" < clause > ";"

"def" < clause > ";"

syntax: "test" clause "is" is__list

"isnt" ("use" name "in" | ":") clause

where

is_list = name__list ("use" name "in" j ":") clause ";"

[is_list]

This gives the same structure of code as the "case" clause. However
"test" instead of "case" is generated. The code generated for a structure
name in the name list is
stackl number ";"

where number is the number of the descriptor of the trademark corresponding

to the structure name.

'i,

178

syntax; "write" clause ","-clause [":" clause]
{ "," clause [":" clause] }

code; < clause > < clause > < clause > "write"

{ < clause > < clause > "write" } "pop"

If the first clause, that is, the one specifying the stream, should be
absent then code to stack the file for standard output is generated. If
any of the width clauses, that is those following the colon, should be

missing then code to stack the appropriate width value is generated. The
width value used is determined by the type of the clause to be output.

syntax: "writeb" clause "," clause { "," clause }

code : < clause > < clause > "writeb" {, < clause > "writeb" } "pop"

syntax: ("read" | "readi")" "(" clause ")"

code : < clause > ("read" | "readi")

If no clause appears then code is generated to stack the variable
containing the file descriptor for standard input. The corresponding
operation is generated for each of the read typés.

syntax: ("readbi" ("readbs") "(" clause ")"

code: < clause > ("readbi" j "readbs")

syntax: "open" "("clause "," clause ")"

code : < clause > < clause > "open"

syntax: "close" "(" clause ")"

code : < clause > "close"

syntax: lvalue ":=" clause

179

code; < lvalue > "addr" < clause > "ass"

syntax: "null"

code: does not generate any code

syntax: "at" clause "make" ["constant"] "[" clause { "," clause } "]"

code; "atvec" < clause > ";" < clause > ";" { < clause > ";" }
"make" ["rd"]

The "rd" is generated only if "constant" appears,

syntax: "vector" clause clause ["constant"] "val" clause

code : "buildvec" < clause > ";" < clause > ";" < clause > ";" ["rd"]

The "rd" is generated only if "constant" appears.

syntax: "procedure" "(" [proc_spec_list] "->" [type] ")" clause

code : "makeproc" number

Code for the clause is generated and output at this point.
The code generated and output for the procedure is :

code: "seg" number < clause > ";"

The number in both cases is one with which to refer to information
about the procedure.

syntax: exp "or" exp

code : < exp > "or" < exp > ";"

syntax: exp "and" exp

code : < exp > "and" < exp > ";"

syntax: exp relop exp

180

code: < exp > < exp > "relop" < relop >

The code generated for a relop is as follows.

Source Code

-

> "> "

>= ">="

< "<"

<= "<="

syntax: [addop] exp addop exp { addop exp }

code : exp [< addop >] < exp > < addop > { < exp > < addop > }

The code generated for the optional addop preceding the first exp in
the syntax is as follows.

Source Code

"+" no code generated
"-" "neg"

The code generated for the dyadic addops are :

Source Code

"+" , "plus"
"-" "minus"

syntax: exp multop exp { multop exp }

code: < exp > < exp > < multop > < exp > < multop >

181 '
-

" The multop codes are :
' .i

Source

>•?*•«

"div"
"rem"

"cat"'
"repl"

Code

"mult"
"idiv"
"rem"

"cat"
"repl"

I

syntax: "suce exp

' . . ? ' fcode: < exp > "s*' ’ nr "succ*

The number after the stackl is the number of values in the scalar type
y ■

of the scalar expression,

syntax: monop exp

code: < exp > < monop > . . ,

The monop codes are :

I

182

Source Code

"abs"
"code"

"decode"

"upb"

"Iwb"
ir~ti

"stl"

"pred"

"ord"

"stov"

"stoc"

"vtos"

"ctos"

"eof"

"abs"
"code"

"decode"

"upb"

"Iwb"

"not"

"stl"
"pred"

"ord"

"stov"

"stoc"

"vtos"

"ctos"

"eof"

syntax: simple { "(" [clause { "," clause } 3 ")"

I "[" clause { "," clause } "3

I "{" clause { "," clause } "}"

I "I" clause "T

I "I" clause "," clause "|" }

code: < simple >

{ "call" number [< clause > ";" { < clause > ";" } 3

< clause > "subv" { < clause > "subv" }

< clause > "subs" { < clause > "subs" }

183

I < clause > < clause > "sstr"

I < clause > "estr" }

Depending on the form and type of simple one of the above is
generated. After the "call" is the number of the description of the
parameter types. There is one special case of the above viz.

syntax: simple "{" clause { "," clause } "}"

code : ’’makes tr" number < clause > { < clause > ";" }

This is the case where the "simple" is a "name" ; i.e. the name of a
structure. The number is the trademark number of that structure.

The code for "simple" is as follows.

Source Code

name "stack" number
"stackl" number

literal "stackl" number

’’(" sequence ’’)" < sequence >

"begin" sequence "end" < sequence >

For the "stack" instruction the number is that of the descriptor for
that name. For the "stackl" (stack literal) the number is that of the
descriptor for the literal.

Where lvalue syntax matches the above syntax, the same code is

generated.

