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Abstract

An important property of term rewriting systems is termination: the guar­

antee that every rewrite sequence is finite. This thesis is concerned with 

orderings used for proving termination, in particular the Knuth-Bendix and 

polynomial orderings.

First, two methods for generating termination orderings are enhanced. 

The Knuth-Bendix ordering algorithm incrementally generates numeric and 

symbolic constraints that are sufficient for the termination of the rewrite 

system being constructed. The KB ordering algorithm requires an efficient 

linear constraint solver that detects the nature of degeneracy in the solution 

space, and for this a revised method of complete description is presented that 

eliminates the space redundancy that crippled previous implementations.

Polynomial orderings are more powerful than Knuth-Bendix orderings, 

but are usually much harder to generate. Rewrite systems consisting of 

only a handful of rules can overwhelm existing search techniques due to the 

combinatorial complexity. A genetic algorithm is applied with some success.

Second, a subset of the family of polynomial orderings is analysed. The 

polynomial orderings on terms in two unary function symbols are fully re­

solved into simpler orderings. Thus it is shown that most of the complexity of 

polynomial orderings is redundant. The order type (logical invariant), either 

r  or A (numeric invariant), and precedence is calculated for each polynomial 

ordering. The invariants correspond in a natural way to the parameters of 

the orderings, and so the tabulated results can be used to convert easily 

between polynomial orderings and more tangible orderings.

IV



The orderings of order type are two of the recursive path orderings. 

All of the other polynomial orderings are of order type w or ufi and each can 

be expressed as a lexicographic combination of r  (weight), A (matrix), and 

lexicographic (dictionary) orderings.

The thesis concludes by showing how the analysis extends to arbitrary 

monadic terms, and discussing possible developments for the future.
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0 Introduction

In this chapter we describe what is meant by ‘termination’, set 

a context for the subsequent discussion, and give an overview of 

the document.

0.0 Term inating Processes

Let us begin by considering the progress of a hypothetical slide show. Sup­

pose the projectionist has a number of boxes of slides, each box contain­

ing slides numbered sequentially from 0 . For this viewing the projection­

ist will present one box of slides, projecting the slides in reverse ordet:

50, (gQ — 1), . . . ,1 ,0 .  Before the first slide is projected, all the audience knows 

regarding running length is that the first slide will be indexed by a positive 

whole number, that each successive index will be smaller, and that no slide 

has a negative index. Thus the audience deduces that only a finite number 

of slides will be shown and therefore the viewing must eventually terminate.

If the projectionist promises that no slide will be projected for longer 

than some upper bound, five minutes say, then as soon as the index of the 

first slide (sq) is known, an upper bound ((sq +  1) x  5 minutes) for the entire 

viewing is known. This upper bound holds even if the projectionist omits 

some slides from the box.

Now suppose that the projectionist intends to present 2  boxes of slides:

5 1, (si — 1) , . . . ,  1,0, So, ( sq — 1 ) , . . . ,  1,0. The audience can no longer place 

an upper bound on the length of the viewing, even after the index of the 

first slide is known. It is not until the slides of the second box are projected
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that ‘time until termination’ can be bounded. Nevertheless, the audience 

can still characterise the terminating nature of the viewing; the ‘double box’ 

viewing is simply the sequential composition of two versions of the ‘single 

box’ viewing. Logicians say the ‘single box’ sequence (natural numbers under 

the usual ordering) has ‘order-type’ w. (This terminology will be formally 

defined in Chapter 1.) The order-type of the ‘double box’ sequence (• • • > 

2 > l > 0 > - ' - > 2 > l > 0 ) i s w 4-w,  written w.2 .

Finally suppose that the projectionist will present an unspecified number 

of boxes of slides, but that each box is indexed in the same manner as the 

slides. Before arriving at the viewing, the audience are ignorant not only 

of the number of slides in each box, but also of the number of boxes. The 

sequence of boxes will have order-type w, and the slides of each box will have 

order type uj, so the termination nature of the viewing can be characterised 

by w.w, written (Although these order-types are daunting for the pro­

jectionist’s audience and yet ‘tiny’ in comparison to those sometimes used in 

termination practice, they are roughly as large as we will find useful in the 

sequel.)

In 1949 Alan Turing used order-types to prove the termination of a sec­

tion of computer program, represented in a modern programming language 

in Figure 0.0. Turing used

“a;^.(n — r) -{- o).(i—  s) -f fc” 

as a sequentially decreasing expression to demonstrate its termination.®

Noticing that the expression pair (n — r, r  — s) follows the same sequence 

as the pair {box-index, slide-index) from the example above, we can conclude 

that the termination of the program is also characterised by the order-type

“Turing suggested 2“’° could be substituted for w since that was an upper bound for the 
variables the particular computer could represent. The variable k was due to an expression 
that fluctuated from line to line in the original representation.
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r  := 1; u := 1 V := 1;
while r  < n do

begin
s := 1;
while s <= r  do

begin
u := u +  v ;

s := s + 1
end;

r  := r  + 1;
V : = u

end

Figure 0.0: A nested loop (in Pascal)

ufi. In abstracting away the slides and Pascal code, we can focus on the 

expressions that characterise the advancement towards termination. If we 

can prove that such an expression follows (or is contained in) a decreasing 

sequence that cannot decrease indefinitely, we have proved termination.

0.1 Term ination in Practice

Many computer systems in use produce meaningful data only in the event 

of the computation reaching a conclusion. A common means of proving 

a procedure correct is to first prove partial correctness: if the procedure 

terminates then its result will be correct with respect to its specification; 

and then to prove that the procedure will indeed terminate given any valid 

input. Even intentionally non-terminating systems (e.g. operating systems) 

that are designed to run indefinitely are frequently designed to spawn sub­

processes whose individual termination can be crucial to the functionality 

of the overall system. In a parallel computation the non-termination of a 

single thread may be enough to block the overall result. In a sense useful 

computation is only achieved via termination.
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In practice, however, much computation is achieved without the de­

velopers being aware of a theory of termination as such. Single-threaded 

programs are often assured terminating using little more than the well- 

foundedness of the natural numbers. Multi-threaded programs can employ 

techniques such as time-outs to ‘pull the plug’ on tardy processes.

For safety-critical software a degree of termination assurance can be im­

posed by the project manager. Part of the design rationale for the SPARK 

ADA language ([CJM+92]) is to make termination arguments clearer by 

banning certain ‘dangerous’ constructs such as got os that are in the full 

ADA language. Currie’s NewSpeak ([Cur89]) goes all the way by excluding 

unbounded loops entirely, at the cost of Turing completeness.

One application area targeted by such languages is hard real-time sys­

tems, where satisfying temporal constraints is as important as functional cor­

rectness. For such software it is extremely desirable to have at compile time 

bounds on both its space and time requirements. This necessitates bounds 

on depth of calls to sub-programs as well as bounds on all program loops. 

Whereas NewSpeak achieves this via a restricted syntax, SPARK ADA is a 

strictly more expressive language and instead aims to facilitate proof that 

requirements are met. Hence such systems require the proof of termination 

to be strengthened by proof that the components terminate within given 

time bounds.

In [Tur95] Turner also advocates the preclusion of non-terminating com­

putations, this time in the context of functional programming. By syntactic­

ally guaranteeing all functions be terminating (primitive recursive). Turner 

presents what he claims to be the first truly functional programming lan­

guage (since, for example, referential transparency relies on all values being 

defined).
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evaluation, so a functional program may be evaluated as a non-deterministic 

term rewriting system.

These are approaches designed to ease the task of avoiding non-termination 

in certain computer systems, but as the systems become larger and more 

complex, and the potential costs of system failure rise, it becomes increas­

ingly important to prove the correctness of the system. In turn we need more 

powerful and sophisticated theorem provers, which need to be partially auto­

mated, and whose processes therefore need to be proved terminating. Here 

we are concerned with the term rewriting ‘equational reasoning engine’ for 

automated theorem proving.

0.2 Term R ew riting

Equations play an important part in the mathematical sciences. They are 

used, for example, to specify algebraic properties of data structures. We may 

want to specify that all the stacks in a computer system have the property 

pop(push(e, s)) =  s, for instance.^ The set of such defining equations for a 

data type form the axioms of the data type’s equational theory. Part of the 

process of verification, where the specification is examined to establish if it 

captures those properties that were intended (and does not entail proper­

ties that are undesired), involves checking that equations identified as being 

important to the system being specified can be derived from the defining 

equations. For example, after defining the l i s t  data type we may wish to 

verify that they have the property reverse(reverse(/)) =  I. Formal reasoning 

about specifications is just one example where we wish to employ automation 

to check that propositions are theorems of an equational theory.

In [Bir35] Birkhoff showed that the rules

^We will use =  for defined equality, to avoid confusion with identity,
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(refiexivity) -— (symmetry)   j - r —   (transitivity)

^ (context) . ^  (substitution)
f { . . . t . . . ) = f { . . . u . . . )  t (7 =  u a

are complete for first order (universally quantified) equational reasoning; the 

equations derivable from a given set of equational axioms are exactly those 

equations that hold in all models of the axioms. (We focus our attention 

on first-order universally quantified clauses; much of what will be discussed 

applies to the various extensions that exist.)

Using these derivation rules, a proposition Ihs =  rhs is a theorem of a 

given equational theory if the left-hand side can be rewritten to the right- 

hand side by applying the derivation rules to the axioms, so that a derivation 

chain Ihs =  Ihs' =  • • • =  rhs can be formed.

As it stands, the process just described cannot be automated effectively. 

First, the derivation rules of refiexivity and symmetry can prevent any pro­

gress being made, Ihs =  Ihs' =  Ihs = Ihs' = Ihs' =  • • •. Second, there is no 

goal-direction for the next link in the derivation chain, so a less trivial chain 

may look like it is making progress, but it may never reach the right-hand 

side, Ihs = Ihs' = Ihs" =  - ». That is, the search tree is too wide and too 

deep.

To tackle these problems, each axiom li = can be turned into a ‘direc­

ted equation’, li -> r^, known as a rewrite rule. The set of axioms {l{ —> r*} 

now defines the rewrite relation - 4  as the smallest transitive binary relation 

containing ~t> and closed under context and substitution.

t  u  u  V ,  . . .  V
  ------------  (transitivity)

t  V
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t u , , . t u / 1 X(context) -----------  (substitution)
f { . . . t . . . ) - ^ f { . . . u . . . )  t a ua

If there exists a chain Ihs -> Ihs' —>••••—> rhs then Ihs = rhs is a theorem of 

the theory being examined. Therefore the set of rewrite rules -> provides a 

semi-decision procedure for the original equational theory; if rewriting relates 

two terms then those terms are equationally related, but the converse does 

not necessarily hold.

The rewriting process may be proved terminating by showing that the 

rewrite relation -> is well-founded, i.e. it admits no infinite chains. If the 

process is terminating it can be fully automated; apply rewrite rules to Ihs 

and rhs until no more rewrites can be applied, producing terms Ihs' and rhs'\ 

if Ihs' = rhs' then the theorem Ihs =  rhs is proved.

A terminating rewrite system^ solves the problem of depth since all chains 

are finite. However, two problems remain. The search tree may still be 

too wide; a given term may rewrite to many different final forms (called 

normal forms) and at each rewrite the system has no way of determining 

which possible chain may be most fruitful. Second, by making the axioms 

mono-directional the rewrite procedure may have lost some of the power of 

the original equational system. In their seminal paper [KB67] Knuth and 

Bendix showed that these problems were one and the same, as represented 

schematically below.

We would like to prove that to =  ^4 is a theorem, but the rewriting of to and

For the purposes of this text, rew rite/rew riting system  is synonymous with ‘rule set'.
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t4 stop at ti and ts respectively; the rewrite relation is ‘missing’ the ability 

to relate ti and directly.

The Knuth-Bendix completion procedure ([KB67]) takes a terminating 

rule set and detects pairs of terms t, t' such that t ^  t' but which cannot be 

related directly. A new rule, either t  —> t' or t' t, is added to the system 

if the termination property can be maintained. This is represented on the 

diagram as

where ^3 -> ti is the new rule to be added. The augmented system containing

the new rule is then tested for more rules to be added. If this procedure 

of adding pairs terminates then the augmented system is confluent: any 

two chains from a given term re-join at a common descendent. Since the 

property of termination has been maintained, any such system is convergent; 

all terms have unique normal forms. Thus, if successful, completion provides 

a complete decision procedure since two terms are equal if and only if their 

normal forms are the same.^

As described in the following section, termination of term rewriting sys­

tems is usually proved by finding a terminating relation (termination or­

dering) that includes the rewrite relation. For the purpose of a completion 

procedure, there are several important aspects to the termination ordering 

used.

First, the ordering has to contain each term pair in the rule set. This is

^That is, identical up to renaming of (universally quantified) variables.
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unitary termination: all term pairs may be examined before any constraints 

are placed on a termination ordering. To be of practical use for a completion 

procedure, minimal time should be required to determine whether a par­

ticular class of orderings (e.g. Knuth-Bendix orderings) is able to correctly 

orient each of the rewrite rules. If a class of orderings is unsuccessfully ap­

plied, another class (e.g. polynomial orderings) may be tried. A completion 

procedure often generates many term pairs and so the ordering technique 

may be required to consider many sets of term pairs. Part of the reason that 

term rewriting is increasingly popular as an efficient proof mechanism is 

because current termination techniques are often able to fulfill these require­

ments. However, if we are to increase the range and speed of rewrite-based 

automated theorem provers we need to look at how termination techniques 

can be made more effective.

Second, as completion proceeds the rule set will in general grow, poten­

tially to an unlimited number of term pairs, with new rules being integrated 

one rule at a time. This is incremental termination: the termination order­

ing has already been constrained before the new term pairs are available for 

consideration. It is clearly desirable to employ an incremental termination 

technique; one that can minimally augment its constraint data to integrate 

the new constraints rather than throw away previous data to start from 

scratch.

Third, the termination technique may be frequently required to consider 

the possible termination of i?U w} and then R U  {u t} to determine 

whether neither, one, or both orientations are possible. A termination tech­

nique that is able to minimally augment its existing data when integrating 

a new term pair, rather than throwing the data away and starting afresh, 

is described as incremental. It is also desirable if the termination technique
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employed can re-use information from the first orientation instead of having 

to start afresh with the second orientation. More difficult in general is the 

ability to optimally decrement the constraints, so that if a rule is removed 

from the rule set the termination technique isn’t unnecessarily constrained. 

It is usually more practical either to proceed with the unnecessary constraints 

or to restart the process of proving the current system terminates.

Fourth, different orderings may orient candidate term pairs in oppos­

ing directions (or allow either orientation). Whichever orientation is taken 

when the term pair becomes a new rewrite rule may affect the success of 

the completion procedure. Orienting a rule in one direction may cause the 

completion procedure to generate infinitely many new rules when orienting 

in the other direction may have led to a finite convergent rewriting system 

(see for example [Les86]).

Finally, the orientation of rules can affect the efficiency of the resulting 

rewrite relation, meaning that the number of rewrite steps applied to a given 

term may be different in two semantically equivalent rewriting systems. It 

may be possible to attribute upper bounds to the derivations of the rewriting 

system knowing properties of the containing termination ordering (its order 

type).

0.3 Proving Term ination

Any (non-random) terminating process progresses ‘closer’ to termination. 

The task of proving termination is to find the appropriate ‘measure’. If 

a rewrite relation^ is terminating then there exists a well-founded rewrite 

relation that contains it: for example, the rewrite relation itself. Thus the

“̂ Recall that a rewrite relation is a transitive relation closed under context and substi­
tution.
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task of proving termination of a rewrite relation - 4  defined by —> is to find 

a rewrite relation -4 ' known to be well-founded such that - 4  Ç -4 '. The 

relation -4 ' is called a termination ordering, and is usually written >*-. Prom 

the formulation of - 4  it suffices to show that Ç  where — is the 

(possibly infinite) set of rewrite rules derived from -t> by instantiating all 

variables with ground terms.

The problem of proving termination of a rewriting system can be re­

duced to the halting problem and so is undecidable, even for one-rule sys­

tems with only unary function symbols. Therefore the standard approach 

is try a certain family of orderings, and if unsuccessful to find a member 

suitable for proving termination, try a different family of orderings. In the 

literature there appear formulations for many families of termination or­

derings (for example, Knuth-Bendix orderings [KB67, Mar87], polynomial 

orderings [MN70, Lan75] [Ste94] [BL87b, CL92], recursive path orderings 

[KL80], transformation orderings [BL87a], subterm path orderings [Pla78], 

and recursive decomposition orderings [Les84]).

These families of orderings can be roughly grouped into two classes: 

syntactic orderings and semantic orderings. A syntactic ordering compares 

terms by the syntactic structure of the term tree, typically examining first 

the function symbol at the root and then recursively examining the sub-trees. 

The task of proving termination by such an ordering is to find an appropriate 

precedence: the ordering on function symbols. The recursive path orderings 

(formulated on p 27) are an important family of syntactic orderings. Stein­

bach examined a variety of such orderings in [Ste88] and found that many 

seemingly disparate families produced the same orderings when they were 

total (i.e. sufficiently defined to compare all terms).

A semantic ordering first interprets terms into a well-founded strictly
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monotonie algebra® {A, > a ) and then compares the resulting elements ac­

cording to >A- The task of proving termination by such an ordering is to 

find an appropriate interpretation of the function symbols so that the inter­

preted terms are decreasing in the underlying algebra:

t u

w >A M
We will concentrate on two families of so-called ‘semantic’ orderings; 

Knuth-Bendix orderings and polynomial orderings. At the heart of a Knuth- 

Bendix ordering (formulated on p 26) is a weight ordering: function symbols 

are assigned non-negative weights, and terms are oriented by comparing 

weights. This is extended to non-ground terms by assigning a positive weight 

to all variables and requiring the multiset of variables in a term to be a sub­

multiset of all terms greater than that term. To compare terms with equal 

weights, the ordering is supplemented with a precedence (ordering on the 

function symbols) so that equal-weight terms are compared by their root 

symbols and then their subterms.

