
A TESTBED FOR EMBEDDED SYSTEMS

Peter Burgess

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1994

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13457

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13457

A Testbed for Embedded Systems

Peter Burgess
PhD Thesis

University of St Andrews
Division of Computer Science

Department of Mathematical and Computational Sciences
University of St Andrews

St Andrews, Fife, KYI6 9SS

June 17,1994

ProQuest Number: 10167224

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167224

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

s

Abstract

Testing and Debugging are often the most difficult phase of software development.
This is especially true of embedded systems which are usually concurrent, have
real-time performance and correctness constraints and which execute in the field in
an environment which may not permit internal scrutiny of the software behaviour.
Although good software engineering practices help, they will never eliminate the
need for testing and debugging. This is because failings in the specification and
design are often only discovered through testing and understanding these failings
and how to correct them comes from debugging. These observations suggest
that embedded software should be designed in a way which makes testing and
debugging easier and that tools which support these activities are required. Due to
the often hostile environment in which the finished embedded system will function,
it is necessary to have a platform which allows the software to be developed and
tested “in vitro”.

The Testbed system achieves these goals by providing dynamic modification
and process migration facilities for use during development as well as powerful
monitoring and background debugging support These facilities are built on a
basic run-time harness supporting an event-driven programming model with a
global communication mechanism. This programming model is well suited to the
reactive nature of embedded systems. The main research contributions of this work
are in the areas of finding deadlock-free, path-optimal routings for networks and
of dynamic modification with automated conversion of data which may include
pointers.

(i) I, Peter Burgess, hereby certify that this thesis, which is approximately

60,000 words in length, has been written by me, that it is the record of

work carried out by me and that it has not been submitted in any previous

application for a higher degree.

date signature of candidate

(ii) I was admitted as a research student under Ordinance No. 12 in November,

1990 and as a candidate for the degree of PhD in November, 1990; the

higher study for which this is a record was carried out in the University of

St Andrews between 1990 and 1994.

date ^ / 9 / ^ signature of candidate

(iii) I hereby certify that the candidate has fulfilled the conditions of the Reso­

lution and Regulations appropriate for the degree of PhD in the University

of St Andrews and that the candidate is qualified to submit this thesis in

application for that degree.

date signature of supervisor

In submitting this thesis to the University of St Andrews 1 understand that I

am giving permission for it to be made available for use in accordance with the

regulations of the University Library for the time being in force, subject to any

copyright vested in the work not being affected thereby. I also understand that the

title and abstract wiU be published, and that a copy of the work may be made and

supplied to any bona fide library or research worker,

date 5 / ^ signature of candidate

Acknowledgements
I would like to thank, primarily my supervisor Mike Livesey for suggesting I

come to St Andrews to do a PhD in the first place, for his initial motivation and
numerous suggestions and guidance along the way and for sharing the invaluable
insights he gained from his work with the original ROV project. I would also like
to give special mention to the following people:

Colin Allison, who often provided practical comments during the many Testbed
design sessions based on his experience in the systems field and who read the first
draft of this thesis at extremely short notice and gave many helpful suggestions
for improvement.

Gerald Ostheimer, who has had to share an office with me for three years
and whose revolutionary work on abstract architectures for parallel processing
provided much inspiration for the Testbed programming model. I am also indebted
to him for sharing his hypertext bibliographic database system, for reading and
providing very useful criticism of an early version of the dynamic modification
chapter and for broadening my knowledge of Computer Science considerably
through numerous discussions.

Duncan Matthew, for providing me with source code and very thorough doc­
umentation of his hexapod walking robot, enabling me to implement it using the
Testbed and so gain confidence in the programming model.

Tony Reynolds, for supervising a short term research fellowship at BT which
provided early insight into the use of real-time clocks in distributed testing.

Finally, I would like to thank my brother, Richard, for getting me into com­
puting in the first place.

Contents

1 Introduction 1
1.1 Example of an Embedded System: Hie R O V 2
1.2 Approaches To Embedded System Construction........................... 4
1.3 Goals of the Testbed... 6
1.4 System O verview .. 7
1.5 Related W o rk .. 8

1.5.1 Embedded Systems Development Environm ents............ 8
1.5.2 Concurrent Debugging.. 9
1.5.3 Interactive Debuggers.. 10
1.5.4 Replay.. 10
1.5.5 Static Debugging .. 11

1.6 Thesis S tructure.................... 11
1.7 Original C ontribution.. 12

2 The Programming Model 13
2.1 Introduction... 13

2.1.1 Platform and Language Issues.. 14
2.2 Action Semantics ... 15
2.3 Message Semantics ... 15
2.4 Devices ... 17
2.5 System Library.. 17
2.6 Initializing Applications for T esting... 18
2.7 Programming Interface to Data and Types.................................... 19
2.8 Dynamic Memory A llocation..20
2.9 Development Support Environment...20

2.9.1 Simulating Hardware and Environment...............................21
2.9.2 Using Separate Processors to Reduce Monitoring Overhead 21
2.9.3 Using Extra Routing Nodes to Avoid Interference............... 21

2.10 Example: Implementing the R O V .. 22
2.10.1 N otation...22

2.10.2 HIGH.CONTROL...22
2.10.3 LOW-CONTROL...26
2.10.4 FEEDBACK................... 29
2.10.5 Notes ...30
2.10.6 Testing the RO V..31

2.11 Related Work .. 33
2.12 Conclusions... 35

2.12.1 Reasons for Choosing this M o d el.......................................35
2.12.2 Trade-offs...37

The Testbed System 38
3.1 Introduction.. 38
3.2 The S lo t .. 38

3.2.1 Accessing the Slot’s System D a ta40
3.3 Slot Structure ... 41

3.3.1 Slot Tables... 41
3.3.2 Access to System Data from Applications...........................42
3.3.3 Library Functions and Application State..............................42
3.3.4 System Ports and A ctions... 43
3.3.5 Heap Implementation D e ta ils ...43

3.4 Loading Modules ... 43
3.4.1 Construction of Object Module D escriptions.....................44

3.5 Special S lo ts.. 44
3.5.1 The Centre..44
3.5.2 The Host Server S lot...45

3.6 Host S erv ices............................. 45
3.6.1 User In terface..45

3.7 Booting the Development System ... 46
3.8 Customizing the User In te rface .. 46

3.8.1 Example: The ROV Control P a n e l47
3.9 Conclusions.. 47

The Kernel 49
4.1 Introduction.. 49
4.2 Related Work ... 50

4.2.1 Commercial Real-Time K ernels..50
4.2.2 Review of Real-Time Scheduling....................................... 51

4.3 Message Flow Through The N ode... 55
4.4 Scheduling Data Structures .. 56

11

4.5 Kernel Threads... 56
4.5.1 The G uard ian .. 56
4.5.2 The Timer Q u e u e .. 58
4.5.3 The Executive.. 59
4.5.4 The Sender ... 62
4.5.5 D ev ices.................................... 63

4.6 Scheduling in T estbed... 64
4.6.1 Bounded D elays..64
4.6.2 Implementation of Preemption...65

4.7 Initialization.. 67
4.7.1 Clock Synchronization...67

4.8 Conclusions.. 68

5 Routing 70
5.1 Introduction.. 70

5.1.1 Finding the R outing..71
5.1.2 Related W o rk ...72

5.2 The Testbed Network Architecture...73
5.2.1 Wormhole Routing ..74
5.2.2 Properties of Testbed N etw orks..74
5.2.3 B roadcast...75

5.3 Deadlock-Free Routing Functions...75
5.3.1 Dependency G ra p h ..77

5.4 Optim ality... 78
5.4.1 Routing Optim ization.. 81
5.4.2 Local M inim a... 82
5.4.3 Implementation.................. 82

5.5 Extending Deadlock Free N etw orks... 83
5.5.1 Combination Routings...85
5.5.2 Fixed Link Valency Networks...89

5.6 Application to Common Network C lasses...90
5.6.1 Grids and Hypercubes...90
5.6.2 Simple C ycles... 91
5.6.3 The T o ru s .. 91

5.7 Conclusions.. 91

6 Monitoring and Background Debugging 92
6.1 Introduction..92
6.2 Related Work ... 93

m

6.2.1 Monitoring...93
6.2.2 Background Debugging..94

6.3 Testing and Debugging...96
6.3.1 C ap tu re ..96

6.4 Monitoring... 97
6.4.1 Event M onitoring...98
6.4.2 State Monitoring.. 99
6.4.3 Implementation..99
6.4.4 User Interface to Monitoring.. 100

6.5 Avoiding Interference... 102
6.5.1 Exam ple.. 103

6.6 Background D ebugging.. 107
6.6.1 Where to Place the S urrogate... 108
6.6.2 Exam ple.. 109

6.7 Conclusions.. 110

7 Dynamic Modification 112
7.1 Introduction.. 112
7.2 The Data Conversion Problem ... 115
7.3 Relocating A liases... 118

7.3.1 Assumptions and Definitions ... 119
7.3.2 Conversion Algorithm... 123

7.4 Defining the M apping... 123
7.4.1 Automatically Deriving Field Mappings.............................. 127

7.5 Additional Consistency Tests ... 127
7.5.1 Static Consistency..128

7.6 Generalizations and Practical Considerations................................. 129
7.6.1 A rrays..129
7.6.2 Different Scalar Types... 130
7.6.3 Pointers in A liases... 130
7.6.4 Deleted F ie ld s..130
7.6.5 Extending the R e ty p e ... 130

7.7 Data Conversion...132
7.7.1 Exam ple...133

7.8 Pointer Relocation and Conversion of Dynamic Variables 133
7.9 Preserving Consistency of Messages.. 137

7.9.1 Aborting a R eload..138
7.10 Related Work ...138
7.11 Conclusions..139

IV

8 Migration 141
8.1 Introduction.. 141
8.2 Related Work ... 142
8.3 Synchronous M igration 143
8.4 Asynchronous Migration.. 144

8.4.1 Complications..145
8.4.2 Pointer Updating...146

8.5 Correctness Properties... 146
8.5.1 Correctness of Synchronous M igration.............................146
8.5.2 Correctness of Asynchronous Migration.............................147

8.6 Exam ple.. 148
8.7 Conclusions.. 148

9 Conclusions 149
9.1 The Testbed Programming M o d el...149
9.2 Im plem entation..150
9.3 Testing and Debugging... 151
9.4 Dynamic Experimentation.................................... 152
9.5 Major Original C ontributions...153
9.6 Further W ork.. 153

9.6.1 Adding Features to T estbed ...153
9.6.2 Device S u p p o rt... 154
9.6.3 Heterogeneous System s... 154
9.6.4 Using Memory Protection..155
9.6.5 Real-Time Scheduling..155
9.6.6 R o u tin g ..156
9.6.7 Dynamic Modification..156
9.6.8 Background Debugging...156
9.6.9 Fault T olerance... 157

9.7 Closing Remarks.. 157

A Testbed vl.O User Guide and Reference 169
A.1 Overview ... 169
A.2 Running the Testbed.. 169

A.2.1 Environment S e tu p ... 170
A.2.2 Routing Files .. 170

A.3 Using T estbed ... 171
A.3.1 Testbed Com m ands...171
A.3.2 Support for Dynamic M odification................................... 174

A.4 Structure of a Testbed Application..175
A.4.1 Message Form at...177
A.4.2 Actions and M od u les... 177
A.4.3 User Defined T y p es.. 180
A.4.4 Macros for Defining State Variables...................................181
A.4.5 Static Variables and Functions..182
A.4.6 Configuration... 183

A.5 Detailed Description of Functions..184
A.5.1 Library Functions Available to all S lo ts184
A.5.2 Host Library F unctions...188

B Testbed System Ports 192
B.l Centre P o r ts ...192
B.2 Host Server Ports ..193
B.3 Application Slot P o rts ..194
B.4 Common P orts..195

C Source Code for ROV 197
C.l Routing F i le ...197
C.2 C Defittitions...197
C.3 C Source C ode..199

VI

Chapter 1

Introduction

Embedded systems are computer systems which are embedded in larger systems
and running a single custom application program. Examples range in complexity
from systems with a single processor such as video recorders, and disk controllers
through more complex systems requiring more powerful processors such as data
communications boxes to very complex distributed multiprocessor systems such
as chemical plant controllers, robots and space craft control systems. An embed­
ded system can generally be decomposed into a number of semi-independent state
machines or processes each of which may have the following common character­
istics:

Reactive The process spends most of its time idle, awaiting some event, which
may be external (from the outside world) or internal (a message or request
from another process). It must then perform some action, possibly within
some deadline and return to the idle state.

Periodic The process repeatedly performs the same task at set intervals of time.
Each instance of the task may have a deadline relative to its scheduled start.
This can be regarded (and will be in the system described) as a special case
of a reactive process in which the triggering event is a time.

Tightly coupled to hardware and environment Each embedded system has spe­
cial requirements which depend on the hardware which is to be controlled
(actuators) and the interface to the external environment (valuators). The
presence of the external environment in the specification of the system
results in complex state spaces which are difficult to predict and model.

Concurrent In all but the simplest systems there will be more than one distinct
subsystem and hence process. These processes will need to communicate,
with the resulting increase in complexity. In addition each process may well

1

have to accept new external events while previous ones are still being dealt
with.

1.1 Example of an Embedded System: The ROV

As a motivating example consider a submersible Remotely Operated Vehicle
(ROV), typically used for inspection of off-shore oil platforms. The target system
consists of a submersible robot attached by an umbilical cord to a surface controller
as illustrated in Figure 1.1. The vehicle has four motors; two at the rear and two
at the side each of which can be driven individually in either direction. The
rear motors provide forward or backward thrust and heading control while the side
motors which are inclined at 45 degrees, provide both vertical and sideways thrust
Buoyancy tanks at the top of the vehicle prevent significant tilting when the side
motors are driving at different speeds.

Controller

Umbilical

Buoyancy ianks

Motors

Figure 1.1: The submersible ROV.

The ROV is controlled by an operator at the surface who uses visual feedback
from a closed circuit video camera mounted on the front of the vehicle and a 20
character LCD display which displays depth and heading reported back by the
software from gauges in the vehicle. The control panel includes a joystick for
controlling the horizontal motion (speed and direction) of the ROV relative to
the current heading, by the position of the joystick, and the heading itself, by
twisting the grip of the joystick. The heading control returns to a neutral position
when released. There are buttons fw driving up w down at a fixed speed and for
selecting autodepth and autoheading control. There is also a joystick for pan and

tilt of the camera and buttons for focusing. Figure 1.2 shows the operators view
of the ROV.

DPTH: 1 5 0 HDNG:355
DRIVE

CAMERA
PAN/TILT

AUTODEPTH

AUTOHEAOINQ

r IN 1
J

FOCUS

OUT

C UP

DOWN

K 1

J
J*

Figure 1.2: Operators view of the ROV.

While autodepth (autoheading) is selected the control software attempts to
maintain depth (heading) at the value reported by the depth gauge (compass) when
this mode was entered. Autodepth control is temporarily overridden while one of
the up or down buttons is depressed and restored when released with the target
depth reset to the current depth. Similarly autoheading is temporarily overridden
when the drive joystick is twisted to turn left or right and restored when it returns
to its normal position with the target heading reset to the current compass value.

The software is required to ensure the following safety conditions to avoid

damage to the hardware:

1. There is an upper bound on the rate of change of speed of each motor.

2. Each motor must be brought to a stop for a short period before changing
direction.

3. There is an upper bound on the sum of speeds of the two motors on each
side of the vehicle.

The software is divided into two layers. The low level control performed
onboard the vehicle consists of switching each motor (including those which
control the camera) on or off for a percentage of a duty cycle specified by the
high level control software which resides in the surface controller. The onboard
software also polls the depth and compass gauges periodically and reports the
values back to the surface controller. The high level controller is responsible
for converting operator commands into appropriate motor values and for the
autodepth and autoheading control while maintaining the safety conditions, as
well as displaying the reported depth and compass values.

The original version of the ROV control software was implemented in Z80
assembly language with the only software testing done on the vehicle. Any
behavioural faults meant hauling the robot up to the surface, trying to debug the
assembly language program, re assembling the new control code, burning new
eproms, and trying again. In Section 2.10 an implementation of the ROV in the
Testbed programming model described in Chapter 2 is presented.

1.2 Approaches To Embedded System Construction

It might at first seem that as embedded systems aie concurrent, they are a special
case of general purpose distributed operating systems or perhaps should be studied
along with supercomputers. However the first three characteristics on the list on
page 1 conflict with the goals of these fields. General purpose computers tend to
run multiple competing tasks and are tuned to provide good average throughput.
They often have features which embedded systems do not require such as virtual
memory and disk/file systems. The maximum memory requirement can usually be
determined during an embedded system’s development and the extra cost in over­
head, loss of predictability and extra power and space requirements often rule out
virtual memory and disks. The applications run on general purpose computers and
supercomputer applications tend to differ from embedded applications in that they
run to completion with as few pauses as possible. If the system fails due to shortage

of resources, it may be acceptable simply to reconfigure and restart the application
or even reboot the system if the fault lies there (e.g., memory fragmentation). This
is generally not acceptable in an embedded application/system. Most work on
embedded systems appears in the real-time systems literature, however there are
other important issues which deserve study such as the general development and
debugging problems which this work addresses.

Two approaches to embedded system construction are to program the hardware
directly or to use an operating system. The advantages of the former are that it
is theoretically possible to minimize hardware requirements such as memory and
processor performance. This is probably £q)propriate for the simplest embedded
applications where these resources are most limited. The main disadvantage
of the direct approach is high software costs; the code is likely to be hard to
understand, debug and modify. These become r^idly worse as the complexity of
the application increases. Operating systems have die advantage of code reuse,
the application programmers task should be easier and the resulting code should
be simpler, as much detail is hidden in system calls. The operating system
may well provide facilities and tools which make the system easier to develop,
debug and modify, such as the ability to test outside the target environment using
simulations of the real system. The disadvantages of an operating system include
the excess baggage in terms of memory and processor performance requirements,
possible loss of control of resource management and the fact that the applications
programmer may not be able to obtain detailed information about the behaviour
of the system and the consequences/side-effects of system operations. This last
difficulty makes verification of the system difficult and also hinders debugging as
the programmer may be unsure of whether a bug is in the system or application
code. Often such cases arise from a lack of understanding of the operating system’s
behaviour due to poor documentation.

The difficulties encountered with operating systems often result from the use
of a general purpose operating system (such as a Unix^^ variant or MSDOS^^).
These systems have not been designed with embedded applications in mind and
consequently do not have the required properties such as determinism or level of
documentation. Often compromises have had to be made due to the lack of advance
information about the application, in order to improve average performance at
the cost of occasional unpredictable delays or even potential failure. Even the
basic process model supported by such systems is often inappropriate in that it
requires the application programmer to provide an event loop which is common
to all processes and which might well have been included in the system. It is
also likely that the system is not customizable to a fine enough level, requiring

the programmer to work around inappropriate low level mechanisms which add
unnecessary overhead. For example it is often not possible for the application to
control low level scheduling or inform the system of its timing constraints. The
microkernel approach currently in vogue in operating systems design (Amoeba,
Mach 3.0 [97]) helps to some extent, however most of these systems have been
developed with different objectives to embedded systems operating systems such
as implementing a better (e.g., distributed, object oriented) Unix.

An operating system designed specifically for embedded applications should
overcome most of these difficulties. Obviously due to the highly disparate nature
of embedded applications, it is hard to produce an operating system which is ideal
for all and there will always be resource penalties to pay for using one. However
for complex embedded applications the benefits should outweigh the costs.

In addition to the attributes of predictability, simplicity and configurability of
the kernel, an operating system for embedded systems can also provide higher
level features which aid in the development process. These are outlined in the
next section which overviews the goals of the Testbed project.

1.3 Goals of the Testbed

Monitoring It is essential that both the whole system and individual ruiming
processes can be monitored during their operation. Monitoring inevitably
causes perturbation of the target system (called the “probe effect” in [28,40]).
It is important to minimize this effect, and allow the test bed to eavesdrop
on the target system as silently as possible. Embedded systems are almost
always time-critical. Timing is one of the most delicate aspects of the target
system behaviour, making silence a difficult criterion to meet and effectively
ruling out interpretive debugging.

Dynamic Modification If a malfunction or undesirable behaviour is detected
during monitoring, subsequent modification of the system incurs a cost. For
any large system, such as a telephone exchange, airline reservation system or
operating system, this cost may be unacceptable. Minimizing the potential
cost requires the system to support some degree of dynamic modification.
An embedded system will normally have a large range of internal states,
reflecting the system’s close coupling to its external environment. The
state path from startup to the state where the malfimction is detected may
therefore be long. The cost of re-creating this path, the “warm up” cost, may
be prohibitive; in some cases it may be effectively infinite. It is therefore
highly desirable to have dynamic modification at the level of individual

processes.

Process Interconnection In order that a client application interconnection topol­
ogy can be designed independently of the physical network topology, it
is necessary to provide a communication harness that supports a single
system wide communication model. This model must provide, as simply
and efficiently as possible, deadlock-free, versatile and reliable routing of
messages.

Process Migration Time criticality makes the allocation of processes to proces­
sors an important issue, and the test bed must also provide for dynamic
control over this allocation by allowing processes to be migrated. Migra­
tion is another reason for having the system wide communication model.
Migration can be viewed as a form of dynamic modification.

Background Debugging Interactive debugging creates a bottleneck, which causes
excessive intrusion and contributes to the probe effect mentioned above.
One way to minimize the interaction bottleneck is by means of background
debugging in which debugging decisions and actions are devolved as far as
possible to code which runs alongside the application software.

1.4 System Overview

Testbed is currently implemented on a Meiko Computing Surface connected to a
Sun workstation. The reconfigurability of the Computing Surface makes it easy to
experiment with different interconnection topologies for multiprocessor embedded
applications and also provides extra processors which can be used for simulating
devices and off-loading monitoring tasks (as suggested in [1] and [33]), reducing
interference which might otherwise change the behaviour of the application.

The user interface to the system is a Sun workstation (hosting the Computing
Surface) through which the user is able to interact with the application under
development through a root node for purposes such as monitoring, debugging and
controlling simulation (see Figure 1.3). All communication with the host system
uses Meiko I/O functions from the root node. Communication from elsewhere in
the system is performed strictly using Testbed functions which communicate over
transputer channels with system components which route messages back to the
root node.

Key (node types):

R - Root
A - Application
D - Device
M - Monitoring

Computing Surface

□ ^

□ □ M

\m \̂ □
| aP □
(dV -4 ^ □

□ □ □

Figure 1.3: The Testbed development platform supports “in vitro” development
with extra nodes used for monitoring and simulating external devices.

1.5 Related Work

1.5.1 Embedded Systems Development Environments

A number of test beds and development environments for embedded systems
have appeared in the literature recently, most with some features in common with
Testbed. However none have all the features described in this thesis. In particular
dynamic modification facilities are either absent or much more primitive than
those described in Chapter 7.

[83] describes testing distributed real-time systems in the context of the MARS
architecture and MARDS design environment The MARS system consists of a
set of clusters of components which are stand-alone computers. Each compo­
nent in a cluster communicates with the others using a real-time bus while some
components can be connected to an interface bus or field bus for communicating
with other clusters or the external environment. Each component runs a copy of
the MARS operating system. Apart from the architectural differences, MARS is
fundamentally different from the Testbed system and programming model in that
MARS is a time-triggered system in which each action is executed at a predeter­

a

mined point in time. By contrast. Testbed is an event-triggered system in which
the scheduled start time for a time-dependent action is an event.

Similarities in the work described in [83] include the use of passive monitoring
rather than interactive debugging to avoid the probe effect and the use of extra
processes and processors for environment and device simulation.

[33] describes testing in a “host” environment with device handlers replaced by
device simulators for testing the logical function of the system and also in the target
system with an environment simulator for testing performance. The environment
simulator runs on an external system to avoid perturbing the software under test

1,5.2 Concurrent Debugging

The same techniques which are used for debugging sequential programs may be
used to debug concurrent ones, both to detect the same types of bugs and also
new ones introduced by communication, such as sequencing errors. In the latter
case the efforts of the debugger are often thwarted by the intrusiveness of the
debugging process—the probe effect, in which the very presence of the debugger
alters the timing properties of the program to mask possible errors. Detecting the
special errors which are introduced due to concurrency, and avoiding the probe
effect, have led to approaches which concentrate on specific aspects of debugging,
or one technique (such as message monitoring).

[60] surveys techniques for debugging concurrent programs and identifies four
classes:

1. Traditional debugging techniques.

2. Event-based debuggers.

3. (Graphical) tracing techniques.

4. Static analysis.

Here debugging techniques will be divided into the following (non-mutually
exclusive) categories:

Interactive Debugging In which the user may view and interact with execution
of the program in real-time.

Monitoring In which the events/states in the system are captured, and viewed/used
either in real-time or post-mortem.

Replay In which sufficient information is recorded to enable a program to be
replayed from a particular point, with more detailed examination.

Static Debugging Where a specification of the program is checked against certain
assertions about its valid behaviour.

Background Debugging In which monitoring techniques are used in conjunction
with the assertion idea from static debugging to automate the process of
interactive debugging.

1.53 Interactive Debuggers

Conventional source level debuggers are a very useful tool in software develop­
ment. Unfortunately many systems which support and even encourage concurrent
programming, fail to provide interactive source-level debuggers which support
multi-threaded programs. For example the dbx and dbxtool debuggers in SunOS
and the tdb and tdbtool debuggers for the Meiko Computing Surface cannot cope
when a process forks (or PARs), although there have been interactive windows-
based debuggers for some time [27,40,48,80,89] which do support multithreaded
programs.

1.5.4 Replay

In replay systems [16,17,24, 31,54,69], the communications which the process
under inspection makes with the outside world are recorded. When some incorrect
behaviour is noticed, the system is stopped and then the process is “replayed” with
the monitored communications performed in the same sequence. This allows full
source level debugging with breakpoints and state inspection to be performed
without the danger of changing the temporal ordering of events. Replay systems
have two major disadvantages for embedded systems. The first is that embedded
systems run for an indefinite amount of time. Thus if all communication events
are logged, the log may grow indefinitely. Many replay systems cope with this
by including periodic checkpointing, allowing the log to be discarded prior to
the checkpoint. However any behaviour which the monitoring system (or human
observer) is trying to detect must be guaranteed not to have occurred before the
checkpoint or the subsequent replay will not be able to identify the root cause.
Another problem is that checkpointing is a time consuming activity and may itself
interfere with the temporal or timing behaviour of the system. The other major
problem with replay is that it only preserves the temporal ordering of the events in
the system. Timing behaviour will still be altered by any source level debugging
during the replay.

10

1.53 Static Debugging

This approach generally involves converting a high level specification into a graph,
such as in the Petri net approach [21] which may be analyzed to detect potential
invalid communication patterns such as deadlock. Unfortunately for realistic
systems the graphs quickly become unmanageable.

[41] describes a method for testing a set of communicating sequential pro­
cesses, by attempting to construct a feasible sequence of interactions between
them from a given set of inputs by an iterative algorithm which initially assumes
random inputs to each process. This approach may be suitable for short processes
of finite duration, however the artificial time ordering of the communications used
may not reflect what happens in the real system.

The research described in this thesis has focused on providing mechanisms to
facilitate non-intrusive debugging which is not possible with source level, break­
point techniques. Consequently Testbed does not provide these facilities. A survey
of work on non-intrusive monitoring and background debugging can be found in
Chapter 6.

1.6 Thesis Structure

The rest of this thesis is structured as follows: Chapter 2 describes the programming
model around which the Testbed is buUt Examples are presented to illustrate the
use of this model.

Chapter 3 gives details of the higher levels of system software which provide
the debugging support and implement the programming model.

Chapter 4 describes the design of the BED (Basically Event Driven) multi­
threaded kernel which supports the Testbed programming model.

Chapter 5 presents work done in support of Testbed on deadlock-free routing
in networks.

Chapter 6 describes the monitoring features of Testbed and discusses how they
may be used to debug and tune an embedded application without interfering with
the application’s behaviour.

Chapter 7 contains a formal treatment of the solution to the pointer updating
problem as well as a general description of the mechanisms which support dynamic
modification in Testbed. A simple example is provided which illustrates how
dynamic modification may be used in practice.

Chapter 8 describes the process migration mechanism of Testbed and illustrates
with an example how it can be used to improve load balancing.

11

Chapter 9 summarizes the project and its contribution.
Appendix A gives a detailed description of the user’s view of the current

Testbed implementation. Appendix B gives details of system port assignments
and Appendix C gives source code for the examples described in the main body
of the thesis.

1.7 Original Contribution

The original aspects of this work include:

1. The programming model (Chapter 2), which differs from the CSP style
commonly used for distributed memory systems and is better suited to the
reactive nature of embedded systems.

2. The integration of time into scheduling (Chapter 4).

3. Work on optimizing message routing while preserving deadlock-freedom
and extending networks with such routings in a regular way (Chapter 5).

4. Monitoring and background debugging (Chuter 6). The structure of Testbed
programs provides natural breakpoints which enable non-intrusive monitor­
ing and provide support for background debugging.

5. Dynamic modification (Chapter 7) and Migration (Chapter 8). The struc­
ture of the Testbed system and applications also allows some of the most
difficult problems in these two fields to be solved. Much more flexibility in
data structuring and a greater degree of automation of data conversion are
provided than with previous work in the field of dynamic modification.

Some of the work contained in this thesis has been previously published by
the author [12,13,14,15,57].

12

Chapter 2

The Programming Model

2.1 Introduction

Testbed is based around a distributed reactive processing model in which events
are synonymous with messages. The processing entities are known as slots which
are active objects consisting of encapsulated state data and code for processing
and responding or reacting to messages. Slots may reside on the same processor
or different ones separated by a network. In both cases communication is identical
from the slot’s viewpoint and any slot may send messages to any other without
the need to establish a connection. Events may originate outside the system via
a device interface or inside when one slot sends a message to another. Similarly
a slot sends messages to a device as if it were another slot. When a slot receives
a message it is processed by a unit of code called an action. This is a procedure
which may update the slot’s state in response to the message and any data it may
contain and respond by sending new messages. Actions always terminate and do
not perform input Instead new messages are processed by new action instances.
Only one action can be in progress at a time in any slot. The slot’s state includes
a table mapping ports to actions. Each message contains a port identifier and
the system uses this to index the port table and determine which action to invoke
to process the message. This port assignment may be altered by actions. Time
is intrinsic to the model in that each message carries a timestamp which, if in
the future, can be used to delay a message. Also a slot can have a deadline for
processing each message which the system uses to schedule multiple slots on a
single processor.

It will be argued that this simple programming approach is more appropriate to
embedded applications than a conventional sequential process-based model such
as CSP [43], though the latter is more general. Testbed provides the embedded
systems software implementor not only with a debugging and testing environment,

13

but with a framework for the software. Specifying embedded software using the
Testbed model involves breaking the system down into components which form
the slots, determining the types of messages which these components need to
send and respond to, and designing the ports and associated actions required to
receive and process these messages. This resembles the state machine network
approach often used in the higher levels of embedded systems design [86]. In fact
state machines map naturally onto slots with events corresponding to messages,
states to the combination of state data and port settings and state transitions to the
operation of actions on the state triggered by the events. The event-action model
also greatly simplifies and modularizes the implementation of the monitoring and
debugging activities of Testbed. If the user were to provide a complete process
then Testbed would be forced to probe at its inner workings from the outside.
This would require a great deal of work at the compilation stage and would be
especially difficult if the process had multiple threads.

The Testbed programming model is supported by a kernel described in Chap-
ter4 which transports messages between slots and performs scheduling operations.
The rest of the Testbed’s application and debugging support is implemented using
slots and actions. Each processor has a centre slot which performs housekeeping
activities and a special version of this slot residing on the root processor provides
the user interface via the Unix host using the X Window System and Athena
Widgets [71]. This is referred to as the host server slot.

2.1.1 Platform and Language Issues

Although Transputers were chosen as the platform for Testbed, the programming
model is not Transputer specific and in fact differs greatly from the CSP/occam
model [43, 103] normally used to program these systems^. Transputers are an
appropriate platform for Testbed as they were designed for both embedded systems
and multiprocessing applications. Testbed is aimed at multiprocessor embedded
systems and the availability of Unix workstation hosted Transputer arrays such as
the Meiko Computing Surface allow the software to be developed and tested on
the same processor as the target system.

Given the event-action model, the choice of programming language had to be
made. The obvious choice for Transputers is occam, however the fact that actions
are sequential and are not permitted to perform blocking input would mean that
the programmer would be restricted to a sequential subset of occam without the
input operations. It was decided that it would be better to use a purely sequential

^See Section 2.11.

14

language for the actions and since C is also in common use for writing embedded
systems software both on Transputers and other platforms, it was chosen.

2.2 Action Semantics

Actions are simple functions which are called by a special harness process. All
actions are invoked with the same parameters. A C prototype for an action would
have the form:

void action(void *data);

The parameter is a pointer to the data contained in a the message (if any).
System functions are provided for obtaining information from or even a complete
copy of the message header. This is useful for reasons such as identifying the
sender, checking for expiration of the deadline or rescheduling the message for a
later time.

Actions may send messages to other slots, to the same slot or to an external
device, but may not perform input This property reflects the view of action
functions as interrupt handlers, which should execute for a short bounded period
(without interruption). If blocking input needs to be performed from an external
device, it will be performed by a special input handler process which is considered
to be part of the system rather than application code. When a new message arrives
it is placed by the system into a FIFO queue for the destination slot. When space for
messages becomes exhausted, messages are discarded. It is up to the application
designer to ensure that there is always enough space for the maximum number of
messages which may be waiting at each slot

2.3 Message Semantics

When sending a message, the sender provides the following parameters:

Destination The destination slot id.

Size The size of the message data.

Port An indication of the type of message to the destination slot.

Timestamp A time before which the message must not be processed at its desti­
nation.

Data Information to be processed.

15

The application does not need to know on which processor the destination slot is,
though this location is specified by the user during initial loading and may change
during development as slots are migrated to tune performance. The message is
automatically routed to the correct node as described in Chapter 5.

The queue of messages for a slot will be referred to as its schedule. Once a
message has reached the head of this queue it will eventually be removed and an
action will be dispatched to process i t At this point it is no longer part of the
schedule and carmot be overwritten by newly arriving messages.

When a message arrives with a timestamp which is greater than the processor’s
local clock value, its arrival is delayed until this time has past. Then the message
is added to the back of the queue for that slot as if it had just arrived. Each slot also
has a post time which is added to the timestamp to give a deadline before which
the system should action the message if possible. In cases where no particular
deadline is appropriate, a priority may be given. The deadlines and priorities
are used by the system to choose between different slots on the same processor.
This scheduling is described in Section 4.6. The destination slot has a port table
which contains a mapping from the port contained in the message to an appropriate
action. This mapping may be changed by the application.

It is possible that an overload situation may arise in which messages need to
be discarded. To avoid losing crucial messages, the application may specify a
minimum number of buffers which are reserved for use by messages destined for a
particular port. On the other hand it may be known by the system designer that cer­
tain types of messages are liable to flood the system in exceptional circumstances
and so it is possible to specify a maximum number of such messages which may
be waiting to be processed at any one time, so protecting other more important
messages from being lost When a message arrives and the slot currently has the
maximum number of messages for that port its data field is used to overwrite the
data of the most recently arriving message. This mechanism is also useful as an
optimization for update messages when only the most recent message is of interest.
For example a device may periodically report the current value of some valuator.
There is often no need to store several such messages so the maximum value can
be set to 1.

The application can specify that messages for a particular port are critical in
which case they may not be interrupted by the system as long as it performs no
output. Also if a slot is waiting to process a critical message whose deadline is
earlier than any other slot, the delay before the slot is scheduled will be short and
bounded. The critical attribute is a useful way of reducing inteiference with time
critical activities by other slots and by message traffic which would normally take

16

precedence. This attribute also provides a mechanism for responding to device or
timer interrupts deterministically.

2.4 Devices

In keeping with the rule that actions cannot block awaiting input, synchronous
devices, such as those attached to Transputer links or which indicate readiness
via the event pin, are handled by kernel threads which convert incoming data into
Testbed messages. There are also kernel threads which convert Testbed messages
into raw data sent to the device. Since the input data does not arrive in the form
of Testbed messages the destination slot and size of the data need to be specified
by the application in advance. Also the application needs some way of addressing
the device. Device links, as well as raw links^, are specified as part of the network
description^ at which stage they are given slot identifiers. Any slot can send a
message to a device as if it were an ordinary Testbed slot. Two function calls
are provided to configure the kernel thread which inputs from the device, telling
it the size of the incoming messages and which slot and port to deliver them to.
The c o n f ig u re _ d e v ic e function causes messages of the given size to be read
repeatedly and passed on to the given slot and port, while the re a d _ d e v ic e
function results in a single message being delivered. In this way slots anywhere
in the network can access any device transparently and input from the device can
be routed to a receiving slot on any processor.

Asynchronous devices, such as memory mapped, polled devices do not need
to be part of the kernel. Application actions can read and write them directly as
this does not involve blocking. If access from multiple slots or from remote nodes
is required to such a device then a dedicated slot can act as a device driver, but
this is part of the application, not part of the system.

2.5 System Library

A set of library functions is provided to be called by applications. These include
a subset of the standard C library functions as well as many Testbed specific
calls which provide features such as communication, memory management and
port management. A full explanation of these functions along with some useful
macros which are provided in header files, can be found in Appendix A.

^useful during development, so that a (tevice may be simulated by a Testbed slot on a separate
processor

®See Appendix A.

17

2.6 Initializing Applications for Testing

When the application is ready to be installed on the target system, it will usually
be linked with those parts of the Testbed system which are required to support
its execution into a set of executable modules which can be loaded from disk
or stored in ROM. However during development on the Computing Surface the
Testbed system, including its user interface is loaded first using the Meiko system
configuration and loading facilities (CSBuild [61]) and then the application is
loaded by Testbed.

At system creation time, the physical network of processors, together with
routing tables are supplied by the user. The target application is composed of
a collection of slots which are assigned to physical processors (not necessarily
one-to-one). There is no special compiler for Testbed. Instead the one which
comes with the system (e.g., the Meiko C compiler) is used. The source code is
divided into modules which are loaded as units. There are three types of mod­
ules, declaration modules, initialization modules and application modules. Each
declaration or initialization module contains a declaration or initialization func­
tion which is called after the module is loaded. Declaration functions define user
defined types, state variables and the initial port assignment for the slot. Variables
can be given initial values when first defined. Initialization functions contain extra
initialization which needs to be performed at system startup. Application modules
do not contain a function which is invoked when they are loaded. Any of the three
types of module can contain actions and other functions called by them, however
the declaration and initialization modules may not call functions in application
modules or declaration and initialization modules which are loaded after them.
Nor may they refer to variables declared in these later modules. This is because
declaration and initialization modules are linked immediately, and invoked, while
the application modules are not linked until the end of the load process. The
system is bootstrapped by means of a special initialization function executed on
the host server. This function makes system calls to create and initialize all other
slots in the system. The initialization of these slots is performed by loading the
declaration, initialization and application modules which define them.

Actions are linked with the slot’s state data. These data may be shared between
actions, but there is no danger of conflict, as only one action may execute at a
time. The state variables are maintained in a symbol table each entry of which
contains the type of the variable and its address. Static and dynamic variables are
created in the same way but are distinguished by associating a name with each
static variable and allowing it to be linked into actions. Dynamic variables may
only be referred to by indirection through pointers contained in other variables.

18

Type definitions and static variables are generally created by declaration functions
which are invoked once when the application starts up or during a reload operation.
Such reloads are the means by which the incremental modification occurs.

2.7 Programming Interface to Data and Types

Both types and state variables are currently defined using procedures and macros
from declaration functions^, in the case of static variables, or from action code in
the case of dynamic variables. A set of standard types is predefined and these form
the basis for the user defined types. With the exception of arrays and pointers,
each state object must have a type corresponding to a definition in the type table.
This means that all structures must be defined explicitly as types in the type table
before being used (equivalent to having to typedef each struct used in a C program).
Variables may be declared as pointers to, or arrays of, existing types (or pointers,
arrays etc.). This results in all intermediate pointer and array types being added
to the type table. The naming convention for these types is based on C syntax. A
pointer to base_type is named base_type*, while an array of n base-types is named
base_type[n]. For multiple dimensional arrays the dimensions are ordered from
right to left So base-type[n] [m] is an array of n base_type[m]. Pointers and arrays
may be combined. For example if a variable is declared of type int*[3]**[4][5],
(with int already declared) then this results in the following types:

int*
int*[3]
int*[3]*
int* [3]**
int*[3]**[5]
int*[3]**[4][5]

In words the final type is: array of 4 array of 5 pointer to pointer to array of
3 pointer to int. It is not clear whether this is the best convention intuitively
since to completely dereference a variable of this type called x, you might say:
*(**x[3][4])[2]. Note that these declaration conventions do not exactly implement
the C declaration conventions which are more general and involve brackets. They
are used because such expressions are easier to parse than general C type specifiers.

Unions are not currently supported.

^detailed in Appendix A

19

2.8 Dynamic Memory Allocation

Dynamic variables may be created at any time by using the same functions as are
used for defining static variables in declaration modules. They are distinguished
by having a NULL name value. Both dynamic and static variables are stored in the
symbol table and are converted during dynamic modification and copied during a
migration.

The standard C library malloc and free operations take non-deterministic times,
which make them unacceptable for a time critical embedded application. It is also
possible that the heap may become fragmented so that requests for storage may
fail after the system has been running for some time which is also unacceptable.
For these reasons a free storage management scheme based on memory pools is
used. The free store consists of a set of pools of free blocks of the same size, with
one pool per block size. Allocating a new block consists of searching for the first
pool (the pools are kept in a size ordered list) which has a free block large enough
and deleting the first element (constant time). Since there is a small fixed number
of pools, there is a small upper bound on the time for an allocation. Storage for
messages also needs to be allocated dynamically and so a similar mechanism is
used as for state variables. As the management of the schedule is performed by
the kernel concurrently with the action, there needs to be a separate set of pools for
this, known as the system store. Although the system heap allocation/deallocation
is only performed by the kernel, the user can specify the heap configuration at slot
creation time.

When a slot is created, arrays of pool specifiers are provided for the system and
user stores. Each pool specifier consists of the block size and the number of blocks
of that size. The system uses this information to initialize the two free stores. A
default store configuration is provided so that the user can omit the specification
initially. Section 3.3.5 describes the implementation of the heap.

2.9 Development Support Environment

In order that the behaviour and performance of the application in vitro be as
close as possible to its in vivo state, as much as possible of the development
system which will not be present in the live system should be off-loaded onto
extra processors available on the development platform. These may be used for
simulating external hardware devices and the environment, for off-loading some of
the work of monitoring and for providing routing paths back to the root processor.

20

2.9.1 Simulating Hardware and Environment

The concept of simulating external devices using separate processors is suggested
in [33] as a way of avoiding perturbing the software under test. This works particu­
larly well with transputers as the external devices are likely to be attached through
the same link interface which is used to communicate with other processors. For­
tunately these simulation problems have much in common with embedded systems
and Testbed is well suited to implementing them. Simulating devices and envi­
ronment on separate processors from the application also provides an opportunity
to perform monitoring on these processors, which does not interfere with the per­
formance of the application system, although care is still needed to ensure that it
does not interfere with the performance of the simulation.

2.9.2 Using Separate Processors to Reduce Monitoring Over­
head

The presence or absence of monitoring software can cause differences in behaviour
of the system being monitored, known as the probe effect. Off-loading some of the
work involved in monitoring onto separate processors can alleviate the problem.
This is the approach taken in [1], where an efficient breakpoint mechanism is used
to capture information and pass it to a separate processor where analysis, filtering
and logging or reporting back to the user are carried out, while the application is
allowed to proceed with minimal interference.

