
EFFECTIVE TERMINATION TECHNIQUES

Nick I. Cropper

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1997

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13453

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13453

Effective Termination Techniques

Nick I Cropper

30 September 1996

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Computer Science

at the University of St Andrews

ProQuest Number: 10167225

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167225

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

\ V

Î

I, Nick Cropper, hereby certify that this thesis, which is approximately

30 000 words in length, has been written by me, that it is the record of

work carried out by me, and that it has not been submitted in any previous

application for a higher degree.

date 1̂ / 3 / 4 1 _____ signature of candidate __---------------------------- ---------

I was admitted as a research student in October 1992 and as a candidate

for the degree of doctor of philosophy in October 1993; the higher study

for which this is a record was carried out in the University of St Andrews

between 1992 and 1995.

date signature of candidate . ----- :—

I hereby certify that the candidate has fulfilled the conditions of the Res­

olution and Regulations appropriate for the degree of doctor of philosophy

in the University of St Andrews and that the candidate is qualified to submit

this thesis in application for that degree.

da te / 2. signature of supervisor____

In submitting this thesis to the University of St Andrews I understand

that I am giving permission for it to be made available for use in accordance

with the regulations of the University Library for the time being in force,

subject to any copyright vested in the work not being affected thereby. I also

understand that the title and abstract will be published, and that a copy

of the work may be made and supplied to any bona fide library or research

worker.

d a te W (___ signature of candidate ________________ ______

Order leads to all the virtues!

but what leads to order?

Georg Christoph Lichtenherg

%o Ê>m

Abstract

An important property of term rewriting systems is termination: the guar­

antee that every rewrite sequence is finite. This thesis is concerned with

orderings used for proving termination, in particular the Knuth-Bendix and

polynomial orderings.

First, two methods for generating termination orderings are enhanced.

The Knuth-Bendix ordering algorithm incrementally generates numeric and

symbolic constraints that are sufficient for the termination of the rewrite

system being constructed. The KB ordering algorithm requires an efficient

linear constraint solver that detects the nature of degeneracy in the solution

space, and for this a revised method of complete description is presented that

eliminates the space redundancy that crippled previous implementations.

Polynomial orderings are more powerful than Knuth-Bendix orderings,

but are usually much harder to generate. Rewrite systems consisting of

only a handful of rules can overwhelm existing search techniques due to the

combinatorial complexity. A genetic algorithm is applied with some success.

Second, a subset of the family of polynomial orderings is analysed. The

polynomial orderings on terms in two unary function symbols are fully re­

solved into simpler orderings. Thus it is shown that most of the complexity of

polynomial orderings is redundant. The order type (logical invariant), either

r or A (numeric invariant), and precedence is calculated for each polynomial

ordering. The invariants correspond in a natural way to the parameters of

the orderings, and so the tabulated results can be used to convert easily

between polynomial orderings and more tangible orderings.

IV

The orderings of order type are two of the recursive path orderings.

All of the other polynomial orderings are of order type w or ufi and each can

be expressed as a lexicographic combination of r (weight), A (matrix), and

lexicographic (dictionary) orderings.

The thesis concludes by showing how the analysis extends to arbitrary

monadic terms, and discussing possible developments for the future.

Acknowledgement s

I would like to thank my supervisor, Ursula Martin, for guiding me through

the intractabilities of termination and for the many stimulating and insightful

discussions. I am very grateful to the termination community, particularly

the participants of the termination workshops, with particular thanks to

Joachim Steinbach, Jürgen Giesl, and Elizabeth Scott.

It was a pleasure to study in the Computer Science Division, and I would

like to thank my colleagues in St Andrews and York who supported this work.

I must also take this opportunity to thank my friends and family who

have been so tolerant during this indulgent but immensely rewarding period

of my life.

VI

Contents

0 In trod u ction 1

0.0 Terminating P ro cesses .. 1

0.1 Termination in P r a c t i c e ... 3

0.2 Term R ew riting ... 5

0.3 Proving T erm ination ... 10

0.3.0 Monadic T e rm s .. 14

0.3.1 Order In v a r ia n ts ... 15

0.3.2 Polynomial A n a ly s is .. 16

0.4 Document S tru c tu r e ... 18

1 P relim inaries 20

1.0 N o ta tion ... 20

1.1 T e r m s .. 20

1.2 Term R ew riting... 21

1.3 O rd e rin g s ... 23

1.3.0 Weight O rderings... 26

1.3.1 Knuth-Bendix O rderings.. 26

1.3.2 Recursive Path O rd e rin g s ... 27

1.3.3 Polynomial O rd e r in g s ... 27

2 K n u th -B en d ix O rdering A lgorith m 31

2.0 Introduction... 31

2.1 P re lim in a ries 32

2.1.0 Vectors and M atrices.. 32

VII

Contents viii

2.1.1 Linear In eq u a lities ... 34

2.1.2 Hyperplanes.. 36

2.1.3 Cones and Polyhedra.. 36

2.1.4 Double D escription.. 37

2.1.5 Degeneracy .. 37

2.2 Incremental KB Ordering A lg o rith m .. 38

2.3 Method of Complete D esc rip tio n .. 41

2.4 Illustration of Redundancy in M C D ... 42

2.5 Removing Redundancy from the M C D 47

2.6 Revised M C D .. 49

2.7 C onclusions... 49

3 G enetic T erm in atio n 52

3.0 In troduction... 52

3.1 Termination by Polynomial O rderin g .. 55

3.1.0 Method of BenCherifa & L escan n e 56

3.1.1 Method of S te inbach ... 57

3.1.2 Method of G iesl.. 58

3.1.3 Gradients M e th o d .. 58

3.2 Genetic A lgorithm s.. 60

3.2.0 E n c o d in g .. 60

3.2.1 F itness.. 62

3.2.2 Selection... 62

3.2.3 R ecom bination .. 63

3.2.4 M u ta t io n .. 64

3.2.5 Trials .. 64

3.3 Further D evelopm ents.. 67

3.3.0 Learning Termination Tool 67

Contents ix

3.3.1 Numerical O p tim isa tion .. 70

3.4 Conclusions... 71

4 A n alysis o f P o lyn om ia l O rderings 73

4.0 In troduction... 73

4.1 Polynomial Orderings on Monadic Term s..................................... 73

4.2 Ordering Invariants.. 76

4.2.0 Order Types ... 77

4.2.1 Numeric Invarian ts ... 78

4.2.2 Lexicographic E x te n s io n s ... 80

4.3 Two Unary Function Sym bols... 82

4.3.0 Order Types ... 85

4.3.1 Numeric Invarian ts ... 89

4.3.2 Lexicographic E x te n s io n s ... 92

4.3.3 Summary for Two Unary Function S y m b o ls 97

4.4 Three Unary Function S y m b o ls ... 99

4.4.0 Order Type lu .. 100

4.4.1 Order Type ...101

4.4.2 Order Type ...103

4.5 Further D evelopm ents...104

5 C onclusions 106

5.0 S u m m a ry ...106

5.1 Pipeline of Ordering F a m ilie s ..107

5.2 Extending the O rderings... 107

5.3 Test B e d .. 108

5.4 Complexity L in k s .. 108

List of Tables

0.0 Order types of total simplification orderings on binary strings. 16

0.1 Polynomial orderings on binary monadic terms (summary). . 17

4.0 Polynomial orderings on monadic terms over 2-letter alphabet. 84

4.1 Polynomial orderings on monadic terms over 3-letter alphabet. 100

List of Figures

0.0 A nested loop (in Pascal) ... 3

2.0 Incremental Knuth-Bendix Ordering A lg o rith m 41

2.1 Method of Complete D esc rip tio n .. 42

2.2 Revised Method of Complete Description 49

3.0 Partitioning the hypercube.. 55

3.1 Well-foundedness of polynomial orderings.................................... 57

3.2 Genetic Algorithm for T erm ination ... 60

XI

Notation

Abbreviations Page refs for symbols

a.k.a. also known as == 5

cf. compare —1> 22

e.g. for example 22

etc. and so on ^ pol 74

i.e. that is 78

iff if and only if 79

resp. respectively >Rilrx 81

s.t. such that 4 83

wlog without loss of generality

w.r.t. with respect to

xn

0 Introduction

In this chapter we describe what is meant by ‘termination’, set

a context for the subsequent discussion, and give an overview of

the document.

0.0 Term inating Processes

Let us begin by considering the progress of a hypothetical slide show. Sup­

pose the projectionist has a number of boxes of slides, each box contain­

ing slides numbered sequentially from 0 . For this viewing the projection­

ist will present one box of slides, projecting the slides in reverse ordet:

50, (gQ — 1), . . . ,1 ,0 . Before the first slide is projected, all the audience knows

regarding running length is that the first slide will be indexed by a positive

whole number, that each successive index will be smaller, and that no slide

has a negative index. Thus the audience deduces that only a finite number

of slides will be shown and therefore the viewing must eventually terminate.

If the projectionist promises that no slide will be projected for longer

than some upper bound, five minutes say, then as soon as the index of the

first slide (sq) is known, an upper bound ((sq + 1) x 5 minutes) for the entire

viewing is known. This upper bound holds even if the projectionist omits

some slides from the box.

Now suppose that the projectionist intends to present 2 boxes of slides:

5 1, (si — 1) , . . . , 1,0, So, (sq — 1) , . . . , 1,0. The audience can no longer place

an upper bound on the length of the viewing, even after the index of the

first slide is known. It is not until the slides of the second box are projected

0.0 Terminating Processes

that ‘time until termination’ can be bounded. Nevertheless, the audience

can still characterise the terminating nature of the viewing; the ‘double box’

viewing is simply the sequential composition of two versions of the ‘single

box’ viewing. Logicians say the ‘single box’ sequence (natural numbers under

the usual ordering) has ‘order-type’ w. (This terminology will be formally

defined in Chapter 1.) The order-type of the ‘double box’ sequence (• • • >

2 > l > 0 > - ' - > 2 > l > 0) i s w 4-w, written w.2 .

Finally suppose that the projectionist will present an unspecified number

of boxes of slides, but that each box is indexed in the same manner as the

slides. Before arriving at the viewing, the audience are ignorant not only

of the number of slides in each box, but also of the number of boxes. The

sequence of boxes will have order-type w, and the slides of each box will have

order type uj, so the termination nature of the viewing can be characterised

by w.w, written (Although these order-types are daunting for the pro­

jectionist’s audience and yet ‘tiny’ in comparison to those sometimes used in

termination practice, they are roughly as large as we will find useful in the

sequel.)

In 1949 Alan Turing used order-types to prove the termination of a sec­

tion of computer program, represented in a modern programming language

in Figure 0.0. Turing used

“a;^.(n — r) -{- o).(i— s) -f fc”

as a sequentially decreasing expression to demonstrate its termination.®

Noticing that the expression pair (n — r, r — s) follows the same sequence

as the pair {box-index, slide-index) from the example above, we can conclude

that the termination of the program is also characterised by the order-type

“Turing suggested 2“’° could be substituted for w since that was an upper bound for the
variables the particular computer could represent. The variable k was due to an expression
that fluctuated from line to line in the original representation.

0.1 Termination in Practice

r := 1; u := 1 V := 1;
while r < n do

begin
s := 1;
while s <= r do

begin
u := u + v ;

s := s + 1
end;

r := r + 1;
V : = u

end

Figure 0.0: A nested loop (in Pascal)

ufi. In abstracting away the slides and Pascal code, we can focus on the

expressions that characterise the advancement towards termination. If we

can prove that such an expression follows (or is contained in) a decreasing

sequence that cannot decrease indefinitely, we have proved termination.

0.1 Term ination in Practice

Many computer systems in use produce meaningful data only in the event

of the computation reaching a conclusion. A common means of proving

a procedure correct is to first prove partial correctness: if the procedure

terminates then its result will be correct with respect to its specification;

and then to prove that the procedure will indeed terminate given any valid

input. Even intentionally non-terminating systems (e.g. operating systems)

that are designed to run indefinitely are frequently designed to spawn sub­

processes whose individual termination can be crucial to the functionality

of the overall system. In a parallel computation the non-termination of a

single thread may be enough to block the overall result. In a sense useful

computation is only achieved via termination.

0.1 Termination in Practice

In practice, however, much computation is achieved without the de­

velopers being aware of a theory of termination as such. Single-threaded

programs are often assured terminating using little more than the well-

foundedness of the natural numbers. Multi-threaded programs can employ

techniques such as time-outs to ‘pull the plug’ on tardy processes.

For safety-critical software a degree of termination assurance can be im­

posed by the project manager. Part of the design rationale for the SPARK

ADA language ([CJM+92]) is to make termination arguments clearer by

banning certain ‘dangerous’ constructs such as got os that are in the full

ADA language. Currie’s NewSpeak ([Cur89]) goes all the way by excluding

unbounded loops entirely, at the cost of Turing completeness.

One application area targeted by such languages is hard real-time sys­

tems, where satisfying temporal constraints is as important as functional cor­

rectness. For such software it is extremely desirable to have at compile time

bounds on both its space and time requirements. This necessitates bounds

on depth of calls to sub-programs as well as bounds on all program loops.

Whereas NewSpeak achieves this via a restricted syntax, SPARK ADA is a

strictly more expressive language and instead aims to facilitate proof that

requirements are met. Hence such systems require the proof of termination

to be strengthened by proof that the components terminate within given

time bounds.

In [Tur95] Turner also advocates the preclusion of non-terminating com­

putations, this time in the context of functional programming. By syntactic­

ally guaranteeing all functions be terminating (primitive recursive). Turner

presents what he claims to be the first truly functional programming lan­

guage (since, for example, referential transparency relies on all values being

defined).

0.2 Term Rewriting

evaluation, so a functional program may be evaluated as a non-deterministic

term rewriting system.

These are approaches designed to ease the task of avoiding non-termination

in certain computer systems, but as the systems become larger and more

complex, and the potential costs of system failure rise, it becomes increas­

ingly important to prove the correctness of the system. In turn we need more

powerful and sophisticated theorem provers, which need to be partially auto­

mated, and whose processes therefore need to be proved terminating. Here

we are concerned with the term rewriting ‘equational reasoning engine’ for

automated theorem proving.

0.2 Term R ew riting

Equations play an important part in the mathematical sciences. They are

used, for example, to specify algebraic properties of data structures. We may

want to specify that all the stacks in a computer system have the property

pop(push(e, s)) = s, for instance.^ The set of such defining equations for a

data type form the axioms of the data type’s equational theory. Part of the

process of verification, where the specification is examined to establish if it

captures those properties that were intended (and does not entail proper­

ties that are undesired), involves checking that equations identified as being

important to the system being specified can be derived from the defining

equations. For example, after defining the l i s t data type we may wish to

verify that they have the property reverse(reverse(/)) = I. Formal reasoning

about specifications is just one example where we wish to employ automation

to check that propositions are theorems of an equational theory.

In [Bir35] Birkhoff showed that the rules

^We will use = for defined equality, to avoid confusion with identity,

0.2 Term Rewriting

(refiexivity) -— (symmetry) j - r — (transitivity)

^ (context) . ^ (substitution)
f { . . . t . . .) = f { . . . u . . .) t (7 = u a

are complete for first order (universally quantified) equational reasoning; the

equations derivable from a given set of equational axioms are exactly those

equations that hold in all models of the axioms. (We focus our attention

on first-order universally quantified clauses; much of what will be discussed

applies to the various extensions that exist.)

Using these derivation rules, a proposition Ihs = rhs is a theorem of a

given equational theory if the left-hand side can be rewritten to the right-

hand side by applying the derivation rules to the axioms, so that a derivation

chain Ihs = Ihs' = • • • = rhs can be formed.

As it stands, the process just described cannot be automated effectively.

First, the derivation rules of refiexivity and symmetry can prevent any pro­

gress being made, Ihs = Ihs' = Ihs = Ihs' = Ihs' = • • •. Second, there is no

goal-direction for the next link in the derivation chain, so a less trivial chain

may look like it is making progress, but it may never reach the right-hand

side, Ihs = Ihs' = Ihs" = - ». That is, the search tree is too wide and too

deep.

To tackle these problems, each axiom li = can be turned into a ‘direc­

ted equation’, li -> r^, known as a rewrite rule. The set of axioms {l{ —> r*}

now defines the rewrite relation - 4 as the smallest transitive binary relation

containing ~t> and closed under context and substitution.

t u u V , . . . V
 ------------ (transitivity)

t V

0.2 Term Rewriting

t u , , . t u / 1 X(context) ----------- (substitution)
f { . . . t . . .) - ^ f { . . . u . . .) t a ua

If there exists a chain Ihs -> Ihs' —>••••—> rhs then Ihs = rhs is a theorem of

the theory being examined. Therefore the set of rewrite rules -> provides a

semi-decision procedure for the original equational theory; if rewriting relates

two terms then those terms are equationally related, but the converse does

not necessarily hold.

The rewriting process may be proved terminating by showing that the

rewrite relation -> is well-founded, i.e. it admits no infinite chains. If the

process is terminating it can be fully automated; apply rewrite rules to Ihs

and rhs until no more rewrites can be applied, producing terms Ihs' and rhs'\

if Ihs' = rhs' then the theorem Ihs = rhs is proved.

A terminating rewrite system^ solves the problem of depth since all chains

are finite. However, two problems remain. The search tree may still be

too wide; a given term may rewrite to many different final forms (called

normal forms) and at each rewrite the system has no way of determining

which possible chain may be most fruitful. Second, by making the axioms

mono-directional the rewrite procedure may have lost some of the power of

the original equational system. In their seminal paper [KB67] Knuth and

Bendix showed that these problems were one and the same, as represented

schematically below.

We would like to prove that to = ^4 is a theorem, but the rewriting of to and

For the purposes of this text, rew rite/rew riting system is synonymous with ‘rule set'.

0.2 Term Rewriting

t4 stop at ti and ts respectively; the rewrite relation is ‘missing’ the ability

to relate ti and directly.

The Knuth-Bendix completion procedure ([KB67]) takes a terminating

rule set and detects pairs of terms t, t' such that t ^ t' but which cannot be

related directly. A new rule, either t —> t' or t' t, is added to the system

if the termination property can be maintained. This is represented on the

diagram as

where ^3 -> ti is the new rule to be added. The augmented system containing

the new rule is then tested for more rules to be added. If this procedure

of adding pairs terminates then the augmented system is confluent: any

two chains from a given term re-join at a common descendent. Since the

property of termination has been maintained, any such system is convergent;

all terms have unique normal forms. Thus, if successful, completion provides

a complete decision procedure since two terms are equal if and only if their

normal forms are the same.^

As described in the following section, termination of term rewriting sys­

tems is usually proved by finding a terminating relation (termination or­

dering) that includes the rewrite relation. For the purpose of a completion

procedure, there are several important aspects to the termination ordering

used.

First, the ordering has to contain each term pair in the rule set. This is

^That is, identical up to renaming of (universally quantified) variables.

0.2 Term Rewriting___9

unitary termination: all term pairs may be examined before any constraints

are placed on a termination ordering. To be of practical use for a completion

procedure, minimal time should be required to determine whether a par­

ticular class of orderings (e.g. Knuth-Bendix orderings) is able to correctly

orient each of the rewrite rules. If a class of orderings is unsuccessfully ap­

plied, another class (e.g. polynomial orderings) may be tried. A completion

procedure often generates many term pairs and so the ordering technique

may be required to consider many sets of term pairs. Part of the reason that

term rewriting is increasingly popular as an efficient proof mechanism is

because current termination techniques are often able to fulfill these require­

ments. However, if we are to increase the range and speed of rewrite-based

automated theorem provers we need to look at how termination techniques

can be made more effective.

Second, as completion proceeds the rule set will in general grow, poten­

tially to an unlimited number of term pairs, with new rules being integrated

one rule at a time. This is incremental termination: the termination order­

ing has already been constrained before the new term pairs are available for

consideration. It is clearly desirable to employ an incremental termination

technique; one that can minimally augment its constraint data to integrate

the new constraints rather than throw away previous data to start from

scratch.