Knuth-Bendix orderings are popular due to their relative simplicity. When 

manually looking for an appropriate ordering it is often possible to make a 

good judgement by inspection alone as to whether to try the Knuth-Bendix 

family. Similarly for an automated tool, it is computationally easy to derive 

the constraints that a feasible KB ordering would need to satisfy. Indeed, 

Martin gave a complete decision procedure in [Mar87] to determine whether 

or not a given rewriting system is KB terminating. For these reasons, KB 

orderings are appropriate as the ‘first hammer’ when seeking to prove ter­

mination. Since their power is limited (due to their ‘flat’ interpretation of

’An algebra in which all operators are strictly monotonie increasing.
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terms and the restriction on occurrences of variables) there need to be more 

sophisticated ordering families in the line of attack.

A polynomial ordering is defined by assigning polynomial functions over 

a domain, N say, to each function symbol. (See p 53 for an example.) For 

ground terms this is like a weight ordering, and non-ground terms are com­

pared by examining whether one dominates the other over a sub-domain that 

includes the values of all ground terms.

The search space for polynomial orderings is far larger than that for 

Knuth-Bendix orderings, and the relationship between the interpretation of 

function symbols and the resulting orientation of terms is much less intuitive. 

The hunt for a suitable polynomial ordering usually takes the form of

• restrict the form of polynomials to be considered, then

• search the polynomials of that form until a successful combination of 

interpretations is found.

Use of the first step means that the rewriting system may be polynomial 

terminating but not under the subset of interpretations being considered. 

Steinbach in [Ste94] identified a class of polynomial interpretations that are 

successful for the majority of examples tried and for which he was able to 

give a decision procedure. Giesl in [Gie95a] gave a simpler decision procedure 

based on a method of Lankford ([Lan79]) which he showed to be equivalent 

to that of Steinbach. In Chapter 3 we will use the decision procedure of 

Giesl coupled with a population-based search technique (genetic algorithms) 

to provide another tool for polynomial termination.
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0 . 3 . 0  M o n a d i c  T e r m s

Monadic terms are constructed from unary function symbols, and so are iso­

morphic to strings. For example, we can swap between thinking of f(f(g(æ))) 

and ffg.

Finding an interpretation such that the defined ordering contains all 

pairs of the rewrite relation is far from trivial for general terms (see [BL87b, 

Ste94]). However, we will see that, on monadic terms at least, polynomial 

orderings are much simpler than we might suppose. In fact we are able to 

classify them in terms of certain invariants explained below.

Although polynomial orderings on monadic terms are in only one vari­

able, there are unboundedly many parameters to set, and the author ex­

pected to see a great variety of orderings. In addition, it was unclear how 

the parameters of the interpretations related to the resulting ordering. Not 

only has much of the complexity of the interpretations proved redundant, 

but the properties of each ordering follow naturally and simply from the few 

significant parameters.

Knowing the properties of the available orderings is important when se­

lecting an ordering family in an attempt to prove a rewrite system is ter­

minating. Different families of orderings may have orderings in common, 

for example the recursive path orderings are common to several families. 

Indeed several independent formulations for recursive path orderings have 

been shown to be equivalent ([Les81]). Even with respect to a single for­

mulation, an ordering may have unboundedly many definitions. For ex­

ample, if a Knuth-Bendix ordering is defined by the weight assignment 

{wta =  wi, wtb — W2 } then, since the relative rather than absolute weights 

are significant, the same ordering is defined by {wta =  pwi, wtb =  PW2 } 

where p is any positive real. It is clearly the ratio r  — that matters.
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On the other hand, by an appropriate choice of weights we can produce con­

tinuum many distinct Knuth-Bendix orderings, as shown in [Mar93]. Clearly 

it is unsatisfactory to classify orderings solely by their formulation family, 

and we look to more fundamental characterisations of orderings: ordering 

invariants.

0 . 3 . 1  O r d e r  I n v a r i a n t s

Two ordered sets are order-isomorphic if there is an order-preserving bijection 

between them. Just as cardinality is an abstraction over size, order type is 

an abstraction over order-isomorphism. Every well-founded total ordering 

(well-ordering) is order-isomorphic to an ordinal -  its order type (logical 

invariant). More than simply a coarse tool for separating orderings, order 

types provide a logical measure of the reduction ‘power’ of total orderings. If 

a well-ordering >- with order type 0 contains a rewrite system 7Z (thus proving 

7Z is terminating) then 0 can be related to the derivation complexity of 7Z 

(see [Cic90, Hof92]), which in turn can be related to the proof theoretic and 

algorithmic complexities of the relation being computed by 7Z (see [Wai93]).

In [MS93] detailed results are obtained for simple conditions determining 

the order types of total termination orderings on binary strings. Martin and 

Scott show that any total termination ordering on strings in two letters, say 

a and b with a  b, has order type oj, cj^, or according to Table 0.0. 

In addition they show that the only such orderings of order type are the 

recursive path orderings.

Once the order type of an ordering >- is known, we can further refine the 

analysis. For order type the particular recursive path ordering can be 

identified (almost trivially since there are only four possibilities). For order 

type ui the numeric invariant is a real number 0 < r  <  1 that identifies the
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Table 0.0: Order types of total simplification orderings on binary strings.
Conditions Order Type

b-̂  >- a for some j  G N, w
a F- b'̂  for all j  E N  and 
both b*a >- ab for some k E N 
and ab* b a  for some k E N,
a F- for all j  E N  and 
either ab X b*a for all /e G N 
or b a  >- ab* for all k e N.

particular weight pre-order such that >- =  • • •)• For order type the

numeric invariant is a real number A > 0 that identifies the particular matrix 

pre-order such that >- = (^rl • • •) (where r  =  0). These pre-orders are 

considerably easier to work with than polynomial orderings, and are detailed 

in Section 4.2. One of the surprising results of this work is that for almost 

all polynomial orderings on monadic terms in two function symbols we are 

able to describe the orderings completely: they are the extensions of these 

pre-orders with the standard lexicographic orderings from the right

0 . 3 . 2  P o l y n o m i a l  A n a l y s i s

In Section 4.3.0 the main results of the polynomial analysis are presented in 

three parts: the order types, the numeric invariants, and the lexicographic 

combination equivalents. These may be summarised as follows.

Let y-poi be a polynomial ordering on monadic terms T({f, g } ,  { v } )  defined 

by the interpretations

W (^) ■ GmZ™ H f d iz  -F «0 , • • • Oo ^  0, m > 1,

|gl(a;) =  6^%" -I b b ixP b o , &„ . . .  ^  0, n ^  1,
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Table 0.1: Polynomial orderings on binary monadic terms (summary).

Parameters Lexicographic
Combination

Order
Type

Numeric
Invariant

^ polA m ^  n > 1 (fc r ;  !>'“ ''> U) T = ^Inm

^  polB m > n =  1, b i > 1 (fc r ;  k A l X = m

ypolC m  > n — 1, b i = 1, 6o >  0 rpo LO'̂ -

^ polD m — n =  1, a i  ^  6 i  > 1 U) ^  _  In fei. 
Inai

^polE m  =  n = 1, b \ 1, 6o >  0 Up' A — a \

^polF m  = n =  1, — 1, ao bo >  0 U) r  =  ^  an

and [v|(a;) =  x, such that f(v) ypoi g(v) ^poi v. The set of all such orderings 

is partitioned into subsets '̂ poiA'> '^polCi '̂ polD̂  ^polE^ and ^poiFi uud

the properties of the orderings are summarised in Table 0.1.

Thus we see that almost all the properties of the ordering are determined 

by the degree and coefficient of the leading monomial. Moreover, apart from 

two recursive path orderings, all the effectiveness of polynomial orderings 

can be obtained using linear interpretations only. These theoretical results 

tie in nicely with the experimental results of Steinbach in [Ste94] where he 

found a significant proportion of term rewriting systems orderable by general 

polynomial orderings could also be ordered by his so-called simple-mixed 

polynomial orderings.

We can illustrate some of the results of this work by examples:

0. |fl(a:) =  Zx̂  ̂4- H- 1 and |[g]](z) =  -f -f 9x

From row >-poiA we see that this is simply a weight ordering, with f 

having weight In 4 and g having weight In 3, extended with the lexico­

graphic ordering having g > f.

1. [f]](z;) =  a; 4- 3 and [gl(a;) =  æ 4- 2

This is also a weight ordering, as shown in row ypoio, with f and g
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having weights 3 and 2 respectively.

2. [fl(a;) =  4a; +  1 and [g]|(a;) = x -h 2

This is a so-called A ordering (defined in Section 4.2) as shown in row 

>-polE- It has order type uP and in this case A =  4. In fact the leading 

coefficient of [f|(a;) is the only significant parameter.

3. |f](a;) = x"̂  + 4 x -\- \  and |g|(ic) ~  x  + 2

This is the standard (i.e. from the left) recursive path ordering (rpo) 

with f greater than g in the precedence. In fact we will see in Sec­

tion 4.3.0 that the same ordering is given whenever the interpretation 

of g has leading monomial x  (i.e. |g | is strongly linear) and the leading 

index of the interpretation of f  is greater than 1 (i.e. |f] is non-linear).

4. |fl(rc) =  3æ  ̂ and |g](a;) =  5a; +  1

This is also a A ordering, from row )^pow  ̂ even though the interpret­

ations are of completely different form to those in example 2. In fact 

it is exactly the same ordering with a lexicographic extension! If we 

use the ordering in example 2 extended with a lexicographic ordering 

having g D> f then the interpretations in this example are completely 

redundant.

0.4 D ocum ent Structure

In Chapter 1 the preliminary definitions and theory are presented. Chapter 2 

discusses the incremental Knuth-Bendix ordering algorithm and its con­

straint satisfaction engine, the method of complete description. The prob­

lems with the existing MCD are highlighted, and a revised version is presen­

ted, the Revised MCD. In Chapter 3 the problem of finding suitable polyno­

mial orderings is addressed. Genetic algorithms are proposed as an efficient
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search engine for such orderings, and a tailored GA is presented. Chapter 4 

takes a more abstract stance, investigating the polynomial orderings defin­

able on terms constructed from two unary function symbols. Each such 

ordering is shown to be a composition of simple orderings. We conclude in 

Chapter 5 with a summary of the results and a discussion of future develop­

ments.



1 Preliminaries

This chapter introduces most of the notation and concepts re­

quired for subsequent chapters. Puller accounts of term rewriting 

and termination can be found in [DJ90, Klo87, Pla93, JL87].

1.0 N otation

The set of natural numbers {0 ,1 ,2 ,3 ,...}  is denoted N and the set of positive 

natural numbers {1 ,2 ,3 ,...}  is denoted % .  The set of real numbers (resp., 

positive real numbers) is denoted M (resp., R+). If A is a set then V{A) 

denotes the power set of A. The cardinality of a set A  is denoted #(A ).

An ascending sequence denotes the empty sequence if j  < i, so

( a i , . . .  ,an) is the empty tuple if n  < 1. For convenience a denotes a tuple 

( a i , . . .  ,On) where n  should be clear from the context. The set of n-length 

tuples over a set A  is denoted A” , and the set of non-negative-length tuples 

is denoted A~^.

1.1 Terms

Let T  he a finite set of function symbols and V be a countable set of vari­

ables. Each function symbol /  is associated with a natural number, its arity  

ar(/) G N, signifying the number of arguments taken by the function. Func­

tion symbols of arity 0, 1, 2, and 3 are described respectively as constant^ 

unary, binary, and ternary. In this document we will consider only finite 

sets of function symbols, each having fixed arity. Where convenient we will

20
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reserve the symbols f, g, K, / ,  g, h, / i ,  / 2 , • ■ • to denote function symbols and 

v ,x ,y ,z ,v i ,V 2 , . .. to denote variables. (We assume an infinite supply of 

variables so that we never run out of new names when we come to renaming 

variables, but it is even more convenient to think of the set V as being finite.)

The set of term s  T(JF, V) is the set of variables V closed under construc­

tion by JF as f { t i , . . .  , tn) ,  where n is the arity o î f  E P. (If /  is a constant 

then the empty brackets are elided.) The number of occurrences of a function 

symbol /  in a term t  is denoted # ( / , t ) ,  and similarly for variables. The set 

of ground  terms T { T , 0 )  is also denoted T { P ) ,  and the set of non-variable  

terms is the set of terms containing function symbols, T(J^, V) \  V. A term 

is m onadic  if all its function symbols are unary.

A term t — f { t i , . . .  ,tn) has immediate subterms t \ , . .. ,tn. The proper 

subterms of t  are its immediate subterms and their proper subterms. A term 

is a (non-proper) subterm of itself. Specific subterms are located by their 

position, a sequence of positive naturals. The empty position locates the 

term itself, t\Q — t, a position i locates the immediate subterm, =  t{, 

and longer positions locate deeper subterms, ~  .,A>- The

term produced by replacing the subterm of t at position p by the term u is 

denoted t[u]p. A  substitution a = (ui >-)- u i , . .. ,Vm i-> Um} is a mapping 

from variables to terms, and ta  denotes the result of simultaneously applying 

a  to all variables in t. A ground substitution a = {vi u i , . . .  ,Vm ^  Um} 

has no variables in the Ui. (Note that a ground substitution applied to a 

term may produce a non-ground term, e.g. i{x ,y ){x  0} still contains y.)

1.2 Term R ew riting

A rew rite relation  is a transitive binary relation closed under context and 

substitution. A term rewriting rule se t R  is a  set of term pairs { li
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E T(JF, V)). This set defines a rewrite relation -4, the smallest trans­

itive relation® closed under context and substitution containing -t>. A term 

t  E T  rew rites  to a term u E T  hy a rule I -> r  in R  i î  I matches a subterm 

of t,  in which case the appropriate instantiation of r  replaces that subterm 

of t  to produce a term, u. In other words, t  -A- u i î t \ p  =  l a  for some position 

p, substitution a,  and rule I r  in R, and u — t[ra]p.

For example, the rewrite system below (from [Der95]) converts a term to 

disjunctive normal form.

—I—iCC — >  X

—i(æ y  y) -^x A —>y

-'(æ  A y) —o ~̂ x V “ly

X  / \ { y  y  z)  -t> {x A y ) y  {x / \  z)

{ y y  z)  A x  -f> {x A y ) y  {x A z )

Since we are concerned with the termination of rewriting, we consider 

only finite rule sets and therefore finite sets of function symbols. Also, the 

left-hand sides of rules are non-variable (i.e. T \  V) and the variables on the 

right-hand side of a rule are a subset of the variables on the left-hand side.

A term t  is norm alised  to the term \.t  w.r.t. i? if t - 4  4-̂  and

4-t cannot be rewritten further.^ This is what we will mean in the sequel 

by term rewriting. To employ a term rewriting system R  for automated 

rewriting, it is desirable to know that the term rewriting process cannot 

continue indefinitely on any term, i.e. that the rewrite relation contains 

no infinite chains t  - 4  t' - 4  • • •. This desire becomes a necessity when 

rewriting systems are used for (semi-)automated equational reasoning where

°The discussion is slightly simplified by ignoring the convention of making -4  reflexive. 
^Note that, since the relation -4  is transitive, the description of multiple rewrites is 

solely for illustration.
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a convergent rewriting system (one in which is unique for each t) is to be 

used to determine equality.

1.3 Orderings

A binary relation (A, >-) is an ordering^ iff X is transitive and irrefiexive. 

The ordering >- is total iff, for all distinct s ,t  E A, either s y-1 or t >- s. The 

ordering (A, >-) is well-founded iff it contains no infinite descending chains 

s y  t y  u

A binary relation (A, is a pre-ordeP iff ^  is transitive and reflexive. 

A pre-order ^  defines an ordering (its strict part) by ^  s . and an 

equivalence relation by ^  ^  H A pre-order is said to be well-founded

iff its strict part (ordering) is well-founded. We can always obtain a pre­

order from an ordering >- by taking its reflexive closure X, in which case the 

equivalence relation is simply identity.

An ordering y '  is an extension of an ordering iff F- Ç A pre-order 

'y' is an extension of a pre-order ^  iff F- Ç and ~  Ç

An important means of defining a pre-order on terms is by interpretation 

into some well-founded strictly monotonie algebra, A, formulated as t u 

iff {tj > M .

A common technique for building useful orderings from simple ‘building 

blocks’ is to take their lexicographic combination.

D e f in i t io n  0 (L e x ic o g r a p h ic  c o m b in a tio n ) Given a sequence of pre­

orders ^ 1, . . . ,  on a set S, their lexicographic combination is the relation

(^1 ) ^2) • • • ) ^ r ) 5

^a.k.a, strict partial order.
^a.k.a. quasi-order.
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where (^ i)  =  and (^ i;  ^ 2; ■ • • I = ( ~ i  n  (^ 2; • • • ; b r)) if r >  1.

o

If one of the orderings is total then the lexicographic combin­

ation of their pre-orders is an antisymmetric-order. Sometimes the equi­

valence part of the combination will be precluded by writing, for example, 

( ^ 1; ^ 2 ; • ■ • ; fcr-i; F-r), which defines an ordering.

Thus a lexicographic combination is a sequential application of pre­

orders, where the combination has the same domain as each of the con­

stituent relations. This should not be confused with the lexicographic lifting 

of an ordering from terms to tuples of terms.

D e f in i t io n  1 (L e x ic o g r a p h ic  l i f t i n g  (fro m  t h e  l e f t ) )  Let (T, F-) be 

a term ordering, let n  be a fixed natural number, and let be the set of 

n-tuples over T . Then (T” , is the lexicographic lifting from the left of

>- to T ” defined by

( u , . • ■ , tn) { u i , . . . ,  Un) if

for some 1 ^  j  we have ti = ui, . . . ,  t j - i  = U j-i, tj y  uj. o

The lexicographic lifting from the right is defined similarly. These can 

be generalised to an arbitrary (fixed) permutation of the elements of each 

tuple. Let 7T be a bijection on {1 ,... ,n} C N. Then the ix-permutation of 

(<2l , . . . , ap) is , . . . , ).

