
A PARALLEL IMPLEMENTATION OF SASL

Jiannis Corovessis

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1983

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13448

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13448

A PARALLEL IMPLEMENTATION OF SASL
by

Jiannis Corovessis

A thesis submitted for the degree of Doctor of Philosophy

Department of Computational Science

University of St.Andrews
St.Andrews

September 1982

ProQuest Number: 10167174

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.
ProQuest 10167174

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Decleration

I declare that this thesis has been composed by myself
and that the work that it describes has been done by myself.
The work has not been submitted in any previous application
for a higher degree. The research has been performed since
my admission as a research student under Ordinance General
No 12 on 1st. October 1978 for the degree of Doctor of
Philosophy.

I
Jiannis Corovessis

I hereby declare that the conditions of the
Ordinance and Regulations for the degree of Doctor of
Philosophy (Ph.d.) at the University of St.Andrews have been
fulfilled by the candidate, Jiannis Corovessis

A. T. Davie

ABSTRACT

The applicative or functional language., SASL is
investigated from the point of view of an implementation.'
The aim is to determine and experiment with a run-time
environment (SASL parallel machine) which incorporates
parallelism so that constituent parts of a program (its
sub-expressions) can be processed concurrently. .

The introduction of parallelism is characterised by two
fundamental issues. The type of programs, referred to as
parallel and the so called strategy of parallelism, employed
by the parallel machine. The former concerns deriving a
graph from the -program text indicating the order in which
things must be done and the notion of "worthwhile”
parallelism. In order to obtain a parallel program the
original (sequential)' program is transformed and/or
modified. Certain programs are found to be essentially
sequential. Parallelism is expressed as call-by-parallel
parameter passing mechanism and by a parallel conditional
operator, suggesting speculative parallelism.

The issue of v the strategy of-parallelism concerns the

scheme under which a regime of SASL processors combine their
effort in processing a parallel program. The objective being
to shorten the length of computation carried out by the
sequential machine on the initial program.

The class of parallel programs seems to be non-trivial
and it includes both non-numerical and numerical programs.
The "speed-up" by appealing to parallelism for such programs
is found to be substantial.

CONTENTS •

Chapter Page1

ONE Introduction.................... 1

TWO SASL its computation process.......... 7
and its extension by parallel
constructs

THREE Implementation......................... 29

FOUR A. model of parallelism..........55

FIVE Parallel programs.........65
* * •' 'S; ' ’ • * * -

SIX Results.........................104

SEVEN Conclusions.................. .:.........115

Appendix I

Simulation tables

Appendix II

Source program of the simulator

r'' • ■ ' • ' . ■ *. ‘ * * ■ • * . <’s v » ■ . » ' • ;*., . .•• .•* * ' '• .'

1

CHAPTER ONE

Introduction

The essence of program notations referred to as
applicative or functional [1] lies in the fact that they
possess the familiar properties of the notation of
mathematics void of imperative notions. This is the point of

difference with conventional program notations referred to
as imperative, examples of which are the languages FORTRAN,
ALGOL, PASCAL etc, where the basic programming notions are
sequencing and store manipulation.

The meaning of a program in an imperative language is
the behaviour (history of states) traced by the underlying

mechanism executing the program (given its data). Certain
states involve performing input or output. Thus computation
is expressed in terms of state changes. Each constituent
part of the program has to. wait for the appropriate state of
the machine to be arrived at before it makes its
contribution.

The execution of a part may cause a "side-effect” on the
execution of another. The presence of side-effects causes

the underlying mechanism to be sequential, performing one
thing at a time.

On the contrary the meaning of an applicative program is
an object in the universe of discourse of the language. The
object is referred to as the value of the program. At thi,S

. /level of programming the behaviour of the underlying

mechanism evaluating the program is not addressed by the
program.

The computation that an applicative program entails is a
transformational process [2] of the program (data is part of
the program in applicative languages) through a sequence of
intermediate representations of its value to a final
representation, providing the sequence converges. This is a

canonical representation of the value the program denotes.
The value is sometimes referred to as its Normal Form L3J?
Obtaining this representation achieves termination of the
computation since no further transformation is possible.

Computation as a transformation process suggests that
there is an invariance relation between the states the

evaluation mechanism traces, namely that the meaning of the
program is preserved at all times. What actually changes
between states (otherwise the machine would be of no use) is

the representation of the programs's value. Each
transformation results in more detail about the canonical
representation being computed. Note we refer to evaluation
of an applicative program and to execution of an imperative
program for obvious reasons. An imperative program's result
is obtained as a side-effect during its execution.

The contribution of a constituent part of a program is

also a value which results after it has been transformed
(simplified) to the canonical representation of this value.
Thus the evaluation of this part has no "effect" on the

«t,ri'.. >•:
■' ■ a;-' A~-; - -

5

evaluation of another part. Its purpose is to communicate
this value.

We observe the evaluations a program entails. are

partially ordered with respect to the data dependencies

between them. An evaluation is data dependent on another
when the latter is a sub-evaluation of the former. This can
be determined from the program text, represented as a graph,
as will be shown in chapter five.

The standard evaluation mechanisms of applicative
languages flatten this partial order to a total order bound
by the uni-processor implementation environment. The

objective of the present study is the construction of an
evaluation mechanism which exploits the "inherent”

parallelism of programs, suggested by the partial order and
the type of parallelism possessed by various programs.

The investigation is based on the applicative language
SASL [4]» The work is organised into chapters as follows.

Chapter two consists of three sections. The first

introduces the basic features of SASL, the second describes
its computational process and the mathematical properties it
possesses and the third introduces. the notion of parallel
operators and a call-by-parallel parameter passing

mechanism. Annotations in the program text are used to
specify parallel primitive operators and a system function
STRICT encapsulates the parallel parameter passing
mechanism. Both parallel primitive operators and the (meta-)

'■■• ’> i ' ‘ ' ” ' * * ’ - ■ ■’ t i •“ • • ' ^-'z ■ '■■*'‘ / c I • * ' '

4

function STRICT can be thought of as "hints” to the
evaluation mechanism, specifying possible parallel
behaviour.

In chapter three the parallel implementation of SASL

developed in S-ALGOL [5] is described. This is based on an
earlier implementation of SASL [6]. The evaluator of this
SASL system was unsuitable for our purpose so a new parallel
evaluation mechanism was constructed and interfaced to the
rest of the SASL system. This gave us a complete SASL system

to develope and experiment with parallel programs. The
level of parallelism concerns the concurrent progress of
evaluators each carrying out part of the computation a

program entails.

Cha.pter four describes the model of parallelism where

the evaluation mechanism employs different strategies for
parallelism. A strategy of spawning, as it is referred to,
determines when an assistant evaluator is to be assigned a
task. Initially there is a single task and one evaluator.
The presence of parallel operators in the program text,
translated by the compiler into parallel instructions
generate a tree of tasks, which represents the partial order
mentioned previously.

A strategy causes either the realisation of the partial

order by employing an evaluator on each branch of the tree
or its conversion to a total order where a single evaluator
traverses the tree simulating the parallel evaluation of

-Z • ,

tasks. No bound on the number of evaluators is assumed.

The effect of
evaluation steps [7]
the performance of
different strategies
parallel evaluation

form in the appendix.

parallelism is measured in terms of the
a program entails. This characterises
programs so that comparison between
can be made. The results of the
of programs are presented in graphical

In chapter five the idea of parallelisation of programs
Is put forward wherebye a SA8L program written initially
without consideration of the evaluation mechanism is
transformed into a parallel program. Work has been done by
Darlington and Burstall [8J on automatic and semi-automatic
transformations. None of that is implemented here.
Transformations to suitable forms is by hand directed by
program graphs (see next paragraph). A parallel program as
opposed to a sequential program is one whose evaluation
splits into a number of sub-evaluations, each of which may
decompose further. Programs structured in this way result
from adopting a programming style known as Divide-and-*
Conquer [9].

In order to identify the sub-evaluations which can be
carried out in parallel a program text is represented as a
directed graph. The nodes of the graph correspond to
operators in the language which construct composite parts
(expressions). The arcs of the graph show the data
dependencies between evaluations of parts.. Arcs out of a

node which do not converge onto a common node characterise
the corresponding operator as parallel. This implies its
operands may he computed in parallel.

A number of graph manipulation, list processing,
numerical and Symbol manipulation parallel programs have
been developed. The parallelism of these programs is
investigated by submitting them to the evaluation mechanism
under different strategies of spawning.

Chapter six contains the results of testing the example
programs developed in chapter five on the parallel evaluator
described in chapter three, under different strategies as
described in chapter four.

Conclusions are presented in chapter seven.

7

CHAPTER TWO

The language CASH, its computational process and
its extension by parallel constructs

In this chapter we present the basic features of the
applicative/functional language SAHA (more, details of which
can be found in [4]), the computational process it entails
and its extension with constructs which express a certain
notion of parallelism. The name SASL stands for "St.Andrews
Static Language". "Static" refers to the fact that SASL
contains no commands and a data structure once created
cannot be altered. "Applicative" or "functional" indicates
the programming style of the language where algorithms are
specified in terms of functions applied to arguments as the
only "control" construct available to the programmer.

A SASL program is an expression which has for its value
an object. The outcome of the program is to print a
representation of the object, unlike the programs in
imperative languages like FORTRAN, ALLUL etc. where a
program specifies what behaviour step-by-step the machine is
to perform, each construct in the program addresses the
"state" of the machine.

In SASL algorithms are specified at an abstraction level
over the state of the machine which executes the program. In
fact all the states the machine traces in executing
(evaluating) a program from the initial one to the final one

are equivalent from the point of view that each preserves

-1----------:------------- -—-—•5'.: 7 i $

8

the meaning (value) of the program. Thus the state of the
machine is not addressed in the program. The programmer

computes with objects rather than with states. Note that
although all machine states preserve the meaning of the
program (and data) they are actually different states since

each new state must be associated with computing some detail
about the program's value not present in the previous state,
otherwise the machine would be of no use.

Objects

The data items SASL expressions describe are called
objects. Every expression has an object as its value. No

significance is attached to expressions other than as a
means to talk about objects. Any sub-expression expression

can be replaced by any other which has the same value
without affecting the value of a larger expression of which
is is a part. This is a property of expressions called
Referential Transparency [10].

• The universe of discource of SASh has six types of
object

1. Numbers - these are the integers such as -5, 0, 99
etc.

2. Truth-values - there are two such objects true and
false. .

Characters - %a represents the character a, %%
represents the character % etc.

——

9

4. lists - a list is an ordered collection of objects
called its components. For example

1, 2, 1 and 99,

are lists of length 5 and 1 respectively. Note that
repetition of components is allowed. A list may have an
infinite number of components. For example the list of all
integers is a well defined SAS1 object. The empty list is
represented by the constant ().

5- Functions - a function is a rule which associates to
a SAS1 object (the input of the function) a unique SASL
object (its output).

6. Undefined - there is a unique object undefined which
is the value of expressions such as ^a+1 and of
expressions which entail non-terminating computations, bote
here we differentiate between a non-terminating computation
and a computation whose result is an infinite list. An
infinite list is a perfectly well defined object but only a
finite number of its components can be printed in finite
time.

The language obeys the rule that all six types of
object have the same ’’civil rights” :-

any object can be named
any object can be a component of a list
any object can be the input of a function

any object can be the output of a function

____ 1 - 1 .

10

the above rule characterises the language as being
semantically complete [11].

Expressions

Expressions are either atomic (they have no syntactic
structure for example a constant or a name) or they are
composite (constructed out of sub-expressions. The usual
arithmetic, logical and relational operators construct one
sort of composite expressions.

Juxtaposition, of two expressions, for example

A B

denotes the application of a function to its argument (the
input of the function). It also denotes selection from a
list. For example

(1, 99, 4) 2

selects 99, the second component of the list.

list expressions are constructed with the operator :,
for example

x : list

constructs a new list by prefixing to list the component x.

_____ _ f

1 1

Commas are shorthand for list expressions. Por example

1 , 2, J and 1 : 2:5: ()

are equivalent. Concatenation of two lists is denoted by
the operator ++. Por example

(1,2) ++ (3,)

gives the list 1, 2, 3

Another form of composite expression is the conditional

expression constructed with the operator ->. Por example

A -> B ; C

denotes the value of B or C respectively depending on
whether the value of A is true or false, otherwise it
denotes the object undefined.

An expression may include definitions of names that
appear in it using the where construct followed by clauses.
Each clause defines a name. Por example

a + b
where
a = 1

b = 2

evaluates to 3*

12

Nested' definitions are allowed, for example

a + b
where

a = 1
b = 2 + c

where

c = 3

evaluates to 6. Multiple definitions are also possible, for
example

a, b, c — 1, 2, 3

is equivalent to

a = 1

b = 2

c = 3

Definitions in general are of the form LES = REE where

LHS is a construction of arbitrary complexity built from
names and constants using commas, brackets and the operator

The RES varies over expressions, for example

x : y = 1,2, 3, 1+3

is equivalent to

x = 1

y = 2, 3, 1+3

the name y denotes the list 2, 3, 4-

15

In the case of function definition, LiiS consists of the
name of the function being defined followed by one or more
formal parameters. As a formal parameter we can have a
name, a constant or a construction of arbitrary complexity-
enclosed in brackets, as in multiple definitions, names in
formal parameters denote arbitrary input objects and they
are local to the clause. For example the clause

sum (x, y) = x+y

defines the function which computes the sum of two
integers, passed to it as the components of a 2-list.
Another way of defining the same function is

sum x y = x+y

where we use the fact that a function (denoted by sum x)
can return as its value another function (that which adds x
to its parameter). Note that the (more general) function
sum can be partially parameterised [12 J to yield the (less
general, specialised) functions incr and deer

incr = sum 1

deer = sum (-1)

so that the expressions incr 1 and deer 1 evaluate
and 0 respectively.

to 2

'>•

14

Functions can be defined by more than one clause each
clause covering a case of the parameters, for example the
clauses

LENGTH ()=0
LENGTH (a:x) = 1 + LENGTH x

define the function which computes the length of its input
list. The first clause applies to the case where the input
is the empty list. In the second clause the input is a list

where the name a denotes the first component of the list
and x denotes the list of the rest of the components.
Clauses are ordered by the order they are written. Thus in
the example below

factorial 0 = 1
factorial n = n * factorial (n-1)

the function factorial expects its actual parameter to be

the object zero or an arbitrary object, in that order.
Definitions of names as well as definitions of functions
can be circular too, for example

ones = 1 : ones

defines the infinite list 1: 1: 1 : ... Definitions can
also be mutually recursive, as in the following program

■ w-iv l. • • v".