Syntax of Data Information.

data_info = lex param_desc literal_desc "!"
lex = "lex" number { info } "endlex" type

flag number { flag }

184

flag = "t" I "f"
info ' =_ type y I, struct __desc j lex
type - :simple_type [, proc_type | vector_type

simpie_type = "int" | "char" j "bool"
. I ,"ptr" I "string" j "file" | "void"

I "scalar" number
proc type = "proc" type
;vector_type = "vector" simple_type

(simple_type j proc_type)

structÿdesc' = "structure" type { type } "endstructure"
param_desc = number { number type { type } }
literal desc = number- { literal }

Relationship between Syntax and Data Descriptions Generated•

syntax: sequence "**"

data: "lex" integer < sequence > "endlex" "void"
' % T t " I "f") number { "t" | "f" }

param__desc lit_desc "!"

The main program is treated as a routine value. The compiler outputs
details of the parameter lists and literals used in the program. Only one
copy of each different one is output. The parameter lists are a space
saving device used by the code generator (see CALL instruction).

syntax: "procedure" "(" [proc_spec_list] "->" [type] ")" clause

data: "lex" integer [< proc__spec_list > 3 < clause > "endlex" < type >
("t" I "f") number { "t" | "f" }

The integer after the "lex" is the routine value's identifying number.
The first flag is the copy creator frame flag. Then follows a Count and
the ..copy display eiitry flags. ; '

185

syntax; ["constant"] name { "," name } ";" type [proc_spec_list]

data: < type > { < type > } [< proc_spec__list >]

Each variable or constant parameter type is output. This is also the
case for in-line variables and constants or structure fields.

syntax: "structure" name "be" "{" structure_spec_list "}"

data: "structure" < structure_spec_list > "endstructure"

syntax: name { "," name } ":" type [structure_spec_list]

data: < type > { < type > } [< structure_spec_list >]

syntax: ["constant"] name "<-" clause ["coerce" type]

data: < type >

If within the same sequence a name has already been specified in a
"forward" declaration then nothing is generated for that name otherwise
< type > is generated for each such name. The type is the same throughout

for this. It is the type after the "coerce" if present, the type of the

clause if not.

syntax: ["forward"] name { "," name } "be" type

data: < type > { < type > }

syntax: "for" name "<-" clause "to" clause ["by" clause]

data: type

syntax: "use" name "in"

data: type

Code generated for types is as follows.

186

Type Output

integer "int"
char "char"

boolean "bool"
ptr "ptr"
string "string"

file "file"

scalar "scalar" integer
procedure "proc" type

vector "vector" type type
void "void"

The integer after the "scalar" is the number of the scalar type.
The type generated after the "proc" is the result type of the procedure.

The types following the "vector" is first the subscript type then the

element type.

Literals are output as follows.

Type Output

integer "int" integer__yalue
string "string" string_value
scalar "scalar" integer integer_value

char "char" char value

The literal value in the case of integer is the integer itself.
The literal value in the case of string is the length of the string,
followed by. the characters of the string.

The integer in the scalar is the number of values in the scalar type.
The literal value in the case of scalar is the number of the scalar literal

in the list of names describing the scalar type.

îsy.-' ' -5 ; . '• •• ‘
187

The /literal value in the case of char is the character value itself
true” or "falseNo literals are output for "nil

APPENDIX C

k.' V Other nsl Abstract Machine Instructions.
- ' , ̂ '

;* ,ÿ, . ,r , Thëse are instructions of the TAM machine not covered in chapter 7,

Data Structure Implementation.

The TAM machine supports a wide range of data structures. These are ̂_ — . . ^

all blocks and thus are treated in a similar manner. Some of the data
^

structures, like "stack" and "code" blocks are purely for internal working

> but others are provided for the implementation of data structures of a

I polymorphic, programming language. We will concentrate on the latter.
There jare-three, directly reflected in nsl. They are the list, the vector

ÿ and the structure.

 ̂ Lists.

> A list is an ordered collection of heterogeneous objects characterised
. by "head" and;"tail" operations. One of the conventional ways to implement

them is. by a "cons" [McCa62] pair. In our machine, this would mean that

s each 'member of the list needs two cells in a block, the first being the
, head, the second being the tail, a list. In fact we have chosen a

different organisation more in keeping with: the abstractions over all data
structures and slightly more efficient for certain list operations. We

J . believe that list manipulation in nsl will exploit the iterative constructs
• I"-- ' - .

supporting creation rather than the recursive addition of elements to

lists.

A list value is a reference to, a block of two cells. The first cell
1: value is a reference of type "list block" to a block of value-constant

cells containing values of any type. The second is a position. The
position is thatu of the first element of the list (which need not be the

ÿ first in the block of values). This and following cells in the list block

\ :, f - - " .., \ ' Y -: 18̂ : / .̂'-̂

' ■. . “ , :
comprise the members of the list. A* "head" operation on this list will j
push that element on the evaluation stack (having popped the list value)* i

A tail operation creates a new two cell list with the position value one

greater but the same list block value. An empty list does not have a block ' ,
:reference as its actual value but a nil value. List head and tail

operations are not expensive since no copying of the list members is done, *

and they are less wasteful of space than /if "cons" pairs were used. List
elements may also be accessed of course by using ; positional accessing.

Accessing an' ; arhitrary member of a list by position would be more ,
restrictive if "cons" pairs were used. Note that the constancy flags on
the element cells ensure list cells are not updateahle. .This is because i
nsl interprets lists as being collections of values and not locations.