D efinition  2 (L exicog raphic  lifting  (w ith  perm utations))

Let { T ,y )  be a term ordering, let n  be a fixed natural number, let tt be 

a bijection on ,n}, and let T "  be the set of n-tuples over T. Then

(T* ,̂ is the lexicographic lifting (with respect to tt) of >- to defined

by

{ t i , . . . , tn )  {u i,...,U n )  if
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for some 1 <  j  <  n we have =  n^(i), . . . ,  4 ( j- i )  =

Another popular lifting of orderings is the multiset lifting ([DM79, JL82]).

D e f in i t io n  3 ( M u l t i s e t  l i f t i n g )  Let (T, F-) be a term ordering, and let 

T"' be the set of n-tuples over T . Then (T” , is the multiset lifting of 

>- to T ” defined by

(4 , • ■ • ,^n) (^1, ■■■yUn)  if

for all Uj there exists a ti s.t. ti >- Uj. o

D e f in i t io n  4 (S ta tu s )  The status function, stat : T  -> {lexL, lexR, lexTr, mul}, 

maps each function symbol to a label indicating the order in which its child 

terms should be considered.

We now define a class of orderings suitable for proving the termination 

of term rewriting systems: simplification orderings ([Der79, MZ94]).

D e f in i t io n  5 (S im p lif ic a t io n  o r d e r in g s )  Let (T, >-) be an ordering. 

Then is closed under 

context^ if t y  u implies c[t]p y  c[u]p for all t ,u ,c  e T  and

positions p of c,

substitution^ if t  y  u implies ta  y  ua  for all t ,u  E T  and sub­

stitutions a,

the subterm relation^ if t[s] y  s for all t G (T  \  V) and all proper sub­

terms s of t.
A rewrite ordering is an ordering closed under context and substitution. A

^a.k.a. monotonie
^a.k.a. stable (under variable substitutions) 
^a.k.a. has the subterm property
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reduction ordering is a well-founded rewrite ordering. A simplification or­

dering is a reduction ordering closed under the subterra relation. o

1 . 3 . 0  W e i g h t  O r d e r i n g s

A weight function |[_]|wf : JF - 4  N associates each function symbol with a nat­

ural number. This mapping is lifted to terms by the obvious homomorphism 

l f { t i , . . . ,  tm)]wt = [/]«)« + ( The tag ‘w ’ may be elided when the 

type of mapping is clear from the context.)

D e f in it io n  6 (W e ig h t  o r d e r in g s )  Let [_|yjt ■ T{P ) -4 N be a weight 

function such that at least one function symbol has non-zero weight. Then 

the weight pre-order is defined by

^wt 'a if M w ^

The weight ordering y ^ t  defined by |[_]]w( is the strict part of 'ywt- A weight 

ordering is extended to non-ground terms t ,u  E T {T ,V )  by

t  y.u)t u  if ta  yyjt u a  for all ground substitutions a .

1 . 3 . 1  K n u t h - B e n d i x  O r d e r i n g s

D e f in i t io n  7 (K n u th -B e n d ix  o r d e r in g s )  Let w be a positive natural 

number. Let |_| : T {P , V) -> N be a weight function such that

0. the weight of all variables is w,

1. the weight of each constant symbol is at least w, and

2. at most one unary function symbol (f) has weight 0.

Let D> be a precedence on such that if there is a unary i  E P  with weight

0, then f is the maximum in (J^, >). Then the Knuth-Bendix ordering yub
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is defined by 

t y  kb u if

for all u 6  V ; # (u ,t )  ^  # (u ,w ) and either 

W >  M  or

m  — |n | and t = i^{v) and =  u for some n >  1 and G V, or 

t = f t ,  u = gu and f  \> g, or

t = f t ,  u = f u  and t ykb̂ ^̂ ^̂ ^̂  w. o

1 . 3 . 2  R e c u r s i v e  P a t h  O r d e r i n g s

D e f in it io n  8 Let {P, > )  be a precedence, and let each function symbol be 

associated with either lexicographic or multiset status. Then the recursive 

path ordering y  = >''P is the lifting of >  to terms T{P,V)  defined by 

t — f  i f i , . . .  ■) tffi) F" g{u\, . . . ,  Uji) — u if

t i t :  u for some 1 ^  i ^  m,

or f  > g and t y  Uj for all 1 < j  <  n,

or f  = g and (^i,. . . ,  tm) ( u i , . . . ,  Un) o

When a recursive path ordering as formulated above is defined on mon­

adic terms it is known as a left recursive path ordering, denoted The

right recursive path ordering, denoted on monadic terms is also im­

portant and is formulated as t i>''P̂  u iff rev(t) rev(n), where 

r e v ( / i ( . .. (/„(v)))) =  f n { . ..  (/i(v))).

1 . 3 . 3  P o l y n o m i a l  O r d e r i n g s

D e f in i t io n  9 (P o ly n o m ia l)  Let S  be a semi-ring (a set closed under ad­

dition and multiplication). Then a monomial expression a x ^  . . .  x ^ , where 

a G 5  is a coefficient, G N are indices, and xi are variables, determines a
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monomial function from to S, the function obtained by evaluating the 

expression for each argument in S'" .̂ A polynomial function is obtained sim­

ilarly from a polynomial expression, a finite sum of monomial expressions.

o

We will be considering polynomials with S' =  N and with 5  =  K+.

Recall that a function g is said to be monotonie increasing if x ^  x' 

implies / ( . . . , æ, . . . ) ^  f { . . . , x ' , . . .), and is said to be strictly monotonie 

increasing if x < x' implies / ( . . . ,  æ, .. . ) < f { . .. ,x '

D e f in i t io n  10 (P o ly n o m ia l  in t e r p r e t a t io n  in N) A polynomial inter­

pretation in N of a function symbol /  G is a polynomial function [ / |  that 

has the same arity as /  and is strictly monotonie increasing. o

The following definition is due to Dershowitz [Der79] and allows poly­

nomial interpretations in the set of positive real numbers, even though the 

set is not well-founded, by requiring the interpretations provide the subterm 

relation, i.e. that | / | ( . . . ,  æ,. . , )  > x  for all arguments of |/J .

D e f in i t io n  11 (P o ly n o m ia l  in t e r p r e t a t io n  IN % )  A polynomial in­

terpretation in K+ of a function symbol /  G is a polynomial function |/]| 

that has the same arity as /  , is (not necessarily strictly) monotonie increasing 

and has the subterm property. o

D e f in it io n  12 (P o ly n o m ia l  in t e r p r e t a t io n  o f  te r m s )  A polynomial 

interpretation of JP is a set of polynomial interpretations, one for each f  E P . 

Let % be a countable set of variables in one-to-one correspondence with V. 

Then the polynomial interpretation of a term /(U,  • • • ? ^ar(/)) E T {T ,V )  is
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given by the homomorphism

— Xi

[ / ( i l , - - - , ^ a r ( / ) ) l  =  | / K P l i - - - , P a r ( / ) D

Both of these definitions above can be extended to allow negative coeffi­

cients, but this creates the additional proof obligation that no ground term 

is interpreted smaller than p, and it is not clear that there is any gain with 

this added complication, so we will consider only non-negative coefficients.

D e f i n i t i o n  13 ( P o l y n o m i a l  o r d e r i n g  ( a ) )  Let |_| b e  a polynomial in­

terpretation of T (P ,V )  in N. Then t  >-p u if 

p a l >  [mo-J

for all ground substitutions a  : V —>• N. o

It may appear at first that to compare two terms we must calculate and 

substitute the interpretations of all terms. However, substituting ground 

terms for term variables and then calculating the interpretation is equival­

ent to calculating the (non-ground) interpretation and then evaluating the 

polynomial expression at all values of interpretations of ground terms.

l t { V i  h4  s J l  > 1-4 S i } }

1-4 p i | }  > t-4  p i | }

This means that if, for example, T  =  {s(_), 0} and [sl(æ) = x +2 and |0 | — 2 

then we only need test for substitutions of positive even numbers. In practice 

it is simpler to test for a contiguous superset of [T(JF)| (e.g. {2,3,4,5, . . .}  

above) since that is sufficient, leading to the following formulation.
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D e f i n i t i o n  14 ( P o l y n o m i a l  o r d e r i n g  (b ) )  Let |_] be a polynomial in­

terpretation of T (P ,V )  in N (resp. M+) as defined above such that p |  >  p 

for all ground t G T{P ) and some /.t G N (resp. jU G %.). Then t> -pU \î

Pl(a;i, . . . , X n ) >  M (a ;i , . . .

for all x \ , . . .  , X n ^  p.  o



2 Knuth-Bendix Ordering 

Algorithm

In this chapter we look at the incremental Knuth-Bendix ordering 

algorithm, which is a complete decision procedure for whether a 

suitable Knuth-Bendix ordering exists for a given term rewriting 

system. A revised Method of Complete Description is proposed 

as an efficient feasibility engine for the algorithm.

2.0 Introduction

The Knuth-Bendix family of orderings (formulated in Definition 7 on p 26) 

has proved a popular and often effective means of proving termination of 

term rewriting systems ([KB67, Mar87, Ste94]). Being based on weight or­

derings, it is possibly the most intuitive class of ‘useful’ orderings, making it 

a common first choice for attempting a termination proof. |

An algorithm for proving Knuth-Bendix termination is presented in [Mar87] I
and [DKM90]. The algorithm constructs a system of homogeneous linear in-

Iequalities, the numerical constraints necessary (but not sufficient) for the I
I

existence of a suitable Knuth-Bendix ordering. The ordering algorithm con- |

suits a linear programming engine to test whether the numerical constraints

can be satisfied and to detect degeneracy (defined below). If the constraints |

cannot be satisfied then there is no suitable Knuth-Bendix ordering. De- !

generacy being detected may also indicate failure or it may entail further j
1

symbolic or numeric constraints (depending on the nature of the degener- |

t
31 j
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acy).

The Method of Complete Description (MCD) is proposed in [DKM90] 

as an appropriate linear programming engine. Consisting of elementary op­

erations, the MCD is an elegant and straightforward technique that gives 

precisely the information required by the ordering algorithm. Moreover, due 

to the incremental nature of the MCD itself, it fulfills the incremental po­

tential of the ordering algorithm. However, as demonstrated in [Cro92]), 

the original MCD can be grossly inefficient due to its doubly-exponential 

space requirements. In the remainder of this chapter we examine techniques 

for making the MCD, and hence the incremental Knuth-Bendix ordering 

algorithm, able to handle moderate sized problems.

2.1 Prelim inaries

This section introduces the mechanisms from linear algebra required to study 

the MCD. The reader is referred to linear programming books such as [Kre68, 

Dan63, AHU58, Car60] for a more thorough introduction.

2 . 1 . 0  V e c t o r s  a n d  M a t r i c e s

A vector x (over the real numbers) in n-space (a.k.a. an n-vector) is an 

n-tuple (a;i,. . .  ,Xn) E M” , usually written as a column vector.

Xi

X
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and having as transpose a row vector,

X

If X was a row vector, the orientations of x  and x^ would be interchanged. 

(Vectors are indicated by bold type, so that for example, x;j is the j th  

component of the «th vector.) Particular vectors are 0 =  0” , 1 =  I” , and 

=  (1,0, .. .  ,0,0), . . . ,  Gn =  (0 ,0 , . . . ,  0,1). A point in n-space is used 

interchangeably with its position vector (w.r.t. the origin).

The usual ordering on real numbers is lifted to vectors in the following 

ways.

D efinition  15 (V ec to r  O r d er in g )

X > y  iff X i ^  yi, for alH  (1 < * < n)

X > y  iff X > y and Xj > yj, for some j  (1 ^  j  < n)

X >  y  iff Xi > yi, for alH  (1 ^  î <  n)

The inner product of two n-vectors, x and y, is the real number

x.y =  x iy i H h

An (m, n)-matrix (over the real numbers) is an array having m  rows and n 

columns. We may sometimes consider such a matrix as having m  rows of 

n-vectors

Rii a P

; ; ; —

a-ml • ^mn am^
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and sometimes consider such a matrix as having n columns of m-vectors

a i l

a i,

ani

Hr

a i ; • • : an

(Note that the vector denoted by, say, a i is different according to the orient­

ation we take of the matrix.) The matrix product of an (m, n)-matrix and 

an (n,p)-matrix is the (m, p)-matrix given by

'  aiT ‘ a i.b i • • • ai-bp

b l : • • • : bp

am am b% • ■ • am bp

The product of a matrix and a vector is defined by treating the vector as a 

matrix.

The length of a vector x  =  [a;i,. . . ,  is defined as |x| =   4-

A ray is a vector of which only the direction (and not the magnitude) is 

significant, that is, r  is identified with or for all positive o.

2 . 1 . 1  L i n e a r  I n e q u a l i t i e s

The system of m  linear inequalities

<̂ 1,1̂ 1 4-01 2̂2 2̂ 4-• • • 4 - ^  6i 

: ^  :

am,1^1 4" Û.m,2 2̂ 4” ■ ‘ ' 4“ â pfî n̂ n ^
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subject to X >  0, can be represented as

A.x > b, subject to x  > 0 

where A  is the (m, n)-matrix having entries (1 ^  i ^  m, 1 ^  jf <  n),

X — [æi,.. . ,XnŸ,  and b =  [&i,.. .,bm V.

The question of whether such a system is satisfiable can be represented 

as the problem; Given A  G and b G , does there exist x  G R"' such

that A.x > b?

Using trivial arithmetic, the above system is equivalent to

A.x — b >  0 , subject to x > 0

and by introducing a dummy variable Xn+i, the above system of linear in­

equalities is equivalent to the homogeneous system of linear inequalities

P ai^2X2 + ' ' " d-ai^n^n ~  biXn+i ̂  0

: ^  :

am,1^1 T  am,2^2 T  ' * • -|- am,n^n ^  0

subject to X > 0 and Xn+i — 1. Equally trivial is the replacement of a

constraint kxi ^  / by ^  0, where X{ — (y* 4- l)/k.  Thus we can assume 

that the systems of linear inequalities of our discourse are homogeneous and 

that all constraints on variables are non-negative.
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2 . 1 . 2  H y p e r  p l a n e s

Given a vector v  G R.”' and a scalar a G R, the set of points

{x  G R” I v .x  =  a}, (v 0)

is a hyperplane. An inequality v .x  ^  a defines a closed halfspace, and a strict

inequality v .x  > a defines an open halfspace. The vector v  is orthogonal

to the hyper plane and points in the direction of the halfspace that satisfies 

the above inequalities. For convenience, when a =  0 we will identify the 

hyperplane with its orthogonal ray v.

Given a system of linear inequalities A.x > b ,  each inequality aj.x ^  bi 

(1 ^  ^  m) defines its non-negative (closed) halfspace Hi of points that

satisfy the inequality. Thus the solution set of the system of inequalities is 

the intersection of the halfspaces Hi.

2 . 1 . 3  C o n e s  a n d  P o l y h e d r a

A (polyhedral) cone is the subset of that satisfies a (finite) system of 

homogeneous linear inequalities in n -|-1 variables, as above. A cone C  has 

the properties

X 1 ,X 2  G C ai,a2 G R (origin) ----------------------- —— (convex closure)
0 G (7 QiXi -{- a2~xi2 G C

A polyhedron is the subset of R” that satisfies a (finite) system of linear 

inequalities in n variables, as above. Note that a cone is a special case of a 

polyhedron (i.e. when the system is homogeneous). A polytope is a bounded 

polyhedron.

Given a polyhedron P  Ç Rĝ _, there is a unique smallest cone Cp Ç R̂ ^̂  ̂

s.t. P  is the cross-section of Cp at Xn+i = 1. Given a cone C  Ç R ?t^ , there is
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a unique polyhedron Pc  C s.t. Pc  is the cross-section of C at Xn+i = 1. 

This is the geometric view of the translation between homogeneous and non- 

homogeneous systems of linear inequalities described in Section 2.1.1.

2 . 1 . 4  D o u b l e  D e s c r i p t i o n

The solution space to a system of linear inequalities can be formulated equi­

valently as the intersection of a finite set of half-spaces and as the convex 

closure of a finite set of points and rays. The double description method 

essentially maintains both of these representations, modifying the latter as 

further inequalities are added to the former.

A pair (A, C) of matrices A  G and (7 G is a double description

iff

A.x > 0  iff X =  C.g, for some g > 0

0 Lemma (M inkow ski’s T heorem  for  P olyhedral C o n es)

For any A  G there exists some C G s.t. (A ,(7) is a double

description.

1 Lemma (W eyl’s T heorem  for  P olyhedral C o nes)

For any C G R"^^, there exists some A  G s.t. (A,C)  is a double

description.

2 Lemma ( D u a l i t y  o f  D o u b le  D e s c r ip t io n )

The matrix pair {A, C) is a double description if  and only i f  (C^, A^) is a 

double description.

2 . 1 . 5  D e g e n e r a c y

We say that an inequality aj.x ^  0 is degenerate w.r.t. a system of homo­

geneous linear inequalities A.x > 0 (x > 0) iff a;.x =  0 for all solutions x  

to the system of inequalities. In other words, all possible solutions of the
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system barely satisfy that inequality. Viewed geometrically, this means all 

solutions lie on the hyperplane associated with the inequality.

E x a m p le  0 The inequality —xi — X2  ^  0 (xi ^  0, X2 ^  0) is degenerate 

(w.r.t. itself).

Obviously if a; and —ai occur in a system, then both are degenerate. 

Less obvious is the system

- 2 1 1 0 XI 0

1 - 2 1 0 3:2 0
>

1 1 - 2 0 3:3 0

2 1 1 - 2 X4 0

, X > 0

where the first three inequalities are degenerate (but not the fourth).

2.2 Increm ental K B Ordering A lgorithm

In this section we present the algorithm of [DKMQO]*̂  for determining whether 

a given (finite) set of rewrite rules can be ordered by a Knuth-Bendix order­

ing.