2.93 Using Extra Routing Nodes to Avoid Interference

Due to the limited number of communication links per transputer, it may be
necessary for messages to be routed through intermediate processors to get to
their final destination. If these processors are involved in the application then
interference may occur, which may be difficult to predict and may make deadlines
impossible to guarantee. It is especially undesirable for the messages between
processors which will not be present in the target system, such as those used for
simulation and monitoring and the root processor, to interfere. This is another
example of the probe effect. The problem can be avoided if there are extra
processors available which can be used entirely for routing purposes.

21

2.10 Example: Implementing the ROY

The Testbed is particularly suited to the development of reactive embedded sys­
tems. The programming model described in this chapter is illustrated with the
control software for the submersible Remotely Operated ̂ fehicle (ROY) described
in Section 1.1. More than one possibility exists for nuqpping the control sys­
tem onto slots. One possibility is to have three slots on two processors, one
for the high level control functions which are performed by the surface control
module, which has its own processor and two for the low level onboard control
functions and status reporting on the other processor. These wül be referred to
as fflGH-CONTROL, LOW.CONTROL and FEEDBACK. Initially it will be as­
sumed that there is a HOST slot which converts operator commands into messages
to the HIGH-CONTROL slot and to which the depth and compass values are re­
ported and an ROY device which accepts motor on/off and direction values from
the LOW-CONTROL slot, without acknowledging and requests for the current
depth or compass value from the FEEDBACK slot which result in a reply. Later
the method of implementing a user interface and a simulated ROY for testing will
be explained. The camera control involves exactly the same sorts of messages and
actions as the driving of the vehicle, except that there is no feedback within the
system (the video signal is carried back to the monitor by a separate cable). It has
been omitted from the implementation described here for simplicity.

2.10.1 Notation

Testbed programs will be described in an Algol-like pseudocode form. For each
slot the actions, ports, outgoing messages and pseudocode are presented followed
by initialization code. For the ports and messages only the fields which take
non-default values are specified. Full C versions of the examples can be found in
Appendix C. When a value such as the action corresponding to a port is constant
it is indicated using an =, whereas if it may change := is used.

2.10.2 HIGHXONTROL

Actions and Ports

This slot receives separate heading, horizontal and vertical velocity commands
from the HOST slot (coming from the joystick and up/down buttons respectively).
These are handled by the Heading, H_Velocity and V_Velocity actions.
Messages which change the autodepth and autoheading status are handled by the
AutoDepth and AutoHeading actions. Only the most recent of each of these

22

message types is of interest, so the corresponding port entry has the max field set
to 1 in the following port definitions:

h_velocity [action = H„Velocity; max = 1;
data = horizontal_velocity]

v_velocity [action = V_Velocity; max = 1;
data = rate]

heading [action = Heading; max = 1;
data = differential]

autodepth [action = AutoDepth; max = 1;
data = status]

autoheading [action = AutoHeading; max = 1;
data = status]

The slot also receives messages carrying depth and compass values from the on­
board processor. These are normally handled by the H o ld _ D e p th and H o ld _ H e a d in g
actions except when entering or resuming autodepth or autoheading mode when
the target depth or heading is reset using the Z ero__D ep th or Z e r o _ H e a d in g
actions. As with the messages from the HOST slot only the most recent is relevant,
so max is set to 1:

depth_report [action := Hold_Depth; max = 1;
data = depth]

heading_report [action := Hold_Heading; max = 1;
data = coupass]

Note that the HIGHjCONTROL slot is entirely reactive. It only performs
actions in response to messages from other slots with no periodic activity scheduled
from within the slot. However since the LOW_CONTROL slot described below
periodically sends the depth and compass values, this imposes a periodic behaviour
on the HIGH-CONTROL slot.

Outgoing Messages

Messages are sent to the LOW-CONTROL slot of the form:

UPDATE_MOTOR [dest = LOW_CONTROL; port = update_motors;
data = new_motor_settings]

and status messages containing the latest depth and compass readings are sent to
the HOST slot:

STATUS_REPORT [dest = HOST; port = display_status;
data = status]

23

Actions

The actions in this slot make use of the utility procedure ad j us t_motor s which
computes new target motor speeds, changes the value of each motor in the direction
of the target speed within the safety constraints® and sends UPDATE_MOTOR
messages for motors which have changed. If condition 3 would be violated by the
new motor settings, then the speed of each motor is reduced to 75% repeatedly until
the sum of each of the two motor speeds on each side is within the required limit.
The autodepth and autoheading control are performed by the auto_vertical
and auto_turn functions. These functions may be found in Appendix C.

Heading messages contain a differential value in the range [—100,100], de­
rived from the position of the drive joystick twist grip, which is the difference
between the right and left motor values. A positive differential will thus pro­
duce a left (anticlockwise) turn which is consistent with compass values. The
rear_di f f erent ial value is used by ad j us t_motors, while manual_di f f
is set to indicate that manual heading control is in operation. If the grip position
has returned to the neutral zero position and autoheading control is engaged, the
action for the heading_report port is set to Zero_Heading so that the next
reported compass value will be taken as the new target heading for autoheading
control.

Heading(differential):

manual_diff := differential;
rear_differential ;= manual_diff;
adjust_motors;
if manual„diff = 0 and autoheading_mode then

heading„report.action ;= Zero_Heading.
The horizontal velocity has both sideways (positive to the right) and forward
components each in the range [—100,100]. These values may be changed inde­
pendently of autodepth or autoheading control.

H_Velocity(horizontal„velocity):

velocity.right := horizontal__velocity.right ;
velocity.forward := horizontal_velocity.forward;
adjust_motors.
The vertical velocity can be —100,0, or 100 corresponding to up down or stopped
respectively. The manual_v variable is set to indicate that manual depth control

®See Section 1.1.

24

is in operation. If the rate received is zero this indicates that the button has been
released and if autodepth control is engaged the action for the d e p t h _ r e p o r t
port is set to Z e r o .D e p t h so that the next reported depth value will be taken as
the new target for autodepth control.

V_Velocity(rate);

manual_v := rate;
velocity.down := manual_v;
adjust_motors;
if manual_v = 0 and autodepth_mode then

depth_report.act ion := Zero_Depth.
The autodepth and autoheading messages contain on or off status values. When
one of these modes is selected, the appropriate port is set to the Zero action to set
the target to be maintained.

AutoDepth(status):

autotdepth_mode = status;
if autodepth_mode then

depth_report.act ion ;= Zero_Depth.

AutoHeading(status):

autoheading_mode := status;
if autoheading_mode then

heading_report.act ion ;= Zero_Heading.
The Zero actions set the new target to the reported data and revert to the Hold
action. If auto mode is set and manual override is not in effect the Hold actions
compute new target velocities. Otherwise they just use the targets set by the
operator. Only the H old_H eading action adjusts the motors and reports the
status to the HOST slot as there M always a heading report following each depth
report from LOW_CONTROL in each duty cycle.

Zero_Depth(depth):

target_.depth := depth;
depth_report.act ion := Hold_Depth;
status.depth ;= depth.

Hold_Depth(depth):

25

. . _ . . .

if manual_v = 0 and aut odep th_mode then
velocity.down := auto_vertical(target_depth - depth);

status.depth ;= depth.

Zero_Heading(compass);

target„heading := conpass;
heading_report.action := Hold_Heading;
status.compass := compass;
Send(STATUS_REPORT).

Hold_Heading(compass):

if manual_diff = 0 and autoheading_mode then
rear_diff erent ial := aut o_t urn (targe t_heading - compass);

adjust_motors ;
,}status.compass ;= compass; |

Send(STATUS_REPORT). !
1’■J:

No initial messages need to be sent from this slot so initialization consists of setting j
the state variables to their default values. |

iInitialisation: |
4

manual_v := 0 ; |
velocity := {0,0,0}; j
manual_diff ;= 0; |
rear__di f f erent ial := 0;]
autodepth_mode := FALSE; |
aut ohe ading_mode ;= FALSE; j
zero_target_speeds. |

2.103 LOW CONTROL I
I

This slot has a duty cycle during which it switches each motor on for a percentage i
1

of the cycle given by the speed. {

Ï
Actions and Ports

'I
The slot receives messages from the HIGHXONTROL slot containing motor j
updates, handled by the U pdate_M otors action. Motors whose speeds are j

26

non-zero are switched on at the start of the duty cycle by the Switch_On action
which also schedules SWITCH_OFF messages. The port definitions are:

update_motors [action = Update_Motors; max = 1;
data = new_motor_settings]

switch_on [action = Switch_On]
switch_off [action = Switch_Off; data = motors_off;

critical]
Note that the sw i tc h _ o f f port is critical as if it is delayed, the motor will stay
on for too long.

Outgoing Messages

MOTORS_ON [dest = ROV; data = motors_on]
MOTORS_OFF [dest = ROV; data = motors_off]
MOTORS_PLUS [dest = ROV; data = motors_plus]
MOTORS_MINUS [dest = ROV; data = motors_minus]
SWITCH_ON [dest = LOW_CONTROL; port = switch_on]
SWITCH_OFF [dest = LOW_CONTROL; port = switch_off;

data = motors_off]

Actions

The motor settings from the HIGHXONTROL slot are stored to be used by the
Switch_On action.

Update_Motor (new_motor_settings) :

motor_settings := new_jnotor_settings.
All motors whose speed is non-zero are switched on by the Switch_On action.
This also sets the direction and schedules SWITCH_0FF messages. If several
motors have the same speed then only one message is scheduled to switch them
all off. If a motor speed is 100% then it is left on until the next duty cycle. The
last Switch_Of f action in each duty cycle reschedules the next SWITCH_ON
message unless there are none, in which case it is scheduled by Swit ch_On. The
Switch_On action is also responsible for advancing the next_duty_cycle
variable. The while loop ensures that if there is an unexpected delay of some
kind which causes one or more cycles to be missed, the missing cycles are simply
skipped.

SwitchOn:

27

while next_duty_cycle < Now do
next_duty_cycle := next_duty_cycle + duty_cycle;

motors_on.set := motors_plus.set
:= motors_minTis. set := EMPTY_SET;

for i := 0 to nmotors-1 do
begin

speed = motor_settings[i] .speed;
if different_speed(i) then
begin
motors__off.set := EMPTY_SET;
add_motors_with (speed, motors__of f) ;
if speed < 100 then
begin
delay SWITCH_OFF by duty_cycle * speed/100;
on_count ;= on_count+l

end
end;

if speed > 0 then
add {i, motors_on) ;

if motor_settings[i].direction = 1 then
add (i, motors_plus)

else
add {i, motors__minus)

end;
Send(MOTORS_PLUS);
Send (MOTORS__MINUS) ;
Send(MOTORS„ON) ;
if on_count = 0 then

Schedule SWITCH_ON for next_duty_cyc 1 e.

Switch_Off (motors__of f) ;

Send(MOTORS_OFF);
on_count := on_count-l;
if on_count = 0 then

Schedule (SWITCH_ON, next_duty__cycle) .
The initialization of tins slot involves scheduling the first SWITCH__ON message.

Initialisaton:

duty_cycle ;= DEFAULT_DUTY_CYCLE;

28

next_duty_cycle := Now + duty_cycle;
initialise_motor_settings;
on_count ;= 0 ;
set_priority(0);
Schedule (SWITCH_ON, next_duty__cycle) .
Note that the priority for this slot is set to the maximum (0) which means that it
will always be scheduled in preference to the FEEDBACK slot.

2.10.4 FEEDBACK

This slot polls the ROY device for the current depth and compass values which
are reported to the HIGH_CONTROL slot.

Actions and Ports

Periodic polling is initiated by the P o ll_ D ep th action (which requires no data).
The depth and compass messages returned are handled by the R ep o rt_ D ep th
and R eport_C om pass actions.

poll_depth [action = Poll_Depth]
status [action := Report_Depth; data = status_value]

Outgoing Messages

DEPTH__REQÜEST [dest = ROV; data = depth_request]
COMPASS_REQUEST [dest = ROV; data = compass_request]
POLL_DEPTH [dest = FEEDBACK; port = poll_depth]
DEPTH_REPORT [dest = HIGH_CONTROL; port = depth_report;

data = depth]
COMPASS_REPORT [dest = HIGH_CONTROL; port = compass_report;

data = compass]

Actions

The P o ll_ D ep th action is scheduled initially for the start of the duty cycle for
this slot. As in the LOW_CONTROL slot the while loop ensures that if there is
an unexpected delay of some kind which causes one or more cycles to be missed,
the missing cycles are simply skipped. After the DEPTH_REQUEST message is
sent to the ROY, the action for the status port is set up to process the depth value
returned. The R eport_D ep th action which processes this message reports the
depth back to the HIGHXONTROL slot and sends the COMPASS_REQUEST
message to the ROY, setting the action to R eport_C om pass to process the

29

reply. This action reports the compass value to HIGH-CONTROL and schedules
the next poll for the start of the next duty cycle.

Poll_Depth:

Send(DEPTH_REQUEST);
status.action := Report_Depth.

Report_Depth(status_value) ;

depth ;= status__value;
Send(DEPTH_REPORT);
Send(COMPASS_REQUEST);
status.action := Report_Compass.

Report_Compass (status__value) :

compass := status_value;
Send(COMPASS_REPORT);
Schedule (POLL_DEPTH, next_duty_.cycle) .
The initialization of this slot involves scheduling the first POLL_DEPTH message
and configuring the ROV device to pass messages of the correct size to the
FEEDBACK slot, status port.

Initialisaton;

duty__cycle := DEFAULT_DUTY_CYCLE ;
next__duty_cyc 1 e := Now + duty_cycle;
configure_device (ROV,status_value_size,FEEDBACK, status) ;
Send(POLL_DEPTH).

2.103 Notes

The FEEDBACK slot is given the default priority which is lower than that given
to the LOW-CONTROL slot. This is because it is assumed that there will be
sufficient slack time during the duty cycle of the LOW-CONTROL slot for the
polling and reporting actions of the FEEDBACK slot and it is less important that
these be delayed than that the SWITCH_OFF event is processed as near as possible
to the scheduled time, avoiding the motors staying on too long. If the duty cycle
of the LOW-CONTROL slot were so tight that too many of the status reports
were missed, then both the operator’s feedback and the autodepth and autoheading

30

control would suffer, so it might become necessary to sacrifice small variations in
the motor speed. This effect can be achieved through the use of deadlines rather
than fixed priorities for both the FEEDBACK and LOW_CONTROL slots.

2.10.6 Testing the ROV

So far only an implementation of the application part of the ROV control software
has been described. In order to test the software in vitro, both the ROV control
console (the HOST slot) and the robot itself need to be simulated. The serial
cable which cormects the surface controller to the on-board controller may also
be simulated. The console, the robot and the serial link are each simulated on a
separate processor by a Testbed slot Figure 2.1 shows the configuration of slots
and processors in the development architecture.

Note that the introduction of the CABLE slot requires modification to the
implementation presented above to convert between the raw links and the slots at
each end of the cable. Details of the customization of the Testbed user interface
are presented in Chapter 3.

Device and Environment Simulation

The ROV device and environment simulation are provided by the ROV slot
which resides on a separate processor attached to the processor containing the
FEEDBACK and LOW-CONTROL slots by a raw link. To the application it
appears exactly as if this link is coimected to the real ROV hardware interface via
a link adaptor. At a later stage in the development it would be possible to replace
the raw link and the processor performing the simulation, with the actual hardware,
without the application software needing to change in any way as a device link is
indistinguishable from one end of a raw link. All that would be required would be
a change in the network configuration file.

A raw link is accessible to the application via two device ids, one for each end,
which are equivalent to slot ids, but must be specified in the configuration file. In
this example the application end of the link has id ROVJDEV, and the simulated
ROV end has id CONTROL-DEV.

The ROV simulation slot communicates with the application by sending and
receiving messages from the CONTROL-DEV device but may also be accessed
from the HOST slot or other surrogate slots involved in background debugging
through the normal Testbed communication harness. Since messages sent through
a raw link lose their header information, a single port is used for both types of
status request and for motor updates. Each of these device messages contains a

31

Link to Host System

HOST
(interface)

HIGHCONTROL

Raw Link

Testbed lin k

ccLOW CONTRC».

Figure 2.1: The ROV development architecture.

key which identifies its type. Each time a message arrives the current values of the
depth and compass are updated by calculating the vertical velocity® based on the
current states (on or off) and directions of the side motors then multiplying this by
the time which has elapsed since the last update. An environmental component is
added to the velocity to simulate the effects of currents, buoyancy of the vehicle
etc. The compass is updated in a similar way except that the difference between
the directions and states of the rear motors is used. Full C source code for the
ROV slot is given in Appendix C.

^The damping factor of the water means that the motors drive the vehicle at a low constant
speed, with acceleration effectively instantaneous.

32

2.11 Related Work

Most programming systems oriented towards development of real-time systems
are based on conventional sequential processes, for which a scheduler [74, 79,
93] or communication model is provided [58]. Often in fact these systems are
implemented in a Unix or similar environment, in the form of a light-weight
threads package [36, 84].

Spring [92,93] is implemented on a special architecture consisting of a num­
ber of SpringNet nodes coimected by an ethemet for non-ieal-time traffic and a
fibre optic ring connecting 2 Mbyte memory boards on each node providing repli­
cated memory with predictable performance for real-time communication. Each
node consists of a number of 68020 processors divided into system processors
which perform scheduling operations and application processors which execute
previously guaranteed application tasks. Although such a separation between
time-critical and other work onto separate processors is not intrinsic in Testbed, it
is supported by the global communication model. The Spring programmer sees
a set of conventional processes containing critical sections and both synchronous
and asynchronous communications which may be grouped to form a process group
with a single timing constraint These processes are transformed by the compiler
into a set of execution units called tasks. The Spring kernel contains support for a
wide variety of different task attributes. Testbed messages and their associated ac­
tions form the equivalent of tasks, but have much simpler attributes. This is not to
say that a more complex mechanism may not be buüt on top of the simple Testbed
scheduler in a layered fashion. The problem with a model such as the Spring
one which hides the underlying scheduling units from the programmer/developer
is that debugging and performance tuning become more difficult The Testbed
programmer is fuUy aware of the units of scheduling and yet does not lose the
benefits of programming in a high-level language. In fact embedded systems are
likely to be specified as a collection of state machines which map naturally to an
implementation as Testbed slots, whereas in the Spring approach the programmer
would need to map the state machine to a sequential process which is then con­
verted by the compiler back down into a set of tasks. Like Testbed, Spring uses
memory pools for preallocating a number of chunks of memory of a given size
to avoid nondeterministic delays when a time-critical task requires memory. Also
like Testbed, Spring’s communication is based on message passing, however com­
munication in Spring is more complex, with both synchronous and asynchronous
messages supported, whereas Testbed only supports asynchronous messages.

In iRMX [82], memory set aside for message buffers is divided into 16 free
lists of buffers each with a different size in order to save time when allocating a

33

buffer for an incoming message. Testbed uses a method similar to this^ and in
addition allows buffers to be reserved for particular types of message®.

DRAGON SLAYER/MELODY [102] is similar to Testbed in that they use an
earliest deadline first scheduling strategy® and assume that tasks arrive aperiodi-
cally at each node. In addition to a deadline, tasks may have an earliest release
time corresponding to the timestamp in Testbed messages.

[46] presents a specification scheme which bears some resemblance to Testbed’s
programming approach and uses a formal logic called RTL to verify systems spec­
ified in this way.

A number of authors [33,83,88] note the need to use extra processors for testing
and device and environment simulation. As with Testbed the same programming
model, methodology and support system is often used for developing these test
and simulation components.

The message driven programming model in the Testbed resembles the hard­
ware message driven processing models found in the J-Machine [20] and in
STARiDUST [72] and the software approach of [101], with the distinction that it
is not hidden from the application programmer.

Transputer-based embedded systems are often programmed in occam [103]
which is derived from the CSP specification language [43]. Current Transputer
implementations of occam only support direct channel communication between
processes which are on the same processor or on adjacent processors (in which case
the channel is mapped onto one of the hardware links). Due to this low level nature
and the close mapping between occam constructs and Transputer instructions, it is
often regarded as a Transputer assembly language. The event-action programming
model chosen for Testbed differs markedly from the CSP/occam style. The key
to this difference lies in the communication model. In CSP and occam processes
communicate along synchronous channels with the destination process required to
perform an input operation corresponding to each message sent to it, or a deadlock
occurs. When asynchronous communication is required, to allow concurrent
computation to be performed or because message order is nondeterministic, it
must be built into the application using the CSP II and [] or occam PAR and
ALT constructs. The resulting applications tend to be mazes of plumbing and
debugging them often involves untangling the pipes and locating the sources of
deadlock. Although of course Testbed-style programs could be written in occam,
much of the Testbed system software (such as the routing and scheduling harness)

’̂ Section 2.8
®Section 2.3
®See Section 4.6.

34

would have to be written by the application programmer and the resulting system
would not provide the testing debugging and dynamic experimentation facilities.
Providing these facilities for an occam programming system would be much more
difficult due to the lower level, less structured nature of information flow in occam
programs.

2.12 Conclusions

Testbed applications are collections of state-machines called slots which are active
objects, receiving events in the form of messages and processing them in FIFO
order. This programming model forms the basis of the Testbed run-time envi­
ronment and debugging and testing support, implemented on a Transputer-based
Meiko Computing Surface as described in the following chapters. This chapter
concludes with a discussion of the reasons for choosing the programming model
over a more conventional one and of trade-offs which were made.

2.12.1 Reasons for Choosing this Model

By contrast with many software development systems commonly used for em­
bedded software the Testbed has a programming model which imposes greater
structure on applications. The Testbed model was designed in recognition of the
fact that most embedded systems are composed of a set of processes each of which
has a main loop which first waits for an event and then dispatches an appropriate
subroutine to deal with it. In Testbed the main loop is moved from the application
into the system and the application designer/programmer is left with the task of
writing the subroutines (actions). The rest of this section outlines the additional
benefits of the model.

No Plumbing Required

Any component in an application can send a message to any other without requiring
an explicit channel to be shared between them and if they are not on adjacent
processors, without the need for extra routing code—Testbed has this built in. For
any given topology any routing function can be verified deadlock free as shown in
Chapter 5 which also gives methods of automatically producing suitable routings.
This removes many potential deadlocks which occur in occam programs due to
poor plumbing.

35

Deadlocks Easier to Analyse

The fact that an action may not receive messages (apart from the one which triggers
it) combined with the fact that slots are always prepared to accept messages from
the network allows the network layer to be freed from the possibüity of deadlock,
by choosing an appropriate routing, without the need for a complex protocol. Of
course it is still possible for the application to become deadlocked. However
when this happens, all parts of the system remain alive and a developer is able
to examine any part of the application and determine the cause of the deadlock.
Applications may still fail due to a backlog of messages using up all the message
storage at a slot However this will be reported by the system and again does not
result in catastrophic failure. Often new messages wiU merely be updates which
supersede earlier ones. In this case the max field of the port table is used and no
additional storage is required. Processing time is also saved in this case as the
superseded message is not actioned.

Natural Break Points

It was decided that the Testbed should not require special compiler support and that
a standard compiler̂ ® should be used. This made the state monitoring, migration
and dynamic modification design goals of the Testbed difficult to achieve if a
conventional process model were used. Both these activities require a break point
to be inserted in the code at which it is known to be safe to perform the operation.
This is difficult to do without compiler support^^. For dynamic modification it
would be very difficult to match up the old and new versions especially if the
process had multiple threads created with an occam style PAR.

The breakdown of each process into short-lived action functions provides
natural break-points at which state monitoring, migration and code and data re­
placement can safely occur.

Separate State and Type Information

The separation of the definition of the global state variables and type definitions
from the main application code into separate modules which make function calls
allows the system to maintain the type and symbol tables which allow monitoring
requests to be satisfied independently of the application without the need to parse
the code. It also allows data to be converted automatically between the old and

the current in^lementation the Meiko C compiler [62]
^^Sophisticated pr^rocessing would be required.

36

new versions of the code and for pointers to be updated during both dynamic
modification and migration.

2.123 Trade-offs

As with all programming models Testbed’s has trade-offs between such attributes
as ease of programming, ease of understanding, predictability, implementability
and performance. In addition Testbed introduces the ease of development and
debugging as factors in this equation. For example, to enhance predictability, it
was decided that the overhead introduced by the system (Le., the kernel) for any
single operation, such as scheduling a message, should have an upper bound which
is proportional to the number of slots on a node and not on the number of messages
waiting to be processed. This limits the degradation in performance during periods
of high message traffic. The consequence of this decision is that the kernel is able
to perform deadline scheduling on slots (requiring that the active slots be kept in
an ordered queue), but cannot sort the messages waiting for individual slots. This
lead to the FIFO queueing of messages within each slot The use of memory pools
rather than the more general malloc mechanism for dynamic storage is another
trade-off of flexibility against predictability.

37

Chapter 3

The Testhed System

3.1 Introduction

Testbed is structured into three identifiable layers as shown in Figure 3.1. Code
entities in the figure are shown in rounded rectangles while the main data entities
are shown in ordinary rectangles. Data is largely isolated within each layer with
access through function calls between layers, though sometimes lower layers may
access data in higher layers via pointers. For example the kernel accesses the
sysjq and userjq message queues and the port table for a slot when a message
arrives. Each processor has a single copy of the kernel layer code and data to
provide message passing and scheduling services. There is a separate copy of the
system layer data for each slot, but a single copy of the code is shared across all
slots. This layer provides all debugging and development support through system
actions and the symbol and type tables. The application layer is different for each
slot and consists of the application actions and related code and the state data
which is linked with the code.

This chapter describes the structure and implementation of the system layer.
The kernel layer is covered by Chapter 4.

3.2 The Slot

Each slot consists of a set of state data and ah action Jiamess process. The state
data is divided into system and application (user) parts. The system data are either
inaccessible or are accessible only by function call from the application, while the
application data are linked directly with the application code. Except for a small
amount of information which is kept in sl fram e array which is accessible to both
the system and kernel layers, the state data is also accessed by the kernel threads
through function calls. In this sense the slot is a passive object.

38

iicaüon ‘ ^ Application
Actions

Application p =
State DataSystem

Actions

Type Table
Module TableSystem

Action Harness
Port Table

Frame Table

Kernel

Kernel Threads

Figure 3.1: Software layers in Testbed.

The system data includes the port table, the user and system message queues
(userjq and sys_q respectively in Figures 3.1 and 4.1), and a pointer to the slot’s
current message. The port table maps the port id contained in the message header
to an appropriate action function. It also contains scheduling and debugging
information as described in Section 3.3.1. There are two FIFO message queues to
allow system messages to overtake application ones. When the kernel executive
thread chooses a new message to be actioned for the slot the system queue is
checked first, then the user one.

Each slot has an action harness, which is a thread, similar to kernel threads
except that it has its own data area and only shares a few system variables with
the kernel via pointers. These shared system variables can only be updated by the
kernel or by critical system actions. The action harness calls an action function
also specified in the port table to process each new message. After this function
returns the harness performs any event reporting requested by monitoring clients
and then signals action termination to the kernel executive thread. Hiis releases
the storage allocated for the message and selects the next message to be actioned
from one of the slot’s queues, if there are any. Figure 3.2 shows the operation
of the action harness process^ which has three states: [waitior-message! in which
the message queues are empty and there is no current message, iwait for kamaii in
which there is a current message, but the slot is curr^tly inactive as some other

^The state of this process shall be referred to as the state of the slot.

39

' r .%
" ï

slot is running, andiaciionlin which it processes the action. The slot may alternate
between the lactionl and Iwait for kemell states several times as it is preempted or
as it relinquishes the processor in order to send a message, then has to wait until
it is scheduled again by the kernel.

Action Harness

wait__for
_message

message queue
non-empty

message has

action
termination

earliest
deadline ^

wait__for action
^kernel

< --------------
preempted
or sending
message

Figure 3.2: The actionJiamess process within the slot.

3.2.1 Accessing the Slot’s System Data

Each slot has its own private system data. The system library functions need to be
able to access these data when called from an action or from a system thread. One
possibility would have been to require the action library and system functions to
have an extra parameter which is an index into a table whose entries are structures
containing all the globals for a slot However a better method is to make use of the
fact that the Meiko C compiler already passes a hidden parameter bssp, which is a
pointer to the base of the calling process’ global data area. All references to global
data, apart from pointer dereferences use an indirection through this pointer. This
is a common practice with Transputer C compilers described in [37]. Whenever
a new slot is added an entry is created in the frame table. A field of the frame
table entry is made to point to a copy of the system’s global data area. Kernel
threads which need to access the slot’s global data do so through function calls
which index into the frame table to get this pointer and then use it to overwrite the

40

hidden bssp parameter at the bottom of their call stack. This is the first thing the
action harness does, so subsequent library calls by actions see the slot’s private
copy of the global data and do not need to be passed an extra parameter.

33 Slot Structure

The slot contains tables: module-table, userjq, sysjq, port, symbol-table and
type-table.

33.1 Slot Tables

module-table A linked list of module descriptors containing the name of the
module and a pointer to the data structure received when the action was
loaded which is unchanged except that the code segment has been patched
to link in the required external functions and global variables. The entries
also contain a pointer to the previous version of the module which is saved
during a reload operation in case the reload is aborted. There is also a list
of local variables, used to store data for initializers, and local labels and a
list of global labels. These are also inserted in the symbol table, but the
list here is used to keep track of which module the symbols came from so
that they can be removed if the module is removed. Each of these lists has
a corresponding old version which is used if a reload operation has to be
aborted.

sys-q,user-q Lists of schedule entries stored in arrival order. System messages
are distinguished from user ones by the magnitude of the port id. Messages
are taken from the sys-q first by the kernel.

port A table indexed by the port identifier contained in each message. Each
port descriptor contains the following fields which can be specified by the
application:

action The current action function.

min The number of reserved buffers for messages of this type.

max The maximum number of messages which will be stored for this port
(not counting one which is being processed).

critical Flag which specifies that any message for this port is critical. The
effect of setting this flag is to provide a high priority interrupt action.
The implementation of this is described in Chaq*ter 4.

41

type The type of the data contained in messages for this port. Used for
debugging purposes.

In addition the port table contains the following fields which are used by the
system:

count The number of messages currently stored fw this port.

old.type Used during dynamic modification so that data in messages can
be converted.

box Pointer to the most recent message waiting to be processed,

free Pointer to the list of reserved buffers,

monitor Event based monitoring information.

symbol-table A table of symbol entries. Used for linking, monitoring, state
conversion and slot migration operations.

type-table A table of type definitions used for monitoring, state conversion and
slot migration operations.

Most of these tables are only used by the system layer, however the user-q and
sys_q are used by the kernel’s executive thread which selects the next message
to be actioned by the slot and the count, max, critical, box and free fields of the
port descriptor are used by the kernel for scheduling messages. The slot’s system
state also includes the post variable which is set by the application and used by
the kernel to determine the deadline or priority for each schedule entry.

33.2 Access to System Data from Applications

Application code may not access the system data directly, for safety reasons, how­
ever library functions provide means of access to values such as the information
contained in the header of the message currently being processed. They also allow
modification of some of the system tables. For example certain fields of port table
entries can be changed, new variables can be created and added to the symbol
table and new types can be added to the type table (normally during startup or
when reloading the system).

3 3 3 Library Functions and Application State

System library functions are automatically inserted into the slot’s symbol table
when it is created, so that they may be linked with the ^plication code. These

42

functions include d e f^ v a r which allocates storage for a new variable^ and adds
an entry to the symbol table. This function is used in declaration modules when
the system is loaded to create named variables which are then linked with the code
in application modules. The same function is used for creating dynamic variables,
except that no name is given for these and they can only be accessed via named
variables.

The host slot has some extra library functions not present in other slots which
provide access to the host file system, X Whdows functions and other useful
functions which require host facilities.

3.3.4 System Ports and Actions

The port table on every slot is divided into system and user ports. System ports
receive preferential treatment by the scheduler in that they have their own message
queue which is ahead of the user queue. Each slot has a set of system actions
assigned to these ports which perform functions such as module loading, peeking,
poking and migration. The special slots, described in Section 3.5 have a different
(overlapping) set of ports defined to ordinary application slots. Appendix B lists
the system port definitions.

3 3 3 Heap Implementation Details

Each heap object has a header consisting of an offset from the start of the store to
the next free entry (when the object is not in use) or a special code, the bottom
bit of which indicates which store the block is from (system or user). The high
order part is the index of the memory pool from which the block was allocated.
The free operation consists of entering the block at the head of the free list for
the appropriate store and pool (constant time). If the object is allocated the body
consists of a symbol table entry. When the store is allocated* the system adds the
size of the heap header plus the size of a symbol table header to the size given in
the store specification to give the actual size of the h e^ object.

3.4 Loading Modules

Modules are loaded using a special system action. Linking proceeds in two phases.
In the first (load) phase the labels and local variables are extracted from the object
module, but no linking is done. In the second (link) phase the modules are linked

ôr redefines an existing one during dynamic modification

43

using the symbols obtained from the symbol table as well as the local variables.
Any of the global functions in a module may be called from other modules* but
if name conflicts occur the one chosen is not defined. In the case of initialization
and declaration modules* the linking occurs immediately after the load phase and
the initialization or declaration function (which has the same name as the module)
is called to define variables and initialize ports. Declaration or initialization
functions which refer to global functions in other modules or variables created by
other declaration modules have to be loaded after those modules. However the
linking of application modules is delayed until the end of the load operation so
that application modules may access any variable or global function.

The host slot contains a library routine which recompiles the action source
if necessary and loads the object file. This function is called either from an
interactive action* which allows the user to load individual modules* or from the
main initialization and configuration function which is called after startup. Once
loaded the action may be sent to the appropriate slot or loaded on the host slot
itself.

3.4.1 Construction of Object Module Descriptions

At the host end* loading a module consists of compiling the source file to object
form and* if there are no errors* reading in this object file and creating an object
module descriptor. This consists of the name of the module followed by the
object code. At the destination slot the object module is linked with external
names resolved by looking in the symbol table. Definitions of local permanent
variables cause storage to be allocated for these and stored in a list associated with
the module. These are used for initializing structures and arrays and for statics
(though the latter should not generally appear in application modules* as they can
not be converted during replacement).

3.5 Special Slots

3.5.1 The Centre

The centre is the first slot to be created when the system is loaded. It is responsible
for synchronizing the clock* maintaining the routing tables for the node* loading
new slots* handling node suspension during migration and managing synchronous
devices. Unlike other slots the centre’s global data area is the same as the kernel’s
so that it can access node-wide data such as the routing tables. The centre
recognizes a number of special ports as described in Appendix B. Most of these

44

ports have the critical attribute set so that the centre actions do not conflict with
kernel threads.

33.2 The Host Server Slot

The host interface is implemented as a slot on the root node* which is also the
centre slot on that node. An extended version of the system software is loaded
which contains extra functions performed by the host server. The X window
manager is an action which flushes the X output queue and checks for X events
(from the X server) in the X input queue* processing these. This is repeated until
no events remain, then the action is rescheduled after a short delay. This action is
also called as a function by other actions which update the display.

Input and output operations (including X windows protocol messages) are
performed using Meiko I/O functions which communicate via the Computing
Surface to host interface with a Unix daemon process.

3.6 Host Services

The host slot contains two types of functions:

1. actions which respond to messages from the system, normally to display
debugging information, and

2. X toolkit Callback functions [71] which respond to user requests via the
graphical user interface, such as menu selections and dialog button presses.
These normally result in one or more messages being sent to other slots in
the system.

3.6.1 User Interface

The operation of Testbed’s windows does not quite match the conventional philos­
ophy of an X windows application (although this philosophy has many similarities
to Testbed itself) in which output is performed in response to user input via the
display server. Since the X library event handling routines do not give access to the
low level interprocess communication protocol, it is not possible for the process
which responds to display events to also detect input from other processes in the
Testbed. Instead output is performed by calling the appropriate library functions
(which would normally be called from X widget Callback or Action functions)
from host server slot actions. There is no danger of conflict with the X event

45

handler, as this is implemented as an action which can not be running at the same
time as other actions.

Athena widgets are currently used to create all the windows and subwindows.
Each application slot as well as the host slot has its own composite window. Each
slot window is divided into three panes: the system command box containing
the main command menus, the user control box which may contain subwidgets
created by the application, and the scrolling output window for the slot Each slot
has a “Slot Commands” menu and a “Variables” menu, while the host slot also has
a “General Commands” menu.

3.7 Booting the Development System

The user supplies Testbed with the name of a file containing the routing tables and
device information^ and the name of a code module containing an initialization j
function with the same name. This module is loaded onto the host slot after the 1

!
kernel is booted^ and the initialization function is called. This function makes |
system calls to define all other slots and to load all code and initialization modules j
onto them^. It may also make application specific extensions to the user interface j
and add actions to display values reported by the application within these widgets |
or in the scrolling text window. Widgets which send messages to or display |

■I
information from a particular slot are conventionally attached to the window for
that slot, however this is not compulsoiy.

3.8 Customizing the User Interface

Due to the varied nature of embedded systems, it is desirable to be able to add
application specific elements to the user interface of a development environment.
This capability compliments the extra slots and actions which can be added for
development support

The X window system is initialized and the host slot window is created before
the application initialization function is called. This function makes system calls
to create the slots which make up the application and any extra slots used for
device simulation, monitoring and debugging. A new window is created for each
of these slots and initialized with the three standard panes. The application may
then add extra widgets to any of these windows or even create new top level

®See Appendix A.
'*See Chapter 4.
^Details of these system calls may be found in Appendix A.

46

widgets. However the additions are normally created in the box subwidget set
aside for application specific additions within an appropriate slot.

3.8.1 Example: The ROV Control Panel

Figure 3.3 shows a snapshot of Testbed testing the ROV implementation from
Chapter 2. The buttons on the real ROV control panel^ have been mapped di­
rectly onto button widgets. The AUTO/MANUAL DEPTH and AUTO/MANUAL
HEADING buttons are toggles while the UP and DOWN buttons each send a ver­
tical velocity of =blOO on button down and 0 on button up, thus simulating the
buttons on the real control panel. The joystick for driving the ROV is simulated by
two conventional scroll bars whüe the twist grip for turning is simulated by a scroll
bar whose thumb may be dragged left or right to turn in that direction, but which
snaps back to the neutral position on button up. The configuration function con­
tains an action which responds to status messages sent by the HIGH-CONTROL
slot. The 20 character LCD display is simulated by a label widget which is updated
by this action.

In the scenario shown by Figure 3.3, the customizations to the HIGH-CONTROL
slot’s window are complimented by the standard variable monitoring dialog
which is displaying the value of the m o to r_ s e ttin g s variable from the
LOW-CONTROL slot whenever a message with the port u p d a te_ m o to rs
has been processed. Chapter 6 describes the Testbed monitoring facilities which
enable this.

3.9 Conclusions

The Testbed system layer forms a run-time harness around applications which
conform to the model presented in Chapter 2. It provides a system library contain­
ing functions useful to embedded applications, as well as debugging utilities and a
customizable user interface which enhances the development and testing process.

This chapter has described how the system layer is built from special slots
and actions and with the help of various system data structures. These include
the host server slot which provides the user interface to the Testbed development
environment. Application specific code is run on the host slot to bootstrap the
application and load extra development facilities. The application can extend
the user interface by creating new widgets and adding X windows Callback and
Action functions. Testbed actions can be added to process and display information

^Figure 1.2

47

___________Slot_6________

Slot Cl— i fid» Tarlables
BOr
Slot 3

Slot Co— dol Variable#
FEEDBACK

Slot 2

Slot Co— land# Variable#
LOV CONTROL

m o to r-se ttin g s
Slot 2 ! motor_#ottimg#

Last Peak Time: 2S4.270922

Testbed

Slot

Period (eecond# - 0 for once)

^oke) ^lo#^
Tifpe

Motor_info|4]
Value

[25,-1],[35,11,124,1],I24.1L

Slot 1
Slot Variable#

■EaLcaNXBOL
W DOOf MANIIAl IIFPIH lJUDTO HEADINB
Turn Control:

■
Drive Control:

DPIE: 135 BIBB: 7

Figure 3.3: Snapshot of the Testbed implementation of the ROV.

reported by the extra application development code.

48

Chapter 4

The Kernel

4.1 Introduction

One of the difficulties about writing a general-purpose embedded systems operat­
ing system is that there are very few features which are common to all embedded
systems. For this reason they are often written from scratch on the bare hardware.
For very simple systems this approach works well, however as soon as the system
complexity rises above that of a simple controller with one or two inputs and
outputs, to one where there is a significant degree of concurrency and possibly
the requirement or desirability of using more than one processor, it becomes very
difficult, time consuming, error-prone and tends to result in a system which is very
inflexible. One alternative is to use a traditional operating system such as Unix™,
designed for use in a multi-user general purpose computer or workstation. The
problem with such systems is that they provide too much. Embedded systems
generally do not require virtual memory and often do not need other integral com­
ponents of such operating systems such as a file system. The scheduler in such
a system is often geared towards providing good average response to interactive
users, but may have potentially unbounded delays. As mentioned in Chapter 2, the
programming model supported by such systems is generally not the most natural
one for embedded systems, and consequently the programmer will still have to
implement a state machine on top of the operating system’s conventional process
model. By contrast microkernel operating systems such as Mach 3.0, Amoeba
[97] or Chorus [81], provide only the bare minimum of features which are com­
mon to nearly all concurrent systems and allow the developer to select only those
higher level features which are needed by the application. This makes them a good
choice for embedded systems. Another major advantage of microkernel operating
systems is that they are much easier to write and maintain. Since the kernel is
very simple it is less likely to contain bugs and it is unlikely that bugs will arise

49

due to unforeseen interaction between higher layer features and the kernel. This is
very important as it is extremely difficult to debug the kernel. Perhaps ironically,
it tends to be highly susceptible to the probe effect

The BED (Basically Event Driven) kernel is designed to support the Testbed
programming model described in Chapter 2. Each processor has its own copy of
this kernel which is composed of a number of threads or active objects as shown in
Figure 4.1. Each kernel thread is a simple state machine which spends most of its
time dormant and when requested performs one of a small number of alternative
actions. In this sense the kernel tasks resemble slots themselves. Most have
only one or two dormant (or blocked) states and in between these run without
interruption. The kernel performs two basic functions: providing a message
delivery service to slots and managing the processor (Le., scheduling slots). These
functions are related in that scheduling is based on individual message deadlines.
However they represent the two basic functions of an operating system identified in
[97]: providing an extended (or virtual) machine and acting as a resource manager.
In addition the slot’s action harness contains hooks for monitoring and reporting
of events. All other monitoring, debugging and development facilities offered
by Testbed (such as slot migration and dynamic replacement) are implemented
through special actions and slots (such as the centre which is present on each node
and the host server slot on the root node).

4.2 Related Work

4.2.1 Commercial Real-Time Kernels

Many commercial real-time kernels are available (such as HP-RT (Hewlitt-Packard
systems), LynxOS (many platforms), OS-9 (Motorola 6809 and 680(X)), QNX (In­
tel 80x86) and Helios (transputer-like systems)). Most are designed to be Unix-like
or compatible and to support a traditional programming approach. BED is not
Unix-like and is designed to support a programming style which is specifically
tailored to the reactive nature of embedded systems. Of the systems mentioned
BED most resembles Helios in that the latter is a message-based system designed
to support multiprocessors. However Helios is still designed to support conven­
tional sequential application tasks which communicate using a Unix streams-like
mechanism. In order to achieve the high performance and deterministic behaviour
often required for an embedded application the Helios programmer must bypass
most of the systems high-level facilities and gain access to the raw hardware.

50

Link

Guardian ISOMT Queue

Slot

action

cunent

ExecutiveSender pool

Link

Figure 4.1: Entities making up the Testbed kernel.