Third, the termination technique may be frequently required to consider

the possible termination of i?U w} and then R U {u t} to determine

whether neither, one, or both orientations are possible. A termination tech­

nique that is able to minimally augment its existing data when integrating

a new term pair, rather than throwing the data away and starting afresh,

is described as incremental. It is also desirable if the termination technique

0.3 Proving Termination 10

employed can re-use information from the first orientation instead of having

to start afresh with the second orientation. More difficult in general is the

ability to optimally decrement the constraints, so that if a rule is removed

from the rule set the termination technique isn’t unnecessarily constrained.

It is usually more practical either to proceed with the unnecessary constraints

or to restart the process of proving the current system terminates.

Fourth, different orderings may orient candidate term pairs in oppos­

ing directions (or allow either orientation). Whichever orientation is taken

when the term pair becomes a new rewrite rule may affect the success of

the completion procedure. Orienting a rule in one direction may cause the

completion procedure to generate infinitely many new rules when orienting

in the other direction may have led to a finite convergent rewriting system

(see for example [Les86]).

Finally, the orientation of rules can affect the efficiency of the resulting

rewrite relation, meaning that the number of rewrite steps applied to a given

term may be different in two semantically equivalent rewriting systems. It

may be possible to attribute upper bounds to the derivations of the rewriting

system knowing properties of the containing termination ordering (its order

type).

0.3 Proving Term ination

Any (non-random) terminating process progresses ‘closer’ to termination.

The task of proving termination is to find the appropriate ‘measure’. If

a rewrite relation^ is terminating then there exists a well-founded rewrite

relation that contains it: for example, the rewrite relation itself. Thus the

“̂ Recall that a rewrite relation is a transitive relation closed under context and substi­
tution.

0.3 Proving Termination__H

task of proving termination of a rewrite relation - 4 defined by —> is to find

a rewrite relation -4 ' known to be well-founded such that - 4 Ç -4 '. The

relation -4 ' is called a termination ordering, and is usually written >*-. Prom

the formulation of - 4 it suffices to show that Ç where — is the

(possibly infinite) set of rewrite rules derived from -t> by instantiating all

variables with ground terms.

The problem of proving termination of a rewriting system can be re­

duced to the halting problem and so is undecidable, even for one-rule sys­

tems with only unary function symbols. Therefore the standard approach

is try a certain family of orderings, and if unsuccessful to find a member

suitable for proving termination, try a different family of orderings. In the

literature there appear formulations for many families of termination or­

derings (for example, Knuth-Bendix orderings [KB67, Mar87], polynomial

orderings [MN70, Lan75] [Ste94] [BL87b, CL92], recursive path orderings

[KL80], transformation orderings [BL87a], subterm path orderings [Pla78],

and recursive decomposition orderings [Les84]).

These families of orderings can be roughly grouped into two classes:

syntactic orderings and semantic orderings. A syntactic ordering compares

terms by the syntactic structure of the term tree, typically examining first

the function symbol at the root and then recursively examining the sub-trees.

The task of proving termination by such an ordering is to find an appropriate

precedence: the ordering on function symbols. The recursive path orderings

(formulated on p 27) are an important family of syntactic orderings. Stein­

bach examined a variety of such orderings in [Ste88] and found that many

seemingly disparate families produced the same orderings when they were

total (i.e. sufficiently defined to compare all terms).

A semantic ordering first interprets terms into a well-founded strictly

0.3 Proving Termination 12

monotonie algebra® {A, > a) and then compares the resulting elements ac­

cording to >A- The task of proving termination by such an ordering is to

find an appropriate interpretation of the function symbols so that the inter­

preted terms are decreasing in the underlying algebra:

t u

w >A M
We will concentrate on two families of so-called ‘semantic’ orderings;

Knuth-Bendix orderings and polynomial orderings. At the heart of a Knuth-

Bendix ordering (formulated on p 26) is a weight ordering: function symbols

are assigned non-negative weights, and terms are oriented by comparing

weights. This is extended to non-ground terms by assigning a positive weight

to all variables and requiring the multiset of variables in a term to be a sub­

multiset of all terms greater than that term. To compare terms with equal

weights, the ordering is supplemented with a precedence (ordering on the

function symbols) so that equal-weight terms are compared by their root

symbols and then their subterms.

Knuth-Bendix orderings are popular due to their relative simplicity. When

manually looking for an appropriate ordering it is often possible to make a

good judgement by inspection alone as to whether to try the Knuth-Bendix

family. Similarly for an automated tool, it is computationally easy to derive

the constraints that a feasible KB ordering would need to satisfy. Indeed,

Martin gave a complete decision procedure in [Mar87] to determine whether

or not a given rewriting system is KB terminating. For these reasons, KB

orderings are appropriate as the ‘first hammer’ when seeking to prove ter­

mination. Since their power is limited (due to their ‘flat’ interpretation of

’An algebra in which all operators are strictly monotonie increasing.

0.3 Proving Termination__3^

terms and the restriction on occurrences of variables) there need to be more

sophisticated ordering families in the line of attack.

A polynomial ordering is defined by assigning polynomial functions over

a domain, N say, to each function symbol. (See p 53 for an example.) For

ground terms this is like a weight ordering, and non-ground terms are com­

pared by examining whether one dominates the other over a sub-domain that

includes the values of all ground terms.

The search space for polynomial orderings is far larger than that for

Knuth-Bendix orderings, and the relationship between the interpretation of

function symbols and the resulting orientation of terms is much less intuitive.

The hunt for a suitable polynomial ordering usually takes the form of

• restrict the form of polynomials to be considered, then

• search the polynomials of that form until a successful combination of

interpretations is found.

Use of the first step means that the rewriting system may be polynomial

terminating but not under the subset of interpretations being considered.

Steinbach in [Ste94] identified a class of polynomial interpretations that are

successful for the majority of examples tried and for which he was able to

give a decision procedure. Giesl in [Gie95a] gave a simpler decision procedure

based on a method of Lankford ([Lan79]) which he showed to be equivalent

to that of Steinbach. In Chapter 3 we will use the decision procedure of

Giesl coupled with a population-based search technique (genetic algorithms)

to provide another tool for polynomial termination.

0.3 Proving Termination__W

0 . 3 . 0 M o n a d i c T e r m s

Monadic terms are constructed from unary function symbols, and so are iso­

morphic to strings. For example, we can swap between thinking of f(f(g(æ)))

and ffg.

Finding an interpretation such that the defined ordering contains all

pairs of the rewrite relation is far from trivial for general terms (see [BL87b,

Ste94]). However, we will see that, on monadic terms at least, polynomial

orderings are much simpler than we might suppose. In fact we are able to

classify them in terms of certain invariants explained below.

Although polynomial orderings on monadic terms are in only one vari­

able, there are unboundedly many parameters to set, and the author ex­

pected to see a great variety of orderings. In addition, it was unclear how

the parameters of the interpretations related to the resulting ordering. Not

only has much of the complexity of the interpretations proved redundant,

but the properties of each ordering follow naturally and simply from the few

significant parameters.

Knowing the properties of the available orderings is important when se­

lecting an ordering family in an attempt to prove a rewrite system is ter­

minating. Different families of orderings may have orderings in common,

for example the recursive path orderings are common to several families.

Indeed several independent formulations for recursive path orderings have

been shown to be equivalent ([Les81]). Even with respect to a single for­

mulation, an ordering may have unboundedly many definitions. For ex­

ample, if a Knuth-Bendix ordering is defined by the weight assignment

{wta = wi, wtb — W2 } then, since the relative rather than absolute weights

are significant, the same ordering is defined by {wta = pwi, wtb = PW2 }

where p is any positive real. It is clearly the ratio r — that matters.

0.3 Proving Termination__15

On the other hand, by an appropriate choice of weights we can produce con­

tinuum many distinct Knuth-Bendix orderings, as shown in [Mar93]. Clearly

it is unsatisfactory to classify orderings solely by their formulation family,

and we look to more fundamental characterisations of orderings: ordering

invariants.

0 . 3 . 1 O r d e r I n v a r i a n t s

Two ordered sets are order-isomorphic if there is an order-preserving bijection

between them. Just as cardinality is an abstraction over size, order type is

an abstraction over order-isomorphism. Every well-founded total ordering

(well-ordering) is order-isomorphic to an ordinal - its order type (logical

invariant). More than simply a coarse tool for separating orderings, order

types provide a logical measure of the reduction ‘power’ of total orderings. If

a well-ordering >- with order type 0 contains a rewrite system 7Z (thus proving

7Z is terminating) then 0 can be related to the derivation complexity of 7Z

(see [Cic90, Hof92]), which in turn can be related to the proof theoretic and

algorithmic complexities of the relation being computed by 7Z (see [Wai93]).

In [MS93] detailed results are obtained for simple conditions determining

the order types of total termination orderings on binary strings. Martin and

Scott show that any total termination ordering on strings in two letters, say

a and b with a b, has order type oj, cj^, or according to Table 0.0.

In addition they show that the only such orderings of order type are the

recursive path orderings.

Once the order type of an ordering >- is known, we can further refine the

analysis. For order type the particular recursive path ordering can be

identified (almost trivially since there are only four possibilities). For order

type ui the numeric invariant is a real number 0 < r < 1 that identifies the

0.3 Proving Termination 16

Table 0.0: Order types of total simplification orderings on binary strings.
Conditions Order Type

b-̂ >- a for some j G N, w
a F- b'̂ for all j E N and
both b*a >- ab for some k E N
and ab* b a for some k E N,
a F- for all j E N and
either ab X b*a for all /e G N
or b a >- ab* for all k e N.

particular weight pre-order such that >- = • • •)• For order type the

numeric invariant is a real number A > 0 that identifies the particular matrix

pre-order such that >- = (^rl • • •) (where r = 0). These pre-orders are

considerably easier to work with than polynomial orderings, and are detailed

in Section 4.2. One of the surprising results of this work is that for almost

all polynomial orderings on monadic terms in two function symbols we are

able to describe the orderings completely: they are the extensions of these

pre-orders with the standard lexicographic orderings from the right

0 . 3 . 2 P o l y n o m i a l A n a l y s i s

In Section 4.3.0 the main results of the polynomial analysis are presented in

three parts: the order types, the numeric invariants, and the lexicographic

combination equivalents. These may be summarised as follows.

Let y-poi be a polynomial ordering on monadic terms T({f, g } , { v }) defined

by the interpretations

W (^) ■ GmZ™ H f d iz -F «0 , • • • Oo ^ 0, m > 1,

|gl(a;) = 6^%" -I b b ixP b o , &„ . . . ^ 0, n ^ 1,

0.3 Proving Termination 17

Table 0.1: Polynomial orderings on binary monadic terms (summary).

Parameters Lexicographic
Combination

Order
Type

Numeric
Invariant

^ polA m ^ n > 1 (fc r ; !>'“ ''> U) T = ^Inm

^ polB m > n = 1, b i > 1 (fc r ; k A l X = m

ypolC m > n — 1, b i = 1, 6o > 0 rpo LO'̂ -

^ polD m — n = 1, a i ^ 6 i > 1 U) ^ _ In fei.
Inai

^polE m = n = 1, b \ 1, 6o > 0 Up' A — a \

^polF m = n = 1, — 1, ao bo > 0 U) r = ^ an

and [v|(a;) = x, such that f(v) ypoi g(v) ^poi v. The set of all such orderings

is partitioned into subsets '̂ poiA'> '^polCi '̂ polD̂ ^polE^ and ^poiFi uud

the properties of the orderings are summarised in Table 0.1.

Thus we see that almost all the properties of the ordering are determined

by the degree and coefficient of the leading monomial. Moreover, apart from

two recursive path orderings, all the effectiveness of polynomial orderings

can be obtained using linear interpretations only. These theoretical results

tie in nicely with the experimental results of Steinbach in [Ste94] where he

found a significant proportion of term rewriting systems orderable by general

polynomial orderings could also be ordered by his so-called simple-mixed

polynomial orderings.

We can illustrate some of the results of this work by examples:

0. |fl(a:) = Zx̂ ̂4- H- 1 and |[g]](z) = -f -f 9x

From row >-poiA we see that this is simply a weight ordering, with f

having weight In 4 and g having weight In 3, extended with the lexico­

graphic ordering having g > f.

1. [f]](z;) = a; 4- 3 and [gl(a;) = æ 4- 2

This is also a weight ordering, as shown in row ypoio, with f and g

0.4 Document Structure__

having weights 3 and 2 respectively.

2. [fl(a;) = 4a; + 1 and [g]|(a;) = x -h 2

This is a so-called A ordering (defined in Section 4.2) as shown in row

>-polE- It has order type uP and in this case A = 4. In fact the leading

coefficient of [f|(a;) is the only significant parameter.

3. |f](a;) = x"̂ + 4 x -\- \ and |g|(ic) ~ x + 2

This is the standard (i.e. from the left) recursive path ordering (rpo)

with f greater than g in the precedence. In fact we will see in Sec­

tion 4.3.0 that the same ordering is given whenever the interpretation

of g has leading monomial x (i.e. |g | is strongly linear) and the leading

index of the interpretation of f is greater than 1 (i.e. |f] is non-linear).

4. |fl(rc) = 3æ ̂ and |g](a;) = 5a; + 1

This is also a A ordering, from row)^pow ̂ even though the interpret­

ations are of completely different form to those in example 2. In fact

it is exactly the same ordering with a lexicographic extension! If we

use the ordering in example 2 extended with a lexicographic ordering

having g D> f then the interpretations in this example are completely

redundant.

0.4 D ocum ent Structure

In Chapter 1 the preliminary definitions and theory are presented. Chapter 2

discusses the incremental Knuth-Bendix ordering algorithm and its con­

straint satisfaction engine, the method of complete description. The prob­

lems with the existing MCD are highlighted, and a revised version is presen­

ted, the Revised MCD. In Chapter 3 the problem of finding suitable polyno­

mial orderings is addressed. Genetic algorithms are proposed as an efficient

0.4 Document Structure__ W

search engine for such orderings, and a tailored GA is presented. Chapter 4

takes a more abstract stance, investigating the polynomial orderings defin­

able on terms constructed from two unary function symbols. Each such

ordering is shown to be a composition of simple orderings. We conclude in

Chapter 5 with a summary of the results and a discussion of future develop­

ments.

1 Preliminaries

This chapter introduces most of the notation and concepts re­

quired for subsequent chapters. Puller accounts of term rewriting

and termination can be found in [DJ90, Klo87, Pla93, JL87].

1.0 N otation

The set of natural numbers {0 ,1 ,2 ,3 ,...} is denoted N and the set of positive

natural numbers {1 ,2 ,3 ,...} is denoted % . The set of real numbers (resp.,

positive real numbers) is denoted M (resp., R+). If A is a set then V{A)

denotes the power set of A. The cardinality of a set A is denoted #(A).

An ascending sequence denotes the empty sequence if j < i, so

(a i , . . . ,an) is the empty tuple if n < 1. For convenience a denotes a tuple

(a i , . . . ,On) where n should be clear from the context. The set of n-length

tuples over a set A is denoted A” , and the set of non-negative-length tuples

is denoted A~^.

1.1 Terms

Let T he a finite set of function symbols and V be a countable set of vari­

ables. Each function symbol / is associated with a natural number, its arity

ar(/) G N, signifying the number of arguments taken by the function. Func­

tion symbols of arity 0, 1, 2, and 3 are described respectively as constant^

unary, binary, and ternary. In this document we will consider only finite

sets of function symbols, each having fixed arity. Where convenient we will

20

1.2 Term Rewriting__21

reserve the symbols f, g, K, / , g, h, / i , / 2 , • ■ • to denote function symbols and

v ,x ,y ,z ,v i ,V 2 , . .. to denote variables. (We assume an infinite supply of

variables so that we never run out of new names when we come to renaming

variables, but it is even more convenient to think of the set V as being finite.)

The set of term s T(JF, V) is the set of variables V closed under construc­

tion by JF as f { t i , . . . , tn) , where n is the arity o î f E P. (If / is a constant

then the empty brackets are elided.) The number of occurrences of a function

symbol / in a term t is denoted # (/ , t) , and similarly for variables. The set

of ground terms T { T , 0) is also denoted T { P) , and the set of non-variable

terms is the set of terms containing function symbols, T(J^, V) \ V. A term

is m onadic if all its function symbols are unary.

A term t — f { t i , . . . ,tn) has immediate subterms t \ , . .. ,tn. The proper

subterms of t are its immediate subterms and their proper subterms. A term

is a (non-proper) subterm of itself. Specific subterms are located by their

position, a sequence of positive naturals. The empty position locates the

term itself, t\Q — t, a position i locates the immediate subterm, = t{,

and longer positions locate deeper subterms, ~ .,A>- The

term produced by replacing the subterm of t at position p by the term u is

denoted t[u]p. A substitution a = (ui >-)- u i , . .. ,Vm i-> Um} is a mapping

from variables to terms, and ta denotes the result of simultaneously applying

a to all variables in t. A ground substitution a = {vi u i , . . . ,Vm ^ Um}

has no variables in the Ui. (Note that a ground substitution applied to a

term may produce a non-ground term, e.g. i{x ,y){x 0} still contains y.)

1.2 Term R ew riting

A rew rite relation is a transitive binary relation closed under context and

substitution. A term rewriting rule se t R is a set of term pairs { li

1.2 Term Rewriting 22

E T(JF, V)). This set defines a rewrite relation -4, the smallest trans­

itive relation® closed under context and substitution containing -t>. A term

t E T rew rites to a term u E T hy a rule I -> r in R i î I matches a subterm

of t, in which case the appropriate instantiation of r replaces that subterm

of t to produce a term, u. In other words, t -A- u i î t \ p = l a for some position

p, substitution a, and rule I r in R, and u — t[ra]p.

For example, the rewrite system below (from [Der95]) converts a term to

disjunctive normal form.

—I—iCC — > X

—i(æ y y) -^x A —>y

-'(æ A y) —o ~̂ x V “ly

X / \ { y y z) -t> {x A y) y {x / \ z)

{ y y z) A x -f> {x A y) y {x A z)

Since we are concerned with the termination of rewriting, we consider

only finite rule sets and therefore finite sets of function symbols. Also, the

left-hand sides of rules are non-variable (i.e. T \ V) and the variables on the

right-hand side of a rule are a subset of the variables on the left-hand side.

A term t is norm alised to the term \.t w.r.t. i? if t - 4 4-̂ and

4-t cannot be rewritten further.^ This is what we will mean in the sequel

by term rewriting. To employ a term rewriting system R for automated

rewriting, it is desirable to know that the term rewriting process cannot

continue indefinitely on any term, i.e. that the rewrite relation contains

no infinite chains t - 4 t' - 4 • • •. This desire becomes a necessity when

rewriting systems are used for (semi-)automated equational reasoning where

°The discussion is slightly simplified by ignoring the convention of making -4 reflexive.
^Note that, since the relation -4 is transitive, the description of multiple rewrites is

solely for illustration.

1.3 Orderings___ ^

a convergent rewriting system (one in which is unique for each t) is to be

used to determine equality.

1.3 Orderings

A binary relation (A, >-) is an ordering^ iff X is transitive and irrefiexive.

The ordering >- is total iff, for all distinct s ,t E A, either s y-1 or t >- s. The

ordering (A, >-) is well-founded iff it contains no infinite descending chains

s y t y u

A binary relation (A, is a pre-ordeP iff ^ is transitive and reflexive.

A pre-order ^ defines an ordering (its strict part) by ^ s . and an

equivalence relation by ^ ^ H A pre-order is said to be well-founded

iff its strict part (ordering) is well-founded. We can always obtain a pre­

order from an ordering >- by taking its reflexive closure X, in which case the

equivalence relation is simply identity.

An ordering y ' is an extension of an ordering iff F- Ç A pre-order

'y' is an extension of a pre-order ^ iff F- Ç and ~ Ç

An important means of defining a pre-order on terms is by interpretation

into some well-founded strictly monotonie algebra, A, formulated as t u

iff {tj > M .