Figure 10 shows a "tail" operation on a list. !

190

Figure

(lyj ^

191

Vectors•

A vector is an ordered collection of heterogeneous objects
characterised by selection of individual cells by_ an integer selector
limited by defined bounds. A vector value is either nil or is a block
reference. The first cell in this block is the lower bound, the second is
the upper bound. Bound values are of type "integer". The remaining cells

are the vector elements each corresponding to a selector value.

Structures.

A structure value is a reference to a block of cells each of which is
selected by a unique value of a field type directly associated with the
structure type. Every created structure is based on a template held in the

Structure Table. A template block defines the types and flag settings of
the component cells. A structure value is a reference to a copy of such a
template block, but with the actual values filled in. The field cell tags

determine how the fields may or may not change their value and type, and
whether the initialising ahd subsequently assigned values supplied for the

fields are the correct type. Each structure template represents a unique
structure type. Structures modelled on a particular template may only have
their fields selected by a value of a unique selector field type. Values

of this selector type may not select cells of any other type of data
structure. In particular they may not be used to select a field of another
structure value.

Data Structure Space Allocation.

Data structure space allocation and initialisation is performed in a
single instruction. However we separate these processes only for the

purposes of discussion.

To allocate a data structure there must be provided a type, and
possibly a lower and an upper bound. The type is that of the desired data

■■■■"■■• ''\ :.:'-:v:-' V-. r_. :' ■■ ' '-: 'C.' ■ ■• • . ' ' -S . J . ■<-_.' .-. ;» - . Z-

structure. This is of course a value of type "type". The lower and upper
bounds are values of type "integer". Specification of bounds is not
necessary in all data structure creations. Where they are-prpyided, in the

most general of the data structure creating instructionsj they must conform
to what one would expect. Vectors need both, to determine the size of
vector to create and the range of allowable selecting values., Lists and
structures must have a lower bound of one. The upper bound is used to
determine the number of elements in the list. For structures the bounds
are not actually necessary although, if specified, the lower bound must be

one and the upper bound must match-the size of the corresponding template.
This is really, à check that all the fields will be initialised. Theif
number is determined by the corresponding template.

Vector and list creation simply involves the creation of appropriately
sized blocks. Created structures are copies of the template thus have

their flags . and tags filled in where specified. In all creation
instructions, when a zero sized block would result, the actual value part
is made a nil block reference giving a nil data structure as the result of
the operation.

Initialisation.

There are several initialisation schemes common to all data

structures. These characterise the data structure creating operations and
each is performed by a single instruction. Operands for creation and
initialisation either reside on the evaluation stack or in the code. In

sOme cases they may be implicit. We will now describe the "schemes and
their instructions.

Enumeration.

The "data-structure-enumerated" ("DSE") instruction takes as an
operand, in the code, the number of values on the stack to be used in

initialising the data structure ; On the stack, beneath these initialising

■' ■■ ' ■ ’ " - ' \" ■■ , :■■ ■'•'' -' : - '
' ' ' - "193 %

values lie thé lower bound above the data structure type. The upper bound
for vectors is determined from the size and the lower bound.

A data structure of the specified type is created. Its cells are
initialised in turn from the lowest inibialising value oh the stack.
Should the number of initialising values be zéro, then a nil data structure
value will result. The typé of each initialising value is checked against
the corresponding type restrictions (if any) of the data structuré. All
values down to arid including the type ate popped and the data structure
value is pushed. The DSE instruction would be generated for each of the
constructs in the next example.

list [k, 1, m]
(if X then dstyf i } else vector) a;t 1 ["label", 5, m*4]
binary[, exp(4)]

Literal.

The "data-structure-literal" ("DSL") instruction is provided for
data structures where the data structure type and its iriitialising values,

are kriiown at compile time. These-are therefore generated in "code" blocks
as literals by the compiler. This saves pushing thé literal values on the
stack and then creating a data structure. The initialising values are
extracted directly from the codé. The operand in the code is a count of
thei literals following the instruction in the code. Immediately preceding,
thèse is the data structure type as a type literal. The lower bound is
implicitly bne and the upper bound is the number of literals. The data
structure is created aiid initialised with the usual checking being
performed. A DSL instruction would be generated for the nsl coristruct

"abc", fhat is, a list of literal characters.

' ■ ' : ■...........:''. 'K ■ ,: '' ;*.S:1 ' ' ' ■•'•», « •■ « f
" .y. - ' .&./ - 194 "

Replication.

The ''data-structure-repllcate" (”DSR") Instruction uses a single
value which is replicated over the whole data structure. That is, each

cell is ihitialised with that value. It takes • no operands in the code but
on the stack lie the initialising value above an upper bound, above a
lower bound, àboye the data structure type. The data sttuctbre\is created

with each cell initialised with the specified yalué. ' The instruction would
be generated for the nsl constructs in the next example. '

list size a + b value init()
vector at -m upto +ni value 0

binary size 2 value '+'

Position Controlled.

A newly created data structure is completely initialised on creation
(since it is not sensible to allow use of the data structure until this
has been done). This is a philosophy recognised in some, of the later
languages' [Morr?9] which impose it on data structures and variables. The

simple default initialisation of the creating instructions given; above can
be subsequently updated to "re-initialise” a complete data structure with
an individually calculated value for each element. This fe-initia,lisation
is available to the nsl programmer in the form of a powerful nsl construct
as shown here.

list size 40 with pos eval pos * pos

This example builds the 40 element"list ;
1, 4, 9, 16, 25,, 36......