15

listl

where

listl = 1 : list2 .
Iist2 = 2 : listl

the above program denotes the infinite list 1: 2: 1: 2...

The syntax of the language obeys the rule that any
expression can be a sub-expression of a composite
expression. Wrapping up an expression in brackets does not
have any effect on its value, it merely affects the syntax.

Computational process

The use of = in definitions of the form LHS = EHS has
two important consequences

(a) It allows an equational proof theory J.13J to be

built where f act's.we wish to prove about programs are
stated as equations (clauses) in the same language as the
programs are written in. The clauses are used as axioms to
derive a fact which holds for a program.

(b) It characterises the mechanism of computation the
language entails based on the notion of substitution where
every instance of the form 1HS in an expression is replaced
by the RHS providing the scope of names is taken into
account in the obvious way. The substitution operation
plus those operations such as +, * etc. determine how a
computation gets done. We shall discover that this
mechanism is flexible enough to allow the Introduction of

—
-X‘

'ii

16

parallelism where the operations along the computation path
overlap in time by splitting the computation path into
parallel sub-paths. Consider the program for the factorial

function, using each clause of the definition of function
factorial as a substitution rule and arithmetic rules as

simplification rules the computation path the program

entails is shown in figure 2.1

factorial 5

5 * factorial '2

5 * 2 * factorial 1

5*2*1 * factorial 0

5*2*1 * 1

6

figure 2.1 - a computation path

note each substitution produces a refinement
(simplification) of the representation of the object 6. We
refer to the above process as being carried out by an
’’evaluator” for the language.

i- -..

—

17

The evaluator comes up against the problem of which

substitution to perform whenever there is a choice, as in
the following program

g (factorial (-1))
where

g x = 1

if the inner substitution is always preferred the path

diverges as shown in figure 2.2

g (factorial (“1))

g (“1 * factorial (-2))

g (-1 * -2 * factorial (--5))

figure 2.2 ~ inner substitutions, divergent path

if the outer substitution is performed the path converges

to 1 in one step, figure 2.5

g(factorial(-1))

• 1 '

figure 2.5 - outer substitution, convergent path

Another problem with substitutions is the possibility
of different paths converging to different results. both

; l' , ’ ;'

18

of the above problems are answered in the context of.formal
systems such''as the Lambda Calculus [5] and SRS L14J• The

Lambda Calculus is the basis of SASL and other applicative
languages [15,16,17]• It is a formal system where concepts

such as variable binding and variable abstraction can ' be
studied but it is not a programming language because it
lacks a definite universe of discourse. The entities
referred to as functions in the .Lambda Calculus have
general character since they do not express a relation
between some definite objects. The introduction into the
Lambda Calculus of objects with their associated
operations, like those supported >by SASL, plus ’’syntactic
sugar” gives a programming language, namely SASL.
Mathematical results which hold in the Lambda Calculus by
implication are assumed to hold for SASL too, although
strictly speaking it must be proved they also hold for
objects and operations introduced into the Lambda Calculus.
Computation in the Lambda Calculus is carried out in terms
of transforming an expression to another by applying
certain rules, called reduction rules. These are concerned
with renaming names occuring in an expression,,

simplification ... of certain expressions and substitution of
an expression for the occurrences of a name in an
expression. An expression which cannot be transformed any
further by application of the reduction rules is said to be
in Normal * Form. Computation with an expression is a
sequence of reduction rules applied to the expression. A

finite sequence, producing a Normal Norm of the expression,

’.*<2 , '.vy.'ts.i? ■■

represents a terminating computation.

The central result in lambda Calculus is the Church-
Rosser theorem L18] which states that for expresssiohs A,

B, C if A reduces to B and A reduces to C then there exists
an expression D to which both expressions B and C reduce.
This is diagramat ical'ly represented by completing the

diamond where the arrow represents the application of a
reduction rule, figure 2.4

*Q°
figure 2.4

a corollary of the Church-Rosser theorem guarantees

uniqueness of Normal Borins. If two different computation
paths which an expression gives rise to terminate, they do
so with the same Normal Form. The Church-Rosser theorem
secures independence from the order in which evaluations
are carried out, except in the cases where the (meta-)
algorithm driving the evaluator imposes a particular order
so as to ensure that a non-terminaning path is not chosen
at the expense of a terminating path.

An algorithm known as Normal Order Reduction which

always performs the outermost leftmost reductions first is
proved to achieve termination providing there is a Normal
Form for the expression L 5 3« This is reflected in BABu by

<4^

-.?’

20

adopting a parameter passing mechanism referred to as
call-by-need [19] where actual parameter’ expressions are
passed unevaluated (no substitutions done on them) to the
function. Thus the clause

f x = 1

defines a proper object (a function) even in the. case where
x denotes the object undefined.

Prom the point of view of the proof theory this’- is

necessary in order to use

= as it is used in mathematics. Formally this is stated
as the equality being fully substitutive [19]* •

Consider the following program

factorial 4
where
factorial n = fsplit 1 n
fsplit i i = i
fsplit i j = split i mid *

fsplit (mid+1) j
where
mid = (i+j)/2

at each occurence of the operator * we can split the
computation path into parallel paths, see figure 2.9 •

.. ,

1^.

21

factorial 4

fsplit. 1 2 * fsplit 3 4

fsplit 1 1 * fsplit 2,2 fsplit 3 3* fsplit 4 4

12 3 4

2 12

24

figure 2.5 - splitting a computation path

thus the Church-Rosser theorem gives rise to the
possibility ,of several- evaluators working simultaneously,

each pursuing a sub-path of the computation a program
entails. This brings us to the subject of this thesis which
is to divise and experiment with such a mechanism.

Parallel operators and...Call-by-parallel

In the previous section the possibility of parallelism
was noted where a computation path, splits (see figure 2.3)

when an operator expression of the form A*B is evaluated.
In order to identify the expressions that can be evaluated
in parallel a program is represented as a directed graph. A
node with arcs to other nodes identifies a composite
expression constructed by some operator, its arcs point to
nodes which identify the operands of the operator. The
Clauses (definitions) are used to unfold [8]“ the graph. The
graph shows the structure of a program in terms of the data

• '* • * J..
—

22

dependencies between evaluations that it entails, An
evaluation is data dependent on another when the former
requires the result (value) of the latter. Data

dependencies impose an order in which the associated
evaluations must be carried out. Representing a program as

a graph we see that evaluations are partially ordered with
respect to the data dependencies which arise between them

hence certain evaluations can be carried out in parallel.
Consider the program graph, shown in figure 2.b, of the

following program

rec 0 = 1

rec n = x + square x
where
x = rec (n~1)

square a = a * a

rec n
tiZx square x

z\
XX

v. /Arec (n~1)

figure 2.6 ~ program graph of the function '’rec”

25

in the graph, shown in figure 2.6, vq see that both
operands of the operator + depend on the evaluation of the
sub-expression

rec (n-1)

and so they cannot be usefully evaluated in parallel. The
same is true of the operands of *. Thus the values of the
function rec for n, n-1, ... must be evaluated

sequentially. Consider also the graph, shown in figure

2.7, of the function “or” (used in Example 5, chapter
five), defined as

or m n = m=() -•> n

m ’

or m n

figure 2.7 - program graph of function ’’or”

the condition, m=(), and the left alternative, n, operands

of the conditional operator ->, can be evaluated in

parallel whereas the right alternative, m, is data
dependent on the condition and hence must be evaluated
aftei’ the condition has been evaluated. The operands of
the relational operator = can be evaluated in parallel but
the operand () entails a rather trivial evaluation
offering, no opportunity for useful parallelism.- .

Analysis of a program in this^ way, to’.discover the data
dependencies and the informal analysis of what expressions
are ’’worth” evaluating in parallel characterises the
instances of operators which are to-be interpreted as being
parallel. The conditional operator is said to be strict in
its first operand and non-strict in the second and third.
Other non-s trict operators are &# :and i# ;(logical .and,
or respectively) which have their operands evaluated in
parallel. In the. case of evaluating an expression,,., of the
form A&#B termination, of one of A or B with the result
false' causes >the evaluation of the other to .‘become
irrelevant [20] (even if ;, its value is undefined) Thus non­
strict operators involve initiating an evaluation in
anticipation that its value; might be, needed. : . • ;

Parallelism can also be manifested as parallel
evaluation ofthe arguments of (a function. For example
expressions of the form

. SUM matrix! matrix2 k

met in a program for matrix multiplication (Example 8,
chapter five) where matrixl and matrix2 are sub-expressions
which may be evaluated strictly before the. whole expression
is evaluated. In order to secure this form of parallelism,
a call-by-value parameter passing mechanism, ’refered to as
call-by-parallel must be adopted in this case. For this

* f is said to be strict when f undefined = undefined holds.

25
w:

purpose a system function, STRICT is implemented which,

effects call-by-parallel. It is described as follows

STRICT f x y = Evaluate strictly x and y and then
Evaluate the expression f x y

now the above expression becomes '

STRICT SUM matrixl matrix^ k

where matrixl and matrix2 are evaluated in parallel. Rote k

is not "taken in” by the function STRICT. In fact the
function STRICT can. be defined in terms of the parallel
operator &# as follows

STRICT f x y = x=x .&# y=y -> f x y
’dummy”

where the expression x=x evaluates always to true and
forces strict evaluation of x.

!In general the pattern of the parameters which are

taken will vary, for example suppose that in the following
expression

P x1 x2 x5 x4

only x1 and x2 need be evaluated (strictly) in parallel. A
function GS1 can be defined in terms of STRICT

GS1 P x1 x2 x5 x4 = STRICT aux x1 x5
where
aux a b = P a x2 b x4

Call-by-need is being retained, in all other cases of
function application where parallelism is not required.
’’Lazy evaluation” is another name for the call-by-need

mechanism, mentioned previously, concerning parameters of
functions and list constructors [21,22j. v

We use STRICT in a number of similar cases where

operands of functions or infix operators : and ++ need to

be called by value. Consider for example the function

FOR abf=a>b-> ()

. f a : FOR (a+1) b f

whose result is a list. Parallelism can be effected by

replacing : by a function cons and forcing simultaneous
call-by-value on its parameters •

FOR abf=a>b->() .
STRICT cons

. (f a) •
(FOR (a+1) b f)

the graph of FOR is shown in figure 2.8 .

FOR a b f

Icons
f a FOR (a+1) b f

figure 2.8 -program graph of function FOR

27 '

however one of the parallel computations accomplishes

little.
In order to balance the evaluations of the list's

components POR is modified as follows

SPL1TPOR abf=a=b->fa,
STRICT
APPPRD

(SPl/ITPOR a mid f)
(SPl/ITPOR (mid-t-1) b f)

• where
mid = (a+b)/2

and its graph is shown in figure 2.9

figure 2.9 - program graph of function SPl/ITPOR

note the need for an APPPRD function in order to flatten

back the result to a linear list.

The last two cases of parallelism suggest that in order

to extract parallelism lazy evaluation has to be forced to
do some work. Replacing call-by-need by call-by-value

cannot be introduced safely without risking non-termination
[23 J. The approach to effecting parallelism adopted here is
based on the parallel call-by-parallel scheme and on using

—’------------------ -—"77

28

annotation symbols which mark strict (infix)
being parallel,' the parallel + operator, for
written as +# which, the compiler takes
produces a parallel PIUS instruction for the
mechanism.

—. '■ -

operators as
example, is
note of and

evaluation

••• ’-• :.:■ <• '.'.-I-, ■-. ■■”■, - ' . - . •*•• ■ • . •. /■"•,« •'• • 7 /if.' ■ • • .
• rj~

29 :..V ■

CHAPTER THREE

Implementation,.

In chapter two we saw that the computational process
SASL entails is based on the notion of substitution. This
process is Implemented on an abstract machine. ’’Abstract”
refers to the fact that the machine's behaviour is simulated
in software. An implementation of a substitution machine in
hardware is reported in [24]. Substitution machines are of
two basic types, characterised by the way they support the
notion of substitution. ■ * .

The first type consists of the Reduction machines, where
substitutions ' are performed literally on the machine
representation of a program. Each substitution results in
modifying part of the representation. Termination is reached
when there are no further substitutions to perform, a
canonical representation of the object the program denotes
has been obtained. The machine representation of a program
is either a graph or a string. In graph reduction parts of
the graph are shared through pointers. Reducing a shared
part is felt simultaneously by all other parts which have
pointers to it. In string reduction a substitution may
produce multiple copies of a part and each has to be reduced
separately. In graph reduction substitutions are performed
on the program graph directly? using the clauses
(definitions) of the program as substitution rules [25] or
the program is compiled into a fixed set of constants

50

called combinators. This incorporates a process of

removing all the variables which appear in the program
based on a technique borrowed from Logic [26,45J. The
operation of substitution on combinatory code is much
simpler than that on program graphs where attention must be
paid to conflicts of names.

The second type consists of the Interpreters or fixed
program machines, where substitutions are simulated
[27,28,29]. The machine representation of a program remains
unmodified throughout the computation but the data mutates.

The source text of the program is compiled into a code tree
where each node of the tree represents an instruction of
the machine. This is interpreted by the machine causing it
to modify its state.

The present investigation is based on fixed program
machines, known as the SECD machines'[28]. The state of
such machines consists of a Stack, an Environment, a
Control ands a Dump component. SECD machines represent the
original attempts to
languages, influenced
languages.

implement applicative/functional
by the machines of algol-like

We shall describe an implementation of SASn based on
the SECD type machines and then we shall modify it, so that
several machines can combine their effort in carrying out
the computation a program entails. .

~

31

The .SASL machine

The SASL machine is simulated by a program written in

S-ALG-Ol. It is based on the original SASL machine [29J
which supported a weaker version of SASL without infinite
lists and multiple definitional Clauses with a call-by­
value parameter passing mechanism. These features are
supported in a later implementation of SASL [bJ. This
latter implementation consists of three parts, a monitor
which handles interaction with the user, a compiler which
translates a program, the user submits to the system, into
a code tree and an evaluator which evaluates the code tree

by recursively evaluating its sub-trees. The evaluator
does not suit our purposes, for it simulates the SASL
machine at a higher level not allowing us to examine its
progress step-by-step. Thus we constructed a new evaluator
and interfaced it to the rest of the SASL system. This has

enabled us to obtain a full SASL system and experiment with
a number of non-trivial programs.

Since SAS1 distinguishes between the different data
types at run-time rather than at compile-time the machine
has a "tagged” architecture. The memory of the machine
consists of a number of cells each of which contains two
data items, a head and a tail. In this implementation"the
management of the memory is left to S-algo'l. This
facilitates the implementation effort and makes simulating
the interaction of machines less painful. The machine's
other components are a Stack (S) and three special

[appendix II]
++ [appendix II, line 1124]

32 ■ •

registers. A Control (C) register , an Environment (n)

register and a Dump (D) register.