Recall (from p 26) that a Knuth-Bendix ordering is defined by a weight 

mapping and a precedence on the function symbols. The algorithm proceeds 

by maintaining a minimal system of these numeric and symbolic constraints 

as entailed by each term pair considered. If these constraints (A and > below) 

become unsatisfiable then there is no suitable Knuth-Bendix ordering for the 

rewrite rules (in the orientation considered). Otherwise the constraints are 

extended as necessary, ready for further term pairs to be integrated.

‘’with minor corrections
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The homogeneous inequalities are represented by the rows of the matrix 

A  in the expression A .x  > 0 . Since degenerate rows of A  may entail failure 

or further constraints, according to the source of the row, each row is labelled 

to identify its source. For a term pair (p,q), the inequalities generated are 

for vai’iables:

av : ujy ^  0

for each constant symbol;

af : Wf —Wy ^ 0

for each non-const ant symbol:

ag ; Wg ^  0

for each term pair:

ap.q : -  # ( / ,  q) ) + ' ^ v 5 ^ ( # ( p , p )  -  # ( u ,  g))  ^  0
/E f  vev

E xam ple  1 For the term pair {i{x*y), î(y)=t=«(x)), the inequalities generated 

are

av

a; :

a*

a

0 0

1 0

0 1

-1  0

- -
Wy 0

Wi > 0

w* 0

Suppose that a set of term pairs R  has already been oriented by the IKBO 

algorithm, producing numeric constraints (i.e. a system of linear inequalities)
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A  and symbolic constraints (i.e. the precedence on function symbols) t>. If 

these constraints are satisfiable then the rewriting system R  is terminating 

by Knuth-Bendix orderings. Now suppose another term pair (t, u) is to be 

incorporated into R, that is, the augmented rewriting system i? U {f -> u} 

is to be tested for KB termination.

First the linear inequalities entailed by (f, u) are generated as above and 

added to the inequalities A. If this extended system of inequalities. A', can 

be strictly satisfied, then the system R' is KB terminating. However, if an 

inequality a  cannot be strictly satisfied by any choice of weights for the KB 

ordering then a  is degenerate for that system of inequalities and the next 

step depends on the nature of the degeneracy of a .

If the inequality a^ is degenerate, this means that a positive weight can­

not be assigned to variables, and so R' cannot be proved terminating by KB 

orderings. If an inequafity af is degenerate, where the function symbol /  is 

unary, then /  requires to be maximal in the precedence. If the precedence 

cannot be extended with /  maximal, then KB orderings fail again. If an 

inequality ar,s is degenerate it means the term pair (r, s) has equal weight 

on both sides. If the head function symbol (i.e. at the root of the term) of r  

and s is different, then the precedence requires to be extended in favour of 

r. If the head symbols are the same, then the immediate subterms of r  and 

s are pairwise compared and the first two distinct subterms, r' and s' say, 

need to be incorporated by the algorithm so that r' is greater than s'.

Thus for each new term pair (t,w), the algorithm minimally extends the 

constraints to malm t greater than u in all contexts and under all substi­

tutions. The algorithm is summarised in Figure 2.0. The family of KB 

orderings handled by the algorithm can be extended to allow the precedence 

to be a pre-order instead of an ordering and to allow function symbols to
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have status so that their subterms are compared as multisets or permuted 

sequences. Since these extensions are straightforward and do not affect the 

numeric constraints, the focus of this chapter, the interested reader is referred 

to [Ste8 8 ].

Input: Existing system of homogeneous inequalities A  and precedence >, 
along with new term pair {t,u).

O utput: Either succeed with extended system A' and precedence or 
fail.
/* Initialise set of pairs to be incorporated: */
P  :=
w hile P  ^  0  do

choose (p, q) G P ;
/* Check feasibility of variable occurrences: */
if  p G V or # (u ,p ) < #(p , g) for some v Ç.V th en  fail;
else

A  := AU  ineqs(p,g); P  := P  \  {(p, g)};
/* Check weight of variables is positive: */ 
if  av G degen (A) th en  fail;
/* Check zero-weight unary function symbols: */ 
fo r  e a c h  a f  G degen (A), /  unary d o

extend t> with /  maximal, otherwise fail;
/* Check equal-weight terms: */ 
for each ar,s G degen (A) do  

if  hd(r) ^  hd(s) th en
extend > with hd(r) > hd(s), otherwise fail; 

else
P  := P  U reduce(r, s);

Figure 2.0: Incremental Knuth-Bendix Ordering Algorithm

2.3 M ethod  o f C om plete D escription

The method of complete description is a technique for linear programming 

(optimising a linear function with respect to linear constraints) due to Uzawa 

([UzaSSb, Uza58a, Kre6 8 ]). The following description of the MCD owes its 

cleanliness to the double description method of [MRTT53], which is similar
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but was found independently.

The MCD checks the satisfiability of a system of homogeneous linear 

inequalities A  by maintaining a double-description pair (A, C). When a new 

inequality is incorporated into A, the set of bounding rays C  is updated. 

The solution set, the cone whose bounding rays are the columns of C, always 

contains the trivial solution 0 , which of course is not a valid choice of weights 

for a Knuth-Bendix ordering. The IKBO algorithm checks satisfiability by 

testing where any degeneracy occurs, that is, by testing which rows of AC  

are 0^. The algorithm is given in Figure 2.1 and an example is worked 

through below.

In p u t: Existing double description (A, C), along with new constraint 
a '.x  ^  0 ,

O u tp u t: Constrained double description (A',C").
/* Compute agreement of existing rays: */ 
z :— a!.C]
/* Retain rays satisfying new constraint: */
C  := {ci G C I ^  0}
/* Generate new rays to satisfy new constraint: */
N  :— ^ZjCi .z^Cj \ Zi <C. 0 <C. Zj^
/* Accept all new rays: */
C  := a  U N  
A' := A U  {a'}

Figure 2.1: Method of Complete Description

2.4 Illustration of R edundancy in M CD

We now work through an example of applying the MCD to a linear pro­

gramme, both as an illustration of the algorithm and as a witness to the 

redundcuit data that can be generated.
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Let us test the satisfiability of the set of linear (homogeneous) inequalities

Xi +  X2 H" —2x3 ^  0 

2xi +  —X2 +  —Xg ^  0

where xi,X 2 ,xs > 0.

Each constraint is handled in turn, but since the initial constraints

3:2

0

0

3:3 > 0

described by the m  x  n  matrix

1 0 0

A3 = 0 1 0

0 0 1

with at once , having the solution (n,p)-matrix

1 0 0

^3 = 0 1 0

0 0 1

The current state can be visualised as in the following diagram. We are 

looking towards the origin fromt the positive octant of 3-space. It may help 

to imagine looking into an upside-down (tetrahedral) pyramid.
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6 2  j

y \  ^3 >  0

0  \

The current solution vectors c i,C 2 ,cg (G Cg) are shown lying along the 

three axes 6 1 , 6 2 , 6 3 . For the purposes of illustration, a cross-section of this 

3-edged cone has been taken on the plane xi + X2 + xs = k 0, for some 

constant k E (For example, A; =  3, giving a plane containing the point

(1,1,1).) The boundary of the cross-section is formed by the intersections of 

the bounding planes, the planes where the constraints are only just satisfied. 

For the remainder of this example we will concentrate on this cross-section, 

indicating by points where vectors intersect the plane.

Now the algorithm deals with the next inequality vector, =  (1,1, —2), 

testing its agreement with the existing solution vectors by computing their 

inner products:

i 1 2 3

8 4 .Ci + 1  + 1  - 2

This means that the inequality &4 is (strictly) satisfied by vectors Ci and C2 , 

and is not satisfied by vector C3. This is illustrated by
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where the satisfying vectors are marked with ‘+ ’ and the non-satisfying vec­

tor is marked with The solution vectors of the current linear inequalities 

are found by copying the two positive vectors Ci and C2 as well as creating 

two new solution vectors from the weighted means of Cj, C3 , and of Cg, cg.

2 0

2 c i  - f  C3 = 0 , 2C2 +  C3 = 2

1 1

giving the new solution matrix,

1 0 2 0

C4 = 0 1 0 2

0 0 1 1

illustrated by
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C4

Now the algorithm incorporates the next inequality vector, ag — (2, —1, —1),

testing its agreement with the existing solution vectors by computing their 

inner products:

i 1 2  3 4

as Ci + 2  - 1  +3 - 3

Again, the satisfying vectors (ci and C3 ) are copied, and new vectors are 

created using weighted means between vectors on opposing sides of the latest 

inequality.

1 3 2 1

2 , 3ci +  2 c4 — 4 , C3 +  3C2 = 3 , C3 +  C4 = 1

0 2 1 1

Cl +  2C2

giving the current solution matrix.

1 2 1 3 2 1

D5 = 0 0 2 4 3 1

0 1 0 2 1 1

illustrated by
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as.x  >  0 ^2

In the diagram above, the solution space is the convex closure of { c i, C2 , C3 , Ce}* 

Therefore, the other two rays C4 and C5 are redundant. It is important to 

note that these superfluous rays will lead to much greater redundancy as 

the algorithm proceeds: every future ray produced in combination with a re­

dundant ray will itself be redundant. Looking again at the example above, in 

only three dimensions and after only two inequalities, if the next inequality 

separates c i and C2 from cg and c© then 8  new rays (4 x 2) will be generated 

for the new boundary plane, whereas we can see that exactly 2 would be 

necessary.

It is easy to see that for cones in three dimensions, each new boundary 

plane is fully deflned by 2  rays and in its creation must remove at least 

1 ray, and so the number of rays required after m  inequalities have been 

introduced is bounded above by m -I- n, which is achieved by the algorithm 

presented below. Unfortunately such a nice relationship does not hold in 

higher dimensions, since even in four dimensions the number of rays required 

may grow exponentially in the number of inequalities considered.

2.5 R em oving R edundancy from the M C D

The key to identifying redundant rays is to note that a non-redundant ray 

is defined by the hyperplanes on which it lies, and so must lie on at least
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(n — 1) hyperplanes. Since redundant rays can only occur upon the creation 

of a new bounding hyperplane, a new non-redundant ray must lie on at least 

(n — 2 ) previous hyperplanes.

3 C laim (R ed u n d a n t  rays)

Let (A, C) he a double description. A  ray v  G C is redundant i f  it barely 

satisfies fewer than (n — 1) inequalities of A.

J u stific atio n  ̂ Let v  g (7 be a ray that barely satisfies k (1 ^  k < n — 1) 

inequalities, that is, v  lies on k bounding hyperplanes, and let a  be the 

inequality that generated v  (i.e. that caused v  to be introduced into C). 

Then it is claimed that there is a a vector w  such that v  -f- Jw and v  — Jw  

(J E R) also lie on the hyperplane a  for small enough <5 > 0  and satisfy all 

the inequalities. (The vector space of all such w  has dimension (n — k).)

4 C orollary (R e d u n d a n t  in eq ua lities)

Let (A,C) be a double description. An inequality a i .x  ^  0 (x  E R” ) is 

redundant i f  it is barely satisfied by fewer than [n — 1) rays of C.

J ustification  Follows from Claim 3 and the fact that (A, (7) is dual to 

(C ,A ') .

The above claims are known to hold for cones in dimensions up to and 

including 4, but since higher dimensional geometry can be counter-intuitive, 

potential implementors have to rely on anecdotal evidence until proofs are 

found.^ No counter-example has been found among the many examples tried, 

but of course that does not rule out the existence of overlooked special cases.

Note that if the claims prove to be false, the revised MCD may be incom­

plete but it will still be sound, since in that case it may mistakenly exclude 

valid solutions.
^A rigorous proof remains elusive.

is hoped that someone with a deeper understanding of higher dimensional geometry 
will be able to prove these claims.
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2.6 R evised  M C D

Figure 2.2 presents the revised method of complete description, the cor­

rectness of which is subject to reservations expressed in Section 2.5. The 

algorithm follows the original, but after new rays are generated for a new 

bounding hyperplane, the inequalities and rays are checked for redundancy 

as described above.

Input: Existing double description (A, C), along with new constraint 
a'.x ^ 0.

O utput: Constrained double description {A ',C ).
/* Compute agreement of existing rays: */ 
z := a'.C;
/* Retain rays satisfying new constraint: */
C  := {ci 6 C7 I Zi ^  0}
/* Generate new rays to satisfy new constraint: */
N  := {zjCi — ZiC'̂  \ Zi < 0  <  Zj}
/* Retain non-redundant inequalities: */
A' {a.G A  \ # ( { c  E C  | a.c =  0}) ^  n — 1} U {a'}
/* Retain non-redundant new rays: */
C  :=  C  U {v  E AT I # ( { a  E A' | a .u =  0}) >  M -  1}

Figure 2.2: Revised Method of Complete Description

A simple way to implement the redundancy checks is to examine A x C  

for rows and columns having fewer than n — 1 entries of 0.

2.7 Conclusions

There are more efficient algorithms for linear programming. For example, 

the simplex method (see for example [Dan63, Kre68]) usually has a time- 

complexity linear in the number of inequalities, and Karmarkar’s method 

([Kar84]) has polynomial worst-case time-complexity (although the constants 

are very large). However, it is not clear how any of these methods can be
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used as an efficient test for the location of degeneracy. The revised MCD 

takes 0{np^) steps to incorporate each inequality, but since the output (the 

extreme rays) has size 0{np^) this might be considered as optimal.^

In this chapter we have considered the Knuth-Bendix orderings of [Mar87]. 

Clearly the revised MCD is equally useful for extended formulations of 

the Knuth-Bendix orderings, including formulations for terms with status 

([Ste94]), modulo equational theories (e.g. associative-commutative, [Ste94]), 

and being order-sorted ([Mat93]).

The inequalities generated by the ordering algorithm could be made 

strict, since strict satisfaction is sufficient for the existence of a Knuth-Bendix 

ordering. Then there would be no issue regarding degeneracy, and so a more 

space- and time-efficient method such as the Simplex Method could be em­

ployed for testing satisfiability. However, this is testing for the existence of 

a much weaker ordering: a weight ordering.

Another approach would be to retain the power of the present order­

ings, but to sacrifice completeness. A hillclimbing or stochastic-sampling 

technique could be used, and if an inequality is not strictly satisfied after a 

predetermined number of attempts then degeneracy is judged to be likely . 

Any technique that does not consider all points in the solution space may 

fail to find a non-degenerate solution (in a practical length of time) and may 

therefore misdirect the ordering algorithm to conclude non-satisfiability (i.e. 

termination not provable by Knuth-Bendix orderings). This could be an at­

tractive compromise when the size of the termination problem grows beyond 

the limits of even the revised MCD.

The revised MCD is of value independent of the ordering algorithm. For 

instance [Ste94] employs the MCD in searching for termination by polyno-

^Strictly speaking the extreme rays do not have to be part of the output, so there may 
exist more efficient algorithms to perform the same test.
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mial orderings, complex, potentially less efficient, and less reliable techniques 

such as the Simplex Method. The revised MCD may also prove useful in 

other domains, such as 3-D modelling where the detection of interior points 

is a goal rather than a curse.

In Section 3.3.1 we will consider another application of the revised MCD; 

in combination with genetic algorithms (described in Chapter 3) we have an 

attractive technique for optimising a function subject to linear constraints 

such that no assumption of differentiability or even continuity is made of the 

objective function.



3 Genetic Termination

In this chapter genetic algorithms are proposed as an efficient and 

adaptive means of proving term rewriting systems terminating by 

polynomial ordering.

3.0 Introduction

In the previous chapter we saw an effective (full) decision procedure for 

determining whether a given term rewriting system terminates via Knuth- 

Bendix orderings. However, a rewrite relation may be terminating but not 

Knuth-Bendix terminating, and so it is desirable to extend the class of term 

rewriting systems that we can prove terminating. Polynomial orderings 

(Definition 14) are more ‘sophisticated’ than Knuth-Bendix orderings in the 

sense that the relative ordering of two terms is determined by the position 

of symbols in the terms and not just the number of their occurrences. For 

example, a distributivity rule such as

r A {sW t) (r A s) V (r A t)

cannot be contained in a Knuth-Bendix ordering because the duplication of 

X on the right-hand side means the weight constraint can be violated since 

an arbitrarily large term can be substituted for r. A polynomial ordering is 

defined by interpreting function symbols as polynomial functions on N, so 

one possible polynomial interpretation for the above rule is

lAj{x,y)  = x y +  y, [V|(a;, y) =  æ +  y -1-1,

52
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which gives

| r  A (s V t)l  =  {{rj +  l)([s] +  p j)  +  H  +  1 

|( r  A s) V (r A t)] =  ( | r |  +  l)([s l +  {t}) +  1

Since this polynomial ordering satisfies the well-foundedness requirements 

detailed below, the rule is contained in a termination ordering as long as all 

ground terms are positive (or at least those terms that may form the first 

argument of multiplication).

Unfortunately the price paid for this power is that there is no known 

efficient algorithm for deciding whether a suitable polynomial ordering exists. 

Stronger than this, even if a particular polynomial ordering is chosen, it is 

undecidable in general (for polynomials over the natural numbers) whether 

or not the ordering proves the given rewrite system terminating ([Lan79]). 

Polynomial constraints are decidable if the polynomials range over the real 

numbers, due to the decomposition algorithm of Collins ([Col75]), but the 

algorithm is exponential in its input and is impractical even for modest 

examples.

Nevertheless, polynomial orderings are relatively popular for tackling ter­

mination problems in term rewriting, and some work has been successful in 

making their use more amenable, notably the methods of BenCherifa Sz 

Lescanne [BL87b], Steinbach [Ste91, Ste92], and Giesl [Gie95a], described 

later in this chapter. These methods are semi-automatic, in that given a 

polynomial interpretation and a rule set they try to show that the rewrite 

relation is terminating under that ordering. If a method fails to show an 

ordering is suitable, another polynomial interpretation must be tried. Thus 

each method sequentially traverses the search space of possible polynomial 

orderings in the hope of finding an ordering that it can demonstrate to be
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suitable.