This construct is supported by a loop determined by a set of three
instructions which take an alréadÿ'existing-data structure, and control the
assigning of values to its elements in order of their position. An nsl
data structure will have been created with the DSR instruction and a dummy

&,

195

initialising value. A position value determines the current ce^l to be
"re-initiaiised”. The position value starts at one and steps up by one to ■

the number of elements in the data structure. It is held in a value-

constant cell of the local frame.. Throughout the operation of these three
instructions the data structure value will be on the stack.

The "data-structure-initialise" ("DSI") instruction has the position
in thé local frame of this controlling cell, as an operand in the code.
The function of the instruction is to initialise the control cell to one,

. that is, the position of the first element in the data structure.

The "dataistrueture-jump" ("DSJ") instruction h^ as code Operands a
label (a ' position in the current code block) and the position of the
control cell in the local frame. On. top of the stack is the partly-

reinitialised data structure value. The position value in the control cell
is compared with the number of elements in .the data structure'. If it is
greater than it then a jump takes place to; the ./specified label. The

completely reinitialised data Structure is left on the stack from where it
make' také!part in any valid operation such as assignment .

Following this instruction will be code to generate, for the current
cell in the data structure, a hew initialising value on the stack. Then
comes; : the "data-structu re-store" ("DSS") ins tructioh which has a label

and a control cell position as code .operands. The value above the data
structure on the stack is popped to the cell in the data structure whose

position is given by the value in the control cell. This value is
incremented by one. A backward jump.is then taken to. the label àt which
will be a dataistructUre-jump instruction. The example shows where code is
generated for a position-controlled initialisation.

&

.4

196

list size s ! generate DSR replicating 0 !
with i ! generate DSI initialising i !
eval ! LI : DSJ i, L2 !
f() ! code for call leaving result on stack I

! DSS i, LI !
I L2 : ! " -'‘1

Loading and Storing of values.

Values residing in blocks may be transferred to the evaluation stack
and vice versa. A cell in a particular block is accessed by a selection or

position value, and a value whose actual value part is a block reference.
There are load and store instructions which do this, calculating these
values from implicit values, code operands and values on the stacks. A
load is the moving of a value from a cell in a block onto the evaluation
stack. A store is the reverse operation. The load and store instructions

fall into two groups. One group assumes implicitly that the loads and
stores involve frames of the current environment; The other makes no such
assumption but relies on block reference values on the stack, or in other

blocks. Because of the orthogonality of the storage structure, both groups
utilise the same internal "micro-operations". Frames are really data
structures supporting routines.

Frame Cell accessing.

On top of the control stack lies the current environment. Each of the
cells in this environment block in turn contain references to the frames of
calls of routine values statically surrounding the current one in the

source. These contain the accessible variables and constants. The first

cell in the environment block contains a reference to the current local
data frame. The "load-frame" ("LDF") instruction has two code operands.
One is the number of frames down the current environment from the top to
find the required frame. The other is the position within that frame of
the cell. If the cell is in the local frame of the current routine then
the number of frames down will be zero and so on. To obtain the particular

■i

y - ...'y^r-ÿY",^' ' ' y"' ' "'.. . vv <' . y ;' ' ' - 'Y '.;''' . .- '^' ' " ":'%: ' -r%

' ' ' ' '-̂ '" ' '':' . . \ '%%%

frame the machine converts this value to a position in the environment
block. The contents of the cell, at the specified cell i.n ,the particular
blodk are pushed on the evaluation stack. Note that the uniformity of the

machine means that frame cell accessing is the same as data structure
positional accessing (see later) apart from the conversion of a routine

level difference to a block reference. In fact, all cell accessing is

ultimately coerced into positional accessing for processing by. fintérnàl
"micro-operations".

The "atore-frame" ("STF") instruction does the oppositévof this. It,
hasythe same code operands and the particular cell is located in the same
way. The value on top of the evaluation stack is popped into this cell. A
check is made? that the final cell not value constant* If it is type
constant then a check is made that the type of' the value being ptored is
the same as that already in the cell.

Initialising Fraine Cells.

A special case of storing is the initialising of local frame cells.
This corresponds to the declaration of nsl variables and constants. It
combines the storing of Y a value with a setting of the type and value
constancy flags. The "store-frame-initialise" ("STFI") instruction has
two ; code operands and a possible third . One is the position of the cell.

The, current frame is implicitly taken to be the one containing the cell.
The second operand is the constancy flags in an encoded form. The flags in
the cell are set according to this operand. If the type-constant flag was

set then a type value is expected specifying how .the cell is to be made
type constant. This is either a third operand in the code (statically
determined by the compiler) or is already on the stack (dynamically

evaluated) underneath the initialising value. The machine exploits its
tags to determine;whether there is a third operand. If so, there:;will be a

value of type, "type" in the cell following the other two ; operands,

1

198

otherwise there will be an instruction. Thus the type, if needed, may be
specified statically or dynamically. Whichever it is, the machine checks
that the value supplied is of type "type".

General Block Loads/Stores.

When addressing a cell within a block two values are needed, a block
reference and a means of specifying the cell within the block. This is
either selection or positional access. In fact selectors are converted

into positions for use by internal "micro-operations" , during the actual
access. Checking is performed, ensuring that a selecting value is valid
for the block reference value. For example, integers select cells in
vectors, checking against the bounds, and field values select cells of
matching structures.