The Control
C

nwEx-o

figure 3*1.- code tree for the expressions + Y

The C register points to the node of a code tree

currently being evaluated (or interpreted) by the machine,

such nodes contain instructions. Their sub-trees denote the
operands of the instructions. The number of

operandsdepends on the type of instruction. In figure 3.1

the code tree for the expressionX+Y is shown.

figure p.2 - pre-order evaluation of X + Y

The C register has also a sub-component IhDhX which
parameterises the action of the machine for that

instruction . depending on whether none, one or both of the

55

operands to the instruction are accessible on the Stack.

This is necessary since a code tree is traversed
(evaluated) in pre-order. The 1EDEX takes the integer

values 0,1,2. .

The Environment

figure 5«5 - the Environment state component

The E register points to a linked list of name-value
pairs, figure 5*5- The list is organised as a stack to
reflect the nesting of environments. Thus the environment
is a structure which keeps track of the names that are

currently in scope and their associated values. bested
definitions result in nested environments.

Initially all names in the Environment are associated

with suspensions. A suspension is a data structure with

two data fields. A CODE field and an EEV field. it
represents a ’’frozen” computation which on demand of its
value the machine carries out by initialising its C and E

registers from the suspension. On termination the value
obtained overwrites the CODE field of the suspension ana

___________ __

the ENV is used as a flag to' indicate to subsequent

accesses that it has been evaluated. Thus, if frozen code

is ever evaluated, it is only evaluated once.

The Dump+

34

NEXTC
ENVE LASTD

INDEX

figure 3.4 - the state component Dump

The D register points to linked list of nodes each of
which is a data structure with three fields, see figure

3*4. Each node identifies a state of the machine to be

restored when the evaluation of the code subtree currently
pointed to by the C register is completed. Since code trees
are traversed in pre-order the C register pointing to the

node of the tree is saved in the NEXTC field and set to the
node of the left sub-tree from where it can be restored.

The evaluation of some code sub-trees is carried out by
extending the current environment with local definitions.
This extension to the current environment has to be undone
when control (the C register) returns to the father node of

the sub-trees. Thus prior to extending it, the current

environment is stored in the ENVE :field of the data
structure. The third field LASTD is used to organise the

+ [app. II, 1. 1031] .

35

list as a stack. Mote the NEXTC field has a sub-field
INDEX which indicates on restoring the state from the Dump
what action remains to he done for the instruction. Eor
example it may require checking the type of the value of
the operand on top of the stack. An empty Dump indicates
termination of the whole program.

Output

Initially the C register of the machine points to the
root node of the code tree which the compiler produces from
the program source. The root node identifies a special
instruction PRINT with the rest of the code tree as its
operand. The execution of PRINT causes the machine to save
a ’’print” state on the Dump and continue with the
evaluation of the operand of PRINT. Restoring the print
state from the Dump causes the machine to output to the
world outside the object referenced by the top" of the
Stack. Lapp. II, 1. 2601]

A sequence of PRINT/EVALUATE actions can be performed

with this mechanism which enables the machine to handle the
case where a list is to be printed,. The machine evaluates

a component of the list, it prints it and then goes on to
evaluate the-next component, printing an infinite list Is
handled in the same way except that the end of the list is
never reached. •

In general a list is computed as follows. Initially
none of the components of the list are computed. A data

• 36

structure (a suspension, see above) with all the
information to generate the list is passed around instead.
The components of the list are evaluated, so that part of
the list is actually generated, when access to the
components of the list is required. This occurs when a

list's component is an operand to a strict instruction (eg.'
arithmetic) or the whole list is operand to the PRINT
instruction. This is known as lazy evaluation.

The "unfreezing", of computations is print-driven (ie.
nothing is evaluated unless it contributes to the
calculation of an object to be printed).

Instruction set

The operation of the machine on each instruction
comprises the following five basic actions which manipulate

the components of the machine [app. II, lines 1040-1094]

I. pushstack (item):
The object denoted by item is pushed onto the Stack.

In fact a reference to the run-time object is pushed onto
the Stack.

II. popstack:

The top element of the Stack is popped.

Ill. cont.state (code):

The C register is set to point to the code sub-tree
denoted by code . The INDEX component of the C register is
set to 0. This indicates that no operands are available on

27

the Stack for the instruction at the node of the sub-tree.

IV. save.state (ij :
The contents of the C, E and D registers are saved on

the Dump. The INDEX component of the C register is set to
the value i . This is the value of INDEX when the state is
restored from the Dump.

V. load.state:

The top node of the Dump, pointed to by the D register,

is popped and its contents initialise the C, E and D
registers. This can be thought of as coming back to a
’'continuation" [30] left behind. The top of the Stack Is
the value passed to the continuation. If this value is
suspended then it is evaluated and the result overwrites

the code field of the suspension. The env field is used as
a flag to indicate that the suspension has been evaluated.

The component INDEX of the C register is also
initialised from the corresponding sub-field of the Dump.
This indicates the number of operands to be expected on the
Stack, currently accessible.

INDEX is also used to implement step-by-step actions of
the evaluation mechanism such as parameter binding, clause

matching (in the TRYS instruction below) and list selection
(in the APPLY instruction below).

Each following instruction is given by its mnemonic
followed by the names which denote its operands (sub-

rj.<. ■; !■

•■?>';?■•

58

trees). The effect of each instruction on the current state
of the machine is parameterised by the IhDEX=of the Control
component of the state and it is described in terms of the
five basic actions I-V.

_______ i---------------------:______________________ ____ $' - * <

ID name

INDEX = 0:

lookup name in the current E
push its value on the Stack
push an error value if not found
if the top of the Stack is a suspension
perform the following actions:

save.state (1)
set C to the code field of the suspension
set E to the env field of the suspension
cont.state (C)

Otherwise:

load.state

INDEX = 1:
If the Stack top is a suspension

perform the following actions:

save.state (1)
initialise C and E from the suspension
cont.state (C)

Otherwise:

overwrite name in current E
load.state

. ; . ..

Otherwise: '•8!

Replace the top element of the Stack
with an error value.
load.state

41

BLOCK d, e

named codel name2 code2

figure - a BLOCK code tree

The name d denotes a linked list of names and code
sub-trees which represent computations of their values,

see figure. 3 ■ 5 •

extend current B with the definitions from d
each name is bound to a suspension
CODE fields initialised with corresponding code

sub-trees and LEV fields initialised with the
extended current E
cont.state (e)

42

MAP defs

figure 3«6 - a closure representing the function
f x = x+y where E defines the free variable y

construct a closure from the code sub-tree
denoted by defs and current environment (E)

push it onto the Stack • •
load.state

A closure is the machine’s representation of a function,

see figure 3*6. The field FORM denotes the parameter of

the function being defined. It can be a constant, a name or
a template the actual parameter must match. The field BODY
denotes the code sub-tree to be evaluated as a result of

applying the function to an argument. The field EE denotes

the define-time Environment which is the current

Environment E. On applying the function to an argument the
sub-tree body is evaluated in environment en possibly

extended with the binding of the formal parameter to the
actual parameter (argument).

COLOM eg, eg

• SUSPENSIONS

figure 3*7 ~ list cell creation

claim a new list cell (see figure 5*7)
create a suspension from e1 and current

and initialise the head data field of the cell
create xa suspension from e2 and current E

and initialise with it the tail data

field of the cell ' ,
push a reference to the cell onto the Stack
load.state

CHECKLIST e

INDEX = 0:
save.state (1)

cont.state (e)

INDEX' = g: .

if top of the Stack is a list perform the following:

load.state

— SiLSteSfe• •

44;

Otherwise:

pop the top element of the Stack

push onto the Stack an error value
load.state

HD e

INDEX = 0:
save.state (1)
cont.state (e)

INDEX =

if the top of the Stack is a list:

pop the top element of the Stack
push the contents of the head onto the Stack
•load.state

Otherwise:

pop the top of the Stack and push an error value
load.state

TE e

Perform the same actions as when

HD to a list except that the tail of
onto the Stack instead of the head.

applying the operator

the list is pushed

tiSV-C V £ ';{:■*%) ■- >:»->J '';?-~ ■ :;’■■>■

45

APPnY e1 , e2

INDEX = 0:

save.state (1)
cont.state (e)

INDEX = J_:
if the Stack top is a list or a BASIC FUNCTION

save.state (2)

cont.state (e2)

if the Stack top is a closure:

create a suspension from e2 and E
push it onto the Stack
hind formal parameter to actual parameter
(the top element of the Stack.)

Binding may involve a matching process and may fail to
match formal parameter to actual or it extends the current

E with the formal parameter and its associated suspended
value. This is referred to as the call-by-need parameter
passing mechanism. If the Binding process is successful it
returns a new Environment otherwise it generates an error

value which becomes the value of the function application.

-s-; YD/-

46

. set E to the result of binding

set C to. the body of the function closure
cont,state (C) '

INDEX = 2:

if the second from the top of the Stack element
is a list:

select the ith element of the list, where the top

of the Stack denotes i and the second from the top
element denotes the list

■ load.state

The selection process may involve generating the part of

the list which is suspended in order to reach the ith
element, see figure 3.8 (a),(b),(c) and (d)

S S’

(a) (b)

figure 3«8

■.i'll? ‘; r; ,.7 tfs

47

the ith element is reached when the top of the Stack, used

as list selector i.s the value 1

H h
“A

' .o

(c) (a)

figure 3*8

If the second from the top of the Stack element
is a BASIC PUhCTIOh: [app. II, 1. 986]

replace the top two elements of the
Stack with the result of applying

the function to the object on top

of the Stack.
load.state

Note that BASIC FUNCTION is a predicate which tests the

type of the object it is being applied to and it returns a
Truth-value true or false on top of the Stack.

The class of- instructions referred to by the mnemonics
BldOP and UliQP represent the • following arithmetic,

relational and logical operators, defined over the

appropriate type of objects

11*1! "rem”, "I" ” > =11
I! ~ _ tt

These are mapped by the compiler to machine
instructions PLUS, TIMES, MINUS etc.

BIN OP e1_, e2

INDEX = 0:
save.state (1)

cont.state (e1)

INDEX = _1_:
save.state (2)

■ cont.state (e2)

INDEX = 2:

replace the top two elements of the Stack
with the result of applying the instruction to
these elements, the result is an error value
when the type of the operands are not of
type expected by the instruction
load.state

ii'••. x -• • i- V ;s" ’/•?'• -■ 5*W'... • ■: . '-?v ■> . 'Vv
• 49

—

UN OP e

INDEX = 0:

save.state (1)
cont.state (e)

INDEX = J_:
replace the top element of the Stack
with the result of applying the instruction

to this element
load.state

This completes the instruction set of the machine
except for the instruction THYS, similar to MAP but the
closure it constructs represents a function defined by more
than one clause. The implementation of multiple
definitional Clauses is rather involved, relying on giving
different values to the INDEX subcomponent of the Control
component, each identifying a "state” of the process which
selects the representation of the function whose formal
parameter matches the actual parameter the closure is being
applied to. The effect of the instruction THYS is
desrcibed in detail in |_6]. Lapp. II, 1. 1626]

Introduction of parallelism

In chapter two we proposed the use of annotation marks

which induce the compiler /to produce parallel instructions.
Executing a parallel instruction, such as PAH-P1US for
example, has the effect of the current machine switching to

+ [appendix II, line 2086]

. , ■ ,, . -h'.-■; ••.
.... < * '— -------- j.______ -__1- < vf. J

• •' - ' ' .*. >..,«, .;.: ■■■ ■ ■ ■ - - . • • ■■ -.' . -■ ‘ , • ; ' •■ . ', ‘ ■•’
50

a WAIT state. The code sub-trees (operands) and current
Environment of the machine initialise the C and E registers
of new assistant machines. On termination of its
assistants the machine may resume its computation.

The machine described in the previous section needs to
be modified so that several machines combine their effort
in executing a program. Each machine now has an additional
Destination register whose contents identify its father
machine. A machine is identified as a slot which receives a
result. On termination a machine sends its result to this
slot.

Since new machines are initialised with the same
Environment, it is possible for them to access a suspension
simultaneously or a machine to access a.suspension which is
currently being ’'coerced” to the value it denotes by
another machine. Simultaneous access to a suspension which
has been "coerced” (or "unfrozen") to the value it

represents, poses no problem since all accesses are read­
only. Otherwise simultaneous access or access while the
suspension is being "coerced" to its value does present a
problem. In order to prohibit the same evaluation being
carried out by different machines only the first machine
must be allowed exclusive access. This saves unnecessary
work being done. For this reason a suspension now has an
extra "lock" field which is set by the machine which
accesses it first and reset when it is overwriten. A
machine which finds a suspension locked switches to a

50a

Let us examine how deadlock may arise between, say, two
evaluations A and 33. This can only occur when they are data
dependent upon’ each other.

A : Requires the value of a sub-expression
name it X which is itself

data dependent on the sub-expression Y

B : Requires the value of the sub-expression Y
which is data dependent on the sub-expression X

In SASL this arises from certain definitions of the form

X = Y
Y X

for example
- - X -= 1+Y •'

Y = 1-X

which give the equation X = 2-X satisfied by the object
undefined „

Note however the equation X = 1:X admits a solutionthe
infinite list 1:1:1.... and undefined,is ;not a solution.

Thus deadlock only arises when a SASL program denotes
the object undefined -

LOCKED state until it is evaluated.

The operation of the machine is extended by the
following two actions: Lapp. II, lines 2352-2513]

VI. spawn (code, env, slot):
This action is invoked when a machine meets a parallel

instruction. It causes a new assistant machine to he

initialised hy a code sub-tree denoted by code and by an
Environment denoted by env. The slot initialises the
Destination register of the machine. It denotes a place on
the Stack of its father machine.

VII. kill (machine id):

This action is invoked on two occasions. Firstly, it is
invoked by a machine which terminates its operation
normally. Secondly, it is invoked by a father machine which
no longer requires the result of the computation carried
out by its child machine. The identity of the child machine

is denoted by machine_id. We can think of the father
machine sending a kill signal to its child. The kill signal

is propagated by the child to all of its children and so
on.

The effect of a parallel’ instruction is described
+

below. The cases for the instructions PAR-UR and PAR-ADD
are treated as special ones since they are more powerful
than the corresponding sequential ones.

PAR-BIDOP el, e2

+ [appendix II, line 2133]

■.,X« :«ysc'$. -

52

' PAR-BI1WP
spawn(e1, ENV, slotl)
spawn(e2, BEV, slot2)

switch to WAIT state
The top two places on the Stack are reserved, as slots to
receive the results from the evaluation of the operands to
the parallel instruction. A machine in WAIT state checks
its Stack for results from its children, it then applies
the instruction to these results. The machine resumes its
progress by invoking the load.state action.