4.2.2 Review of Real-Time Scheduling

Terminology

Processes In the real-time scheduling literature the term process is used to mean
an activity which has a release time, which is its earliest allowed start time, a
computation time (which may or may not be known in advance) and a deadline,
which is normally taken to be relative to the release time. Periodic processes
are processes which are repeated with release times at regular intervals. Non­
periodic or asynchronous processes are repeated processes whose release times
occur at irregular intervals. A distinction is sometimes made between sporadic
processes defined as non-periodic processes, which have a minimum time between
successive releases, and aperiodic ones which don’t.

Processes may be entirely preemptabley meaning that the scheduler can inter­
rupt the currently running process at any time and begin or resume another, or
non-preemptable, in which the running process may not be interrupted. It is also
possible for processes to be non-preemptable for only part of their lifetimes during

51

critical sections.

Scheduling Scheduling strategies can be divided into two classes; static^ (a.k.a.
pre-run-time) or dynamic (aJca. online), in static scheduling all process release
times are known in advance and a table is generated which the scheduler uses to
determine when to perform context switches. In dynamic scheduling the scheduler
makes decisions on the fly, without prior knowledge of what processes will arrive.

A schedule is t&rmed feasible if all processes are successfully scheduled after
their release times and completed before their deadlines. Various optimality
criteria are applied to scheduling strategies (methods of finding, or attempting to
find feasible schedules). The most common one is that the strategy always finds
a feasible schedule if one exists. Others include minimizing some measure of the
lateness of processes.

Static vs Dynamic Scheduling

Static Scheduling [104] asserts that pre-run-time scheduling is essential in order
to guarantee to meet hard deadlines in real systems with large numbers of processes
and little free capacity. This is entirely due to the presence of non-preemptable
processes. A dynamic scheduler which does not have knowledge of future process
releases may schedule a non-preemptable process which blocks another process
released after it, which has a deadline before the first process wUl become pre-
emptable. In this situation the second process misses its deadline, even though
it might have been possible to delay scheduling the first and allow both to meet
their deadlines. According to [104], “For satisfying timing constraints in hard-
real-time systems, predictability o f the system’s behaviour is the most important
concern; pre-run-time scheduling is often the only practical means o f providing
predictability in a complex system. ”

Dynamic Scheduling Most common dynamic scheduling strategies are priority
based, with the priorities assigned so as to increase the likelihood of meeting
deadlines. The most popular dynamic scheduling approach is earliest deadline
first in which priorities are assigned dynamically according to the order of the
deadlines. Others include rate monotonie, which assumes periodic processes with
deadline equal to period and assigns priorities statically in proportion to frequency,
least laxity, in which priority is assigned in inverse proportion to the amount of
slack time (difference between time to deadline and remaining computation time)
and shortest remaining processing time first.

^Not to be confiised with static priority dynamic scheduling.

52

Dynamic scheduling has the advantage of flexibility. Real-time systems gen­
erally have to interact with the outside world and this introduces unpredictability
which is difficult to take account of in static scheduling.

Periodic vs Non-periodic Processes

The rate monotonie algorithm [56] assumes that all processes are periodic and
preemptable. This is clearly not the case with many embedded systems which
interact with the real world. It is possible to recover some use from the algorithm
for sporadic processes by providing a periodic process with period equal to the
minimum time between releases of the sporadic processes, which polls for these
processes, as described in [3]. This method also works for static scheduling.
The earliest deadline first algorithm is introduced in [56], to improve processor
utilization for periodic processes, but [3] and [39] show that it is of much more
general use, deriving schedulability tests which cope with sporadic processes
without the need for special periodic processes. The algorithm is further shown to
optimize lateness and tardiness in the case of aperiodic processes in [94].

Preemptable vs Non-Preemptable Processes

The assumption that all processes are preemptable is often made. This is not
very realistic (as pointed out in [104]) since a real system is likely to contain
critical sections during which no interruptions are allowed. The schedulability
test derived in [39] for the earliest deadline first algorithm takes non-intermptible
processes into account, but unfortunately is only an instantaneous test, which
limits its usefulness. In general the presence of non-intermptible processes, upsets
priority-based scheduling strategies, giving rise to the priority inversion, in which
a high priority process is blocked by a lower priority one which happens to be in
a critical section.

Hardness of the Deadline

In some systems (particularly safety critical systems) deadlines are considered
hard, meaning that it is absolutely essential that the deadline be met. Often the
execution of a task beyond its deadline, or before its scheduled release time, is
considered of no value. Sometimes the consequences of missing a deadline may
be more complex, as described in [4] and [47]. There may be some benefit still
to be gained by executing the task after its deadline has passed or in beginning its
execution early. On the other hand there may be a negative benefit, i.e., it may
actually be harmful. The ̂ proach taken in [94] suggests that there is some benefit

53

in performing an operation late, although this lateness should be minimized, while
in [4] schedulers which use time valued functions which are constant between the
release time and the deadline and curve downwards before and after are described.
Hybrid systems are also described which have multiple deadlines, with increasing
degrees of hardness.

State of the Art

The most popular algorithm for dynamic scheduling seems to be earliest deadline
first, with [56] comparing it favourably with the rate monotonie algorithm in that
it improves processor utilization for periodic processes and [39], comparing it
favourably with the least laxity algorithm on the grounds that the latter leads to
more context switches. [94] proposes a combination of earliest deadline first and
shortest remaining processing time first and shows that it minimizes lateness in
a vector sense and the number of tasks that miss their deadline at the time the
first missed deadline occurs. All of these algorithms require that there be a known
minimum time between process release times in order to give any overall guarantee
that no deadlines will be missed.

Mathematical scheduling problems and algorithms in the literature are criti­
cised in [104] for making too many unrealistic assumptions about processes in
real-time systems, such as that either all processes are preemptable, or that no pro­
cesses are preemptable. On the other hand they argue in favour of static scheduling
as the only way to guarantee to meet deadlines. However for this to work it is
necessary to make assumptions such as that all processes are periodic or that there
is a known minimum time between releases. They assert that this is acceptable on
the grounds that most processes in real-time systems are periodic ones. Current
standard practices are criticised for being inadequate to guarantee to meet hard
deadlines. Examples of such practices given include:

1. assigning static priorities, which limits the set of possible schedules for a
given set of processes, and

2. allowing events to interrupt processes and occupy system resources at any
random time, increasing the unpredictability of the system.

Another argument in favour of static priorities put forward in [104] is that
it makes it possible to avoid using sophisticated run-time synchronization mech­
anisms by directly defining precedence relationships and exclusion relations on
pairs of process segments. The claim is made that it is easier to verify that all
processes will meet their deadlines with a static schedule than when run-time
synchronization mechanisms are used.

54

4.3 Message Flow Through The Node

All components of the kernel are involved in delivery and processing of messages.
The grey arrows in Figure 4.1 represent either transfer of control of a particular
message or creation of a new message. The rounded rectangles represent threads:
the guardians which handle incoming messages, the timer queue thread waiting
for timeouts or new messages, the executive which handles task switching and the
senders which send messages out to the network. Each of these is essentially an
interrupt handler with a number of states. In between these states they run without
interruption. The major kernel data structures, as weU as those which are shared
with the system layer, are depicted according to the convention that the thread
which uses or acts on the information contains the data structure. For example
the executive thread takes message entries from the pool and processes them. The
slots are shown as ordinary rectangles to indicate that they are passive objects each
of which contains queues of messages and the port table. Each also contains an
actionJiamess thread shown as a rounded rectangle although this is not a kernel
thread as it may be intemiptible. Although there can be several slots on a node, at
most one may be active at a time. This will be referred to as the current slot and
the message which this slot is processing as the current message.

Messages may enter the node from the outside, via the guardian or from the
inside via the executive as a result of an action sending a message. In both cases
control of the arriving message then flows to the timer queue, one of the slot
queues or a sender thread. From the timer queue, the messages are inserted into a
slot queue and from there they pass eventually into the executive’s pool of active
messages. Once under the control of a sender they will eventually leave the node.

Implementation Notes

Messages are divided into two parts; a header and a body, except in the special
case where the message data will fit within the size of a scalar, in which case it
resides in a special data field of the header. In this case only the header need be
transferred. The message header also contains the source and destination node,
the source and destination slot, the destination port and a timestamp, which is a
real number of seconds since system initialization and may be in the future. The
destination node and slot id are used for routing. For non-scalar messages which
are about to be sent or have arrived at their destination the data field doubles as a
pointer to the message body. While in transit this field is not used. Once a message
has arrived at its destination node, a schedule entry is created which consists of

55

the message header plus a deadline^ and a next pointer so that the entries can be
linked into the slot queues and the pool.

4.4 Scheduling Data Structures

The schedule entries which encapsulate messages which are waiting to be pro­
cessed are stored in one of the following queues:

The timer queue Messages whose timestamp is in the future are placed in a time
ordered list which is managed by a the Timer Queue thread described in
Section 4.5.2.

The sys_q and user_q These FIFO queues are part of the slot but are accessed by
the kernel via function calls. They contain messages whose timestamps are
in the past.

The pool This contains entries which have reached the head of the slot’s queue.
They may have been partially processed. There can be at most one entry in
the pool per slot.

As pointed out in Section 3.3.1, the kernel uses the count, max, critical, box
and free fields of the port table entries. When count reaches max, the kernel uses
the data field from subsequent messages to overwrite that of the message in the
box. The box pointer may contain a message which is waiting in the timer queue or
in one of the slot queues. However it is removed as soon as it enters the pool. The
reason is that once a message is in the pool an action may have started processing
it and it would be dangerous to update the data. When possible, entries from the
free fist are used instead of allocating new storage when creating a schedule entry.

4.5 Kernel Threads

The behaviour of each kernel thread is now examined in more detail and also its
implementation on the Transputer.

4.5.1 The Guardian

The guardian is responsible for managing an input fink. It may sometimes be
replaced by a device handler which converts data arriving from an external device
into testbed messages, however its behaviour when viewed from the outside is

^computed based on the message tiinestanp and the post time supplied by the slot

56

unchanged, so for now just the case where the input link comes directly from
another Testbed node is considered. The guardian has three states^ as shown
in Figure 4.2. When it has no message to deliver, the guardian waits in the

(reading the link) state for a message header to arrive. The guardian is
then in the state labelled Wait_for_processor. When the guardian receives the
processor, it checks to see if the message has reached its destination. If so then it
allocates storage for the message body'*, reads the rest of the message, schedules
the message^ and passes back into the link'/l state. Otherwise the next routing
table^ is checked to determine which output link (Le., which sender thread) it
should be sent to. An entry is then added to the back of the queue for the sender on
that link. If the queue was empty then the sender is reawakened and the guardian
blocks until reawakened by the sender after it has forwarded the message.

Link?

Wait_for
^processor

Guardian

schedule
_local_message

message arrives

queue non-local
message

awakened by
Sender

Figure 4.2: The guardian thread.

Implementation Notes

• On the Transputer the link input operates asynchronously with the processor
and results in the thread performing the input (the guardian) being inserted

În the state transition diagrams in this section, only states in which the thread may block are
shown. The transitions which take it between these states are always executed without interruption.

^see Section 2.8
®see Section 4.6
®see Chapter 5

57

into one of the processor’s two queues. In this case the high priority one.
This corresponds to the Wait_for_processor state.

• The sender is awoken by sending it a message on a special channel.

e Each slot and link guardian has an entry in an array of process frames. These
frames form the entries in the linkjq structure. They contain, among other
things, a pointer to the message to be sent and a channel. The guardian
blocks by performing an out operation on this channel and is restarted by
the sender performing a matching in.

4.5.2 The Timer Queue

Messages whose arriving at the node or being generated by an action sending a
message to another local slot (or its own slot), may have a timestamp which is in
the future. Such messages are considered not to have arrived yet and their schedule
entries are placed in the timer queue until the time has passed. This allows actions
to be scheduled (perhaps periodically) at some future time. When this time occurs
they are inserted into the schedule as if they had just arrived at the node or just
been sent (in the case of internal messages). Entries are added to the timer queue
by guardians or the executive. The timer queue is managed by a thread which
behaves as illustrated in Figure 4.3. The timer queue manager waits for either a
timeout for the entry at the head of the queue (shown as an input from Timer) or
a notification from another kernel thread (the guardian or executive) that a new
entry has been added to the front of the queue, requiring the current timeout to be
cancelled and an earlier one requested. Once a timeout has occurred and the queue
manager becomes active it schedules a local message for the appropriate slot^.

Implementation Notes

In the present Transputer implementation that processor’s built in high priority
timer is used. The timer queue manager is a high priority process which performs
either an alt or a timalt^, depending on whether there are any entries in the queue,
on the start_timer channel. New messages are inserted in order in a linked list
of schedule entries. When a new entry is added at the head of the queue by the
executive or guardian it outputs on this channel, awakening the timer manager
which then starts waiting for the new time.

’’Section 4.6
®Meik:o C library calls

58

Timer Queue

ALT
Timer?
Guardian?
Executive?

^ ----------

schedule
Jocal_message

new message
at front of
queue

timer expires

Wait_for
^processor

Figure 4.3: The timer queue thread.

4.53 The Executive

The scheduling work is actually distributed amongst the kernel threads, however,
the executive thread is responsible for descheduling slots and reallocating the
processor to the slot whose current message has the earliest deadline, if there
are any. During the normal operation of the testbed, the executive has only one
blocking state, as shown in Figure 4.4 as teSrghMjl It waits in this state until
the current slot (if any) awakens i t This event causes control of the processor
to pass atomically to the executive. The signal may have types send, actionjend,
preemption or terminate. These have the following meanings:

acdon end The action which processed the slot's current message is complete
(i.e., the function has returned to the actionJiamess).

send The action wishes to send a message to another (or the same) slot.

preemption In this case a preemption has been scheduled by a guardian, timer or
sender thread and the action has reached a point at which it is safe for this
to occur. Note: the preemption mechanism is fairly platform specific, see
Section 4.6.2 below.

terminate This is a special case in which the testbed is to be shut down, it would
normally only happen during development.

59

Figure 4.5 gives a pseudocode description of what each of these entails. The
schedule Jocal^essage subaction is shared with the guardian, timer and sender
threads. Note that when called from the executive nojcunent is true, so the slot
with the earliest deadline (if any) is subsequently activated.

Executive

sys_chan?

1

terminate

r

STOP

preemption,
actionjend or
message send

Figure 4.4: The executive thread.

Suspending and Resuming the Slot

The slot may suspend when it sends a message, when the current action returns or
when it is preempted. In the first two cases the slot suspends itself by sending a
message on a special channel (sysjchan). In this case the executive is awakened,
without performing an input (as it performs an alt wait). It then immediately
copies the slot’s workspace pointer from the channel into the wptr field in its
frame entry. In the case of a preemption by the executive, the slot’s workspace
pointer is removed from the Transputer’s low priority process queue and stored in
wptr. Slots are resumed by the system performing an input on the wptr field of
their frame as if it were a charmel. The system behaves differently for slots with
new messages, as will be described in section 4.6.2.

60

send:

set_no-.current;
if localjmessage then

scheduleJocal-message
else

add_slot_to_linkjq;
if linkjq Jength = 1 then

wakeup-sender;
activate^lot-withjearliestjdeadUne

actionjend:

set-jio-current;
if sloLqneuG_nonjempty then

insert_next-in_pool;
make-CunentJn^lot;

activate-slot-withjearliestjdeadline

preemption:

save_current_slotjcontext;
insert_current_in-pool;
activate-slot-withjcarliestjdeadline

terminate:

STOP

scheduleJocal-message:

if messages in schedule for this port = max then
update_data_in_boxed_msg

else
if msg.timestamp > now then

add_msg_to_timerjqueue
else

insert_msg_in_slotjquGue;
if no jcurrent then

activate-slot-with jearliest. deadline
else if deadline < current jdeadline then

schedule-preemption

Figure 4.5: Pseudocode for actions of the executive.

61

4.5.4 The Sender

The sender multiplexes messages onto an output link. As with the guardian, it
may be replaced by a device handler which converts Testbed messages into a
format understandable by an external device. The sender has two blocking states
as shown in Figure 4.6. When the queue is empty it waits to be signalled by either
a guardian or the executive which will have added an entry to the queue, causing
it to enter the Linkll state in which it repeatedly sends the first message from the
queue until the queue becomes empty. The messages are sent on behalf of either
a slot, in the case of a locally generated message, or a guardian, in the case of a
message for a different node. In the former case the slot is rescheduled by placing
its current message back into the pool, possibly also scheduling a preemption if
the message has the earliest deadline. In the latter case the guardian is signalled
and resumes listening for new messages on its fink. Through routed messages are
wormholed [19], by repeatedly reading short packets (flits) from the input fink and
writing them to the output fink. This has many advantages over store-and-forward
routing as discussed in Chapter 5.

Sender

link__q
empty

gojchan?

message to
send

link!
reschedule
slot or
restart
Guardian

get next entry
from link_q

Figure 4.6: The sender thread.

62

Implementation Notes

The entries in the link queue are actually the elements from the frame array for
the slots and guardians which are waiting to send. Each entry has a pointer to
the header of the message being sent, a next pointer and in the case of a slot, a
pointer to the schedule entry for the message it is cunently processing. The latter
allows the entry to be returned to the pool. In the case of a guardian, the thread
is restarted in the same way that slots are restarted by performing an input on the
special channel field of its frame. For slots this also h^pens if the slot has the
earliest deadline and there is no current slot or the current slot is in a pieemptable
state.

4.5,5 Devices

As described in Section 2.4, a synchronous device looks like a slot to the appli­
cation. In fact most parts of the system also see the device as a slot on the node
to which it is connected. The slot id (known as a device id) is provided by the
application as part of the networic configuration when a link is reserved as either
a raw link between two nodes or an external link to a device^. In the former case
two distinct device ids are provided, one for each end of the raw link, while in the
latter only one is required. Although these cases are different during configuration,
they appear identical to the system which is oblivious to the connection between
the device ids of each end of a raw link. Henceforth the terms "device" and "raw
link” shall be used interchangeably.

When a message is sent to a device which is attached to a remote node, the
routing system treats it just as any other message destined for that node. Once the
message reaches its destination node, the kernel recognizes that the destination is
a device and not a slot and queues it for the sender thread corresponding to the
device link. The sender for a raw link is the same as for internal links except that it
does not send the message header. Hie device input thread behaves like a normal
guardian except that instead of reading the header at the start of each message it
uses one supplied by the application, filling in only the data and timestamp fields.
In order for the guardian to read and deliver messages, it must be informed of the
size of the message to read and the destination slot and port. This is done by the
centre slot in response to a message from an application slot containing the header
to be used. Both repetitive and one-off message reads are supported. Initially
and after a one-off read the guardian waits to receive a message from the centre
containing the size of the next read.

® See Appendix A.

63

4.6 Scheduling in Testbed

Scheduling of slots in Testbed is dynamic, using a combined earliest deadline
and priority strategy. Actions may be either pieemptable or non-preemptable
according to a flag in the slot’s port table. Unlike most systems which support
deadline scheduling, deadlines are not mapped ontoaflxed set of priorities. Instead
the deadline is stored in the schedule entry and the pool of available messages/slots
is kept sorted by this value. Where no particular deadline is sqipropriate, a priority
is assigned to the message instead. This is implemented by using values beyond
the range allowed for deadlines. Messages with deadlines are always chosen in
preference to those without This means that at the implementation level, the
system does not need to treat messages with priorities differently from those with
deadlines, the latter simply come after the former in the pool, with higher priorities
having a lower deadline value than the lower ones. The deadline is computed when
the schedule entry is created, based on the timestamp contained in the message
header and the post time variable of the destination slot If the post value is greater
than the upper bound for timestamps^° then this value becomes the deadline,
otherwise the deadline is the sum of the timestamp and the post value.

Although deadline/priority scheduling is performed among slots on a Testbed
node, the messages queued within a particular slot are stored in FIFO order. This
may lead to priority inversion, as messages may arrive in a different order to
their deadlines. This is compounded by the timeout mechanism which inserts
new messages whose timestamp is in the future into the timer queue until after
this time has passed, when they are inserted into the slot’s schedule as if they
had just arrived. Thus messages may be overtaken by others which might have
a lower priority or later deadline. Messages with timestamp in the future do not
delay other later arriving messages in order to allow a slot to perform work between
scheduled activities. Messages are kept in FIFO order in the slot queues in order to
reduce overhead and, more importantly, to avoid compounding degradation during
overload conditions and to make it simpler to reason about delays as explained
below. It should be noted, however that even if the messages were sorted in
the slot queue into deadline/priority order, priority inversions could still occur as
preemption of actions within a slot is not allowed.

4.6.1 Bounded Delays

It is very important that an embedded system application programmer be able
to place upper bounds on resource requirements of the application. To support

which is chosen to be a time so far in the future that it is highly unlikely that it will be required

64

this the kernel must behave in a deterministic way and simple bounds must be
obtainable on the resources it requires, such as memory and time. This is one of
the main aspects distinguishing an embedded/real-time kernel from a conventional
operating system or even microkernels designed to support conventional operating
systems. It is often necessary to sacrifice some flexibility and performance in order
to achieve these ends.

An example of such a compromise is that messages are not sorted by dead­
line/priority in the slot queue as this would cause a delay which is dependent on
the number of messages queued. Thus the performance of the system would con­
tinue to degrade indefinitely as more messages arrive which carmot be processed^^.
Similarly the less flexible memory pools method^ ̂is used rather than conventional
malloc style memory allocation scheme for messages. With the FIFO behaviour
and the memory pool allocation strategy there is a constant upper bound on the
time required to insert a new message into a slot’s schedule while the slot is cur­
rently processing an earlier message and a time dependent only on the number of
slots on a node to insert a message into the pool^ .̂

4.6.2 Implementation o£ Preemption

Preemption can occur under three circumstances:

• When a message reaches the head of a slot’s queue having an earlier deadline
than the slot which is currently active.

• When a message waiting in the timer queue becomes available and its
destination slot has no ready messages.

• When a slot has been suspended while a message was sent outside the node,
but is now ready to resume.

If one of these occurs then a preemption is scheduled. If the action which the
preempting slot wishes to run is critical, then the current slot’s schedule entry is
saved and the preemption occurs immediately. The preempting slot’s action then
runs until completion or until it sends a message at which point the preempted slot
is allowed to continue. Note that this type of preemption can only occur if the
current slot is executing a preemptable action. During critical actions the system
thread '̂* which is responsible for introducing or reintroducing the preempting slot

to the point where storage is exhausted of course
^ ŝee section 2.8
^̂ as each slot may have at most one message in the pool

guardian, timer or sender

65

is blocked from running. This state holds until the critical action sends a message
or terminates, at which point any waiting system threads run in the sequence in
which they were triggered.

If the action which the preempting slot wishes to run is itself inteiruptible
then a more elaborate, time consuming and less predictable preemption scheme is
required. This is because the TSOO’s high priority processes (used to implement
the Testbed kernel threads and critical actions) cannot access all of the state of
the current low priority process (used to implement interruptible actions) which
they have interrupted. Fortunately there are descheduling points in the code at
which only that part of the state which is accessible to the high priority processes
can be in use. These are also the points at which the low priority processes are
timesliced^^ by the Transputer’s microcoded scheduler. Using a method described
in [87] a dummy process is inserted in the Transputer’s low priority queue which
simply waits for the current action to be timesliced (ensuring that it is at a de­
scheduling point) and then immediately communicates with the executive thread.
This is able to read the head pointer of the low priority queue which points to the
workspace of the timesliced action. All the state has been saved in this workspace
by the Transputer and the executive thread simply needs to adjust the workspace
slightly to produce the effect of the action having executed an OUTBYTE instruc­
tion. Consequently it can be resumed using an input instruction just as if it had
voluntarily relinquished the processor.

Unfortunately it is difficult to place an upper bound on the time required to
perform a preemption in the case where the preempting slot wishes to run an
interruptible action. This is because the low priority process is not preempted by
the Transputer immediately after its timeslice expires, but rather when it reaches a
descheduling point This is usually not long as most flow control instructions are
descheduling points. Nevertheless in a pathological case a program could contain a
sequence of non-descheduling instructions limited only by memory. Alternatively
it could contain block move instructions which require time proportional to the
length of the data to be moved. Although these can be interrupted by high priority
processes the low priority process carmot be timesliced while one is in progress.
Even without these pathological cases, the timeslice period is 1ms, so this type of
preemption can be expected to take more than 0.5ms on average in addition to the
normal system overhead. This is no doubt part of the reason that Inmos provided
the high priority process as an interrupt mechanism in the first place and also why
Testbed allows critical actions to preempt interruptible ones using it.

although timeslicing does not occur in Testbed as at most one low priority process is allowed
at a time

66

Note that the system delay during preemption could be regarded as a short­
term priority inversion. If this delay cannot be bounded, then the assumptions
on which verification of deadlines [3, 39] is based do not hold. For this reason it
may be necessary to use critical actions in critical situations. In this case priority
inversions may be of longer average duration but can be bounded, assuming that
the durations of critical actions can be. Assuming that there is no other slot
performing critical actions and the destination slot has an empty queue the time
to invoke a critical action is bounded by the sum of the maximum execution time
of each kernel thread, since in the worst case each thread may be waiting to run.
Most of these have bounds that are linear in the number of slots on the node since
the only variable length computation which they perform is to insert a message
into the pool, which in the worst case may have an entry for each slot. The
kernel thread may take longer as local message transfers involve making a copy
of the message data. Both the number of slots and the sizes of local messages are
available to the application designer and can thus be used to calculate an upper
bound on the interrupt time for critical messages.

4.7 Initialization

The computing surface is configured and the initial system code is loaded by the
CSBuild program te s tb e d . This reads a file containing forwarding tables for
each node, from which it computes the connection topology actually required.
The channels, node id and the next table are passed to the startup process for each
node using the import facility.

Upon startup the startup process at each node initializes tables, spawns the
link guardians, senders, the clock process (see below) and creates the centre slot.
It also sends messages which initiate the clock synchronization and application
loading.

4.7.1 Clock Synchronization

Local node time is maintained by a global double precision floating point variable
(base-time). The value of this plus the transputer high priority clock (which
ticks every microsecond) are used to compute the current time in seconds. The
global clock is initialized to zero and is incremented when the transputer timer
wraps around to zero. This is done by a high priority process launched at startup
which waits on this time. System functions accept and return times which are
double precision real values and represent seconds since system initialization, and
these are also passed as the timestamp in messages. If a message arrives with a

67

timestamp in the future, the slot is added to the timer queue. The timestamp is
converted to an integer number of ticks (microseconds) of the high priority timer
(modulo 2^)̂. The timer thread then waits for this time. If the time is more than
the resolution of the high priority timer in the future then the wait is performed
several times.

The clock on each node is synchronized with that of the root node by the
centres before any other slots are created. This is achieved by sending a message
from the centre slot on the root node to the centre on the node to be synchronized.
A timestamp is recorded on the root node when this message is sent (timestamp
to) which is echoed by that slot with data field set to the local time of the receiver
(timestamp ti). When this message arrives back at the root it gets a third timestamp
t 2 . Based on the assumption that message latency is almost the same in each
direction, the ̂ proximate difference between the two clocks is then calculated as
(to+ ^ 2 — 2ti)/2. This value is sent to the centre on the node to be synchronized and
used to adjust the local timer. Experiments suggest that this method synchronizes
clocks to within lO^s, which is far less than the minimum message latency between
nodes (about 0.4ms), which means that timestamps can be generated which are
causally consistent^^. No significant relative drift has been found between the
clocks over time.

4.8 Conclusions

The BED kernel is designed to support the Testbed programming model and its
development and debugging goals. It follows the Microkernel philosophy of
supporting only a bare minimum of functions required by all applications, with
other functionality provided at higher levels. In Testbed this means that they are
provided as system actions or slots.

The kernel provides an asynchronous message delivery service in which the
application need not know the location of the destination slot Both deadline order
and priority based scheduling are provided for messages and in addition the timer
queue allows the action to be delayed. The overheads introduced by message
delivery and scheduling are strictly bounded and predictable due to the memory
pools storage allocation scheme. As storage for each slot is allocated in advance
and the system only makes dynamic allocations from these areas, the slots are
independent Thanks to the FIFO queuing policy at each slot, time for message
delivery and scheduling does not increase as the number of messages waiting at
the destination increases. The bound on scheduling time is proportional to the

^®See Section 6.3.1 (Patterns of Events) and [51].

68

number of slots on a node due to the earliest deadline scheduling among slots.

Chapter 5

Routing

5.1 Introduction

Testbed is intended to run on configurable distributed memory multiprocessors,
such as Transputer netwoiks. Although the current system is implemented on a
Meiko Computing Surface, for which a message passing library is provided^, it
was decided that Testbed should have its own low-level communication harness.
Little information is available on how the Meiko communication mechanism
works, making it difficult to predict what impact routing overhead may have on
performance. By implementing the communication layer using low level facilities
and tailoring it to Testbed’s programming model efficiency and control over routing
were gained.

Sometimes the paths followed by messages (the routing), will be critical to
the application and will be specified explicitly by the designer along with the
interconnection topology. In this case verification of correctness properties such
as freedom from deadlock and real-time properties of the communication will be
part of the application design. In other cases it will be desirable for the system’s
routing harness to be verified free from deadlock and livelock independently of the
application. This chapter describes the Testbed network architecture, discusses
criteria for deadlock-freedom, gives a simple algorithm for finding a near-optimal
deadlock-free routing for a given topology and explores ways of constructing
regular networks from simple building blocks and extending path-optimal and
deadlock-free routings to cover them.

Most current work on network routing favours dynamic schemes such as
randomized or adaptive routing in which messages may follow more than one route
between the same source and destination. These schemes improve the average
performance by avoiding bottle-necks, however it becomes difficult to predict

^CSN as described in [61]

70

the impact of communication overheads on a specific application. Embedded
systems often have real-time constraints, so it is more important to preserve the
predictability of communication delays than to achieve good average performance.
This suggests that static routing is more appropriate than dynamic routing. Low
communication delays are often a desirable feature in embedded systems, so it
would be preferable that messages do not take unnecessarily long routes to their
destinations and that the overhead imposed by the routing mechanism is low.
Given the constraint of static routing bottle-necks in the system should also be
avoided by spreading the load evenly among the communication links.

5.1.1 Finding the Routing

Given an arbitrary connection topology, a message routing method which is dead­
lock free is required. At the same time it should have the following features:

1. Messages between any two nodes should follow as nearly as possible the
shortest path between the nodes given by the connection topology.

2. Minimal overhead is introduced by the deadlock avoidance.

3. Messages should not be lost due to lack of resources within the network,
though this may happen if there is insufficient storage at the destination.

4. Load should be as evenly distributed across links as possible, to reduce
bottle-necks.

The following approaches to constructing routings in a way which avoids the
possibility of deadlock in the network have been considered:

1. Compute a deadlock free (though possibly inefficient) routing function based
on a single spanning tree of the network. Then, as discussed below, a set of
spanning trees which is near optimal but still deadlock free can be found by
improving on this. Section 5.4 discusses this approach.

2. Allow the user to provide a routing function, which may be checked for
deadlock freedom. This may be acceptable to the user for small networks
or large regular networks, for which a good routing scheme is known (such
as the e-cube algorithm for hypercubes) but it would be tedious for a large
irregular network. This method may be appropriate when the user has
information about the pattern of communication of the application, which is
difficult to embody in an algorithm for constructing a routing.

71

3. Use a deadlock avoidance scheme. This allows any optimal routing to be
used at the cost of introducing extra overhead which may be unnecessary and
undesirable in an embedded system. Several such schemes are discussed in
Section 5.1.2. Protocols that allow two messages for the same destination
to take different routes or that allow overtaking within a node introduce the
possibility of livelock.

4. Provide a library of deadlock-free optimal (or near optimal) routing functions
for certain common types of network topology, ff one of these is embedded in
the network then it may be used, or the user may construct a routing function
by coimecting up such components. The result is then checked to make sure
it is still deadlock free. Section 5.5 discusses some methods of constructing
complex networks from simple building blocks while preserving both path-
optimal routing and deadlock freedom.

5.1.2 Related Work

The most common solution is to construct a routing algorithm which is deadlock
free for any given routing function [19,30,96]. Unfortunately all of these methods
impose some extra overhead and some have other drawbacks, such as discarding
of messages.

Many such algorithms are based on structured buffer pools. Each node has
its buffers partitioned into classes upon which a partial ordering is imposed. [96]
describes such an algorithm in which each node has M + 1 buffers, where M is
the maximum number of hops any message should have to make before reaching
its destination. The buffers are numbered from 0 to Af. Each message enters the
network in a buffer numbered 0 and in moving from one node to the next it may
only move to a buffer numbered one higher than the one it is in. If a message gets
to an M buffer but has not yet reached its destination then it is discarded. This
could be thought of as replacing the routing network by one consisting of M layers
in which messages enter at the bottom layer and progress up one layer per step. It
is easily seen that this network has no cycles! This method has the disadvantage
that messages are discarded after M hops, so the routing algorithm must ensure
that a message reaches its destination (or is otherwise dealt with) within this limit.
Also the larger the network, the larger the number of buffers required at each node.

The structured buffer pools technique is not suitable for the wormhole tech­
nique introduced by Dally and Seitz [19] as in wormhole routing the packets (called
flits) of different messages cannot be interleaved. They present the virtual channel
technique which is also based on resource ordering. When cycles are present in

72

the channel dependency graph, virtual channels are introduced which are multi­
plexed over existing channels each with a separate buffer. By introducing enough
virtual channels the cycles can be broken. Because less than M virtual channels
(and hence buffers) may be required and because they are only required where
actual cycles exist in the dependency graph and not other parts of the network, the
resulting algorithm may be more efficient on resources. Another advantage of this
method is that messages need never be discarded. It has the disadvantage that a
different algorithm must be worked out by hand for each type of network. Work
continues on virtual channel routings for specific classes of network [22,55].

[30] describes a different type of algorithm in which the underlying undirected
network G is partitioned into two directed graphs. This is done by constructing
a directed graph Gi which has the same nodes and arcs as G and for which there
is one special root node with only outgoing arcs. The other G2 is the inverse of
this (i.e., with the directions of the arcs reversed). Then whenever a packet arrives
at a node which has only messages waiting to go out on Gi edges and which has
only one free buffer, either that message or one of the other ones is rerouted on
to a G2 edge. The root node is given more buffer space than all other nodes
and is forced to accept any incoming message in finite time even if that means
overwriting one of its buffered messages. This algorithm has the advantage that
when things are running smoothly, there is no extra overhead imposed. Also all
buffers are available for any message. It has the disadvantage that messages may
be lost.

5.2 The Testbed Network Architecture

Testbed communication netwoiks consist of Transputers connected by bidirec­
tional links. Each link is controlled by sender and guardian kernel threads^.
Each sender forwards messages on its link on behalf of guardians or local slots,
while each guardian receives messages from its link and then routes them to an
appropriate output link or local slot^.

Testbed uses a static routing scheme in which there is a spanning tree centred
at each node. Each message contains both the destination node and slot id. When
a message is initially sent, the application normally provides the slot id and the
system uses a location table to look up the destination node. If the destination
is non-local, then the routing harness uses the destination node to forward the
message. The destination slot id is not used until the message has arrived at the

^described in Chapter 4
®See Figure 4.1.

73

J

correct node. To route from node x to node y, the message is sent to the parent
node of x on the spanning tree centred at y. Each node has a table which gives the
next link on the spanning tree for every other node.

5.2.1 Wormhole Routing

Store-and-fbrward routing (sometimes called packet switching) is the more tra­
ditional approach in which each packet is treated by the network as a separate
message with its own header. Each node receives the entire packet and stores it in
a local buffer. It then uses information in the header to forward the packet towards
its destination. In wormhole routing the packets (called JUts) which make up a
message are not interleaved. A routing decision only needs to be made for the first
fiit, determining which output link is to be used and once that link is available the
entire message is sent before any other message may use the same link. While
a message is being through routed, an input and an output link are dedicated to
that message and flits are alternately read and written until the entire message has
passed through. [29] and [70] give useful overviews of wormhole routing and
of hybrid techniques such as virtual cut-through in which messages are routed in
wormhole fashion until a busy link is encountered at which point the message is
removed from the network into a buffer until the link is available.

With store-and-forward routing either the size of messages must be limited by
the amount of storage which can be spared at each node for buffers or multiple
packet messages must be used. In the latter case there is the problem of reassem­
bling these messages which complicates the receiving process. Also buffers must
generally be large to get reasonable efficiency as a routing decision must be made
for each. With wormhole routing the buffers can be smaller, creating a pipeline
effect which reduces message latency. For these reasons Testbed uses wormhole
routing. However the results derived in this chapter hold for both wormhole and
store-and-forward routing.

5.2.2 Properties of Testbed Networks

Testbed interconnection networks have the following properties:

1. A message arriving at its destination node is always consumed'̂ .

2. The route taken by each message is uniquely determined by the source and
destination nodes to be a finite path from source to destination.

‘̂ although it may be discarded if the destination slot has no free stwage for messages

74

3. There is one flit buffer for each input link.

4. Any message waiting for an output link will eventually receive it if no
deadlocks occur^.

Properties 2 and 4 imply that there can be no livelocks in the routing as there is
no infinite overtaking within a node and messages cannot wander forever through
the network.

It will be seen that these properties of the behaviour of the physical nodes
allow us to derive a simple criterion for deadlock freedom of a routing function.

5.23 Broadcast

Because Testbed routing functions use the spanning trees for each node strictly in
the direction of the root, broadcasts carmot simply use the same trees outwards,
since the combination of directions might produce deadlock cycles. Instead a
broadcast tree is created for each node by forming the union of the paths from that
node y to each other node x produced from z ’s sparming tree. Then each node
z holds for each possible source node y, the children of z on y’s broadcast tree.
When z receives a broadcast packet from y it sends it on to each child. Figure 5.1
shows the spanning tree for node x, in which the path from y to x, passing through
z forms part of y’s broadcast tree, z has child x in that tree.

Figure 5.1: Constructing a broadcast tree for y from the spanning tree for x.

5.3 Deadlock-Free Routing Functions

Definition 5.1 Routing deadlock occurs when there is a cycle o f processes each
o f which is blocked trying to send a message to die next

In Testbed the blocked processes are the guardians. Although there are also
sender and slot processes involved, ultimately each blocked guardian is waiting

®Tbis is because the kernel queues each message being sent on a link and deschedules the
sending process (including guardians) until it has been sent.

75

for a guardian on an adjacent node to receive its message. Guardians do not block
waiting to send to slots and each blocked guardian has an associated sender fw the
link which it wishes to use. For these reasons these other processes are ignored
and the deadlocked cycle is considered to be made up of guardians.

Definition 53 A network is a directed graph (iV, L) with nodes N and edges L,
which are called links. Denote the link from p to qby\p^ q]. Links from a node
to t e / / (loops) are disallowed. A routing is a junction R : N x N N which
given a node i and a destination node j gives die next node (R{i, j)) from i on the
path to j.

This type of routing function has the effect of defining a set of directed spanning
trees rooted at each node, consisting of the paths from all other nodes to that node.
The advantage of this type of routing function is that it only requires that each
node know the next node on the path to any other node, and that the messages
contain their destinations.

Let Rhesi routing for network {N, X) in the following

Definition 53 A cycle o f links in X, such that for any three successive nodes p, q
and r in the cycle, there is some node s for which R{p, s) = q and R(q, s) = r, is
known as an overlap-cycle.

In other words an overlap-cycle is made up entirely of overlapping segments
of spanning trees and contains no nodes for which the sets of spanning trees
containing the incoming and outgoing arcs are disjoint

Theorem 5.1 Deadlock can arise in the routing processes if and only ifR has an
overlap-cycle.

Proof: (<=) Suppose such a cycle exists, then because any two adjacent arcs in
the cycle must both lie on at least one spanning tree, it is possible that each node
in the cycle has the header of a message which came from the previous node and
is destined for the next node. When this happens, a deadlock exists since the
guardian process at the end of each link in the cycle is blocked waiting for the one
at the end of the next link.

(=>) Suppose that there is a routing deadlock, then there must be a cycle of
links each of which has a guardian which is blocked waiting to send a message on
the next This means that each guardian has a message whose route includes two
hops in the cycle so this must be an overlap cycle. □

Figure 5.2 shows two alternative routings for a four cycle. The shaded arrows
indicate the links which may be used by messages destined for the node with the

76

same shading pattern. The left hand routing has no overlap cycles and thus is free
from deadlock by Theorem 5.1. The right hand routing has an overlap cycle and
the diagram below shows a deadlock situation in which the guardian at each node
has a message which came from its predecessor and is destined for its successor in
the cycle. No progress can be made because none of them can pass on its message.

Safe Unsafe

Figure 5.2: Safe and unsafe routings for a four cycle.

53.1 Dependency Graph

[19] uses a more general routing function in which the outgoing link which a
message follows is determined from the incoming Unk and destination node rather
than just the current node and destination node. Using this routing function it

77

is possible to define a link dependency graph^ D as the directed graph whose
vertices are the links of the network. Any pair of successive links on a path to
some destination node are connected by an edge in D in the direction of the path.
Then the routing network is shown to be deadlock free if and only if there are no
cycles in D. Testbed’s link-independent routing functions are special cases of this
more general form and so an acyclic dependency graph provides an alternative
criterion for deadlock freedom to the one presented above. It may be possible
to construct a routing function of this type which is closer to optimal than any
link-independent routing. However considerable extra overhead is required for
the more complex routing function.

Since the presence of cycles in the dependency graph is an alternative criterion
for potential deadlock, these must be equivalent to overlap cycles in Testbed
networks as the following proposition shows.

Proposition 53 A routing has an overlap cycle if and only if there is a cycle in
the link dependency graph.

Proof: (=^) Given any pair of links in an overly cycle [p, q] and [g, r] there is
some node s for which the route from p to s follows [p, q\ then [q, r], so there is a
dependency between these links. Thus the links in the overlap cycle form a cycle
in the dependency graph.

(4 =) Any pair of vertices in a cycle in the dependency graph correspond to links
in the network [p, ç] and [g, r] say. The fact that there is a dependency between
them means that there is some route which follows [p, q] and then [g, r], so there is
some s for which i2(p, a) = g and iî(g, s) — r. Thus the cycle in the dependency
graph corresponds to an overlap cycle. □

Figure 5.3 shows the link dependency graph for each of the routings from
Figure 5.2. The patterns of the edges correspond to the spanning tree on which
the pairs of links which make up the dependency lie, illustrating the relationship
between cycles in the dependency graph and overlap cycles.

5.4 Optimality

Definition 5.4 A path-optimal routing function is one in which the path from any
node to any other node is the shortest possible.

For some networks it is impossible to find a routing function which is both
path-optimal and deadlock-free based on spanning trees. An example is any

'actually referred to as a channel ̂ lendency graph in [19]

78

[0,1] [0,1]

1,0]

[3,0](g) 0 [0.3] [2 ,O]0 0 [0.2]

[2,3]

Safe Unsafe

Figure 5.3: Dependency graphs of safe and unsafe routings for a four cycle.

simple cycle with 5 or more nodes^. However, assuming that the network consists
of bidirectional links, then there is always a (probably non-optimal) deadlock-free
routing. This is given by choosing any (undirected) spanning tree and then forcing
the directed spanning trees for all nodes to lie on i t This is in effect reducing the
network from a general graph to a tree. Because messages do not make U turns,
and all the spanning trees lie on the same tree, there can be no overlap-cycles. Once
a deadlock free set of spanning trees such as this has been found it can generally be
improved, often to the point of optimality or near optimality by making successive
adjustments to each spanning tree which do not introduce overlap-cycles.

The following definitions give a measure of the path lengths in a route:

Definition 5.5 Given any pair o f nodes p ,s E N. Let d(p, s) be the number o f
hops from p to s given by R, Then define the path<compactness of the spanning
tree for s by

(5.1)
peN

and the total path-compactness o f R by

HR) = E M^) (5.2)

The algorithm below attempts to minimize the total path-compactness.
The notation for a stepwise change to a routing is as follows:

Definition 5.6 Denote by R\p^ s q\, where L contains a link [p, g], the routing
which is identical to R except that R\p, s g](p, a) = q.