The main idea of this chapter is to employ a genetic algorithm coupled 

with the gradients method of testing polynomials in the search for a suitable 

polynomial ordering. A population of polynomial interpretations is ‘bred’ 

through successive generations, with bias towards those orderings that are 

in some measure (based on the result of the gradients test) closer to proving 

termination of the given rewrite relation, until either a suitable ordering 

is produced, population stagnation has been detected, or a predetermined 

number of generations have elapsed without success.

John Holland proposed in [Hol75] that the schema theorem is the reason 

why G As can often traverse the search space more cheaply than traditional 

approaches. In this theorem each individual in the population, for example,

110100101

is seen as sampling the search space on each of the individual’s constituent 

segments. (In the theorem, segments are 1-bit long.) It is shown by means 

of segment templates (schemas), for example

__01———0“,

that segments beneficial to the solution of the problem have a higher probab­

ility of being represented in the next generation. Unfortunately the theorem 

assumes a vast, uniformly distributed population, so may not even be valid 

at the start of processing, and certainly not afterwards. An individual in a 

generation is evaluated only once, yet that value is pertinent to the evalu­

ation of all the segment templates matching that individual. Therefore the 

segment templates corresponding to solutions of the problem will become, 

through the evaluation of individuals matching those templates, more likely 

to prevail in the population. In the case of binary encoded GAs, the sampling 

of segment templates can be seen as partitioning the hypercube of possible
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individuals (Figure 3.0), and sampling all such partitions in parallel.

^  — 11 —  1 -  

— 11  0 —

—01 1^

- - 00 -

Figure 3.0: Partitioning the hyper cube.

3.1 Term ination by Polynom ial Ordering

The generate-and-test approach to finding a suitable polynomial ordering 

consists of picking a polynomial interpretation for JF and then testing whether 

that ordering contains the rewrite relation in question. If the polynomial in­

terpretations of function symbols are allowed to be arbitrarily complex, the 

polynomials resulting for the terms may be horrendously complex (in terms 

of time to compute and number of monomials produced), making any test for 

polynomial dominance unworkable. Therefore practical approaches involve 

applying heuristics restricting the form the interpretations may take. For 

example, we could insist that only linear interpretations be considered, such 

as

y) ~  Co +  c ix  P  C2V +  c^xy 

Restricting to linear interpretations is too limiting, however. Often if a re­

write relation is terminating under a linear polynomial ordering, it can be 

shown terminating under a Knuth-Bendix ordering (which is quicker and 

easier). This is particularly true for interpretations of the form

m i x )  =  Co +  E ®
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since these are simply weight interpretations.

Steinbach found (in [Ste94]) that the overwhelming majority of rewriting 

systems he looked at could be proved terminating by ‘simple-mixed’ polyno- ' 

mial interpretations.

An approach to proving termination via polynomial orderings is to gen­

erate an interpretation of JF and then test whether |^i|(æ) > |[n]] (æ) for 

all X and all rules. This is equivalent to testing whether the polynomial 

pi|(;r) — |ri|(:r) > 0 for all x  and all rules. The algorithm of Collins 

([Tar51, Col75]) can decide the positiveness of a polynomial over the positive 

reals, but it is not used in practice due to its prohibitive time complexity.

The gradients method of Lankford ([Lan75]) is more practical in terms of 

speed, testing whether the first-order partial derivatives of each polynomial 

are eventually positive. However, ‘eventually’ positive is not sufficient here 

because it is not well-founded in the presence of ground terms. For instance, 

it erroneously orients the rewriting system

f(x) g ( % )

9(c) f(c)

via the interpretation |f|(a7) =  2x, |gl(a;) = x + 2, and |c] =  1. This is 

because it doesn’t take account of /a, the lower-bound for the interpretations 

of constants, which can be seen in the graph of Figure 3.1.

The three methods described below provide semi-decision procedures for 

polynomial termination.

3 . 1 , 0  M e t h o d  o f  B e n C h e r i f a  & :  L e s c a n n e

The method of Ben Gherifa and Lescanne, in [BL87b], attempts to reduce 

a complex polynomial by successive approximations until its positiveness is
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y

4

2

0
0 1 2 3 X

obvious.

Figure 3.1: Well-foundedness of polynomial orderings.

po{x) >  P i(æ) > ' "  >  Pi-i{x) > pi{x) > 0

If a (non-vacuous) polynomial contains no negative monomials, then it 

must be positive. Otherwise, the algorithm employs a heuristic to select a 

positive monomial to diminish the negative monomial. This continues until 

either there are no remaining negative monomials (success) or no positive 

monomials are capable of diminishing a negative monomial (failure). The 

method is implemented by way of a rewriting system in the ORME theorem 

prover.

Although Steinbach found this method to be successful in the majority 

of feasible examples (those collected in [SK93]), the heuristics involved can 

detrimentally affect the outcome if applied in an unfortunate order, and 

feasible examples can be made infeasible by the approximation step.

3 . 1 . 1  M e t h o d  o f  S t e i n b a c h

In [Ste94] Steinbach extends the method of BenCherifa and Lescanne by 

introducing backtracking search and letting p  rise above the (heuristically 

set) value of 2. The method applies a variety of heuristics for approximating 

the polynomial inequalities to a system of linear inequalities, whereupon the
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system is tested for satisfiability (using the method of complete description -  

Section 2.3). The method is implemented in the TETRES termination tool, 

which is integrated with the COMTES theorem prover.

3 . 1 . 2  M e t h o d  o f  G i e s l

In [Gie95a] Giesl incorporates the value of p  into the gradients method of 

Lankford, and shows that this corrected version is equivalent in effectiveness 

to the methods of BenCherifa & Lescanne and of Steinbach. We will examine 

the gradients method below, since it is used for the objective function of the 

genetic algorithms in this chapter. Giesl’s method is implemented in the 

POLO ([Gie95b]) termination tool.

3 . 1 . 3  G r a d i e n t s  M e t h o d

Given an interpretation of JF into polynomials over N, the task of proving 

termination is to show that > 0 for all rules t —> u in the given

rewriting system. To prove f ( x )  > 0, where Xi > p ^  0, for a polynomial 

function / ,  the gradients method ([Lan79, Gie95a]) checks that

f {x){xi  i-> p} >  0

and that the gradient in the direction of Xi is non-negative. It does so by ap­

plying the following two rules upwards to replace the polynomial inequality, 

containing term variables, with a system of simpler inequalities containing 

no term variables:

/(^){æi M- p} >  0, g^ /(æ ) >  0
f {x)  > 0
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f { x ) { x i  1-4 >  0 , j j t / ( 5 ) >  0
f i x )  ^  0

where the domain is {æ G N j æ ^  p}. Repeatedly applying the above rules 

results in a system of linear inequalities in coefficients of the polynomial 

interpretations (and the variable p). This system of inequalities is used 

below as a measure of fitness of individuals in a population of candidate 

coefficients.

In addition to the usual constraint that p |  > |w] for all rewrite rules 

t -> u, the gradients method of Giesl demands

• ^ ( l / l ( ^ ) )  > for all f  E T ,  for all non-constant function symbols,

• [/1(F) ■ • • )F) ^  F) for all function symbols,

• |c] ^  0, for all constants.

The first two demands are automatically met by ensuring that all variables 

are represented in the polynomial. For example, suppose

I/l(^ ) f) =  Co +  cix  +  C2V +  c^xy

Then the representation of variables condition requires

• Cl > 0 or C3 > 0, and

• C2 > 0 or C3 > 0.

The third demand is met by setting p  to the minimum interpretation of 

constants.
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3.2 G enetic A lgorithm s

There are many variants of genetic algorithms, but for the purposes of 

this work we adopt a scheme close to the original formulation by Hol­

land in [Hol75]. The components that make up a genetic algorithm will 

be described below with reference to how they were used for polynomial 

termination and what choices were found to be optimal on the examples 

tried. For a general survey of genetic algorithms the reader is directed to 

[Gol89a, Whi93, BBM93a, BBM93b].

In p u t: (finite) set of oriented pairs defining TRS to be proved terminating 
O u tp u t: either succeed with polynomial interpretation, or fail 

choose form of polynomial interpretations 
derive system of inequalities in interpretation coefficients 
generate initial random population, P  
evaluate each individual against inequalities 
w hile termination not proved and search limit not reached do 

for j  = 1, . . .  , n  do
randomly grab g (tournament size) individuals from P  
select best individual w.r.t. objective function from 1. . .  g 

randomly apply recombination 
randomly apply mutation 
evaluate each individual against inequalities 

output best individual

Figure 3.2; Genetic Algorithm for Termination

Trials were carried out using the GALOPPS ([Goo96]) code library ap­

plied to problems from Steinbach's collection [SK93].

3 . 2 . 0  E n c o d i n g

The standard encoding of sample points in a genetic algorithm is as fixed 

length binary strings.

The individuals of our GA are instantiations for the coefficients of the



3.2 Genetic Algorithms 61

polynomial interpretation of JF.

Suppose that JF =  (a, f(J), g(-, -)} and the interpretations chosen are of 

the form

a ~  Co 

f ( x )  -  Cl + C2 X +  

g{x, y) =  0 4  4- C5 X + cey + cjxy  .

Then an individual in the population will be of the form 

Co I Cl 1 0 2  I 0 3  I 0 4  1 0 5  j 0 6  I O 7 .

For simplicity the fields were made of uniform length, and during trials a 

field length of 3 bits was used, so that coefficients ranged over the values 

0 , . . . ,  7. This choice was fairly arbitrary; a smaller range would have made 

the problem easier for the genetic search but limited the rewriting systems 

provably terminating.

The value of p (the minimum value of a ground polynomial) was origin­

ally treated in the same manner as the coefficients by attaching it to each 

individual as an extra field. This allowed the value of p  to be sought along 

with the other parameters, but was found to be detrimental to the perform­

ance (cost in time) of the technique, so instead a heuristic was adopted of 

setting p to the value of the lowest constant in the individual when that 

individual came to be evaluated.

The initial population was created randomly. The examples tried in­

volved 20-30 fields, for which a population of 50-100 individuals was found 

to minimise the number of evaluations needed. (This value is considerably 

lower than the values recommended in, for example, [Gol89b]. That is be­

cause they are aiming to minimise number of generations required, whereas
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here we are wanting to minimise time taken.)

3 . 2 . 1  F i t n e s s

The objective function to be optimised by the genetic algorithm is often 

referred to as the fitness function. No constraints such continuity or differ­

entiability are placed on the fitness function, and experiences related in the 

literature suggest that genetic algorithms are relatively robust to noise and 

multi-modality in the fitness function.

The fitness function was initially defined as the number of rewrite rules 

correctly oriented by the individual. When the difference in number of rules 

oriented between the best and worst individuals of the population was small, 

this produced a very ‘stepped’ fitness function, which was detrimental to 

guiding the population towards a successful individual. Instead, the fitness 

was measured as the number of inequalities (from the gradients method) 

that the individual satisfied, resulting in a more discriminating and perhaps 

more accurate measure of an individual’s fitness. In addition, the selection 

scheme described below was found to play a significant part.

3 . 2 . 2  S e l e c t i o n

Selection is the means by which the better individuals have a higher probab­

ility of contributing to the next generation. The classic GA of Holland and 

in fact most G As in the literature use fitness-proportionate selection, such 

as roulette wheel selection. In such schemes the probability of an individual 

being selected is a function (usually a linear scaling) of its fitness value.

Initially the most surprising aspect of the GA implemented was that 

the popular selection schemes such as stochastic universal sampling, roulette 

wheel, stochastic remainder, and linear ranking selection (see [BT95] for
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details) all gave very poor results. The GA as described did little better 

than (the mean of a batch of) random search. When tournament selection 

was used, however, the GA performed very well, giving the results described 

below.

In tournament selection g individuals are examined and the best one goes 

through to the next generation, so that every individual in the next gener­

ation has had to better (g — 1) randomly selected ‘opponents’. It shouldn’t 

have been such a surprise when the fitness function is considered. A large 

proportion of inequalities are satisfied in the initial population, and as the 

population average improves, the difference between worst and best dimin­

ishes and the granularity of the fitness function gives little direction to further 

improvement. On the other hand, tournament selection places the same rel­

ative selection pressure on individuals regardless of the stage of the run, and 

so the drive towards satisfying the inequalities is maintained much stronger.

3 . 2 . 3  R e c o m b i n a t i o n

Recombination is the means by which different combinations of building 

blocks can be tested. Also known as sexual reproduction, this operation 

takes pairs of individuals and swaps a randomly chosen segment in them.

Recombination is usually viewed as a ‘concentrating’ operation, focusing the j

sampling on promising combinations of building blocks. i

Two point recombination, where the bit string is viewed as a circle, was |

found to be best, as is usually the case when being situated at the end of the I

individual has no special significance to the field. Since the encoding was !
i

field-based, and it is meaningless to swap part of the value of one coefficient |

with part of the value of another, recombination points were restricted to '

field boundaries. On the examples tested, the optimal value of recombination |
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appeared to be quite low (around 30%) compared to more common values in 

the literature (40-60%) but the difference in performance was inconclusive 

from the small sample size.

3 . 2 . 4  M u t a t i o n

Mutation is the means by which diversity is maintained and new data points 

may be introduced. Each individual has a small probability of having part 

of it changed to a new value. (With classical binary encodings, this means 

a bit-flip.)

Since the encoding was field-based, mutation meant changing the value 

of a coefficient in an individual to a new value. The probability of mutation 

was found to be one of the most important parameters for ensuring speedy 

convergence to a solution, with a per-field probability of around 10%, which 

is rather high in comparison to most GA applications (usually less than 

1%). This and the recombination probability suggest that the search for 

polynomial orderings relies more on diverse coverage of the search space 

than specialising in recombination of coefficients, at least for the handful of 

examples so far tried. However, the GA was not simply hillclimbing, since 

it performed very poorly if recombination was turned to 0%.

3 . 2 . 5  T r i a l s

In [SK93] 93 examples are given of rule sets that were shown to be terminat­

ing using their Tetres termination tool. Of these rule sets, 81 are terminating 

by polynomial orderings (Steinbach’s POL ordering). When looking for ex­

amples on which to try genetic search, those that could be better tackled 

using other techniques presented in this document (RMCD, Chapter 2; In­

variant analysis. Chapter 4) were discarded, so of the 81, 45 were discarded
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for being Knuth-Bendix terminating and a further 2 were discarded for being 

monadic. Of the remaining 34, 3 were discarded for having only one rule, 

and a further 20  were discarded for being terminating by ‘first guess’ inter­

pretations (e.g. by interpreting binary function symbols as æ 4- y -f- 1 and 

constants as 2 ). Thus 11 examples (2.15, 2.18, 2.28, 2.31, 2.38, 2.42, 2.43, 

2.44, 2.57, 3.6, 3.7) remained for the trials.

The values for the genetic operators described above were found by taking 

an example rule set, varying the value of each genetic operator separately 

until a locally optimal value was found for that operator and that rule set. 

Then subsequent rule sets were tried and the operator values were adjusted 

to see whether they could be improved. Of the 11 examples, the difference 

in performance (ratio of number of evaluations required to find a solution) 

between the general operator values and the optimal values for that example 

was usually within a factor of 2 (i.e. fine-tuning the operator values on a per- 

problem basis typically produced less than doubling of success speed) which 

suggests the technique is fairly stable for this application area, at least on 

the limited set of examples tried.

To illustrate the fine-tuning process, the results for solving Example 2.31 

are shown below. The operator values were maintained at

Population size Crossover proportion Mutation probability

70 30% 10%
with a tournament size of 3. Each of the genetic operator values was varied,

and the number of evaluations taken is tabulated below (averaged over 5 

runs and rounded to the nearest multiple of 1 0 ).
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P o p u la tio n  size

Size 40 50 60 70 80 90

Evaluations 580 880 480 500 950 1010

C rossover p ro p o rtio n

Percentage 15 20 25 30 35 40 45 50

Evaluations 1220 600 760 500 520 740 530 760

M u ta tio n  p ro b ab ility

Percentage 4 6 8 10 12 14 16

Evaluations 810 490 10 1 0 500 820 1990 2030

Once reliable parameters for the GA had been found, the GA produced 

a solution so quickly (typically in under 1000  evaluations, taking under 2 

seconds) that statistical results are of little value. Moreover, since the im­

plementations are so different, direct comparisons can’t be drawn from exe­

cution timings on a small set of similar examples. However, to give an idea 

of the orders of magnitude involved, for Example 2.31 and Example 2.43 in 

[SK93], TETRES took 15-30 seconds, POLO took 15-40 minutes, and the 

G A consistently took less than 8 seconds.

It will be interesting to try the GA on a larger, more varied suite of 

examples since the method of Steinbach is exponential in the number of 

monomials, the method of Giesl is exponential in the number of variables, 

and the time complexity of the GA is an unknown. If the GA literature can 

be believed, the GA may have a bigger advantage on problems with more 

coefficients and more inequalities.
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3.3 Further D evelopm ents

There is clearly a great deal of modularity to the genetic algorithm approach 

to termination ordering; the search engine itself uses no information about 

the ordering family being tried (e.g. polynomial orderings) other than in the 

objective function for scoring members of the population. Had the order­

ing family been different (say, syntactic orderings such as the recursive path 

orderings) the only necessary changes to the procedure would be in the mod­

ule for evaluating how close an individual came to proving termination. It is 

easy, therefore, to envisage a generic termination tool that has many object­

ive functions, one for each of an array of ordering families, and that carries 

out the same search (modulo the user’s choice of objective function) regard­

less of which ordering family is being tried. Better yet might be a tool that 

maintains separate populations, with distinct populations encoding members 

of distinct ordering families, and having the populations compete with each 

other, thus freeing the user from even having to choose which family to try.

3 . 3 . 0  L e a r n i n g  T e r m i n a t i o n  T o o l

This chapter has concentrated on one facet of GA research, namely optim­

isation. However, there is another branch of current GA research that could 

prove useful both to termination research and to practical termination tools: 

automated learning.