A common technique for building useful orderings from simple ‘building

blocks’ is to take their lexicographic combination.

D e f in i t io n 0 (L e x ic o g r a p h ic c o m b in a tio n) Given a sequence of pre­

orders ^ 1, . . . , on a set S, their lexicographic combination is the relation

(^1) ^2) • • •) ^ r) 5

^a.k.a, strict partial order.
^a.k.a. quasi-order.

1.3 Orderings___ M

where (^ i) = and (^ i; ^ 2; ■ • • I = (~ i n (^ 2; • • • ; b r)) if r > 1.

o

If one of the orderings is total then the lexicographic combin­

ation of their pre-orders is an antisymmetric-order. Sometimes the equi­

valence part of the combination will be precluded by writing, for example,

(^ 1; ^ 2 ; • ■ • ; fcr-i; F-r), which defines an ordering.

Thus a lexicographic combination is a sequential application of pre­

orders, where the combination has the same domain as each of the con­

stituent relations. This should not be confused with the lexicographic lifting

of an ordering from terms to tuples of terms.

D e f in i t io n 1 (L e x ic o g r a p h ic l i f t i n g (fro m t h e l e f t)) Let (T, F-) be

a term ordering, let n be a fixed natural number, and let be the set of

n-tuples over T . Then (T” , is the lexicographic lifting from the left of

>- to T ” defined by

(u , . • ■ , tn) { u i , . . . , Un) if

for some 1 ^ j we have ti = ui, . . . , t j - i = U j-i, tj y uj. o

The lexicographic lifting from the right is defined similarly. These can

be generalised to an arbitrary (fixed) permutation of the elements of each

tuple. Let 7T be a bijection on {1 ,... ,n} C N. Then the ix-permutation of

(<2l , . . . , ap) is , . . . ,).

D efinition 2 (L exicog raphic lifting (w ith perm utations))

Let { T ,y) be a term ordering, let n be a fixed natural number, let tt be

a bijection on ,n}, and let T " be the set of n-tuples over T. Then

(T* ,̂ is the lexicographic lifting (with respect to tt) of >- to defined

by

{ t i , . . . , tn) {u i,...,U n) if

1.3 Orderings 25

for some 1 < j < n we have = n^(i), . . . , 4 (j- i) =

Another popular lifting of orderings is the multiset lifting ([DM79, JL82]).

D e f in i t io n 3 (M u l t i s e t l i f t i n g) Let (T, F-) be a term ordering, and let

T"' be the set of n-tuples over T . Then (T” , is the multiset lifting of

>- to T ” defined by

(4 , • ■ • ,^n) (^1, ■■■yUn) if

for all Uj there exists a ti s.t. ti >- Uj. o

D e f in i t io n 4 (S ta tu s) The status function, stat : T -> {lexL, lexR, lexTr, mul},

maps each function symbol to a label indicating the order in which its child

terms should be considered.

We now define a class of orderings suitable for proving the termination

of term rewriting systems: simplification orderings ([Der79, MZ94]).

D e f in i t io n 5 (S im p lif ic a t io n o r d e r in g s) Let (T, >-) be an ordering.

Then is closed under

context^ if t y u implies c[t]p y c[u]p for all t ,u ,c e T and

positions p of c,

substitution^ if t y u implies ta y ua for all t ,u E T and sub­

stitutions a,

the subterm relation^ if t[s] y s for all t G (T \ V) and all proper sub­

terms s of t.
A rewrite ordering is an ordering closed under context and substitution. A

^a.k.a. monotonie
^a.k.a. stable (under variable substitutions)
^a.k.a. has the subterm property

1.3 Orderings___ ^

reduction ordering is a well-founded rewrite ordering. A simplification or­

dering is a reduction ordering closed under the subterra relation. o

1 . 3 . 0 W e i g h t O r d e r i n g s

A weight function |[_]|wf : JF - 4 N associates each function symbol with a nat­

ural number. This mapping is lifted to terms by the obvious homomorphism

l f { t i , . . . , tm)]wt = [/]«)« + (The tag ‘w ’ may be elided when the

type of mapping is clear from the context.)

D e f in it io n 6 (W e ig h t o r d e r in g s) Let [_|yjt ■ T{P) -4 N be a weight

function such that at least one function symbol has non-zero weight. Then

the weight pre-order is defined by

^wt 'a if M w ^

The weight ordering y ^ t defined by |[_]]w(is the strict part of 'ywt- A weight

ordering is extended to non-ground terms t ,u E T {T ,V) by

t y.u)t u if ta yyjt u a for all ground substitutions a .

1 . 3 . 1 K n u t h - B e n d i x O r d e r i n g s

D e f in i t io n 7 (K n u th -B e n d ix o r d e r in g s) Let w be a positive natural

number. Let |_| : T {P , V) -> N be a weight function such that

0. the weight of all variables is w,

1. the weight of each constant symbol is at least w, and

2. at most one unary function symbol (f) has weight 0.

Let D> be a precedence on such that if there is a unary i E P with weight

0, then f is the maximum in (J^, >). Then the Knuth-Bendix ordering yub

1.3 Orderings___ ^

is defined by

t y kb u if

for all u 6 V ; # (u ,t) ^ # (u ,w) and either

W > M or

m — |n | and t = i^{v) and = u for some n > 1 and G V, or

t = f t , u = gu and f \> g, or

t = f t , u = f u and t ykb̂ ^̂ ^̂ ^̂ w. o

1 . 3 . 2 R e c u r s i v e P a t h O r d e r i n g s

D e f in it io n 8 Let {P, >) be a precedence, and let each function symbol be

associated with either lexicographic or multiset status. Then the recursive

path ordering y = >''P is the lifting of > to terms T{P,V) defined by

t — f i f i , . . . ■) tffi) F" g{u\, . . . , Uji) — u if

t i t : u for some 1 ^ i ^ m,

or f > g and t y Uj for all 1 < j < n,

or f = g and (^i,. . . , tm) (u i , . . . , Un) o

When a recursive path ordering as formulated above is defined on mon­

adic terms it is known as a left recursive path ordering, denoted The

right recursive path ordering, denoted on monadic terms is also im­

portant and is formulated as t i>''P̂ u iff rev(t) rev(n), where

r e v (/ i (. .. (/„(v)))) = f n { . .. (/i(v))).

1 . 3 . 3 P o l y n o m i a l O r d e r i n g s

D e f in i t io n 9 (P o ly n o m ia l) Let S be a semi-ring (a set closed under ad­

dition and multiplication). Then a monomial expression a x ^ . . . x ^ , where

a G 5 is a coefficient, G N are indices, and xi are variables, determines a

1.3 Orderings___ 28

monomial function from to S, the function obtained by evaluating the

expression for each argument in S'" .̂ A polynomial function is obtained sim­

ilarly from a polynomial expression, a finite sum of monomial expressions.

o

We will be considering polynomials with S' = N and with 5 = K+.

Recall that a function g is said to be monotonie increasing if x ^ x'

implies / (. . . , æ, . . .) ^ f { . . . , x ' , . . .), and is said to be strictly monotonie

increasing if x < x' implies / (. . . , æ, .. .) < f { . .. ,x '

D e f in i t io n 10 (P o ly n o m ia l in t e r p r e t a t io n in N) A polynomial inter­

pretation in N of a function symbol / G is a polynomial function [/ | that

has the same arity as / and is strictly monotonie increasing. o

The following definition is due to Dershowitz [Der79] and allows poly­

nomial interpretations in the set of positive real numbers, even though the

set is not well-founded, by requiring the interpretations provide the subterm

relation, i.e. that | / | (. . . , æ,. . ,) > x for all arguments of |/J .

D e f in i t io n 11 (P o ly n o m ia l in t e r p r e t a t io n IN %) A polynomial in­

terpretation in K+ of a function symbol / G is a polynomial function |/]|

that has the same arity as / , is (not necessarily strictly) monotonie increasing

and has the subterm property. o

D e f in it io n 12 (P o ly n o m ia l in t e r p r e t a t io n o f te r m s) A polynomial

interpretation of JP is a set of polynomial interpretations, one for each f E P .

Let % be a countable set of variables in one-to-one correspondence with V.

Then the polynomial interpretation of a term /(U, • • • ? ^ar(/)) E T {T ,V) is

1.3 Orderings___ ^

given by the homomorphism

— Xi

[/ (i l , - - - , ^ a r (/)) l = | / K P l i - - - , P a r (/) D

Both of these definitions above can be extended to allow negative coeffi­

cients, but this creates the additional proof obligation that no ground term

is interpreted smaller than p, and it is not clear that there is any gain with

this added complication, so we will consider only non-negative coefficients.

D e f i n i t i o n 13 (P o l y n o m i a l o r d e r i n g (a)) Let |_| b e a polynomial in­

terpretation of T (P ,V) in N. Then t >-p u if

p a l > [mo-J

for all ground substitutions a : V —>• N. o

It may appear at first that to compare two terms we must calculate and

substitute the interpretations of all terms. However, substituting ground

terms for term variables and then calculating the interpretation is equival­

ent to calculating the (non-ground) interpretation and then evaluating the

polynomial expression at all values of interpretations of ground terms.

l t { V i h4 s J l > 1-4 S i } }

1-4 p i | } > t-4 p i | }

This means that if, for example, T = {s(_), 0} and [sl(æ) = x +2 and |0 | — 2

then we only need test for substitutions of positive even numbers. In practice

it is simpler to test for a contiguous superset of [T(JF)| (e.g. {2,3,4,5, . . .}

above) since that is sufficient, leading to the following formulation.

1.3 Orderings 30

D e f i n i t i o n 14 (P o l y n o m i a l o r d e r i n g (b)) Let |_] be a polynomial in­

terpretation of T (P ,V) in N (resp. M+) as defined above such that p | > p

for all ground t G T{P) and some /.t G N (resp. jU G %.). Then t> -pU \î

Pl(a;i, . . . , X n) > M (a ;i , . . .

for all x \ , . . . , X n ^ p. o

2 Knuth-Bendix Ordering

Algorithm

In this chapter we look at the incremental Knuth-Bendix ordering

algorithm, which is a complete decision procedure for whether a

suitable Knuth-Bendix ordering exists for a given term rewriting

system. A revised Method of Complete Description is proposed

as an efficient feasibility engine for the algorithm.

2.0 Introduction

The Knuth-Bendix family of orderings (formulated in Definition 7 on p 26)

has proved a popular and often effective means of proving termination of

term rewriting systems ([KB67, Mar87, Ste94]). Being based on weight or­

derings, it is possibly the most intuitive class of ‘useful’ orderings, making it

a common first choice for attempting a termination proof. |

An algorithm for proving Knuth-Bendix termination is presented in [Mar87] I
and [DKM90]. The algorithm constructs a system of homogeneous linear in-

Iequalities, the numerical constraints necessary (but not sufficient) for the I
I

existence of a suitable Knuth-Bendix ordering. The ordering algorithm con- |

suits a linear programming engine to test whether the numerical constraints

can be satisfied and to detect degeneracy (defined below). If the constraints |

cannot be satisfied then there is no suitable Knuth-Bendix ordering. De- !

generacy being detected may also indicate failure or it may entail further j
1

symbolic or numeric constraints (depending on the nature of the degener- |

t
31 j

2.1 Preliminaries 32

acy).

The Method of Complete Description (MCD) is proposed in [DKM90]

as an appropriate linear programming engine. Consisting of elementary op­

erations, the MCD is an elegant and straightforward technique that gives

precisely the information required by the ordering algorithm. Moreover, due

to the incremental nature of the MCD itself, it fulfills the incremental po­

tential of the ordering algorithm. However, as demonstrated in [Cro92]),

the original MCD can be grossly inefficient due to its doubly-exponential

space requirements. In the remainder of this chapter we examine techniques

for making the MCD, and hence the incremental Knuth-Bendix ordering

algorithm, able to handle moderate sized problems.

2.1 Prelim inaries

This section introduces the mechanisms from linear algebra required to study

the MCD. The reader is referred to linear programming books such as [Kre68,

Dan63, AHU58, Car60] for a more thorough introduction.

2 . 1 . 0 V e c t o r s a n d M a t r i c e s

A vector x (over the real numbers) in n-space (a.k.a. an n-vector) is an

n-tuple (a;i,. . . ,Xn) E M” , usually written as a column vector.

Xi

X

2.1 Preliminaries 33

and having as transpose a row vector,

X

If X was a row vector, the orientations of x and x^ would be interchanged.

(Vectors are indicated by bold type, so that for example, x;j is the j th

component of the «th vector.) Particular vectors are 0 = 0” , 1 = I” , and

= (1,0, .. . ,0,0), . . . , Gn = (0 ,0 , . . . , 0,1). A point in n-space is used

interchangeably with its position vector (w.r.t. the origin).

The usual ordering on real numbers is lifted to vectors in the following

ways.

D efinition 15 (V ec to r O r d er in g)

X > y iff X i ^ yi, for alH (1 < * < n)

X > y iff X > y and Xj > yj, for some j (1 ^ j < n)

X > y iff Xi > yi, for alH (1 ^ î < n)

The inner product of two n-vectors, x and y, is the real number

x.y = x iy i H h

An (m, n)-matrix (over the real numbers) is an array having m rows and n

columns. We may sometimes consider such a matrix as having m rows of

n-vectors

Rii a P

; ; ; —

a-ml • ^mn am^

2.1 Preliminaries 34

and sometimes consider such a matrix as having n columns of m-vectors

a i l

a i,

ani

Hr

a i ; • • : an

(Note that the vector denoted by, say, a i is different according to the orient­

ation we take of the matrix.) The matrix product of an (m, n)-matrix and

an (n,p)-matrix is the (m, p)-matrix given by

' aiT ‘ a i.b i • • • ai-bp

b l : • • • : bp

am am b% • ■ • am bp

The product of a matrix and a vector is defined by treating the vector as a

matrix.

The length of a vector x = [a;i,. . . , is defined as |x| = 4-

A ray is a vector of which only the direction (and not the magnitude) is

significant, that is, r is identified with or for all positive o.

2 . 1 . 1 L i n e a r I n e q u a l i t i e s

The system of m linear inequalities

<̂ 1,1̂ 1 4-01 2̂2 2̂ 4-• • • 4 - ^ 6i

: ^ :

am,1^1 4" Û.m,2 2̂ 4” ■ ‘ ' 4“ â pfî n̂ n ^

2.1 Preliminaries__ ^

subject to X > 0, can be represented as

A.x > b, subject to x > 0

where A is the (m, n)-matrix having entries (1 ^ i ^ m, 1 ^ jf < n),

X — [æi,.. . ,XnŸ, and b = [&i,.. .,bm V.

The question of whether such a system is satisfiable can be represented

as the problem; Given A G and b G , does there exist x G R"' such

that A.x > b?

Using trivial arithmetic, the above system is equivalent to

A.x — b > 0 , subject to x > 0

and by introducing a dummy variable Xn+i, the above system of linear in­

equalities is equivalent to the homogeneous system of linear inequalities

P ai^2X2 + ' ' " d-ai^n^n ~ biXn+i ̂ 0

: ^ :

am,1^1 T am,2^2 T ' * • -|- am,n^n ^ 0

subject to X > 0 and Xn+i — 1. Equally trivial is the replacement of a

constraint kxi ^ / by ^ 0, where X{ — (y* 4- l)/k. Thus we can assume

that the systems of linear inequalities of our discourse are homogeneous and

that all constraints on variables are non-negative.

2.1 Preliminari es__ ^

2 . 1 . 2 H y p e r p l a n e s

Given a vector v G R.”' and a scalar a G R, the set of points

{x G R” I v .x = a}, (v 0)

is a hyperplane. An inequality v .x ^ a defines a closed halfspace, and a strict

inequality v .x > a defines an open halfspace. The vector v is orthogonal

to the hyper plane and points in the direction of the halfspace that satisfies

the above inequalities. For convenience, when a = 0 we will identify the

hyperplane with its orthogonal ray v.

Given a system of linear inequalities A.x > b , each inequality aj.x ^ bi

(1 ^ ^ m) defines its non-negative (closed) halfspace Hi of points that

satisfy the inequality. Thus the solution set of the system of inequalities is

the intersection of the halfspaces Hi.

2 . 1 . 3 C o n e s a n d P o l y h e d r a

A (polyhedral) cone is the subset of that satisfies a (finite) system of

homogeneous linear inequalities in n -|-1 variables, as above. A cone C has

the properties

X 1 ,X 2 G C ai,a2 G R (origin) ----------------------- —— (convex closure)
0 G (7 QiXi -{- a2~xi2 G C

A polyhedron is the subset of R” that satisfies a (finite) system of linear

inequalities in n variables, as above. Note that a cone is a special case of a

polyhedron (i.e. when the system is homogeneous). A polytope is a bounded

polyhedron.

Given a polyhedron P Ç Rĝ _, there is a unique smallest cone Cp Ç R̂ ^̂ ̂

s.t. P is the cross-section of Cp at Xn+i = 1. Given a cone C Ç R ?t^ , there is

2.1 Preliminaries__ ^

a unique polyhedron Pc C s.t. Pc is the cross-section of C at Xn+i = 1.

This is the geometric view of the translation between homogeneous and non-

homogeneous systems of linear inequalities described in Section 2.1.1.

2 . 1 . 4 D o u b l e D e s c r i p t i o n

The solution space to a system of linear inequalities can be formulated equi­

valently as the intersection of a finite set of half-spaces and as the convex

closure of a finite set of points and rays. The double description method

essentially maintains both of these representations, modifying the latter as

further inequalities are added to the former.

A pair (A, C) of matrices A G and (7 G is a double description

iff

A.x > 0 iff X = C.g, for some g > 0

0 Lemma (M inkow ski’s T heorem for P olyhedral C o n es)

For any A G there exists some C G s.t. (A ,(7) is a double

description.

1 Lemma (W eyl’s T heorem for P olyhedral C o nes)

For any C G R"^^, there exists some A G s.t. (A,C) is a double

description.

2 Lemma (D u a l i t y o f D o u b le D e s c r ip t io n)

The matrix pair {A, C) is a double description if and only i f (C^, A^) is a

double description.

2 . 1 . 5 D e g e n e r a c y

We say that an inequality aj.x ^ 0 is degenerate w.r.t. a system of homo­

geneous linear inequalities A.x > 0 (x > 0) iff a;.x = 0 for all solutions x

to the system of inequalities. In other words, all possible solutions of the

2.2 Incremental KB Ordering Algorithm 38

system barely satisfy that inequality. Viewed geometrically, this means all

solutions lie on the hyperplane associated with the inequality.

E x a m p le 0 The inequality —xi — X2 ^ 0 (xi ^ 0, X2 ^ 0) is degenerate

(w.r.t. itself).

Obviously if a; and —ai occur in a system, then both are degenerate.

Less obvious is the system

- 2 1 1 0 XI 0

1 - 2 1 0 3:2 0
>

1 1 - 2 0 3:3 0

2 1 1 - 2 X4 0

, X > 0

where the first three inequalities are degenerate (but not the fourth).

2.2 Increm ental K B Ordering A lgorithm

In this section we present the algorithm of [DKMQO]*̂ for determining whether

a given (finite) set of rewrite rules can be ordered by a Knuth-Bendix order­

ing.

Recall (from p 26) that a Knuth-Bendix ordering is defined by a weight

mapping and a precedence on the function symbols. The algorithm proceeds

by maintaining a minimal system of these numeric and symbolic constraints

as entailed by each term pair considered. If these constraints (A and > below)

become unsatisfiable then there is no suitable Knuth-Bendix ordering for the

rewrite rules (in the orientation considered). Otherwise the constraints are

extended as necessary, ready for further term pairs to be integrated.