^See Section 5.6.2.

79

Proposition 53 I f the spanning tree for node s is padi-suboptimal then there are
nodes p, q, such that d(p, s) can be reduced by changing the next node from p on
the path to s to q and the resulting routing is closer to optimal, Le., (l>R[p,at-*̂q]{s) <

Proof: Let 5 be the spanning tree for s and O c 5, the subtree of S consisting
of all the nodes whose path to 5 in 5 is minimal, then let a; be a node outside of
O. Let P be a minimal path from x to s and let p be the closest node to a in P
outside O. Let D be the length of the sub-path of P from p to 5 (i.e. the optimal
distance). If g is the next node from p on P in the direction of s, then g is in O, so
d(q̂ s) = D — I. Thus by replacing the next node from p in the direction of s in
S with q, the length of the path from p to s in 5 is reduced to P . □

Figure 5.4 shows how a sub-optimal spanning tree for node s can be improved® by
changing the parent of node p to 9 , reducing the distance from a ofp and each of its
descendants. This result means that whenever a routing is path-suboptimal, it can

Figure 5.4: Improving path lengths in a spanning tree by a single change.

be improved by changing one link in one spanning tree. If not for the requirement
of preserving deadlock-freedom this would clearly lead to a path-optimal routing.

Even though there may be no adjustments which reduce the path from some
node to the root of some spanning tree, there may be ones which improve the
balance of link load without lengthening the path. This load is defined as follows:

Definition 5.7 The load on a link is the number o f paths between pairs o f nodes
given by the routing function which include that link.

The balance of link load is measured in terms of the statistical variance:

4n fact made optimal in this case

80

Definition 53 The load variance A(i2) o f routing R is the statistical variance o f
the load over all links.

Now it is possible to define a way of comparing two routings which classifies
first by total path-compactness and then by load variance.

Definition 5.9 Given a network and routing functions R and Rf, define a strict
partial order <C by

R f ^ R iff ^ R !) < ^ R) o r ^ R !) = ^ ^ R) a n d A { R !) < A (R) .

This is the lexicographic order of A within

5.4.1 Routing Optimization

The following is a greedy algorithm which given a set of spanning trees for the
network with no overlap-cycles, progressively makes any refinements which do
not introduce overlap-cycles. The initial spanning trees are assumed to be given,
but they may be computed by finding an undirected spanning tree rooted at some
node in the network and basing all the directed spanning trees on this.

Repeat
for each node p
for each sparming tree <s
for each adjacent node ̂ top
if R\pj s i-> ç] < 12 and 12[p, s i-> ç] has no overlap-cycles then

R := R\p,s q\
Until no change

Since the relation < gives preference to reducing path length over reducing the
load variance, the latter may actually be increased by some steps of the algorithm.
Note that any ordering on routings could have been used instead of in the
algorithm above.

Figure 5.5 shows an example of the application of the algorithm to a 5-cycle
network. The sparming trees in the top row are the initial solution based on the
optimal spanning tree for node 0. The bottom row of spanning trees are produced
by one iteration of the algorithm. No further improvements are possible without
introducing overlap-cycles. Section 5.6.2 discusses cycle networks further.

81

Figure 5.5: Routing algorithm applied to a 5-cycle.

5.4.2 Local Minima

It is possible that the algorithm may become trapped in a state where no improve­
ments can be made without introducing overlap-cycles, but which is not the best
possible deadlock-free solution either from the point of view of path reduction
(i.e., $ is not minimal) or load balancing (Le., A is not minimal) or both. This has
been found to occur, both with respect to path-optimality, and even more often
with respect to load distribution. From theorem 5.3 it follows that it is always
possible to detect whether the algorithm has found a path-optimal solution, since
if reductions in path length are ix)ssible which don't introduce cycles, they can
always be made in single steps. However it sometimes happens that several ad­
justments need to be made simultaneously in order to achieve an improvement in
load-balancing. Since the algorithm only considers single steps, it cannot detect
this kind of suboptimality in the load distribution.

It has been found that starting the algorithm with different initial sparming
trees affects the final result One solution might therefore be to run the algorithm
several times for the same network, with different starting points. Alternatively a
probabilistic technique such as simulated armealing may be used.

5.43 Implementation

The algorithm has been implemented and tested on a number of different types
of network such as grid, torus, binary cube, cycle and cube-connected cycle
(CCC) networks and found to work well as Table 5.1 shows, finding path-optimal
solutions, if they exist and generally also balancing the load, or coming close.
For many of these types of network it is also possible to construct deadlock-free
routing functions using methods described in Section 5.5.

It should be noted (as explained in Section 5.6.3) that there are no routings
which are both deadlock-free and path-optimal for a cycle of greater than 4 nodes

82

Network A (initial) A(solution) ^(initial) ^(solution) $ (optimal)
2 x 2 grid 2 0 2 0 16 16
3 x 3 grid 46.5 0.5 204 144 144
4 x 4 grid 370.4 12.4 976 644 632
5 x 5 grid 1788 42.2 3200 2 0 0 0 2 0 0 0

3-d hypeicube 29.2 0.3 136 96 96
4-d hypercube 276 2 . 1 784 512 512
5-d hypercube 2254.1 11.9 4128 2560 2560
6 -d hypercube 17267 75.5 20544 12288 12288
5-cycle 4.8 0 . 2 40 32 30
6 -cycle 8.7 1 70 58 54
7-cycle 16 4.1 1 1 2 94 84
3 x 3 torus 47 0 204 108 108
4 x 4 torus 355.3 2 . 2 976 512 512
5 x 5 torus 1686.4 25.9 3200 1602 1500
3-d CCC 1961 249.1 3076 2048 1776
4-d CCC 58759 12065.9 35328 24512 18944

Table 5.1: Performance of routing algorithm for various networks.

or a torus of size greater than 4 x 4 . This prevents the algorithm from achieving
the optimal value in the right most column of Table 5.1 for these networks.

5.5 Extending Deadlock Free Networks

Graph theory gives us ways of constructing quite complex networks which are
built up from simple components. The results in this section show that given
suitable components for which the routing problem has been solved, it is possible
to construct routings for higher dimension netwoiks built from them.

In this section the definition of a routing R is extended to a collection of paths
which are sequences of successive links. Partial routings in which some nodes
have no path between them are allowed and there can be multiple paths between
nodes.^ The overlap cycle of the previous section becomes a cycle of links such
that each successive pair lies on some path.

Definition 5.10 Given any two networks G = (iVo, La) and H = (Nh -, Lr), the
cartesian sum G H is the network {Nq x Nr , Lq x Nr U Lr x Nq), which

^Although Testbed routings are always complete and only one path exists between nodes.

83

has a link between nodes (p, q) and (r, a) i f either q = s and \p,r] E Lg or p = r
and [g, s] € Lh .

Example 5.1 Let G and H be simple two node networks with nodes labelled 0
and 1 and a single link [0,1]. Then G + ^ is the square network with nodes
0 0 , 0 1 , 1 0 and 1 1 and links [0 0 , 1 0], [0 1 , 1 1], [0 0 , 0 1] and [1 0 , 1 1], as illustrated in
Figure 5.6.

00

10

Figure 5.6: The cartesian sum of two simple pair networks.

Cartesian sum networks include many useful regular topologies such as the
grid, hypercube and torus.

Definition 5.11 Given any two networks G and H as above, the normal product
G- H is the network {Nq x iVn, Lq x Nh U Xh x TVg U Xcf x Lh), which has a
link between nodes (p, g) and (r, a) when one of:

q = s and [p, r] e Zo,

P — rand[q,s] € Lh,

or
[p,r] e Laand[q,s] e Lh -

Notice that neither of these constructed networks has loops.

Example 5.2 Let G and i f be as in example 5.1. Then G - i f is the square
network with nodes 0 0 , 0 1 , 1 0 and 1 1 and links [0 0 , 1 0], [0 1 , 1 1], [0 0 , 0 1], [1 0 , 1 1]
and [00,11], as illustrated in Figure 5.7. If the link in both G and H is bidirectional
then G • if is a completely connected 4 node network.

84

0

e

> #
Figure 5.7; The normal product of two simple pair networks.

5.5.1 Combination Routings

In the following definitions and theorems G, H and I are taken to be networks
with G H Ç. I C O • H also BP, BP and A to be routings m G , H and I.

Definition 5.12 The projection Pq o f a path P between two nodes in I onto G is
the path defined by mapping edges [(p, g), (r, s)] [p, r] when p ^ r and omitting
the edge when p = r. Ph is defined similarly. The projection routing B q is the
set o f projections o f the paths in B onto G. The g-copy o f G in I is the subnet

G, = ({(p,9)Ip€ iVG},{(/,ç)|/G M) .

The G-part o f path P in I is the subset o f links

Pg = { [fe ?),(r,9)] G Lp\q € iVjï}.

The H-part is similarly defined, while the diagonal part o f P is defined as

P g h = {[fe q), (r, s)] G Xp|p ^ r andq s}.

Definition 5.13 B is a combination routing o f BP and BP when for any pair o f
nodes (p, q), (r, s) e No'x Nh connected by path P according to B, Pq is a path
between p and r in G given by Ba and Ph is a path between q and s in H given
by B h .

Unfortunately not all combinations of deadlock-free routings are deadlock-
free. For example the right hand routing in Figure 5.2 has an overlap cycle even
though it is a combination of the routing for the simple two node network. It should
also be noted that combination routings are not unique. The left hand routing in
Figure 5.2 is a different combination for the same network which is deadlock-free.

Proposition 5.4 B is a combination routing o f Eg and % . □

85

Theorem 5.5 Given a network {N, L), with L partitioned into a set o f white
links, Lw and black links Lb, let Rw and Rb be (possibly incomplete) routings
on (N,Lw) and (N,Lb) respectively which are both deadlock-free. Then the
composite routing Rwb o f routes which follow first a white route and then a black
one (either could be empty) is deadlock-free.

Proof: Suppose there is an overlap cycle O in Rwb- If O contains both black
and white links, it contains some black link b followed by a white link w. There
is thus a route in Rwb of the form . . .bw . . . , which is a contradiction. Thus O is
“monochrome”, in which case every pair of links in O lies on a route of that colour,
making O an overlap cycle in either Rw or Rb which is also a contradiction. □

This result is based on the well known resource ordering technique for avoiding
deadlock. In this technique all processes request common resources in the same
order, making deadlock cycles impossible.

Lemma 5.6 The length ofapath P in I, \P\ = \Pg\ + |fWl —

Proof:

\P\ = \Pg'\-\-\Ph ' \P \P ghI

\Pg\ - \Pg \ + Î Giyl
and

\Ph \ = \Ph \ + \Pgh\-
Therefore

|P | = |Pg | + |Pk | -

□

Lemma 5.7 I f R is path-optimal in I then so are Rg and R h in G and H
respectively.

Proof: Consider the subnet Gq for some q G Nh , then for any pair of nodes
p, r E Ng, R gives a route P which is a shortest path from (p, q) to (r, q) in I.
Now

l^cl = |P | - \Ph \ + \Pgh\, by Lemma 5.6

= \ p \ - w \

< \P\

8 6

Since Pq is a path in G and Gq is isomorphic to G, there is a corresponding path,
Pq say, in Gq and \Pq | = |Pg| < |. Consequently Pq is a shortest path in Gq and
so P q must be a shortest path in G. The same argument holds for H. □

Theorem 5.8 Let R be a routing for G -{• H, then R is path-optimal if and only if
Rg and R h are path-optimal for G and H respectively.

Proof: (<=) Let Q be some path between node (p, q) and node (r, s) and let P
be a path given by R. Since Pg, is a path in G between p and r given by Rg, Qg
can be no shorter, by the optimality of Rg. Similarly Qh, can be no shorter than
P h . Thus the total length of Q, \Q\ - \Qg\ + \Qh\ > |-Pg| + \Ph \ = |, by
Lemma 5.6. It follows that P is optimal.

(=>) Follows from Lemma 5.7. □

This result shows that there are ways to construct path-optimal routings for carte­
sian sum networks based on path-optimal routings for the components. In order
to get a useful network deadlock-freedom must also be preserved. It turns out that
there is a combination routing which has this property.

Corollary 5.9 I fR is a routing for G H which is both deadlock-free and path-
optimal then Rg and Rh are both deadlock-free and path-optimal in G and H
respectively.

Proof: If R is deadlock-free and path-optimal then path-optimality of both Rg
and R h follows from Theorem 5.8, so it suffices to show that they are deadlock-
free. Given q G N h , then for any two nodes p ,r G N q , let P be an optimal
route from (p, q) to (r, q) given by R. Since Pg is a shortest path in G and Gq
is isomorphic to G, |P | = |Pg|, so Lemma 5.6 gives us that \Ph \ = 0, so P lies
entirely in Gq and therefore P is isomorphic to Pq. It follows that R restricted to
Gq is isomorphic to Rg, and since R is deadlock-free in G,, Pg must be deadlock-
free in G. The same holds for H. □

Note that the path-optimality is necessary in the previous proposition. An overlap-
cycle in G can be broken in the embedded copies of Gin G + P if the path is allowed
to deviate from the plane (i.e., to move in P as well), but the resulting routing
could not be path-optimal. This result is included to give a way of determining
that there are no path-optimal deadlock-free routings for some networks, because
they are cartesian sums of other networks for which there are no such routings.
An example is the 5 x 5 torus, which is a cartesian sum of 5-cycles.

87

Definition 5.14 Given routings BP for G and for H, define the ordered sum
routing Boa, a routing for G-\-H astite routing which given (p, g), (r, s) € Nq+h,
contains all the paths o f the form PQ, where P is a patii in Gq isomorphic to a
path given by BP between p and r and Q is a path in Hr isomorphic to a path
given by BP between q and a.

In other words Boa first takes a route in G and then a route in H.

Theorem 5.10 Boa is deadlock-free in G H if and only if BP and BP are
deadlock-free in G and H respectively.

Proof: (=>") The path between any two nodes in G given by BP is equivalent to
the path between the corresponding nodes in Gq given by Boa- Consequently if
Boa is deadlock free then so must BP be. The same holds for B ^.

(<=) Follows from Theorem 5.5. □

Theorems 5.8 and 5.10 show that given deadlock-free path-optimal routings for
the components, the ordered sum routing provides a path-optimal deadlock-free
routing for a cartesian sum network.

Note that for cases where there is no path-optimal deadlock-free routing for
the components in a cartesian sum network, the ordered sum routing constructed
from the best suboptimal component routings may not give the best routing or
even the best composition routing. However Corollary 5.9 guarantees that there
is no path-optimal deadlock-free routing for the sum. Perhaps the algorithm in
Section 5.4.1 could be used in these cases.

Definition 5.15 Given routings BP for G and R ^ for H, define the ordered
product routing Rop, a combination routing o f iP and R ^ for G • H such that if
P E Rop then P is o f the form DQ, where D consists o f all the diagonal links, le.,
D q h — P g h — D and either \Pg h \ = or \Pg h \ = \Ph I

In other words Rop routes in both G and H simultaneously until one or both of the
coordinates of the origin and destination match and then in whichever coordinate
is different.

Theorem 5.11 Rop is path-optimal inG - H if and only if Rg and Rh are path-
optimal in G and H respectively.

8 8

Proof: (4 =) Let Q be a path between two nodes m G • H and let P be a path
given by Rop. Then

\P \ = I^ g I + \Ph \ — \Pg h \ and |Q| = |Q g | + \Q h \ — \Q g h \

Suppose, without loss of generality, that \ P g h \ = then |P | = |Pq| and
since P g is a shortest path in G, \Q g \ > |Pg|. Also \Qh \ = \Qh \ + \Q g h I so
IQI > |P |. Therefore P is a shortest path and so Rop is path-optimal in G • if.

(=^) FoUows from Lemma 5.7. □

Theorem 5.12 Rop is deadlock-free in G • H if and only if RP and RP are
deadlock-free in G and H respectively.

Proof: (=>) Identical to Theorem 5.10.
(4 =) Theorem 5.5 will be used for this part. The links in G • P are partitioned

into Lw = Lg X Lh , the diagonal links and Lb = Lg x Nh U Lh x TVg, the
horizontal and vertical links. Similarly take Rw and Rb to be the subroutings of
Rop on (JVg.jï, Lw) and (Ng.h ̂Lb) respectively. Then since every link in Lw
projects into a link of both G and H, any overlap cycle of Rw would have to
correspond to one of both Rp and R ^ , so deadlock-freedom of both Rp and R ^
implies that of Rw-

Now Rb consists of paths which are entirely within an embedding of one of
G or P in G • P . Consequently deadlock-freedom of both RP and R ^ implies
deadlock-freedom of Rb .

The result now follows from Theorem 5.5. □

The pairwise normal products and cartesian sums which have so far been consid­
ered are extended to general finite sets of graphs in [9] and the results presented
here may be carried over by induction.

With these results combination routings for netwoiks expressible as cartesian
sums or normal products can be generated which preserve path-optimality and
deadlock-freedom and for networks lymg in between, deadlock-freedom can be
preserved but not necessarily path-optimality.

5.5.2 Fixed Link Valency Networks

For real networks composed of components (such as transputers) with a small
fixed number of links, product networks have the disadvantage that the number of
links required per node goes up at best as the sum of the number of links in the
components (in the case of cartesian sum networks) and at worst the product (in

89

the case of normal product networks). This section discusses a common attempt
to solve this problem.

Definition 5.16 The network J is a G-connected H if there exists a mapping
C : L g ^ Nh x Nh such that J is o f the form (G x H ^ L h x N g ^ Lg), having a
link between nodes (p, q) and (r, s) if either p — r and [g, s] E L h or [p, r] E L g

andC{\pyr]) = (q , s) .

The most common example of this type of network is the Cube-Connected
Cycle (CCC) [77] in which G isa&dimensional cube and P is a A:-cycle, with C
mapping links which follow dimension t to the node pair (t, t) E Nh x Nh .

Cartesian sum, normal product and intermediate networks are special cases of
G-connected P networks, with suitable definitions of the C relation. However,
when fewer links exist between the copies of P than for the cartesian sum, such
as with the CCC, it becomes difficult to find combination routings which preserve
deadlock-freedom and path-optimality. The missing links mean that attempting to
follow the BF part of the route requires extra hops in P in addition to those of the

part Even the algorithm in Section 5.4.1 performs poorly on these networks
compared with other constructed networks such as the hypercube.

[78] gives a way of constructing hypercubes from fixed degree nodes, similar
to cube connected cycles except that there is a deadlock-free (though not path
optimal) routing. [63] gives a shortest path routing for CCC and derives network
diameter, but does not consider deadlock.

5.6 Application to Common Network Classes

5.6.1 Grids and Hypercubes

A k x k grid network is a cartesian sum of two k node linear chains, each of which
contains no cycles, so its shortest-path routing is deadlock-free. Consequently
the ordered sum routing of the grid, which first takes the shortest route within
the source column to the destination row and then the shortest route across the
columns to the destination, is path-optimal and deadlock-free. This method can
be extended to a general n dimensional hypercube (which is a sum of n chains)
and is known as e-cube routing [95]. It also has the property that the load on the
links is exactly balanced.

90

5.6.2 Simple Cycles

A cycle of 3 or fewer nodes is trivial since it is completely connected and a cycle
of 4 nodes is a grid. However simple cycles of 5 or more nodes are the most
pathological of networks! In cycle networks, an overlap-cycle exists when each
link is used by at least two spanning trees, so any deadlock-free routing must have
a link which is used by at most one spanning tree in each direction. In Figure 5.5,
the initial solution has this property, as neither links [2,3] nor [3,2] are used for
any spanning tree. In the derived solution, link [1,2] in the clockwise direction
is used by the spanning tree for node 2 only and link [4,3] in the anticlockwise
direction is used by the spanning tree for node 3 only. Attempting to improve
either of the sub-optimal spanning trees for nodes 2 and 3 violates this property.
In general the routing based on a single rooted spanning tree can be improved by
exactly one hop for each spanning tree, other than the root. This means that in the
best case there are always 2 trees with worst case n — 2, 2 with worst case n — 3
and so on down to \~\.

5.63 The Torus

The torus is a cartesian sum of cycles. Consequently by Corollary 5.9 there is no
path-optimal deadlock-free routing for greater than 4 x 4 nodes since there are
none for cycles of more than 4 nodes.

5.7 Conclusions

During development, testing and debugging, it is important that parts of the system
which are not part of the application are reliable. Otherwise when a bug shows
up, the developer can never be sure whether it is the application code which is at
fault or the system. For this reason the routing subsystem of Testbed should be
free from deadlock and should be as predictable as possible in performance.

Due to the requirements of low overhead and determinism for embedded
systems. Testbed does not use the deadlock avoidance schemes or adaptive routing
methods which are common in the literature. This motivated the search for ways
to construct deadlock-free routing functions for given interconnection topologies,
which are as near to path-optimality and load-balancing as possible. The algorithm
in Section 5.4.1 has been found to work well in tests. Section 5.5 showed that a
wide range of networks may be constructed from simple ones while preserving
path-optimality and deadlock-freedom. The combination of these algorithmic and
constructive techniques provide powerful tools for solving the routing problem.

91

J

Chapter 6

Monitoring and Background
Debugging

6.1 Introduction

Traditional interactive source level debuggers are powerful tools when used with
sequential non-real-time programs. However they are often useless for systems
which exhibit non-deterministic concurrency, where the behaviour of the system
is affected by the relative speeds of the processes or real-time systems where the
elapsed time taken by a process or group of processes to perform some task is
critical to correct behaviour. The former type of behaviour is known as temporal,
while the latter is called the timing behaviour of the system. Interference with
either caused by debugging or monitoring activity is the probe effect. Interactive
debugging involves stopping a process at breakpoints which usually correspond
to statements in the original program source code. The user can then examine and
sometimes update (poke) variables and then continue the execution. Unless the
system is entirely simulated by a sequential process, the other processes and the
global clock continue. If these processes expect to communicate with the stopped Î
process then both the temporal and timing behaviour of the system may change. |
Incorrect behaviour which occurs when the debugger is not present may be masked
by this effect or new errors may be introduced. A common approach to avoiding the
probe effect is passive monitoring in which information is recorded at breakpoints
without stopping the program. There is still some danger of interference however
as this code takes some time to execute.

The actions and message passing in Testbed programs provide natural break­
points at which to perform monitoring. Depending on the application, standard
system monitoring facilities can often be applied, without the application’s knowl­
edge, to detect and report events and state values at points where this can safely be

92

done without perturbing the application’s temporal or timing behaviour. Where
these standard facilities cannot be used safely or do not provide sufficient flexi­
bility, code can be inserted into the application to report information. Testbed’s
dynamic modification facilities make this a realistic approach.

One way to minimize the interaction bottleneck is by means of background
debugging. Debugging decisions and actions are devolved as far as possible onto
a user proxy, or surrogate, a process or embedded code, running as part of the
debugging system with access to the full range of debugging facilities available to
the interactive user. The surrogates can also have capabilities closed to the user,
such as gathering statistics and profiling the client system behaviour.

Even in passive monitoring and background debugging systems, care must be
taken to avoid introducing delays which may perturb sensitive parts of the applica­
tion. The debugging system should provide a variety of monitoring and debugging
mechanisms from which the skilled user can choose, based on knowledge of the
application, to gather the required information without causing interference.

6.2 Related Work

6.2.1 Monitoring

The most common method for monitoring a process is to put hooks into system or
kernel routines which either record information about the events requiring system
intervention (such as message passing and process creation/destruction) or pass it
on to an active monitor process [18].

Often monitors just record information for later post-mortem analysis [64]
(DPM), [65], [32], [34] (TAP). The amount of infonnation recorded varies de­
pending on what the history is used for. Often the processes are “played back”, in
which case events (usually communications with other processes) are recorded.

In some cases monitored events along with snapshots of the state of processes
are checked against specifications to verify if they are valid, while the process is
active. This is the background debugging approach.

Breakpoints

Breakpoints can be used to monitor the current state of a process without passing
control back to the user. They are usually implemented by a trap in a system call
which passes control to the debugger. In some cases a branch to the breakpoint
code is inserted dynamically into the executing code [2] (Parasight), [49]. This
method has the advantages that the breakpoint code has access to the process’

93

global variables and does not require a context switch. In some systems the latter
could be quite a significant time saving. With Transputers however, it is not so
important.

Avoiding the Probe Effect

Approaches to reducing interference are as follows:

• Move as much as possible of the monitoring activities away from the target
processor and on to the host [40] (CHILLScope), or on to special monitoring
nodes [1] (Parasight).

• Merely record information and perform post-mortem analysis [34] (TAP),
[64,65,32], [89] (SPIDER).

• Leave monitoring code in place even when not debugging (usually it is built
into the kernel) [34] (TAP), [99] (ART). This avoids unmasking synchro­
nization problems when the debugger is removed.

• Introduce delays in non-monitored events which may be affected by the
delay caused by monitoring an event [5]. Unfortunately the specification
of events and placement of delays could be as error prone as the actual
program!

6.2.2 Background Debugging

High-Level Debugging

One approach to background debugging is high-level debugging^ [5,7,8,11,75],
which is the integration of debugging with formal specification. The common
philosophy of this work is counter-example oriented, aimed at showing that a
system fails to meet its specification. The counter-example search will generally
be compiled from a specification of the application written in some fixed specifi­
cation language. This approach is complementary to that of proving correctness:
a failed proof indicates where to look for a counter-example, and failure to find
a counter-example indicates a possible line of proof. The special problems of
embedded systems make this approach too restrictive. The difficulty of formal­
izing a specification means that different languages are tq)propriate in different
circumstances, and that sometimes no language is appropriate. In the latter case
the user must have recourse to a more exploratory approach, and needs to be able
to construct their own counter-example searches directly.

^The term is also used by some authors to mean simply source level debugging.

94

Event Recognition and Filtering

[7] describes a toolset based on a model called Event Based Behaviour Abstraction
(EBB A) for clustering and filtering events defined using a special Event Definition
Language (EDL). This is used to support interactive monitoring and debugging of
multi-process systems by recognizing and presenting to the user only those events
which are of interest. The clustering capability (describing events in terms of
other events) allows quite complex interleaved behaviour patterns to be detected.
EDL resembles path expressions in that it is based on regular expressions. Event
recognition is compared to the problem of syntactic pattern recognition.

Behaviour Specification Languages

[5] describes a concurrent debugger for a CSP derived language called MuTEAM.
The debugger checks the behaviour of a program against a specification which
is defined in terms of the specifications of the component processes. These take
the form of Behaviour Specifications which define a partial ordering of Event
Specifications along with a set of assertions to be verified at given points. The
only types of events monitored are communications and process creation and
termination. The behaviour specifications closely resemble path expressions. The
debugger consists of a set of communicating processes DP,*, one for each process P,*
being debugged. Each DP,* maintains a Behaviour Specification BS,* for P,* as well
as a subset of the state of the debugger. Each time P,* makes a system call to perform
some concurrent activity, DP,* is notified. It then checks the behaviour specification
to determine whether the activity is correct and determines whether the activity
may proceed or should be delayed until some other event has been monitored.
This is determined from communication with other debugging processes.

[11] describes an extension of path expressions called path rules which are
aimed at detecting deviations from correct behaviour of processes at the language
level. [44] extends this to Data Path Expressions (DPE) which have features for
describing concurrent execution. The objects referred to in the DPE’s are functions
in the code or shared variables. The checking mechanism uses Predecessor
Automata to represent the DPE’s supplied by the user. This preserves causal
independence, allowing potentially concurrent events to be detected in addition to
invalid orderings.

Embedded Behaviour Specification

[25] describes a behaviour specification (assertion) language for occam programs.
It includes specifiers for the temporal relationship of events such as ALWAYS,

95

NEVER, OVERLAPS, PRECEDES, etc. Labels for events and states (expressed
as relationships among variables) are embedded in the code along with assertions
about their temporal relationships. As with DPE, activities which have the potential
to overlap (i.e., are causally independent) may always be detected independently
of interprocess scheduling. This is because of the way events and states are
represented as intervals, rather than discrete points in time.

The implementation involves associating any code segment enclosed by an
assertion with a monitor process. The monitor process is informed through a
special channel of the logical timestamps for the beginning and end of the interval
to which it corresponds allowing temporal assertions to be checked.

63 Testing and Debugging

Testing and debugging are closely related activities. The difference is that during
testing it is unknown whether the application contains bugs while debugging
involves determining the cause of a bug once it has been discovered through
testing. After a modification has been made which is intended to correct a bug,
testing must be performed again to check whether the bug has indeed been fixed and
to look for new bugs which may have been introduced by the change. Thus testing
and debugging phases alternate until the testers have sufficient confidence that the
application functions correctly. Both testing and debugging involve monitoring
and searching for behaviour patterns and both are susceptible to the probe effect
which may cause the testers to see bugs which are not really present or to miss
bugs and may mask bugs which the debugger is looking for.

6.3.1 Capture

The test phase involves capturing patterns of behaviour which violate the appli­
cation’s specification. Subsequent to the detection of a violation, the debugging
phase is entered. During debugging, behaviour patterns which are likely to be
related to the original observation are also captured in an attempt to isolate the
bug. If the bug is found to be in the specification then this will be refined or modi­
fied to include the negation of the erroneous behaviour. The capture of behaviour
involves patterns of events and state.

Process State and State Ikansitions

There are two levels at which the behaviour of a client process can be modelled
by state transitions, differing in granularity. The fine grain approach defines a

96

State by instantaneous values of program variables. These transient states are
changed by internal computation within an action. The coarse grain approach
focuses attention on those checkpoint states which occur when the current action
begins, sends a message or terminates or when no action is currently in progress.
A state transition in this model corresponds to a communication followed by some
dynamic computation through a series of transients to find the next checkpoint.
The checkpoint notion of state underlies languages likeCCS [68] and LOTOS [10].
Most debugging activity concentrates on checkpoints, as Testbed is not a source
level debugger, although it is possible to “spot check” transients by insertion of
extra code in the application.

Patterns of Events

Sometimes it is sufficient to capture a single local event or state which should
not occur. This is especially true during the early stages of testing. However
during debugging it is often necessary to detect combinations of events or events
and state which may be causally related to the failure previously detected. These
patterns are often distributed across several slots which may be located on different
processors. The order of events and states is likely to be significant as is the clock
time, as embedded systems are often also real-time systems. For this reason each
captured state and event should have a timestamp which is comparable across
the network. A common approach to distributed event detection is to use logical
clocks to give each event in the system a consistent timestamp. This idea goes back
to Lamport [51], whose Clock Algorithm generated a total^ extension of causality,
and has since been generalized to partially-ordered vector timestamps whose order
exactly characterizes causality. Unfortunately this approach tends to be costly to
implement, scales poorly and is of no use when the specification involves real
time. Instead Testbed relies on simple scalar timestamps taken from the local
clock and uses the result in [51] that as long as physical clocks are synchronized
with sufficient accuracy relative to the minimum message latency, then they will
be consistent with causal ordering.

6.4 Monitoring

Monitoring in Testbed is divided into events (messages) and state (variables and
ports). Each slot may have a number of monitoring clients, which are other slots in
the system. In general these will either be the host server or surrogate slots. Each

^Lamport’s timestanq>s are simply numbers.

97

client makes a new monitoring request or updates a previous request by sending
a message to a system port. Each request may be related to a particular event
type or simply a request for the value of a variable to be returned either once or
periodically. When monitoring subevents other than message arrival, the values
of a subset of the state may also be reported.

Along with the event or state data, each reported item has a real timestamp
taken from the local processor’s clock. The local clocks are synchronized using
a simple protocol which achieves an accuracy which is an order of magnitude
smaller than the minimum latency for sending a message between two nodes.

6.4.1 Event Monitoring

Events are divided into four subevent types for monitoring: message arrival, action
invocation, action termination and message sending. A monitoring client (user or
surrogate) may request monitoring of any combination of these for any subset of
ports. A level of detail (0-4) may be requested. In addition for the invocation,
termination and send subevents, a variable name may be given, in which case the
value of this variable is logged along with the subevent and reported at the same
time. The detail levels return information as follows:

0: No information is reported about the event, but if variables are to be monitored
then these are logged and reported.

1: Only the port id, subevent and the local time are reported.

2: As with 1 but the destination (in the case of send) or the source (otherwise) is
also reported.

3: As with 1 but the size is reported.

4: The report message contains a verbatim copy of the message.

Monitoring of different subevents is provided to allow performance of the system
to be evaluated (e.g. delay between arrival and invocation or invocation and
termination may be measured). It is also useful to be able to examine the state of
a variable before and after an action is invoked or at the time a message is sent.
The various levels of detail allow the overhead of monitoring to be controlled.
For example if a message contains a large data field then logging or reporting a
verbatim copy will be costly and may interfere unacceptably with the behaviour
and/or performance of the application.

98

Event monitoring requests also contain return ports to which the reported events
and state values are addressed on the client In this way both human monitoring
and background debugging are supported.

The arrival subevent is special in that it must be performed by the kernel rather
than the system layer. In order to keep the kernel’s involvement in monitoring
to a minimum, variable logging is not supported for message arrival. The points
at which snapshots of a variable are of interest are before during and after a
particular action and these are covered by the message invocation, message send
and termination subevents along with the capability of inserting monitoring code at
arbitrary points in the action body. No extra benefit would be gained by providing
variable logging on arrival. However monitoring the time of arrival is useful as a
way of measuring the delays experienced by messages between arrival at the node
and the commencement of processing.

6.4.2 State Monitoring

In addition to the state values which may be logged when a subevent occurs,
a one-off peek or periodic reporting of variable values is provided. As with
event monitoring the request contains a return port to which the captured value is
addressed at the client slot

6.43 Implementation

Event Logging and Reporting

To reduce delay in the response to events and the processing of actions, reporting
takes place after the action terminates. The report messages are sent by the action
harness as if the action itself had sent them. This means that the monitoring is
above the kernel^ and takes place in the system layer. Since user actions may not
modify the message header, the arrival, invocation and termination subevents do
not require that a copy of the message be made. The system records the time at
which each of these subevents occurs in a field of the schedule entry encapsulating
the message which is being processed and logs the value of any variable which
is to be monitored. However a copy of the message is made for each monitored
send subevent. The logged messages and values are kept in a list attached to the
schedule entry. A separate copy is made for each client who requested it. It is
not likely that there will be many clients requesting the same information. When
the action completes, a report is sent to each client who requested each subevent

* apart from recording the time of arrival

99

and the log of messages sent and captured state values is traversed and its entries
reported to the various clients.

Monitoring requests are stored as entries in the port table as monitoring is
performed on particular ports. Each port descriptor contains an entry for each
subevent type which is a list of clients requesting that subevent with the level of
detail and return port for each.

A message can be sent cancelling monitoring of a particular subevent for a
particular client

Peeking

Peeking is performed by a system action on the target slot This action sends a
message to a return port specified in the body of the peek request message, on
the slot which sent it, containing the contents of a variable and its type. When
a peek is requested by the user, the port contained in the peek request message
is H_DISPLAY_VAR. The host action hjdisplay.var calls the recursive function
display-var which displays any scalar, pointer, array or structure type, including all
elements or fields of the latter. Scalars types contain a printf^scanf format string,
which is used for printing or scanning in poke. Each peeked variable is displayed
by the host server in a separate top level widget which contains fields and buttons
for performing more peeks and also pokes. The reported variable is accompanied
by a timestamp.

The peek requests sent to slots contain a period. If the period is 0, then the
peek is performed once. Otherwise the peek action reschedules the message for a
time in the future given by the period.

6.4.4 User Interface to Monitoring

The interactive user of Testbed can request event monitoring using the “Event
Monitoring...” item in the “Slot Commands” menu at the top of the window
corresponding to the slot on which the monitoring is to be performed. This brings
up the dialog box shown in Figure 6.1. The “Don’t Monitor” button causes a cancel
message to be sent If a variable is entered in the '"Monitored Variable” field then a
dialog box containing the current value of that variable is automatically displayed.
In the interface to the ROY shown in Figure 3.3 themotor_settings variable
is being displayed in this way upon termination of the Update_Motors action
in the LOW.CONTROL slot Subevent reports are displayed in the scrolling text
subwindow at the bottom of each slot window as shown in Figure 6.2.

Variable peeking may be performed using the Variables menu for a particular

100

prompt
Monitor Event

Port

Subevent
Arrival Invocation Term illation [jSgnd

Detail Level
Don't Monitor None Basic I Full

Monitored Variable

(^ 1 (c a n c e l)

Figure 6.1: Dialog box for the “Event Monitoring” command.

Slot 2

slot CamMonds Variohlo#
LOW CONTROL

1294
1294
1295
1295
1296
1296
1297
1297
1298
1298
1299
1299
1300
1300

605673:
605932:
605673:
605931:
605674:
605932:
605670:
605929:
605670:
605930:
605670:
605928:
605672:

.605931:

(arrive)(done)(arriva)(done)(arriva)(dm)(arrive)
(dm)(arrive)(dm)(arrive)(done)
(arrive)
(dm)

portportportportportportport
portportport
port
port
portport

0.
0.
0.
0.0.0.0.
0.0.0.
0.
0.
0,
0,

16 .
16 .
16 .
16 .
16 .
16 .
16 .
16 .
16 .
16.
16 .
16 .
16.
16 .

tijeeet— p:tiaeataap:

tuBowtaup:

tüeostaap:timoataap:tiMMteap:tuostenp:
tiaeateefp:
timaetmp:

1294
1294
1295
1295
1296
1296
1297
1297
1298
1298
1299
1299
1300
1300

605358
605358
605358
605358
605359
605359
605354
605354
605354
605354
605355
605355
605356
605356

a
Figure 6.2: Scrolling event log showing arrival and termination subevents.

101

slot. This menu contains a list of all static variaUes created on that slot by the
application as well as the “Peek...” and “Port..” entries which allow peeking of
certain system variables which are also available to applications and entries in the
port table. When the menu entry for a particular variable is chosen, a dialog box
showing that variable is displayed.

Each monitored or peeked variable is reported to the host server together with
its type and this slot contains code for displaying variables using information from
the type table.

Inserted Code

Testbed does not support source level debugging, so to investigate the internal
behaviour of an action the user must either:

1. use the mechanisms described above to monitor the messages it sends and
take snapshots of the state before and after the action or when a message is
sent, or

2. place code in the application which monitors the behaviour and reports
detailed state-related events and state values at certain key points.

Method 2 is much more convenient with Testbed than with other programming
systems due to the dynamic replacement facilities it provides. Parts of the ^ p li­
cation can be reloaded on the fly with debugging code inserted without the time
consuming and tedious requirement of stopping and restarting the application. Li­
brary functions are provided for displaying text and variable values. Alternatively
the user can add new actions to the host server to display or log information re­
ported by the application or create new slots which collect, process and respond to
patterns of events. These are the surrogates which perform background debugging
as described in Section 6.6.

6.5 Avoiding Interference

Testbed’s monitoring facilities are not guaranteed not to interfere with the timing of
an application. Just as the application designer must choose scheduling parameters
such as the criticality of certain actions and priority or deadline for particular slots
and the mix of slots on each node in order to meet the timing constraints, the
person using the monitoring facilities must take account of the characteristics of
the application and choose the type of monitoring to perform in order to avoid
perturbing the behaviour under investigation. Fortunately there is usually a wide

102

range of possible ways of monitoring a particular aspect of application behaviour,
some of which cause less interference than others. For example, if the response
time of a slot to a particular type of message is critical, then extra processing and
message traffic due to monitoring of other aspects of the application may cause
unacceptable delays and capturing large amounts of state data upon message
invocation will certainly delay the response. However it is likely to be safe
to monitor the message arrival and action invocation without logging any state
variables as this introduces no extra overhead before the message is processed,
though extra messages are transmitted afterwards. If the action performs some
work then sends a message and the time between the event occurance and sending
the response is critical then it is safe to monitor the message sent, as well as
logging any important variables since this is done afterwards and will not interfere.
Similarly monitoring on action termination will not interfere with the response.
There is likely to be some slack time between events during which the monitoring
may be performed without interfering with the application. In cases where even
sending messages after processing an event is not safe, then code inserted in the
application must be used to record the required information until it can safely be
reported.

63.1 Example

Figure 6.3 shows a snapshot of the LOW.CONTROL window for the ROV im­
plementation described in Section 2.10. The arrival and termination subevents
for port 0, which is the u p d a te_ m o to rs port are initially monitored and the
timestamps show a latency of approximately 0.00026s^ in processing the update.
However after requesting that the variable m o to r_ s e ttin g s be monitored on
invocation of the action, this latency goes up to around 0.00053s®. If the variable
had been monitored on termination then the response latency would have been
unaffected.

In fact monitoring performed on the node containing the LOW-CONTROL
slot is liable to delay the Sw itch_O f f actions, causing some motors to be driven
slightly too long. This can sometimes be avoided by performing the monitoring on
one of the other nodes. For example the HIGHXONTROL slot also has a copy of
the m o to r_ s e ttin g s . Sometimes Testbed’s standard monitoring and display
facilities are insufficient and must be supplemented by extra application specific
code. For example the actual proportion of the duty cycle for which the motors are
active can be found by monitoring the invocation of the Rov_M essage action in

^difference between the arrive and doiœ times before the arrow in Figure 6.3
^difference between arrive and done times after the arrow in Figure 6.3

103

Slo t 2

Slot Command*! VariaÜosI

Commenced
monitoriQg-----
motor.setdngs
on invocation

LmLCONIBIK

I

355
357.
357
358.
358.
359.
359.
368.
368.
361.
361.
362.
362.
363.
363.
364.
364.
365.
365.
366.
366.

270867:
270608:
270867:
270610:
270869:
270606:
270863:
270612:
271142:
270610:
271140:
270604:
271133:
270606:
271136:
270607:
271137:
270608:
271139:
270608:
271138:

done)
arxxvi
dome)
dome)
arrive
dome)

dome)
arrive
dome)
a rr iv e
dome)
a rr iv e
dome)
a rr iv e

Slot 8 : meteKjeettmmge
la s t Beek Xiee: 366.270799

Beriod C

Ip

- 0 for omoe)

^Peei ̂̂ dSj) (clos^

lype
|»otor_iafb|4|

Value
dome)
a rr iv e
dome) | nu:4.!
a r r iv e) p o r t:
dome) p o r t:

10,11.(0.1],[0,11X0,11

Figure 6.3: Interference caused by variable logging on action invocation.

the ROV slot However since the same action is responsible for turning the motors
on and off, changing the direction and requesting the current depth and compass
values, the user sees many spurious events and it is difficult to pick out which ones
are responsible for turning particular motors on and off. An alternative would be
to insert code into the body of the Rov_M essage action to report the length of
time each motor spends in the on state. Combining this with code inserted into the
HIGH_CONTROL slot to report the value of the m otor_s e t t in g s allows the
performance of the LX)W_CONTROL slot to be checked without interfering with
it.