The use and development of evolutionary computation for automated 

learning is a growing area of artificial intelligence, and a general account is 

outside the scope of this document. However, the basic idea is straightfor­

ward: emphasise the exploratory nature of the genetic algorithm and weaken 

the pressures on the population to converge, thereby encouraging the explor­

ation of local optima. This can be achieved by reducing the dominance given
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to fitter individuals during mate selection (the selection pressure), and by 

rejecting duplicate individuals. The intention is for the GA to converge more 

slowly, considering a wider variety of points in the search space and inhibiting 

the ability of fitter individuals to dominate the population.

This approach is not directly useful to an interactive or real-time ter­

mination tool, since on a moderately sized termination problem the GA will 

typically be left to run for some hours, but there are several uses of such an 

‘offline’ approach to termination theory, and polynomial termination in par­

ticular. The most obvious use is to give the GA a better chance of finding a 

successful termination ordering. Often, particularly for academic problems, 

no appropriate polynomial ordering is apparent, initial attempts with ter­

mination tools are unsuccessful, yet it is not clear that polynomial orderings 

are infeasible. Where computational processing is cheaper than intellectual 

analysis, a slowly converging GA may be used to give a more thorough test 

of the search space (although a GA search can never be complete). A GA 

usually deals with a population of fixed-length strings, which, when search­

ing for a suitable polynomial ordering, places an upper bound on the values 

of polynomial coefficients, resulting in a finite search space. This restriction 

can be weakened by modifying the algorithm to dynamically lengthen all 

strings in the population if a significant proportion of the fittest individuals 

are utilising the full length of their strings, in a way similar to reverse an­

nealing. The user could periodically monitor the progress of the GA (e.g. 

by looking at a list of the fittest 10  individuals every 1000  generations) to 

see whether the GA had yet converged and to judge whether to call a halt 

to its execution.

In addition to giving the GA a better chance of finding a single success­

ful individual (i.e. an appropriate termination ordering), a similar approach
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could be taken for finding a set of successful individuals (i.e. all those order­

ings found at a certain generation that satisfy the given termination prob­

lem). In the relevant research literature one finds many examples of orderings 

that prove certain term rewriting systems terminating. Whether the order­

ings are found manually or mechanically, the search finishes as soon as one 

is found.® However, as for the Knuth-Bendix orderings of Chapter 4, if there 

is one suitable ordering then in general there is a continuous set of suitable 

orderings, as will be shown in Chapter 4. Whereas finding one suitable or­

dering is sufficient for solving one particular termination problem, getting a 

picture of the solution sets for given termination problems may help to guide 

future search techniques and perhaps guide developments of the theoretical 

analysis of Chapter 4.

The schemata in G As can be thought of as micro building blocks, but 

we can also consider macro building blocks: those individuals that are useful 

to have in the population for leading to successful outcomes. By running 

successive G As with the same objective function but with a proportion of 

each initial population having been manually selected, it may be possible to 

determine which interpretations it is generally fruitful to ensure exist in the 

initial population. However, care would have to be taken that these potent 

individuals were not so much superior to their randomly selected peers that 

they dominated the population after a couple of generations and so hampered 

or prevented the search for a suitable individual. Also, so many G As would 

have to be executed to derive results of any statistical worth that some means 

of automating this meta-search would be necessary.

The examples tested in [Ste94] tend to fall into distinct classes, such as 

group theory, arithmetic, and lists. It would be feasible to ‘train’ popula-

^The Tetres tool of Steinbach looks for all suitable orderings in its bounded search 
space.
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tions of genetic algorithms on homogeneous examples and store the resulting 

populations, so that when presented with an example of that class there is 

already a pool of previously successful building blocks to begin.

During the execution of a GA for termination orderings, many orderings 

are evaluated against the given term rewriting system. In particular, when 

two individuals are mated (i.e. crossover is applied), the fitness values of the 

parents and the children are known, and so the information is available as to 

what changes made a local gain or loss. It may be possible that a sampling 

optimiser such as G As may be able to learn from such information, so that 

genetic operators can be given bias in directions known to be statistically 

fruitful in the domain of termination orderings. Current genetic algorithms 

simply sample the fitnesses of the population, but do not learn from the 

short term relative gains or losses endowed by the genetic operators. Perhaps 

genetic algorithms can be adapted to learn from such information, although 

it is not clear to the author how this might be achieved.

3 . 3 . 1  N u m e r i c a l  O p t i m i s a t i o n

As mentioned in Chapter 2, if we combine genetic algorithms with the Re­

vised Method of Complete Description, we have a powerful tool for an im­

portant class of numerical optimisation problems: integer programming un­

der linear constraints and an arbitrary objective function.

Suppose we have a finite set of linear constraints, Ax > 0 , and an ob­

jective function, f.x , to be minimised, and suppose we require the elements 

of any solution vector x  to be integers. Then we can apply the RMCD to the 

linear constraints in order to enumerate the extreme points of the solution 

space, E  = [Q|P]. Any particular coefficient vector, c, selects a point in the 

solution space, s =  Ec. Therefore we run a GA on a population of coeffi-
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dent vectors, c, and use ïE c  as the objective function, thereby guaranteeing 

that all individuals are feasible solutions and providing an efficient means of 

finding the optimum vector.

The advantage of this approach over traditional approaches is the lack 

of restrictions on the objective function; the only restriction is that the ob­

jective function can be evaluated for any given feasible solution. Of course, 

the approach described above will really come into its own when the ob­

jective function is multimodal or discontinuous (thereby ruling out gradient 

methods) and the search space is too large to consider random search.

The disadvantage of this approach is that it employs both the RMCD 

and a GA, both of which can be computationally expensive, even on inputs 

where such heavy handed techniques might not be necessary. For a particular 

input, the only indication that a cheaper hammer might be available to crack 

the nut would be if the output of the RMCD was relatively small or if the GA

converged relatively quickly. However, quick convergence of the GA presents I

another problem: since the GA is based on heuristics, there is no guarantee |
Ithat the parameters of the genetic operators were chosen wisely and that j

a global optimum has in fact been reached. One approach could be to use j
I

a GA to identify troughs and then use local hillclimbing to identify global ;

optima.

3.4 Conclusions

In order to simplify the process of composing interpretations to construct 

polynomial inequalities, the form of polynomials has been restricted in fa­

vour of linear polynomials. While it is believed that this is sufficient in 

the vast majority of cases (with some theoretical justification in Chapter 4), 

until more is known about the relative potency of monomials in general poly-
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nomials^, it may be worth investigating the lifting of these restrictions on 

form. A more general approach than the one taken in this chapter is af­

forded by genetic programming, in which individuals are unbounded trees 

rather than fixed-length strings. The field of genetic programming is still 

quite young relative to genetic algorithms, and there are still many problems 

to be worked out, such as how to perform crossover while maintaining well- 

formed individuals and if the form of individuals is made too general the 

search space will be much larger (by orders of magnitude) than it need be. 

We don’t require this full generality for polynomial orderings, however, since 

the interpretations of the (finite) set of function symbols can be coded as a 

fixed-length list of polynomials with each polynomial coded as an unbounded 

list of coefficients (i.e. a summation of monomials). In such an implement­

ation the methods described above for testing positiveness of polynomials 

would be too costly. Steve Linton proposed (private communication) that 

the polynomial functions be sampled along their domain, thus giving a fuzzy 

evaluation of each polynomial inequality. The idea of dealing with arbitrary 

monomials within each polynomial was rejected for the procedure described 

in this chapter because that would greatly complicate the implementation 

of the objective function, and necessarily slow down the progress of the G A, 

whereas the results of Chapter 4 suggest that consideration of only a few 

monomials of each polynomial is sufficient.

^This will be discussed in Chapter 4.



4 Analysis of Polynomial 

Orderings

In this chapter we focus on the class of polynomial orderings on 

monadic terms.

4.0 Introduction

As described in Chapter 0, the complexity of having polynomial interpreta­

tions ranging over arbitrarily long polynomials excludes them from practical 

use. We have seen in Chapter 3 that even when the form of interpretations 

is tightly restricted, the search space can still be slow and cumbersome. We 

also know that termination is undecidable for monadic terms, and for poly­

nomial orderings over the naturals.

By restricting terms to contain only unary function symbols we will be 

able to determine the precise ordering defined by a given polynomial inter­

pretation, and to specify that ordering as a lexicographic combination of 

simpler orderings.

4.1 Polynom ial Orderings on M onadic Terms

Polynomial interpretations are defined as before, by interpreting each func­

tion symbol as a polynomial function, but now all function symbols in T  are 

unary.

73
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D e f in i t io n  16 (P o ly n o m ia l  in t e r p r e t a t io n s )  Let the set J ” be a finite 

nonempty set of unary function symbols. The polynomial interpretation of 

a function symbol f i  G E ,  denoted | / i | ,  is a finite polynomial function in x  

ranging over K+, |/il(ic ) =  Om#™ +  • • • +  aix  +  no, where m G a,m E 

M+, a m - i ,  ■ ■ ■ ,ao  G M, and either

m >  1 , or

m  = 1 and am > 1 , or 

m =  1 , Gm ~  1, and gq > 0 .

resulting in non-linear, weakly linear, and strongly linear interpretations, 

respectively. Each term variable v is interpreted as a polynomial variable 

Vp. A monadic term t  E T  has polynomial interpretation | t |  given by the 

obvious homomorphism. o

For notational convenience, we interpret the (only) variable v as rr.

Thus the polynomial interpretation of a monadic term is a polynomial 

function in one variable, x. Polynomials are ordered by the ‘eventually dom­

inates’ ordering on functions, which for unary polynomials is total: if two 

polynomials in x  are distinct then one is greater than the other for all values 

of X beyond® some value xq.

D efinition  17 (P olynomial o r d er in g s) Let each function symbol in T  

be interpreted by a polynomial function. Then y-p̂ i is a polynomial ordering 

on T(J^, {v}) given by

t >-poi u iff 3rro G IR : Væ >  æo : [t|(a:) > |u|(a;).

° Since there are no constant symbols we need not carry the baggage of domain restric­
tions, and can use instead the original formulation due to Lankford.
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Note that closure under context and substitution require that each function 

[fi| be strictly increasing. Moreover, the subterm property requires that 

lAl(a^) > X for all fi  G E.

Notice that the ‘eventually dominates’ ordering on unary polynomials is 

simply the length-then-lex(left) ordering on their coefficients:

4" ' ' ' T G\x 4“ do bnX^ 4“ * ’ * 4~ 61a; 4- bo 

iff ( a ^ , . . .  ,d i,ao) (>kn; {bn,... ,bi,bo)

In general, for a given polynomial interpretation on E , two or more terms 

may be interpreted as the same polynomial {t u iff M =  M ) giving 

a non-total polynomial ordering. However, polynomial orderings satisfy the 

conditions of Lemma 7 in [Mar93], and so any polynomial ordering on mon­

adic terms can be extended to a total simplification ordering. In particu­

lar, for any polynomial ordering y-poi on T , the lexicographic combination 

is total, where '^poi is the pre-order associated with y-poi and 

is the lexicographic ordering from the left of any total precedence > 

on T . Note that since the ordering on unary polynomials is total, so is the 

polynomial pre-order on terms.

An ordering >- on monadic terms is said to have the cancellation property 

if for all /  G we have f{t )  y  f{u)  implies t >- u and also t[f{v)] >- u[f{v)] 

implies t[v] >- u[v].

5 Lemma

Polynomial orderings have the cancellation property.

P roof Assume that a polynomial ordering X- does not have the cancel­

lation property. Then for some t ,u  E T , f  E E  we have t  u and either
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>- u[f{v)] or f{t) y  f{u).  Since the polynomial pre-order is total, 

either t ^  u or t u.

However, t ~  u implies | t |  =  |tt |,

implies W o |/(v )| =  In lo |/(v )l,

implies [t[/(v)]l =  [u[/(v)]J,

implies t[f{v)] ~  u[f{v)],

and t -< u implies | t |  < [u],

implies W o[/(v)] < M o [/(v )l,

implies [t[/(v)]l <  [[w[/(v)]],

implies t[f{v)] -< d[/(v)], 

contradicting the assumption. The argument is similar for composition from 

the left. Therefore every polynomial ordering has the cancellation property.

□
With monadic polynomial orderings defined, we prepare in the next sec­

tion to analyse what orderings are possible.

4.2 Ordering Invariants

In this section we give the definitions and lemmas used in the Section 4.3.0 

to analyse the order types, numeric invariants, and lexicographic extensions 

of the polynomial orderings.

The logical and numeric ‘invariants’ of an ordering >- are fixed for all 

extensions of >-, signify fundamental properties of all total extensions of 

and will allow us to partition and categorise the polynomial orderings on 

monadic terms.
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4 . 2 . 0  O r d e r  T y p e s

Since our polynomial orderings are formulated (in Definition 16) to be sim­

plification orderings, they are guaranteed to be well-founded. In addition, 

we can always extend a polynomial ordering to a total ordering (from res­

ults in [Mar93]), and all such extensions share the same invariants (trivially, 

since the invariants define properties of the total extensions). Thus for the 

analysis of invariants it is valid to treat the polynomial orderings as total.

Since all the orderings we will be analysing are well-founded and extend­

ible to total orderings, the only order types we need consider are ordinals. 

Moreover, it is known from [MS93] that the only order types that can occur 

for orderings on monadic terms in two function symbols are w, and 

Therefore a simple description of order types will suffice, and for a fuller 

account of order types the reader is directed to, for example, [Wil65j.

An ordered set (S', >-) has order type w iff it is order-isomorphic to 

the usual ordering on the natural numbers, (N, >), i.e. there is an order- 

preserving bijection between (S , y )  and (N, >). An ordered set (S', x ) has 

order type iff it is order-isomorphic to (N^, > '^^), the ordering on pairs 

given by first comparing the left components. An ordered set (S', >-) has 

order type iff it is order-isomorphic to (N+, (^^en; the ordering

on non-negative-length tuples of natural numbers given by first comparing 

lengths and then ordering lexicographically tuples having the same length, 

and are the length pre-order and lexicographic ordering.

To deduce the order types of the monadic polynomial orderings, we will 

use the following theorem from [MS93].

6 T heorem  (S c o t t )

Let y  be a total reduction ordering on monadic terms T({f, g},{v}) with
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f (v )  >- g (v ) .  Then y  has order type ta, tâ , or la'̂ . More precisely,

(T, y )  has order type a  iff y  f for some j  G N,

(T, X ) has order type iff f  g^ for all j  EN  and

both g^f fg  for some k E N

and fg^ >- g f  for some k EN,

(T, >-) has order type a ^  iff f  >- g^ for all i  G N and

either fg )>- g^f for all k e N  (1)

or g f  fg^ for all k e N. (2)

Moreover, case (1) is the left recursive path ordering^, and case (2) is the 

right recursive path ordering.

This theorem enables us to deduce the order type of a well-order on 

monadic terms over two-letter alphabets by comparing certain terms in the 

well-order. By partitioning interpretations into homogeneous sets we will be 

able to calculate general polynomial expressions for the above terms, and so 

deduce their order types.

4 . 2 . 1  N u m e r i c  I n v a r i a n t s

Once the order type has been determined, an appropriate numeric invariant 

will give a finer classification. We use the invariants r  and A from [MS93] 

for orderings of order types a  and respectively.

^Formulated on p 27.
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D e f i n i t i o n  18 Given a real number r  (0 ^  r  ^  1), the pre-order on 

monadic terms T({f, g}, {v}) is defined by

t ^ r u  iff + T .# (g ,t)  >  #(f,u)-}-T.#(g,-u).

This is a canonical pre-order by weight, where r  is the ratio Having

r  =  1 defines a pre-order by length, and having r  = 0 defines a pre-order by 

the number of f ’s (ignoring g’s). Clearly permutations are equivalent under 

r  pre-orders. In addition the strict part is not total if r  is rational. For 

example, if r  =  0-5 then gfg ff.

Proofs of these lemmata are in [MS93].

7 Lem ma

The ordering is total up to permutations iff r  is irrational.

8 Lemma

I f  y  is a total simplification ordering of order type w on monadic terms 

T({f, g}, {v}) with f(v) g(v) then y  =  (^riin) for some 0 < r  <  1 and 

some transitive relation O.

Thus every well-order of order type a  contains a r  pre-order. Later we 

will determine r  and □  for any polynomial ordering y  of order type a.

D efinition  19 Given a real number A > 0, the pre-order on monadic 

terms T({f, g},{v}) is defined by _ fgPm, y^ g‘?ofg^if. . .  fĝ »̂  iff

m > n or both m  — n  and 4 t-piA 4- po ^  ÇnA"' 4 h q\X 4- o

A A pre-order first orders by the number of f ’s and then by the number of 

g’s biased according to position among the f ’s. In general the strict part of 

a A pre-order is not total, but we have the following, with proofs in [MS93].
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9 L e m m a

The ordering total iff X is transcendental.

10 L e m m a

I f  y  is a total simplification ordering o f order type on monadic terms

T({f, g}, {v}) with f(v) X- g(v) then y  = ^a; =3) for r  = 0, some A >  0 ,

and some transitive relation □.

As with above, the extension □  may be the trivial relation that makes 

all terms equivalent. Later we will determine A and □  for any polynomial 

ordering >- of order type a^.

4 .2 .2  L e x ic o g r a p h ic  E x te n s io n s

We now come to the final set of tools required for our analysis: those needed 

for identifying the relation that extends a polynomial ordering from its invari­

ant pre-order. Identifying the extension defined by a  polynomial orderings 

would be rather simpler if equivalence was due only to permutations, since 

the form of equivalent terms would be more amenable to direct analysis. As 

noted above, however, non-permutable terms may also be equivalent under a 

r  pre-order. Therefore we employ a less direct test by way of a so-called l>m#x 

relation that is sufficient to prove the extension is a lexicographic ordering.

Given a simplification ordering y ,  a pre-order and a lexicographic

ordering o'®’' all on T, we will want to be able to characterise when y  = 

(fc; This will enable us to characterise when ypoi =  (^r; where

ypoi is a polynomial ordering of order type a.