PAR-UR e1,

spawn (e1, ENV, slotl)
spawn (e2, EEV, slot2)

switch to WAIT state

e2

* . . k ■/ A • f v-
1 • 1 ■ ;?•. " ,, ,«4’ >

WAIT state:

if top or second from the top element
is the object true:

kill (child)
pop the two top Stack elements
push onto the Stack the object true
load.state

if one slot is the object false
and the other is an error value:

push onto the Stack an error value
load.state

if both slots contain error values:

push onto the Stack an error value
load.state

if both slots contain the object false

pop the Stack twice

push this object onto the Stack
load.state

Otherwise:

remain in WAIT state

. . ' ' 53,

Similarly for the other parallel instructions PAR-AiW and
PAR-CONDITIORAb etc. [app. II, 1. 1180]

W/f? .'XmX', V ■„ i-i -<; ;;■ /..•,..:^^A'-^/?."<.-vz..<k. i \

54

Error Handling Lapp. II, 1. 2597]

figure 3«9 - the error value "true + 1 ”

The sequential (lazy) evaluator whenever it detects an

error it terminates its progress and prints it as the value

of the program. This is represented hy the evaluated (or
partially evaluated) code sub-tree. The node contains the

instruction and the branches point to its evaluated operand
(s), as shown In the example above. Since the control of

the parallel evaluator is distributed this error value is
treated as any other value. The corresponding task sends it
to its father task this to its father and so on until the

top task is reached which reports a partially evaluated
code sub-tree (built bottom-up).

. The partially evaluated code tree represents a trace of-

the computation carried out. The trace can be suppressed

by having each task just propagating the smallest sub-tree
(the error value) so that the error value climbs the tree

of tasks unmodified.

"!

CHAPTER FOUR

A parallelism

The parallel evaluator described in chapter three

decomposes the evaluation of a program into a tree of

tasks. The execution of a parallel instruction causes the

current task to switch to a wait state until the operands
of the instruction are available. These are to be evaluated
as newly created tasks. In the implementation a new task
is created by the primitive action spawn.

figure 4.1 - a tree of tasks

If a snapshot is .taken at the parallel evaluation of a
program the overall state is a composite of “smaller"
states which form a tree, see figure 4•1• A node
identifies a task in a particular state. ACTIVE states
indicate the tasks are being processed , _ 'WAIT states

identify tasks waiting for results of other tasks. .A task
is in a LOCKED state when it requires the value of a common

suspension currently being “unfrozen” by another task. it
remains in LOCKED state until the suspension is overwritten

with the value it represents. The possibility of

;Sz?, -&.U’

interference of the above kind between tasks where a task
becomes (dynamically) dependent on the value of another

task other than the direct father/son dependency suggests

that there is a graph of tasks and not just a tree. The
broken line in • figure 4*1 indicates that temporary data-
dependencies arise between tasks, when the dependencies are

resolved the related tasks still continue in existence.
Unbroken lines show the flow of values which are obtained
with the completion of tasks.

Conflict in the form of simultaneous access to the
value of a suspension is a consequence of the efficient-

implementation of lazy evaluation in the environments model
of computation (SECD type implementation). This Is the

technique by which non-strict functions and infinite lists

are supported. In the graph reduction model of computation
conflict would also arise between tasks due to ’’sharing”

parts of the graph. Evaluating a shared part of the graph
Is felt simultaneously by all other references to it. On
the contrary, string reduction gets round this problem by
duplicating effort on common parts.

figure 4»2 - ACTIVE tasks are associated with
evaluators a, b, c

■t" . —

57

ACTIVE' tasks are' associated with the loci of control of

evaluators which process them, shown by arrows in figure

4.2. In order to model the behaviour of a multi-processor
machine we must take into account the following two
observations.

figure 4*3 - Tasks exceed evaluators

First, as active tasks are being processed they
generate new tasks. The number of created tasks, for a

program of modest size, soon overwhelms the number of
evaluators, see figure'4.3.

Second, the assignment of tasks to evaluators may
involve considerable communication overheads. The above

observations suggest that active tasks should not

necessarily receive the attention of evaluators as soon as
they are created. Thus in the. model an assistant

58

evaluator to the current evaluator is employed, only after a
certain amount of ’'time” has elapsed (see below).

<== b

a a -=>

(h) (a)

a ==>

(a)

figure 4*4 - each evaluator simulates
the parallel evaluation of tasks
a: main evaluator, b: assistant

In the absence of assistant evaluators the locus of

control of the current evaluator traces a bottom first
leftmost path over the tree of tasks, see figures 4*4
(a),(b) and (c). Thus each evaluator will attempt to
simulate the parallel evaluation of tasks it creates. •

When
actually

processed
similarly

assistant
These may

an assistant evaluator to the current one is
employed it is assigned the last task to be

by the current evaluator. Further assistants
are assigned the next to last tasks. Thus

evaluators take load off the current evaluator.
have the benefit of other assistants in the- same

fashion and so on

The effect of a "parallel run" of a program in the
model is measured by the amount of effort the initial
evaluator exerts. This is the number of steps it goes

through to evaluate its input program. A step is equivalent
to the execution of one instruction, as described in

chaptei’ three. Thus in the model, the locus of control of

the initial evaluator is associated, with a count of the
number of instructions it performs. Also a count of the
number of lock steps which occurred during its progress as
well as the total number of lock steps is noted for each
run. .

figure 4.^

In the case shown in figure 4.5 where the main'

evaluator has come back to a task assigned to an assistant

evaluator which has not completed it yet, it is assumed
from this moment onwards that the effort of the assistant
evaluator counts as if . it was exerted by the main
evaluator. .

When to spawn

It has been mentioned that an assistant evaluator is

60

employed after some ’’time” has elapsed. During this time
several (or no) new tasks may have been created pending
processing. Time is related to the amount of work the
evaluator performs. Thus its locus of control is
associated with a clock which registers its effort. The
clock zis set to a certain threshold which, when it gets

✓ '
exceeded, causes the initiation of an assistant evaluator.
This occurs every time the threshold is exceeded providing

there are tasks to be processed. Time has been measured in
y three different ways.
/ z/ ■

/ First, as the number of instructions executed.

Second, as the number of COLOM instructions (list cell
creations).

Third, as the number of APPLY instructions (function
applications).

In order to make this quantity ("time”) relative to the
evaluation of each program experimented with, a threshold
is computed as a percentage of the total number of
instructions performed under sequential evaluation where a
single evaluator is employed.

Note that the delay a threshold imposes is finite so

that the correct result of parallel operators such as
(PAR-OR) and "&#" (PAR-AND) is computed. If the evaluation
of one of the operands diverges then eventually the

threshold which prohibits the spawning of the task for the

61

other operand will be exceeded. This would cause the second
operand task to be processed. If its value is true for OK
or false for AND then the application of the parallel
operator will return this value as its result.

Bach program is evaluated in the model under different
strategies of spawning where a strategy is determined by

the particular threshold imposed. All strategies are
bounded by two extremum cases.

The Totally sequential case where only a single

evaluator is employed. This evaluator simulates the
parallel evaluation of all tasks. So the partial order of

tasks represented by the graph in figure 4-4 (a) is
flattened to a total order.

The Maximally parallel case where a new evaluator is
employed as soon as a task is created. Between these two
strategies there is a spectrum of strategies which result
in imposing an order on tasks otherwise unordered.

A series of experiments is performed for each program
under different strategies. The outcome of each experiment
for each program apart from its result provides the
following information.

The number of steps performed by the initial evaluator,
as a percentage optimisation over the number of steps under
totally sequential strategy.

The number of lock steps of the initial evaluator.

■■ *:.n: *!.»!• >"! t'v'.'V'i'.?'!

'62

These constitute actual delay in the overall evaluation.

The total number of lock steps indicating the amount of
interference between, evaluators- The performance in each
experiment is plotted against the corresponding strategy.

Sample points taken at regular intervals during the
evaluation which show the number .of tasks being processed
at each sample point. The profile of an evaluation is
presented as a histogram. The results of experiments

appear in chapter six.

Simulation

figure 4.6

In the absence of real, concurrency the behaviour of the
model of parallelism is simulated by a program which

executes sequentially. Its locus of control (S-AlkrUju' s)

timeshares over the tasks so that each task is processed
for a timeslice equivalent to the execution of one
Instruction.

The interaction between evaluations of tasks is

63

modelled at instruction execution level. Modelling at sub­
instruction level would be required to examine storages
management problems for example. Such a simulation is
reported in [31]. Figure 4.6 shows how parallelism is
achieved. All tasks are .-arranged in a ring structure with
the processor going round the ring giving each task a step
equivalent to' one instruction. Tasks in wait state just
examine their 1 Stack slots to see if their assistant tasks
have produced any results. Tasks in locked states examine
the field ’’lock” of the suspension. Pending tasks which have
not ’’fired" yet are ignored.

The action of a task killing its sub-task as <it
discovers it does not need its result; any longer, is assumed,,
to occur instantaneously before any other task changes
state. This is a rather ideal situation since the problem of
identifying irrelevant tasks and terminating them in order
to recover the portion of resources allocated to them is not
a trivial problem [20,32,33]. The main problem is that of>
"chasing" where if the number of newly generated, tasks,
sub-tasks of a killed task, which receive the attention of
processors, grows faster than the rate of killing them then
this can result in •the machine being taken over by
irrelevant tasksThis is analogous to the case where a
garbage collection process runs out of space itself'while
trying to recover unwanted space in-a sequential machine.

The simulation works at a level above the problems of

64 ’ ’ V

resource allocation that a real multi-processor machine

would have to deal with. Here the main idea is to discover
the amount of parallelism ’’logically” present which can he
exploited. The simulation does not answer the problem of

whether such parallelism can he ’’physically” realised.

Prom the point of view of a parallel architecture the
ring suggests the arrangement shown in figure 4«7«

□ □ D □ □
processors

figure 4-7

The machine consists of a pool of processors and a pool of
tasks. A task has some portion of the total memory engaged.

The fact that the run time structure is highly interleaved
suggests that there must he a globally referenced memory
divided into blocks. As a task is being processed it
generates more tasks which can he processed by the current

processor or other processors. The proposals for
architectures L51,59,40] take up this problem more fully.

________________________£____________ H .__ Z___ _ __ _ 1 * * V

CHAPTER FIVE

Parallel Programs

In this chapter we examine a number of SASH programs
with the purpose of identifying evaluations that can be
carried out in parallel. In some cases the original program

must be transformed or even replaced by a more parallel
program.

An expression represented as a graph of
dependencies shows the evaluations that can be carried
in parallel. Evaluations are ordered by the
dependencies that arise in their evaluations. A
dependency indicates that computing the value of
expression requires that of another expression.

data
out

data
data

an

The complexity of evaluations is important in deciding
the grain of parallelism (.54j. This is a criterion by which
we consider, for example, the operation of multiplying two

matrices as appropriate for organising it in parallel,
whereas we consider the multiplication of two integers not
appropriate because the grain of parallelism in this
instance is too fine. Consider the program for computing
the exponentiation function

H,________ ' _ s ‘ - 1

66

expo x 1 = x
expo x n = x * expo x (n-1)

exDO x n

expo ~x (n-1)

figure 5*1 - program graph of expo

Its graph representation, shown in figure 5»1,

indicates sub-expressions x and expo (n-1) may be
evaluated in parallel. The complexity of the evaluations

though suggests rather unbalanced evaluations. This means

there is relatively little amount of work to be done in
parallel.

splitexpo x n

splitexpo x (

figure 5*2 - program graph of splitexpo
A transformation of the program produces a balanced

split exponentiation function, see figure 5*2, defined as

splitexpo x 1 - x
, splitexpo x n = splitexpo x (n/2) * v ■

splitexpo x (n-(n/2))

67

Wow we can interpret the primitive operator * as being
parallel. For that purpose we introduce an annotation

symbol ft which directs the compiler to generate a parallel
instruction for the benefit of the evaluator. Parallel

instructions' cause an evaluation path to split into
parallel paths. .

Examples from graph theory •

figure - a directed graph

Graphs model many real life situations so graph

manipulating programs are interesting cases to examine. In
particular we will examine graphs of relationships.

A directed graph G consists of a finite number, of
vertices and arcs labelled by a direction. We choose to

name vertices by integers. The directed graph shown in

figure 5*5 has vertices 1 , 2, 5 and arcs 12, 13,, 22, 2j>.
Arrows indicate the direction of each arc. We ‘ define a

function G to represent the graph. ■

G 0 = 5 ii the size of graph in vertices

G 1 = 2,5
G 2 = 2,5
G 5 = 0

The function G is passed as a parameter to graph
manipulation functions.

Example

To compute the reachability relation of a graph G , by

following the outgoing arcs from each vertex.
program

Rel G =
FOR 1 (GO) reach
where
reach i = i, ‘ to",extend () i , nl
extend sofar i = MEMBER sofar i -> ()

URION arcs succs
where
arcs = G i
succs MAPUNITE (extend (izsofar)) arcs

The standard functions FOR, MAPUNITE,UNION and MEMBER
are defined by the following Glauses

777^ 7^77"
69

POR a B f = a > b -> 0

f a : POR (a+1) B f
MAPUNITE f 0 = 0
MAPUNITE f (a:; x) = UNION (f a) (MAPUNITE f x)
MEMBER () a = false
MEMBER (a:x) a = true
MEMBER (a:x) B = MEMBER x B

UNION () y = y
UNION (a:x) y = MEMBER y a -> UNION y x

a : UNION x y

Sets are represented By lists. The output of the

function EOR is a list. This represents the reachability
relation (can Be thought of as a new graph) for the input
graph. The components of the list are computed sequentially
as the list is Being printed.

Parallelism manifests here as parallel evaluation of

the list’s components. This is effected By defining a
function SPLITPOR which computes the list as a Balanced
tree (represented as a list of lists) and then flattens the
tree into a linear list By the APPEND function.

SPLITPOR a a f = f a,
SPLITPOR a B f = APPEND (SPLITPOR a mid f)

(SPLITPOR (mid+1) B f)
where
mid = (a+B)/2

APPEND h t = h++t

70

To transform the function SPEITFOR to a parallel
function we use the function STRICT which simulates
simultaneous call-by-value on the operands of append, this
is defined as call-by-parallel. Note there is always a
choice to be made concerning the grain of parallelism which
selects a certain function to be transformed into a
parallel one. This involves apart from the structure of
the corresponding flow graph knowledge of the complexity of
the function. Whether this is left to the user to decide or
for the system to cope with automatically is an open

question. For example the function MEMBER which scans a
list could also be chosen for parallel transformation.