A Design Flaw Uncovered

The experiment described above was performed and highlighted a subtle short­
coming of the original design of the Sw itch_O n action in the LOW_CONTROL
slot described in Section 2.10.3. As shown in Figure 6.4, the length of time for
which each motor is switched on in the simulated ROV is consistently short of
the value which should be produced by the m o to r_ s e ttin g s value by approx­
imately 0.0015 to 0.002 seconds. To see this note that the d u ty _ c y c le for the
LOW_CONTROL slot, shown in the box in the bottom right of the figure, is 1 sec­
ond and that the mot o r_ s e t t in g s variable is an array of four (speed,direction)
pairs. Each speed value is a percentage of the duty cycle, so for example, a speed

104

of 18 for motor 0 shown in the window for the HIGiLCONTROL slot should
correspond to a time of 0.18 seconds spearing in the window fcv the ROV slot
The problem is due to the fact that the SWITCH_ON messages are scheduled before
the MOTORS_ON message is sent to the ROV, with delay relative to the time at
which they are sent

Testbed
slot CoBMnds Variable# I Bernerai

Slot 1

S lo t toewnd# I [variab le^

KiaiLcaNiBaL
DP oom MANII/il. IIKI'I H I MANIIAl HKAIIINC

Tom OoBtrol: Drive Control: SO

S lots

979.1: 1
979.1411
980.04:
980.05:
980.05:
980.141
981.05:
981.05:
981.09:
981.09:
982.05:
982.05:
982.09:
982.09:

sonds
a te r 1 . 0.227673
: motor 3 . 0.26848
motor 2 , 0.168088
motor O, 0.177676 eecomd#
motor 1 , 0.177676 oocomdo
: motor 3 , 0.268483 oocomdo
motor 0 , 0.178064
meter 1 , 0.178064
motor 2 . 0.210477 oocomdo

3 , 0.218477
0 . 0.178064

motor 1 , 0.178064
motor 2 , 0.21848

3 , 0.21848

968.95:
969.95:
970.95:
971.95:
972.95:
973.95:
974.95:
975.%:
976.95:
977.95:
978.95:
979.95:
980.95:
981.95:
982.95:

motor.motor.motor.motor.motor.motor.motor.motor.motor.motor.motor.motor.motor.motormotor

.oettxngo.oettingo.oettingooettimgo.oettingooettimgooettimgooettimgooettimgooettimgooettimgooettimgooettimgooettimgooettimgo

a:
IS::

I
l a :
118.-
(18.-

IÎ!::

.118.1

.118.1

.118.1

.118.1

.118.1

.118.1

.118.1

.118.1

.123.1

.123.1

.118.1

.118.1

.118.1

.118.1

.118.1

.1.122.1 .122.11
I . 117.1 .127.11
1.122.1 .122.11
1.122.1 .122.11
1.122,1 .122.11
1.122,1 .122.11
1.122.1 .122.11
1.122.1 .122.11
1.122.1 .122.1]
1.117,1 .127.11
1.117.1 .127.11
1.122.1 .122.1]
1.122.1 .122.11
1.122.1 .122.11
1.122.1 122.1L

t Peek Time: 549.969658

ilo t i
I Variahleo|

iav_GONi»a
duty-jcycle

S le t 2 : du#y_cycle

iod (oocomdo - 0 for once)

^ ̂ ok^ (cloo^
lÿpe

io_t

Value

Figure 6.4: A subtle design flaw uncovered by monitoring.

A modified version of the action follows. This differs from the original version
in Section 2.10.3 in that the messages setting the motCH* directions and switching
them on are sent before the SWITCH_OFF messages are scheduled and that these
are scheduled relative to a fixed time just after the motors are switched on rather
than each one being delayed relative to the current time.

Switch_On:

while next_duty_cycle < Now do
next_duty_cycle := next_duty_cycle + duty_cycle;

motors_on.set := motors_plus.set

105

:= motors_minus.set := EMPTY_SET;
for i := 0 to nmotors-1 do
begin

if motor_settings[i].speed > 0 then
add(i,motors_on);

if motor_settings[i].direction = 1 then
add(i,motors_plus)

else
add {i, motors_miniis)

end;
Send(MOTORS_PLUS);
Send (MOTORS_MINUS) ;
Send (MOTORS_ON) ;
on__time : = Now;
for i := 0 to nmotors-1 do

if different_speed(i) then
begin

speed := motor_settings[i].speed;
motors_off.set := EMPTY_SET;
add_motors_with (speed,motors__off) ;
if speed < 100 then

begin
Schedule(SWITCH_OFF,

on_time + duty„cycle * speed/100
+ fudge_factor);

on_count ;= on_count+l
end

end;
if on_count = 0 then

ISchedu1e (SWITCH„ON,next_du ty_cycle).
After modifying the action in this way, the results shown in Figure 6.5 are produced.
Note that there is still a small discrepancy of approximately 0.00016 seconds in
each reported time. This is due to overhead at the ROV slot in processing the
messages which are sent ahead of the MOTORS_ON message. Since this is almost
constant, it can be measured and compensated for by the fu d g e_ f actor added
to the scheduled time for the SWITCH_OFF message. However, since the delay
for processing messages in the simulated ROV will be different to that in the real
one, this tuning may need to be done at a later stage in development.

I
106 I

Slo t I

Slot Cc— wndo Variable#

Slot 6

Mimt.caNiE&
MANUAL UU»1H I f'ANUAL HiJdJiNU

5MH:

306JMit
306.2a:306.2a:
306.341:
3 0 7 .2 a :
3 0 7 .2 a :
307.291:
307.291:
308.2a:
3 0 8 .2 a :
308.291:
308.291:
3 0 9 .2 a :
3 0 9 .2 a :

0.189839
0.209838
0.209838
0.28984
0.209839
0 209839
0.239842
8.239842
0.20984
0.20984
8.239842
0.239842
0.209839
0.209839

296.151:
297 .151:
298 .151:
299.151:
300 .151:
301 .151:
302 .151:
303 .151:
304 .151:
305 .151:
306 .151:
307 .151:
308 .151:
309 .151:

motor
motor.motor.
motor.motor.motor.motor
motor.
motor.motor.
motor.motor.motor.
motor

settings
settings.settingssettings
settingssettingssettings
settingssettings
settings
settingssettingssettings
setting

124,
124,

lU::
124,

1%::
124,
119,[19.
124,
[24,
[24,
[24,-

1,[24,1 ,[21,1 ,[21,1][.[24,1 ,[21,1 ,[21,1]],[24,1 ,[21,1 ,[21,1]I.[24,1 ,[21,1 ,[21,1]],[24,1 ,[21,1 ,[21,1]],[24,1 ,[21,1 ,[21,1]],[24,1 ,[21,1 ,[21,1]],[24,1 ,[21,1 ,[21,1]I,[29,1 ,[21,1 ,[21,1]],[29,1 ,[21,1 ,[21,1]1,[24,1 ,[21,1 ,[21,1]],[24,1 ,[21,1 ,[21,1]],[24,1 ,[21,1 ,[21,1]l,[24,l ,[21,1],[21.1]

Figure 6.5: Results with corrected Switch_On action.

The monitoring described in the above example can be taken a step further
by creating a new slot which monitors both pieces of information and checks for
excessive discrepancies between the desired and actual motor speeds. This is an
example of background debugging as described in Section 6.6.

6.6 Background Debugging

In the monitoring described in the previous sections events are repeatedly reported
and an interactive user is required to observe anomalies which may be single
abnormal events in a stream or compound events requiring comparison of events
occurring in different parts of the application. This approach can be effective as a
first pass when the developer is not searching for specific faults but watching for
any potential problem. It often provides enough information to isolate the fault
as illustrated by the example above, where an unexpected anomaly was noticed
and led to the detection of a defect in the code. However there are a number of
drawbacks to simple interactive monitoring:

107

e The rate of raw event occurance may be too great for a human observer to
cope with or even for the Testbed user interface to display.

• Complex combination events are difficult to identify by watching several
streams of event reports.

• The event report messages may cause interference with the application,
resulting in introduction or masking of erroneous behaviour, i.e., the probe
effect.

These problems can often be avoided by introducing automatic observers or sur­
rogates which collect event reports and watch for certain event patterns. This
constitutes background debugging. Surrogates may be:

• special slots added to the application, often on extra processors or

• actions added to application slots or

• code embedded in the application at key points to watch for certain local
event patterns or states.

Just as with applications, surrogates (of all forms) can be created and modified on
the fly.

6.6.1 Where to Place the Surrogate

Sometimes the behaviour pattern to be captured is entirely local to a slot, such
as the arrival of a certain type of message when one of the slot’s variables has a
particular value or falls within or outside some range. In this case surrogate code
can take any of the three forms listed above. It is generally desirable to minimize
the effect of the surrogate on the application while it is behaving normally, though
when the condition of interest has been detected, it may be acceptable to interfere.
If the checks which the surrogate has to make are smaller than the effect of sending
messages, then embedded code is preferable from this point of view. Actions added
to the application slot have the advantage that the application code does not need
to be modified. The overhead in this case depends on whether the values of state
variables need to be captured before the application action has terminated. If
not then since the surrogate has direct access to the slot’s variables the overhead]
consists of that required to generate the message scheduling the surrogate action I
which takes place after the application action has terminated.

For behaviour patterns which involve more than one slot, a surrogate slot is
often called for. This may cooperate with other surrogates either embedded within |

!

108 i

the application code of the slots involved in the behaviour pattern or surrogate
actions on those slots.

6.6.2 Example

The monitoring example of Section 6.5.1 can be converted into one of background
debugging. Instead of the ROV and HIGHXCNTROL slots reporting the dura­
tions of motor drive and motor settings respectively to be displayed on the host
slot, they can be sent to a surrogate on another node which checks whether the
durations are within an acceptable tolerance of the correct proportion of the duty
cycle corresponding to the motor settings. Subtleties in the correct design of
this surrogate include determining which pairs of motor__s et tings and du­
rations correspond. The surrogate can receive a new motor_s et tings value
before a duration which corresponds to the previous motor_sett ings. In fact
the new motor_s et tings do not take effect until the next duty cycle of the
LOW-CONTROL slot. This latency effect can be seen by careful examination of
Figures 6.4 and 6.5. A human observer can easily see from the pattern of settings
values and durations which ones correspond. However to simplify the surrogate it
is better that the LOW-CONTROL slot’s value of mot or_s et tings be moni­
tored by the surrogate on termination of the Switch_On action instead of being
reported by the HIGH-CONTROL slot. The implementation of the surrogate slot
is presented below.

Actions and Ports

Two actions Settings and Check_Duration are needed for this slot. Ports
are defined as follows:

settings [action = Settings;
data = new_motor_settings]

check_duration [action = Check_Duration;
data = duration]

Outgoing Messages

The surrogate sends an initial monitoring request to the LOW-CONTROL slot
during its initialization. The ROV slot has code embedded within it for sending
the durations to the surrogate which is activated by poking a variable. When an
error is detected a report is sent to the HOST slot

REQUEST_SETTINGS [desk = LOW_CONTROL;

109

port = monitor_request;
data = request]

REQUEST__DURATIONS [dest = ROV; port = poke;
data = report__durations_on]

ERROR_REPORT [dest = HOST; port = h_prints;
data = error__report]

Actions

Settings(new_motor_settings):

motor_settings := new_motor_settings;
motor_settings_received := TRUE.

Check_Duration(duration);

if motor_settings_received then
if Imotor_settings[duration.motor] - duration.value

> tolerance then
Send(ERROR_REPORT).

Initialisation;

motor_settings_received := FALSE;
Send(REQUEST_SETTINGS);
Send(REQUEST_DURATIONS).

6.7 Conclusions

The most important goal in monitoring and debugging embedded systems is elim­
ination of the probe effect. Due to the varied nature of embedded applications
and the desire to use standard hardware. Testbed does not guarantee to avoid this
problem automatically. Rather a range of monitoring options are supported and it
is up to the user to choose those which are least likely to interfere with a particular
application.

Testbed’s event-action programming model provides natural breakpoints for
monitoring and debugging. Monitoring code in the system layer can be activated
by sending system request messages to a slot. This monitoring code creates
report messages containing variable amounts of detail on one of four subevent

110

types: message arrivai, action invocation, message sending and action termination.
Values of state variables can be captured for each of the last three subevent types.
In addition variables may be peeked in between application actions by sending
system messages to the slot. Both these types of monitoring support background
debugging by recording the client slot which sent the request and a return port
to which the report is sent. If required, code can be inserted into the application
to assist in the monitoring and debugging process by providing a finer grained
view. This is a more reasonable approach with Testbed than some systems due to
its dynamic modification capabilities; inserting debugging code does not require
stopping and restarting the application.

This chapter has described the technique of background debugging and how it
can be performed in Testbed. Unlike some systems where background debugging
code is special and must be hooked into the system. Testbed allows surrogates to be
created in exactly the same way as applications from slots, actions and embedded
code.

I l l

Chapter 7

Dynamic Modification

7.1 Introduction

Long lived software such as databases or embedded systems occasionally needs
to be changed to fix bugs and to add or modify functionality. It is undesirable and
sometimes unacceptable to interrupt the service provided by the software in order
to perform these updates. A shutdown may be unacceptable for safety reasons,
as in a spacecraft control system, for economic reasons, as in bank-transaction
processing systems ̂or a combination of these as in telecommunications switching
systems. This problem has motivated much research on dynamic modification
systems, a good survey of which can be found in [85]. Even during development
of this type of software it is often desirable to be able to modify parts of the system
on the fly due to the high startup cost

One method of dynamically modifying an application provided by Testbed as
well as more conventional debuggers is to poke the values of key variables. This
can be a very useful way of interactively tuning performance. For example in
the corrected version of the Sw itch_O n action described in Section 6.5.1, the
variable fu d g e_ f a c to r adds a small correction to make up for extra overhead
in the ROV slot delaying the start of the motor drive period. The value of the
required correction can be found by monitoring^ and then a poke command can
be issued to update the value of fu d g e_ f a c to r . The result can then be verified
visually.

The simple type of dynamic modification just described requires a certain
degree of prescience on the part of the programmer in recognizing those parts of
the code which may require parameterization. It is often difficult or impossible to
predict what variables may be required in order to dynamically tune the application
in this way. As with fu d g e_ f a c to r in the example above, the need for the

^Figure 6.5

112

variable may only be apparent after the system is tested. Of course it is often
necessary to perform more complex transformations than mere poking allows or
to modify the actual code and/or type definitions of the data. In fact in the example
described, the Sw itch_O n action required significant modification. Testbed
provides the capability of making such alterations without stopping and restarting
the application.

Dynamic modification is supported by the on-line replacement of code mod­
ules. Since data types and state variables are defined dynamically by declaration
functions within these modules, this allows both the application code and the state
structure to be updated. It is natural for data restructuring to be associated with
code updating as it is always necessary to replace (at least recompile) some code
when data types are changed. In cases where only a single module is affected
on one slot, a one off replacement may be performed by loading the module
(re-invoking initialization functions if necessary). This is also the method used
to add new modules (such as debugging modules) to a slot The new module
is immediately linked and if it replaced an existing module, all modules are re­
linked to correct references to the functions it contains. User pointer variables and
those in the port table are updated. State variables whose types have not changed
are unaffected, while changed variables are reallocated and data is automatically
converted. Initialisation functions are not automatically reinvoked as the default
behaviour is to preserve as much of the current state as possible across a reload.
Once the automatic conversion has been completed, a user supplied conversion
function may be invoked to perform any extra reinitialization not coped with by
the automatic conversion mechanism. It is quite possible that an update will in­
troduce inconsistencies into the system which would result in a failure at some
time afterwards. This may be due to partial failure of the load, for example some
modules may fail to compile correctly or there may be a failure when a module is
being linked in the slot. It is also possible that type changes result in inconsistent
pointer assignments as will be discussed in detail below. The replacement system
should support failure atomicity, i.e., the system should detect such failures and
be able to reverse all of the changes. This is achieved by saving the definitions
before reloading. If the reload fails for any reason, all the old versions of modules,
variables and types are restored and the user is alerted.

In general more than one module will need to be replaced on more than one
slot in an atomic operation. This is achieved using a protocol which ensures that
data in messages are also correctly converted.

The challenge in dynamic modification is to perform the replacement in a way
that transforms the old state of the system into one which is consistent with the new

113

version of the code while preserving as much as possible of the state information.
This problem can be divided into two parts: when to perform the modification and
how to do the conversion. The first subproblem is what most previous work has
focussed on. The approaches include:

1. finding a safe point at which to perform the update [58] and

2. performing the update gradually, possibly resulting in several versions of the
code active with special conversion functions to interface between versions
[42].

Testbed follows approach 1. The Testbed programming model provides natural
breakpoints between actions when it is safe to perform an update. Unlike more
conventional programming systems Testbed does not have the problem of active
code and stack variables to deal with. Testbed can replace all of the code, update
the data declarations and perform all necessary conversions atomically before the
next application action becomes active. The only possibility for version conflict
arises from the interaction between slots. If no precautions were taken then either
messages could arrive in an out of date format after a slot has been updated or
messages could be sent and arrive in a new format at a slot which has not yet been
updated. To avoid these possibilities a protocol is used for ensuring that all slots
which are being updated do so atomically^.

The conversion subproblem includes matching variables and procedures be­
tween versions and performing transformations such as mapping of procedure
parameters and fields of structured variables. It will sometimes be difficult to find
a sensible mapping and this may indicate an error in the new version which the
system should detect.

The bulk of this chapter focuses on the automatic on-line conversion of data
whose type definitions have changed, and specifically on the difficult problem
of relocating pointers to parts of data objects, while checking consistency of
the reassignment. This problem has been side-stepped by dynamic modification
systems in the literature, either by disallowing such pointers or by replacing each
object and its associated data as a unit, with conversion of old to new internal
representation of the data performed entirely by user supplied code. This work is
novel in that it allows the programmer to supply new versions of code and data
declarations and automate the type conversions. This includes the relocation of
pointers to arbitrary subcomponents of the variables which make up the process
state. Where needed this automatic conversion may be augmented by user supplied
code.

^See Section 7.9.

114

In Older to implement the techniques which wiU be described, the system must
know the type of each allocated memory object Given this information all of the
pointers in the system can be found. The type and symbol tables used for mon­
itoring purposes also allow automatic data conversion and consistency checking
using the algorithm and techniques described in this chapter. The target language
of Testbed, C, permits great flexibility in pointer assignment Consequently find­
ing a new assignment of pointers is non trivial and many forms of inconsistency
may be introduced by an update.

The presence of pointers to variables or fields of variables creates alternative
identities for the same storage which may have different types. These alternative
identities are referred to as aliases. This is consistent with the use of the term
in programming language literature, where it denotes different expressions with
the same lvalue. Testbed’s aliases may be created dynamically at run-time, may
identify with an entire variable or just a field of a structure and may have a different
type than that variable or field®. It should also be realized that there is a subtle
distinction between a pointer and an alias. In Figure 7.1 the pointer ap, when
made to point to the a field of the variable b lo ck , gives rise to an alias *ap to
that field. The technique described is independent of the programming language
used to create the aliases.

7.2 The Data Conversion Problem

There are two ways in which data definitions can change. The individual variables
may be given different types, for example a variable declared as i n t x might
change to f l o a t x. Alternatively the declaration may be imchanged, but the
definitions of the types themselves may change, for example i n t might change
from two bytes to four. Though the data conversion problem is qualitatively the
same in both cases the latter is easier to deal with in that one only needs to know
how to convert between the versions of those types which have changed. In this
case each type needs a single conversion function associated with it (which may be
an identity). If on the other hand, variable declarations have also been modified,
extra conversion functions are required. Initially only the case of modified type
definitions is considered, to simplify the notation. However Section 7.6 indicates
how the results can be generalized to cope with variable redeclarations.

Figure 7.1 illustrates the creation of a set of aliases from pointers as might
happen in a C program. The simple structure types in fo and o v e rla y are
defined, with fields of type s c a la r , which for simplicity is assumed to have

ŵith certain consistency restrictions, to be discussed later

115

unit size. A variable b lo c k of type in fo is declared and a pointer variable of
type o v e rla y * (pointer to overlay) is declared and initialized to point to b lo ck .
Likewise a pointer variable ap of type s c a la r* points to the first field of b lo ck .
The old and new versions of the object corresponding to the variable b lo c k are
shown at the bottom. The aliases are shown above aligned vertically with the parts
of the object to which they correspond. The memoiy locations in the object are
numbered to show how they are mapped by the type conversion. This chuter is
concerned with situations where it is desirable to replace the definitions of data
in a running program, converting the data in an appropriate way and relocating
any pointer variables. The diagram shows how the data in the variable block is
mapped imder the assumption that fields with matching names are identified and
how the aliases which arise from pointers are relocated (allowing the pointers to
be updated).

Old Type (t) Variables New Type (f)
typedef struct
{
scalar a,b;

) info;
typedef struct
{
scalar x,y;

} overlay;

info block;
overlay *overp = █
scalar *ap = Gblock.a;

typedef struct
£
scalar b,c,a;

} info;
typedef struct
£
scalar y,z,x;

} overlay;
âp âp

^overp ^overp

block
1 2 0

Figure 7.1: Relocation of aliases during a type change.

Section 7.3.2 presents a simple algorithm for relocating pointers during type
conversions such as the one in Figure 7.1, in which fields of structures are rear­
ranged or inserted. Unfortunately it is not always possible to compute a relocation
of the aliases in such a way that the components of these continue to refer to
the same data in memory. Figure 7.2 illustrates such a situation. This is called
an inconsistency and it is likely to result in failure of the program when the alias
* o v erp is used. As in Figure 7.1 the old and new versions of the object are shown
at the bottom line of each example with the aliases above, vertically aligned with
the locations in the objects to which they correspond. The numbers in the memory
locations of the object and the aliases indicate how the word mapping of the type

116

of each would map those locations. Only the allocated object’s word mapping
corresponds to the data conversion. Where a field has been inserted the location
is marked with a 0.

Old Typed) Variables New Type (t‘)
typedef struct
{
scalar a,b;

} info;
typedef struct
{
scalar x,y;

} overlay;

info block;
overlay *overp = █

typedef struct
{
scalar b,c,a;

) info;
typedef struct
{
scalar z,y,x;

} overlay;
^overp
1 2

block
1 2

0 2 1

2 0 1

Figure 7.2: A conversion after which fields of aliases are identified differently.

Even when it is possible to realign aliases so that all memory locations which
are identified in the original version are still matched in the new one, there may
stül be problems introduced by the conversion. Figure 7.3 shows a case where an
extra field has been introduced into the o v e rla y type, so that trying to preserve
consistency results in the alias * o v erp being located before the start of b lo ck .
This results in the alias * o v erp containing unallocated storage, which is also
likely to result in failure when it is accessed. Figure 7.4 shows a similar situation
where the end of *overp is unallocated. Although Figure 7.4 appears to be a
trivial variation on Figure 7.3, it is included as it may sometimes be permissible
for an alias type to extend beyond the reach of allocated storage as long as the extra
fields are never accessed, but it is much more likely to be an error if the address
of an alias (value of a pointer) does not lie in allocated memory. Figure 7.5
shows a more subtle case involving an alias which matches a part of another. The
alias’ type (o v e rla y) has an extra field introduced where the type of the variable
(b lo ck) does not. In this case no unallocated storage is reachable but * o v erp
no longer exactly matches any one field in b lo ck . This too is likely to result in
failure when the z field of * o v e rp is accessed. Finally Figure 7.6 shows an even
more subtle problem. Here * o v e rp continues to match the whole of b lo c k
exactly, but after the conversion the y field of * o v erp does not exactly match
any field of b lo ck . Again this is unlikely to have been the intended result.

117

Old Type (t) Variables New Type (t')
typedef struct
{
scalar a,b;

} info;
typedef struct
{
scalar x,y;

} overlay;

info block;
overlay *overp = █

typedef struct
{
scalar b,c,a;

} info;
typedef struct
{
scalar z,y,w,x;

} overlay;
*overp

1 2 0 2 0 1

block 1----->

1 2 2 0 1

Figure 7.3: The new location of an alias is in unallocated storage.

Old Type (t) Variables New Type (t’)
typedef struct
{
scalar a,b;

} info;
typedef struct
{
scalar x,y;

) overlay;

info block;
overlay *overp = █

typedef struct
{
scalar b,c,a;

} info;
typedef struct
{
scalar y,w,x,z;

} overlay;
^overp
1 2

block
1 2

2 0 1 0

2 0 1

Figure 7.4: An alias extends outside allocated storage after conversion.

7.3 Relocating Aliases

The problem of converting state data is divided into two parts. First the data
must be converted between the two versions according to a mapping between
the data types. Then any pointers in the state must be updated. The pointer
updating is achieved by relocating the aliases to which they give rise based on
the relationship between the two versions of the data. In this section the second
part of the conversion problem is formalized and an algorithm is presented which
performs alias relocation under a type change. That is, this section wiU produce
an algorithm which given a mapping A from aliases to addresses, attempts to
construct a relocation function A' giving the new location of each alias.

The examples in Section 7.2 used C-style structure types. However in order

118

Old Type (t) Variables New Type (t*)
typedef struct
{
scalar a,b;

) info;
typedef struct
{
info i,j;

} doubleinfo;
typedef struct
{
scalar x,y;

} overlay;____

doubleinfo block;
overlay *overp = Gblock.i;

typedef struct
£

scalar a,b;
) info;
typedef struct
£

info i,j;
} doubleinfo;
typedef struct
£
scalar x,y,z;

} overlay;
‘overp
1 2 1 2 0

block 1----->

1 2 3 4 1 2 3 4

Figure 7.5: After conversion the alias does not exactly match any field of an
allocated object.

to decide whether it is possible to find a relocation of aliases and if so, compute
it only the word mapping introduced in that section is needed. Section 7.4 shows
how information about the structure of types can be used to construct this word
mapping. A consistency condition will be derived which corresponds to that which
is violated in Figure 7.2. This condition helps us derive the algorithm for which it
forms a correctness specification.

73.1 Assumptions and Definitions

Assume that the data resides in a collection O of memory objects. Each object
o E O will be treated as residing in a private memory space, represented as a linear
array of words indexed (addressed) by the integers. Of course, in practice, all the
objects lie in a single physical memory space. Nevertheless, they are logically
independent, having been created separately either as variables or by dynamic
memory allocation.

In addition, the data within an object can also be accessed via one or more
aliases, as explained in Section 7.2. Thus any word of an object may have multiple
means of access, and the conversion procedure must ensure that these semantic
identities are preserved.

Each alias has a type t drawn from a set T , with associated size |. This is the
number of words of the host object within the range of any alias of type t, these
will be numbered 0 through \t\ — 1. Since each object will have been created with

119

Old Type (t) Variables New Type (t')
typedef struct info block; typedef struct
{ overlay *overp - █ {
scalar x,y; scalar x,y;

} sub; } sub;
typedef struct typedef struct
{ {
scalar a; scalar a;
sub b; sub b;

} info; scalar c;
typedef struct } info;
{ typedef struct
scalar a,b; {

} osub; scalar a,b,c;
typedef struct } osub;
{ typedef struct
scalar x; {
osub y ; scalar x;

} overlay; osub y ;
) overlay;

^overp
1 2 3
x 3r

block

1 2 3

a I)

1 2 3 0

X y

1 2 3 0

Figure 7.6: A field of an alias fails to match any field of an allocated object after
conversion.

some type, it is itself an alias. So O is taken to be a subset of the aliases.

Type conversions are specified in terms of two functions: a function from T
to T called a retype, and a word mapping which is a partial function W over T^.
The retype corresponds to the redefinition of types which accompanies a dynamic
modification. The word mapping is represented in the examples in Section 7.2 by
the permutation of numbered locations in the diagrams. Section 7.4 shows how W
can be computed based on assumptions about the structure of types, but for now it
is assumed that W is given. The image of t under the retype shall systematically
be written as

When Wt,a is defined for t^s it specifies how the words within an alias of
type t will appear when that alias is converted to type s. In other words the word
mapping indicates how the old data appears in the new format. To this end, every
Wt̂ a is a |/|-tuple of integers in the interval [0, \s\), which implies that deletion of
words is disallowed. The element of Wi,* is written as Wt^a{i)- Wt,a is also
assumed to have no repetition—i.e., no two words of t are mapped to the same

120

destination position in s. Thus \s\ > |t|, but equality is not required as insertions
are possible. Section 7.6 indicates how some of these assumptions may be relaxed
to give a more general type conversion.

The word moping must be defined over any pair of types between which
may need to be converted, in particular Wt̂ tt must be defined for alH G T . As
discussed in Section 7.2, this may be a result of variables being redeclared with
different types, or of the types themselves being redefined. Although both these
cases are essentially the same problem, initially only the latter is considered to
simplify notation. In this case W is only required to be defined for pairs of the form
{t , t') and Wt,t> shall be written simply as W t. Section 7.6.5 considers situations
where the domain of W may need to be strictly larger than the retype.

In practice types wiU have some internal structure which wiU act as a vehicle
for both defining and constraining W. This aspect is examined in more detail in
Section 7.4.

The rest of this section concerns a set of aliases X within a single fixed object
o G O. Each alias x G Af has a start address A(x) in o and an associated type
T{x). As intimated at the start of this section, the task will be to find a new
address A \x) for each alias which is consistent with the retype and word mapping
in a sense which shall be defined below. |T(x)| shall be abbreviated as |x| and
p G [A(x), A{x) + |x|) as p G X. Li this way x also represents its own memory
range within o. Likewise Wt (x) is abbreviated to W^.

Thus the set U A" is the set of addresses covered by the aliases in X. Since it
is unsafe to allow access to addresses outside o (i.e. to unallocated memory), the
compactness property U Af Ç o shall be assumed. Unfortunately, the assumption
cannot just be made once and for all, because conversion may not preserve com­
pactness as shown in Figures 7.3 and 7.4. Thus it is necessary to be able to check
for compactness explicitly. This issue will be returned to in Section 7.5.

When address p e x G X ,p can be converted against x under the retype into
the number /®(p) Wx{p — A(x)). This is the offset relative to the new location
of X of the image of the memory location p given by the retype of T(x). This
suggests that the notion of a global conversion of the whole memory range (J X
might be defined by converting every p G \JX against some alias.

But there is the possibility that the same word may convert differently as in
Figure 7.2, or that distinct words be conflated, against different containers. Thus
global conversion includes an intrinsic consistency requirement.

In the following definition it is assumed that there is a relocation A \x) for each
alias X and the image of each word p G a: is considered according to the retype of
X. This is given by the expression A'(x) + /®(p).

121

Definition 7.17 A consistent conversion o fX under the given retype is an address
map A' such that, for all x ,y E X with p E x and qEy , the following holds:

A'(x) + 4(p) = A'(y) + /v(ç) iff p = 9 (7.1)

In other words a conversion is consistent when no word of memory is mapped
differently according to two different aliases and no two distinct words are mjq>ped
to the same location according to any pair of aliases. Definition 7.1 is a partial
correctness specification for the algorithm which is derived below.

For X — y, (7.1) is immediate from the injectivity condition for W. Moreover,
the relation between x and y represented by the left-hand equation in (7.1) for
fixed p = g is symmetric and transitive.

(7.1) suggests that every address in the region of overkq> between any pair of
aliases may need to be checked and does not give a method of generating the X
values. To answer this question, it is first shown how compactness simplifies the
statement of consistency.

Theorem 7.13 Given compactness, the conversion is consistent iff the following
holds for all p E x:

X(x) 4- I x (p) = A'{o) + I o { p) (7.2)

Proof: Necessity of (7.2) follows by noting that compactness ensures that pE o
and taking g = p and y = o m (7.1). For sufficiency, let p ,g ,x ,y be as in
Defiitition 7.17. By the assumption that Wo has no repetition (i.e. is injective):

W o (p - A(o)) - W o { q - A(o)) iff p = g,

h (p) = Io{q) iff p = g.

A'{6) + Io(p) = X{o) 4- Io{q) iff p - q .

i.e..

Hence

Then (7.2) gives

A \x) 4- 4(p) = A \o) 4- I o { p) and A*(y) 4- I y { q) - A \o) 4- 4(g),

from which (7.1) follows. □

Thus every A'(x) is uniquely determined once A\o) has been fixed.

Of course, there may not be any consistent conversion. The next section
presents an algorithm which fails if there is no consistent conversion, otherwise it
constructs the relocation (Æ) of one.

122

7.3.2 Conversion Algorithm

The following algorithm computes new locations of all the aliases relative to A\o)
if there exists a consistent conversion, or fails if there is none.

for p = A{6) to A(o) 4* |o| — 1
for all X G X \ {o} with p E x

if A(x) = p then
X{x) := X{o) 4- Io{p) - Ix{p)

else
ifA '(x) 4- Ix{p) f A'(o) + 4(p) them

abort

In words:

For each address pE o and alias x containing p, either compute A \x)
from A'(o) if x starts at p, or check consistency of x at p and abort on
failure.

Note the compactness assumption and Theorem 7.13 ensure that aliases need
only be checked against o at addresses within o. It is not necessary to check all
aliases which overlap relative to each other. Theorem 7.13 is used at two points in
the algorithm. Firstly if A{x) = p then A'{x) has not yet been found and so it is
computed by rearranging (7.2). Otherwise (7.2) is used directly to check that the
previously computed A \x) is valid at p.

Figure 7.7 illustrates the algorithm by showing how it operates on Figure 7.1,
assuming that A(block) = A'(block) = 0. The aliases are relabelled, *overp as
over and *ap as a, to improve readability.

Address Action Effect
0 A'(over) := A'(block) 4- /biock(O) - /owr(O) A'(over) = 04-2 — 2 = 0

A'(a) := A'(block) + /biock(O) - 4(0) A'(a) = 0 4 -2 -0 = 2
1 A'(over) 4- 4v«r(l) = A'(block) 4- 4iock(l) 0 4-0 = 04-0

Figure 7.7: Operation of the algorithm on the conversion from Figure 7.1.

7.4 Defining the Mapping

So far the word mapping W has been assumed to have been defined. It would
be tedious for the user of a dynamic modification system to have to provide a

123

word-by-word mapping for each type modification, so a method of constructing
W automatically is now described. For this a model of what types are is needed.
The idea of structures which appear in C and other languages is used. These
are composed of contiguous fields which may in turn foe structures or scalars.
Initially type changes which consist of rearrangements and retyping of fields and
of insertion of extra fields are considered. Section 7.6 discusses how this may be
extended to allow deletion of fields, changes to objects other than those given by
the retype and more general mappings.

The set T of types is defined recursively such that an element < € T is either a
scalar or an n-tuple of type values, for some positive integer n which is the number
of fields. Then \t\ = 1, if t is a scalar and \U\y otherwise. For type t define
the location Lt of field i by Lt{i) = |^j|. The assumption that there are no
alignment requirements and that the size of a structure is the sum of the sizes of
its fields, can be made due to the fact that all scalars are the same size.

The division of types into structures with fields suggests that the word mapping
W can be automatically constructed based on a field mapping M which would be a
partial function over T® defining how the fields in one structure type map to those
in another. would be a tuple of field indices giving the association between
the fields of t and s which is defined for those pairs {s, t) where it is needed. Wt
would then be defined by recursively traversing the nested fields of t progressively
refining the resulting offset in

The problem with this approach is that it does not permit fields at one nesting
level of the structure type t to be mapped to ones at a different level in s. For
example it is sometimes desirable to “flatten” a nested structure. In this situation
subfields in the original type are mapped to top level fields in the new one as
illustrated in Figure 7.8. Similarly it is sometimes desirable to add structure or

Old Type (t) Variables New Type (t')
typedef struct
{
scalar x,y;

} sub;
typedef struct
{
scalar a;
sub b;

) info;

info block; typedef struct
{
scalar a,x,y;

} info;

1
a b a X y

Figure 7.8: Flattening a nested structure.

124

simply move fields between levels in a hierarchy. A more powerful field mapping
function will be introduced to cope with such situations which gives the offset
within the destination type. As with the word mapping, the assumption that fields
are only mapped according to the retype is made, so M only needs to be defined for
pairs of the form (<, P) and Mt,f is abbreviated to Mt. Then M< : [0, n) -*■ [0, |f |) ,
where n is the number of fields in t. Note that the fact that Mt gives each field
in t an offset in t' does not permit fields to be deleted. Section 7.6.4 relaxes this
restriction. Wt is now defined using Mt and the word mappings for the fields of t.

I\ M
\ ift=*caior

' M,(t) + W ,> - i , (0) , if£ ,(.-)< p <£,(»• + 1)

W t { p) computes the offset in i ' of the word in t , by locating the field i of i

containing p and mapping it to P using the field mapping as M t { i) . Then W is
recursively invoked to compute the location of the offset of p within the field i
according to { u y . Section 7.6.5 shows how the general version of M may be used
to define Wt,,* between arbitrary pairs of types.

Now clearly some restrictions need to be made on M in order to get a valid
W . To this end define F*(t) = [M t { i) f M t (i) -f |(^i)1) for i E [0,n). Then it is
required that for every i ^ j E [0, n):

M) (7.4a)

and
Ft(i)nFtU)-=Hi. (7.4b)

(7.4a) ensures that M t projects each field of t into a valid part of f . This property
will be used to show that W t is well defined. (7.4b) prevents any two distinct fields
of t from overlapping in f . This property will be used to show the injectiveness
of Wt, which was required in Section 7.3.

Lemma 7.14 Let t be a structure type with field i . I f

W t , { q) ^ [0 * m % VgG [0,K |), (7.5)

then for any address p E [0, |^|), with L t { i) < p < L t (i -f 1), W t { p) E Ft{i).

Proof: By definition,

Wt{p)^Mt{i)-VWtAp-Lt(i)).

Rewriting this gives:

W t X p - L t (i)) = W t (p) - M t { i) . (7.6)

125

Now p — Lt{i) E [0, |t,j) by the definition of t and so

0 < Wu(p - 4 (0) < by (7.5).

Using (7.6) and rearranging gives:

Mt{i)<Wt{p)<Mt(i)- \-\(t iyi

so Wt(p) E Ft(i). □

Wt is now shown to be well defined.

Proposition 7.15 Wt{p) E [0, |t'|), Vp € [0, |f |), Vf E T.

Proof: The proof works by structural induction. The proposition is clearly true
when i is scalar. Let f be a structure type such that for all fields i of f,

:^ .(p)6 [0 , |(f,y|), V p€[0 ,|f.|).

Then by Lemma 7.14, for any address p E [0, |f|),IVt(p) E Ft(z), where Xt(0 < p < 4(« + 1),
so by (7.4a), Wt{p) E [0, |f'|) and by induction this holds Vf E T . □

Theorem 7.16 Wt is injective, Le., Wt{p) = IVt(g) p = g, Vf E T.

Proof: (Also by structural induction.) The result is clearly true for scalar types.
Let f be a structure type such that for all fields i of f,

Wti{p) = Wti(q) P = q> (7.7)

Suppose Wt{p) = Wt{q), for p, g E [0, |f |) with p in field i of f and g in field j say.
Now Proposition 7.15 implies that (7.5) holds for all fields, so by Lemma 7.14,
Wt{p) E Ft{i) and Wt{q) E Ft{j). Then (7.4b) implies that i - j , so

Mt(i) + Wt,{p - 4 (0) = Mt(i) + WtM - 4 (0) ,

so
W t ,{ p -L t (i)) ^ W t , { q -L t (i) y

and then (7.7) implies p — 4 (0 = 9 — 4 (0 thus p = g as required. Hence
Wt is injective and by induction this is true Vf E T. □

126

7.4.1 Automatically Deriving Field Mappings

So far field mappings have been assumed to exist where required but no indication
has been given of how they are created in the imptemeatationu It is generally
undesirable for the user to have to manually work out at what offset in each
destination type each field should be mapped. In most cases each field in the
source type will be mapped to some field in the destination. In fact the names of
the fields will often be the same. In this case the field mapping can be calculated
automatically by the system by using the locations of the destination fields. There
are cases where the user needs to define either individual field mappings or word
mappings manually. This is done in advance of the automatic calculation of W
and M and these predefined mappings are used whenever they are encountered.
In Figure 7.8 the new version of the in f o type (in f o') has no field named b and
there is not even any one field which the b field is to be mapped into. In this case
the field mapping for in f o needs to be defined manually as:

Mimfo = (0,1).

Assuming that the sub type has not been redefined, (7.3) can be used to give the
desired identity mapping:

Winfo = { M ± a t o { 0) + IV«c*l«r(0)j Afiafo(l) + M4mb(G), Miafo(l) + F4%b(l))

= (0 + 0, 1 + (Af,nb(0) -f W,c«lax(0)), 1 + (M,ttb(l) + Î Bc«Llar(0)))
= (0 ,l + (0 + 0) ,l + (l + 0))

= (0, 1, 2).

Section 7.6.5 explains how to cope if the sub type has been redefined in a way
which does not produce an identity word mapping.

7.5 Additional Consistency Tests

In addition to the basic conversion consistency requirement (7.1), termed word
consistency, there may be other irregularities present in an attempted conversion^.
Therefore static consistency tests are presented which can be used to detect such
irregularities after the conversion.

^See Figures 13-1.6

127

73.1 Static Consistency

Four levels of static consistency are defined each of which contains its predeces­
sors. X is Level 1 statically consistent when

A(x) € o, Vx E X.

This means that aU the aliases in % at least start within an allocated object This
is a rather weak form of consistency which is not even as strong as compactness,
though the algorithm in Section 7.3.2 could actually be applied. Figure 7.3 showed
that a conversion which is word consistent may nevertheless result in a state which
violates this requirement

X is Level 2 statically consistent when

A{x) E o and A(x) 4- |x| < A(o) 4- |o|, Vx E X,

This ensures that X represents a set of valid aliases to parts of an object. Note that
this is the same as compactness. Figure 7.4 shows a word consistent conversion
which preserves Level 1 consistency but not Level 2 consistency.

Level 3 static consistency is defined using the recursive boolean function Cz
whose parameters are the type of an object and the offset and size of an alias to
that object:

F, if Î < 0 o ri 4- </ > |f|
T, if i = 0 and |f| = </
0 3 (4 , i - 4 (i) ,4 , otherwise, with 4 (j) < i < 4 (i 4-1)

This function recursively searches t for a subfield with offset i and size d, returning
T if one is found and F if the interval [i, d) is not nested within t or one of its
subfields. X is Level 3 consistent when

C3(T(o),A (x) - A (o) , |x|), VxE% .

In other words, each alias exactly matches some subfield of the object o in both
location and size. Figure 7.5 shows how a violation of this criterion may arise.

Level 4 static consistency is similarly defined using the boolean function C4

whose parameters are the type of an object and the offset and type of an alias to
that object:

F, if i < 0 or i 4- |a| > \t\
T, if i < |f| and |s| = 1

C4 (f, iy s) — ̂ V fields j, of s, (74(f, 4 0) , ̂ ;), if i = 0 and [t] = |s| > 1
C4 {tj yi — Lt(j)ys)y othcrwiso,

with 4 0) ^ * < 4 0 + 1)

128

This function initially behaves like Cs(tyi, |a|) until a field is found in t which
matches s and then checks that all the fields and subfields of an alias of type s
beginning at offset i i n t match some subfield of % is Level 4 consistent when

C4 (T(o)y A{x) - A{o)y T(x))y Vx € A'.

Note that if x is scalar, it is always field consistent, as it must match some scalar
subfield, so the process can stop short of refining i down to scalars and return T
in the second line of the definition. Figure 7.6 shows how a conversion which
satisfies all the previous conditions may still fail to be Level 4 consistent

Static inconsistencies may arise due to careless programming before any con­
versions have been carried out so these checks may usefully be applied as debug­
ging aids at any time.

The examples in Section 7.2 showed that neither the word consistency test
nor the static checks are sufficient to pick up all irregularities which might be
introduced by a conversion, so both types of consistency check should be applied.

7.6 Generalizations and Practical Considerations

In order to simplify what has been presented so far, certain assumptions were
made which are too restrictive in practice. These are that the aliases have already
been found and all lie within a single allocated object o, and that only changes to
type definitions occur and not changes to variable declarations. Structure types
were assumed to be defined in terms of a single unit scalar with no alignment
requirements and no fields deleted. Finally it was assumed that the word moping
W can be automatically defined in terms of a field mapping M, This section
indicates how the algorithm and conditions presented can be generalized to cope
with relaxation of these assumptions. The dynamic modification mechanism in
Testbed contains these generalizations.

7.6.1 Arrays

Arrays may be considered as a subclass of structures, for which all the fields have
the same type. In the implementation they are treated specially for efficiency
reasons as it is not necessary to represent an array with a separate type descriptor
for each array element as is done with structures.

129

7.6.2 Different Scalar Types

In practice scalar types may not have the same size but can be modelled by
choosing some common unit of size (such as the byte) and defining larger types
to be structures consisting of a number of these units. If alignment is required,
then the location function L can be defined to take this into account. In practice
simple byte copying with rearrangement will not be sufficient In this case special
conversion functions need to be defined for mapping between scalar types, such
as integer to real conversion.