To assist this characterisation, we define an auxiliary relation on 

T  in terms of a precedence l> on fF, and an equivalence relation ~  and 

simplification ordering y  on T. In this context we use t to denote the



4.2 Ordering Invariants__________________________________________ ^

equivalence class under ~  containing t, that is, the set {s G T  | s ~  t} G

T h -

D e f i n i t i o n  2 0  (ofSàx) Let ^  be a given pre-order on T. If every equivalence 

class C e T/<^ has a minimum m iny  and a maximum m ax^  (both unique), 

then >max is defined by

t  t> fn ax  U

iff t  = t'[fi{v)], t' = m in^ t', u — u'[fj{v)], u' = m ax^ u ', f i t> fj .

o

Clearly if >max is defined, we have >R5àx c  The corresponding formu­

lation of >Sax from the left defines a different ordering, but as we will see in 

Section 4.3.2 we will be concerned only with comparisons from the right.

The following lemma utilises >max to provide a test for when one simplific­

ation ordering is a lexicographic extension of another simplification ordering. 

11 L e m m a  (>'®^ c o n t a i n m e n t )

Let T  be the set of  (Unite) monadic terms T({f ,  g}, {v}). Let ^  be a

total pre-order on T  with y  having the subterm property, let t> be a total

precedence on {f, g}, and let y  be a simplification ordering on T . Then

=  iff { b o * > Ç i -

P r o o f  The proof is by showing that 0. implies 1. implies 2. implies 0.

0. Ç K,

1 .

2. Ç K.

For a total precedence > , the lexicographic ordering is total. There-
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fore, for any total pre-order the ordering (^; is total and so has

no proper extension (without extending the domain). Therefore y  is not a 

proper extension of (^ ; and so 0 . implies 1 .

It is obvious (from the formulations of the orderings) that l>m )̂ Ç 

(fc> and so 1 . implies 2 .

To show 2. implies 0., it suffices to show that (~; t> ffik x ) C y  implies 

(~ ; Ç y .  Suppose (~ ; t> m à x )  C y  and that t u  for some

t , u  E T{E,  V). Since >~ (the strict part of ^ )  has the subterm property, u is 

not a subterm of t, and we write t  — t'[fi{v)] and u = u'[fj{v)] with fi  > f j  

(common suffixes can be removed since has the cancellation property 

from the right).

Then t'[fi{v)] y  {min^ F)[fi{v)] b y d e fm in ^ ,

y  {max^ '^')[fj{'^)] by def >max, and l>m& Ç y ,

y  u’[fj{v)] by def maxy. .
Thus t y  u, and so (^; C y . □

We will use this result in Section 4.3.2 to show that certain polynomial

orderings of order type w are of the form (^ 7-;

4.3 Two U nary Function Sym bols

In this section we use the lemmas of Section 4.2 to analyse the order types, 

numeric invariants, and lexicographic extensions of polynomial orderings on 

monadic terms 7”({f, g}, {v}) over a 2-letter alphabet, {f, g}.

Let ypoi be a polynomial ordering on monadic terms T({f, g}, {v}) defined
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by the interpretations

|f|(æ) = Gmx'^ 4 H a ix  4- oo, • • • «o G M,

|g](æ) = bnx^ 4------ \-bix-\-bo, bn. . .bo e R ,

and [v|(æ) =  x, such that f(v) >-poi g(v) >-poi v. This means that

m  > p  [ g l  >p  N

(where >p  is the ‘eventually dominates’ ordering on polynomials of Defini­

tion 17), that is

(«m, . . . ,«o) (^n,---,&o) { >  len, (1,0).

As seen above, a polynomial interpretation for a unary function symbol 

is defined by means of a sequence of parameters: the index of the greatest 

monomial and the values of the coefficients. There are three classes (in Defin­

ition 16) into which a polynomial interpretation may fall: non-linear, weakly 

linear, and strongly linear. By removing symmetric cases,^ we can partition 

the set of monadic polynomial orderings on T({f, g},{v}) into six classes 

according to the range in which the parameters of the (two) constituent in­

terpretations lie, resulting in the six subsets we will label A, B, C, D, E , and 

F  as specified below. By considering an arbitrary ordering in each class (e.g. 

FpoiA G A) we will be able to categorise all total extensions (represented by 

an arbitrary total ordering >-) of that ordering, with the results recorded in 

Table 4.0.

In most of the calculations that follow, the result is derived from the lead­

ing monomials involved, with little or no part played by the lesser monomi­

als. Therefore to aid clarity we use the notation j  to denote a polynomial 

of degree less than d if d > 0; otherwise y denotes 0.

4.e. orderings that are the same up to consistent renaming of function symbols
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4 .3 .0  O rd e r  T y p e s

We begin the analysis of monadic polynomial orderings by determining the 

order type of each monadic polynomial ordering.

Let the total ordering x  on monadic terms T({f, g},{v}) be a total 

extension of a polynomial ordering ypoi, with f ypoi g ypoi v. For each 

of the six cases (as partitioned below) the order type of y  is deduced by 

comparing expressions according to Theorem 6 on page 77.

12 L e m m a  ( O r d e r  T y p e  o f  ypoiA)

I f  m  ^  n > 1 then y  has order type a.

13 L e m m a  ( O r d e r  T y p e  o f  ypow)

I f  m  > n = 1 and bi > 1 then y  has order type a^.

14 L e m m a  ( O r d e r  T y p e  o f  ypoic)

I f m > n  = l and bi = 1 and bo > 0 then y  has order type a^.

15 L e m m a  ( O r d e r  T y p e  o f  ypoin)

I f  m  = n = 1 and ^  6i > 1 then y  has order type a.

16 L e m m a  ( O r d e r  T y p e  o f  ypow)

I f  m  = n — 1 and ai > bi = 1 and bo > 0 then y  has order type w .̂

17 L e m m a  ( O r d e r  T y p e  o f  ypoiF)

I fm  = n = l and ai = bi = 1 and ao ^  bo > 0 then has order type a.

The six lemmata above give the order types of total extensions of poly­

nomial orderings. However, they show that all total extensions of a given 

polynomial ordering have the same order type, and we are therefore justified 

in associating that order type (an ordinal) with the original (not necessarily 

total) polynomial ordering.



4.3 Two Unary Function Symbols 86

The proofs of Lemma 12, Lemma 15, and Lemma 17 are similar, as are 

the proofs of Lemma 13 and Lemma 16:

P roof (of Lemma 12) In this case

l[fl(a ;) =  G m X ^  +  y ,  [g * l ( a : )  =  bn~^ x^^ +  y  Vk e

giving g* ypoiA f if bn~^  æ" >p G m X ^ ,  

if >  m, 

if

Thus in ^poiA, f is bounded above by g^ for all k > and so >- has order 

type a. □

P roof (of Lemma 13) In this case

[f](a:) -  G m X ^  +  y ,  [g^l(a?) =  b^x + Vk e N^ ,

[fg]|(a;) =  [gf]](a:) =  +  9 ,

[gT|(x) =  am b\x^  +  y  Vi € N, [fg-^l(æ) =  a ^b ^^ x ^  +  y  Vj E N,

giving f ypoiB g* if a m x ^  >p b i x ,  

if m > 1,

and g*f ypois fg if a m b \ x ^  >p U m b i^ x ^ ,

if 6̂  > 6Y",

if i > m,

and fg-) ypoiB gf if Umb'^^x'^ >p ambix"^, 

if b^^ > 6i, 

if m j > 1, 

if j  > 0.
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Thus in >-poiB} f is not bounded above by for any k, but fg is bounded

above by g*f for alH > m and gf is bounded above by fg-̂  for all i  >  0, and

so )>- has order type cô . □

P roof (of Lemma 14) In this case

IfgKa;) = + (mambo +

|gTl(a:) = Om,#™ + + y V« G N,

giving fg XpofC g 'f if {mambo +  am-i)x^~'^ >p

if Tïiambo T ®m—1 ^  1)

if mambo > 0.
Thus in y-poic, fg is not bounded above by gH for any « G N, and so has

order type □

P roof (of Lemma 15) In this case

\{x) =  a i x  +  no, [g-^K^) -  b{x  +  ^ & o  Vf G % ,

giving gf ypow f  if b{x > aix,  

if ln5{ >  Inai,

if ;  >  1 % '
Thus in >~poiD, f is bounded above by gf for any j  > and so >- has

order type w. □

P roof (of Lemma 16) In this case

|fl(x) =  airc +  ao, [g^l(^) = x + kbo VA; G

Ifgl(â ) = aiÆ + ai6o + ao, [gfK̂ )̂ = aia; + ao + 5o,

[g*fl(^) =  0,1  ̂+  ao +  ibo \fi 6 N, |[fgf]](æ) =  aix  +  fai^o +  ao Vf G N.
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giving f ypoiE if a ix  > x, 

if ai > 1.

and g"f Xpoig fg if ao +  ibo >  ai6o +  ag, 

if ibo > o>ibô  

if i > a\.

and fgf ^poiE gf if fai&o +  ag > ao +  6q,

if jaibo > 6g,

if ja i > 1, 

if j  > 1.
Thus in >-poiEi f is not bounded above by g^ for any A, but fg is bounded 

above by g^f for any i > a\ and gf is bounded above by fgf for any f  > 1, 

and so >- has order type uP'. □

P r o o f  (of Lemma 17) In this case

[fl(rr) =  æ +  ag, |[g^](a;) = x + kho VA G

giving g* >-poiF f  if kbo > ag, 

if A > f j.
Thus in ^poiFy f is bounded above by g^ for any A > ^ ,  and so has order 

type u.  □

Now we know the order type of all total extensions for each monadic 

polynomial ordering. In the sequel we will see exactly when a polynomial 

ordering is total on monadic terms T({f, g}, {v}), and when two polynomial 

orderings are distinct.
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4 . 3 . 1  N u m e r i c  I n v a r i a n t s

Knowing the order type of a polynomial ordering tells us about the order­

ing’s structure. With this information we can proceed to identify the ordering 

that results from any given choice of parameters (the polynomial interpret­

ations assigned to function symbols). The next step towards this goal is to 

determine the numeric invariants of the orderings within each class.

For the three cases having order type cn, the numeric invariant (r) is 

deduced by comparing expressions according to Definition 18 and Lemma 8 

on page 79. Similarly for the two cases having order type the numeric 

invariant (A) is deduced by comparing expressions according to Definition 19 

and Lemma 10 on page 80. As before, {am, • • ■, ag) are the coefficients of 

[f](æ) and {bn, . . . , 6g) are the coefficients of |[g]|(æ), and >~poi is the resulting 

(not necessarily total) polynomial ordering.

18 L e m m a  ( T a u  o f  ^poia)

If  m > n > 1 then >-poi has r  =  .

19 L e m m a  (L a m b d a  o f  ypois)

I f m > n  = l and > 1 then >~poi has X = m.

20 L e m m a  ( T a u  o f  ypoio)

I f  771 = n = 1 and a\ ^  b\ > 1 then y-poi has r  =

21 L e m m a  ( L a m b d a  o f  y-poiE)

I fm  = n =  1 and a\ > bi = 1 (and 6g > Oj then >~poi has X = a\.

22 L e m m a  ( T a u  o f  y-poip)

I fm  = n = l  and ai = bi = 1 and ag ^  6g > 0 then y-poi has T =

The proofs of Lemma 18, Lemma 20, and Lemma 22 are similar, as are 

the proofs of Lemma 19 and Lemma 21:
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P roof (of Lemma 18) In this case

for some A, 15 E N and C = 

giving

t >-poi u if ^

if # ( f , t ) ln m  +  # (g ,f ) ln n  > # ( f ,u ) ln m  + # ( g ,u ) ln n ,  

if # ( f , f )  +  # ( g , 4 ) S  >  # { f ,n )  +  # ( g , « ) f e .

Thus t>-rU implies t >-poi n for r  =  □

P roof (of Lemma 19) In this case

|[g*f]|(a;) =  V% G N, |[fgf]|(a:) =  +  9  Vf G N.

giving

g V ^ f g f  if

if 61 ^  6^' ,

if Î ^  m f.

Thus i ^  Af implies g*f ^  fgf for A =  m. □

P roof (of Lemma 20) In this case

M(a;) =
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giving

if # ( f , t ) ln a i  +  # (g ,f) ln 6 i > # (f ,'u ) ln a i +  # (g ,n)ln& i,

if >  # ( f , +  # (9 )^ )S ' '

Thus t >~r u implies t  >-poi w for r  =  . □

P roof (of Lemma 21) In this case

|g*f|(a;) =  a \ x  +  ag +  %&o, Ifg-^K^c) =  ciix  +  j a ib o  +  ag Vz,f G N.

giving gT ^  fgf if ag +  «6g ^  jaibo +  ag, 

if ibo ^  f&i6g, 

if i  ^  aif.
Thus i ^  Xj implies g*f ^  fgf for any A =  ai. □

P roof (of Lemma 22) In this case

|t](æ ) =  a; +  # ( f , f ) a g  +  # (g ,f )6 g .

giving t  ^poi u if # ( f ,  Z)ag +  # (g , t)bo > # ( f , a)ag +  # (g , u)6g,

if +  # ( g , f ) ^  >  # ( f .« )  +  # ( 9 , « ) ^ .
Thus t^ T -u  implies t  ypgi u for any T =  □

We now know the invariant pre-order, or contained by each of the

uj and <jp orderings respectively. Therefore the orientation of two terms by a

polynomial ordering can be predicted up to or without any calculation

of polynomials, simply by examination of the defining interpretations. In the

sequel we will complete the analysis by determining the orientation of two
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terms by a polynomial ordering when they are equivalent under or

4 . 3 . 2  L e x i c o g r a p h i c  E x t e n s i o n s

The logical and numeric invariants do not tell the whole story as far as 

polynomial orderings are concerned. For example, we now know that every 

weakly linear polynomial ordering (on T({f, g},{v}) ) is a (not necessarily 

proper) extension of a tau pre-order,

^ p o l D ,

(and for each given y-poiD we know the value of r) but so far we have not 

determined if or when the extension is proper. In other words, we know

^polD — (^T) 7])

for some (possibly trivial) relation □, and we would like to be able to say 

more about such extensions. We will see that for ypoiA, >~poiB, and >~poiD 

the extensions are lexicographic orderings, and (with respect to conditions 

below) we can specify the precedences of the lexicographic orderings.

The orderings >-poiE and y-poiF do not determine extensions; they are in 

fact equal to the pre-orders already deduced. Since those pre-orders have 

finite equivalence classes^, any total extension will result in a total well- 

founded ordering.

In the proofs of Lemma 24 and Lemma 26 we make use of the following 

lemma.

23 Lemma

/ f  a, 6 ^  2 and then

A simple property of r  and A pre-orders.
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a^ “ ^(a -  -  1) -  -  1) >  0.

P r o o f  If a ^  2 then a^ “ ^(a—1) >  — l since a^~^(a—l) —(a^~^ — l) =

a^~^{a — 2) H- 1. Similarly b^~^{b — 1) > b^~^ — 1, and so

a^-^{a -  l ) 6 ^ - i ( 6  -  1) >  (a ^ ~ i -  -  1). □

The lexicographic extensions are determined as follows.

24 L e m m a  ( P r e c e d e n c e  in

I f m ' ^ n > l  and also mP -p nP for all p ,q e N̂ . then

^poU = (br;

where r  = and the precedence >  is defined by f % g i f  ^

25 Lemma ( P r e c e d e n c e  in ypois)

I f  m  > n = 1 and 6% > 1 then

ypoiB =

where r  = 0, X = m  and the precedence > is defined by f ^  g if  ^  b ^ -

26 Lemma ( P r e c e d e n c e  in ypoio)

I fm  = n = 1 and ai ^  bi > 1 (and a\ ^  2) and also p  6̂  for all p, q E N+, 

then

ypolD = (br;

where r  = and the precedence >  is defined by f ^  g iff ^  ■

The proofs of Lemma 24 and Lemma 26 are similar.

P r o o f  (of Lemma 24) The proof is by Lemma 11, showing that (>-7-; >màx) 

Q >̂ poiA- Fl'om Lemma 12 and Lemma 18, >-poiA has order type co and 

>-r Q >-poiA, and >-?- is closed under subterms (since T 0). Therefore it 

remains to show that (~t-; >înax) Ç >-poiA-
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Suppose t u, for r  =  Now r  is irrational if (and only if) mP ^  nP 

for all p, g G R|_, so by Lemma 7, i  is a permutation of u, and we write 

A = # ( f ,t )  =  #(f,w ) and B  = # (g , t )  = #(g,u) .

We have

(æ) =

giving

gf ^  fg if ^

if In am >  In bn 
m — 1  <  n —1 ’

if f ^  g-

Since >- is a reduction ordering, this means that for any t i , t 2  G T, ti:g :fd 2 ^

fi:f:g:f2 if f ^  g. Assume wlog. that Then f > g, gf fg,

and so the equivalence class t is totally ordered under >-poiA with maximum 

t = g^f^  and minimum miuy^^^^ t = i ^g^ .

Now suppose t (~i-; [>!SL") n, for r  =  and f > g. Then t  —

and u =  g^” ^f^g. It remains to show that t >-poiA u.