Example 2

A directed graph G is called cyclic if there exists a

vertex which can reach itself. To test whether a given
graph is cyclic we use the function extend defined in the
previous example.

program

cyclic G cycleat 1

where
cycleat i i > G 0 ->false

MEMBER path |# cycleat (i+1)

where
path = extend () i

3?
The evaluations of sub-expressions

MEMBER path i cycleat (i+1)

■B
--.-J-'

71

operands to the parallel operator \# (parallel-or) can be

carried out simultaneously. The relative complexity of the
evaluations suggests that they are unbalanced. So we must
transform the function cycleat so that the looping it
entails is unfolded in a tree structure with the operator
I# at the nodes.

cycleat i i = MEMBER path i

where
path = extend () i

cycleat i j= cycleat i mid j# cycleat (mid+1) j
where
mid = (i+j)/2

Example 3

Modify the previous program to compute the vertex at

which the cycle starts. We can modify the function cycleat
to return the name of the vertex instead of true and the
empty list instead of false.
program

cycleat i i = MEMBER path i -> i ; ()

cycleat i j = or (cycleat i mid)

(cycleat (mid+1) j)
or left right = right=() ->y left

right

To effect parallelism we define a parallel conditional
operator -># which evaluates the predicate expression and

•T7TV
72

the left alternative in parallel. Note the because of the

data dependency of the predicate to the right alternative
we do not need a full parallel conditional. A second
annotation mark would be required to define such an
operator. Termination of the predicate with the. value
false causes the evaluation of the left alternative to be
forcibly terminated, if it is still going on, as
irrelevant.

Example 4

A vertex of a directed graph is called terminal if a

directed cycle cannot be reached from it. If a graph is not
cyclic the set of . terminal vertices consists of all the
vertices of the graph.

Compute the set of terminal vertices of a directed graph.

program

terminals G -

FILTER term (COUNT 1 (GO))
where
term i = ~nont i

nont i = OR (MEMBER path i : MAP nont path)
OR () = false

OR (a : x) = a j OR x

we use the function "extend” from example 1. The function

COUNT computes the list 1, 2,(GO) which is filtered
to leave in only those components (vertices) which Satisfy

75
•■■ ’: A;
——.

the predicate term. We choose to parallelise the function
FILTER. We replace the list 1, 2, ...(GO) by introducing
an extra parameter in FILTER and apply the split

transformation to it.

FILTER p n n = p n -> n,
0

FILTER p n m = APPEND (FILTER p n mid)
(FILTER p (mid+1) m)

where
mid = (n+m)/2

now APPEND is prefixed by STRICT as in example 1. Further
parallelism is possible from the function OR which scans a
list looking for the object true as soon as it finds this
object it returns it as its result, otherwise it returns
the object false. The parallel OR function is defined as

follows

OR () = false

OR (a:x) = a |# OR x

note since the sequential function OR does not need to
evaluate all the components of the list, only as far as the
first true, the parallel OR function involves evaluating

components in anticipation that their value might be

needed.

Example 5.

In a directed graph when a vertex v has an arc to a

y.'.; y, VMM y ® -y W' *-y-?

74

vertex u then the vertex u is called the successor of v and
v is called • the predecessor of u. For some vertex i the

minimal transition pair with i as the initial vertex is the
smallest pair of sets M and W such that

vertex i is a member of M
all successors of M are members of W
all predecessors of W are members of M

The following program computes the sets M and W for a
given graph g which satisfy the above conditions.

mtpair g

where
MW mset nset = c1 & c2 -> mset,nset

MW (c1 -> mset ; msetl)
(c2 -> nset ; nsetl)

where .

c1 = SUBSET succs mset
c2 = SUBSET preds nset
succs = MABUWITE succ mset
preds = MABUWITE pred nset

nsetl = UWIOW nset succs
msetl = UWIOW mset preds

succ v = g v
pred v = FILTER (arc v) (COUNT 1 (g 0))
arc I i = false
arc I j = member (succ j) i
COUWT a b = a > b -> ()

a : COUWT (a+1) b

■;? *
75

The function COUbT computes the list 1, 2,n which

is the list of vertices of the input graph .g .
An undirected graph, shown in figure 5«4, is

represented here with a double arc.

figure 5*4 - an undirected connected graph

such a graph is called connected if every vertex is
reachable from any other. An undirected connected graph is
called bipartite if its vertices can be partitioned in two
sets M and N such that no edge (a double arc) joins two
vertices of the same set. To solve the problem whether a

given graph is bipartite can be programmed as follows

Let i be an initial vertex, say 1. We can use the ’

function ML, defined above, to assign the vertices to two
sets M and M such that vertices joined by an edge are
assigned to different sets. As the graph is connected all
vertices will be assigned to at least one set. The graph is
not bipartite if a vertex has been assigned to both sets.

program

bipartite g - empty (INTERSECTION M N)

where
empty () = true

empty s - false
M,N = MN (1 ,) (suec 1)•

Note since vertices are Joined by double arcs there is

no need for the function pred, just use succ. The empty set

is represented as the empty list (). The function
INTERSECTION computes the denoted set operation. In order
to transform mtpair into a parallel program the operator &

is replaced by the parallel operator so that sub­
expressions c! and c2 ard evaluated in parallel. Since

is strict in only one of its operands (see the PaR-aNL'

instruction in chapter three), termination of one of the
evaluations, say cl for example, giving false causes the
termination of the evaluation of c2 as irrelevant.

Note that it is possible that the value of c2, for

example, will be required by the evaluation of the
expression

the graph of "MN” in figure 5.5 indicates that the latter
evaluation is data-dependent on the evaluation,
characterised by the operator &# as speculative. This
suggests that both the Values of c1 and c2 must be found
before the operator &# is applied. So the sub-expression

c 1 & c2

in the sequential program is replaced by '

STRICT and c1 c2

where the function ’’and” is defined by

and x y = x & y

Example 6_

To test whether a function contains a zero in a given
interval within a given accuracy criterion (the local
version of SASL does not cope, at present, with real numbers
but the program will work on a variety of ’’scaled” integer
functions).

5 78

The method of solution is to divide the given interval
into two sub-intervals and search for a zero of the function
in the sub-interval which indicates the function crosses the
x-axis. If neither sub-interval indicates this condition
they are searched left to right by being subdivided further.
program .

Root f x y e = x-y < 2*e ->
negsign x y ->'root is ”, mid

. 'no root found”,
negsign x mid -> left
negsign mid y -> right
ONEOF left right
where

negsign ab = f.a*fb <0
left = Root f x mid e
right = Root f mid y
mid = (x+y)/2

ONEOF m n = isnroot m -> n
m

isnroot (mesg:x) = x = ()

Parallelism here manifests as splitting the interval and
pursuing the test on each sub-interval in parallel. Success
on one of the sub-intervals renders the search in the other
as irrelevant (if one is looking for just one root).

J.’

79

Again the full parallel conditional operator was not
needed. Only the condition and left alternative need he
evaluated in parallel. Note that for the particular case
where the pattern of searches followed by the sequential
program is optimal, this occurs when the sequential program
never takes up a right half interval, the introduction of
parallelism does not improve the performance. In general
though we can'safely assume this will not be the case. Note
also that as soon as a path hits success this is detected

by the immediate application of ONEOE and reports it to the
outer application of itself so that the answer reaches the
top of the tree causing termination of search paths on its
way. This is effected by replacing -> by the parallel
operator -># in the body of the function ONEOE (see example
5).

Example 7.

The program to compute the moves of discs which solve

the towers of Hanoi.
program

Hanoi 0 (a,b,c) = ()
Hanoi n (a,b,c) = Hanoi (n-1) (a,c,b),

move,
Hanoi (n-1) (b,a,c)

where
move = ’disc ”,a,’ to”,c

To transform the function Hanoi into a

- .<>* - f•

parallel

80

function we just replace the two occurences of comma by a
function comm2 and use STRICT to force call-by-parallel on
the parameters of the function comm2.

Hanoi n (a,b,c) = STRICT comm2 1 r

where
comm2 1 r = l,move,r
1 = Hanoi (n-1) (a,c,b)

r = Hanoi (n-1) (b,a,c)

Note that no transformation of the program to enhance
parallelism is required since the evaluation of sub­
expressions 1 and r are of the same complexity.

Example 8

To compute the matrix product of two matrices. In order

to present a clearer program let us assume the matrices are
square of dimension n, power of 2. A matrix is represented
as a list of lists in row order. For example the
expression

((1,0),(0,1))

represents the unit square matrix of order 2. We define the
product in terms of inner product operations between
vectors. A row or a column of a matrix constitutes a
vector. The inner product function IP is defined by the

following Clauses
IP 0 0 =0

*IP (r : x) (c : y) + IP x y

j__:____________d...if?;___ lAkn-R <_________ ' ' “ i - '< »1 f

81

a matrix is transposed by the function transpose below

transpose M = map hd M : transpose (map tl M)
hd (a : x) = a
tl (a : x) = x

The ith row of the product matrix is formed by taking

the inner product of the ith row of matrix M with all the
columns of matrix N.
program

multiply M N = mult M (transpose h)

mult () cols = ()
mult (r : rows) cols = new r : mult rows cols

where
new row = MAP (IP row) cols

We identify parallel evaluations at the level (grain)
of function mult where the operands of : can be evaluated
in parallel. Similarly at the inner level of MAP used by
the function new and finally at the level of function IP.

The infix operator : can be replaced by a function cons
and then we can use the function STRICT to force call-by~
value on the actual parameters of cons. The complexity of
the function new and more obviously of IP with respect to

the complexity of the whole program suggests that we only
consider parallelism at the level of the function mult.
Note that had we decided to consider parallel evaluations,

say at the level of function IP, we would need to transform

82

this function in order to balance the tree of evaluations

that the parallel + operator gives rise to.

The same criticism applies in introducing parallelism

at the level of function mult whose parallel balanced
version may be defined as follows

mult rows cols = split 1 (LENGTH rows)

where
split i i - new (rows i),

split i 3 = STRICT APPEND
(split i mid)
(split (mid-t-1) i)

Now the rows of the product matrix are computed in

parallel. Closer examination of the algorithm shows that
each such evaluation requires access to the column matrix
cols. This implies the evaluations cannot proceed
independently of each other. In order to obtain an

effectively parallel program for matrix multiplication we
therefore look for a different algorithm, in fact the

function split above provides the idea. The computation of
an element is given by the formula •

c. • = a-, b • + a;-> b • + a--, b • +tj t1 1J lk kJ 3J

Let us consider multiplying matrices A and B obtaining
matrix C, all of dimension n, a power of 2.

—----------------- 3----------------------.— t u * i i ,, ! f - i,.-

82

this function in order to balance the tree of evaluations
that the parallel + operator gives rise to.

The same criticism applies in introducing parallelism
at the level of function mult whose parallel balanced

version may be defined as follows

mult rows cols = split 1 (LENGTH rows)

where

split i i = new (rows i), .
split i j = STRICT APPEND

(split i mid)
(split (mid+1) j)

Now the rows of the product matrix are computed in

parallel. Closer examination of the algorithm shows that
each such evaluation requires access to the column matrix
cols. This implies the evaluations cannot proceed
independently of each other. In order to obtain an
effectively parallel program for matrix multiplication we
therefore look for a different algorithm, in fact the
function split above provides the idea. The computation of
an element is given by the formula

a b + a b + a b +

Let us consider multiplying matrices A and B obtaining
matrix C, all of dimension n, a power of 2.

A.>
83

we can divide matrices A and B so that they form (2X2)

matrices whose elements are (n/2)X(n/2) matrices. An
element Cij of the product matrix is computed using the

same equation as above, for example

% A B +
11 11

A BU 2-1

hut the operands of addition and multiplication are
matrices. The equation indicates the two multiplications

can he carried out in parallel. Bote each multiplication
between the matrices A i j and B i j , of dimension n/2

will give rise to parallel evaluations of matrices of
dimension n/4 and so on until multiplication of atomic

operands is reached.

The computationthis algorithm implies recursively sub­

divides into non-trivial independent evaluations. The new
algorithm for matrix multiplication is yet another example

of the approach to problem solving known as the Divide-
and-Conquer method. In fact we have already encountered

many examples of this method when the functions splitexpo,

SPLITPOR, cycleat were defined. Programs implementing this
type of algorithm are ideally suitable for parallel
evaluation, since their evaluation splits evenly into sub­

evaluations. These can be carried out in parallel.

In order to change the representation of a (nXn) matrix a
so that A i j is not an integer but a (n/2.) X (n*/-2) matrix
we define a function make2 to do the conversion.

84

- -,'l-

make2 A n = G .-J
.< ??where 7^

G 1 1 = P

where P i j = A i j :5
G 1 2 = P

where P i j = A i (j+offset) |
G 2 1 = P ;1

-
where P i j = A (i+offset) j

G 2 2 = P
where P i j = A (i+offset) (j+offset)

offset = n/2

Since the results of operations are square matrices
printed as lists of lists, we define a function MATRIX

which produces a square matrix

MATRIX n e = POR 1 n r

where
r i = POR 1 n c

where
c j = e i j

The addition of matrices of dimension k, represented as
2X2 matrices with elements matrices of dimension k/2 is
defined by function SUM as follows

SUM P G 1 = P + G
SUM P G k = MATRIX 2 e

where

1

e i j = SUM (F i j) (& i j) (k/2)

‘ ‘ . . * ‘A,’' - • - ' '«* '■ ' „ ' .

•* - ;p’«p > ; - x -■ '

85

The multiplication of 2X2 matrices is defined in terms
of the function MATRIX as follows-

mult2 A B = MATRIX 2 ((A i 1 *B 1 j)+(A i 2*B 2 j))

Now we can define matrix multiplication anew in terms
of the functions mult2, make2, MATRIX and BUM
program

multiply A B 2 = mult2 A. B

multiply A B n = mult A2 B2 (n/2)
where
A2 = make2 A n
B2 = make2 B n

mult M N k = MATRIX 2 e
where
e i j = SUM (multiply (M i 1) (N 1 j) k)

(multiply (M i 2) (M 2 j) k)
k .

We identify parallelism at the level of function MATRIX

where the elements of the matrix can he evaluated in
parallel. This is effected by transforming PUR into a
parallel function. Note that since the first parameter of

MATRIX is 2 the function POR produces a 2-list so that
there is no need to transform POR to the function SP1ITPOR,
we have met this function in example 1.

Parallelism is also identified at the level of function
e where the operands of the function SUM can be evaluated

f--;

86

in parallel. We choose the level of the function SUM
"because the grain of the function MATRIX overwhelms the
simulator, even for a small (8X8) matrix.