7.63 Pointers in Aliases

So far the pointers which represent aliases have been considered as separate from
the data, but they are actually part of it and need to be converted. This happens
after the conversion of the rest of the data. Pointers are initially copied from the
old to new versions of variables and then updated with the new values computed
using the algorithm given above. An additional form of inconsistency may arise
when an alias contains a pointer which is not present in the host object. Since the
data is only converted using the real object’s type conversion, the pointer wUl not
be updated. This situation may be added as an extra consistency constraint to be
checked.

7.6.4 Deleted Fields

It may well be desirable to be able to delete fields from structures. This situation
is dealt with by introducing a special null value (_L) into the ranges of the mapping
functions W and M. The algorithm must be modified to cope with the situation
where the start of an alias x is located in a field which is deleted from the real
object. In this case if the first non-deleted field of x corresponds to a deleted word
in o, then either the algorithm can be aborted or the new address of the alias can be
set to an invalid value which will show up in the word consistency test. Otherwise
A'{x) is computed from the image of the first word in the first non-deleted field of
X .

7.63 Extending the Retype

So far the assumption has been made that the new type of an object is exactly
that corresponding to the retype. Similarly it was assumed that the retype had
the property that the new type of a field was that given by retype for its original
type. These assumptions were made to simplify the notation and the algorithm.

130

In general it is desirable to relax them and allow Wt,, and Mt,, : [0, n) [0, |s|),
where n is the number of fields of to be defined for some cases when s ^ t'.
Consider Figure 7.9. Here it is assumed that the sub type does not change and

Old Type (t) Variables New Type (t’)
typedef struct
(
scalar x,y;

) sub;
typedef struct
{
scalar a;
sub b;

) info;

info block; typedef struct
{
scalar y,x;

) bus;
typedef struct
{
scalar a;
bus b;

} info;

1

a b a b

Figure 7.9: Extending the retype.

that the new type bus has been introduced. The b field in i n f o' has type bus.
The b field is to be mapped so that the subfields with matching names correspond,
i.e., xi->x and yn+y. This would work if were defined manually as:

M,■nb (1, 0).

However, there may be other variables of type sub or with fields of that type
which retain this type in the new version. Since the sub type is not changed, the
above definition of M^b would be wrong for these variables. An extra mapping
is needed:

Mxvib,ham ~ (1, 0)'

In order to define using this mapping instead of M„b,.ub', some way of
indicating the destination type of a field when mapping between a particular pair
of types is needed. To this end the local retype Rt,, : [0, n) T is defined. Then
the general version of the word moping is defined as:

w,Ap) \ Mt,i
i£t = scalar

»(p) -I- — 4 (0) , if 4 (0 < p < Lt{i + 1)

The generalization of the F function of Section 7.4 is:

Ft, ,{ i)==lMt„{i)yMt„(i)-^\Rt, ,{ i) \y

Conditions (7.4a) and (7.4b) generalize in an obvious way and Proposition 7.15
and Theorem 7.16 and their proofs are similar.

131

As with the simpler case, the definition of Mt,, may be automated by matching
fields with like names or done manually where this does not work. The local
retype can be defaulted for pairs {tyP) given by the retype to Rt,f{i) ~ (Uy* but
this can be overridden and extra mappings provided as required. Returning to
Figure 7.8, the local retype would be:

Ria£o,ixto* = (sca la r, sub).

Note that the local retype of the b field is sub , not sub ', so the resulting IPinf o'
is the desired one even if the sub type is redefined.

7.7 Data Conversion

Whenever an existing state variable is redefined with a new type, a new variable is
created with the new type and this is initialized first with the initial value provided
in the definition and then with data converted from the old. This conversion is
only attempted between variables of the same basic type (e.g., two structures) as
described below. The old variable is retained so that it is accessible to a user
supplied conversion function.

Automatic conversion is performed between similar types to the extent that
scalars are converted by assignment and fields of structures/array elements are
converted recursively. In the case of structures, if a field with the same name
exists in the new structure then a conversion is performed. Arrays are only
converted if the number of elements match. If conversion is impossible the new
variables are initialized using any supplied initial value.

Data conversion of the “static” (i.e., named) state variables is performed when
the redefinitions are found in case subsequent definitions use the values of their
data. Pointers caimot be adjusted since it is not known what the new locations
of the objects to which they point will be until the end of the reload operation.
Instead the old values are copied and any new variables which are initialized with
these values will be adjusted along with the old ones when the new locations are
known.

After all the automatic conversions and pointer updates a user supplied con­
version routine is executed if one has been supplied. At present this is specified by
the user interactively before the reload operation is requested. This routine takes
the place of the initialization functions which are invoked when the application
is first loaded. These functions are not reinvoked during the reload, since much
of the initialization that they perform will not generally be appropriate for a live
system. Any reinitialization or extra conversion of the state which is required after

132

the reload operation is performed by the conversion function which has access to
both the old and new versions of the state through function calls. To illustrate the
use of conversion functions a simple example is presented.

7.7.1 Example

Figures 7.10 and 7.11 show a simple application consisting of a single slot with
an action called t e s t . This action accepts a message containing a string which it
echoes in the window displayed by Testbed for ouq)ut from this slot. The slot also
contains a state variable b ed s t u f f which is of the structure type b ed_ in fo ,
having fields co u n t and v a l. The value of this variable is displayed by the
t e s t action and then updated. In version 0 co u n t has type i n t while v a l
has type d o u b le and the update consists of incrementing c o u n t and halving
v a l. In version 1 b ed _ in fo has been redefined with the fields reversed and v a l
has changed to i n t and is now doubled each time t e s t is invoked. When the
modules b e d . h, b e d ty p e s . c and t e s t . c are replaced by those of version 1
(Figure 7.12), and a reload operation performed, the Testbed initializes the new
version of b ed s t u f f from the old one by copying the co u n t field and by
performing an double to integer conversion on v a l, probably resulting in it
having the value 0 from then on. Since the system has no notion of the meaning
of these fields, this is all that it can do.

It may be that the contents of b ed s t u f f after the reload should appear as if
version 1 had been in place from the start To achieve this effect a conversion func­
tion is required. Figure 7.13 shows a function which is compiled and loaded after
the b e d . h module has been updated but before the reload. It contains a function
which if specified as the user conversion function, produces the desired effect.
Note that the value must be obtained from the old version of b ed s tu f f . v a l as
the new version will have lost precision when it was converted.

The functions and macros in Figures 7.10 and 7.13 are described in Appendix A.

7.8 Pointer Relocation and Conversion of Dynamic
Variables

The adjustment of pointers is achieved by first locating all pointers in static
variables which are preserved in the new versions of these and adding them to a
set of objects and then recursively performing the same operation on the objects to
which these point Only pointers which are found to point to objects in the symbol
table are followed. Any object in the symbol table which is found to be pointed to

133

/* bed.c - Configuration module contain­
ing an initialisation

function which runs on the host slot and creates and
initialises the other slots. */

#include "bed.h"
#include <host.h>
void bedO
{
Slot(TESTSLOT,1 , "Bed");
Global_Declare(bedtypes);
Module(TESTSLOT,test);
Declare(TESTSLOT,test_decs);

}

/* test__decs.c - Declaration module which de­
fines the variables

and ports. */
#include "bed.h"
void test_decs()
{
bed_info init_info;
init_info.count = 0 ;
init_info.val = 1;
Data_Port(TEST_PORT,test/char);
Var_I(bed_info,bedstuff,init_info);

}

Figure 7,10: Conversion example — common part

is added to the set of objects. It is not possible for dynamically created variables
to change type, as these variables are not redefined during the reload operation.
However it is possible that the definition of their types may have changed. If this
is found to be the case during the search for pointers, then the object is redefined
in the same way as for static variables.

Once all the pointers have been located in this way, new addresses are computed
for the pointers contained in those symbols which are still in use, and consistency
of the conversion is checked. If the checks fail, the user is notified and the reload
operation is temporarily suspended until awaiting a continue or abort decision.

134

/* bed.h - Type declarations for the compiler. */

#define TESTSLOT 1
#define TEST_PORT 0
typedef struct bed_info
{
double val;
int count;

} bed_info;
#include <action_lib.h>
/* bedtypes.c - Declaration module which de­
fines the types. */
#include "bed.h"
void bedtypes()
{
de f ine_st rueture(FALSE,"bed_info",2,

"double","val","int","count");
}

/* test.c - Application module containing the test ac­
tion. */
#include "bed.h"
extern bed_info bedstuff;
void test(char *test_message)
{
Prints(test_message);
Print_Var(bed_info,bedstuff);
bedstuff.count++;
bedstuff.val /= 2;

}

Figure 7.11: Conversion example — Version 0.

135

/* bed.h - Type declarations for the compiler. */

#define TESTSLOT 1
idefine TEST_PORT 0

typedef struct bed_info
{
int count ;
int val;

} bed_info;
#include <action_lib.h>
/* bedtypes.c - Declaration module which

defines the types. */
#include "bed.h"
void bedtypes{)
{
de f ine_8trueture(FALSE,"bed_info",2,

"int",■count","int","val");
}

/* test.c - Application module containing the test ac­
tion. */
#include "bed.h"
extern bed_info bedstuff;
void test(char *test_message)
{
Prints(test_message);
Print_Var(bed_info,bedstuff);
bedstuff.count++;
bedstuff.val *= 2;

}

Figure 7.12: Conversion example — Version 1.

136

/* when convert_bed. c is compiled the new version of
bed_info should be defined. We also need the old
version to be able to perform the conversion. */

#include "bed.h"
typedef struct
{
double val;
int count;

} old_bed_info;
extern bed_info bedstuff;
void convert_bed()
{
old_bed_info *oldstuffp
= (bed_info *)old_symbol_ptr("_bedstuff");

bedstuff.val = 1./oldstuf fp->val;
}

Figure 7.13: Example of a user conversion function.

7.9 Preserving Consistency of Messages

To avoid version conflicts, all messages received by the slot being reloaded need
to be in the old format up to the point at which the slot’s waiting messages are
converted and in the new format thereafter. It must not be possible either for
messages in old format to arrive after the conversion or for messages in new
format to arrive before conversion. To achieve this it is necessary to synchronize
the reloading of all the slots which may send messages to each other containing
types which are to change. It is assumed that the set of slots which are reinitialized
during a reload operation includes this set and so these are synchronized. The
synchronization proceeds as follows:

1. The host slot counts the number of slots which are reinitialized during the
reload. Each of these slots is sent a RELOAD message which causes the
slot to be suspended. This is followed by initializations (containing changed
state variable and type definitions) and replacement code.

2. The host slot sends the count with a RESUME_SLOT message which follows
the reload.

137

3. Each suspended slot performs its pointer relocation upon receiving the RE-
SUME.SLOT message and then broadcasts a GROUP-SUSPEND message
to all other slots.

4. Each suspended slot waits for count GROUP-SUSPEND messages. At this
point The monotonicity of the routing ensures that the slot will receive no
further messages until any of the other slots resume. The messages are
converted and the slot broadcasts a GROUPJRESUME message.

5. Each suspended slot waits for count GROUPJRESUME messages. At this
point the slot knows that all other slots are ready to receive messages in the
new format so it is safe to resume normal operation.

7.9.1 Aborting a Reload

To allow an abort of the entire reload operation the GROUP-SUSPEND message
carries a flag indicating whether the conversion of the sending slot was successful
and if not the receiving slot resets all types, modules and variables to their original
state before resuming. Any subsequent GROUP-SUSPEND messages from other
slots are ignored.

7.10 Related Work

Other work on dynamic modification systems tends to concentrate on the problem
of maintaining consistency in communication between the units of replacement,
whether these be procedures [26, 38, 52], processes [50, 58], abstract data types
[23,35,106,91] or objects [6,42]. Most of these systems allow types to change,
but do not provide automatic mechanisms for data conversion and pointer updating.
This task generally has to be performed by conversion functions which do not form
part of the application itself and must be written specially for each modification
which contains a type change. While such functions will sometimes be necessary
for the Testbed system as a supplement to automatic conversion, the mechanism
presented in this paper will generally reduce the amount of manual intervention
required per modification. The OTGen system for database transformation [53]
most closely resembles this work, though in an object oriented setting with classes
and variables rather than structure types and fields. They allow ‘'sharing’’ in which
two objects may have variables which are effectively pointers to a third object.
This introduces a kind of aliasing, however it appears to be much more restrictive,
with aliasing of complete objects and aliases to the same region of store required to

138

have the same type. These restrictions eliminate the consistency problems which
are addressed in this chapter.

7.11 Conclusions

Testbed provides dynamic modification at two levels. The simple approach is
to allow variables to be poked with new values in order to tune parameterized
application code. This requires that the programmer foresee the need to adjust
parameters and provide sq)propriate state variables. Since more general modifica­
tions to data and code are often required and it is undesirable to stop the system,
dynamic updates of individual modules and data declarations is also provided.
This makes use of the natural breakpoints provided by the action model to perform
the update at a safe point The update itself uses the slot’s symbol table and the
dynamic linking capability which is used during initial system load.

This chapter has described the problems arising from dynamic modifications to
data type definitions when there are general aliases to parts of data objects. These
include the problem of consistently mapping these aliases to the new version of
the state and of detecting when no consistent mapping is possible. Initially data
objects were modelled as intervals of memory, divided into words, whose lengths
depended on their types and aliases as subintervals with an associated type. Then
data conversion was defined in terms of a retype mapping between types and a
set of word mappings between pairs of types. With these minimal definitions it
was possible to derive a consistency criterion and an algorithm which computes
a consistent relocation of the set of aliases if possible. Structure types were then
considered and the word mapping function was defined in terms of structure based
mappings. The structure model of types allows static tests for the consistency of
a set of aliases to be defined at different levels. These tests are useful as part of
the conversion process for detecting possible errors introduced as well as at other
times for general debugging.

The ability to modify data types on the fly while preserving the relationships
between the data has many applications. The algorithm and consistency checks
presented here are incorporated into Testbed, where they allow a developer to
experiment with different versions of code without the costly process of shutting
down the system and recovering the state from scratch.

One of the goals of the Testbed dynamic modification system was that the
programmer should not be restricted in the kind of data interrelationships possible.
Testbed allows pointers to parts of objects which may have different types. These
are two features which are disallowed by most dynamic modification systems.

139

Because Testbed allows such general aliases it must provide the means to check
that a type modification preserves consistency which is the main contribution of
this work.

140

Chapter 8

Migration

8.1 Introduction

Testbed provides a global communication model in which the location of another
slot is logically irrelevant However since performance is usually important and
often critical to embedded systems, choosing the allocation of slots to nodes is a
key part of the development process. There are two aspects to this allocation which
affect performance: the distance between slots which determines communication
latency and the mix of slots on each node which affects the processing performance
of each slot It is therefore useful to be able to experiment easily with the location
of slots and dynamic migration is desirable for the same reasons as dynamic
modification.

As in the dynamic modification case, the problem of when to perform the
migration is not present for Testbed applications as there is a natural breakpoint
between actions. The problem of implementing process migration in Testbed may
be divided into two parts: how to correctly migrate the process state and how to
preserve communication and access to resources. Since Testbed supports non­
virtual memory systems, the former problem includes the problem of updating
pointers at the destination. Testbed’s global communication model ensures that
any slot can communicate with all other slots and devices from any node. The
second problem reduces to one of preserving message order. As with dynamic
modification, after the migration the system should reach a state which is the same
as if the system had started in the new configuration, ije., as if the slots had resided
at their new locations all along. Messages to and from the migrated slot should be
routed in the normal way, following a normal route. The simplest way to achieve
this is to suspend all application processing until the migration is completed, all
messages in transit at the time of the migration have been delivered in the correct
order and all routing tables have been updated.

141

Migration is inevitably an intrusive operation at least fw the migrated process
and generally also for any processes which are communicating with it at the time
of migration. Even processes which reside on the source, destination and any
intermediate processors can be affected. The fact that Testbed runs on non-virtual
memory systems means that all code and data needs to be copied across the
network and relinked at the destination. The requirement of preserving message
order requires that a quiescence protocol be used. All of these sources of delay
can cause an equivalent of the probe effect which occurs in monitoring. An
alternative to the simple global suspension method for routing table update is to
simply suspend the source and destination nodes and allow others which may not
be involved in communication with the migrating slot to continue. Each of these
nodes is updated when a message is sent to the migrated slot. This version of the
migration protocol is intended to reduce the impact of migration from a single long
delay which may affect the correct behaviour of some critical part of the system
to a number of shorter ones which can be tolerated.

8.2 Related Work

[90] surveys systems which support process migration and concludes that port
or message based systems (DEMOS/MP, V) implement process migration more
easily than other designs. However this work is mainly concerned with problems
of continued access to resources and continuity of communication. The problem
of relocating data which contains pointers is not mentioned. Many of the systems
in which process migration has been implemented in have virtual memory.

XOS [67] is an active object/message based system supporting migration.
Messages arriving at the old node after an object has migrated are NAKed.

DEMOS/MP [76] is a message based system with a migration mechanism
in which a forwarding address is left behind. Senders are updated when they
send a message to the old node (while the message is forwarded), but as the
communication is synchronous (RPC style), there is no need to guard against
overtaking.

Processes in V [98] execute witiiin a logical host Process migration is per­
formed by copying this logical host Piecopying is used to reduce total suspension
time. Messages are routed via kernel tables which are cached, with the cache be­
ing updated by the kernel broadcasting a request for the new location of a logical
host after several retransmissions. During migration messages are queued, to be
NAKed after the migration. Each logical host has its own address space. A future
plan is to implement a global demand paging system to speed up migration.

142

The Accent system [105] uses a copy-on-ieference scheme for migrating virtual
address spaces.

In Sprite [73] the process is frozen, transferred in one step then unfrozen.
Shared backing files for virtual memory make the transfer simply a matter of
writing out the process’ dirty pages then transferring the page table information
to the new host Sprite processes communicate via kernel calls and those which
are machine dependent are directed to the machine on which the process was
created. This allows communication and access to the environment to be preserved
during migration. However with this approach, migrated processes incur greater
overheads.

The EMPS multiprocessor [100] provides a mailbox communication mecha­
nism. This means that only the communication paths between a process and the
mailboxes which it uses need to be updated during the migration. This has the
same disadvantage as the Sprite approach, that communication may be inefficient
due to the location of the mailboxes. Virtual memory is used to simplify the task
of migrating the process state.

8.3 Synchronous Migration

This method works by suspending all slots in the system, sending the slot state
(user types, data, actions, messages) updating the location table on each node and
then resuming all slots. The other slots are suspended while routing information is
updated and not resumed until all outstanding messages are known to have arrived
at the new location in order to preserve message order. This requires a complex
sequence of acknowledged messages as illustrated in Figure 8.1. Migration is
triggered by the arrival of a MIGRATE message from the host server at the
migrating slot The system action which responds to this message broadcasts a
SYS-MIGRATE message to the centres on every node. Each centre then sends
a SUSPEND_SLOT message to all slots on the node. While a slot is in the
suspended state only system messages are processed. Once each has responded
with an ACK the centre sends a MIGRATE-ACK back to the migrating slot. Once
all centres have acknowledged the slot’s state is transferred to the destination node
in a number of messages. At the end of the state transfer the slots message queue
is flushed and the slot is marked as not present in a system table before all the
messages are forwarded to the new node. This is a rare case where the slot accesses
and modifies its own message queue. After all messages have been forwarded a
BROADCAST-RESUME message is sent to the new instance of the slot The
monotonicity of the routing ensures that once the new slot receives this it can be

143

sure that no further messages will arrive from the old slot and it is safe to resume
the application. The new slot broadcasts a SYS JEIESUME message to all centres
which send RESUME-SLOT messages to each slot At the same time the old slot
sends a S YS JDELETES message to the centre which deletes i t

NodeONode 1

sfflGRA'l -

Old Slot

10 RESUME
-SLOT

Centre 0

9 aS Y S jm i ^

3 SUSPENI
.SLOT 4 A d

New Slot
Centre 1 9S’ 'SJRES1)ME

Figure 8.1: Synchronous migration of a slot onto the root node showing the
sequence of messages. Messages are sent in ascending order with 9 and 9a
independent

8.4 Asynchronous Migration

The second method provided is intended to make migration a less drastic operation
on a system with a large number of nodes, some of which may not be in frequent
communication with the migrating slot In this version only the source and
destination nodes are frozen during the migration and only these nodes have their
location tables updated to contain the new address of the migrated slot Other
node’s routing tables continue to hold the old location of the migrated slot. When
a message arrives at its destination node but the slot indicated by the dest field in the
message header is not present the message is wrgqiped up by the guardian kernel
thread in a system message with the CENTRE-FORWARD port and passed to the

144

centre slot. The centre forwards the message to the slot’s new location and then
initiates the update of the source node in a similar fashion to the way the source
and destination nodes were updated, except that the slot state is not transferred in
this case. In the asynchronous version the BROADCAST-RESUME request has
been replaced by a FORWARD-RESUME which contains the node to be resumed
as data.

8.4.1 Complications

Although at first sight the asynchronous method might appear to be a straight­
forward extension of the synchronous one, it gives rise to several unpleasant new
special cases which complicate the implementation.

• Since not all application slots have been suspended, it is possible for new
messages to arrive for the migrating slot at any time. This means that
the action which performs the flushing and then marks the slot as deleted
must run in critical mode as the kernel must not be allowed to access the
message queue during this operation and afterwards all messages should
be forwarded. In order to prevent the centre from forwarding some new
messages before all earlier ones have been sent from the migrating slot,
the centre is suspended along with all the application slots and the CEN­
TRE-FORWARD port is in the user range rather than the system range so
that they are not actioned until after the migration.

• The slot may migrate back to a node which it resided on in the past. In this
case at the end of the migration any messages which were held by the centre
pending forwarding, must be flushed atomically into the slot’s queues before
any new messages are received. This is carried out by a critical action which
scans the centre’s queue in response to a new MIGRAFEJDONE message
sent to the new version of the slot at the end of migration.

• If the second migration is synchronous then all nodes are involved, and
in particular they will all try to send MIGRATE-ACK messages to the
migrating slot, which must be received. Since some nodes may not be
aware of the location of the migrating slot the MIGRATE_ACKs must be
sent to the originating node rather than routed in the normal way. This is
possible since the message header contains the source node.

• The centre may receive SYS-MIGRATE messages for several slots con­
currently. This means that it needs to keep track of who to send MI­
GRATE-ACK messages to when the node has been suspended and also

145

needs to keep count of how many SYSJRESUME messages are required
before it is safe to resume the local slots.

8.4.2 Pointer Updating

As each variable is added to the symbol table at the destination, an extra ghost
entry is added containing the address of the variable on the old node and a pointer
to the real entry for the variable. Function symbols are also contained in the
symbol table and are transferred to the new node. Once all variables have been
transferred, (signalled by a message from the old slot) the symbol table is scanned
and all the pointers in variables are updated by finding the old variable which
contains them and obtaining the new address. The action pointers in the user part
of the port table are updated using the same method as for pointers in £q>plication
state variables. Once this process is complete all the ghost entries are removed.

8.5 Correctness Properties

The migration protocol needs to fulfill the following requirements:

1. Message order is preserved.

2. All slots which are suspended are eventually resumed.

8.5.1 Correctness of Synchronous Migration

Message Order

Messages can only arrive out of order if they are sent to the new address of a
migrated slot before messages sent to the old address have arrived. In this case,
due to the different route taken it would be possible for the newer messages to
overtake the old ones. The event numbers in Figure 8.1 form a precedence relation
on the events. This precedence prevents old messages from arriving after new
ones since:

1. The centre updates the location table to contain the new node for the migrated
slot before sending the RESUME-SLOT message to any local slots.

2. No messages may be sent using the updated routing information (except by
the migrating slot) until a RESUME-SLOT message arrives at the sending
slot.

146

3. The RESUME-SLOT message is sent after the arrival of the SYSJRESUME
message at the centre.

4. The SYS-RESUME message is sent by the new slot after it receives the
BROADCAST-RESUME message from the old slot

5. The BROADCAST-RESUME message arrives after the slot state which
includes all messages.

6. The slot state is sent by the old slot after it receives MIGRATE-ACK mes­
sages from all nodes.

7. The MIGRATE-ACK message arrives from node i after all other messages
from any slot on that node. This is because:

8. The MIGRATE-ACK message is sent by centre i after it receives ACK
messages from all slots on node i,

9. Each slot sends no messages between sending the ACK message and receiv­
ing a RESUME-SLOT message.

Effectively the MIGRATE-ACK messages and the BROADCAST-RESUME
message flush all old messages through from the other slots to the new slot before
it sends SYSJRESUME messages which trigger the resumption of other slots and
allows new messages to be sent

Resumption of Slots

All slots will clearly be resumed eventually as long as all messages eventually
arrive and each process completes all of its operations in finite time. This in
particular means that each slot must suspend in finite time, which is only dependent
on having actions of finite duration.

8.5.2 Correctness of Asynchronous Migration

If one slot migrates once then the correctness follows in the same way as in the
synchronous case. The updating of the routing information in nodes other than the
source and destination nodes is delayed until after the migration but is otherwise
identical. Complications arise however when a slot is migrated more than once
and when multiple slots have migrated. This was discussed in Section 8.4.1.

147

8.6 Example

This example illustrates the use of the Testbed for peifomiaiice tuning components
in a simplified version of an autodepth controller (ADC) for a robot submersible
(ROV). In the example the initial configuration places the ADC slot on the same
processor as other slots which are performing background intensive computations.
This results in a high and irregular latency or response time for the depth controller.
After migration of the ADC slot to a free node, the latencies are reduced to a small
constant as shown in Figure 8.2.

Latency
(seconds)

0.014 T

0.012

0.01 ..

0.008 . .

0.006 ..

0.004
Migration

0.002 ..

8130 8135 8140 8145 8150 8155 8160 8165 8170 8175
Hme (seconds)

Figure 8.2: Latency as a function of time for the response by the ADC to a depth
message, as measured from the ROV, before and after a migration.

8.7 Conclusions

Slot migration is a useful tool for performance tuning which is consistent with
the dynamic experimentation philosophy of Testbed. Due to the fact that Testbed
is implemented on a distributed non-virtual memory platform and the added re­
quirement of preserving message order, the migration process is more difficult
than in some systems. Because of Testbed s global communication model and
the fact that the system carmot tell which slots might communicate, all need to be
updated with the new location of the migrated slot The simplest way of doing
this is by suspending the entire application for the duration of the migration. Since
this is liable to interfere with timing-sensitive activities which may not be directly
involved with the migrating slot, an alternative version of migration is provided in
which only the source and destination nodes are involved and others are informed
of the new location of the slot when the first message is sent to the migrated slot.

148

Chapter 9

Conclusions

The motivation for this research is a test bed for embedded systems, analogous
to an engine test bed, in which the embedded software under development can be
observed, tinkered with and tuned away from the often harsh and uncompromising
real-world environment Specifically it was felt that the test bed should support
multiple processors, powerful yet non-intrusive monitoring, dynamic modification
and process migration. In the process of achieving these goals, the slot/action
programming model has been developed which is based on experience of the
nature of embedded systems software and is amenable to the goals. An operating
system kernel was constructed to support this programming model. Almost all
of the debugging and testing facilities are provided in a system layer above the
kernel.

Testbed is implemented using a configurable multiprocessor whose processors
are the same ones which are used in the target system, front ended by a Unix
workstation. Due to its modularity. Testbed is highly configurable according to the
application. External devices which are not available at the time of development
may be simulated by using extra slots, often on separate processors which provide
the same interface to the application as the real hardware. The windows based
user interface was implemented as a Testbed slot, enabling it to be extended and
tailored to the application.

9.1 The Testbed Programming Model

The choice of programming model for Testbed was driven by the necessity of
finding breakpoints in the application code at which the debugging system could
safely interrupt a process and perform monitoring, replace the code and data with
a new version or migrate the entire process. With a programming model in which
there are a few sequential processes or an occam-style model in which each code

149

entity may split up into numerous light-weight threads there are serious difficulties
in identifying these breakpoints. A traditional debugging approach in which the
debugger steps through the process statement by statement, allowing the user to
identify breakpoints had been ruled out because of its excessive intrusiveness. The
application processes (slots) had to be divided into coarser grained units (actions)
which communicate with the system. This communication would then form the
breakpoint.

It was observed that most embedded systems aie ether reactive or p^odic
and that periodic systems can be thought of as reactive if timeouts are seen as
events. The implementation of such systems tends to involve processes which
repeatedly wait for some event and then dispatch it through a case statement or
interrupt table. In Testbed this dispatcher is removed from the application into
the system and the application designer is left with the task of providing the event
handling action functions. Since Testbed is designed to support multiple tasks
which communicate by message passing, it is natural for the application not to
distinguish between external events and messages, thus each new message is an
event and is processed by a new action. Timestamps in the messages combined
with deadlines or priorities associated with each slot allow actions to be scheduled
ahead of time and deadline/priority scheduling to be supported. The debugging
operations are carried out by system actions triggered by system messages to the
slot. Since at most one action may be executed per slot at a time, there are no
concurrency problems, the application is guaranteed to be in the “in-between-
actions” state.

Experimental implementations such as the ROV presented in Chapter 2 and
also a version of a hexapod robot developed at Paisley University [59] suggest
that the Testbed model is well suited to both specification and implementation of
this type of embedded system.

9.2 Implementation

Testbed has been implemented on a Sun hosted Meiko Computing Surface with
24 T800 Transputers. The implementation consists of three distinct layers, the
application, system and kernel.

The system layer forms a harness for the slot, replacing the main (} function
of a conventional C process. This function dispatches actions in response to
messages and performs event-based monitoring. Each slot has a separate copy of
this action harness thread and of system data structures such as the port table. The
system also provides a library of utility functions available to the application and

150

a set of built in system actions for performing debugging operations requested by
the user or by surrogates.

The kernel layer is responsible for delivering messages, handling synchronous
devices and scheduling slots. The kernel is implemented as a collection of cooper­
ating uninterruptable threads each of which is activated by an external or internal
event and may schedule a new action harness thread or initiate a preemption.

Each Transputer has a system slot called the centre, which assists in debug­
ging activities such as slot creation and migration as well as coordinating device
configuration and single device read operations. Access to the host machine is pro­
vided through a root Transputer whose centre contains extra library functions for
performing host VO as well as actions which manage the graphical user interface.

The first generation of Transputers and similar processors do not contain hard­
ware for routing messages. The Testbed kernel contains threads which multiplex
and demultiplex messages through shared links to enable more than one slot to
communicate using the same link and to allow messages to be sent to non-adjacent
nodes. This routing is deterministic due to the requirement of predictability for
embedded systems and is based on spanning trees rooted at each destination node.
It is important that this routing be free from deadlock. Chapter 5 gives a criterion
for deadlock-freedom and a simple algorithm is described for attempting to min­
imize path length and link load while maintaining deadlock-freedom. Methods
of constructing complex regular networks from simpler ones while preserving
deadlock-free and path-optimal routings are also discussed.

The modular, microkernel nature of the system allowed the debugging features
of Testbed to be implemented using the same model as applications, i.e., as built-in
actions in each slot which are invoked by, and communicate using messages. It is
also easy for the user to customize the debugging system to a particular application
by adding monitoring and simulation functions, actions and slots alongside the
application. Extra widgets can be added to the graphical interface along with
actions on the host server slot which display information in application specific
ways,

9.3 Testing and Debugging

Monitoring and debugging of distributed systems is a much studied field, however
most work concentrates on the problem of detecting temporal rather than timing
problems. Testbed provides a range of event and state monitoring facilities allow­
ing the user to select those which cause least interference, based on characteristics
of the application. These monitoring facilities exploit the natural breakpoints

151

provided by action invocation, sending of messages and termination. The Testbed
programming model makes it easy to add applicatioa specific monitoring code in
the form of embedded code, extra actions or slots which can report information
in more detail than is possible with the standard facilities. The role of the user
in the debugging process can be partially automated by background debugging
where these additions, then known as surrogates, are used to detect and react to
behaviour patterns. Background debugging is a useful way of avoiding the probe
effect when the rate of events is high or when timing is critical, as is often the case
with embedded systems.

9.4 Dynamic Experimentation

Due to real-time and performance aspects, embedded systems development often
involves a great deal of tuning as well as logical correctness testing. In this phase,
the developer must perform numerous iterations of testing and modification. The
start-up cost of embedded systems is often very high and so it is useful to be able
to experiment with the system dynamically. The simplest method of achieving
this is to allow the values of state variables to be poked by the user. This is a
facility provided by most conventional interactive debuggers. Testbed takes it
much further by allowing new versions of the application code to be loaded while
the system continues to run. Modification of user defined data types is supported
and conversion of the data between versions is automated^. Since Testbed supports
the C language for applications programming, the conversion problem includes
that of updating pointers and checking for consistency in the new assignment. This
makes up the bulk of Chapter 7. The dynamic modification capability is important
since Testbed does not support source level interactive debugging^. Instead the
same functionality is provided by embedded code and surrogates. To achieve the
power of an interactive debugger, the user must be able to make and modify these
additions on-the-fiy, rather than having to stop and restart the entire system with
the extra code in place.

Testbed also provides dynamic slot migration in order to manually balance
the processing load or adjust communication latencies. Testbed’s global com­
munication model ensures that migration is transparent to the application. The
implementation uses a protocol which ensures that message order is preserved and
that routing tables are updated following migration so that the effect is of the slot
having resided on its destination processor all along.

^supplemented by user supplied conversion functions.
 ̂as it is too intrusive for embedded systems

152

9.5 Major Original Contributions

The most significant original contributions of this thesis are

C hapters in which

a criterion for deadlock freedom is presented,

a simple but effective static routing optimization algorithm is described
which preserves deadlock-freedom,

methods of constructing complex networks from simple components
and of extending routings to preserve deadlock-freedom and path-
optimality are studied. These results generalise earlier work on specific
networks such as hypercubes and routings such as the e-cube algorithm.

Chapter 7 in which dynamic modification facilities are described. The C lan­
guage, commonly used for embedded systems programming, allows pointers
to fields of structures and pointers whose base type differs from their target.
The aliases which these pointers give rise to are formally modelled and an
algorithm is derived which performs a valid pointer relocation, if possible,
during data restructuring.

9.6 Further Work

The Testbed project covers several diverse fields with many complex sub-problems
and it has not been possible to cover all of these in as much depth as they deserve.
Although consisting of almost 10000 lines of C source code, the current imple­
mentation of Testbed is little more than a prototype. This section indicates the
potential for enhancement of the Testbed as a development system and for further
research both within the embedded systems arena and in more general contexts.

9.6.1 Adding Features to Testbed

Testbed has been designed in such a way as to enable new features to be added
easily as well as application specific testing and debugging aids. The library
functions, system actions and user commands provided by the current version of
Testbed and detailed in Appendices A and B are a small subset of those which
would be required if Testbed were a finished product They represent little more
than the bare minimum required to implement the goals of the Testbed and example
applications such as the ROV.

153

The programming interface is currently rather primitive, with only the C lan­
guage supported. Since Testbed is an object-based system it would seem natural to
add support for object oriented languages. Even with the current language support,
the requirement of providing a function call for each global variable declaration
and user type definition is cumbersome. It could be replaced with a preprocessor
which extracts these from the source code and creates the functimi calls automat­
ically. Testbed currently requires raw statically allocated numbers for identifying
slots and devices. A simple enhancement would be to provide a name server slot.
Other system server slots could also be provided.

No configuration or change management (apart from the Unix make utility) is
currently provided. Having applications specified^ using a configuration function
written in C and loaded initially on the host slot simplified the implementation,
but restricts the possibilities for dynamic code modification to either reloading a
single module or reloading the entire system. It also makes it difficult for dynamic
changes such as to the assignment of slots to nodes to be included automatically
in the application specification. A separate configuration file which could be
displayed and modified graphically would enhance the users view. Testbed could
even be enhanced to a complete CASE tool including a graphical programming
extension for constructing, configuring testing and debugging applications.

9.6.2 Device Support

The only devices supported by the current implementation are those connected
through Transputer links. It is expected that shared memory devices could be
supported at the application level since they do not require blocking to read.
The device handler provided by the kernel is configurable to a limited extent by
selecting the destination slot and port for either one-off read operations of variable
sized data or continuous input of fixed sized messages. Greater flexibility could be
added by further parameterizing the device handlers or by allowing user functions
to be called from them.

9.6.3 Heterogeneous Systems

Testbed currently only supports Transputer networks, however many embedded
systems are implemented using a variety of different processors and so it would
clearly be useful to be able to run Testbed on heterogeneous systems. Although the
current Testbed implementation is Transputer specific, the programming model is

^^art from the separate network description file

154

i . 4 ^
not, in fact Testbed programs are fundaipent^ly jtttfe ie t finom the conventional
CSP model normally used for Transputer typUcatipna.

9.6.4 Using Memory Protection

Since the first generation of Transputers do not pravide memory protection, mis­
behaving application code can easily c ra^ the system. Dmmg development this
is unhelpful as the failed program cannot be probed to determine the cause of
the crash and the system must be restarted. Once the system is in the field the
consequences of a crash may be much more severe, if Testbed were implemented
on architectures such as the Inmos T9000 Transputer [45] which provide memory
protection then the system could be protected from damage by the application and
the ability to trap errors such as invalid memory accesses could be used to halt
an errant action and allow the developer to examine the state and determine the
source of the failure.

9.6.5 Real-Time Scheduling

Although an effort has been made to make the BED kernel predictable and to
provide support for delayed actions and deadline-driven scheduling, no compre­
hensive effort has been made to determine the bounds on system operations either
formally or by measurement The problem of analyzing the interactions between
multiple communicating slots has not been dealt with either.

In order to increase predictability, the aim was that the overhead of inserting
a new message into the schedule be bounded by a multiple of the number of slots
rather than dependent on other factors such as the number of messages queued.
This together with a need for simplicity and the requirement of preserving message
order, led to the two tier schedule consisting of a FIFO queue for messages waiting
at each slot and a deadline ordered pool with at most one entry per slot. However
to provide greater flexibility to the application programmer, it would be desirable
to be able to specify that the slot manage its own queue with an application
specified policy. This may increase the scheduling delay for particular slots but if
implemented within the system layer need not affect the overall performance or
predictability of the kernel. In addition, alternatives to the earliest deadline first
policy which the kernel uses to schedule slots could be specified by the application.

155

9.6.6 Routing

Only one link'* is currently allowed between any two nodes and the route a message
takes is entirely determined by its destination node. In some embedded applica­
tions it might be useful to hâve more than one link between the same pair of nodes
and to be able to specify that the route depend on the message type and the source
and destination slots. For example a link might be reserved for high priority traffic
which should not be held up by other less important messages.

Most of the work in Chapter 5 is not specific to Testbed and could be applied to
general parallel processors. There is a great deal of scope for extending the simple
algorithm presented in Section 5.4.1 through the use of probabilistic algorithms and
for experimentation with different cost functions. There are many more ways of
constructing networks out of simple components than those studied in Section 5.5.

9.6.7 Dynamic Modification

Dynamic modification is a very complex issue and there are many situations
where the facilities provided by Testbed could be enhanced. For example the
user can provide neither the word mapping function of Section 7.3.1 nor the field
mapping of Section 7.4. Instead these are computed automatically by matching
array elements and fields with like names. These restrictions rule out moving
fields between nesting levels as in Figure 7.8.

Dynamic modification and process migration in Testbed are provided as devel­
opment and debugging aids, however they are often employed in the field in order
to dynamically adapt to changing load (in the case of migration) and to update
systems for which the cost of a complete shut-down would be too high. In these
situations safety becomes a much more important issue than during development.

Chapter 7 considered only C types and did not even cope with unions. In more
advanced languages higher level types with inheritance need to be considered and
will require a more abstract view than taken here.

9.6.8 Background Debugging

Background debugging is a very active field [66] which has only been touched
on here. Testbed provides the basis for surrogates which perform background
debugging but no automatic mechanisms are provided for mapping specifications
into code for behaviour capture and reaction. There is a need for background
debugging research in the real-time field where techniques which introduce a high

n̂ot counting raw links

156

overhead into communication such as vector timestamps cannot be used. Although
the real timestamps which Testbed uses cannot capture causal relationships, they
make up for it by providing the timing information necessary in debugging real­
time systems.

9.6.9 Fault Tolerance

Embedded systems are often used in situations where failure can be costly both
financially and in terms of human life^. For this reason fault tolerance is often
traded off against cost and performance in the design of the system.

The current implementation of Testbed does not provide built-in fault tolerance.
Although it is possible for the designer to build fault tolerant systems at the
application level by using redundant processors and higher level protocols, these
capabilities or support for them could be added to the Testbed system itself.

9.7 Closing Remarks

Embedded systems are an increasingly important application of computer tech­
nology, both software and hardware. Yet this is an area which has been largely
neglected by computer scientists as evidenced by the scarcity of journals and
conferences devoted to it. The main focus of current research efforts is in the
important field of real-time scheduling, however this is not the only aspect which
deserves study. There is currently only one IEEE and ACM sponsored sympo­
sium and one workshop devoted to real-time systems and no journals published by
either body. This contrasts with the large number of publications and conferences
devoted to parallel and distributed systems. The issues involved in designing
embedded systems are not the same as those in general purpose parallel and dis­
tributed computing and these publications and conferences seldom carry papers in
this field.

Debugging is another neglected area with a single biannual ACM sponsored
workshop devoted to parallel and distributed debugging. Many in the software
engineering field espouse the view that “debugging should not be necessary in an
ideal world”. However this view ignores the fact that transforming requirements
into specifications is a highly error-prone activity which can never be completely
formalized. The debugging phase is as important in understanding the problem
and getting the specification right as it is in detecting programming errors.

This thesis has addressed the important, yet difficult problem of testing and

® safety critical systems

157

debugging an embedded system. While the highly varied nature of these systems
makes it impossible to produce a completely general solution, it is hoped that the
approach embodied in Testbed is appropriate to a significant range of potential
applications.

158

Bibliography

[1] Z. Aral and I. Gertner. High-Level Debugging in P#asighL In Proceedings
o f the SIGPIAN ’88 Conference on Progranrndngi^Mnguage Design and
Implementation^ pages 151-162, June 1988.

[2] Z. Aral and I. Gertner. Non-Intrusive and Interactive Profiling in Parasight
In Proceedings o f the Symposium on Parallel Programmingy pages 21-30,
July 1988.

[3] N. Audsley. Deadline Monotonie Scheduling. Technical Report YCS 146
(1990), University of York - Department of Computer Science, 1990.

[4] N. Audsley and A. Bums. Real-Time System Scheduling. Technical Report
YCS 134 (1990), University of York - Department of Computer Science,
1990.

[5] F. Baiardi, et al. Development of a Debugger for a Concurrent Language.
In Proceedings o f the Software Engineering Symposium on High-Level
Debugging, pages 98-106, March 1983.

[6] J. Banerjee, W. Kim, H-J. Kim, and H.F. Korth. Semantics and Imple­
mentation of Schema Evolution in Object-Oriented Databases. In U. Dayal
and I. Traiger, editors. Proceedings o f the ACM SIGMOD 1987 Annual
Conference, pages 311-322, May 1987. San Francisco.

[7] P. Bates. Debugging Heterogeneous Distributed Systems Using Event-
Based Models of Behaviour. ACMSIGPLANNotices, 24(1):11-22, January
1989.

[8] P. Bates and J.C. Wileden. An Approach to High-Level Debugging of
Distributed Systems (Preliminary Draft). In Proceedings o f the Software
Engineering Symposium on High-Level Debugging, pages 107-111, March
1983.

[9] C. Berge. Graphs and Hypergraphs. North-Holland, 1973.

159

[10] F. Brinksma (Ed.). LOTOS: A Formai Description Technique Based on
the Temporal Ordering of Observational Behaviour. International Standard
ISO 8807 (draft).