‘’with minor corrections

2.2 Incremental KB Ordering Algorithm 39

The homogeneous inequalities are represented by the rows of the matrix

A in the expression A .x > 0 . Since degenerate rows of A may entail failure

or further constraints, according to the source of the row, each row is labelled

to identify its source. For a term pair (p,q), the inequalities generated are

for vai’iables:

av : ujy ^ 0

for each constant symbol;

af : Wf —Wy ^ 0

for each non-const ant symbol:

ag ; Wg ^ 0

for each term pair:

ap.q : - # (/ , q)) + ' ^ v 5 ^ (# (p , p) - # (u , g)) ^ 0
/E f vev

E xam ple 1 For the term pair {i{x*y), î(y)=t=«(x)), the inequalities generated

are

av

a; :

a*

a

0 0

1 0

0 1

-1 0

- -
Wy 0

Wi > 0

w* 0

Suppose that a set of term pairs R has already been oriented by the IKBO

algorithm, producing numeric constraints (i.e. a system of linear inequalities)

2.2 Incremental KB Ordering Algorithm 40

A and symbolic constraints (i.e. the precedence on function symbols) t>. If

these constraints are satisfiable then the rewriting system R is terminating

by Knuth-Bendix orderings. Now suppose another term pair (t, u) is to be

incorporated into R, that is, the augmented rewriting system i? U {f -> u}

is to be tested for KB termination.

First the linear inequalities entailed by (f, u) are generated as above and

added to the inequalities A. If this extended system of inequalities. A', can

be strictly satisfied, then the system R' is KB terminating. However, if an

inequality a cannot be strictly satisfied by any choice of weights for the KB

ordering then a is degenerate for that system of inequalities and the next

step depends on the nature of the degeneracy of a .

If the inequality a^ is degenerate, this means that a positive weight can­

not be assigned to variables, and so R' cannot be proved terminating by KB

orderings. If an inequafity af is degenerate, where the function symbol / is

unary, then / requires to be maximal in the precedence. If the precedence

cannot be extended with / maximal, then KB orderings fail again. If an

inequality ar,s is degenerate it means the term pair (r, s) has equal weight

on both sides. If the head function symbol (i.e. at the root of the term) of r

and s is different, then the precedence requires to be extended in favour of

r. If the head symbols are the same, then the immediate subterms of r and

s are pairwise compared and the first two distinct subterms, r' and s' say,

need to be incorporated by the algorithm so that r' is greater than s'.

Thus for each new term pair (t,w), the algorithm minimally extends the

constraints to malm t greater than u in all contexts and under all substi­

tutions. The algorithm is summarised in Figure 2.0. The family of KB

orderings handled by the algorithm can be extended to allow the precedence

to be a pre-order instead of an ordering and to allow function symbols to

2.3 Method of Complete Description 41

have status so that their subterms are compared as multisets or permuted

sequences. Since these extensions are straightforward and do not affect the

numeric constraints, the focus of this chapter, the interested reader is referred

to [Ste8 8].

Input: Existing system of homogeneous inequalities A and precedence >,
along with new term pair {t,u).

O utput: Either succeed with extended system A' and precedence or
fail.
/* Initialise set of pairs to be incorporated: */
P :=
w hile P ^ 0 do

choose (p, q) G P ;
/* Check feasibility of variable occurrences: */
if p G V or # (u ,p) < #(p , g) for some v Ç.V th en fail;
else

A := AU ineqs(p,g); P := P \ {(p, g)};
/* Check weight of variables is positive: */
if av G degen (A) th en fail;
/* Check zero-weight unary function symbols: */
fo r e a c h a f G degen (A), / unary d o

extend t> with / maximal, otherwise fail;
/* Check equal-weight terms: */
for each ar,s G degen (A) do

if hd(r) ^ hd(s) th en
extend > with hd(r) > hd(s), otherwise fail;

else
P := P U reduce(r, s);

Figure 2.0: Incremental Knuth-Bendix Ordering Algorithm

2.3 M ethod o f C om plete D escription

The method of complete description is a technique for linear programming

(optimising a linear function with respect to linear constraints) due to Uzawa

([UzaSSb, Uza58a, Kre6 8]). The following description of the MCD owes its

cleanliness to the double description method of [MRTT53], which is similar

2A Illustration o f Redundancy in MCD 42

but was found independently.

The MCD checks the satisfiability of a system of homogeneous linear

inequalities A by maintaining a double-description pair (A, C). When a new

inequality is incorporated into A, the set of bounding rays C is updated.

The solution set, the cone whose bounding rays are the columns of C, always

contains the trivial solution 0 , which of course is not a valid choice of weights

for a Knuth-Bendix ordering. The IKBO algorithm checks satisfiability by

testing where any degeneracy occurs, that is, by testing which rows of AC

are 0^. The algorithm is given in Figure 2.1 and an example is worked

through below.

In p u t: Existing double description (A, C), along with new constraint
a '.x ^ 0 ,

O u tp u t: Constrained double description (A',C").
/* Compute agreement of existing rays: */
z :— a!.C]
/* Retain rays satisfying new constraint: */
C := {ci G C I ^ 0}
/* Generate new rays to satisfy new constraint: */
N :— ^ZjCi .z^Cj \ Zi <C. 0 <C. Zj^
/* Accept all new rays: */
C := a U N
A' := A U {a'}

Figure 2.1: Method of Complete Description

2.4 Illustration of R edundancy in M CD

We now work through an example of applying the MCD to a linear pro­

gramme, both as an illustration of the algorithm and as a witness to the

redundcuit data that can be generated.

2.4 Illustration o f Redundancy in MCD 43

Let us test the satisfiability of the set of linear (homogeneous) inequalities

Xi + X2 H" —2x3 ^ 0

2xi + —X2 + —Xg ^ 0

where xi,X 2 ,xs > 0.

Each constraint is handled in turn, but since the initial constraints

3:2

0

0

3:3 > 0

described by the m x n matrix

1 0 0

A3 = 0 1 0

0 0 1

with at once , having the solution (n,p)-matrix

1 0 0

^3 = 0 1 0

0 0 1

The current state can be visualised as in the following diagram. We are

looking towards the origin fromt the positive octant of 3-space. It may help

to imagine looking into an upside-down (tetrahedral) pyramid.

2.4 Illustration o f Redundancy in MCD 44

6 2 j

y \ ^3 > 0

0 \

The current solution vectors c i,C 2 ,cg (G Cg) are shown lying along the

three axes 6 1 , 6 2 , 6 3 . For the purposes of illustration, a cross-section of this

3-edged cone has been taken on the plane xi + X2 + xs = k 0, for some

constant k E (For example, A; = 3, giving a plane containing the point

(1,1,1).) The boundary of the cross-section is formed by the intersections of

the bounding planes, the planes where the constraints are only just satisfied.

For the remainder of this example we will concentrate on this cross-section,

indicating by points where vectors intersect the plane.

Now the algorithm deals with the next inequality vector, = (1,1, —2),

testing its agreement with the existing solution vectors by computing their

inner products:

i 1 2 3

8 4 .Ci + 1 + 1 - 2

This means that the inequality &4 is (strictly) satisfied by vectors Ci and C2 ,

and is not satisfied by vector C3. This is illustrated by

2.4 Illustration o f Redundancy in MCD 45

where the satisfying vectors are marked with ‘+ ’ and the non-satisfying vec­

tor is marked with The solution vectors of the current linear inequalities

are found by copying the two positive vectors Ci and C2 as well as creating

two new solution vectors from the weighted means of Cj, C3 , and of Cg, cg.

2 0

2 c i - f C3 = 0 , 2C2 + C3 = 2

1 1

giving the new solution matrix,

1 0 2 0

C4 = 0 1 0 2

0 0 1 1

illustrated by

2.4 Illustration of Redundancy in MCD 46

C4

Now the algorithm incorporates the next inequality vector, ag — (2, —1, —1),

testing its agreement with the existing solution vectors by computing their

inner products:

i 1 2 3 4

as Ci + 2 - 1 +3 - 3

Again, the satisfying vectors (ci and C3) are copied, and new vectors are

created using weighted means between vectors on opposing sides of the latest

inequality.

1 3 2 1

2 , 3ci + 2 c4 — 4 , C3 + 3C2 = 3 , C3 + C4 = 1

0 2 1 1

Cl + 2C2

giving the current solution matrix.

1 2 1 3 2 1

D5 = 0 0 2 4 3 1

0 1 0 2 1 1

illustrated by

2.5 Removing Redundancy from the MCD 47

as.x > 0 ^2

In the diagram above, the solution space is the convex closure of { c i, C2 , C3 , Ce}*

Therefore, the other two rays C4 and C5 are redundant. It is important to

note that these superfluous rays will lead to much greater redundancy as

the algorithm proceeds: every future ray produced in combination with a re­

dundant ray will itself be redundant. Looking again at the example above, in

only three dimensions and after only two inequalities, if the next inequality

separates c i and C2 from cg and c© then 8 new rays (4 x 2) will be generated

for the new boundary plane, whereas we can see that exactly 2 would be

necessary.

It is easy to see that for cones in three dimensions, each new boundary

plane is fully deflned by 2 rays and in its creation must remove at least

1 ray, and so the number of rays required after m inequalities have been

introduced is bounded above by m -I- n, which is achieved by the algorithm

presented below. Unfortunately such a nice relationship does not hold in

higher dimensions, since even in four dimensions the number of rays required

may grow exponentially in the number of inequalities considered.

2.5 R em oving R edundancy from the M C D

The key to identifying redundant rays is to note that a non-redundant ray

is defined by the hyperplanes on which it lies, and so must lie on at least

2.5 Removing Redundancy from the MCD 48

(n — 1) hyperplanes. Since redundant rays can only occur upon the creation

of a new bounding hyperplane, a new non-redundant ray must lie on at least

(n — 2) previous hyperplanes.

3 C laim (R ed u n d a n t rays)

Let (A, C) he a double description. A ray v G C is redundant i f it barely

satisfies fewer than (n — 1) inequalities of A.

J u stific atio n ̂ Let v g (7 be a ray that barely satisfies k (1 ^ k < n — 1)

inequalities, that is, v lies on k bounding hyperplanes, and let a be the

inequality that generated v (i.e. that caused v to be introduced into C).

Then it is claimed that there is a a vector w such that v -f- Jw and v — Jw

(J E R) also lie on the hyperplane a for small enough <5 > 0 and satisfy all

the inequalities. (The vector space of all such w has dimension (n — k).)

4 C orollary (R e d u n d a n t in eq ua lities)

Let (A,C) be a double description. An inequality a i .x ^ 0 (x E R”) is

redundant i f it is barely satisfied by fewer than [n — 1) rays of C.

J ustification Follows from Claim 3 and the fact that (A, (7) is dual to

(C ,A ') .

The above claims are known to hold for cones in dimensions up to and

including 4, but since higher dimensional geometry can be counter-intuitive,

potential implementors have to rely on anecdotal evidence until proofs are

found.^ No counter-example has been found among the many examples tried,

but of course that does not rule out the existence of overlooked special cases.

Note that if the claims prove to be false, the revised MCD may be incom­

plete but it will still be sound, since in that case it may mistakenly exclude

valid solutions.
^A rigorous proof remains elusive.

is hoped that someone with a deeper understanding of higher dimensional geometry
will be able to prove these claims.

2.6 Revised MCD 49

2.6 R evised M C D

Figure 2.2 presents the revised method of complete description, the cor­

rectness of which is subject to reservations expressed in Section 2.5. The

algorithm follows the original, but after new rays are generated for a new

bounding hyperplane, the inequalities and rays are checked for redundancy

as described above.

Input: Existing double description (A, C), along with new constraint
a'.x ^ 0.

O utput: Constrained double description {A ',C).
/* Compute agreement of existing rays: */
z := a'.C;
/* Retain rays satisfying new constraint: */
C := {ci 6 C7 I Zi ^ 0}
/* Generate new rays to satisfy new constraint: */
N := {zjCi — ZiC'̂ \ Zi < 0 < Zj}
/* Retain non-redundant inequalities: */
A' {a.G A \ # ({ c E C | a.c = 0}) ^ n — 1} U {a'}
/* Retain non-redundant new rays: */
C := C U {v E AT I # ({ a E A' | a .u = 0}) > M - 1}

Figure 2.2: Revised Method of Complete Description

A simple way to implement the redundancy checks is to examine A x C

for rows and columns having fewer than n — 1 entries of 0.

2.7 Conclusions

There are more efficient algorithms for linear programming. For example,

the simplex method (see for example [Dan63, Kre68]) usually has a time-

complexity linear in the number of inequalities, and Karmarkar’s method

([Kar84]) has polynomial worst-case time-complexity (although the constants

are very large). However, it is not clear how any of these methods can be

2.7 Conclusions___^

used as an efficient test for the location of degeneracy. The revised MCD

takes 0{np^) steps to incorporate each inequality, but since the output (the

extreme rays) has size 0{np^) this might be considered as optimal.^

In this chapter we have considered the Knuth-Bendix orderings of [Mar87].

Clearly the revised MCD is equally useful for extended formulations of

the Knuth-Bendix orderings, including formulations for terms with status

([Ste94]), modulo equational theories (e.g. associative-commutative, [Ste94]),

and being order-sorted ([Mat93]).

The inequalities generated by the ordering algorithm could be made

strict, since strict satisfaction is sufficient for the existence of a Knuth-Bendix

ordering. Then there would be no issue regarding degeneracy, and so a more

space- and time-efficient method such as the Simplex Method could be em­

ployed for testing satisfiability. However, this is testing for the existence of

a much weaker ordering: a weight ordering.

Another approach would be to retain the power of the present order­

ings, but to sacrifice completeness. A hillclimbing or stochastic-sampling

technique could be used, and if an inequality is not strictly satisfied after a

predetermined number of attempts then degeneracy is judged to be likely .

Any technique that does not consider all points in the solution space may

fail to find a non-degenerate solution (in a practical length of time) and may

therefore misdirect the ordering algorithm to conclude non-satisfiability (i.e.

termination not provable by Knuth-Bendix orderings). This could be an at­

tractive compromise when the size of the termination problem grows beyond

the limits of even the revised MCD.

The revised MCD is of value independent of the ordering algorithm. For

instance [Ste94] employs the MCD in searching for termination by polyno-

^Strictly speaking the extreme rays do not have to be part of the output, so there may
exist more efficient algorithms to perform the same test.

2.7 Conclusions___ M

mial orderings, complex, potentially less efficient, and less reliable techniques

such as the Simplex Method. The revised MCD may also prove useful in

other domains, such as 3-D modelling where the detection of interior points

is a goal rather than a curse.

In Section 3.3.1 we will consider another application of the revised MCD;

in combination with genetic algorithms (described in Chapter 3) we have an

attractive technique for optimising a function subject to linear constraints

such that no assumption of differentiability or even continuity is made of the

objective function.

3 Genetic Termination

In this chapter genetic algorithms are proposed as an efficient and

adaptive means of proving term rewriting systems terminating by

polynomial ordering.

3.0 Introduction

In the previous chapter we saw an effective (full) decision procedure for

determining whether a given term rewriting system terminates via Knuth-

Bendix orderings. However, a rewrite relation may be terminating but not

Knuth-Bendix terminating, and so it is desirable to extend the class of term

rewriting systems that we can prove terminating. Polynomial orderings

(Definition 14) are more ‘sophisticated’ than Knuth-Bendix orderings in the

sense that the relative ordering of two terms is determined by the position

of symbols in the terms and not just the number of their occurrences. For

example, a distributivity rule such as

r A {sW t) (r A s) V (r A t)

cannot be contained in a Knuth-Bendix ordering because the duplication of

X on the right-hand side means the weight constraint can be violated since

an arbitrarily large term can be substituted for r. A polynomial ordering is

defined by interpreting function symbols as polynomial functions on N, so

one possible polynomial interpretation for the above rule is

lAj{x,y) = x y + y, [V|(a;, y) = æ + y -1-1,

52

3.0 Introduction___ ^

which gives

| r A (s V t)l = {{rj + l)([s] + p j) + H + 1

|(r A s) V (r A t)] = (| r | + l)([s l + {t}) + 1

Since this polynomial ordering satisfies the well-foundedness requirements

detailed below, the rule is contained in a termination ordering as long as all

ground terms are positive (or at least those terms that may form the first

argument of multiplication).

Unfortunately the price paid for this power is that there is no known

efficient algorithm for deciding whether a suitable polynomial ordering exists.

Stronger than this, even if a particular polynomial ordering is chosen, it is

undecidable in general (for polynomials over the natural numbers) whether

or not the ordering proves the given rewrite system terminating ([Lan79]).

Polynomial constraints are decidable if the polynomials range over the real

numbers, due to the decomposition algorithm of Collins ([Col75]), but the

algorithm is exponential in its input and is impractical even for modest

examples.

Nevertheless, polynomial orderings are relatively popular for tackling ter­

mination problems in term rewriting, and some work has been successful in

making their use more amenable, notably the methods of BenCherifa Sz

Lescanne [BL87b], Steinbach [Ste91, Ste92], and Giesl [Gie95a], described

later in this chapter. These methods are semi-automatic, in that given a

polynomial interpretation and a rule set they try to show that the rewrite

relation is terminating under that ordering. If a method fails to show an

ordering is suitable, another polynomial interpretation must be tried. Thus

each method sequentially traverses the search space of possible polynomial

orderings in the hope of finding an ordering that it can demonstrate to be

3.0 Introduction 54

suitable.

The main idea of this chapter is to employ a genetic algorithm coupled

with the gradients method of testing polynomials in the search for a suitable

polynomial ordering. A population of polynomial interpretations is ‘bred’

through successive generations, with bias towards those orderings that are

in some measure (based on the result of the gradients test) closer to proving

termination of the given rewrite relation, until either a suitable ordering

is produced, population stagnation has been detected, or a predetermined

number of generations have elapsed without success.

John Holland proposed in [Hol75] that the schema theorem is the reason

why G As can often traverse the search space more cheaply than traditional

approaches. In this theorem each individual in the population, for example,

110100101

is seen as sampling the search space on each of the individual’s constituent

segments. (In the theorem, segments are 1-bit long.) It is shown by means

of segment templates (schemas), for example

__01———0“,

that segments beneficial to the solution of the problem have a higher probab­

ility of being represented in the next generation. Unfortunately the theorem

assumes a vast, uniformly distributed population, so may not even be valid

at the start of processing, and certainly not afterwards. An individual in a

generation is evaluated only once, yet that value is pertinent to the evalu­

ation of all the segment templates matching that individual. Therefore the

segment templates corresponding to solutions of the problem will become,

through the evaluation of individuals matching those templates, more likely

to prevail in the population. In the case of binary encoded GAs, the sampling

of segment templates can be seen as partitioning the hypercube of possible

3.1 Termination by Polynomial Ordering 55

individuals (Figure 3.0), and sampling all such partitions in parallel.

^ — 11 — 1 -

— 11 0 —

—01 1^

- - 00 -

Figure 3.0: Partitioning the hyper cube.

3.1 Term ination by Polynom ial Ordering

The generate-and-test approach to finding a suitable polynomial ordering

consists of picking a polynomial interpretation for JF and then testing whether

that ordering contains the rewrite relation in question. If the polynomial in­

terpretations of function symbols are allowed to be arbitrarily complex, the

polynomials resulting for the terms may be horrendously complex (in terms

of time to compute and number of monomials produced), making any test for

polynomial dominance unworkable. Therefore practical approaches involve

applying heuristics restricting the form the interpretations may take. For

example, we could insist that only linear interpretations be considered, such

as

y) ~ Co + c ix P C2V + c^xy

Restricting to linear interpretations is too limiting, however. Often if a re­

write relation is terminating under a linear polynomial ordering, it can be

shown terminating under a Knuth-Bendix ordering (which is quicker and

easier). This is particularly true for interpretations of the form

m i x) = Co + E ®

3.1 Termination by Polynomial Ordering___________________________ ^

since these are simply weight interpretations.

Steinbach found (in [Ste94]) that the overwhelming majority of rewriting

systems he looked at could be proved terminating by ‘simple-mixed’ polyno- '

mial interpretations.

An approach to proving termination via polynomial orderings is to gen­

erate an interpretation of JF and then test whether |^i|(æ) > |[n]] (æ) for

all X and all rules. This is equivalent to testing whether the polynomial

pi|(;r) — |ri|(:r) > 0 for all x and all rules. The algorithm of Collins

([Tar51, Col75]) can decide the positiveness of a polynomial over the positive

reals, but it is not used in practice due to its prohibitive time complexity.