Note the hulk of the work is done at the level of the
function SUM and although an element may he evaluated
before another is it has to he printed in a particular
order. To effect parallelism the function STRICT is used

to perform call-by-parallel on the operands of SUM

e i 3 = STRICT SUM (multiply (Mil) (N 1 j) k)
(multiply (M i 2) (N 2 j) k)

k

Example 9

To sort a list of integers in ascending order. There
are a number of sorting algorithms [55] • We choose the sort
by merge algorithm because it employs the Divide-and-

Conquer technique. Other sorting methods such as quicksort
do this also but are not considered here. Given a list of

n numbers, split it into two sub-lists of n/2 and n+2/2

numbers and then merge the sorted sub-lists.

.A- :• ;y>: ■■?-'■ '■ ^e’ ■";?‘;?“■ Wv’ r
87

program

sort x = split 1 (LENGTH x)

where
split n n = x n,
split n m = STRICT merge

(split n mid)
(split (mid+1) m)

where
mid = (n+m)/2

merge () y = y
merge x () = x
merge (a : x) (b : y) = a <= b -> a : merge x (b : y)

b : merge (a : x) b

Note that all parallel evaluations require access to
some element of the list x.

Example 10

To compute a relation from two relations. The relations
are two tables of library information. One table gives the

relation between books and authors and the other between
borrowed books and names of borrowers. The relation to be
computed is defined as ’’the list of authors whose books are
lend to other authors”.

A table is represented by a list of pairs. Each pair is
represented by a 2-list. The list of book-author pairs is
denoted by the parameter BAL and the book-borrower list of

pairs is denoted by the parameter BBL.
program

new_rel BAB BBL = relation BBL

where
relation () = ()
relation(p:x) = rel p -> p 2:relation x

relation x
rel(bk,br) = AND(author~=(),author~=br)

where
author = BIND BAL br

AND () = true
AND (a:x) = a ~> AND x ; false
BIND () item = ()

BIND ((item,nm) : x) item = nm
BIND ((bk,item) : x) item = bk
BIND (p : x) item = BIND x item

The function BIND searches the list of pairs for an
item, if it finds the item contained in a pair it returns
the related object. Both functions relation and BIND may
be parallelised. We choose the grain of parallelism
offered by the latter function which performs BIND steps

recursing on its first parameter. We transform the

recursions into a tree whose terminals, left to right, are
the unwound recursions

89
;V

relation x = split 1 (LEECTR x)
where

split n n = rel (x n) -> x n 2,
0

split n m = APPLE! (split n mid)
(split (mid+1) n)

where
mi d = (n+m)/2

By prefixing APPEL! with the. system function STRICT a
parallel program is obtained.

Example 11

A partition of an integer n is a collection of positive
integers whose sum is n. The integers in the collections
are called the parts of the partition. We do not impose any
other restrictions on the partitions. Consider the
partitions of the first three integers.

1
2 11
5 21 12 111

We see that the partition of 3 is generated from those
of 2 and 1 by extending (prefixing) the partitions of 2
with 1 = (3-2), obtaining 12 111 and of 1 with 2 = (3-1)
obtaining 21 and finally of 0 which is empty (nullpart)
with 3 = (3-0) to get 3-

90

program

nullpart = (),
part 0 = nullpart
part n = fora 1 n last

where

last i = prefix i (part (n-i))
prefix i () = ()

prefix i (p : x) = p=nullpart~>(i,) : prefix i x
(i : p) : prefix i x

fora abf = a>b-> ()
f a ++ fora (a+1) h f

By paralleling function fora, the partitions may he

generated in parallel.

fora a h f = a=h -> f a,
STRICT APPEND (fora a mid f)

(fora (mid+1) h f)
where

mid = (a+b)/2

Note that same partitions are recomputed, following the
technique of L36] we modify the function part to he a memo

function which remembers previously generated partitions.

T7T

91

partlist = MAP part (from 0)

part n = fora 1 n last
where

last i = prefix i (partlist (n-i+1))

Example 12

To generate the permutations of set of integers. We

take the solution given in the Sasl manual L 4-J •
program

perms () = (),

perms x = f x
where

f (a : y) = MAP (cons a) (perms y) ++
g (y ++ (a,))

g y = y = x -> ()

f X

Similarly here replacing ++ "by the function APPEhil) and
using STRICT to effect simultaneous cal1-by-value of the
parameters of APPEED, the evaluation path splits into

parallel sub-paths. One path computes the permutations of a
list of numbers where the first element is fixed. The other
rotates the list and computes its permutations. Each sub­

path follows the same split pattern.

let us consider the same algorithm expressed somewhat

differently so that parallel paths are of the same

92
A- ,'S*

complexity, where the loop defined hy g has been taken out
and externalised.

perms x = MAP f x
where

f a = MAP (cons a) (perms (diff x a))

diff 0 a = 0
diff (a •« x) a = x
diff (b •• x) a = diff x a

we replace MAP by the function ’’split”

perms x = split 1 (LENGTH x)

where

split n n = f (x n),
split n m = STRICT APPEED

(split n mid)
(split (mid+1) m)

where
mid = (n+m)/2

Example 1

The (peens problem where the queens are to be placed on
an (nXn) board in such a way that none checks any other.

We use the solution of [4j where the board is represented
by a list. The components of the list represent the columns

of the board. Each component is an integer and its value
represents the row of the board.

•k'?’ A*S'1 jfl ' ill: k"‘ •1-k

92

xir 7777

complexity, where the loop defined by g has been taken out
and externalised.

perms x = MAP f x
where
f a = MAP (cons a) (perms (diff x a))

diff () a = ()
diff (a : x) a = x .
diff (b : x) a = diff x a

we replace MAP by the function ’’split”

perms x = split 1 (1EEGTH x)
where

split n n = f (x n),
split n m = STRICT APPRO

(split n mid)
(split (mid+1) m)

where -’
mid = (n+m)/2

Example 15

The queens problem where the queens are to be placed on

an (nXn) board in such a way that none checks any other.
We use the solution of [4j where the board is represented
by a list. The components of the list represent the columns
of the board. Each component is an Integer and its value

represents the row of the board.

93

program

soln q b = q > 8 -> alter b
safe q b -> full q b -> q : b , soln (q+1) b

soln 1 (q:b)
soln (q.4-1) b

The algorithm starts from an initial position and
either extends if the safe condition is satisfied or it
modifies it to for a safe condition. It backtracks when a

safe condition must be found.by altering previously placed
queens. Intuitively , we feel that fixing the initial

positions and pursuing them In parallel to success or
failure without backtracking will give us a parallel
program. Allowing backtracking means that parallel paths
may converge on the same route.

FOR 1 n initial
where
initial = soln (1,)

soln b - safe b -> full b ->b
FOR 1 n extend
where
extend q = soln (q : b)

By parallelising the list generator function FOR we

easily obtain a parallel program. In fact we only transform
the first occurence of FOR

overwhelms the simulator.
otherwise the run time structure

' 94
■IV< I-?-.’-?-,

To program the numerical method of solving Laplaces's
equation on a rectangular grid with given boundary values.

This problem is programmed on the Data Flow computer Lb? J

using a different approach to parallelism.

Initially the interior points of grid are given
estimated (guessed) values and a new point on the grid is

computed using the formula

un i j = (un i-1 J + Un l+1 j + un i 1 + un 1 j ~1 4

where n is the iteration step and i and j vary over the

rows and columns respectively of the grid. The interior of

the grid is iterated until successive values on each point
differ by a given amount, which characterises'the1 degree of
accuracy of the approximation. The initial grid is given a

constant value on all the interior points. The choice of
initial value affects the number of iterations required to
achieve convergence.

‘1- : L:'.v ,Viir d

95

program

output

where .
R = NO_OF_ROWS
C = NO_OF_CODS
BOUND_VALUE = ... Ha R-list of C-lists

output = MAP grid (from 0)

grid 0 = INIT_GRID

grid n = FOR 1 R r
where
r i = FOR 1 C c

where
c j = BOUNDARY (i,j) -> BOUND_VALUE i j

(output (n-1) i (j-1) +

output (n-1) i (j+1) +
output (n-1) (i-1) j +
output (n-1) (i+1) j
)/4

BOUNDARY (i,j) = OR (i=1,i=R,j=1,j=C)
OR () = false

OR (a:x) = a J# OR x
from n = n : from (n+1)

The function ’’from” it produces an infinite list which
plays the role of the loop control variable in imperative
programming.

96
-> if'-'

The grid is represented as a list of lists. The output
of the program is an infinite list denoted by the
identifier ’’output”. Each component of the list is a grid.

Note the lazy evaluation mechanism of SASB enables output
to be received from such an infinite computation. The
pattern the computation follows is "compute a component of
the list, print it and do the same for the rest of the
list". When convergence is achieved we interrupt the
computation. This can be determined by comparing the values

printed out. A better solution where convergence is tested
from within the program might be preferable but this
program is adequate to demonstrate the idea of successive
approximations being generated. .

The algorithm adopted here can be thought of as a
"bottom-up" method of solution. The evaluation of each new
point comprises a rather trivial computation path. One way

to extract parallelism is to divide the grid into sub-grids
and compute each in parallel. The amount of parallelism
obtained in this way depends on the size of the grid. But
even a relatively small grid may involve a large number of
iterations before convergence is achieved. This makes the
amount of work on each sub-grid comparatively small.

In order to extract parallelism in the form where the
whole evaluation process sub-divides into non-trivial
smaller evaluations it seems we must adopt a "top-down"
method of solution, where the result of the program is just
the grid after a number of iterations. Intermediate grids

■: ' ' 97

not being printed. In this way the evaluation of each point
on this "final” grid involves a respectable amount of work,
program

output k = FOR 1 R r
where

r i = FOR 1 C c
where

c j = U k i j

U 0 i 3

U n i 3

INITJJRID

BOUNDARY (i,j) -> BOUND_VALUB i j

(U (n-1) i (j-1) +
U (n-1) i (j+1) +
U (n-1) (i-1) j +

U (n-1) (i+1) 3
)/4

The + operators are marked as parallel +# and the
arithmetic expression of the form A + B + C + D is re­
arranged to (A + B) + (C + D) in order to have balanced
paths.

Since SASL does not support a package for simulating
real numbers we were not able to test this program properly

but only from the point of view of unfolding the recursions
in parallel.

<
’■-LLh

> *

98

Example 15

To program a parser for Lambda Calculus strings defined
'by the following syntactic rules expressed in BNF (we use L
instead of for typographical reasons).

wfe = var ! lamb var . wfe I (wfe) ! wfe wfe
var = a I h ! n !

The syntax specification for a well formed formula of
Lambda Calculus is that it is either a variable or a
function or a bracketed well formed expression or a
concatenation of well formed formulae. First of all
immediate recursion is removed from the above syntax
specification by introducing extra rules.

wfe = e1 ' fun
e1 = e2 { e2 }
e2 = var ' (wfe)
fun = lamb var . wfe
var =aibjc|xiyiz

where { } indicate zero or more repetitions of the
enclosed object. For simplicity the syntactic variable var
is assumed to vary over just six names. For each syntactic
variable a function is defined which recognises whether that
entity occurs at the front of its input string. Such a
recogniser function returns two results. A logical
indicating success of failure to recognise the item and the
remaining of the input string after the item has been taken

' .i ft. r ■>£ n;• y-ft T. ft-;;, V ,

99

from . the front of the input string. A recogniser
corresponding to the left hand side of a syntactic rule
uses recognisers corresponding to the right hand sides of
rules.

A recogniser for a terminal symbol is a function which

tests whether a particular string occurs at the front of
its input string, ignoring leading spaces. So the test is

string equality. In order to avoid defining a separate
recogniser of each terminal, a function which takes a
string as its input and returns a recogniser for that

string is defined.

term pattern string = f pattern string
where
f p () = false,string
f () s = true,s
f p (% :s) = f p s
f (a:p) (a:s) = f p s

f p s = false,string

so the symbol (is recognised by a function bra defined as

bra = term ’(”

The alternative (|) BMP symbols are defined by a

function bar which takes a list of alternative recognisers
as its first parameter and an input string as its second
parameter and tests whether the front of the string can be

recognised by any of the recognisers

bar () string = false,string
bar (red : x) string = r1 -> true,s1

bar x string
where
r1 ,s1 = red string

thus var is defined as

var = bar (a, b, c, x, y, z)

and further for a,b,c,x,y,z, lamb

var = bar (map term ('a”,'b”,’c",'x",’y",’z"))
lamb = term ’L”

similarly concatenation is defined

cone () string = true,string

cone (red : x) = r1 -> r2 -> true,s2

false,string
where

r2,s2 = cone x s1
false,string
where

r1 , s1 = red string

Using the function cone we can define a recogniser for
the category funct as follows

funct - cone (lamb , var , dot , wfe)

dot = term '."

101

Using bar and cone defining repetion is developed as

follows .

repet obj = bar (obj.... obj , zero)

zero string = true,string
obj.... obj = cone (obj , repet obj)

thus finally in legal SASL

repet obj = bar (cone (obj- , repet obj) , zero)

Now we are in a position to define the complete parser

wfe using the recognisers defined already

wfe = bar (e1 , func)

e1 = cone (e2 , repet e2)
e2 - bar (var , cone (bra , wfe , ket))

To identify what can be done in parallel the functions

bar and cone are analysed by unfolding their graghs. The

graph of bar is shown in figure 5.6

bar (red : x) string

r1
1
red string

brue,s1 p^bar x string

figure 5.6 - program graph of ’’bar”

it suggests that the condition and right alternative of the

conditional operator may be evaluated in parallel. In order
to use the parallel operator ->ff already defined r1 is

t
A AlAA-A - A-A A AAA>A-As

102

replaced by ~r1 and the alternatives of the conditional are

swapped.

The graph of cone is shown in figure 5>«7

figure 5«7 - program graph of "cone"

it indicates that the sub-expressions

red string cone x s1

cannot be be evaluated in parallel since the latter is data
dependent on the value denoted by s1 which is part of the
result of the former. Thus the function cone is
characterised as essentially sequential.

Finally, the ’’split” transformation applied to the
function ’’bar" gives us the following balanced function

bar x string = split 1 (LEhG-Th x)

where '
split i i = x i string

split i j = ONEOF
. (split i mid) (split (mid+1)

where mid = (i+;i)/2

103

ONBOP 1 r = ~hd 1 -># r ; 1

', ' ■ ' • "i'‘' ■ ' - ’••
104

CHAPTER SIX

Results

In this chapter we analyse the results, obtained by
running the programs developed in chapter five, on the
parallel evaluator (see chapter three and four) and comment

on the method by which parallel programs are derived from
sequential ones.

Simulation results are presented in the appendix, in
the form of tables. Tables numbered n.1 and n.k correspond

to the example program numbered n in chapter five. What do
the tables mean ?