[11] B. Bruegge and P. Hibbard. Generalized Path Expressions: A High Level
Debugging Mechanism. In Proceedings o f the Software Engineering Sym­
posium on High-Level Debugging, pages 34-44, March 1983.

[12] P. Burgess and M.J. Livesey. A Testbed for Embedded Transputer Systems.
Position paper. Workshop on Abstract Machine Models for Highly Parallel
Computers, Leeds, March 25-27 1991,

[13] P. Burgess, M J. Livesey, and C. Allison. A Testbed for Embedded Trans­
puter Systems. LEE Computing and Control Divison Digest No: 1992/204,
1992. Colloquium on Applications of Parallel and Distributed Processing
in Automation and Control, Savoy Place, London, 13 November, 1992.

[14] P. Burgess, M.J. Livesey, and C. Allison. An Execution Harness for Trans­
puter Based Embedded Systems. In J. Kerridge, editor. Transputer and
Occam Research: New Directions, volume 16, pages 25-40. lOS Press,
1993.

[15] P. Burgess, M.J. Livesey, and C. Allison. BED: A Multithreaded Kernel for
Embedded Systems. In Proceedings o f the 19th IFAC/IFIP Workshop on
Real Time Programming. Pergamon Press, 1994.

[16] C. Caerts, R. Lauwereins, and J.A. Peperstraete. PDG: a Process-Level
Debugger in GRAPE. \xiACMSIGSOFT’92 ,1992.

[17] J.D. Choi and J.M. Stone. Balancing Runtime and Replay Costs in a Trace-
and-Replay System. InProceedings oftheACM/ONR Workshop on Parallel
and Distributed Debugging. In ACM SIGPLAN Notices, 26(12):26-35,
December 1991.

[18] A. d’Aciemo, G. De Pietro, and U. Wlano. A Method for Monitoring
Occam Internal Channels. In OUG-12 Tools and Techniques for Transputer
Applications, pages 190-197. IQS Press, 1990.

[19] W. J. Dally and C. Seitz. Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks. IEEE Transactions on Computers, 36(5) :547-
553, May 1987.

[20] W.J. Dally, et al. The Message-Driven Processor: A Multicomputer Pro­
cessing Node with Efficient Mechanisms. IEEE Micro, pages 23-39,1992.

160

[21] M. Diaz. Modelling and Analysis of Communication and Cooperation
Protocols using Petri Net Based Models. In C. Sunshine, editor. Proto­
col Specification, Testing and Verification, pages 465-510. North-Holland
Publishing Company, 1982.

[22] J.T. Draper and J. Ghosh. Multipath B-Cube Algorithms (MECA) for Adap­
tive Wormhole Routing and Broadcasting in k-ary n-cubes. In Proceedings
o f the Sixth International Parallel Processing Symposium, pages 407-410.
IEEE Computer Society Press, March 23-26 1992.

[23] R.S. Fabry. How to Design a System in Which Modules Can Be Changed on
the Fly. In Proceedings o f the Second International Conference on Software
Engineering, pages 470-476,1976.

[24] C.J. Fidge. Reproducible Tests in CSP. The Australian Computer Journal,
19(2):92-98, May 1987.

[25] C.J. Fidge. Detecting Synchronisation Errors in Occam Programs. In
Proceedings o f the 12th Australian Computer Science Conference, February
1989.

[26] O. Frieder and M.E. Segal. On Dynamically Updating a Computer Program:
From Concept to Prototype. Journal o f Systems Software, 14:111-128,
February 1991.

[27] J. Gait. A Debugger for Concurrent Programs. Software Practice and
Experience, 15(6):539-554, lime 1985.

[28] J. Gait. A Probe Effect in Concurrent Programs. Software Practice and
Experience, 16(3):225-233, March 1986.

[29] P.T. Gaughan and S. YalamanchilL Adaptive Routing Protocols for Hy­
percube Interconnection Networks. IEEE Computer, 26(5): 12-23, May
1993.

[30] D. Gelemter. A DAG-Based Algorithm for Prevention of Store-and-
Forward Deadlock in Packet Networks. IEEE Transactions on Computers,
30(10:709-714, October 1981.

[31] A.P. Goldberg, A. Gopal, A. Lowry, and R. Strom. Restoring Consis­
tent Global States of Distributed Computations. In Proceedings o f the
ACM/ONR Workshop on Parallel and Distributed Debugging. In ACM
SIGPLAN Notices, 26(12):144-154, December 19911991.

161

[32] G.S. Goldszmidt, K. Shmuel, and S. Yemini Interactive Blackbox Debug­
ging for Concurrent Languages. ACM SIGPLAN Notices, 24(1);271-282,
January 1989.

[33] H. Gomaa. Software Development of Real-Ume Systems. Communications
o f the ACM, 29(7):657-668, July 1986.

[34] A.J. Gordon and R.A. Finkel. Handling Timing Errors in Distributed Pro­
grams. IEEE Transactions on Software Engineering, 14(10): 1525-1535,
October 1988.

[35] H. Goullon, R. Isle, and K-P. Lohr. Dynamic Restructuring in an Exper­
imental Operating System. IEEE Transactions on Software Engineering,
4(4):298-306, July 1978.

[36] R. Govindan and D.P. Anderson. Scheduling and IPC Mechanisms for
Continuous Media. In Proceedings o f the Thirteenth ACM Symposium on
Operating Systems Principles. In Operating Systems Review 25(5):68-80,
October 1991.

[37] I. Graham and T. King. The Transputer Handbook. Prentice Hall, 1990.

[38] D. Gupta and P. Jalote. On-line Software Version Change Using State Trans­
fer Between Processes. Software—Practice and Experience, 23(9):949-
964, September 1993.

[39] W.A. Halang. Load Adaptive Dynamic Scheduling of Tasks with Hard
Deadlines Useful for Industrial Applications. Computing, 47:199-213,
1992.

[40] S O. Hallsteinsen. Source Level Debuggers: Experience from the De­
sign and Implementation of CHILLscope. In International Workshop on
Advanced Programming Environments, volume 244 of Lecture Notes in
Computer Science, pages 1-10. Springer-Verlag, 1986.

[41] D. Hamlet. Debugging “Level”: Step-Wise Debugging. In Proceedings
o f the Software Engineering Symposium on High-Level Debugging, pages
4-8, March 1983.

[42] G. Hedin and B. Magnusson. Supporting Exploratory Programming in
Simula. Technical Report LU-CS-TR:88-31, Lund University, 1988.

[43] C A R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

162

[44] W. Hseush and G.E. Kaiser. Modeling Concunency in Parallel Debugging.
In Proceedings o f the Symposium on Principles & Practice o f Parallel
Programming, pages 11-20, March 1990.

[45] Inmos Ltd. The T9000 Transputer Hardware Reference Manual, 1 edition,
1993.

[46] F. Jahanian and A. K-L. Mok. Safety Analysis of Timing Properties in Real-
lîm e Systems. IEEE Transactions on Software Engineering, 12(9):890-
904, September 1986.

[47] E D. Jensen. The Kernel Computational Model of the Alpha Real-Time Dis­
tributed Operating System. In A.K. Agrawala, K.D. Gordon, and P. Hwang,
editors. Mission Critical Operating Systems. lOS Press, 1992.

[48] M. Johnson. The Inquest Transputer Netwoik Debugger. In J. Kerridge,
editor. Transputer and occam Research: New Directions, pages 1-10. IDS
Press, 1993.

[49] P.B. Kessler. Fast Breakpoints: Design and Implementation. InProceedings
o f the ACM SIGPLAN*90 Conference on Programming Language Design
and Implementation, pages 78-84, June 1990.

[50] J. Kramer and J. Magee. The Evolving Philosophers Problem: Dy­
namic Change Management IEEE Transactions on Software Engineering,
16(11):1293-1306, November 1990.

[51] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications o f the ACM, 21(7):558-565, July 1978.

[52] I. Lee. DYMOS: A Dynamic Modification System. Technical Report 503,
Computer Science Department University of Wisconsin-Madison, May
1983.

[53] B. Staudt Lemer and A.N. Habermann. Beyond Schema Evolution to
Database Reorganisation. In OOPSLA90, pages 67-76, October 1990.

[54] C-C. Lin and R.J. LeBlanc. Event-based Debugging of Object/Action
Programs. ACM SIGPLAN Notices, 24(l):23-34, January 1989.

[55] D. H. Linder and J. C. Harden. An Adaptive and Fault Tolerant Wormhole
Routing Strategy for k-ary n-cubes. IEEE Transactions on Computers,
40(1):2-12, January 1991.

163

[56] C L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment Journal o f the ACM, 20(1):46-61,
January 1973.

[57] M.J. Livesey, R Burgess, and C. Allison. An Integrated Approach to
the Development and Testing of Embedded Systems. In Proceedings o f
the Workshop on Design Methodologies for Microelectronics and Signal
Processing, Gliwice-Cracow, Poland, 20-23 October 1993.

[58] J. Magee, J. Kramer, and M. Sloman. Constructing Distributed Systems in
Conic. IEEE Transactions on Software Engineering, 15(6):663-675, June
1989.

[59] D.R. Matthew and K.T. Macfarlane. A Distributed Walking Robot Con­
troller. In Transputer Applications and Systems *93, volume 1, pages 97-
105. lOS Press, 1993.

[60] C. E. McDowell and D.P. Helmbold. Debugging Concurrent Programs.
ACM Computing Surveys, 21(4):593-622, December 1989.

[61] MQikoUd.SunOSCSTools,

[62] Meiko Ltd. CSTools C Compiler.

[63] D.S. Meliksetian and C.Y.R. Chen. Optimal Routing Algorithms and the
Diameter of the Cube-CoimectedCycles. IEEE Transactions on Parallel
and Distributed Systems, 4(10):1172-1178, October 1993.

[64] B.P. Miller. DPM: A Measurement System for Distributed Programs. IEEE
Transactions on Computers, 37(2):243-251, December 1988.

[65] B.P. Miller and J-D Choi. A Mechanism for Efficient Debugging of Parallel
Programs. In Proceedings o f the SIGPLAN *88 Conference on Programming
Language Design and Implementation, pages 135-144, June 1988.

[66] B.P. Miller, et al., editor. Proceedings o f the ACM/ONR Workshop on
Parallel and Distributed Debugging. In ACM SIGPLAN Notices 28(12),
1993.

[67] B.P. Miller and D. Presotto. XOS: An Operating System for the X-TREE
Architecture. ACM Operating Systems Review, 15(2):21-32, April 1981.

[68] R. Milner. A Calculus o f Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

164

[69] R.H.B. Netzer and B.R Miller. Optimal Tracing and Replay for Debugging
Message-Passing Parallel Programs. In Proceedings o f Supercomputing
*92,1992.

[70] L.M. Ni and K. McKinley. A Survey of Wormhole Routing Techniques
in Direct Networks. IEEE Computer, 26(2):62-76, February 1993. Good
survey of the various routing techniques which describes the deadlock
problem.

[71] O’Reilly & Associates, Inc. The Definitive Guides to the X Window System,
1993.

[72] G. Ostheimer. Parallel Functional Programming for Message-Passing Mul­
tiprocessors. PhD Thesis CS/93/8, University of St Andrews, March 1993.

[73] J.K. Ousterhout, et al. The Sprite Network Operating System. IEEE Com­
puter, pages 23-36, February 1988.

[74] Parsys. IDRIS Technical Overview.

[75] M.K. Ponamgi, W. Hseush, and G.E. Kaiser. Debugging Multithreaded
Programs with MPD. IEEE Computer, 8(3):37-43, May 1991.

[76] M.L. Powell and B.R Miller. Process Migration in DEMOS/MR In Pro­
ceedings o f the Ninth ACM Symposium on Operating Systems Principles,
pages 110-119. in Operating Systems Review 17(5), October 1983.

[77] F.P. Preparata and J. Vuillemin. The Cube-Connected Cycles: A Ver-
sitile Network for Parallel Computation. Communications o f the ACM,
24(5):300-309, May 1981.

[78] D.J. Pritchard and D.A. Nicole. Cube Connected MObius Ladders: An
Inherently Deadlock-Free Fixed Degree Network. IEEE Transactions on
Parallel and Distributed Systems, 4(1): 111-117, January 1993.

[79] Ready Systems. VRTX32 Programmer*s Guide.

[80] P.K. Rowe and B. Pagurek. Remedy: A Real-Time Multiprocessor, System
Level Debugger. In Proceedings o f the IEEE Real-Time Systems Sympo­
sium, pages 230-240,1985.

[81] M. Rozier, et al. Overview of the CHORUS Distributed Operating System.
Techitical Report CS/TR-90-25, Chorus Systèmes, 1990.

165

[82] T.G. Saponas and R.B. Demuth. The Distributed iRMX Operating System.
In K.D. Gordon A.K. Agrawala and P. Hwang, editors. Mission Critical
Operating Systems, volume 1 of Studies in Computer and Communications
Systems, chapter 16, pages 208-231. lOS Press, 1992.

[83] W. Schütz. The Testability o f Distributed Real-Time Systems, Kluwer
Academic Publishers, 1993.

[84] K. Schwan, H. Zhou, and A. Gheith. Real-Time Threads. Operating Systems
Review, 25(4):35-46, October 1991.

[85] M.E. Segal and O. Frieder. On-The-Fly Program Modification: Systems
for Dynamic Updating. IEEE Software, pages 53-65, March 1993.

[86] A.C. Shaw. Communicating Real-Time State Machines. IEEE Transactions
on Software Engineering, 18(9):805-816, September 1992.

[87] K.M. Shea, M.H. Cheung, and F.C.M. Lau. An Efficient Multi-Priority
Scheduler for the Transputer. In A.R. Allen, editor. Transputer Systems —
Ongoing Research, pages 139-153. lOS Press, 1992.

[88] K.D. Shere and R.A. Carlson. A Methodology for Design, Test, and Evalu­
ation of Real-Time Systems. IEEE Computer, 27(2):35-48, February 1994.

[89] E.T. Smith. A Debugger for Message-based Processes. Software Practice
and Experience, 15(11):1073-1086, November 1985.

[90] J.M. Smith. A Survey of Process Migration Mechanisms. ACM SIGOPS
Operating Systems Review, 22(3):28-40, July 1988.

[91] M. Stadel. Object Oriented Programming Techniques to Replace Software
Components on the Fly in a Running Program. ACM SIGPLAN Notices,
26(1):99-108, January 1991.

[92] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New Paradigm
for Real-Time Systems. IEÆ Software, 8(3):62-72, May 1991.

[93] J.A. Stankovic and K. Ramamritham. The Spring Kernel. In K.D. Gordon
A.K. Agrawala and P. Hwang, editors. Mission Critical Operating Systems,
volume 1 of Studies in Computer and Communications Systems, chapter 9,
pages 86-117. lOS Press, 1992.

[94] A.D. Stoyenko and L. Georgiadis. On Optimal Lateness and Tardiness
Scheduling in Real-Time Systems. Computing, 47:215-234,1992.

166

[95] H. Sullivan and T. R. Brashkow. A Large Scale Homogeneous Machine. In
Proceedings o f the 4th Annual Symposium on Computer Archtecture, pages
105-124,1977.

[96] A. S. Tanenbaum. Computer Networks. Pr^tice-Hall, 1981.

[97] A.S. Tanenbaum. Modem Operating Systems. Prentice-Hall, 1992.

[98] M. M. Theimer, K.A. Lantz, and D R. Cheriton. Preemptable Remote
Execution Facilities for the V-System. In Proceedings o f the Tenth ACM
Symposium on Operating Systems Principles, pages 2-12,1985.

[99] H. Tokuda, K. Makoto, and C.W. Mercer. A Real-Time Monitor for a Dis­
tributed Real-Time Operating System. ACM SIGPLAN Notices, 24(1):68-
77, January 1989.

[100] G.J.W. van Dijk and M.J. van Gils. Efficeint Process Migration in the EMPS
Multiprocessor System. In Proceedings o f the Sixth International Parallel
Processing Symposium, pages 58-66. IEEE Computer Society Press, March
23-26 1992.

[101] T. von Eicken. Active Messages: a Mechanism for Integrated Communica­
tion and Computation. In Proceedings o f the 19th International Symposium
on Computer Architecture. ACM Press, May 1992.

[102] H.F. Weddle, et al. DRAGON SLAYER/MELODY A Highly Adaptive Dis­
tributed Operating System for Mission Critical Computing. In K.D. Gordon
A.K. Agrawala and P. Hwang, editors. Mission Critical Operating Systems,
volume 1 of Studies in Computer and Communications Systems, chapter 11,
pages 131-145. lOS Press, 1992.

[103] C. Whitby-Strevens. The Transputer. In Proceedings o f the 12th Interna­
tional Symposium on Computer Architecture, pages 292-300. IEEE Com­
puter Society Press, June 1985.

[104] J. Xu and D.L. Pamas. On Satisfying Timing Constraints in Hard-Real-
Time Systems. In Proceedings o f the ACM SIGSOFT *91 Conference on
Software for Critical Systems, pages 132-144, December 1991.

[105] E.R. 2^yas. Attacking the Process Migration Bottleneck. ACM Operating
Systems Review, 21(5):13-24, November 1987.

167

[106] S.B. Zdonik. Can Objects Change Type? Can Type Objects Change? In
E Bancilhon and P. Buneman, editors, Workshop on Database Programming
Languages, Roscoff, France, pages 241-247, September 1987.

168

Appendix A

Testbed vl.O User Guide and
Reference

A.1 Overview

This guide is divided into three sections. Section A.2 explains how to invoke
the Testbed (command line parameters and environment setup). Section A.3
describes how to use Testbed (commands etc). Section A.4 describes how to write
action functions and structure a Testbed application. Section A.5 lists all standard
C library functions, and gives detailed descriptions of all the special functions,
which are callable from Testbed actions.

A.2 Running the Testbed

The Testbed is invoked with a command of the form:

testbed <route> [-c <application>] [-m <makefile>] [<X args>]

<route>: a file which defines the interconnection and routing information for
the desired network, in a form described in Section A.2.2.

<application>; the name of a module (without extension) containing an
initialization function with the same name as the module which when run
by the host server slot, creates all the slots for the target application and
downloads application, init and declaration modules^. If the application and
makefile parameters are omitted, then the Testbed will start up with just the
host server slot defined.

Described in Section A.4

169

<makef ile>: Before loading any user actions (including the main application
definition), the host server performs a “make - f <makef ile> all”
system call, or "make all”, if the makefile parameter is omitted.̂

<X args>; Standard X windows arguments such a s-display <display-
name>.

If either the display is specified on the command line or the DISPLAY en­
vironment variable is defined, then Testbed attempts to open X windows on that
display. Due to a bug in the Meiko Xlib implementation, the display must contain
an host name and not an IP address.

A.2.1 Environment Setup

In order to run Testbed, other than with all files in the same directory, the environ­
ment variables: XAPPLRESDIR, MODULEPATH and TPATH.

A.2.2 Routing Files

The routing file serves to define both the connection topology and the routing
function at the same time. It takes the form of an integer n giving the number of
nodes in the system, followed by an n x n matrix. The element in row i, column
j of this is the next node from j on the path to i (where the nodes are numbered
0..n — 1). Testbed will attempt to configure the Computing Surface so that each
pair of nodes which are adjacent in the routing are connected by a hard link. If this
is not possible due to insufficient links then the system wül abort At the end of
the file extra raw links between nodes and external device links may be specified.
External device links are specified as follows:

e <i> <portname> <id>

where <i> is the node to which the device link should be attached, <portname>
is the name of the external Computing Surface port^ to which the link should be
connected and <id> is a positive integer to be used as the device id. Messages to
die device should be sent as normal Testbed messages with the device id in place
of a slot id. This id may not be used for slots.

Raw links are specified as follows:

r <i> <j> <i_id> <j_id>
^An example make file may be found in the rov directory.
^See Meiko Documentation. 1

170

where < i> and < j > are nodes and < i_ id > and < j_ id > are their device ids.
This causes an extra link to be allocated betw e^ < i> and < j > (independent of
whether the nodes are connected by the normal routing network). Each end of this
link appears as a device with the given id.

The node to which device or raw links are specified must have sufficient links
free after the routing network is set up or the configuration will fail Adding
an entry for a device or raw link is sufficient for the application to be able to
send messages to i t In order to receive input from such a link, however, the
configure jdevice system call must be used as described below.

A.3 Using Testbed

The Testbed X windows interface features a main root window associated with the
host server slot and a separate window for each application slot Commands are
selected from drop-menus attached to each window. These menus are accessed
via a button labelled **Testbed Slot Commands”, located in a system command
box at the top of each window. The main Testbed window, which doubles as the
output window for the host slot, contains an extra menu labelled "General Testbed
Commands”, containing functions which are not specific to a slot. Below the
system command box in each window is another reserved for application specific
controls. The application command boxes are empty by default, but the application
may add widgets to it.

A.3.1 Testbed Commands

The standard Testbed menus currently contain the following commands. Those
commands which require additional information (indicated by trailing "...”) pop
up a dialog box.

Testbed Slot Commands:

Load Module... Loads a module. The module may replace an existing one, and
all modules will be relinked, so that any calls to functions in the replaced
module are updated.

Initialize... Loads and invokes an initialization module.

Send Message... Sends a message to the slot Only text data may be supplied.
Defaults: portJd = NULLJPORT, delay = 0.

171

Conversion... Specifies the name of an extra conversion function which operates
after the automatic data conversion to perform reinitialization and extra
data conversion which cannot be achieved by simple remapping. During a
reload operation, init functions are not leinvolced, so any reinitialization or
initialization of additions to the state must be performed by this function.

Event Monitoring... Allows monitoring of one of the four subevents: message
arrival, action invocation, action termination and message send for a given
port. Arrival, invocation and termination monitoring requests should be
directed to the destination slot (through its window), while send monitoring
requests should be directed to the sending slot Different level of detail
options are supported or the Don’t Monitor option allows cancellation of
monitoring for a particular subevent In addition a variable name may
be given, in which case the value of this variable is logged along with
the subevent and reported at the same time. Several variables may be
monitored by making several requests. Variables cannot be monitored on
message arrival. If a variable name is given for this case it will be ignored.
The detail levels reported are as follows:

None: No information is reported about the event but if variables are to be
monitored then these are logged and reported.

Min: Only the port id, subevent and the subevent timestamp are reported.

Basic: As with Min but the source (in the case of arrival or invocation) or
destination (in the case of send) is also reported.

Full: As with Basic but the size and the message timestamp are also re­
ported.

The event reports are printed in the scrolling outyut window for the slot, whüe
the values of monitored variables are displayed in the display panel available from
the Variables menu. To select several variables to display, these must be selected
separately.

The following are not present on the main Testbed window as the host server
slot may not be migrated:

Migrate (synchronous)... Migrates the slot to a different node, updating location
tables on all nodes to contain the new location of the slot This may
cause significant delays as processing on all nodes is suspended while the
routing tables are updated. However, once the migration is complete the
application’s performance will be as if the slot had been loaded onto the
destination node initially. Default target node is 0.

172

Migrate (asynchronous)... Migrates the slot to a différent node, updating only
the source and destination node’s location tables before allowing application
slots on both source and destination nodes to continue processing. The
original node forwards any subsequent messages for the migrated slot and
updates the routing table at the sending node. The effect of this is that
there will be extra delays when a slot on a node other than the source or
destination of the migration first sends a message to the migrated slot The
message (or messages if there are several within a short space of time) are
delayed as they have to follow an indirect route and the entire sending node
is also delayed as it must be suspended while its routing table is updated.
There is also a small overhead introduced to the forwarding node and the
final destination node.

Variables Menu:

This menu contains an entry for each application variable which has been defined in
the slot and additionally for each peeked variable (there are some system variables
which may be peeked, such as th is_ n o d e). Selecting a variable from this menu
causes a display to appear (which may be moved and resized) through which single
or periodic peeks may be performed, as well as pokes. The display shows the time
in seconds since startup at which the last value was reported as well as the slot id,
name, type and value of the variable. Selecting a variable for the first time causes
a peek request to be sent Entering a positive peek period, and selecting the Peek
button causes the variables value to be reported at regular intervals. If the variable
was already being reported periodically, then the period will be changed after the
next report. Note that the same display is used for showing the values reported
during event monitoring, which may appear at a different rate than indicated by
the period in the dialog. To control these reports the Event Monitoring command
on the main menu should be used as described above. The variables menu also
contains the following entries:

Peek... Displays the value of a given state variable. Arrays and structures are
displayed with their elements and fields but pointers are simply displayed
as addresses in hexadecimal. The output is displayed in the appropriate slot
window. This command is equivalent to the Peek button in the display for
the variable with a zero period.

Port... Displays the contents of a selected port entry in the output window.

173

General Testbed Commands:

Create Slot.. Creates a new slot on a given node with a given id (which must be
unused). Defaults: slot id = 1, target node = 0.

Reload Reloads the configuration module specified on the command line. This is
done in such a way that consistency is preserved as much as possible. Init
functions are not reexecuted during the reload, though declaration functions
are. Any reinitialization or new initialization which needs to be done should
be performed by a conversion function. Those slots which have modules
reloaded are suspended immediately before the reload and resumed at the
end of the entire operation. This prevents actions from erroneously being
invoked before they have been linked.

Unfortunately the application specific user interface state information can
not be preserved. All application specific extensions are destroyed and
recreated during the reload, as if the system were restarted from scratch.

At the end of the reload, each slot executes a user conversion function if one
has been selected via the Conversion command. See the next section for
details of how to write and use such functions.

Quit Exits the Testbed.

A.3.2 Support for Dynamic Modification

The Create Slot and Reload options in the general menu and Load Module,
Initialize, Poke and Conversion options in the slot menu provide dynamic mod­
ification mechanisms. The Load Module and Initialize options load a single
module, recompiling if necessary, and cause all modules to be relinked, invoking a
function with the same name as the module in the case of Initialize. If an initialize
command on the host slot results in modules being reloaded on other slots, decla­
ration functions are reinvoked but not init functions. When declaration modules
are reloaded, automatic state conversion is performed which attempts to preserve
the state before the reload as much as possible and then the function specified
using the conversion option (if present) is invoked. The Reload command reloads
the configuration module. It is equivalent to Initialize on the host slot with the
original configuration module name specified.

Variables which are redefined to have different types (either because their type
is redefined or because they are given a completely different type) during the reload
are reallocated and data is copied from the old to the new versions by matching
fields with the same names in structures, corresponding elements in arrays and by

174

assignment for scalars and pointers. After the reload has completed any pointers
to variables which have been redefined are adjusted to point to the corresponding
part of the new version if possible. If an inconsistency is found which prevents
this, then the reload is aborted leaving the system in the same state as before the
reload. Note that pointers which persist across the reload are updated to point to
the corresponding part of the new state. This includes port-action assignments.
Any slot which is changed gets suspended for the duration of the reload and a
synchronization is performed to ensure that any messages in transit between these
slots have landed. At this point data in messages is converted and the user defined
conversion function is invoked if specified.

User Conversion Functions

The user conversion function specified with the Conversion menu option may
be any function which will be loaded on the slot at the end of the reload. Any
references to state variables will be to the new versions, so the new versions of
type definitions should be used when declaring such variables. References to the
old versions of variables should be made by declaring pointers of the appropriate
old type (which may need to be defined within the module with a different name
for consistency with the new versions) and using the old_symbol_ptr function
described below. If the module is to be loaded in advance of the reload and needs
to refer to new variables which will not be defined until the reload occurs, these
can be obtained using the symbol4)tr function also described below.

A.4 Structure of a Testbed Application

Apart from the makefile and the routing file, a Testbed application is bootstrapped
entirely from init functions. The application code is divided into modules which
contain actions and functions which may be called from these (or each other).
These modules fall into the following categories, each of which is discussed in
detail in following subsections:

1. Application modules. These are loaded onto non-host slots and may call
any of the library functions which are defined for all slots.

2. Host modules. These may call additional library functions to perform such
operations as loading modules onto other slots etc. Host modules may
contain init functions, declaration functions, X windows callback functions
and actions which respond to messages from the target system. See Sec-

175

tion A.4.6 on customizing the user interface for details on how to add
application-specific host modules.

3. Init modules. These should contain a function which has the same name as
the module and no parameters. This function is invoked once, immediately
after being first loaded. It may call other functions in the init module and
standard system functions, but should not call functions in other application
modules as these are not linked until after the init function is invoked. The
module containing the init remains loaded after the init function has been
invoked and so may contain functions which ate called by other modules.
The purpose of init functions is to perform extra initialization apart from
variable and type declarations and port definitions. The latter should be
performed by declaration functions described below. The init function will
not be reinvoked if the module is reloaded during a reload operation. This
is because the initialization which it performs is likely to be inappropriate
after the system has started. Any reinitialization or new initialization which
is required should be performed by a conversion function.

4. Declaration modules. These are similar to init modules in that each contains
a function with the same name as the module which is invoked at load time.
Unlike init modules, if the module is reloaded, the declaration function is
reinvoked. The declaration function may define types, define and initialize
state variables and ports. Initialization of variables should be confined to
that allowed by the declarsuion functions described in Section A.4.4 and no
assignments to new variab^ should be made. If these are necessary then
additional init modules sh4uld be supplied. Similarly declaration functions
should not send initial m erg es. Declaration functions which setup ports
should be loaded after the modules containing actions which are used in
the port initializations unless the actions are contained in the same module.
There should be at least one declaration function for each slot, which assigns
actions to ports, otherwise no user actions may be scheduled at that slot.
Declaration functions which define types are often separate from those which
define variables and ports. They are generally loaded on all slots, or at
least on both the slot which uses the type and the host slot which uses the
type information for debugging purposes. If the functions contained in a
declaration module need to access state variables defined within the module,
they must use static pointer variables, global to the module. These should be
set to the address returned by the storage allocation functions (or macros).
Static variable declarations are not generally advisable in Testbed modules

176

as the values of such variables are not preserved across reload operations.
However static pointers to state variables are safe in this context as they will
be reassigned when the init is reinvoked.

5. The main application configuration module. This ia a host init/declaration
module which is selected on the command line and loaded and invoked
during the host server initialization. Note unlike init functions for other
slots, this may contain any declarations and it is reinvcked during a reload
operation.

A.4.1 Message Format

Since messages are integral to Testbed applications, the format of messages and
their interpretation will be described before the facilities of action functions which
send and are invoked in response to these messages. Messages have the type
testbed-msg, which has the following definition (in testbed.h):

typedef struct testbed_msg
{
byte node,snode;
short dest,source;
u_short size,port;
r t ime_t t ime s t amp ;
union {void *ptr; int val;} m;

} testbed_msg;
The timestamp is a real number measured in seconds since system boot time.

It is used to delay the actioning of a message, as messages are delayed until after
their timestamp. Typically this is set relative to the current time, obtained with
the rtime function. The special time value TJNHNITY is defined as the greatest
possible time value. If a message has no hard deadline, then a priority may be
provided by setting the timestamp using the macro Pri, where Pii(0) is the highest
priority. The message timestamp combined with parameters associated with the
port determine the scheduling of the action which processes the message.

A.4.2 Actions and Modules

Several actions may be defined in a single source file. This may also contain
definitions of functions which are called by the actions and are visible to other
modules. Functions which are shared between modules should have unique names.
If several functions share the same name then the choice of which one is used is

177

not defined. There should be no global variables declared outside functions nor
static variables within them unless either the values of the statics do not need to
be preserved across a reload operation or they will be reassigned during the reload
(e.g., pointers to state variables defined in an init). All permanent state variables
used by actions should be created using the mechanisms described below. There
are two header files: action_lib.h, which should be included by all actions, and
hosth, which should be included by host actions.

Actions are simple functions which are called by a special harness process.
All actions are invoked with a single parameter which is a pointer to the message
data. A prototype for an action would have the form:

void action(void *data);

Actions will generally be declared with an ̂ propriate type for the data pointer.
The values from the fields in the message header are obtainable using functions
defined below.

A number of global variables are available to all actions. These are defined in
the header file action Jib.h.

Modules are compiled, using the Meiko mcc compiler into object form, with
the extension .x8. This is the form in which they are readable by the Testbed,
however the Testbed will run make before loading them to ensure that the object
file is up to date. The modules will be linked dynamically with those library
functions and global symbols which are present in the symbol table at the time
they are loaded. They should not contain global or static declarations, which will
not work. All state data which persists between invocations of the action must be
added to the state.

Macros Defined in action Jib.h

void Send(msg)
Sends the message structure of type testbed-msg pointed to by msg (equiv­
alent to the function route_send).

void Send_Msg(dest,size,port,ptr)
Sends the data of pointed to by ptr to the slot dest with a timestamp of the
current time. See also the function route_send_msg.

void Delay_Msg(dest,size,port,delay,ptr)
Sends the data pointed to by ptr to the slot dest with a timestamp of the
current time plus delay.

178

void Display_Obj(size,type,name,ptr)
Displays the object pointed to by ptr using the given size name label and
type information in the display window corresponding to that variable if
there is one or the main output window otherwise. If size is greater than the
size of type, then the object is assumed to be an array of this type. See also
the function report-var. Example:

char *s = "hello";
Display_Object(strlen(s),"s",char,s);

Print-Var(type,var)
Prints the variable, array element or structure field var in the main output
window assuming it has the given type. See also the function display.var.
Example:

Print_Var(int,x);

void PrintS(s)
Prints the string sin the output window. Equivalent to the function prints.

void Def_Port(index,action,type,min,max,post,tpriority)
Interface to the def4 >ort function (see below) which converts the action
token into a string (prepending the required L’) as well as the type token.
The index should be an integer in the range O..MAX_USBR_PORT Min and
max are integers giving the number of reserved schedule entries (buffers)
for messages for this port and the maximum number of entries which will be
queued for this port The post parameter is an rtime_t value which may be
either a time relative to message timestamp (values less than TJNHNITY),
which becomes a deadline or an absolute priority indicated by values greater
than TJNHNITY. The higher the value the loww the priority. The macro Pri
can be used to generate priority values. It takes positive integer parameters
with Pri(O) having maximal priority. The tpriority parameter is a transputer
priority value at which the action function executes. It may take values
ffl JPRl or LOTRI. Example:

Def_Port (MOTOR,motor, int ,2,1, Pri (0) , HI__PRI) ;

void Data J ’ort(index,action,type)
Initializes the index port with the named action, which must be in the symbol
table, and specifies that messages sent to this port contain data of the given

179

type. The action may be NULL, in which case any message is processed as
a no-op. Example:

Data_Port (MOTOR,motor, int) ;

void Port(index,action)
Same as DataJPort but does not set the type.

void SetJPort(index,action)
The macros DataJPort, Port, Def-Port and the general function defq)ort
should be used in declaration modules to define ports, but the macro Set-Port
should be used in actions as it is more efficient It should be noted however
that if the action function is declared as static then the port will not be
correctly updated during a reload. For this reason all functions which may
be used as actions should be global. Equivalent to the function change-port.

void Pri(value)
Returns a priority value, where Pri(0) is the highest priority and Pri(l) is
lower etc.

A.43 User Defined Types

action_lib.h also contains the following macros for defining types. These may be
in ordinary declaration modules but it should be noted that they need to be defined
on all slots which make use of these type definitions, including the host slot if
values with these types are to be displayed during debugging and monitoring. For
this reason it is a good idea to put type definitions in a separate module. It should
also be noted that the corresponding types still need to be defined using typedef
for the compiler.

void Scalar(primitive,type)
Define a scalar called type which is equivalent to the standard type primitive.
Example:

Scalar(int,counter);

void Pointer(type,base_type)
Define a pointer called type which points to the (already defined) type
base-type. Note that when a variable is declared as a pointer (of any order)
to a predefined type, the corresponding pointer type(s) are all defined. For
example Var (char * * *, f red) causes the pointer types char*, char**

180

and char*** to be added to the type table. Similarly if a type is declared
based on ̂a pointer which is not defined then it is defined. Example:

Pointer(intptr,int);

void Arrayiype(type,count,baseJtype)
Define type to be an array of count elements of type base-type. As with
pointers, a variable may be declared directly as an array (using macros
described in the next section). In this case a type called base_type[n] is
created, where base-type is the given base type of the array and n is its
dimension. Example:

ArrayType(1ine,256,char);

In addition to these macros structure types can be defined using the function
define_structure, described in the next section.

A.4.4 Macros for Defining State Variables

The following macros are for defining state variables. The macros Var and Var J are
intended for defining static variables which may be accessed as global variables
from actions. These macros are normally used in declaration functions. The
macros New and ByteArray are for defining dynamic variables and may be used
at any time. It should be noted that unless pointers to dynamic variables exist in
the state, they will not persist across a reload operation, even if there are static
pointers defined in modules which point to them.

void Var(type,name)
This defines a new state variable called name. It is equivalent to a declaration
of the form: type name;® in a conventional C program.

void Var J(type,name,val)
This defines a new state variable called name and initializes it with the value
val. It is the equivalent of a declaration of the form: type name = val; in a
conventional C program.

void Array(type,name,count)
Similar to Var, in fact if count is a constant, then it is equivalent to
Var(type[count] ,name). It is equivalent to a declaration of the form: type
name[count]; in a conventional C program.

^e.g. an array of base type char * or a structure with a pointer firid
^Application modules should not contain global declarations of this form.

181

void Array J(type,name,count,val)
Similar to Var J except that val should be an array of initial values.

void *New(type)
For defining dynamic variables. This is the equivalent of the function call
malloc(sizeof(type» in a conventional C program.

void *NewArray(type,count)
For defining dynamic array variables. This is the equivalent of the function
call calloc(count,sizeof(type)) in a conventional C program.

void *ByteArray(size)
Useful for defining temporary objects whose exact size is unknown at com­
pile time. Care should be taken when using this function to define persistent
data as the monitoring and dynamic modification mechanisms in Testbed
have no information about its structure.

In addition to these there is the macro:

void Fiee(var)
For releasing storage allocated to dynamic variables. This is the equivalent
of the function call free(var) in a conventional C program. Objects freed
using Free are available for reuse by any of the storage allocation functions.

A.4.5 Static Variables and Functions

Variables may be declared within modules (either at the top level or within nested
blocks) with the storage class static. Such variables will be allocated and initialized
as they would be in a conventional program, however they are not part of the slot’s
state as far as Testbed is concerned and their values will not be preserved during
a reload operation. As described in the section on init modules, it is sometimes
necessary to use static variables, but the programmer should exercise caution.
Global variable declarations (non-static variables declared at the top level in a
module) are currently ignored by the Testbed loader and will result in an undefined
variable error at the link stage. All global variables should be defined using the
functions or macros provided rather than by declaring them at the top level.

Static functions are also allowed and functions which are private to a module
should be declared as such. However such functions should not appear as argu­
ments to Set-Port as they do not get included in the Testbed symbol table and so
any port which is assigned to a static function will not be updated during a reload.
For efficiency reasons the change_port function does not check for the validity of

182

the action argument Similarly no state pointers should be set to static functions
or static variables.

A.4.6 Configuration

Customizing the User Interface

As described above, there is a box (actually an Athena box widget) reserved for
application specific controls in the main root window (called app-box) and in each
slot window (called app_slotbox[slot_id]). These may be created and manipulated
using the Xlib, Xt and Xaw functions which are available (see Section A.5). When
a reload operation is performed these boxes are destroyed (using XtDestroyWidget)
and recreated. Unfortunately this results in the loss of any state information
contained in them, but it is necessary to avoid ending up with multiple versions of
controls only the most recent of which are valid.

Macros for Host Actions

The header file hosth defines the following macros for use in host actions:

void Setup-Slot(id,node4abel,stacksize4ipools,pool,nmsgpools,msgpool)
Creates a slot with given storage configuration. See the create_slot function.

void Slot(id,node,label)
Creates the slot with given id (in the range 1-255) on given node if it doesn’t
already exist. The label parameter is used to label the application control
box. This version causes the slot to be created with reasonable default values
for the stack and global stores.

void Module(target_slot,name) Uses the given name to derive the name of the
object module by adding the extension .x8 and loads it onto the target-slot
or reloads, if necessary. Any previous module will be deleted.

void Global-Module(name)
As with Module except that the module is loaded onto all slots.

void Init_Slot(target_slot,name)
Downloads and invokes an init module. The module should contain a ftmc-
tion called name which takes no parameters. There should be no references
to functions in other modules in the init

183

void GlobalJmt(name)
Similar to Init_Slot except that the init module is loaded and invoked on all
slots.

void Declare(target_slot,name)
Downloads and invokes a declaration module. The module should contain
a function called name which takes no parameters. There should be no
references to functions in other modules in the module.

void Global J)eclare(name)
Similar to Declare except that the init module is loaded and invoked on all
slots.

void HModule(name)
Like Module, but the slot is the host. Useful for loading modules which are
invoked in response to messages from the Testbed.

void Prompt(s)
Prints the string s on the host command window and flushes the output.

A.5 Detailed Description of Functions

A .5.1 Library Functions Available to all Slots

Along with the standard C library functions sprintf, atoi, atof, strlen, strcmp,
strcpy, fabs and memcpy, the following functions (declared in action Jib.h) are
available from all actions.

int define_scalar(int std_type,char *primitive,char *name);
Defines a scalar type which is equivalent to the existing type primitive.
Returns the index of the type in the type table. In general the macro Scalar
should be used instead of define_scalar.

int define_pointer(int std_type,char *namejnt base-type);
Defines a pointer type which points to the type with index base-type. Returns
the index of the type in the type table. In general the Pointer macro should
be used instead of define-pointer.

int define..structure(int std-type,char *namejnt nfields,...);
Defines a structure. The variable part of the parameter list is a series of
type, field-name pairs as with initJtype. There is no macro form as macros

184

may not have a variable number of parameters. The std_type field should be
FALSE for user types. Returns the index of the type in the type table.

int define_array(int std_type,char *namejnt countjnt base-type);
Defines an array type of count elements of type with index base-type. Re­
turns the index of the type in the type table. In general the macro ArrayType
should be used instead of define_array.

void def-port(int index,char *name,char *typejnt min, int max,rtimejt postjnt
tpriority);
Initializes the port table element index with the action entry point found
by looking up -name in the symbol table and associated type. If the port
was previously defined, then the initial action assignment is ignored. The
type field is used for debugging purposes. The post time is added to the
message timestamp and used as a deadline indication to the scheduler if less
than the special T-INFINTTY value and a priority otherwise. The priority
is the transputer priority level (LOJPRI or HI_PRI) at which the action wiU
run. HI-PRI effectively disables interrupts except while sending messages,
ensuring that system activities and the activity of other slots on the node
cannot delay an action which does not communicate. Such actions also
get slightly better performance from system functions such as reading the
time and sending messages and the scheduling overhead is slightly lower
between successive HI-PRI actions. The cost is that performance of other
slots and through routing activities may be impaired. A slot executing a
LO-PRI action will be preempted if another slot becomes schedulable with
a message whose deadline (priority) is earlier (higher) than that of the current
slot’s message. They may also be interrupted and delayed at arbitrary points
by the system while it receives or through routes messages, or schedules
messages when timeouts occur. If messages for this port need not be boxed,
have no deadline, are of standard (minimum) priority and do not need to be
processed with interrupts disabled then either the DataJPort or Port macros
may be used depending on whether the messages carry data.