The gradients method of Lankford ([Lan75]) is more practical in terms of

speed, testing whether the first-order partial derivatives of each polynomial

are eventually positive. However, ‘eventually’ positive is not sufficient here

because it is not well-founded in the presence of ground terms. For instance,

it erroneously orients the rewriting system

f(x) g (%)

9(c) f(c)

via the interpretation |f|(a7) = 2x, |gl(a;) = x + 2, and |c] = 1. This is

because it doesn’t take account of /a, the lower-bound for the interpretations

of constants, which can be seen in the graph of Figure 3.1.

The three methods described below provide semi-decision procedures for

polynomial termination.

3 . 1 , 0 M e t h o d o f B e n C h e r i f a & : L e s c a n n e

The method of Ben Gherifa and Lescanne, in [BL87b], attempts to reduce

a complex polynomial by successive approximations until its positiveness is

3.1 Termination by Polynomial Ordering 57

y

4

2

0
0 1 2 3 X

obvious.

Figure 3.1: Well-foundedness of polynomial orderings.

po{x) > P i(æ) > ' " > Pi-i{x) > pi{x) > 0

If a (non-vacuous) polynomial contains no negative monomials, then it

must be positive. Otherwise, the algorithm employs a heuristic to select a

positive monomial to diminish the negative monomial. This continues until

either there are no remaining negative monomials (success) or no positive

monomials are capable of diminishing a negative monomial (failure). The

method is implemented by way of a rewriting system in the ORME theorem

prover.

Although Steinbach found this method to be successful in the majority

of feasible examples (those collected in [SK93]), the heuristics involved can

detrimentally affect the outcome if applied in an unfortunate order, and

feasible examples can be made infeasible by the approximation step.

3 . 1 . 1 M e t h o d o f S t e i n b a c h

In [Ste94] Steinbach extends the method of BenCherifa and Lescanne by

introducing backtracking search and letting p rise above the (heuristically

set) value of 2. The method applies a variety of heuristics for approximating

the polynomial inequalities to a system of linear inequalities, whereupon the

3.1 Termination by Polynomial Ordering___________________________ ^

system is tested for satisfiability (using the method of complete description -

Section 2.3). The method is implemented in the TETRES termination tool,

which is integrated with the COMTES theorem prover.

3 . 1 . 2 M e t h o d o f G i e s l

In [Gie95a] Giesl incorporates the value of p into the gradients method of

Lankford, and shows that this corrected version is equivalent in effectiveness

to the methods of BenCherifa & Lescanne and of Steinbach. We will examine

the gradients method below, since it is used for the objective function of the

genetic algorithms in this chapter. Giesl’s method is implemented in the

POLO ([Gie95b]) termination tool.

3 . 1 . 3 G r a d i e n t s M e t h o d

Given an interpretation of JF into polynomials over N, the task of proving

termination is to show that > 0 for all rules t —> u in the given

rewriting system. To prove f (x) > 0, where Xi > p ^ 0, for a polynomial

function / , the gradients method ([Lan79, Gie95a]) checks that

f {x){xi i-> p} > 0

and that the gradient in the direction of Xi is non-negative. It does so by ap­

plying the following two rules upwards to replace the polynomial inequality,

containing term variables, with a system of simpler inequalities containing

no term variables:

/(^){æi M- p} > 0, g^ /(æ) > 0
f {x) > 0

3.1 Termination by Polynomial Ordering 59

f { x) { x i 1-4 > 0 , j j t / (5) > 0
f i x) ^ 0

where the domain is {æ G N j æ ^ p}. Repeatedly applying the above rules

results in a system of linear inequalities in coefficients of the polynomial

interpretations (and the variable p). This system of inequalities is used

below as a measure of fitness of individuals in a population of candidate

coefficients.

In addition to the usual constraint that p | > |w] for all rewrite rules

t -> u, the gradients method of Giesl demands

• ^ (l / l (^)) > for all f E T , for all non-constant function symbols,

• [/1(F) ■ • •)F) ^ F) for all function symbols,

• |c] ^ 0, for all constants.

The first two demands are automatically met by ensuring that all variables

are represented in the polynomial. For example, suppose

I/l(^) f) = Co + cix + C2V + c^xy

Then the representation of variables condition requires

• Cl > 0 or C3 > 0, and

• C2 > 0 or C3 > 0.

The third demand is met by setting p to the minimum interpretation of

constants.

3.2 Genetic Algorithms 60

3.2 G enetic A lgorithm s

There are many variants of genetic algorithms, but for the purposes of

this work we adopt a scheme close to the original formulation by Hol­

land in [Hol75]. The components that make up a genetic algorithm will

be described below with reference to how they were used for polynomial

termination and what choices were found to be optimal on the examples

tried. For a general survey of genetic algorithms the reader is directed to

[Gol89a, Whi93, BBM93a, BBM93b].

In p u t: (finite) set of oriented pairs defining TRS to be proved terminating
O u tp u t: either succeed with polynomial interpretation, or fail

choose form of polynomial interpretations
derive system of inequalities in interpretation coefficients
generate initial random population, P
evaluate each individual against inequalities
w hile termination not proved and search limit not reached do

for j = 1, . . . , n do
randomly grab g (tournament size) individuals from P
select best individual w.r.t. objective function from 1. . . g

randomly apply recombination
randomly apply mutation
evaluate each individual against inequalities

output best individual

Figure 3.2; Genetic Algorithm for Termination

Trials were carried out using the GALOPPS ([Goo96]) code library ap­

plied to problems from Steinbach's collection [SK93].

3 . 2 . 0 E n c o d i n g

The standard encoding of sample points in a genetic algorithm is as fixed

length binary strings.

The individuals of our GA are instantiations for the coefficients of the

3.2 Genetic Algorithms 61

polynomial interpretation of JF.

Suppose that JF = (a, f(J), g(-, -)} and the interpretations chosen are of

the form

a ~ Co

f (x) - Cl + C2 X +

g{x, y) = 0 4 4- C5 X + cey + cjxy .

Then an individual in the population will be of the form

Co I Cl 1 0 2 I 0 3 I 0 4 1 0 5 j 0 6 I O 7 .

For simplicity the fields were made of uniform length, and during trials a

field length of 3 bits was used, so that coefficients ranged over the values

0 , . . . , 7. This choice was fairly arbitrary; a smaller range would have made

the problem easier for the genetic search but limited the rewriting systems

provably terminating.

The value of p (the minimum value of a ground polynomial) was origin­

ally treated in the same manner as the coefficients by attaching it to each

individual as an extra field. This allowed the value of p to be sought along

with the other parameters, but was found to be detrimental to the perform­

ance (cost in time) of the technique, so instead a heuristic was adopted of

setting p to the value of the lowest constant in the individual when that

individual came to be evaluated.

The initial population was created randomly. The examples tried in­

volved 20-30 fields, for which a population of 50-100 individuals was found

to minimise the number of evaluations needed. (This value is considerably

lower than the values recommended in, for example, [Gol89b]. That is be­

cause they are aiming to minimise number of generations required, whereas

3.2 Genetic Algorithms__ Ifâ

here we are wanting to minimise time taken.)

3 . 2 . 1 F i t n e s s

The objective function to be optimised by the genetic algorithm is often

referred to as the fitness function. No constraints such continuity or differ­

entiability are placed on the fitness function, and experiences related in the

literature suggest that genetic algorithms are relatively robust to noise and

multi-modality in the fitness function.

The fitness function was initially defined as the number of rewrite rules

correctly oriented by the individual. When the difference in number of rules

oriented between the best and worst individuals of the population was small,

this produced a very ‘stepped’ fitness function, which was detrimental to

guiding the population towards a successful individual. Instead, the fitness

was measured as the number of inequalities (from the gradients method)

that the individual satisfied, resulting in a more discriminating and perhaps

more accurate measure of an individual’s fitness. In addition, the selection

scheme described below was found to play a significant part.

3 . 2 . 2 S e l e c t i o n

Selection is the means by which the better individuals have a higher probab­

ility of contributing to the next generation. The classic GA of Holland and

in fact most G As in the literature use fitness-proportionate selection, such

as roulette wheel selection. In such schemes the probability of an individual

being selected is a function (usually a linear scaling) of its fitness value.

Initially the most surprising aspect of the GA implemented was that

the popular selection schemes such as stochastic universal sampling, roulette

wheel, stochastic remainder, and linear ranking selection (see [BT95] for

3.2 Genetic Algorithms 63

details) all gave very poor results. The GA as described did little better

than (the mean of a batch of) random search. When tournament selection

was used, however, the GA performed very well, giving the results described

below.

In tournament selection g individuals are examined and the best one goes

through to the next generation, so that every individual in the next gener­

ation has had to better (g — 1) randomly selected ‘opponents’. It shouldn’t

have been such a surprise when the fitness function is considered. A large

proportion of inequalities are satisfied in the initial population, and as the

population average improves, the difference between worst and best dimin­

ishes and the granularity of the fitness function gives little direction to further

improvement. On the other hand, tournament selection places the same rel­

ative selection pressure on individuals regardless of the stage of the run, and

so the drive towards satisfying the inequalities is maintained much stronger.

3 . 2 . 3 R e c o m b i n a t i o n

Recombination is the means by which different combinations of building

blocks can be tested. Also known as sexual reproduction, this operation

takes pairs of individuals and swaps a randomly chosen segment in them.

Recombination is usually viewed as a ‘concentrating’ operation, focusing the j

sampling on promising combinations of building blocks. i

Two point recombination, where the bit string is viewed as a circle, was |

found to be best, as is usually the case when being situated at the end of the I

individual has no special significance to the field. Since the encoding was !
i

field-based, and it is meaningless to swap part of the value of one coefficient |

with part of the value of another, recombination points were restricted to '

field boundaries. On the examples tested, the optimal value of recombination |

3.2 Genetic Algorithms 64

appeared to be quite low (around 30%) compared to more common values in

the literature (40-60%) but the difference in performance was inconclusive

from the small sample size.

3 . 2 . 4 M u t a t i o n

Mutation is the means by which diversity is maintained and new data points

may be introduced. Each individual has a small probability of having part

of it changed to a new value. (With classical binary encodings, this means

a bit-flip.)

Since the encoding was field-based, mutation meant changing the value

of a coefficient in an individual to a new value. The probability of mutation

was found to be one of the most important parameters for ensuring speedy

convergence to a solution, with a per-field probability of around 10%, which

is rather high in comparison to most GA applications (usually less than

1%). This and the recombination probability suggest that the search for

polynomial orderings relies more on diverse coverage of the search space

than specialising in recombination of coefficients, at least for the handful of

examples so far tried. However, the GA was not simply hillclimbing, since

it performed very poorly if recombination was turned to 0%.

3 . 2 . 5 T r i a l s

In [SK93] 93 examples are given of rule sets that were shown to be terminat­

ing using their Tetres termination tool. Of these rule sets, 81 are terminating

by polynomial orderings (Steinbach’s POL ordering). When looking for ex­

amples on which to try genetic search, those that could be better tackled

using other techniques presented in this document (RMCD, Chapter 2; In­

variant analysis. Chapter 4) were discarded, so of the 81, 45 were discarded

3.2 Genetic Algorithms___^

for being Knuth-Bendix terminating and a further 2 were discarded for being

monadic. Of the remaining 34, 3 were discarded for having only one rule,

and a further 20 were discarded for being terminating by ‘first guess’ inter­

pretations (e.g. by interpreting binary function symbols as æ 4- y -f- 1 and

constants as 2). Thus 11 examples (2.15, 2.18, 2.28, 2.31, 2.38, 2.42, 2.43,

2.44, 2.57, 3.6, 3.7) remained for the trials.

The values for the genetic operators described above were found by taking

an example rule set, varying the value of each genetic operator separately

until a locally optimal value was found for that operator and that rule set.

Then subsequent rule sets were tried and the operator values were adjusted

to see whether they could be improved. Of the 11 examples, the difference

in performance (ratio of number of evaluations required to find a solution)

between the general operator values and the optimal values for that example

was usually within a factor of 2 (i.e. fine-tuning the operator values on a per-

problem basis typically produced less than doubling of success speed) which

suggests the technique is fairly stable for this application area, at least on

the limited set of examples tried.

To illustrate the fine-tuning process, the results for solving Example 2.31

are shown below. The operator values were maintained at

Population size Crossover proportion Mutation probability

70 30% 10%
with a tournament size of 3. Each of the genetic operator values was varied,

and the number of evaluations taken is tabulated below (averaged over 5

runs and rounded to the nearest multiple of 1 0).

3.2 Genetic Algorithms 66

P o p u la tio n size

Size 40 50 60 70 80 90

Evaluations 580 880 480 500 950 1010

C rossover p ro p o rtio n

Percentage 15 20 25 30 35 40 45 50

Evaluations 1220 600 760 500 520 740 530 760

M u ta tio n p ro b ab ility

Percentage 4 6 8 10 12 14 16

Evaluations 810 490 10 1 0 500 820 1990 2030

Once reliable parameters for the GA had been found, the GA produced

a solution so quickly (typically in under 1000 evaluations, taking under 2

seconds) that statistical results are of little value. Moreover, since the im­

plementations are so different, direct comparisons can’t be drawn from exe­

cution timings on a small set of similar examples. However, to give an idea

of the orders of magnitude involved, for Example 2.31 and Example 2.43 in

[SK93], TETRES took 15-30 seconds, POLO took 15-40 minutes, and the

G A consistently took less than 8 seconds.

It will be interesting to try the GA on a larger, more varied suite of

examples since the method of Steinbach is exponential in the number of

monomials, the method of Giesl is exponential in the number of variables,

and the time complexity of the GA is an unknown. If the GA literature can

be believed, the GA may have a bigger advantage on problems with more

coefficients and more inequalities.

3.3 Further Developments__ 67

3.3 Further D evelopm ents

There is clearly a great deal of modularity to the genetic algorithm approach

to termination ordering; the search engine itself uses no information about

the ordering family being tried (e.g. polynomial orderings) other than in the

objective function for scoring members of the population. Had the order­

ing family been different (say, syntactic orderings such as the recursive path

orderings) the only necessary changes to the procedure would be in the mod­

ule for evaluating how close an individual came to proving termination. It is

easy, therefore, to envisage a generic termination tool that has many object­

ive functions, one for each of an array of ordering families, and that carries

out the same search (modulo the user’s choice of objective function) regard­

less of which ordering family is being tried. Better yet might be a tool that

maintains separate populations, with distinct populations encoding members

of distinct ordering families, and having the populations compete with each

other, thus freeing the user from even having to choose which family to try.

3 . 3 . 0 L e a r n i n g T e r m i n a t i o n T o o l

This chapter has concentrated on one facet of GA research, namely optim­

isation. However, there is another branch of current GA research that could

prove useful both to termination research and to practical termination tools:

automated learning.

The use and development of evolutionary computation for automated

learning is a growing area of artificial intelligence, and a general account is

outside the scope of this document. However, the basic idea is straightfor­

ward: emphasise the exploratory nature of the genetic algorithm and weaken

the pressures on the population to converge, thereby encouraging the explor­

ation of local optima. This can be achieved by reducing the dominance given

3.3 Further Developments__ ^

to fitter individuals during mate selection (the selection pressure), and by

rejecting duplicate individuals. The intention is for the GA to converge more

slowly, considering a wider variety of points in the search space and inhibiting

the ability of fitter individuals to dominate the population.

This approach is not directly useful to an interactive or real-time ter­

mination tool, since on a moderately sized termination problem the GA will

typically be left to run for some hours, but there are several uses of such an

‘offline’ approach to termination theory, and polynomial termination in par­

ticular. The most obvious use is to give the GA a better chance of finding a

successful termination ordering. Often, particularly for academic problems,

no appropriate polynomial ordering is apparent, initial attempts with ter­

mination tools are unsuccessful, yet it is not clear that polynomial orderings

are infeasible. Where computational processing is cheaper than intellectual

analysis, a slowly converging GA may be used to give a more thorough test

of the search space (although a GA search can never be complete). A GA

usually deals with a population of fixed-length strings, which, when search­

ing for a suitable polynomial ordering, places an upper bound on the values

of polynomial coefficients, resulting in a finite search space. This restriction

can be weakened by modifying the algorithm to dynamically lengthen all

strings in the population if a significant proportion of the fittest individuals

are utilising the full length of their strings, in a way similar to reverse an­

nealing. The user could periodically monitor the progress of the GA (e.g.

by looking at a list of the fittest 10 individuals every 1000 generations) to

see whether the GA had yet converged and to judge whether to call a halt

to its execution.

In addition to giving the GA a better chance of finding a single success­

ful individual (i.e. an appropriate termination ordering), a similar approach

3.3 Farther Developments__ ^

could be taken for finding a set of successful individuals (i.e. all those order­

ings found at a certain generation that satisfy the given termination prob­

lem). In the relevant research literature one finds many examples of orderings

that prove certain term rewriting systems terminating. Whether the order­

ings are found manually or mechanically, the search finishes as soon as one

is found.® However, as for the Knuth-Bendix orderings of Chapter 4, if there

is one suitable ordering then in general there is a continuous set of suitable

orderings, as will be shown in Chapter 4. Whereas finding one suitable or­

dering is sufficient for solving one particular termination problem, getting a

picture of the solution sets for given termination problems may help to guide

future search techniques and perhaps guide developments of the theoretical

analysis of Chapter 4.

The schemata in G As can be thought of as micro building blocks, but

we can also consider macro building blocks: those individuals that are useful

to have in the population for leading to successful outcomes. By running

successive G As with the same objective function but with a proportion of

each initial population having been manually selected, it may be possible to

determine which interpretations it is generally fruitful to ensure exist in the

initial population. However, care would have to be taken that these potent

individuals were not so much superior to their randomly selected peers that

they dominated the population after a couple of generations and so hampered

or prevented the search for a suitable individual. Also, so many G As would

have to be executed to derive results of any statistical worth that some means

of automating this meta-search would be necessary.

The examples tested in [Ste94] tend to fall into distinct classes, such as

group theory, arithmetic, and lists. It would be feasible to ‘train’ popula-

^The Tetres tool of Steinbach looks for all suitable orderings in its bounded search
space.

3.3 Further Developments 70

tions of genetic algorithms on homogeneous examples and store the resulting

populations, so that when presented with an example of that class there is

already a pool of previously successful building blocks to begin.

During the execution of a GA for termination orderings, many orderings

are evaluated against the given term rewriting system. In particular, when

two individuals are mated (i.e. crossover is applied), the fitness values of the

parents and the children are known, and so the information is available as to

what changes made a local gain or loss. It may be possible that a sampling

optimiser such as G As may be able to learn from such information, so that

genetic operators can be given bias in directions known to be statistically

fruitful in the domain of termination orderings. Current genetic algorithms

simply sample the fitnesses of the population, but do not learn from the

short term relative gains or losses endowed by the genetic operators. Perhaps

genetic algorithms can be adapted to learn from such information, although

it is not clear to the author how this might be achieved.

3 . 3 . 1 N u m e r i c a l O p t i m i s a t i o n

As mentioned in Chapter 2, if we combine genetic algorithms with the Re­

vised Method of Complete Description, we have a powerful tool for an im­

portant class of numerical optimisation problems: integer programming un­

der linear constraints and an arbitrary objective function.

Suppose we have a finite set of linear constraints, Ax > 0 , and an ob­

jective function, f.x , to be minimised, and suppose we require the elements

of any solution vector x to be integers. Then we can apply the RMCD to the

linear constraints in order to enumerate the extreme points of the solution

space, E = [Q|P]. Any particular coefficient vector, c, selects a point in the

solution space, s = Ec. Therefore we run a GA on a population of coeffi-

3.4 Conclusions___ ^

dent vectors, c, and use ïE c as the objective function, thereby guaranteeing

that all individuals are feasible solutions and providing an efficient means of

finding the optimum vector.