As we have discovered in chapter five a (parallel)
program task decomposes into a tree of sub-tasks. A special

case of this is the program which tests a directed graph
for the bipartite property (Example 5) where its evaluation
only occasionally decomposes into two sub-tasks and the

rest of the time it consists of a single task.

The evaluator has a choice of evaluation schemes at its
disposal. This is controlled by an input parameter (see
below about ’’strategy”) of the simulation. The most obvious
schemes are two, the totally sequential scheme where no
parallelism is invoked at all and the other is the
maximally parallel (most eager evaluation) scheme where as
soon as a sub-task is created it is assigned to an

evaluator. The sub-task is processed independently of the

105

main task and its associated evaluator is an assistant to
the one processing the main task. In between these extreme
evaluation schemes there exist a number of evaluation
schemes each dictating when evaluations are “forked out”

from ongoing evaluations. Thus certain tasks which would be
processed in parallel under the maximally parallel scheme

are evaluated in sequential order under an “in-between"
scheme. Note that although the evaluator's behaviour seems

to vary between eager and lazy evaluation this is not
strictly accurate since call-by-parallel has replaced
call-by-need (see chapter two) even in the absence of

parallelism due to the dictates of a particular scheme. In
this case the evaluator simulates the parallel evaluation

of sub-tasks. Each evaluation scheme is called a
"strategy" of the evaluation mechanism. Below we explain
how strategy is quantified.

The simulation we have constructed sets out to discover
how to exploit the parallelism "inherent" in the programs
of chapter five by testing different parallel evaluation
schemes (strategies). The effect of each scheme is measured
by the resulting length of computation (number of main
evaluator's steps).

The performance under each parallel evaluation scheme
is calculated as a percentage improvement over the length
of computation under the totally sequential scheme. Thus in
table 1 .2 for instance a particular strategy (horizontal
axis) of 10% (see below) achieves 60% gain in performance

—■;1 =•■''"' iz. ;. --.
1 06

(shown in the vertical axis).

Strategies

A particular strategy dictates when each evaluator is
to ’’off-load” (logically) a sub-task to an assistant
evaluator. This is when a parallel activity is to be set
up. A strategy models the degree of parallelism employed in
a real machine consisting of multi-processors for a given
program.

So under a strategy a certain amount of work is shared

amongst evaluators and a corresponding improvement over the
sequential strategy (just a single task, the main one) is
expected.

A strategy amounts to an assumption concerning the

pattern of resource allocation in a real machine. In this
study we have assumed that an evaluator gets the benefit of
an assistant after it has performed a certain amount of

work. During this time it may have generated some or no new
(sub-) tasks. In the former case these are assigned to
assistant evaluators as the particular strategy dictates.

The condition of unbounded parallelism (number of

assistants or number of ”off-loadings”) is assumed.
The ’’amount of work” (or ’’time") referred to previously

is based on three types of measurement

(a) the number of steps
(b) the number of CODON steps (list cell creations)

107

(c) the number of APPLY steps (function applications)

we have found that all three methods of measuring the
amount of work give approximately the same results.

Each strategy is represented by a percentage, input to
the simulator. For example, a strategy of 10% indicates

that each evaluator is allowed to obtain an assistant
whenever the work it has done exceeds 10% of the total
amount of work the program would have entailed under the
totally sequential scheme. This is done in order to
meaningfully compare results from programs of different

computation lengths (number of steps). If a program is

evaluated under a more eager strategy, say 5%, modelling
the case where the machine is bigger, we wish to discover
the corresponding effect on the performance of the program.

Thus 0% represents the maximally parallel scheme and 100%
represents the totally sequential scheme.

The simulation has a twofold significance. On one hand
we use it to discover the amount of parallelism in programs
and on the other it indicates a scheme of machine program
organisation suitable for an environment which incorporates
parallelism.

The histograms, tables numbered n.1, give us an idea of
the run-time profile of each program under the 10%
strategy. The vertical axes of tables n.1 show the number
of evaluators processing tasks and the horizontal axes show
time in terms of computation length. We discovered that

—

108

the shape of histograms generally remains the same for
different strategies so only the 10% case is shown. A
histogram indicates the amount of work that can be done in
parallel over time. We also compare histograms against our
intuition about what programs do.

Parallel programs

In this section we comment on what we have discovered
about the method of deriving (by hand) parallel programs
from initially sequential ones. First, we have found out
that parallelism needs to be expressed (effected) by two
language constructs which are introduced into SASn for the
purpose of expressing parallel programs. These are the
annotation symbol which modifies a primitive operator
to a parallel primitive operator. In particular we note

that the parallel non-strict primitive operators &ff (PAR-
AHD), |# (PAR-OR) and -># (PAR-COhDITIOhAl) express the
notion of speculative parallelism where the evaluation of
one of their operands is initiated in anticipation that its
value might be needed and terminated forcibly when
otherwise.

The other parallel construct we found to be needed is
the call-by-parallel parameter passing mechanism expressed
(forced) by the system function STRICT which operates on a
function and its two parameters.
two parameters to the function,
case of call-by-parallel was

It "passes” evaluated the
Any other more complex
handled by defining an

__ * _ _*_
.G'>‘ i

109^

appropriate (user) function in terms of STRICT and auxiliary
functions (see chapter two).

Note that our approach does not rely on explicitly
creating and synchronising "processes” so that;we avoid the
problem of the run-time management of parallelism at this
level. We have resortedLto the use of parallel constructs,
taking caution against non-termination, for the purpose of
experimentation , of controlling thel"grain" of parallelism,
avoiding non-useful parallelism and finally since call-by­
need cannot be replaced by call-by-parallel (a case of
call-by-value) without introducing non-termination (see
chapter* two)., .

In order to identify parallelism in a program we proceed
from the top (outer) level function definitions to the inner
ones. Each time we enter a level the "grain" of parallelism
becomes finer. ’The corresponding program graph identifies
the data dependencies. For instance in the example 15
(parsing strings), the graph of the function "cone"
indicates a sequential function whereas parallelism was
identified at the level of the function "bar" which has a
similar structure as "cone" but no prohibiting data
dependencies. .

Parallelism can be seen from performance < graphs to be
most enhanced if the program graph is balanced in the sense
that the sub-expressions to be evaluated in parallel are of
similar complexity. This is enforced when the Divide^and-

....... - ' :___ f - ‘ ~

110

In some cases parallelism manifests itself as parallel
evaluation of a list's components (when its length is

finite). For example expressions of the form ,

a : b : c : ()

c

figure 6 1 -program graph of a list evaluation

whose graph, shown in figure 6.1, suggests that the

representation of a list "by a two field data structure (a
cell) gives a rather unbsllanced tree of tasks.

APPEND

figure 6.2 -transformed program graph

In order to obtain a balanced tree the operator : is

replaced by the parallel function APPEAiD (defined in

chapter five), the
shown in figure 6.2.

APPEND requires us

graph of the transformed expression is
The functionality of the function

to change the components a,b ... into

111

1-lists (a,), (b,), • ••, this is a rather ad-hoc solution.
Keller [41] avoids the overhead introduced by the function

APPEND by proposing a different data structure to the list
cell.

Here a connection with the work of Darlington [45j is

apparent. A system of formal derivation of parallel
programs from initial sequential ones or from initial
specifications of programs is desirable. Eor example it is
interesting to speculate whether the parallel matrix
multiplication program (Example 9, chapter five) could be
formally derived from an initially sequential one.

The parallel program for the queens (Example 15,
chapter four) was obtained by reprogramming where

backtracking was eliminated in favour of forward moves.
Here we also note a certain inelegance since a path of
forward moves which fails to arrive at a solution is
represented by the empty list ”()’’ which appears in the

output of the program since it is generated. The
introduction into SASL of set expressions L55] which
evaluate to lists avoids the generation of unwanted
components of the output list.

The case of the numerical program for solving a partial
differential equation on a rectangular grid (Example 14,
chapter five) required reprogramming in order to compute
the result of the computation in a ’’top-down” fashion

instead of the ”bottom-up” method of the initial sequential

112

The run-time results

In this section we analyse the results, shown in the

appendix, of running the example programs, developed in
chapter five, on the simulator we have constructed (see
chapter three and four).

The tables 1.2, 2.2, 3*2, 5.2, 9.2, 10.2, 15*2 indicate

that the performance of the example programs 1, 2, 3, 5, 9,
10, 15 is related linearly to the strategies of
parallelism. Tables 4.2, 7.2, 8.2, 12.2, 13.2, 14*2 show a
kind of exponential relationship. This must be due the fact
their tree of sub-tasks are well balanced.

The example 6 (computing a zero of a polynomial) was

not tested due to lack of real numbers in SAS1, though we

could have worked with some scaling. Example 11 (generating
the partitions of an integer) turns out to be essentially
sequential.

The histograms, tables 1.1 - 15.1 give us the profile
of the parallel evaluations over time. These agree with our
intuitive understanding of what programs do. For example
table 5.1 (testing for the bipartite property on an
undirected connected graph) where its evaluation can at
most decompose into two parallel (sub-) evaluations. The
histograms 2.1 (testing a directed graph for a cycle) and

3.1 (computing a vertex where a cycle starts) have a steep
end since the completion of some sub-task causes the
termination of all other tasks. The histogram of example 15

' --

115

(parsing strings), table 15*1, indicates that for most of
the time there is a single task (sequential evaluation for
most of the time) since the sub-tasks terminate rather
quickly. This is due to the fact that sub-tasks test the
legality of a sub-string of the input string to the parser.
Also parallelism is limited since it is only identified

with one function, namely ’’bar”, where all the other
functions at the same level (grain) as "bar" are
sequential. Table 9.1, corresponding to the Sort-by-merge
program, indicates that for a large part at the end of the
computation there is a single task (the main one) due to
the fact that finally two large lists have to be merged to

give the result sorted list of numbers. Merging is a
sequential "operation". Valleys in the histograms indicate
periods of sequential operations. Example 10 (computing a

relation in a library) showed a large number of lock steps
(see chapter four) due to the fact that all parallel
evaluations search two global association lists.

The more or less symmetrical histograms indicate that
at the beginning and at the end of computation the number
of sub-tasks is low, exponentially increasing (decreasing)
in between. This is due to the fact we have a binary tree
of sub-tasks and the balancing tends to be good in such
case.

Example 11, generating the partitions of an integer,
exhibits an interesting point. Under the most eager

strategy (0%) it yielded gain over the length of the

114

A- -Air

totally sequential evaluation whereas the application of
memo-isation [36] yielded 67%. This strongly suggests’" that
performance gains are obtainable by means other than that of
parallelism. ■ . '

Finally we observe that the maximum number of parallel
activities is 18 and although we have experimented with
"toy” programs we can speculate that there will .. be maximum
demand upon the resources of a real machine only for a
rather limited period.

In table 16 the SPEED UP FACTOR is shown for the
maximally parallel strategy . This is related to the
PERFORMANCE gain shown in the vertical axes of tables 1.2 -
15.2 calculated as

100 / (100 - PERFORMANCE)

"A-

i

-
115

/'>■

CHAPTER SEVEN

Conclusions

The work presented in the previous chapters has focused

on two issues. The nature of a parallel implementation of
SASL and the amount of parallelism in particular programs

exploited by the implementation.

The implementation is based on the SECD implementation

of SASH. This has been extended with primitives which
handle the interaction of a whole regime of SECD machines,

referred to as evaluators. The evaluators combine their
effort in processing a single program task. This is
possible because a program task decomposes to sub-tasks

where each of those may decompose further and so on. A

program which simulates a regime of evaluators, an
unbounded number of which is assumed, has been constructed.

The evaluation of a program gives rise to a spectrum of
behaviours in the simulator each determined by a strategy

of spawning. Each strategy of spawning represents a
particular degree of parallelism employed during the

evaluation of a program. The spectrum varies between a

totally sequential computation where just a single
evaluator is employed to process a program and a maximally
parallel computation where a new evaluator is employed

whenever a computation splits into sub-computations. Each
these extreme cases is characterised by
evaluator is employed under a certain

behaviour between
the fact that a new

■ " i'A„.

116

?Z; ';W —

constraint. This is imposed by having each evaluator
working on some task obtain assistant evaluators after it
has performed a certain amount of work and providing it has

generated sub-tasks.

The parallelism of a program is investigated by
evaluating it under different strategies and noting the
corresponding performances. The performance measure is
based on the number of evaluator's steps it takes to

process a program to completion. Each step is equivalent to
the "execution" of an SECD machine instruction. We expect
results obtained to hold true for other types of
implementations where we have different steps, for example
SK machine steps.

We discover by associating a strategy with the degree

of parallelism employed in a multi-processor machine, that
there is often a linear relationship between the
performance of programs investigated and the degree of
parallelism. This suggests that in a realistic situation,
providing the parallel implementation can be efficiently
supported doubling the size of the multi-processor machine
approximately halves the run-time.

The parallelism of programs manifests as simultaneous
evaluation of the operands of primitive operators and as
simultaneous call-by-value on the parameters of functions.

The parallel conditional operator gives rise to the notion
of an "irrelevant" evaluation where its condition and

117

alternative(s) are evaluated in parallel. The evaluation
of the alternative(s) is initiated in anticipation its
value might he needed. If it turns out that it is not
needed then it must he identified and terminated. Thus in
order to extract parallelism from programs the lazy
evaluator must he forced to do some work.

There are two problems with replacing call-by~need hy
call-by-value. On one hand it may introduce non-termination

and on the other not all function calls offer the
opportunity for useful work to he done in evaluating the
actual parameters In parallel. The latter is also true with
instances of primitive operators where the evaluations of
their operands are ordered hy a data dependency or one of
them is rather trivial. In both cases parallelism cannot he
introduced usefully. The approach we take is to introduce
source annotations which mark the primitive operators which

are to he interpreted as being parallel. Call-hy-value is
expressed in terms of primitive operators. We envisage
that further work might he able to identify such operators

partly automatically hut this is, in general not
computable. The annotations direct the compiler to produce
parallel code (parallel instructions corresponding to
parallel operators) which causes the evaluator to generate
a tree of tasks. A similar use of functions like ’’STHICT”
directs the simulator to evaluate certain arguments of
functions in parallel (call-by-parallel). A task Is

associated with the operand of a parallel operator. The

S i-y-

strategy of spawning, mentioned above, causes assistant

evaluators to ’’take away” tasks, so that when the evaluator
comes to process them they are evaluated already.

In order to identify in a program the parallel
operators, and simultaneous call-by-values a program is
represented as a graph of data dependecies. The definitions
of names are used to unfold the graph discovering the data
dependecies. In several cases In order to obtain a

balanced tree of tasks the original program Is transformed
to a better parallel program by applying a programming
technique known as divide and conquer.