We have

|(x) =  ■ <" +rr^Y,
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giving

if

^  Cim O n  ,

if — 1)(1 — n^~^)  +  m ^~^(n^  — l ) (m — 1))

^  -  1 ) ( 1  -  m ^ ~ ^ )  +  n ^ ~ ^ ( m ^  -  l ) ( n  -  1 ) ) ,

if — l)n ^ “ ^(n — 1) — (m^~^ — l)(n^~^ — 1))

^  -  l )n^~^(n  — 1) -  (m^~^ -  l )(n^~^  — 1)),

i f  In ant >  In bn 
m —1 n —1 ■

by Lemma 23, and thus t >-poiA u. □

P r o o f  (of Lemma 25) Suppose t  (~t-; ~a) u. Let k  — # ( f ,t )  =  # (f ,u ) , 

and write t and u as

t — g^°fgb . . .  ĝ k-ifĝ A: and u = . . .  g-̂ *“ f̂g-̂ ,̂

with =  Y^i'm'^ji. This gives

if { m a m j^ b o  +  am -i)6 i ^  (m a „ i^ ™ 6o +  Cim~i)bi

i f  f Qm-l   bp \  j J k  ^  ( a m - l  _  bp \  , 1 k
^ m a m  b i  — l '  1 <  Im am  6i —1 /  1 ’

i f  Z®nL=l _  bp \ • ^  f a m - i  _  bp \ i
\ mam 6i—iD fc <  I mam 6i —1 /

Thus t (~ 7-; u implies t u ,  where f ^  g iff ^  5^ -  Hence
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=  (fcrifcx; □

P r o o f  (of Lemma 26) The proof is by Lemma 11, showing that (>-7-;

Ç >~poiD- Prom Lemma 15 and Lemma 20, >-polD has order type w and 

>-T Q >-polD, and y-r is closed under subterms (since r  0). Therefore it 

remains to show that ( ~ 7-;>max) C y-pow-

Suppose t ~ 7- n, for r  =  Now r  is irrational if (and only if)

ttj 7  ̂ for all p, g G N f , so by Lemma 7, i is a permutation of u. Let 

^  =  # (f ,f )  =  # (f,It) and B  = # ( g , t )  =  # ( g , w ) .

We have

| f g ] (æ )  =  ai&ia; +  a i 6 o +  ao,

[g f | (æ )  =  a i6 iæ  +  ao6i +  60,

giving

g f  ^  f g  iff ao6i +  6q ^  ai6o +  «o,

iff

iff f  ^  g.

Since >- is a reduction ordering, the above shows that for any ^1,^2 G T, 

ipg:f:^2 ^  ti:f:g-.t2 iff f  ^  g. Assume wlog. that Then f  [> g

and g f  >-poiD f g ,  and so the equivalence class t is totally ordered under >-poiD 

with maximum marxy^^^  ̂t = and minimum miny^^^^ t = .

Now suppose t (~ 7-; [>m&) u, for r  =  and f t> g. Then t = f^ “ ^g^f 

and u = g^~^f^g.  It remains to show that t >-poiD u.

We have

W(a^) =  « f b f a ;  +  a ^ - ^ 6 f a o  +  a f “ H 6 f - l ) 5 ^  +  ( a ^ ^ ~ ^ - l ) ^ ,  

M (a;) =  +  +  6f “ ^(af -  1) ^  +  (6f~^ ~  1) 5̂ ,
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giving

t ^ u  iff ^bfao + a f  ^ { b f - l ) ^  + {a^

^ 6 f - 'a f6 o  4- -  1 ) ^ ^  +  (bf-^ -  1 ) ^ ,

^(«1 — l ) 6 f  ^(6i -  1) -  (a^  ̂ -  l ) ( 6 f   ̂ ~  1)] 

^ b^l^i Ĥ *i “  l ) b f  \ 6 i  — 1) — (a^ ^ - l ) ( 6 f   ̂ — 1)], 

A  ^  5 ^ -

by Lemma 23, and thus t  ypoiD u. □

This completes the analysis of polynomial orderings on monadic terms 

over a two-letter alphabet. Each such ordering can be expressed as a lexico­

graphic combination of simpler, more tangible orderings, and these orderings 

are determined by the leading coefficients of the polynomial interpretations.

4 . 3 . 3  S u m m a r y  f o r  T w o  U n a r y  F u n c t i o n  S y m b o l s

The results that have been presented here for two unary function symbols 

can be summarised by the following theorem.

27 T heorem

Let >-poi be a polynomial ordering on monadic terms T({f, g}, {v}) defined 

by the interpretations

|f|(a;) =  4 h aix  -h ag, Om - ag E M,

|g](æ) =  bnx^ 4--------- hbix-hbo,  . . .  6g G R,

| v l ( a ; )  =  X

such that (am, . • ., ao) (>ien; (bn, ■■.,bo) (>ien\ (1,0). Then
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0. The order type of all total extensions o f y-poi is the same (uj, uĵ  , or 

uj^) and is determined by trivial inspection of the leading coefficients 

of the interpretations, as detailed in Table 4.0.

1. I f  y-poi has order type oj, then it is an extension o f a tau pre-order and 

the value o f tau is determined by examination o f a simple ratio, as 

detailed in Table 4.0. I f  ypoi has order type then it is an extension 

of a lambda pre-order and the value o f lambda is determined by trivial 

inspection o f the leading coefficient of |f | ,  as detailed in Table 4.0. I f  

y-poi has order type uj^, then it is the recursive path ordering from the 

left defined by f >  g.

2. I f  one o f the following holds:

• m  ^  n >  1, and mP 7  ̂nP for aii p, ç G Mf,

•  m > n  =  l , b i > l m d  ^  5  ̂ 5 ^ ,  or

• m  = n = 1, ai ^  2, bi > 1, 7  ̂ 7̂

p , q e N + ,

then >-poi is a total ordering, extending its tau or lambda pre-order 

with a lexicographic ordering, the precedence of which is determined 

by examination o f a ratio as detailed in Table 4.0. If  [f| is linear and 

|g] is strongly linear then ypoi is a pre-order; the pre-order defined 

above.

Hence the properties o f y-poi can be fully determined from inspection o f its 

leading parameters (subject to the three side conditions for lexicographic 

extensions above). From a computational point of view, we can replace >~poi 

by an equivalent lexicographic combination o f simpler orderings.
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The work of Martin and Scott told us what the order types of total 

simplification orderings on T({f, g},{v}) could be, that the orderings of 

order type are the recursive path orderings and the others contain certain 

pre-orders, and what term expressions can be compared to determine the 

pre-orders contained.

The work presented here has first applied those techniques to polyno­

mial orderings on T({f, g}, {v}) and then shown how this provides a handle 

to determine much more detailed knowledge of the orderings. The polyno­

mial orderings have been fully resolved into lexicographic combinations of 

simpler orderings, which are determined from the leading parameters of the 

orderings.

In the next section we will see how these results might extend to larger 

alphabets.

4.4 Three U nary Function Sym bols

We begin extending the analysis to alphabets with more than two function 

symbols by first considering the case of three unary function symbols. From 

this study it will become clear how to generalise the results to arbitrary 

(finite) alphabets of unary function symbols.

Let T({f, g, h}, {v}) be the set of finite monadic terms over three unary 

function symbols, f, g, H, and one variable, v. Let >- be a polynomial ordering 

on T  such that f>-g>-h>-v.  If we classify the polynomial interpretations 

IfKæ), [gj(a;), and |H](a;) according to whether each is non-linear, weakly 

linear, or strongly linear, then the order type of the defined polynomial 

ordering is given by Table 4.1.

These results are elaborated in the sequel by considering in turn each of the
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N L W L SL

UJ

f g,H
f g ,b UJ'̂

f,9 h
f 9 h UĴ

f,9 h UĴ

f , 9 , b UJ

f g , h
f ,9 h o;2

f , 9 , b UJ

Table 4.1; Polynomial orderings on monadic terms over 3-letter alphabet.

three cases, u j ,  w^, and c o ^ .

4 . 4 . 0  O r d e r  T y p e  uj

First consider the case where all function symbols have interpretations in 

the same class.

28 Lemma

Let T{J^, {v}) be the set o f Unite monadic terms over the finite non-empty 

set o f unary function symbols JF =  { /i, / 2 , • • ■ ? /z}- Let y  be a total well- 

founded reduction ordering^ on T such that / i  / 2  >- ■■• >-  / z  and fi  y  fi 

for some j  G N. Then the ordering y  has order type u j .

P r o o f  Since the set T  is infinite, its order type under y  is at least w. 

Assume that the conditions are satisfied but the ordering has order type 

greater than u j .  Then there is (at least) one term, t E T,  that has an infinite 

set of successors, U = { u E T \ t y u } .  Let n G N  be the number of function 

symbols in t, denoted by jf|. Since there are finitely many function symbols,

i.e. a total simplification ordering
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there are finitely many terms of any given length, so U has no finite bound on 

the length of its members, and in particular there is a term uq E U such that 

1^01 ^  jn . Since is a simplification ordering, f i h t ,  and also uq h  f i^-  

Therefore, f i h t y u Q y  f P ,  which contradicts f i  y  f \ .  Hence the order 

type is w. □

This lemma indicates why the polynomials have been partitioned into the 

non-linear, weakly linear, and strongly linear classes: these sets of polynomi­

als are closed under composition and satisfy the above condition. It is thus 

clear that if a finite number of unary function symbols have interpretations 

in the same class then the polynomial ordering on monadic terms over these 

function symbols has order type u).

4 . 4 . 1  O r d e r  T y p e

Next consider the case where the interpretations span two adjacent classes, 

first by examining the sub-case where exactly one interpretation is in the 

higher of the two classes.

29 Lem ma

Let JF — { /i, / 2 , • ■ • 5 f z }  be a finite set o f unary function symbols such that 

z ^  2. Let y  be a polynomial ordering on T  such that the interpretation 

of f  I  is non-linear (resp. weakly linear) and all remaining interpretations are 

weakly linear (resp. strongly linear). Then the ordering y  has order type uP'.

P r o o f  Partition T  into classes Si =  { s  e T  \ # ( / i ,  s)  =  i } , i  e N .  Clearly 

for all t' E Siyi,  t  E Si, t' y  t. We proceed by showing that each (Si, y )  has 

order type o j .

Let t — a o f i a i f i . . .  f i ak  be an arbitrary member of Sk, where each ai E 

T ({ /2 , • • ■ 5 f z } ,  V). Prom Lemma 28 we know that for each /  E { /2 , . . . ,  f z ]  

there is an iV G Mf such that f ^  y  f .  Let s E S^ he the term arrived at by
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replacing each /  G { /2 , . . .  , f z}  by the appropriate number (i.e. for each /  

the smallest sufficient N)  of /^ ’s. Therefore, s >-1 and s G T ({ /i ,/z } , V).

In the proofs of Lemma 13 and Lemma 16 we saw that (T ({ /i, /^ j, V), >-) 

has order type by showing that it contains a lambda pre-order; a pre­

order that first orients by the number of / I ’s in each term. Therefore as 

a corollary we know that (Sk H T ({ /i,/z } , V), >-) has order type w. From 

Lemma 28 we know also that (T ({ /2 , • • •, /z}, V), x ) has order type uj. Let 

U G SkO  T ( { / i , / 2 , . . .  ,/z} , V) be the set of successors of s, {tz | s u}, 

and assume that U is infinite. We will choose some u E U, dependent on s. 

In u replace each /  G { /2 , • • •, /z - i}  by fz- Since T  is finite, there can be 

no upper bound on the length of members of (infinite) U, so we can choose 

a u  e U such that after this replacement to / “° / i / “U i • • - / i /z  its lambda 

expression

+  ■ ' • +  u\X 4- u -p 0

is greater than the lambda expression of s. Therefore u y \  s and so u y  s, 

which contradicts s y  u, so U must be finite.

Since any term t E -S'fc D T ({ /i, / 2 , • ■ •, /z}, V) is smaller than some s E 

Sk n  T ({ /i,/z } , V) and the term s has finitely many terms smaller than it, 

the class {Si, x ) has order type uj. Hence (T, >-) has order type □

30 Lemma

Let F  = { f i , . . . ,  /y}U{/p+i, . . . ,  f z}  be a finite set o f unary function symbols 

and let y  be a polynomial ordering on T  such that the interpretations lie 

in two adjacent classes o f polynomials, { /i, ■ • • ,/y} in the upper class and 

{ fy+i , . . . ,  f z} in the lower class, with at least one interpretation in each of 

the two classes. Then the ordering y  has order type uP.
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P roof This proof is similar to the proof of Lemma 29, but here the 

symbols / i , . . . ,  f y - i  are replaced by /y. □

4 .4 .2  O rd e r  T y p e

Finally, consider the case where the interpretations are not contained in two 

adjacent classes. This means that at least one interpretation is non-linear 

and at least one interpretation is strongly linear.

The case where all interpretations are either non-linear or strongly linear 

follows the pattern above.

31 Lemma

Let T  be a ûnite set o f unary function symbols, and let y  be a polynomial 

ordering on T  such that all interpretations are either non-linear or strongly 

linear, and each o f these two classes contains at least one interpretation. 

Then the ordering y  has order type u)^.

P roof The proof is by bounding substitutions, and is almost identical to 

the proofs of Lemmata 29 and 30. □

More interesting is the case where interpretations lie in all three classes, 

since this is where we might expect the highest order type. We conclude with 

the three-symbol case since the extension to more symbols will be obvious 

from the preceding lemmata.

32 C o n jec tur e

Let fF = {f, g,K} be a set o f unary function symbols, and let y  be a poly­

nomial ordering on T  such that the interpretations of f, g ,h  are non-linear, 

weakly linear, and strongly linear respectively. Then the ordering >- has 

order type uP.
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Justification  We have

|f l(a:)  =  a m X ^  \-a\x +  qq,

[g|(æ) =  bix + bo,

|Hj(rc) = X 4- a

Partition T  into classes Ai = { a  e T  \ # (f , a) =%},%€ N. W ith reference to 

the polynomial interpretations, clearly for all a' E a E Ai, a' y  a  and

the classes Ai are ordered by an u  ordering. We would proceed by showing 

that each [Ai, y)  has order type

W ithout loss of generality, consider a class Ai with » ^  1. Partition Ai 

into classes B j =  {6 G Aj | 6 ~a i  € N, a  G A%_i, and A is defined

as before according to the interpretations of f and g. Again with reference 

to the polynomial interpretations, for all V E Hj+i and all b E B j we have 

b' y  b, and the classes Bj  are ordered by an u) ordering. A proof would 

proceed by showing that each {Bj, y)  has order type

4.5 Further D evelopm ents

In this chapter we have fully analysed the polynomial orderings on a two- 

symbol unary alphabet, and we have analysed the order types of polynomial 

orderings on arbitrary unary alphabets. There are several directions in which 

this could develop.

• Polynomial orderings on monadic terms could be fully analysed so that 

the values of the invariants, and the determinants of any precedence 

orderings could be tabulated.

• The interpretations could be extended to include elementary interpret­

ations.
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The analysis might be extended to include binary function symbols.



5 Conclusions

In this chapter the findings of the preceding chapters are sum­

marised and future developments are discussed.

5.0 Sum m ary

In this thesis we have tackled the problem of proving a term rewriting system 

terminating from two sides. First we studied two automatic techniques for 

finding semantic orderings, by linear programming and by population-based 

search. We saw that the method of complete description would be ideal for 

solving the problem of Knuth-Bendix termination if its redundant data could 

be precluded. A proposal for how this could be achieved was presented along 

with an idea of how the algorithm could be verified.

The search mechanism of genetic algorithms was applied to the search for 

a suitable polynomial ordering. Employing the interpretation heuristics of 

Steinbach and the constraint test of Giesl, the GA ordering search was found 

to be a promising approach to polynomial termination. The GA parameters 

that were found to be optimal were discussed, possibly shedding light on 

what makes an effective search for polynomial orderings.

Second we analysed the class of polynomial orderings defined on monadic 

terms. Using the order invariants of Scott and Martin, we saw how a seem­

ingly complex class of orderings could be tamed and decomposed: by logical 

invariant, by numeric invariant, and finally by precedence. Once divided, 

the subclasses could be analysed to reveal a direct translation from defining 

parameters (polynomial coefficients) to resulting ordering.

106
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5.1 P ipeline of Ordering Families

As discussed in Chapter 2, the Knuth-Bendix family of orderings is a natural 

choice for first strike on a termination problem. There is a full-decision 

procedure for KB termination, and there should be an efficient algorithm 

for the test. If the KB orderings fail, the user may well go to polynomial 

orderings to try. The question is, what useful information can be passed 

from the KB procedure to the polynomial procedure so that the second 

attempt doesn’t waste time repeating the search of the first? Clearly it is a 

waste of time attempting all-strongly linear interpretations since those are a 

subfamily of the KB orderings, but there is probably more that can be passed 

on. If the KB orderings failed due to degeneracy in a rule inequality there is 

probably some way the polynomial ordering can capitalise on knowing what 

weights make the rule balanced. If polynomial orderings fail then there is 

also knowledge to be passed on, albeit more specialised. It may be possible 

to gain useful knowledge from a failed GA population, similar to detecting 

degeneracy in the KB ordering algorithm, by examining to what values the

coefficients had settled and which inequalities they were failing to satisfy. !

5.2 E xtending the Orderings

Lescanne ([Les92]) has extended polynomial orderings to include exponential 

expressions. It would be interesting to see how the performance of the GA 

search mechanism is affected by introducing exponentials. There are already 

some preliminary results extending the analysis of Chapter 4 to these.

The genetic algorithm operators can be modified to accommodate per­

mutations as individuals, so a second precedence search’ GA could be in­

corporated with that of Chapter 3.
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5.3 Test Bed

Steinbach has gathered and made available a large collection of termination 

problems. Dershowitz has also made an effort to collect examples from the 

literature, most of which are open problems.

When a new technique for termination is ready for testing or training, 

these examples are an invaluable resource. However, there is also a need for 

‘boring’ examples. The cases that appear in the literature, being used as il­

lustrative examples, for instance, by and large fall into two categories; those 

that appeared because they are interesting (and challenging) termination 

problems, and those that are not. It is difficult, for example, to find col­

lections of examples that are terminating by polynomial ordering but which 

pose a computational challenge to the termination tool. The author would 

like to have a collection of examples that make an interesting domain for 

termination tools, even if the examples themselves are of little interest (to 

human readers). This would enable termination tools to be tested without 

having to tie them into a completion tool.

5.4 C om plexity Links

There are several branches of interest in the proof-theoretic complexities 

associated with termination orderings and term rewriting (e.g. [Hof92, Cic90] 

and [FZ94]). The subject of Ferreira & Zantema’s study is the order types of 

the underlying semantic domain, whereas here we have looked at the order 

types of the term algebra itself, so for example, Ferreira & Zantema classify 

all polynomial orderings in N as order-type u. It may be fruitful to examine 

more closely how the two views relate, and whether one can feed the other.
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