The advantage of this approach over traditional approaches is the lack

of restrictions on the objective function; the only restriction is that the ob­

jective function can be evaluated for any given feasible solution. Of course,

the approach described above will really come into its own when the ob­

jective function is multimodal or discontinuous (thereby ruling out gradient

methods) and the search space is too large to consider random search.

The disadvantage of this approach is that it employs both the RMCD

and a GA, both of which can be computationally expensive, even on inputs

where such heavy handed techniques might not be necessary. For a particular

input, the only indication that a cheaper hammer might be available to crack

the nut would be if the output of the RMCD was relatively small or if the GA

converged relatively quickly. However, quick convergence of the GA presents I

another problem: since the GA is based on heuristics, there is no guarantee |
Ithat the parameters of the genetic operators were chosen wisely and that j

a global optimum has in fact been reached. One approach could be to use j
I

a GA to identify troughs and then use local hillclimbing to identify global ;

optima.

3.4 Conclusions

In order to simplify the process of composing interpretations to construct

polynomial inequalities, the form of polynomials has been restricted in fa­

vour of linear polynomials. While it is believed that this is sufficient in

the vast majority of cases (with some theoretical justification in Chapter 4),

until more is known about the relative potency of monomials in general poly-

3.4 Conclusions 72

nomials^, it may be worth investigating the lifting of these restrictions on

form. A more general approach than the one taken in this chapter is af­

forded by genetic programming, in which individuals are unbounded trees

rather than fixed-length strings. The field of genetic programming is still

quite young relative to genetic algorithms, and there are still many problems

to be worked out, such as how to perform crossover while maintaining well-

formed individuals and if the form of individuals is made too general the

search space will be much larger (by orders of magnitude) than it need be.

We don’t require this full generality for polynomial orderings, however, since

the interpretations of the (finite) set of function symbols can be coded as a

fixed-length list of polynomials with each polynomial coded as an unbounded

list of coefficients (i.e. a summation of monomials). In such an implement­

ation the methods described above for testing positiveness of polynomials

would be too costly. Steve Linton proposed (private communication) that

the polynomial functions be sampled along their domain, thus giving a fuzzy

evaluation of each polynomial inequality. The idea of dealing with arbitrary

monomials within each polynomial was rejected for the procedure described

in this chapter because that would greatly complicate the implementation

of the objective function, and necessarily slow down the progress of the G A,

whereas the results of Chapter 4 suggest that consideration of only a few

monomials of each polynomial is sufficient.

^This will be discussed in Chapter 4.

4 Analysis of Polynomial

Orderings

In this chapter we focus on the class of polynomial orderings on

monadic terms.

4.0 Introduction

As described in Chapter 0, the complexity of having polynomial interpreta­

tions ranging over arbitrarily long polynomials excludes them from practical

use. We have seen in Chapter 3 that even when the form of interpretations

is tightly restricted, the search space can still be slow and cumbersome. We

also know that termination is undecidable for monadic terms, and for poly­

nomial orderings over the naturals.

By restricting terms to contain only unary function symbols we will be

able to determine the precise ordering defined by a given polynomial inter­

pretation, and to specify that ordering as a lexicographic combination of

simpler orderings.

4.1 Polynom ial Orderings on M onadic Terms

Polynomial interpretations are defined as before, by interpreting each func­

tion symbol as a polynomial function, but now all function symbols in T are

unary.

73

4.1 Polynomial Orderings on Monadic Terms_______________________ 74

D e f in i t io n 16 (P o ly n o m ia l in t e r p r e t a t io n s) Let the set J ” be a finite

nonempty set of unary function symbols. The polynomial interpretation of

a function symbol f i G E , denoted | / i | , is a finite polynomial function in x

ranging over K+, |/il(ic) = Om#™ + • • • + aix + no, where m G a,m E

M+, a m - i , ■ ■ ■ ,ao G M, and either

m > 1 , or

m = 1 and am > 1 , or

m = 1 , Gm ~ 1, and gq > 0 .

resulting in non-linear, weakly linear, and strongly linear interpretations,

respectively. Each term variable v is interpreted as a polynomial variable

Vp. A monadic term t E T has polynomial interpretation | t | given by the

obvious homomorphism. o

For notational convenience, we interpret the (only) variable v as rr.

Thus the polynomial interpretation of a monadic term is a polynomial

function in one variable, x. Polynomials are ordered by the ‘eventually dom­

inates’ ordering on functions, which for unary polynomials is total: if two

polynomials in x are distinct then one is greater than the other for all values

of X beyond® some value xq.

D efinition 17 (P olynomial o r d er in g s) Let each function symbol in T

be interpreted by a polynomial function. Then y-p̂ i is a polynomial ordering

on T(J^, {v}) given by

t >-poi u iff 3rro G IR : Væ > æo : [t|(a:) > |u|(a;).

° Since there are no constant symbols we need not carry the baggage of domain restric­
tions, and can use instead the original formulation due to Lankford.

4.1 Polynomial Orderings on Monadic Terms 75

Note that closure under context and substitution require that each function

[fi| be strictly increasing. Moreover, the subterm property requires that

lAl(a^) > X for all fi G E.

Notice that the ‘eventually dominates’ ordering on unary polynomials is

simply the length-then-lex(left) ordering on their coefficients:

4" ' ' ' T G\x 4“ do bnX^ 4“ * ’ * 4~ 61a; 4- bo

iff (a ^ , . . . ,d i,ao) (>kn; {bn,... ,bi,bo)

In general, for a given polynomial interpretation on E , two or more terms

may be interpreted as the same polynomial {t u iff M = M) giving

a non-total polynomial ordering. However, polynomial orderings satisfy the

conditions of Lemma 7 in [Mar93], and so any polynomial ordering on mon­

adic terms can be extended to a total simplification ordering. In particu­

lar, for any polynomial ordering y-poi on T , the lexicographic combination

is total, where '^poi is the pre-order associated with y-poi and

is the lexicographic ordering from the left of any total precedence >

on T . Note that since the ordering on unary polynomials is total, so is the

polynomial pre-order on terms.

An ordering >- on monadic terms is said to have the cancellation property

if for all / G we have f{t) y f{u) implies t >- u and also t[f{v)] >- u[f{v)]

implies t[v] >- u[v].

5 Lemma

Polynomial orderings have the cancellation property.

P roof Assume that a polynomial ordering X- does not have the cancel­

lation property. Then for some t ,u E T , f E E we have t u and either

4.2 Ordering Invariants 76

>- u[f{v)] or f{t) y f{u). Since the polynomial pre-order is total,

either t ^ u or t u.

However, t ~ u implies | t | = |tt |,

implies W o |/(v)| = In lo |/(v)l,

implies [t[/(v)]l = [u[/(v)]J,

implies t[f{v)] ~ u[f{v)],

and t -< u implies | t | < [u],

implies W o[/(v)] < M o [/(v)l,

implies [t[/(v)]l < [[w[/(v)]],

implies t[f{v)] -< d[/(v)],

contradicting the assumption. The argument is similar for composition from

the left. Therefore every polynomial ordering has the cancellation property.

□
With monadic polynomial orderings defined, we prepare in the next sec­

tion to analyse what orderings are possible.

4.2 Ordering Invariants

In this section we give the definitions and lemmas used in the Section 4.3.0

to analyse the order types, numeric invariants, and lexicographic extensions

of the polynomial orderings.

The logical and numeric ‘invariants’ of an ordering >- are fixed for all

extensions of >-, signify fundamental properties of all total extensions of

and will allow us to partition and categorise the polynomial orderings on

monadic terms.

4.2 Ordering Invariants__ 77

4 . 2 . 0 O r d e r T y p e s

Since our polynomial orderings are formulated (in Definition 16) to be sim­

plification orderings, they are guaranteed to be well-founded. In addition,

we can always extend a polynomial ordering to a total ordering (from res­

ults in [Mar93]), and all such extensions share the same invariants (trivially,

since the invariants define properties of the total extensions). Thus for the

analysis of invariants it is valid to treat the polynomial orderings as total.

Since all the orderings we will be analysing are well-founded and extend­

ible to total orderings, the only order types we need consider are ordinals.

Moreover, it is known from [MS93] that the only order types that can occur

for orderings on monadic terms in two function symbols are w, and

Therefore a simple description of order types will suffice, and for a fuller

account of order types the reader is directed to, for example, [Wil65j.

An ordered set (S', >-) has order type w iff it is order-isomorphic to

the usual ordering on the natural numbers, (N, >), i.e. there is an order-

preserving bijection between (S , y) and (N, >). An ordered set (S', x) has

order type iff it is order-isomorphic to (N^, > '^^), the ordering on pairs

given by first comparing the left components. An ordered set (S', >-) has

order type iff it is order-isomorphic to (N+, (^^en; the ordering

on non-negative-length tuples of natural numbers given by first comparing

lengths and then ordering lexicographically tuples having the same length,

and are the length pre-order and lexicographic ordering.

To deduce the order types of the monadic polynomial orderings, we will

use the following theorem from [MS93].

6 T heorem (S c o t t)

Let y be a total reduction ordering on monadic terms T({f, g},{v}) with

4.2 Ordering Invariants 78

f (v) >- g (v) . Then y has order type ta, tâ , or la'̂ . More precisely,

(T, y) has order type a iff y f for some j G N,

(T, X) has order type iff f g^ for all j EN and

both g^f fg for some k E N

and fg^ >- g f for some k EN,

(T, >-) has order type a ^ iff f >- g^ for all i G N and

either fg)>- g^f for all k e N (1)

or g f fg^ for all k e N. (2)

Moreover, case (1) is the left recursive path ordering^, and case (2) is the

right recursive path ordering.

This theorem enables us to deduce the order type of a well-order on

monadic terms over two-letter alphabets by comparing certain terms in the

well-order. By partitioning interpretations into homogeneous sets we will be

able to calculate general polynomial expressions for the above terms, and so

deduce their order types.

4 . 2 . 1 N u m e r i c I n v a r i a n t s

Once the order type has been determined, an appropriate numeric invariant

will give a finer classification. We use the invariants r and A from [MS93]

for orderings of order types a and respectively.

^Formulated on p 27.

4.2 Ordering Invariants___79

D e f i n i t i o n 18 Given a real number r (0 ^ r ^ 1), the pre-order on

monadic terms T({f, g}, {v}) is defined by

t ^ r u iff + T .# (g ,t) > #(f,u)-}-T.#(g,-u).

This is a canonical pre-order by weight, where r is the ratio Having

r = 1 defines a pre-order by length, and having r = 0 defines a pre-order by

the number of f ’s (ignoring g’s). Clearly permutations are equivalent under

r pre-orders. In addition the strict part is not total if r is rational. For

example, if r = 0-5 then gfg ff.

Proofs of these lemmata are in [MS93].

7 Lem ma

The ordering is total up to permutations iff r is irrational.

8 Lemma

I f y is a total simplification ordering of order type w on monadic terms

T({f, g}, {v}) with f(v) g(v) then y = (^riin) for some 0 < r < 1 and

some transitive relation O.

Thus every well-order of order type a contains a r pre-order. Later we

will determine r and □ for any polynomial ordering y of order type a.

D efinition 19 Given a real number A > 0, the pre-order on monadic

terms T({f, g},{v}) is defined by _ fgPm, y^ g‘?ofg^if. . . fĝ »̂ iff

m > n or both m — n and 4 t-piA 4- po ^ ÇnA"' 4 h q\X 4- o

A A pre-order first orders by the number of f ’s and then by the number of

g’s biased according to position among the f ’s. In general the strict part of

a A pre-order is not total, but we have the following, with proofs in [MS93].

4.2 Ordering Invariants___^

9 L e m m a

The ordering total iff X is transcendental.

10 L e m m a

I f y is a total simplification ordering o f order type on monadic terms

T({f, g}, {v}) with f(v) X- g(v) then y = ^a; =3) for r = 0, some A > 0 ,

and some transitive relation □.

As with above, the extension □ may be the trivial relation that makes

all terms equivalent. Later we will determine A and □ for any polynomial

ordering >- of order type a^.

4 .2 .2 L e x ic o g r a p h ic E x te n s io n s

We now come to the final set of tools required for our analysis: those needed

for identifying the relation that extends a polynomial ordering from its invari­

ant pre-order. Identifying the extension defined by a polynomial orderings

would be rather simpler if equivalence was due only to permutations, since

the form of equivalent terms would be more amenable to direct analysis. As

noted above, however, non-permutable terms may also be equivalent under a

r pre-order. Therefore we employ a less direct test by way of a so-called l>m#x

relation that is sufficient to prove the extension is a lexicographic ordering.

Given a simplification ordering y , a pre-order and a lexicographic

ordering o'®’' all on T, we will want to be able to characterise when y =

(fc; This will enable us to characterise when ypoi = (^r; where

ypoi is a polynomial ordering of order type a.

To assist this characterisation, we define an auxiliary relation on

T in terms of a precedence l> on fF, and an equivalence relation ~ and

simplification ordering y on T. In this context we use t to denote the

4.2 Ordering Invariants__ ^

equivalence class under ~ containing t, that is, the set {s G T | s ~ t} G

T h -

D e f i n i t i o n 2 0 (ofSàx) Let ^ be a given pre-order on T. If every equivalence

class C e T/<^ has a minimum m iny and a maximum m ax^ (both unique),

then >max is defined by

t t> fn ax U

iff t = t'[fi{v)], t' = m in^ t', u — u'[fj{v)], u' = m ax^ u ', f i t> fj .

o

Clearly if >max is defined, we have >R5àx c The corresponding formu­

lation of >Sax from the left defines a different ordering, but as we will see in

Section 4.3.2 we will be concerned only with comparisons from the right.

The following lemma utilises >max to provide a test for when one simplific­

ation ordering is a lexicographic extension of another simplification ordering.

11 L e m m a (>'®^ c o n t a i n m e n t)

Let T be the set of (Unite) monadic terms T({f , g}, {v}). Let ^ be a

total pre-order on T with y having the subterm property, let t> be a total

precedence on {f, g}, and let y be a simplification ordering on T . Then

= iff { b o * > Ç i -

P r o o f The proof is by showing that 0. implies 1. implies 2. implies 0.

0. Ç K,

1 .

2. Ç K.

For a total precedence > , the lexicographic ordering is total. There-

4.3 Two Unary Function Symbols 82

fore, for any total pre-order the ordering (^; is total and so has

no proper extension (without extending the domain). Therefore y is not a

proper extension of (^ ; and so 0 . implies 1 .

It is obvious (from the formulations of the orderings) that l>m)̂ Ç

(fc> and so 1 . implies 2 .

To show 2. implies 0., it suffices to show that (~; t> ffik x) C y implies

(~ ; Ç y . Suppose (~ ; t> m à x) C y and that t u for some

t , u E T{E, V). Since >~ (the strict part of ^) has the subterm property, u is

not a subterm of t, and we write t — t'[fi{v)] and u = u'[fj{v)] with fi > f j

(common suffixes can be removed since has the cancellation property

from the right).

Then t'[fi{v)] y {min^ F)[fi{v)] b y d e fm in ^ ,

y {max^ '^')[fj{'^)] by def >max, and l>m& Ç y ,

y u’[fj{v)] by def maxy. .
Thus t y u, and so (^; C y . □

We will use this result in Section 4.3.2 to show that certain polynomial

orderings of order type w are of the form (^ 7-;

4.3 Two U nary Function Sym bols

In this section we use the lemmas of Section 4.2 to analyse the order types,

numeric invariants, and lexicographic extensions of polynomial orderings on

monadic terms 7”({f, g}, {v}) over a 2-letter alphabet, {f, g}.

Let ypoi be a polynomial ordering on monadic terms T({f, g}, {v}) defined

4.3 Two Unary Function Symbols 83

by the interpretations

|f|(æ) = Gmx'^ 4 H a ix 4- oo, • • • «o G M,

|g](æ) = bnx^ 4------ \-bix-\-bo, bn. . .bo e R ,

and [v|(æ) = x, such that f(v) >-poi g(v) >-poi v. This means that

m > p [g l >p N

(where >p is the ‘eventually dominates’ ordering on polynomials of Defini­

tion 17), that is

(«m, . . . ,«o) (^n,---,&o) { > len, (1,0).

As seen above, a polynomial interpretation for a unary function symbol

is defined by means of a sequence of parameters: the index of the greatest

monomial and the values of the coefficients. There are three classes (in Defin­

ition 16) into which a polynomial interpretation may fall: non-linear, weakly

linear, and strongly linear. By removing symmetric cases,^ we can partition

the set of monadic polynomial orderings on T({f, g},{v}) into six classes

according to the range in which the parameters of the (two) constituent in­

terpretations lie, resulting in the six subsets we will label A, B, C, D, E , and

F as specified below. By considering an arbitrary ordering in each class (e.g.

FpoiA G A) we will be able to categorise all total extensions (represented by

an arbitrary total ordering >-) of that ordering, with the results recorded in

Table 4.0.

In most of the calculations that follow, the result is derived from the lead­

ing monomials involved, with little or no part played by the lesser monomi­

als. Therefore to aid clarity we use the notation j to denote a polynomial

of degree less than d if d > 0; otherwise y denotes 0.

4.e. orderings that are the same up to consistent renaming of function symbols

4.3 Two Unary Function Symbols 84

I
I
I

O H

li
II

CL

AV

Hi

A

Ù

AV

O)
AV
M-

I
Ù

A

A
s-

AV

€

cn
AV

-O <3 « C3

jà

-o| <3
li
b~

o>

I
0)

cs

I

1
g

I
o

(£
0
O)

1
J
.a
-a

-a

I

I

4.3 Two Unary Function Symbols 85

4 .3 .0 O rd e r T y p e s

We begin the analysis of monadic polynomial orderings by determining the

order type of each monadic polynomial ordering.

Let the total ordering x on monadic terms T({f, g},{v}) be a total

extension of a polynomial ordering ypoi, with f ypoi g ypoi v. For each

of the six cases (as partitioned below) the order type of y is deduced by

comparing expressions according to Theorem 6 on page 77.

12 L e m m a (O r d e r T y p e o f ypoiA)

I f m ^ n > 1 then y has order type a.

13 L e m m a (O r d e r T y p e o f ypow)

I f m > n = 1 and bi > 1 then y has order type a^.

14 L e m m a (O r d e r T y p e o f ypoic)

I f m > n = l and bi = 1 and bo > 0 then y has order type a^.

15 L e m m a (O r d e r T y p e o f ypoin)

I f m = n = 1 and ^ 6i > 1 then y has order type a.

16 L e m m a (O r d e r T y p e o f ypow)

I f m = n — 1 and ai > bi = 1 and bo > 0 then y has order type w .̂

17 L e m m a (O r d e r T y p e o f ypoiF)

I fm = n = l and ai = bi = 1 and ao ^ bo > 0 then has order type a.

The six lemmata above give the order types of total extensions of poly­

nomial orderings. However, they show that all total extensions of a given

polynomial ordering have the same order type, and we are therefore justified

in associating that order type (an ordinal) with the original (not necessarily

total) polynomial ordering.

4.3 Two Unary Function Symbols 86

The proofs of Lemma 12, Lemma 15, and Lemma 17 are similar, as are

the proofs of Lemma 13 and Lemma 16:

P roof (of Lemma 12) In this case

l[fl(a ;) = G m X ^ + y , [g * l (a :) = bn~^ x^^ + y Vk e

giving g* ypoiA f if bn~^ æ" >p G m X ^ ,

if > m,

if

Thus in ^poiA, f is bounded above by g^ for all k > and so >- has order

type a. □

P roof (of Lemma 13) In this case

[f](a:) - G m X ^ + y , [g^l(a?) = b^x + Vk e N^ ,

[fg]|(a;) = [gf]](a:) = + 9 ,

[gT|(x) = am b\x^ + y Vi € N, [fg-^l(æ) = a ^b ^^ x ^ + y Vj E N,

giving f ypoiB g* if a m x ^ >p b i x ,

if m > 1,

and g*f ypois fg if a m b \ x ^ >p U m b i^ x ^ ,

if 6̂ > 6Y",

if i > m,

and fg-) ypoiB gf if Umb'^^x'^ >p ambix"^,

if b^^ > 6i,

if m j > 1,

if j > 0.