It often happens that we want to string together several successive
selections or positional accesses terminating in a single cell access. For

example, a vector element may be a structure value, one of whose fields is
a vector, one of whose elements we wish to access. The process of

accessing the last cell is one of repeatedly using a block
reference,selection/position value pair to extract from a cell a new, block
reference value. This value is then used as the next block reference
together with the next selector/position value. Initially, a block
reference and à series of selector/position values are necessary ;
intermediate block reference values are extracted from cells determined by

all but the last selection/position operation performed. The last block

reference value and selection/position value address the cell required.

The "load-stack" ("LDS") instruction performs precisely this
function. It takes as a code operand the number of selector/position
values on the evaluation stack. Beneath these will be the initial block
reference. These are popped and the value extracted from the last cell is

pushed.

199

The "store-stack" ("STS") instruction is the corresponding store.
It differs in that above the selector/position values on the stack is the
value to be stored. The block accessing takes place as before except that
the value on top of the stack is stored in the last cell, rather than its
value being extracted. As,with other stores, a check is made that the cell

being accessed is not value-constant and that the value being stored

matches the type constancy of the cell.

Exploiting Lists•

The load and store instructions are adequate for the implementation of
a polymorphic programming language like nsl. However, by taking multiple
values residing in lists, instead of single values, shorter, faster

instructions may be used in certain cases. The following instruction

descriptions may be divided into the four families, general list stripping,
multiple initialisation, multiple stores and parameter stripping. These

involve operations on several values possibly held as a list.

General List Stripping.

It is necessary to be able to take a list value on the stack and
replace it with its component values, these being pushed in order of
appearance in the list. The instruction "strip" ("STR!') does this, and
takes as a code operand the expected size of the list. The actual size of

the list must match this.

Multiple Initialisation.

This occurs when a several initialisations are performed together. On
the stack will be a number of values. These may have been pushed there by
a number of successive expression evaluations or by the use of the "strip"

instruction on a single list value. These values are used, to initialise
adjacent local cells by the "multiple initialise" instruction (mnemonic
"MI"). It takes a count and a starting position as code operands. The

' "y-;'' "' ' ' ' ' 200/

number of stacked values given by the count are stored in turn, in the cells
of the local frame starting at the specified position. The lowest value is

stored first and so on.

Cells initialised by this instruction have their flags set in batches
by . repeated use of ' the, "set-flags" ("SEFLj') .:,instruction. ■ It takes at
least three code operands, a count of the number of cells, a starting

position and the encoded flags for each cell. If the type-conStancy flag
is set the type appears on top of the. stack or as a fourth operand as
previously explained " in the "store-frame-initialise" instruction. The

cells determined by the count and starting position have their flags set
according 'to those' specified by the instruction. If the type-constaricy
flag.is set, the’.type tags in the cells are checked against the specified
"type" value. The following example shows where these instructions are

generated for a piece of nsl code.;

let a, b, c const int := 1
V d; code to push list 1 !

! STR !
! MI !
! SEFL 3, pos, fl, < type r ,ing;> ̂! ' : \ “

Multiple Stores.

In the- same way that several initialisations of local cells may be
performed by a single instruction, several .assignments mây‘be performed at

once. Each individual assignment needs an address and a value. The.
"multiple-stofe" ("MS") instruction has as a coda* operand an integer

count. On the stack are a number of values above the same' number of
addresses. The number of each is the same as the count operand. A cell
address reflects the way a cell is accessed. The address on the stack is a
pair, a base value which is a block reference, beneath a selector valbe.
Note there is no concept of pointing directly into the. middle of a*block.

These;/addresses are generated by instructions similar to the "Idadrframe"
and "load-stack" instructions except they push the addresses of the cells

201

the cell addressed by the lowest pair on the stack. The- MS instruction
wouldv'he generated for the nsl code in the following example.

a, b; c := c, a, b

p(vector! m, n])

This however may be done implicitly by high level stripping and
initialisation instructions. .

On a call instruction, the machine determines whether more than one
parameter'was supplied by inspecting the operand. It̂ autOinatically builds

frame. These cells are in fact being initialised and still must have their

not their contents. The values on the stack are stored in., the cells
specified by the corresponding address pairs, the lowest value going into

';r‘

Paraiteter Stripping.

Every routine takes exactly one parameter. This resides in the first
cell of a local frame. When several values are to be pàêsed ,in,- the user ,■! J
may explicitly pass in a data structure. Once inside the routine, using

' ' ! " .. ' . " the general load instruction described above, he may extract its ,
^

components, explicitly initialising locally declared cells as in the next
example.