Min and max are integers giving the number of reserved schedule entries
(buffers) for messages for this port and the maximum number of entries
which will be queued. A max value of 0 indicates that there is no maximum.
If a message arrives at a slot and there is no free storage left for messages,
then it will be discarded. Setting a min value greater than 0 ensures that
not all messages of a particular type will be lost When the number of
queued messages reaches max, data from new messages is used to update

185

the data part of the most recent previous message. It should be noted that
min includes an entry which is currently being processed, but max does not,
thus to ensure that only superseded messages aie lost, min should be at least
2. If the size of the data in a new message does not match the size of the
type and a reserved schedule entry is being used, then the data part of the
schedule entry is reallocated from the free store for messages if possible. If
there is insufficient free store for this then the message is discarded. See
the Setup-Slot macro above for how to specify the amount of storage for
messages.

void def_var(char *name4nt size, int type,unknown val);
If the variable _name does not exist it is created and initialized with the
value val. If name is an array then val is taken to be a pointer to an array of
initial values. If the variable is already defined then the entry in the symbol
table for it has its name set to NULL, while the new definition goes into
symbol-table and is initialized from the old one by automatic conversion as
far as possible. Conversion functions may be applied later, if necessary to
complete the conversion. In general one of the macros Array, Array J , Var
or Var J (defined in init^tion.h) should be used instead of def.var.

void route_send(testbed_msg *msg);
Sends the message pointed to by msg. The Send macro is equivalent.

void route_send_msg(int dest,int size,int port,rtime_t timestamp, char *data);
Similar to route_send except that the message structure is filled in by the
function. The timestamp is an absolute time in seconds since system startup
and acts as both a timeout for scheduling future actions and a reference point
for the post time specified at the destination port The simpler Send-Msg
and Delay JMsg macros may be used in place of the route_send_msg function
as the timestamp will normally be the current time or an offset from it.

void display_var(char *type,byte *data);
Display data using the given type, which should be defined on the host
server, in the main window for the slot The macro PrintJVar may be used
instead to print the value of a variable or field.

void report_var(int dest,int portint size,char *type,char *name, char *data);
Report data using the given type, which should be defined on the dest slot.
The report wül be sent to the given port at the dest slot which should have
been initialized with an appropriate action to process the reported data. The

186

macro Display.Obj may be used instead to display the data in the window
for that variable.

void prints(char *str);
Simple function for outputing a string in the slot’s output window. Can be
combined with sprintf to achieve the effect of printf. The Prints macro is
equivalent.

void delete_var(void *var);
Removes the variable with address var from the symbol table and adds the
storage block to the free. There should be no references to this object which
are used after deletion. This is not checked. The macro Free is equivalent.

void *symbol_ptr(char *var);
Returns a pointer to a state variable called var, or NULL if not defined. The
name should be preceded by for C variables. This function is intended
to be used in user conversion functions for accessing new variables which
are not present when the conversion function is loaded.

void *old_symbol4)tr(char *var);
Returns a pointer to the old version a state variable called var, or NULL
if not defined. The name should be preceded by for C variables. This
function is intended to be used in user conversion functions for accessing
the old version of a variable which has been redefined. If no old version has
been defined then the current version is returned. Note that the old versions
are discarded at the end of a reload operation, after the user conversion
function has been invoked.

rtime_t rtime();
Returns the current time in seconds since system startup. The time values
returned on the local node should be accurate to approximately 1/is, however
clocks are currently only synchronized between nodes to approximately 10fis
accuracy. It should also be noted that there is an overhead associated with
reading the clock, which is greater for LOJPRI actions because it requires a
priority switch in order to read the high priority transputer timer.

void configurejdevice(int deviceJdjnt size,int dest^nt port);
Can be invoked on any slot to configure a device to input messages of the
given size and pass them to the given dest slot and port The slot need not
be on the same node as the device. The messages have the device Jd in their
source field and are timestamped with the time that they are read from the

187

link. The same device may be configured more than once but before the first
configuration no input will be read from the device.

void read_device(int deviceddjnt size,int port);
Perform a one off read operation on the device. The data is sent to the given
port on the slot which performed the read.

A^.2 Host Library Functions

In addition to the functions available to all modules the standard functions fprintf
and fscanf along with additional standard X library and Testbed functions are
available to application code loaded by the host server slot

Testbed Functions

void printjerror(int errcode,int source^har *msg);
Prints an error message appropriate to the given encode.

void r_display_var(TextWidget ctxjnt size,char *type,byte *data);
Displays the data in the given text widget

char *load_object(char *ohjname,int *totalsize);
Loads the object file objname, returning a pointer to the result This may be
sent to the LOADM JPORT or LOADI_PORT at a remote slot or linked into
the host server slot

int def_module(int target^lot4nt module-type,char *name);
Loads a module from the object file <name>.x8 after perfomting a make on
it and loads it onto the given target-slot The module Jtype parameter may be
MODULE, m rr JdODULE or DEC JMODULE. The macros Module and
Global-Module provide a more user friendly interface.

void global_module(int initchar *name);
Similar to def jnodule except that the module is loaded onto aU slots. The
macros Global-Module and GlobalJnit are more user friendly.

void create-slot(int new-slotJd, int node, char *label, int stacksize, int npools,
pool-spec *pool, int nmsgpools, pool_spec *msgpool, int suspend);
Creates a new slot with given id (in the range 1-255) on given node if it
doesn't already exist The id must not have been allocated to a device during
the network configuration. The label parameter labels the window opened
for this slot on the display. The integer stacksize is the amount of stack (in

188

bytes) allocated for action function calls. The integer npools is the number
of size categories into which the sloths global data store is divided. The pool
parameter is an array of type pool-spec, which is defined in testbed.h as:

typedef struct
{

int size,count;
} pool_spec;

Each element specifies a pool of count chunks of store at the given size.
The nmsgpools and msgpool parameters specify the separate store which
is used for storing incommg messages. Note that each message waiting to
be processed by a slot there is a schedule entry and a separate data object
if the data size is greater than SCALAR_MSG_SIZE. The storage for both
parts comes from the msgpool, so this storage should include enough objects
large enough for schedule entries (which have size 72 bytes) as well as for
the data parts of non-scalar messages. Note that schedule entries including
the data area can be reserved for messages addressed to a given port using
the min parameter of the Def-Port macro or def-port function. The suspend
flag indicates whether the newly created slot should initially be suspended.
It is normally set to TRUE, and the macro Setup-Slot defaults to this.

void create_std_slot(int new_slot_id,int node,char *labeljnt suspend);
Interface to create-slot for creating a new slot with standard stack and store
parameters. The macro Slot defaults the value of suspend to TRUE.

X Library Functions and Widget Classes Available

The following X library functions and widget classes are currently available.
Include the header file xcode.h to get the appropriate definitions.
XEventsQueued
XFlush
XGetWindowAttributes
XSync
XawDialogAddButton
XawDialogGetValueStiing
XawScroUbarSetThumb
XawToggleGetCurrent
XtAddCallback
XtAppAddActions

189

XtAppCieateShell
XtAppNextEvent
XtAppPending
XtAppProcessEvent
XtCallbackExclusive
XtCallbackNone
XtCallbackNonexclusive
XtCallbackPopdown
XtCreateApplicationContext
XtCreateManagedWidget
XtCreatePopupShell
XtDestroyApplicationContext
XtDestroyWidget
XtDispatchEvent
XtDisplay
XtGetValues
XtName \
XtNamelbWidget 1
XtOpenDisplay I

iXtOverrideTranslations 1
XtParent j
XtParseTranslationTable |
XtPopdown
XtPopup
XtRealizeWidget
XtRemoveCallback
XtSetSensitive
XtSetValues
XtUnmanageChild
XtUnrealizeWidget
XtVaCreateManagedWidget
XtVaGetValues
XtVaSetValues
XtWindow applicationSbellWidgetClass

Î

transientShellWidgetClass I
topLevelShellWidgetClass j

I
panedWidgetClass j
asciiTfextWidgetClass i

i
190 I

menuButtonWidgetClass
simpleMenuWidgetClass
labeiWidgetClass
boxWidgetClass
commandWidgetClass
toggleWidgetClass
formWidgetClass
dialogWidgetClass
smeBSBObjectClass

191

Appendix B

Testbed System Ports

B .l Centre Ports
SYS-REFORT-CLK For non-root nodes causes the current local time to be

returned to the root centre. For the root node centre, causes the off­
set of the sending nodes clock from the root one to be calculated and a
SYSJREPORTXLK message sent to the next node in sequence. When
all nodes have reported, the offsets are sent out using SYS_CLK_SYNC
messages.

SYS-CLK-SYNC For non-root nodes causes the clock to be incremented by an
offset given in the data field. For the root node centre, this message is used
to register that the sending node is ready to be synchronized. When such
messages have been received from all the other nodes a S YS_REPORT_CLK
message is sent to the first

SYS-CREATES A message from the host server or from a slot migrating from
another node asking for a new slot entry to be created on the current node.
The message data field contains the slot id.

SYS-DELETES A message from the slot indicating that it is ready to die.

SYS-REROUTE Update information for the routing tables giving the node lo­
cation of a new slot

SYS-MIGRATE Depending on whether it contains rerouting information this is
either a message from a migrating slot requiring that the node be suspended,
or an acknowledgement of suspension from a local slot.

SYS_RESUME A message from a migrated slot allowing slots on the node to
resume.

192

SYS-ABORT Causes the centre to suspend each slot and await SYS-ABORT-ACK
acknowledgements.

SYS.ABORT.ACK Once one of these is received from each slot, a message is
sent on a special channel to the original startup process which then calls
exit(0).

S YS J'LUSH-FORWARD At the end of a migration, the slot asks the centre at its
destination node for any messages which have been waiting to be forwarded.
These are inserted atomically into the slot’s schedule by the centre, without
allowing any other messages to arrive in the mean time and then the location
table is updated to reflect the fact that the slot is local. This ensures that
messages do not arrive out of order.

CENTRE J'ORWARD In one of the migration options not all of the nodes are
notified of the new location of the slot In this case messages which arrive
at the old node are forwarded by the centre.

MIGRATE-ACK When a message arrives for a slot which has migrated away,
the centre sends a SYS-MIGRATE message to the centre on the node from
which the message originated. This is acknowledged and subsequently the
true destination node is requested to resume the suspended node and update
its routing tables. This protocol ensures that messages do not get out of
order.

B.2 Host Server Ports

HJPRINTS Prints a string in the output window corresponding to the source slot.

H-DISPLAY-VAR Displays the value of a variable.

MIN_RET_PORT..MAX_RET_PORT Reserved for state variable reports.

H JDEF-VAR Causes a variable to be added to the Variables menu for the source
slot.

H_REPORTJLOG Displays a logged event or variable.

INIT Reserved for the host server initialization action contained in the special
init module xhostc.

SYS JERR Displays an error message.

193

H-FLUSH Flushes any output waiting to be sent to the display.

XUSER Invokes the polling action which processes outstanding X windows mes­
sages from the display server.

BJ3 Application Slot Ports

The following ports are not defined for system slots such as the host server or any
other centre.

MIGRATE Initiate the migration of the slot Causes the slot to broadcast a
SYS-MIGRATE message to all centre slots.

ALT JMIGRATE Initiate the asynchronous version of migration in which S YS_MIGRATE
messages are sent to the centre on the source and destination node only.

ADDJSTATE Add a variable during migration.

ADD-TYPE Add a user defined type during migration.

LOADM Load an ordinary module. Used during initialization, dynamic updates
and migration.

ADD-PORT Update the user port descriptors during migration.

PORT-ACK Acknowledge the receipt of the user port table to the migrating slot,
indicating that it is safe to forward messages.

ADD-PEEK Add a periodic peek request which was being performed on a mi­
grating slot

MIGRATE-DONE Indicates that all messages have been forwarded and it is safe
to flush any messages which the centre was waiting to forward.

FORWARD-RESUME If this message has a node id as data then a S YS-RESUME
message is sent to the centre on that node, otherwise the SYS JRESUME is
broadcast to all centres.

DEF-CONVERT Define the user conversion function invoked after all automatic
conversions during a reload operation.

194

B.4 Common Ports

NOLL JORT No-op.

TERMINATE Special port code recognized by the executive kernel thread to
indicate the termination of an action.

PREEMPT Special port code recognized by the executive indicating that the
current action may safely be preempted.

ABORT Special port code recognized by the executive causing it to terminate.
Once all executive threads have terminated control is returned to the shell
on the Unix host

SUSPEND JSLOT Cause the slot to suspend processing of user messages.

RESUME JSLOT Cause the slot to either resume processing of user messages
immediately (if the message contains no data) or initiate the quiescence pro­
tocol setting the group_suspend_total to the supplied value and broadcasting
GROUP-SUSPEND.

GROUP-SUSPEND If the data value indicates a reload failure then abort the
reload, otherwise increment the group..auspend-count and if equal to group-suspend-total,
complete the conversion including converting the data in any waiting mes­
sages before broadcasting a GROUP-RESUME message.

GROUP JŒSUME Increment the groupjresumejcountand if equal to group-resume-total,
reset group-resumexount and group-suspendxount and resume processing
user messages.

LINK Relink all modules in the slot

MONnOR-REQUEST Request monitoring of some subevent.

ABORT-SLOT Suspend the slot and acknowledge to the centre, indicating that
it is safe to send an ABORT message to the executive.

PEEK Request a one-off or periodic peek of a variable value.

POKE Poke the value of a variable.

INITM Load an initialization module and invoke the contained init function.

195

MIGRATE-ACK For application slots: if migrate, ack. count has reached mi-
grate-total transfer the state of the slot to the new node; for centre slots:
forward any messages for the slot followed by a FORWARD-RESUME
message.

SHOWJPORT Return the contents of a port entry.

196

Appendix C

Source Code for ROV

The source code in this appendix is for the test version of the ROV submerssible
as described in this thesis, not including the simulation of the cable between the
vehicle and the surface controller. See Appendix A for a full description of the
format of routing files, and all macros and non-standard library functions used.

C.1 Routing File

I
0 0 0 0 I

1 1 1 0 I
2 2 2 0 I
3 0 0 3 j
r 2 3 4 5 1

C.2 C Definitions
/* rov.h - definitions for ROV autodepth controller. * /

/* Slot ids; */

#define HIGH_CONTROL 1
#define LOW_CONTROL 2
#define FEEDBACK 3
#define ROV 6

/* Device ids : */

#define ROV_DEV 4 |
#define CONTROL_DEV 5 :j

197

/* Port ids: */

/* HOST: */

#define DISPLAY_STATUS 0

/* HIGH„CONTROL: */

#define H_VELOCITY 0
#define V_VELOCITY 1
#define AUTODEPTH 2
#define HEADING 3
#define AUTOHEADING 4
tdefine DEPTH_REPORT 5
#define HEADING_REPORT 6

/* LOW_CONTROL: */

#define UPDATE_MOTORS 0
tdefine SWITCH_ON 1
tdefine SWITCH_OFF 2
tdefine POLL__DEPTH 3
tdefine STATUS 4

/* ROV: */

tdefine ROV_MESSAGE 0

/* Other constants: */

#define NMOTORS 4
#define ON 1
#define OFF 0

/* Motor indicies: */

#define LEFT_SIDE 0
#define RIGHT_SIDE 1
#define LEFT_REAR 2
#define RIGHT_REAR 3

/* Bits in the low order nyble of a device message byte select the
motor, while the high order nyble indicate what type of device |
message: */ I

198

tdefine ROV_SELECT_MASK OxFO
tdefine ROV_DATA_MASK OxOF
tdefine MOTOR_OFF 0x00
tdefine MOTOR^ON 0x10
tdefine MOTOR_PLUS 0x20
tdefine MOTOR^MINÜS 0x30
tdefine DEPTH_POLL 0x40
tdefine COMPASS_POLL 0x50

typedef struct
{
int right,forward;

} horizontal_velocity;

typedef struct
{
int right,forward,down;

} velocity_vector;

typedef struct
{
byte speed;
s_byte direction;

} motor_info; j
itypedef struct 4

< 1byte state; |
s_byte direction; j

} motor__status; |
.typedef struct

‘ !int depth,compass; |
} rov_status; I

C.3 C Source Code
/* rov-c - special module containing the code for loading the

application system and also special user interface extensions
* /

#include <action_lib.h>
#include <host.h>
tinclude <xcode.h>

199

#include "rov.h"

#define DRIVE_FORWARD 0
#define DRIVE_SIDEWAYS 1

/* Toggle the ADC on or off. */

static void adc„switch(Widget button)
{
Boolean adc__on;
byte adc_mode;

XtVaGetValues(button,XtNstate,&adc^on,NULL);
if (adc_on)
XtVaSetValues(button,XtNlabel,"MANUAL DEPTH",NULL);

else
XtVaSetValues (button,XtNlabel, "AUTO DEPTH",NULL) ;

adc_mode = adc_on;
Send_Msg(HIGH_CONTROL, 1, AUTODEPTH, &adc_irvode) ;

}

/* Toggle the AHC on or off. */

static void ahc_switch (Widget button)
{
Boolean ahc_on;
byte ahc__mode ;

XtVaGetValues(button,XtNstate,&ahc_on,NULL);
if (ahc_on)
XtVaSetValues(button,XtNlabel, "MANUAL HEADING-,NULL);

else
XtVaSetValues(button,XtNlabel,"AUTO HEADING",NULL);

ahc_mode = ahc__on;
Send_Msg(HIGH_CONTROL,1,AUTOHEADING,&ahc_mode);

}

/* Send message to ROV, commanding it to go up. */

static void rov_up()
{
static int depressed = FALSE;
int motor__speed;

if (depressed)
motor_speed = 0;

2 0 0

else
motor_speed = -100;

Send_Msg(HIGH_CONTROL,sizeof(motor_speed),V_VELOCITY,
&inotor_speed) ;

depressed - !depressed;
}

/* Send message to ROV, commanding it to go down. */

static void rov_down()
{
static int depressed = FALSE;
int motor_speed;

if (depressed)
motor_speed = 0;

else
motor_speed = 100;

Send_Msg(HIGH_CONTROL,sizeof(motor_speed),V_VELOCITY,
&motor_speed);

depressed = ! depressed;
}

static Widget rov__panel;

/* Actions which display the latest depth and heading from the ROV
in a special panel. */

void display_status(rov_status *status)
{
char display[21];

sprintf(display,"DPTH:%6d HDNG:%3d",status->depth,
status->compas s);

XtVaSetValues(rov_panel,XtNlabel,display,NULL);
XFlush(thedisplay);

}

/* The turn control is a scroll bar which snaps back to the zero
position when released. Only the middle button has any effect.
On the real ROV control panel it is a knob which has this
behaviour. */

void snap_back(Widget turnscroll)
{
int differential - 0 ;

2 0 1

XawScroUbarSetThumb (turnscroll, 0.45, 0.1);
Send„Msg(HIGH„CONTROL,sizeof(int),HEADING,&differential);

}

float adjust_thumb(float pos)
{
pos -= 0.05; /* The middle of the thumb tracks the pointer. */
/* Keep the whole thumb in view: */
if (pos < 0)
pos = 0;

else if (pos > 0.9)
pos = 0.9;

return(pos);
}

void jump_turn(Widget turnscroll,XtPointer client_data,
XtPointer call_data)

{
int differential;
float pos = * (float *)call_data;

differential = 100 - 200 * pos;
pos = adjust__thumb(pos) ;
XawScroUbarSetThumb (turnscroll, pos, 0.1) ;
Send_Msg(HIGH_CONTROL,sizeof(int),HEADING,&differential);

}

Widget create_scroll(Widget box,XtArgVal orientation,
XtArgVal length,float topofthumb,float shown)

(
Arg args[4];

XtSetArg(args[0],XtNorientation,orientation);
XtSetArg(args[1],XtNlength,length);
if (sizeof(float) > sizeof(XtArgVal))

{
/* If a float is larger than an XtArgVal then pass these
resources by reference. */
XtSetArg(args[2],XtNtopOfThumb,&topofthumb);
XtSetArg(args[3],XtNshown,&shown);

}
else

{
/* Convince C not to perform an automatic conversion. */
XtArgVal *l_top = (XtArgVal *)&topofthumb.

2 0 2

*l_shown = (XtArgVal *)&shovm;

XtSetArg(args[2],XtNtopOfThumb,*l_top);
XtSetArg (args [3], XtNshown, *l__shown) ;

)
return(XtCreateManagedWidget("scroll",scrollbarWidgetClass,box,

args,FOUR));
)

void setup_turn_control()
(
Widget turnbox,turnscroll;
static XtActionsRec turn__actions[] = {{"snap_back",snap_back)};

XtAppAddActions(app_con,turn_actions,1);
turnbox = XtCreateManagedWidget("turnbox",boxWidgetClas s,

app_slotbox[HIGH_CONTRQL],NULL,ZERO);
XtCreateManagedWidget("Turn Control:",labeiWidgetClass,turnbox,

NULL,ZERO);
turnscroll = create_scroll(turnbox,XtorientHorizontal,100,0.45,

0.1);
XtAddCallback(turnscroll, XtNjumpProc,junp_turn,NULL);
XtOverrideTranslations(turnscroll,

XtParseTranslationTable(
"<BtnUp>: NotifyScroll(Proportional) EndScroll() snap_back()"));
}

/* Two scroll bars control the horizontal movement of the ROV.
The real ROV control panel has a joystick for this. */

static horizontal__velocity horiz_v = {0,0};

void jump_horizontal(Widget scroll,XtPointer client_data,
XtPointer call_data)

{
float pos = *(float *)call_data;
int direction = (int)client_data;

if (direction == DRIVE_FORWARD)
horiz_v-forward = 100 - 200 * pos;

else
horiz_v.right = 200 * pos - 100;

pos = adjust_thumb(pos);
XawScroUbarSetThumb (scroll, pos, 0.1) ;
Send_Msg(HIGH_CONTROL,sizeof(horiz_v),H_VELOCITY,&horiz_v);

}

203

void setup_drive_control0
{
Widget drivebox,drivescroll;

drivebox = XtCreateManagedWidget("drivebox",boxWidgetClass,
app_slotbox[HIGH_CONTROL],NULL,ZERO);

XtCreateManagedWidget("Drive Control:",labeiWidgetClass,
drivebox,NULL,ZERO);

drivescroll = create_scroll(drivebox,XtorientVertical,100,0.45,
0.1);

XtAddCallback(drivescroll,XtNjunç)Proc,]um%)_horizontal,
(XtPointer)DRIVE_FORWARD);

drivescroll = create_scroll(drivebox,XtorientHorizontal,100,
0.45,0.1);

XtAddCallback(drivescroll,XtNjumpProc,jump_horizontal,
(XtPointer)DRIVE_SIDEWAYS);

}

static char *motor_naine[NMOTORS] = {"Left Side","Right Side",
"Left Rear","Right Rear"};

void rov()
{
Widget control,button;
int motor;

Slot(HIGH„CONTROL,1,"HIGH_CONTROL");
Slot(LOW_CONTROL,2,"LOW__CONTROL");
if (FEEDBACK I- LOW_CONTROL)

Slot(FEEDBACK,2,"FEEDBACK");
Slot(ROV,3,"ROV");

/* Global type definitions; */

G1obal_Dec1are(rov_types);

/* Setup high level control, selecting speed for motors based on
user input or autodepth/heading: */

Module(HIGH_CONTROL,high_control);
Declare(HIGH_CONTROL,high_decs);

/* Setup low level control: */

Module(LOW_CONTROL,motor_control);

204

Declare (LOW_CONTROL,rootor__clecs) ;
Init_Slot(LOW_CONTROL,motor_init);
Module(FEEDBACK,poll);
Declare(FEEDBACK,poll_decs);
Init_Slot(FEEDBACK,poll_init);

/* Setup simulated ROV; */

Module(ROV,rov_actions);
Declare(ROV,rov_decs);
Init_Slot(ROV,rov_init);

/* A control panel containing up, down, autodepth and
autoheading buttons is added to the application box in the
HIGH_CONTROL slot output window. */

control = app_slotbox[HIGH_CONTROL];

/* Pressing either of the up or down buttons (by pointing to the
button and pressing mouse button 1) causes the ROV to drive
in that direction. Releasing the button (by releasing the
mouse button) causes it to stop. */

button = XtCreateManagedWidget("UP",toggleWidgetClass,control,
NULL,ZERO);

XtAddCallback(button,XtNcallback,rov„up,NULL);
XtOverrideTranslations(button,

XtParseTranslationTable(
"<BtnlDown>; toggle() notify()\n <BtnlUp>; toggle() notify()"));
button = XtVaCreateManagedWidget("DOWN",toggleWidgetClass,

control,XtNfromVert,button,
XtNradioGroup,button,NULL); I

XtAddCallback(button,XtNcallback,rov_down,NULL);
XtOverrideTranslations(button,

XtParseTranslationTable(
"<BtnlDown>; toggle() notify()\n <BtnlUp>; toggle() notify()"));

button = XtCreateManagedWidget("AUTO DEPTH",toggleWidgetClass,
control,NULL,ZERO);

XtAddCallback(button,XtNcallback,adc_switch,NULL);

button = XtCreateManagedWidget("AUTO HEADING",toggleWidgetClass,
control,NULL,ZERO);

XtAddCallback(button,XtNcallback,ahc_switch,NULL);

setup_turn_control();

205

1

setup_drive_control();

/* Panel for showing the latest depth and heading. */

rov_panel = XtCreateManagedWidget(" ",
labeiWidgetClass,
control,NULL,ZERO);

/* Actions which update the panel. */

Def_Port(DISPLAY_STATUS,display_status,rov_status,2,1,LO_PRI);
)

/* rov__types.c - User defined types for the rov application. */

#include <action_lib.h>

void rov_types()
{
define_structure(FALSE,"horizontal_velocity",2,"int","right",

"int","forward");
define„structure(FALSE,"velocity_vector",3,"int","right",

"int","forward","int","down");
define_structure(FALSE,"nK>tor_info",2,"byte","speed",

"s_byte","direction");
define_structure(FALSE,"motor_status",2,"byte","state",

"s_byte","direction");
define_strueture(FALSE,"rov_status",2,"int","depth",

"int","compass");
}

/* high„control.c - Actions for the HIGH_CONTROL slot. These are
responsible for all the high level control of the ROV,
including autodepth, autoheading and maintaining safety
conditions. */

#include <math.h>
#include <action_lib.h>
#include "rov.h"

#define MAX_MOTOR_CHANGE 20
#define MOTOR_SAFETY_LIMIT 180

extern int target_depth;
extern int targetjtieading;
extern int autodepth_tolerance;
extern int autoheading„tolerance;

206

extern motor„info motor_settings[NMOTORS];
extern s_byte motor_target[NMOTORS];
extern velocity„vector velocity;
extern int manual_v;
extern int manual_diff;
extern int rear_differential;
extern byte autodepth_mode;
extern byte autoheading_joode;
extern int autodepth_factor;
extern int autoheading_factor;
extern rov_status status;
extern int report_settings;

/* Utility functions; */

static void compute_new_targets()
{
int motor;

/* We could do bounds checking on the velocities, but we just
assume that the interface restricts them to the feasible
region. */

motor_target[LEFT_SIDE] = (velocity.down + velocity.right)/2;
motor_target[RIGHT_SIDE] = (velocity.down - velocity.right)/2;
motor_target[LEFT_REAR] = (velocity.forward

- rear_differential)/2;
motor_target[RIGHT_REAR] - (velocity.forward

+ rear_differential)/2;

/* Safety condition; the sum of the motor speeds on either side
must be within a limit. */

while (abs(motor_target[LEFT_SIDE])
+ abs(motor_target[LEFT_REAR]) > MOTOR_SAFETY_LIMIT ||
abs(motor_target[RIGHT„SIDE])
+ abs (motor_target [RIGHT_REAR]) > MOTOR_SAFETY_LIMIT)

C
/* Reduce all motor speeds by 75% until within bounds. */
for (motor = 0; motor < NMOTORS; motor++)
motor_target[motor] * - 0.75;

Prints("SAFETY: motors cut to 75%\n");
)

static int ad j us t__mo tor_speeds ()

207

{
int motor,changed = FALSE;
s_byte motor_state,new_state,delta;
motor_info settings;

for (motor =0; motor < NMOTORS; motor++)
{
motor_state = motor_settings[motor].speed

* motor_settings[motor].direction;
delta = motor_target[motor] - motor__state;

/* Motor speed change is limited. If the change exceeds
this limit, it will need to happen in several steps. */

if (delta > MAX_MOTOR_CHANGE)
delta = MAX_MOTOR_CHANGE;

else if (delta < -MAX_MOTOR_CHANGE)
delta = -MAXJMOTOR_CHANGE;

new_state = motor_state + delta;
if (new_state >= 0)

{
settings.speed = new_state;
settings.direction = 1;

}
else

{
settings.speed = -new_state;
settings.direction = -1;

)

/* The motor must stop for one cycle in order to change
direction. */

if (motor„settings[motor].speed > 0 &&
settings.direction != motor__settings[motor].direction)

settings.speed = 0;
motor_settings[motor] = settings;

}
}

static void adjust_motors()
{
compute_new__t arget s () ;
adjust_jnotor_speeds () ;
SendJMsg(LOW_CONTROL,NMOTORS * sizeof(motor„info),UPDATE_MOTORS,

208

motor_settings);
if {report„settings)

{
name_string buf;

sprintf(buf,"%g: motor_settings = ",rtime());
Prints(buf);
Print_Var(motor_info[4],motor__settings);

}
)

#define Bound(v,b) (v < -b ? -b : v > b ? b : v)

/* Compute vertical motor setting required to make up for depth
di s crepancy. * /

static int auto_vertical(int delta)
{
if (abs(delta) > autodeptb_tolerance)

{
int V = Bound(autodepth_factor * delta,100);

return(v);
)

else
return(0);

)

/* Compute rear motor differential required to make up for heading
di s crepancy. */

static int auto_turn(int delta)
{
if (delta > 180)
delta -= 360;

else if (delta < -180)
delta += 360;

if (abs(delta) > autoheading_to1erance)
{
int d = Bound(autoheading__factor * delta,100);

return(d);
}

else
return(0);

)

209

/* Actions: * /

void h_velocity(horizontal_velocity *h)
{
velocity.right - h->right;
velocity.forward = h->forward;
adjustjnotors();

)

void zero_depth(int *depth);

void v_velocity(int *rate)
{
manual_v = *rate;
velocity.down = manual_v;
adjust_motors();
if (manual_v == 0 66 autodepth_jmode)

/* This is the end of a temporary manual override of
autodepth. Try to maintain the next reported depth. */

Set_Port(DEPTH_REPORT,zero_depth);
}

void autodepth(byte *status)
{
autodepth_mode = *status;
if (autodepth_mode) / * try to maintain the depth at next

reported value */
Set_Port(DEPTH_REPORT,zero_depth);

)

void hold_depth(int *depth);

/* Reset the target depth for autodepth control to the reported
value, then go back into the hold state. */

void zero_depth(int *depth)
{
target__depth = * depth;
Set_Port(DEPTH_REPORT,hold_depth);
status.depth = *depth;

}

void hold_depth(int *depth)

2 1 0

{
if (manual_v == 0 && autodepth_mode)

/* Autodepth is engaged and not being temporarily overridden
by the up and down controls. Cortqpute a correction to try
and achieve the target depth. */

velocity.down = auto__vertical(target_depth - *depth);
status.depth = *depth;

}

void zero_heading(int *con^ass);

void heading(int *differential)
{
manual_diff = *differential;
rear__dif ferential = manual__diff ;
adjust_motors();
if (manual_diff == 0 66 autoheading_mode)

/* This is the end of a temporary manual override of
autoheading. Try to maintain the next reported heading. */

Set_Port(HEADINGJREPORT,zero_heading);
}

void autoheading(byte *status)
{
autoheading_mode = *status;
if (autoheading_mode)

Set_Port(HEADING_REPORT,zero_heading);
}

void hold_heading(int *compass);

void zero_heading(int *compass)
(
target__heading = * compass;
Set_Port(HEADING_REPORT,holdjheading);
status.compass = *compass;
Send_Msg(HOST_ID,sizeof(rov_status),DISPLAY_STATUS,&status);

}

void hold_heading(int *compass)
{
if (manual_diff == 0 && autoheading_mode)

2 1 1

/* Autoheading is engaged and not being temporarily overridden
by the manual heading control. Confute a correction to try
to achieve the target heading. */

rear_dif ferential = auto__turn (target__heading - * compass) ;

adjust_jnotors () ;
status.compass = *compass;
SendJMsg(HOST_ID,sizeof(rov_status),DISPLAY_STATUS,&status);

}

/* high_decs.c - Declarations for HIGH_CONTROL slot. */

#include <action_lib.h>
#include "rov.h"

void high_decs()
{
motor_info initjmotor_settings[NMOTORS]

= C{0,1),(0,1),{0,1}, {0,1}};
velocity_vector init_velocity = {0,0,0};

Def_Port(H_VELOCITY,h_velocity,horizontal_velocity,0,1,L0__PRI);
Def_Port(V_VELOCITY,v_velocity,int,0,1,LO_PRI);
Def_Port(AUTODEPTH,autodepth,byte,0,1,LO_PRI);
Def_Port(HEADING,heading,int,0,1,LO_PRI);
Def_Port(AUTOHEADING,autoheading,byte,0,1,LO_PRI);
Def_Port (DEPTH__REPORT, hold_depth, int, 0,1,L0__PRI) ;
Def_Port(HEADING__REPORT,hold_heading,int,0,1,LO_PRI);

Var (int, target__depth) ;
Var(int,target_heading);
Var_I (int, autodepth__tolerance, 1) ;
Var_I(int,autoheading_tolerance,1);
Array_I(motor_info,motor_settings,NMOTORS,init_motor_settings);
Array(s_byte,motor_target,NMOTORS);
Var_I(velocity_vector,velocity,init_velocity);
Var_I(int,manual_v,0);
Var_I(int,manual_diff,0);
Var_I(int,rear_differential,0);
Var_I(byte,autodepthjnode,FALSE);
Var_I(byte,autoheading__mode,FALSE);
Var_I (int, autodepth__factor, 5) ;
Var_I(int,autoheading_factor,5);
Var(rov_status,status);
Var_I(int,report_settings,FALSE);

2 1 2

' -i

)

/* low_control.c - Actions for the low level motor control. */

tinclude <action_lib.h>
#include "rov.h"

extern rtime_t duty_cycle;
extern rtime__t next_duty_cycle;
extern rtime_t safety_margin;
extern int on__count ;
extern byte motor__state [3 ;
extern motor_info motor__settings [] ;
extern rtime_t fudge_factor;

static const byte motor_bit[NMOTORS] = {0x01,0x02,0x04,0x08};

/* Switch one of the motors on or off. Each motor is switched on
for a percentage of the duty cycle given by the speed. A
switch_motor action is scheduled for each motor at the start of
each duty cycle and at a point into the cycle given by the
speed. */

void switch_on()
{
int i,j; !
rtime_t now = rtime () ; I
byte different_speed[NMOTORS] = {TRUE,TRUE,TRUE,TRUE),
motors_on = MOTOR_ON,
motors_plus = MOTOR__PLUS,
motors_minus - MOTOR_JdINUS;

while (next_duty__cycle < now)
next_duty_cycle += duty__cycle;

/* Motors which have the same speed are scheduled to be turned
off at the same time. All motors which are to be turned on
are grouped and turned on together. Similarly all motors
rotating in the positive direction are grouped separately
from those rotating in the negative direction. */

for (i = 0; i < NMOTORS; i++)
{
if (motor_settings[i].speed > 0) /* Don't turn on motors '

with speed 0. */
motors_on I= motor_bit[i];

if (motor_settings[i].direction -= 1)]
!

213 I

!

motors_plus I = motor_Jbit [i] ;
else
motors_minus I= motor_bit[i];

}

Send_Msg(ROVL.DEV, 1,10,&motors_j>lus) ;
Send_Msg{ROV_DEV,1,10,&motors_minus);
SendJMsg(ROV_DEV,1,10, fiemotors_on);
now = rtime () ;
for (i = 0; i < NMOTORS; i++)
if (different_speed[i])

{
byte motors__off = MOTOR_OFP,
speed = motor_settings[i].speed;

for (j = i;] < NMOTORS; j++)
if (motor_settings[j].speed == speed)

{
motors_off 1= rootor_bit[j];
different_speed[j] = FALSE;

}
/* Don't schedule a switch_off for motors which on all the

time. */

if (speed < 100)
{
route_send_msg(slot_id,1,SWITCH_OFF,

now + duty_cycle * speed/100.0 + fudge_factor,
&motors_off);

on_count++;
)
)

if (on_count == 0)
reschedule_for(next_duty_cycle);

}

/* Action which switches off a set of motors.
If these are the last motors to be switched off in this duty
cycle the switch_on action is rescheduled. */

void switch_off(byte *motors_off)
{
Send_Msg(ROV_DEV,1,10,motors_off);
if (— on_count == 0)
route_send_jnsg(slot_id, 0, SWITCH_ON,next_duty_cycle,NULL) ;

214

}

/* Action which adjusts the motors with the value sent from the
higher level control slot. */

void update_motors(motor__info settings[])
{
int motor;

for (motor = 0; motor < NMOTORS; motor++)
motor_settings[motor] = settings[motor];

}

/* motor_decs.c - Declarations for low level motor control
actions. */

#include <action_lib.h>
#include "rov.h"

static motor_info init_motor_settings[NMOTORS]
= {{0,1) ,{0,1), (0,1) ,{0,1}};

void motor_decs()
{
Var_I(rtime_t,duty_cycle,1.0);
Var_I (rtime_t,next_duty_cycle,rtime());
Var_I (rtime_t,safety_margin,0.001);
Var_I(int,on_count,0);
Var_I{rtime_t,fudge_factor,0);
Array_I(motor_info,motor_settings,NMOTORS,ini t_motor_settings);
Def_Port(UPDATE JMOTORS,update_motors,motor_update[4],0,1,

LO_PRI);
Port(SWITCH_ON,switch_on);
Def_Port(SWITCH_OFF,swi tch_off,byte,0,0,HI_PRI);
set__post (Pri (0)) ;

}

/* Motor_init.c - initialisation for the low level motor control
actions. */

#include <action_lib.h>
#include "rov.h"

extern rtime__t next_duty_cycle;

void motor_init()
{

215

/* start duty cycle; */

route_send_jnsg(slot_id, 0, SWITCH_ON,next_duty_cycle,NULL) ;
}

/* poll.c - Actions for performing the polling for depth and
compass values which are reported back to the HIGH_CONTROL
slot. */

#include <action_lib.h>
#include "rov.h"

extern rtime_t duty_cycle;
extern rtime_t next_duty_cycle;

void report_depth(int *status_value);
void report_compass(int *status_value);

void poll_depth()
{
byte depth_request = DEPTH__POLL;
rtime_t now = rtime();

if (FEEDBACK != LOW_CONTROL)
while (next_duty_cycle < now)

next_duty_cycle += duty_cycle;
SendJMsg(ROV_DEV,1,11,&depth_request);
Set_Port(STATUS,report_depth);

}

void report_depth(int *status_value)
{
byte compass_request = COMPASS_POLL;

Send_Msg(HIGH_CONTROL,sizeof(int),DEPTH_REPORT,status_value);
Send_Msg(ROV_DEV,1,12,&conpass_request);
Set_Port(STATUS,report_compass);

)

void report„compass(int *status_value)
{
Send_Msg(HIGH_CONTROL,sizeof(int),HEADING_REPORT,status_value);
route_send_msg (slot_id, 0, POLL„DEPTH, next_duty_cycle, NULL) ;

}

/* poll_decs.c - Declarations for depth and compass polling
actions. */

216

#include <action_lib.h>
#include “rov.h"

void poll_decs()
{
if (FEEDBACK != LOW_CONTROL)

{
Var_I (rtime_t, duty_cycle, 1.0);
Var_I (rtime„t,next_duty_cycle, rtime ()) ;

)
Def_Port(POLL_DEPTH,poll_depth,void,0,1,LO_PRI);
Data_Port(STATUS,report__depth,int);

}

/* poll_init.c - initialisation for the LOW_CONTROL slot. */

iinclude <action_lib.h>
iinclude "rov.h"

void poll_init()
{
int motor;

G onfigure_device(ROV_DEV,sizeof(int),slot_id,STATUS);

/* Start polling; */

Send_Msg(slot_id,0,POLL_DEPTH,NULL);
)

/* rov_actions.c - Code for the ROV simulation. */

#include <action_lib.h>
#include "rov.h"

#define BOTTOM_DEPTH 1000

/* Constants which determine the rate at which the depth changes
with the combined effect of the side motors and the heading |
with the difference between the rear motors. */ 1

#define DRIVE_RATE 10.0
#define ANGULAR_DRIVE_RATE 10.0 |

extern double depth; |
textern double compass; {
I

217

extern double env;
extern rtime_t old_t;
extern motor_status motor[];
extern double heading_drift__factor;
extern rtime_t on_time[];
extern int report_durations;

static const byte motorjbit[NMOTORS] = {0x01,0x02,0x04,0x08};

#define Motor__Val(i) (motor[i].state * motor[i].direction)

void update_depth(rtime_t now)
{
/* Assume very high damping, instant acceleration and terminal

velocity proportional to net force. */
double down_v = (Motor_Val(LEFT_SIDE) + Motor_Val(RIGHT_SIDE))

* DRIVE_RATE + env;

depth += down_v * (now - old_t);
if (depth < 0) depth = 0;
else if (depth > BOTTOM_DEPTH) depth = BOTTOM„DEPTH;

}

void update_compass (rtime_t now)
{
/* Assume very high damping, instant acceleration and terminal

angular velocity proportional to net torque. */
double angular_v = (Motor__Val(RIGHT_REAR)

- Motor_Val(LEFT_REAR)) * ANGULAR_DRIVE_RATE
+ heading_drift_factor

* (2*rand()/32767.0 -1) ;
int intcompass;

compass = compass + angular_v * (now - old_t);
intcompass = compass;
compass = intcompass % 360 + compass - intcompass;
if (compass < 0) compass += 360;

}

/* There is only one action as this is a simulated device. All
messages come to the same port and the contents must be
decifered to distinguish the type of message. */

void rov_message(byte *data)
{
rtime_t now = rtime();

218

int value,i;

update_depth(now);
updat e_compas s(now);
old_t = now;

switch (*data & ROV_SELECT_MASK)
{
case MOTOR_OPF:

for (i = 0; i < NMOTORS; i++)
if (*data & motorjbit[i])

{
byte old_state = motor[i].state;
motor[i].state = OFF;
if (report_durations && old_state)

{
name_string buf;

sprintf(buf,"%g; motor %d, %g seconds\n", now,i,
now-on_time[i]);

Prints(buf);
)
}

break;
case MOTOR_ON;

for (i = 0; i < NMOTORS; i++)
if (*data & motor_bit[i])

{
motor[i].state = ON;
on_time[i] = now;

}
break;

case MOTOR_PLUS:
for (i = 0; i < NMOTORS; i++)
if (*data & motorjbit[i])
motor[i].direction = 1;

break; j

case MOTORJMINUSî !
for (i = 0; i < NMOTORS; i++)

if (*data & motor_bit[i])
motor[i3.direction = -1;

break;
case DEPTH_POLL:

value = depth; /* convert double to int */
Send_Msg(CONTROL_DEV,sizeof(int),0,Gvalue);
break;

219

case COMPASS_POLL:
value = compass; /* convert double to int */
SendJMsg(CONTROL_DEV,sizeof(int),l,&value);
break;

}
}

/* rov_decs.c - declarations of state variables and ports for rov
simulation slot. */

#include <action_lib.h>
#include "rov.h"

static motor_status motor__init [NMOTORS]
= {{0,1},(0,1),{0,1},{0,1}};

void rov_decs()
{
Def_Port(ROV_MESSAGE,rov_message,byte,0,6,LO_PRI);

Var_I(double,depth,0.);
Var_I (double, conç>ass, 0.) ;
Var_I (double, env,-0.1);
Var_I(double,heading_drift_factor,1);
Var_I (rtime_t, old_t, rtime());
Array_I (motor_status, motor, NMOTORS, motor__init) ;
Array (rtime_t, on__time,NMOTORS) ;
Var_I (int,report_durations,FALSE);

}

/* Rov_init.c - initialisation for the ROV simulation slot. */

tinclude <action_lib.h>
tinclude "rov.h"

void rov„init()
{
conf igure_device (CONTROL__DEV, 1, ROV, ROV_MESSAGE) ;

}

2 2 0