4.3 Two Unary Function Symbols 87

Thus in >-poiB} f is not bounded above by for any k, but fg is bounded

above by g*f for alH > m and gf is bounded above by fg-̂ for all i > 0, and

so)>- has order type cô . □

P roof (of Lemma 14) In this case

IfgKa;) = + (mambo +

|gTl(a:) = Om,#™ + + y V« G N,

giving fg XpofC g 'f if {mambo + am-i)x^~'^ >p

if Tïiambo T ®m—1 ^ 1)

if mambo > 0.
Thus in y-poic, fg is not bounded above by gH for any « G N, and so has

order type □

P roof (of Lemma 15) In this case

\{x) = a i x + no, [g-^K^) - b{x + ^ & o Vf G % ,

giving gf ypow f if b{x > aix,

if ln5{ > Inai,

if ; > 1 % '
Thus in >~poiD, f is bounded above by gf for any j > and so >- has

order type w. □

P roof (of Lemma 16) In this case

|fl(x) = airc + ao, [g^l(^) = x + kbo VA; G

Ifgl(â) = aiÆ + ai6o + ao, [gfK̂)̂ = aia; + ao + 5o,

[g*fl(^) = 0,1 ̂+ ao + ibo \fi 6 N, |[fgf]](æ) = aix + fai^o + ao Vf G N.

4.3 Two Unary Function Symbols

giving f ypoiE if a ix > x,

if ai > 1.

and g"f Xpoig fg if ao + ibo > ai6o + ag,

if ibo > o>ibô

if i > a\.

and fgf ^poiE gf if fai&o + ag > ao + 6q,

if jaibo > 6g,

if ja i > 1,

if j > 1.
Thus in >-poiEi f is not bounded above by g^ for any A, but fg is bounded

above by g^f for any i > a\ and gf is bounded above by fgf for any f > 1,

and so >- has order type uP'. □

P r o o f (of Lemma 17) In this case

[fl(rr) = æ + ag, |[g^](a;) = x + kho VA G

giving g* >-poiF f if kbo > ag,

if A > f j.
Thus in ^poiFy f is bounded above by g^ for any A > ^ , and so has order

type u. □

Now we know the order type of all total extensions for each monadic

polynomial ordering. In the sequel we will see exactly when a polynomial

ordering is total on monadic terms T({f, g}, {v}), and when two polynomial

orderings are distinct.

4.3 Two Unary Function Symbols_________________________________ ^

4 . 3 . 1 N u m e r i c I n v a r i a n t s

Knowing the order type of a polynomial ordering tells us about the order­

ing’s structure. With this information we can proceed to identify the ordering

that results from any given choice of parameters (the polynomial interpret­

ations assigned to function symbols). The next step towards this goal is to

determine the numeric invariants of the orderings within each class.

For the three cases having order type cn, the numeric invariant (r) is

deduced by comparing expressions according to Definition 18 and Lemma 8

on page 79. Similarly for the two cases having order type the numeric

invariant (A) is deduced by comparing expressions according to Definition 19

and Lemma 10 on page 80. As before, {am, • • ■, ag) are the coefficients of

[f](æ) and {bn, . . . , 6g) are the coefficients of |[g]|(æ), and >~poi is the resulting

(not necessarily total) polynomial ordering.

18 L e m m a (T a u o f ^poia)

If m > n > 1 then >-poi has r = .

19 L e m m a (L a m b d a o f ypois)

I f m > n = l and > 1 then >~poi has X = m.

20 L e m m a (T a u o f ypoio)

I f 771 = n = 1 and a\ ^ b\ > 1 then y-poi has r =

21 L e m m a (L a m b d a o f y-poiE)

I fm = n = 1 and a\ > bi = 1 (and 6g > Oj then >~poi has X = a\.

22 L e m m a (T a u o f y-poip)

I fm = n = l and ai = bi = 1 and ag ^ 6g > 0 then y-poi has T =

The proofs of Lemma 18, Lemma 20, and Lemma 22 are similar, as are

the proofs of Lemma 19 and Lemma 21:

4.3 Two Unary Function Symbols 90

P roof (of Lemma 18) In this case

for some A, 15 E N and C =

giving

t >-poi u if ^

if # (f , t) ln m + # (g ,f) ln n > # (f ,u) ln m + # (g ,u) ln n ,

if # (f , f) + # (g , 4) S > # { f ,n) + # (g , «) f e .

Thus t>-rU implies t >-poi n for r = □

P roof (of Lemma 19) In this case

|[g*f]|(a;) = V% G N, |[fgf]|(a:) = + 9 Vf G N.

giving

g V ^ f g f if

if 61 ^ 6^' ,

if Î ^ m f.

Thus i ^ Af implies g*f ^ fgf for A = m. □

P roof (of Lemma 20) In this case

M(a;) =

4.3 Tŵ o Unary Function Symbols 91

giving

if # (f , t) ln a i + # (g ,f) ln 6 i > # (f ,'u) ln a i + # (g ,n)ln& i,

if > # (f , + # (9)^)S ' '

Thus t >~r u implies t >-poi w for r = . □

P roof (of Lemma 21) In this case

|g*f|(a;) = a \ x + ag + %&o, Ifg-^K^c) = ciix + j a ib o + ag Vz,f G N.

giving gT ^ fgf if ag + «6g ^ jaibo + ag,

if ibo ^ f&i6g,

if i ^ aif.
Thus i ^ Xj implies g*f ^ fgf for any A = ai. □

P roof (of Lemma 22) In this case

|t](æ) = a; + # (f , f) a g + # (g ,f)6 g .

giving t ^poi u if # (f , Z)ag + # (g , t)bo > # (f , a)ag + # (g , u)6g,

if + # (g , f) ^ > # (f .«) + # (9 , «) ^ .
Thus t^ T -u implies t ypgi u for any T = □

We now know the invariant pre-order, or contained by each of the

uj and <jp orderings respectively. Therefore the orientation of two terms by a

polynomial ordering can be predicted up to or without any calculation

of polynomials, simply by examination of the defining interpretations. In the

sequel we will complete the analysis by determining the orientation of two

4.3 Two Unary Function Symbols 92

terms by a polynomial ordering when they are equivalent under or

4 . 3 . 2 L e x i c o g r a p h i c E x t e n s i o n s

The logical and numeric invariants do not tell the whole story as far as

polynomial orderings are concerned. For example, we now know that every

weakly linear polynomial ordering (on T({f, g},{v})) is a (not necessarily

proper) extension of a tau pre-order,

^ p o l D ,

(and for each given y-poiD we know the value of r) but so far we have not

determined if or when the extension is proper. In other words, we know

^polD — (^T) 7])

for some (possibly trivial) relation □, and we would like to be able to say

more about such extensions. We will see that for ypoiA, >~poiB, and >~poiD

the extensions are lexicographic orderings, and (with respect to conditions

below) we can specify the precedences of the lexicographic orderings.

The orderings >-poiE and y-poiF do not determine extensions; they are in

fact equal to the pre-orders already deduced. Since those pre-orders have

finite equivalence classes^, any total extension will result in a total well-

founded ordering.

In the proofs of Lemma 24 and Lemma 26 we make use of the following

lemma.

23 Lemma

/ f a, 6 ^ 2 and then

A simple property of r and A pre-orders.

4.3 Two Unary Function Symbols 93

a^ “ ^(a - - 1) - - 1) > 0.

P r o o f If a ^ 2 then a^ “ ^(a—1) > — l since a^~^(a—l) —(a^~^ — l) =

a^~^{a — 2) H- 1. Similarly b^~^{b — 1) > b^~^ — 1, and so

a^-^{a - l) 6 ^ - i (6 - 1) > (a ^ ~ i - - 1). □

The lexicographic extensions are determined as follows.

24 L e m m a (P r e c e d e n c e in

I f m ' ^ n > l and also mP -p nP for all p ,q e N̂ . then

^poU = (br;

where r = and the precedence > is defined by f % g i f ^

25 Lemma (P r e c e d e n c e in ypois)

I f m > n = 1 and 6% > 1 then

ypoiB =

where r = 0, X = m and the precedence > is defined by f ^ g if ^ b ^ -

26 Lemma (P r e c e d e n c e in ypoio)

I fm = n = 1 and ai ^ bi > 1 (and a\ ^ 2) and also p 6̂ for all p, q E N+,

then

ypolD = (br;

where r = and the precedence > is defined by f ^ g iff ^ ■

The proofs of Lemma 24 and Lemma 26 are similar.

P r o o f (of Lemma 24) The proof is by Lemma 11, showing that (>-7-; >màx)

Q >̂ poiA- Fl'om Lemma 12 and Lemma 18, >-poiA has order type co and

>-r Q >-poiA, and >-?- is closed under subterms (since T 0). Therefore it

remains to show that (~t-; >înax) Ç >-poiA-

4.3 Two Unary Function Symbols 94

Suppose t u, for r = Now r is irrational if (and only if) mP ^ nP

for all p, g G R|_, so by Lemma 7, i is a permutation of u, and we write

A = # (f ,t) = #(f,w) and B = # (g , t) = #(g,u) .

We have

(æ) =

giving

gf ^ fg if ^

if In am > In bn
m — 1 < n —1 ’

if f ^ g-

Since >- is a reduction ordering, this means that for any t i , t 2 G T, ti:g :fd 2 ^

fi:f:g:f2 if f ^ g. Assume wlog. that Then f > g, gf fg,

and so the equivalence class t is totally ordered under >-poiA with maximum

t = g^f^ and minimum miuy^^^^ t = i ^g^ .

Now suppose t (~i-; [>!SL") n, for r = and f > g. Then t —

and u = g^” ^f^g. It remains to show that t >-poiA u.

We have

|(x) = ■ <" +rr^Y,

4.3 Two Unary Function Symbols 95

giving

if

^ Cim O n ,

if — 1)(1 — n^~^) + m ^~^(n^ — l) (m — 1))

^ - 1) (1 - m ^ ~ ^) + n ^ ~ ^ (m ^ - l) (n - 1)) ,

if — l)n ^ “ ^(n — 1) — (m^~^ — l)(n^~^ — 1))

^ - l)n^~^(n — 1) - (m^~^ - l)(n^~^ — 1)),

i f In ant > In bn
m —1 n —1 ■

by Lemma 23, and thus t >-poiA u. □

P r o o f (of Lemma 25) Suppose t (~t-; ~a) u. Let k — # (f ,t) = # (f ,u) ,

and write t and u as

t — g^°fgb . . . ĝ k-ifĝ A: and u = . . . g-̂ *“ f̂g-̂ ,̂

with = Y^i'm'^ji. This gives

if { m a m j^ b o + am -i)6 i ^ (m a „ i^ ™ 6o + Cim~i)bi

i f f Qm-l bp \ j J k ^ (a m - l _ bp \ , 1 k
^ m a m b i — l ' 1 < Im am 6i —1 / 1 ’

i f Z®nL=l _ bp \ • ^ f a m - i _ bp \ i
\ mam 6i—iD fc < I mam 6i —1 /

Thus t (~ 7-; u implies t u , where f ^ g iff ^ 5^ - Hence

4.3 Two Unary Function Symbols 96

= (fcrifcx; □

P r o o f (of Lemma 26) The proof is by Lemma 11, showing that (>-7-;

Ç >~poiD- Prom Lemma 15 and Lemma 20, >-polD has order type w and

>-T Q >-polD, and y-r is closed under subterms (since r 0). Therefore it

remains to show that (~ 7-;>max) C y-pow-

Suppose t ~ 7- n, for r = Now r is irrational if (and only if)

ttj 7 ̂ for all p, g G N f , so by Lemma 7, i is a permutation of u. Let

^ = # (f ,f) = # (f,It) and B = # (g , t) = # (g , w) .

We have

| f g] (æ) = ai&ia; + a i 6 o + ao,

[g f | (æ) = a i6 iæ + ao6i + 60,

giving

g f ^ f g iff ao6i + 6q ^ ai6o + «o,

iff

iff f ^ g.

Since >- is a reduction ordering, the above shows that for any ^1,^2 G T,

ipg:f:^2 ^ ti:f:g-.t2 iff f ^ g. Assume wlog. that Then f [> g

and g f >-poiD f g , and so the equivalence class t is totally ordered under >-poiD

with maximum marxy^^^ ̂t = and minimum miny^^^^ t = .

Now suppose t (~ 7-; [>m&) u, for r = and f t> g. Then t = f^ “ ^g^f

and u = g^~^f^g. It remains to show that t >-poiD u.

We have

W(a^) = « f b f a ; + a ^ - ^ 6 f a o + a f “ H 6 f - l) 5 ^ + (a ^ ^ ~ ^ - l) ^ ,

M (a;) = + + 6f “ ^(af - 1) ^ + (6f~^ ~ 1) 5̂ ,

4.3 Two Unary Function Symbols 97

giving

t ^ u iff ^bfao + a f ^ { b f - l) ^ + {a^

^ 6 f - 'a f6 o 4- - 1) ^ ^ + (bf-^ - 1) ^ ,

^(«1 — l) 6 f ^(6i - 1) - (a^ ̂ - l) (6 f ̂ ~ 1)]

^ b^l^i Ĥ *i “ l) b f \ 6 i — 1) — (a^ ^ - l) (6 f ̂ — 1)],

A ^ 5 ^ -

by Lemma 23, and thus t ypoiD u. □

This completes the analysis of polynomial orderings on monadic terms

over a two-letter alphabet. Each such ordering can be expressed as a lexico­

graphic combination of simpler, more tangible orderings, and these orderings

are determined by the leading coefficients of the polynomial interpretations.

4 . 3 . 3 S u m m a r y f o r T w o U n a r y F u n c t i o n S y m b o l s

The results that have been presented here for two unary function symbols

can be summarised by the following theorem.

27 T heorem

Let >-poi be a polynomial ordering on monadic terms T({f, g}, {v}) defined

by the interpretations

|f|(a;) = 4 h aix -h ag, Om - ag E M,

|g](æ) = bnx^ 4--------- hbix-hbo, . . . 6g G R,

| v l (a ;) = X

such that (am, . • ., ao) (>ien; (bn, ■■.,bo) (>ien\ (1,0). Then

4.3 TVî o Unary Function Symbols 98

0. The order type of all total extensions o f y-poi is the same (uj, uĵ , or

uj^) and is determined by trivial inspection of the leading coefficients

of the interpretations, as detailed in Table 4.0.

1. I f y-poi has order type oj, then it is an extension o f a tau pre-order and

the value o f tau is determined by examination o f a simple ratio, as

detailed in Table 4.0. I f ypoi has order type then it is an extension

of a lambda pre-order and the value o f lambda is determined by trivial

inspection o f the leading coefficient of |f | , as detailed in Table 4.0. I f

y-poi has order type uj^, then it is the recursive path ordering from the

left defined by f > g.

2. I f one o f the following holds:

• m ^ n > 1, and mP 7 ̂nP for aii p, ç G Mf,

• m > n = l , b i > l m d ^ 5 ̂ 5 ^ , or

• m = n = 1, ai ^ 2, bi > 1, 7 ̂ 7̂

p , q e N + ,

then >-poi is a total ordering, extending its tau or lambda pre-order

with a lexicographic ordering, the precedence of which is determined

by examination o f a ratio as detailed in Table 4.0. If [f| is linear and

|g] is strongly linear then ypoi is a pre-order; the pre-order defined

above.

Hence the properties o f y-poi can be fully determined from inspection o f its

leading parameters (subject to the three side conditions for lexicographic

extensions above). From a computational point of view, we can replace >~poi

by an equivalent lexicographic combination o f simpler orderings.

4.4 Three Unary Function Symbols________________________________ ^

The work of Martin and Scott told us what the order types of total

simplification orderings on T({f, g},{v}) could be, that the orderings of

order type are the recursive path orderings and the others contain certain

pre-orders, and what term expressions can be compared to determine the

pre-orders contained.

The work presented here has first applied those techniques to polyno­

mial orderings on T({f, g}, {v}) and then shown how this provides a handle

to determine much more detailed knowledge of the orderings. The polyno­

mial orderings have been fully resolved into lexicographic combinations of

simpler orderings, which are determined from the leading parameters of the

orderings.

In the next section we will see how these results might extend to larger

alphabets.

4.4 Three U nary Function Sym bols

We begin extending the analysis to alphabets with more than two function

symbols by first considering the case of three unary function symbols. From

this study it will become clear how to generalise the results to arbitrary

(finite) alphabets of unary function symbols.

Let T({f, g, h}, {v}) be the set of finite monadic terms over three unary

function symbols, f, g, H, and one variable, v. Let >- be a polynomial ordering

on T such that f>-g>-h>-v. If we classify the polynomial interpretations

IfKæ), [gj(a;), and |H](a;) according to whether each is non-linear, weakly

linear, or strongly linear, then the order type of the defined polynomial

ordering is given by Table 4.1.

These results are elaborated in the sequel by considering in turn each of the

4.4 Three Unary Function Symbols 100

N L W L SL

UJ

f g,H
f g ,b UJ'̂

f,9 h
f 9 h UĴ

f,9 h UĴ

f , 9 , b UJ

f g , h
f ,9 h o;2

f , 9 , b UJ

Table 4.1; Polynomial orderings on monadic terms over 3-letter alphabet.

three cases, u j , w^, and c o ^ .

4 . 4 . 0 O r d e r T y p e uj

First consider the case where all function symbols have interpretations in

the same class.

28 Lemma

Let T{J^, {v}) be the set o f Unite monadic terms over the finite non-empty

set o f unary function symbols JF = { /i, / 2 , • • ■ ? /z}- Let y be a total well-

founded reduction ordering^ on T such that / i / 2 >- ■■• >- / z and fi y fi

for some j G N. Then the ordering y has order type u j .

P r o o f Since the set T is infinite, its order type under y is at least w.

Assume that the conditions are satisfied but the ordering has order type

greater than u j . Then there is (at least) one term, t E T, that has an infinite

set of successors, U = { u E T \ t y u } . Let n G N be the number of function

symbols in t, denoted by jf|. Since there are finitely many function symbols,

i.e. a total simplification ordering

4.4 Three Unary Function Symbols_______________________________

there are finitely many terms of any given length, so U has no finite bound on

the length of its members, and in particular there is a term uq E U such that

1^01 ^ jn . Since is a simplification ordering, f i h t , and also uq h f i^-

Therefore, f i h t y u Q y f P , which contradicts f i y f \ . Hence the order

type is w. □

This lemma indicates why the polynomials have been partitioned into the

non-linear, weakly linear, and strongly linear classes: these sets of polynomi­

als are closed under composition and satisfy the above condition. It is thus

clear that if a finite number of unary function symbols have interpretations

in the same class then the polynomial ordering on monadic terms over these

function symbols has order type u).

4 . 4 . 1 O r d e r T y p e

Next consider the case where the interpretations span two adjacent classes,

first by examining the sub-case where exactly one interpretation is in the

higher of the two classes.

29 Lem ma

Let JF — { /i, / 2 , • ■ • 5 f z } be a finite set o f unary function symbols such that

z ^ 2. Let y be a polynomial ordering on T such that the interpretation

of f I is non-linear (resp. weakly linear) and all remaining interpretations are

weakly linear (resp. strongly linear). Then the ordering y has order type uP'.

P r o o f Partition T into classes Si = { s e T \ # (/ i , s) = i } , i e N . Clearly

for all t' E Siyi, t E Si, t' y t. We proceed by showing that each (Si, y) has

order type o j .

Let t — a o f i a i f i . . . f i ak be an arbitrary member of Sk, where each ai E

T ({ /2 , • • ■ 5 f z } , V). Prom Lemma 28 we know that for each / E { /2 , . . . , f z]

there is an iV G Mf such that f ^ y f . Let s E S^ he the term arrived at by

4.4 Three Unary Function Symbols 102

replacing each / G { /2 , . . . , f z} by the appropriate number (i.e. for each /

the smallest sufficient N) of /^ ’s. Therefore, s >-1 and s G T ({ /i ,/z } , V).