• -, , ' . ' ' let p : = ' procedure (v : const vector) /
begin . - ■’/

let a, b int := v{ 1 }, v{ 2 }
:
end

Ï.:

■1

a list if there is more than one, this being passed as the actual

%- ' - - \ parameter. Inside a routine there can be planted an instruction which s
automatically breaks this list up. This is the "strip-fill" ("SF")
instruction which takes as a code operand a count of the expected length of

the actual parameter which must be a list. The parameter is checked for iî
. . '■

being a list of the required length, and is stripped apart, each element
value being stored, in turn, into the cells following the first in the

I

value and type constancy subsequently specified by repeated use of the SEFL
instruction. The following example shows these instructions generated for

a piece of :nsl code.

jet p := procedure (a, b int)
begin

! The instructions are generated at entry !
1 SF 2 !
! SEFL 2, 2, < type ; int > !

end
p(m, n)

■MJ

_ _ _ M m

References

Aho77 ' .?■ - . * ■
A. V. Aho and. J. D. Ullman *
Principles of Compiler Design
Addison-Wesley 1977

Amma73
U. Amioan ’ ’
"The Method of Structured' Programming, as applied to tlie Development of
a Compiler"

Iiitefnational Computing Symposium, North Holland 1973

BailSO ■ %
P. J. Bailey, P. Maritz, and R. Morrison

; P T ^ S-Algbl ahstraci niachinè"
Technical Report CS/80/2 Dept. Comp. Sci., Univ. of -St. Andrews
198G ' y.

Barb80 ÿ
; R;’ Barbuti attd A. Martelli ‘
"Static type : checking for , languages with parametric types . and
polymorphic procedures"
Lecture Notes in Computer Science,, Springer Verlag International
Symposium on Programming 83 ppl-16 1980 '

Barr63
D. W. Barron, J. N, Buxton, D. F. Hartley^ E. Nixon., and C. Strachey
"The main features of CPL" .
Comp. J. 6 ppl34-143 1963 . .ÿ-

Baue73

yH *- Bauer, S. Becker y and S. Graham ' y

■J

203

' - ■ ■ ■ , y - ■ .-s.g.,: . %
-y y ■ - ,■„.- .:.'y - '-' ' 204

’’Algol W Implementation’’
Te clinical Report GS98 Stanford University ' 19 7 3

Bell73
J. R. Bell: . ,
’’Threaded code" -
C.Â^C.M. 16 6 370-372 1973

Berr71 ' ■ y'' - . .
,p. M. Berry
"Introduction to Oregano"

' . "V ,\r y, y

Proc. Sÿmp. on Data Structures ; in Programming Languages, Sigplan
Notices' 6 2 1971

Berr79
D. M. Berry and R« L. Schwartz ' ; ,
"United and discriminated record types in strdngly typed languages"
Information Processing Lett. 9 1 13-18 1979

Bobr73
D. G. Bobrow and B. Wegbreit
"A model and stack implementation of multiple environments."
C.A.C.M. 16 10 pp591-602 1973 :'3

Bohra66
C. Bohm’and G. Jacopini

’ "Flow diagrams, Turing machines and languages with only two formation
; rules "
C.A.C.M. 9 pp366-371 1966

Bril72 ■ V . :ÿ:;.
P. C. Briilinger and.D. J* Cohen

Introduction to Data Structures and Nbn-Numerical Computation
Addisdn-Wesley 1972

?!

. : / . . /: -' 205 -t

 ̂ ̂ - ' \ - ^ '
'. ,%Broo82

G, R. Brookes, I. R. Wilson, and A. M. Addyman'

"A static analysis of Pascal program structures"
Software - Practice and Experience 12 10 pp959 1982

Bfow69
P. J. Brown y v- -

"Using a* macroprocessor to aid software implementation"
Comp. J. 12 4 pp327-331 1969/ . .y

Brow72 •
P. J. Brown
"Levels of Language for Portable Software"
C.A.C.M. 15 12 pp1059-1062 1972

Burs80 c
Rl M. Burs.tall, D. B. Mac Queen", ' add D. T. Sannella

"HOPE; an experimental applicative langeage"y: : r'
Internal.Report CSR-62-80 Dept. Comp. Sci., Univ. of Edinburgh 1980

Catt80
R. G, Cattel
"A Survey andÿCritique of some Models of Code Generation";,

y/Tèchnical Report Computer Science Dept.-V Carnegie-Me llôn University
1980 (

Gole74
S. S. Coleman, P. C. Poole, and W. M. Waite

"The mobile programming system Janus" ^
Software - Practice and Experience 4 pp5-23 1974

Cree69 ? ;
B. A. Creech •; / \ '

"Architecture of the B6500" ,
"69/ yhird International Symposium 1969 ' ■ ,,

' '-y -

DEC71
DEC

PDP 11 Processor Handbook

DEC 1971

DEG81
DEC
VAX Architecture Manual

DËC - 1981

Dahl72
0-J. Dahlj, E. W. Dijkstra, and C. A. R. Hoare
Structured Programming
Academic Press 1972

Davi81.
A. J. T, Davie and R. Morrison ,
Recursive Descent Compiling
Ellis Horwood 1981

Daws7 3'' ■ J
J. L. Dawson
"Combining interpretive code with machine code"

Daki73
R. J. Dàkin and P. C. Poole ' y ' /’ V, ' '

"A mixed code approach" - .1
Comp. J; 16 3 219 1973

: ' ' '

Davl79 ’
A. J.‘ T. Davie

y "Variable access in languages in which procedures are first class <
citizens"

■'iTechnical-Report CS/79/2 Dept. Comp. Sci., Univ. of St. Andrews

1979.

n
207

' , ' - -i:Comp. Ji4 16- 3 216 1973

DemeSO
., A. Ji Demers and J. E . jDpnahue

"Data types;;'" parameters and type checking" , ,
Proceedings 7th Annual Principles of Programiing; Languages Symposium
PP12-23 1^80 - "

.,0fjk69\ ̂ "
.E; W . Dijkstra
"GOTO Statement considered harmiful" %

C.ÀVC.M. 3 ppt47-148 1968 ̂ .

%an68 ■

/u Evans . '
"PAL-A language designed for teaching programming linguistics"
Proc.' ACM 23rd Nat. Conf ; pp395-403 1968 ̂..

Feus72
E. A. Feustel .

"The Ri ce : res ear ch computer ^ a"tagged architecture"

A.FfI.P.S, S.J.C.Ç. 40 pp369-377 1972

Feus73
E. AiVFeustel
"On, the'; advantages of tagged architecture"

; ' \
IEEE Transactions on Computers C-22 7 pp644~656 1973 ••

Grle71
D. Gries
Compiler Construction for Digital Computers

yl Wiley 1971

Gupii78
H. I. E. Gunn . • . •

' : , "h reference manual"
n ti y l y f

208

Dept. Comp. Sci., Univ. of St. Andrews 1978

Gunn79.
H. r. E. Gunn arid R. Morrison

"bn the implementation ;bf constants" •
Information Processing Lett. 9 1 ppl-4 1979

GünnSO
H. I.:,E. Grinn «
"hil reference manual" by
Technical Report CS/80/3 Dept. Comp. Sci., Univ. of' St. Andrews
1980

GunnSl
,;H./-I. E. Gunn and D. M. Harland
; "Degrees of constancy in programming languages"
Information Processing Lett. 13 1 pp35-38 1981

a, I. E. Gunn. ; ■ ' ;

"Compilektime type checking of structure field accessing" • "r
Information Processing Lett. 14 1 pp22-25 1982

mrlBl ! ̂ '
yb'. M.\ Hsrland . . -yy

The application of message passing to concurrent programing
Ph.D. Thesis Deptï Comp. Sci., Univ;"of'St. Andrews 1981

Harl82
D> M. Harland and H. I. E. Gunn

"Another look at eriumerated types"
SIGPLAN.Notices,17 7 pp62-71 1982

Horn74 y?-
J. Horning

!" Structuring. Compiler Development " in y j , '

y »
... .. ■' ■ • - "•■ y\:. ■

: ; . ' 209
. : . ■ . . V ̂ - .'. '.' - '. .. :lAdvanced., Course on; Compiler Construction, Tech'è* Univ. of Munich y
1974

HuntSl ;
R. Hunter
The Design and Construction of Compilers
Wiley 198:1

IBM70
IBM
IBM System /360 Principles of Operation ■ !;,
IBM 1970

Hif68
J. K. Iliffe
Basic Machine Principles
.Macdonald 1968 .

Jeris65
. J;. Jensen
"Generation of, Machiné Code in Algol Compilers"
BIT 5 pp215-245 1965

Jens74
K. Jensen and N. Wirth
: PASCAL - User Manual and Report
Springer-Verlag 1974

John71
J. B. Johnston
"The contour model of block structured processes"
Proc. Symp.cn Data Structures in Programming Languages SIGPLAN

Notices 6 2 pp55-;82 1971

KlinSl
P.. ËLint:,y.' F . : ; .

210

"Interprétation Techniques"

Software - Practice and Experience 11 pp963-973 1981

KornSO
P. Kornerup, B. B. Kristensen, and 0. L. Madsen »
"Interpretation and code generation based on intermediate languages"
Software - Practice and Experience 10 pp635-658 1980

Land64
P. J. Landin

"The mechanical evaluation of expressions"

Comp. J. 6 4 pp308-320 1964

Land66
P. J . Landin
"The next 700 programming languages"
C.A.C.M 9 3 ppl57-164 1966

Lisk74
B. Liskov and S. Zilles
"Programming with abstract data types"
Proceedings Symposium on Very High Level Languages, SIGPLAN Notices 9
4 pp50-59 1974

McCa62
J . McCarthy
LISP 1.5 Programmer's Manual
MIT Press Cambridge Mass. 1962

McKe65
W. M. McKeeman
"Peephole Optimisation"
C.A.C.M. 8 7 pp443-444 1965

McKe74
W. M. McKeeman

211

"Compiler Construction" in
Advanced Course on Compiler Construction Tech. Univ. of Munich 1974

Miln78
R. Milner
"A theory of type polymorphism in programming"
Journal of Computer and System Sciences 17 3 pp348-375 1978

Morr7 6
R. Morrison
"The Algol R Abstract Machine"

Dept. Comp. Sci., Univ. of St. Andrews 1976

Morr77
R. Morrison
"A method of implementing procedure entry and exit in block structured
high level languages"

Software - Practice and Experience 7 4 1977

Morr7 8
R. Morrison

"Algol R"
Technical Report CS/78/1 Dept. Comp. Sci., Univ. of St. Andrews

-

Morr79
R. Morrison , y,

"S-Algol reference manual"
Technical Report ÇS/79/.1 Dept. Comp. Sci., Univ. of St. Andrews

1979

Morr80
R. Morrison
"On the development of Algol"
Ph.D. Thesis Dept. Comp. Sci., Univ. of St. Andrews 1980

Î I

«■y

■ ..y
■jf y

212

G. J. Myers y,,

Advances in Computer Architecture
Wiley 1978 . . "

Naur63
P. Naur and others : ' • > '