In the proofs of Lemma 13 and Lemma 16 we saw that (T ({ /i, /^ j, V), >-)

has order type by showing that it contains a lambda pre-order; a pre­

order that first orients by the number of / I ’s in each term. Therefore as

a corollary we know that (Sk H T ({ /i,/z } , V), >-) has order type w. From

Lemma 28 we know also that (T ({ /2 , • • •, /z}, V), x) has order type uj. Let

U G SkO T ({ / i , / 2 , . . . ,/z} , V) be the set of successors of s, {tz | s u},

and assume that U is infinite. We will choose some u E U, dependent on s.

In u replace each / G { /2 , • • •, /z - i} by fz- Since T is finite, there can be

no upper bound on the length of members of (infinite) U, so we can choose

a u e U such that after this replacement to / “° / i / “U i • • - / i /z its lambda

expression

+ ■ ' • + u\X 4- u -p 0

is greater than the lambda expression of s. Therefore u y \ s and so u y s,

which contradicts s y u, so U must be finite.

Since any term t E -S'fc D T ({ /i, / 2 , • ■ •, /z}, V) is smaller than some s E

Sk n T ({ /i,/z } , V) and the term s has finitely many terms smaller than it,

the class {Si, x) has order type uj. Hence (T, >-) has order type □

30 Lemma

Let F = { f i , . . . , /y}U{/p+i, . . . , f z} be a finite set o f unary function symbols

and let y be a polynomial ordering on T such that the interpretations lie

in two adjacent classes o f polynomials, { /i, ■ • • ,/y} in the upper class and

{ fy+i , . . . , f z} in the lower class, with at least one interpretation in each of

the two classes. Then the ordering y has order type uP.

4.4 Three Unary Function Symbols 103

P roof This proof is similar to the proof of Lemma 29, but here the

symbols / i , . . . , f y - i are replaced by /y. □

4 .4 .2 O rd e r T y p e

Finally, consider the case where the interpretations are not contained in two

adjacent classes. This means that at least one interpretation is non-linear

and at least one interpretation is strongly linear.

The case where all interpretations are either non-linear or strongly linear

follows the pattern above.

31 Lemma

Let T be a ûnite set o f unary function symbols, and let y be a polynomial

ordering on T such that all interpretations are either non-linear or strongly

linear, and each o f these two classes contains at least one interpretation.

Then the ordering y has order type u)^.

P roof The proof is by bounding substitutions, and is almost identical to

the proofs of Lemmata 29 and 30. □

More interesting is the case where interpretations lie in all three classes,

since this is where we might expect the highest order type. We conclude with

the three-symbol case since the extension to more symbols will be obvious

from the preceding lemmata.

32 C o n jec tur e

Let fF = {f, g,K} be a set o f unary function symbols, and let y be a poly­

nomial ordering on T such that the interpretations of f, g ,h are non-linear,

weakly linear, and strongly linear respectively. Then the ordering >- has

order type uP.

4.5 Further Developments_______________________________________ 104

Justification We have

|f l(a:) = a m X ^ \-a\x + qq,

[g|(æ) = bix + bo,

|Hj(rc) = X 4- a

Partition T into classes Ai = { a e T \ # (f , a) =%},%€ N. W ith reference to

the polynomial interpretations, clearly for all a' E a E Ai, a' y a and

the classes Ai are ordered by an u ordering. We would proceed by showing

that each [Ai, y) has order type

W ithout loss of generality, consider a class Ai with » ^ 1. Partition Ai

into classes B j = {6 G Aj | 6 ~a i € N, a G A%_i, and A is defined

as before according to the interpretations of f and g. Again with reference

to the polynomial interpretations, for all V E Hj+i and all b E B j we have

b' y b, and the classes Bj are ordered by an u) ordering. A proof would

proceed by showing that each {Bj, y) has order type

4.5 Further D evelopm ents

In this chapter we have fully analysed the polynomial orderings on a two-

symbol unary alphabet, and we have analysed the order types of polynomial

orderings on arbitrary unary alphabets. There are several directions in which

this could develop.

• Polynomial orderings on monadic terms could be fully analysed so that

the values of the invariants, and the determinants of any precedence

orderings could be tabulated.

• The interpretations could be extended to include elementary interpret­

ations.

4.5 Further Developments 105

The analysis might be extended to include binary function symbols.

5 Conclusions

In this chapter the findings of the preceding chapters are sum­

marised and future developments are discussed.

5.0 Sum m ary

In this thesis we have tackled the problem of proving a term rewriting system

terminating from two sides. First we studied two automatic techniques for

finding semantic orderings, by linear programming and by population-based

search. We saw that the method of complete description would be ideal for

solving the problem of Knuth-Bendix termination if its redundant data could

be precluded. A proposal for how this could be achieved was presented along

with an idea of how the algorithm could be verified.

The search mechanism of genetic algorithms was applied to the search for

a suitable polynomial ordering. Employing the interpretation heuristics of

Steinbach and the constraint test of Giesl, the GA ordering search was found

to be a promising approach to polynomial termination. The GA parameters

that were found to be optimal were discussed, possibly shedding light on

what makes an effective search for polynomial orderings.

Second we analysed the class of polynomial orderings defined on monadic

terms. Using the order invariants of Scott and Martin, we saw how a seem­

ingly complex class of orderings could be tamed and decomposed: by logical

invariant, by numeric invariant, and finally by precedence. Once divided,

the subclasses could be analysed to reveal a direct translation from defining

parameters (polynomial coefficients) to resulting ordering.

106

5.1 Pipeline o f Ordering Families 107

5.1 P ipeline of Ordering Families

As discussed in Chapter 2, the Knuth-Bendix family of orderings is a natural

choice for first strike on a termination problem. There is a full-decision

procedure for KB termination, and there should be an efficient algorithm

for the test. If the KB orderings fail, the user may well go to polynomial

orderings to try. The question is, what useful information can be passed

from the KB procedure to the polynomial procedure so that the second

attempt doesn’t waste time repeating the search of the first? Clearly it is a

waste of time attempting all-strongly linear interpretations since those are a

subfamily of the KB orderings, but there is probably more that can be passed

on. If the KB orderings failed due to degeneracy in a rule inequality there is

probably some way the polynomial ordering can capitalise on knowing what

weights make the rule balanced. If polynomial orderings fail then there is

also knowledge to be passed on, albeit more specialised. It may be possible

to gain useful knowledge from a failed GA population, similar to detecting

degeneracy in the KB ordering algorithm, by examining to what values the

coefficients had settled and which inequalities they were failing to satisfy. !

5.2 E xtending the Orderings

Lescanne ([Les92]) has extended polynomial orderings to include exponential

expressions. It would be interesting to see how the performance of the GA

search mechanism is affected by introducing exponentials. There are already

some preliminary results extending the analysis of Chapter 4 to these.

The genetic algorithm operators can be modified to accommodate per­

mutations as individuals, so a second precedence search’ GA could be in­

corporated with that of Chapter 3.

5.3 Test Bed___ m

5.3 Test Bed

Steinbach has gathered and made available a large collection of termination

problems. Dershowitz has also made an effort to collect examples from the

literature, most of which are open problems.

When a new technique for termination is ready for testing or training,

these examples are an invaluable resource. However, there is also a need for

‘boring’ examples. The cases that appear in the literature, being used as il­

lustrative examples, for instance, by and large fall into two categories; those

that appeared because they are interesting (and challenging) termination

problems, and those that are not. It is difficult, for example, to find col­

lections of examples that are terminating by polynomial ordering but which

pose a computational challenge to the termination tool. The author would

like to have a collection of examples that make an interesting domain for

termination tools, even if the examples themselves are of little interest (to

human readers). This would enable termination tools to be tested without

having to tie them into a completion tool.

5.4 C om plexity Links

There are several branches of interest in the proof-theoretic complexities

associated with termination orderings and term rewriting (e.g. [Hof92, Cic90]

and [FZ94]). The subject of Ferreira & Zantema’s study is the order types of

the underlying semantic domain, whereas here we have looked at the order

types of the term algebra itself, so for example, Ferreira & Zantema classify

all polynomial orderings in N as order-type u. It may be fruitful to examine

more closely how the two views relate, and whether one can feed the other.

Bibliography

[AHU58] Kenneth J Arrow, Leonid Hurwicz, and Hirofumi Uzawa. Studies

in Linear and Non-Linear Programming. Stanford Univ Press,

1958.

[BBM93a] David Beasley, David R Bull, and Ralph R Martin. An over­

view of genetic algorithms: Part 1, fundamentals. University

Computing, 15(2):58-69, 1993.

[BBM93b] David Beasley, David R Bull, and Ralph R Martin. An over- j
I

view of genetic algorithms: Part 2, research topics. University I

Computing, 15(4):170-181, 1993. j

[Bir35] G Birkhoff. On the structure of abstract algebras. Proceedings i

of the Cambridge Philosophical Society, 31:433-454, 1935. ;

[BL87a] Françoise Bellegarde and Pierre Lescanne. Transformation or- j

derings. In Proceedings 12th CAAP (TAPSOFT), pages 69-80,

1987. :

[BL87b] Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewrit­

ing systems by polynomial interpretations and its implementa­

tion. Science of Computer Programming, 9(2):137-159, 1987. I
:|:
:i

[BT95] Tobias Blickle and Lothax Thiele. A comparison of selection j
I

schemes used in genetic algorithms. TIK 11, Swiss Federal Insti- j

tute of Technology, December 1995. ' i

109

BIBLIOGRAPHY___ UR

[Cic90] Adam Cichon. Bounds on derivation lengths from termination

proofs. Tech report CSD-TR 622, University of London, Royal

Holloway and Bedford New College, 1990.

[CJM+92] B A Carré, T J Jennings, F J Maclennan, P F Farrow, and

J R Cams worthy. SPARK - the SPADE Ada kernel. Technical

report, Program Validation Ltd, 1992.

[CL92] Adam Cichon and Pierre Lescanne. Polynomial interpretations

and the complexity of algorithms. In D Kapur, editor, L N A I607:

11th International Conference on Automated Deduction, pages

139-147, 1992.

[Col75] George E Collins. Quantifier elimination for real closed fields by

cylindrical algebraic decomposition. In 2nd GI Conference on

Automata and Formal Languages, pages 134-183, 1975.

[Cro92] Nick Cropper. Implementing the incremental Knuth-Bendix or­

dering algorithm. Project report. Computing Science Dept, Glas­

gow University, 1992.

[Cur89] I F Currie. Newspeak: A reliable programming language. In

High-Integrity Software, Computer Systems, pages 122-158. P it­

man, 1989.

[Dan63] George B Dantzig. Linear Programming and Extensions. Prin­

ceton Univ Press, 1963.

[Der79] Nachum Dershowitz. A note on simplification orderings. Inform­

ation Processing Letters, 9(5):212-215, 1979.

[Der95] Nachum Dershowitz. 33 examples of termination. In Proceedings

Spring School, volume 909 of LNCS, 1995.

BIBLIOGRAPHY___ m

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite sys­

tems. In J van Leeuwen, editor, Handbook of Theoretical Com­

puter Science, volume B, chapter 6, pages 243-320. Elsevier Sci­

ence Publisher BV, Amsterdam, 1990.

[DKM90] Jeremy Dick, John Kalmus, and Ursula Martin. Automating the

knuth-bendix ordering. Acta Informatica, 28:95-119, December

1990.

[DM79] N Dershowitz and Z Manna. Proving termination with multiset

orderings. Communications of the ACM, 22(8):465-476, August

1979.

[FZ94] Maria C F Ferreira and Hans Zantema. Syntactical ana­

lysis of total termination. Technical Report UU-CS-1994-28,

Dept Computer Science, Utrecht University, 1994. Available in

ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/GS-1994/.

[Gar60] Walter W Garvin. Introduction to Linear Programming.

McGraw-Hill, 1960.

[Gar83] Martin Gardner. Mathematical games. Scientific American,

249(2) :8-13, August 1983.

[Gie95a] Jürgen Giesl. Generating polynomial orderings for termination

proofs. In 6th International Conference on Rewriting Techniques

and Applications, Kaiserslautern, Germany, 1995.

[Gie95b] Jürgen Giesl. POLO - a system for termination proofs using

polynomial orderings. Technical Report IBN 95/24, Technische

Hochschule, Darmstadt, 1995.

ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/GS-1994/

BIBLIOGRAPHY___ m

[Gol89a] David E Goldberg. Genetic Algorithms in Search, Optimization,

and Machine Learning. Addison-Wesley, 1989.

[Gol89b] David E Goldberg. Sizing populations for serial and parallel ge­

netic algorithms. In Proceedings Third International Conference

on Genetic Algorithms^ 1989.

[Goo96] E Goodman. An introduction to galopps - the “genetic algorithm

optimized for portability and parallelism” system. Technical Re­

port 96-07-01, Michigan State University, September 1996. v3.2.

[Hof92] Dieter Hofbauer. Termination Proofs and Derivation Lengths

in Term Rewriting Systems. PhD thesis, Technische Universitat

Berlin, 1992. Bericht 92-46.

[Hol75] John H Holland. Adaptation in Natural and Artificial Systems.

University Michigan Press, 1975.

[JL82] Jean-Pierre Jouannaud and Pierre Lescanne. On multiset order­

ings. In f Proc Letters, 15(2):57-63, September 1982.

[JL87] Jean-Pierre Jouannaud and Pierre Lescanne. Rewriting systems.

Technology and Science of Informatics, 6(3):181-199, 1987.

[Kar84] N Karmarkar. A new polynomial-time algorithm for linear pro­

gramming. Combinatorica, 4:373-395, 1984.

[KB67] Donald E Knuth and Peter B Bendix. Simple word problems

in universal algebras. In J Leech, editor. Computational Prob­

lems in Abstract Algebra, pages 263-297, Oxford, England, Au­

gust/September 1967. Pergamon Press.

BIBLIOGRAPHY___ m

[KL80] S Kamin and J-J Lévy. Attempts for generalising the recursive

path orderings. Technical report, Dept Computer Science, Univ

of Illinois, Urbana, Illinois, February 1980.

[Klo87] Jan Willem Klop. Term rewriting systems - a tutorial. Bulletin

of the European Association for Theoretical Computer Science,

32:143-182, 1987.

[Kre68] Béla Kreko. Linear Programming, chapter 15, pages 263-267. Sir

Isaac P itman & Sons, 1968.

[Lan75] Dallas S Lankford. Canonical algebraic simplification in compu­

tational logic. Technical Report ATP-25, University of Austin,

Texas, 1975. i
I

[Lan79] Dallas S Lankford. On proving term rewriting systems are no- *

etherian. Memo MTP-3, Louisiana Technical U., Dept, of Math­

ematics, Ruston (Louisiana), May 1979. '

[Les81] Pierre Lescanne. Two implementations of the recursive path or- |

dering on monadic terms. In 19th Allerton House Conference on \
1

Communications, Control and Computing, pages 634-643, Urb- |

ana, 1981. University of Illinois Press. i

[Les84] Pierre Lescanne. Uniform termination of term rewriting systems - ;
I

the recursive decomposition ordering with status. In Proceedings j

9th CAAP, pages 182-194. Cambridge University Press, 1984. j

I[Les86] Pierre Lescanne. Divergence of the Knuth-Bendix completion t

procedure and termination orderings. EATCS, 30:80-83, 1986. |

[Les92] Pierre Lescanne. Termination of rewrite systems by element- !
I

ary interpretations. In Hélène Kirchner and G Levi, editors, '

BIBLIOGRAPHY___ m

Proceedings 3rd International Conference on Algebraic and Logic

Programming, volume 632 of LNCS, pages 21-36, Volterra, Italy,

September 1992.

[Mar87] Ursula Martin. How to choose the weights in the Knuth-Bendix

ordering. In Second International Conference on Rewriting Tech­

niques and Applications, volume 256 of LNCS, pages 42-53, May

1987.

[Mar93] Ursula Martin. On the diversity of orderings on strings. Technical

report CS/93/13, St Andrews University, 1993. To appear in

Fundamentae Informaticae.

[Mat93] Brian Matthews. MERILL: An equational reasoning system in

Standard ML. In Claude Kirchner, editor. Rewriting Techniques

and Applications, 5th International Conference, RTA-93, volume

690 of LNCS, pages 441-445, Montreal, Canada, 1993. Springer-

Verlag.

[MN70] Zohar Manna and Stephen Ness. On the termination of Markov

algorithms. In Proceedings 3rd International Conference System

Science, pages 789-792, 1970.

[MRTT53] T S Motzkin, H Raiffa, G L Thompson, and R M Thrall. The

double description method. In H W Kuhn and A W Tucker,

editors, Contributions to Theory of Games, volume 2, pages 51-

73. Princeton Univ Press, 1953.

[MS93] Ursula Martin and Elizabeth Scott. The order types of termina­

tion orderings on monadic terms, strings and multisets. In Pro­

ceedings Eighth Annual IEEE Symposium on Logic in Computer

BIBLIOGRAPHY___ UL

Science, pages 356-363, Montreal, Canada, 1993. IEEE Com­

puter Society Press.

[MZ94] Aart Middeldorp and Hans Zantema. Simple termination revis­

ited. In Alan Bundy, editor, Automated Deduction - CADE-12,

volume 814 of LNAI, pages 451-465, 1994.

[Pla78] David A Plaisted. A recursively defined ordering for proving

termination of term rewriting systems. Technical report R-78-

943, Dept of Computer Science, Univ of Illinois, 1978.

[Pla93] David A Plaisted. Term rewriting systems. In D M Gabbay, C J

Hogger, and J A Robinson, editors. Handbook of Logic in Arti­

ficial Intelligence and Logic Programming, volume 4, chapter 2.

Oxford Univ Press, 1993.

[SK93] Joachim Steinbach and Joachim Kiihler. Check your ordering

- termination proofs and open problems. SEKI SR-90-25, Uni­

versitat Kaiserslautern, May 1993.

[Ste88] Joachim Steinbach. Comparison of simplification orderings. In

U Martin et al, editor, BCS-FACS Term Rewriting Workshop

and Tutorial, Bristol, England, September 1988.

[Ste91] Joachim Steinbach. Termination proofs of rewriting systems:

Heuristics for generating polynomial orderings. SEKI SR-91-14,

Universitat Kaiserslautern, Germany, 1991.

[Ste92] Joachim Steinbach. Proving polynomials positive. In Proceed­

ings 12th Conference on Foundations of Software Technology and

Theoretical Computer Science, New Delhi, India, 1992.

BIBLIOGRAPHY 116

[Ste94] Joachim Steinbach. Termination of Rewriting. PhD thesis,

Fachbereich Informatik, Universitat Kaiserslautern, 1994.

[Tai’51] Alfred Tarski. A Decision Method for Elementary Algebra and

Geometry. University of California Press, Berkeley, California,

1951.

[Tur95] D A Turner. Elementary strong functional programming. In First

International Symposium on Functional Programming Languages

in Education., volume 1022 of LNCS, pages 1-13, Nijmegen, Neth­

erlands, December 1995,

[Uza58a] Hirofumi Uzawa. An elementary method for linear programming.

In Studies in Linear and Non-Linear Programming, chapter 12,

pages 179-188. Stanford Univ Press, 1958.

[Uza58b] Hirofumi Uzawa. A theorem on convex polyhedral cones. In

Studies in Linear and Non-Linear Programming, chapter 2, pages

23-31. Stanford Univ Press, 1958.

[Wai93] Stan S Wainer. The logical complexity of proof transformations

and program transformations. In Bauer et al, editor. Proof and

Computation, NATO Summer School, Marktoberdorf, 1993.

[Whi93] L Darrell Whitley. Foundations of Genetic Algorithms, volume 2.

Morgan Kaufmann, 1993.

[WÜ65] R L Wilder. Introduction to the Foundations of Mathematics. J

Wiley k, Sons, New York, 1965.