"Revised Report on the Algorithmic Language Algol 60"
C.A.C.M. 6 1 ppl-17 1963

Naur63..
P. Naur
"The Design of the G1ER Algol Compiler"
BIT 3 ppl24-140,145-166 1963

Newe72
M. G. Newey, P. C. Poole, and W. M.- Waite
"Abstract Machine modelling to produce Portable Software A Review
and Evaluation"
Software - Practice and Experience 2 ppl07-136 1972 •

Nori74
K. V. Nori, U. Amman, K. Jensen, and H. H. Nageli

The PASCAL (P) Compiler Implementation Notes
%.T.H./Zurich, 1974

Pool74
P. C. Poole k

"Portable and Adaptable Compilers" in
Advanced Course on Compiler Construction, Tech* Univ. of " Munich
1974 :

Rand64
B. Rand ell: and L. J; Russell
Algol 60 implementation; /'

y - . . ,

213

Académie Press 1964 ' ; . , '

Reÿn70
J. C.{Reynolds

"GEDANKEN-A simple typeless language based qn the principle of
:'completeness and the reference concept" ..
G.A.C.C;'bl3 5 pp308-319 1970 .

C.A.C.M 8 pp263 1965

Rb A, Sibley

Rlch69 .
' r ' ' ' /bKM. Richards.

"BCPL:A tool for compiler writing and system programming" i
, Proc. A.F.I.P.S. S.J.C.C. 557 1969]

- ■ • -i

Rich71
M. Richards ' , '-"-'i

■ ■ 1' "The portability of the BCPL compiler"
Software - Practice and Experience % 1" ppl35-146 1971 -m

Robe77
^ ‘ ,.y . \-fî
P; S. Robertson n- ^: ' ' , ■■ ■ ' ; '
"The IMP-77 language" . . . ' . k

Internal Report GSR-19-77 Dept. Comp. Sci., Univ. of Edinburgh> 1977 f,i

RobeSl
P. S. Robertson * . ' -<1
"The production ofb optimised machine code for high-level languages |

' - ■ "Iusing machine-independent intermediate codes"
Thesis CST-13-81 Dept. Comp. Sci., Univ. of Edinburgh 1981 ' y

Ru s s 65 .4

D. B. Russell «
"On the implementation of SLIP" ç]

§4

-'"r: : -" '.; ,. '
y /y ' ! in ; .: /kWdk-^'/T ' 'y/.'- ' 'T<%' / f

214

"The SLANG system"
G:!A.C*M. 4 75 1961

Site71
R. L. Sites

"Algol W Reference Manual"
Technical Report STAN-CS-71-230 Stanford University, 1971

Smlt71
G. D, Chesïey and W. R. Smith
: !’The%hafdwar e-imp1ement e d high-level, machine language for SYMBOL"

: Proc. A.F.I.P.S. S.J.C.C. - pp563-573 1971 - - %

Steeôl V
- ‘t .- B. Steel ■ ' ' "

"UNCOL the myth and the fact"
Ann b" Rev. Aut. Prog. 2 1961

Stee61..
T. B. Steel ; '
"A first version of UNCOL"
Proc. A.F.I.P.S. W.J.C.C. 19 371 1961

Stra.67
C. Strachey ; ,

"Fundamental eondepts in programming languages" 'k y

Oxford University Press 1967

Tane82
A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson
"Using Peephole Optimisation oniintermediate Code" .- '

' A.C.M T.o.P.L.a.S 4 1 1982

Temi77 , ; ' y y .
R. D. Tennent . % ' ‘ ■

"Language design methods based on semantic principles"

y;

I

215

Acta Inf. 8 9.7-112 1977

Tum76
D. A. Turner and R. Morrison
"Towards portable compilers"
Technical Report CS/76/5 Dept. Comp. Sci., Univ. of St. Andrews
1976

Tum77
D. A. Turner
"Error diagnosis and recovery in one pass compilers"
Information Processing Lett. 6 4 ppl13-115 1977

Turn79
D. A. Turner.
"SASL reference manual"
Technical Report CS/79/3 Dept. Comp. Sci., Univ. of St. Andrews
1979

Walt70
W. M. Waite

"Building a mobile programming system"
Comp. J. 13 28 1970

Wait73 ,
W. M. Waite

Implementing Software for Non-Numerical Applications

Prentice-Hall 1973

Wait74
W. M, Waite
"Code Generation" in

Advanced Course on Compiler Construction Tech. Univ. of Munich 1974

Wegb74
B. Wegbreit

216

"Procedure closure in ELI"
Comp. J. 17 1 1974

Welz68
J. Weizenbaum
"The funarg problem explained"
M.I.T. Cambridge, Mass. 1968

Wijn75
A. van Wijngaarderi and others

"Revised report on the algorithmic language Algol-68"

Acta Inform. 5 ppl-256 1975

Wilk64
M. V. Wilkes
"An experiment with a self compiling compiler for a simple list-
processing language"

Ann. Rev. Aut. Prog 4 1964

Wirt66
N. Wirth

"Euler;a generalisation of Algol and its formal definition"
C.A.C.M. 9 1 and 2 1966

Wirt68
N. Wirth
"PL360 'A Programming Language for the /360 Computers'"
J .A.C.M. 15 37 1968

Wirt77
N. Wirth
"What can we do ... "
C.A.C.M. 20 11 pp822-823 1977