We have gained considerable experience with the
parallelism of a variety of programs. The structure of a
parallel program seems to be of the following three forms.

1. The Divide and Conquer form where a program’s
evaluation recursively sub-divides into evaluations of
similar complexity, the program for matrix multiplication,
developed in chapter four, is an example of a program

possessing this form.

2. The speculative form where evaluations are initiated

in anticipation their result* (value) will be needed. The
parser for

this form.

5. The
the parallel

Lambda Calculus expressions is an example of

evaluation of a program occasionally requires
evaluation of certain sub-expressions before

119

it continues sequentially, for example the program which
tests whether an undirected connected graph is bipartite.

Note that all cases of parallelism concern deterministic
programs. The case where parallelism is introduced by non­

deterministic constructs has not been dealt with. The
introduction of non-determinism enables a certain class of
programs to be programmed in (near) applicative style L42J.
This notion of parallelism is beyond the scope of the
present study.

Parallelism may be extracted from non-numerical as well
as numerical problems alike. The example programs
investigated cover a wide range of applications.

The final word of course lies with the computer

architects. What we have examined here is the "logical”

aspects of parallelism, what can be done in parallel and
for what programs. There have been a number of proposals
for multi-processor machine designs L31,59,40j which set
out to support efficiently a notion of parallelism rather
similar to the one investigated in the present study. The
results of the present research have important implications

for such research. It is clear that many algorithms which
would not take advantage of such hardware can be
transformed into more appropriate forms. It may be that

appropriate language constructs would lead to the natural
production of parallel programs.

It seems that a risky philosophy of task initiation is

120

almost essential if advantage
parallelism and consideration
efficiency of the killing
computations.

is to be taken of inherent
should be given to the
process for irrelevant

r ■' - 5. . • f >>>- v , ,
"1

121
j

REFERENCES

1. J.Backus, Can programming, be liberated from the
Von Rewmann style? a functional programming
style and its algebra of programs
CACM 21,8 197b, pp 615-641

2. A.P. Ershov, Mixed Computation: Potential applications
and problems for study
Theoretical Computer Science
vol. 18, 1982, pp 41-67

5. P.R. Welch,

4. D.A. Turner,

lambda Calculus lecture notes 1977
University of Kent Computing laboratory
SAS1 language manual,CS/79/5
Depart, of Computational Science
University of St.Andrews, Fife, Scotland

5. R. Morrison, S-A1C01 language manual, CS/79/1
Depart, of Computational Science
University of St.Andrews

6. W. Cambell, An abstract machine for a purely
functional language. Tech. Report July 1979
University of St.Andrews
Computing laboratory

7. D.A. Turner, A new implementation technique for
applicative languages
Software Practice and Experience
vol. 9, 1979, pp 111-222

8. R. Burstall & J. Darlington,
A transformation system for developing
recursive programs, JACM vol. 24, 1977,
pp 44-67

9. R. Rilsson, Problem solving methods in Artificial
Intelligence, McCraw hill, 1971

10. Wozencraft & Evans,
Rotes on Programming linguistics, MIT 1979

11. D.A. Turner, SASl language manual, CS/75/1
Depart, of Computational Science
University of St.Andrews

12. 1. lombardi & B. Raphael,
The language 1ISP: Its operation and
applications, pp 204-219, MIT Press 1964

___ ' ____

1 22

13.

H.

15.

16.

17.

18.

D.A. Turner, Functional programming and proofs
of program correctness.
Computing lab. University of Kent

M. O’Donnell,
Computing in systems described by equations
lecture Notes in Computer Science vol. 58

P. landin, The mechanical evaluation of expressions
Computer Journal vol. 6, 1964, pp 308-320

Evans, PA1 a language for teaching Programming
linguistics
Proc. ACM Nat. Conf. 1968

J. McCarthy et al.,
1ISP 1.5 programmers manual MIT Press 1965

P.H. Welch, Some notes on the Martin-uof/Tait proof
of the Church-Rosser theorem
University of Kent Computing lab. 1975

19.

20.

C. P. Wadsworth, ■ ■
Semantics and Pragmatics of the lambda
Calculus
Oxford University D.Phil. Thesis 1971

D. Grit & R. Page, »
Deleting Irrelevant tasks in an Expression
oriented multi-processor system
TOPuAS vol. 3, no. 1, 1981, pp 49-59

21 . P.Henderson & J.H. Morris,
A lazy evaluator
3rd. ACM symp. Principles of Programming
languages 1976, pp 95-103

22. D.P. Friedmann & D.S. Wise,
’’CONS should not evaluate Its arguments”
Proc. 3rd. Int. coll. Automata -Languages and
Programming Edinburgh 1976

23. A. Mycroft, The theory and practice of transforming
call-by-need Into call-by-value .
CSR-88-81, Depart, of Computer Science
University of Edinburgh

24. J. Clarke et al.,
SKIM the S,K,I reduction machine
1ISP Conference 1-980 Stanford

25. C. Hoffmann & M. 0’ Donnell,
Programming with Equations
TOPIAS vol 4, no.1, 1982, pp 83-112

'i-:<5;j1.■■ i;A-■, A?<-"' "! z \ ’ ' ' „ } \ ' * '■ •? \ • ' , ‘ •.% ' • •<., • ’ ' • J <f‘” ' \ , - ’ '■} ’■ ' <; «' ' " • :*--V'7 S*:" •;U,

125

26. D.A. Turner,Another algorithm for bracket abstraction
Journal of Symbolic logic July 1979

27• P» Wegner, Programming languages Information
structures and machine organisation McGraw Hill 1968

28. W.H. Burge, Recursive Programming
Addison Wesley 1975

29. D.A. Turner,An implementation of SAS1 TR/75/4
Depart, of Computational Science
University of St.Andrews

50. J. Stoy, Denotational semantics'
MIT Press 1980

51. R. Keller et al.,
A loosely-coupled applicative
multi-processor system APIPS 79 pp 615-622

52. H. Baker & C. Hewitt,
The incremental garbage collection
processes SIGPLAN Notices (ACM) vol. 12,
no. 8, 1977

55« E.-W. Dijkstra,
Cooperating sequential processes

. Programming languages pp 45-112
Genuys (Ed.) Academic Press 1968

54« W.Burton & R. Sleep,
„ Executing a virtual tree of processors

School of Computing Studies,
University of East Anglia, Norwich

55* J* Darlington, '
A synthesis of several sorting algorithms
Acta Informatica vol. 11, 1978, pp 1-50

56. D.A. Turner,The semantic elegance of applicative
languages Proc. MIT/ACM Conf, on Functional
programming languages and
computer architecture
Portsmouth, New Hampshire, October 1981

57» P» Treleaven,
Principle component's of a Data Plow computer
SRM/216 University of Newcastle upon Tyne
Computing laboratory 1979

58. D. Michie, Memo-Punctions
Experimental Programs 1966-67
Depart, of Artificial Intelligence
University of Edinburgh

1 i: 1 A. ILA

124

39. R. Sleep & W. Burton,
Towards a zero assignment parallel processor
Proc. 2nd. int. Conf 1981 on distributed
systems

40. J. Darlington & M. Reeve,
ALICE a multi-processor machine for the
parallel evaluation of applicative programs
Proc. ACM/MIT Conf. 1981 on Functional
programming and computer architecture.
Portsmouth, New Hampshire, October 1981

41. R. Keller, Some theoretical aspects of applicative
multi-processing
Lecture Notes in Computer Science vol. 88,
pp 58-74

42. P. Henderson,
A purely functional operating system
Functional programming and its applications
J.Darlington, P.Henderson, D.Turner (eds)
C.U.P 1982 -

43« J.R. HIndlay et al.,
Introduction to Combinatory Logic
C.U.P 1972

44. J. Reynolds,Definitional Interpreters for higher order
programming languages
Proc. 25th ACM Ann. Conf. 1972

45* P. Treleaven et al.,
Combining control flow and data flow

. Computer Journal vol. 25, 1982, pp 207-21b

APPENDIX I

•j. * ’

TIM
E (x1G

O
M

/C
STEPS)

rs
o

H- ’-33 o
so
pb
CD
O
eh
CD
P>

s»

PERFORMANCE (Z) „

w x* ts oa o

o
s

S-

CD

cbtr
CD

>-*■
CD
§.

B,

o
H,
H

t-i
CD
H
a

H­
O

>*
COr~m

>
COr~m

ro

' -it';.";

m

oo

co
m
~Oco

EVALUATORS

o

PERFORMANCE (7)

ru .> ©» QO O

Sr

H-
H­
P
OCi

p

£1j
H<
•
<D
O
c+
<D
pj

<$

p3
*&

Hj
O
'-1

P3

<3

O
H*
(0

CO

m

>>
CO
f”
rn

ro»
no

LiT ?#? s. 4^«V2£Tz\>> • i<^., :i

TIM
E (x

 100
M

/C
STEPS)

-3
>
CD
r~
m

CM

VI
co
-i
XJ
> -
"“•’•J o
rn
o-
•x «vA

to

PERFORMANCE
w <?>

H3
O

Q
I

n

c+
<D

93

'S

p

H*
Q

S'

•J
c+
P

o
Hj

P

P­
H-
3

H-
(DfZX

<$

93

T-

<1

<3

CD
r
rn

CM

' -' i ' i »•;... <. •'' -i- v~ <3?< A- v? ' :"■ a■

EVALUATORS

>-
CD
r~
rn

in
9

PERFORMANCE (V

N #• ©. G» Q
o o o o p oo —~j——™r—~r~—j j——,y 1

<1

CO
-H
XJ

~-H orn
o

<1

Cfc
1 J
fD

H'
CO

C/
&

f$

a
H­
a
CD

h-3
O

a
(T>
CO
a

«5

<D

<0a

g
a
co
pb

o
Q

O
a
(D
p<

>*
03r_
m

in»

W
O <4

m

X
o.O

co
co
m
TJ
CO

—1
>-
CD
m

-’j«
« —s

o

<3

PERFORMANCE (£)
M •> ©•o o o oo j—1 -----p

a» oo o

(-3
tr

I

8

h<
hb

o'
H
8

H>
O

CD
[->•
t

&
H>
CD
O
CD

uj .

co
•HXJ7r-»
rnco
~<

<
>»
CDRm

o

in

<1 a

ro

MO

■j'VjV'' a-'*’' VO--'".’ ■ a-J'IiJ,'., -is ..a-•&•-?..- ,«»„?- •'..O’H’3 vWW-'.STJ J 7"-!.'= •
’"«• *•*** *-v " w '

s y ,v/•-, v "’X^ ^Scp’ :• ’

TABLE %. 1

program 8X8 matrix multiplication

4

EV
A

LU
A

TO
RS

S 10 20 33 40 50 ' £0 70 80 90

TIME btfOO M/C STEPS)

TABLE &2

PE
RF

O
RM

A
N

CE
 (Z)

* 0 0

4 or

TRATEGY

ABLE

< v »• >; > X ,'■ - {y. •; J :r?;•>&”: v,w-: .̂

B

—1

>~

CXJ

I~*

m
«*ftk

o

PERFORMANCE (°/°)

f_J.
US

P

P-
&

p

F3
O

O
1
I

(D

P

MJ
(D
FJ
s

H­
O
P

02
O
o
H-
S-

H-
2
US

H> •
S-

>*
03
m

o»
M

j F • k •<• ?>, . •:. K: «

fr^u 'g.7^ ̂'-■ -T^*

TABLE 12..1

program
TABLE 12..2

To compute the permutations of the numbers 1,2,?,4,5

I T2 24 54 48 60 72 84 P6 t03 !20

TIME (x100 M/C STEPS)

1

K>
<_/

LUO
"Z.

-<
O h - or
LU
CL

STRATEGY

EVALUATORS

>*
CD

PERFORMANCE (%)

Z3>
03ui

70

rn CD —< ro

TIM
E(x400 M

/C
STEPS)

>!

CD

m

4>
ft

PERFORMANCE CZ)

a> 1-3
P3 O
£
P g
C+-
H­
O B
PS

ty
H­
O

<<! p.

cF %

CD

OP
ra
o

>-j H
H- <
Q-> CD

B fe?
CD
<+

H
O
O-

g
CD
CO*

5^

CD

m

4>
ft

PO

IM
ECxIO

O
M

/C STEPS)

TABLE 1 6

ii PROGRAM i SPEED UP FACTOR
i the reach of a graph ! 6
cyclic graph | 14

I start of a cycle ! < 10 i
i terminal vertices ! 5
i bipartite graph j ; 3/2
i hanoi 10 ' • 1
! matrix product 5/2

i merge-sort ! 3
i library relation s ! 6

i
I permutations 5i
! 6 queens
L laplace grid ! 3
i parser j 8

The speed up factor is related to the PERFORMANCE
axis in tables 1.2 - 15.2 by the formula

100 / (100 - PERFORMANCE)

—

I I 1 i 1

Mi (4 GJ i.-t G) is i'i I'i Pl S' i l'.i PJ i'i Pi P.t I'i « • < • « '• » • > • t ■ . . • . •
ui J, i t M t* i'i 0 co s i) US to bJ PJ I-' O fj 03 4 0 «n to GJ PJ f ’ . • 0 lit M O' ■ n to Ui Hi

Sil! t I l ! I I I I I I
I i I I I i I I I I I I f i I I I

I I 1 i i
11111111

15 11
I I 1 I i

iti 0* Vi Ifi Ul u> Ui Ul Ui UI Ui Ui UI HI Ui VI til Ui Ui Ui Ul Ui Ul Ui • •
ft '»; t -t *t ft .-t ft ft • t ft ft • 1 ft 3 ft ft ft ft xt ft x-t ft ft ft

'••3 3 1 3 1 3 J J 1 1 3 3 3 t 3 3 3 3 3 i J 1 3 U(o ib £’i Z
£ C £ £ c £ £ £ C C £ £ C C C G £ C C £ c £ £ £ lb <£ X> a to
11 - . i'i n n n << • i ri n i. »•, fi fi 11 fi ft n Ci f< Ci i I ■ < n LU to •o t£
ft < 1 cr ft ft ft vt <+ ft it ft ft <1 ,1 ct 3 <+ 3 ft t,X ft < t ft i-~4 3 <£
£ £ £ C £ £ C. C £ i. £ £ £ £ C £ c £ c £ £ c ft 3 tes
3 '*? -J 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1 3 1 Cl • j M- :p
it tfc ill to it ib to to to ib ib ib ib ib >b ib id ib ■b <b tli ■b ib ib ib ci n *-• < 03 i!.<

ft- 3 3 -1 r
i i it 13)i- 'to to LX <-t 3 Ul 1 Cf Ui ui <• i i lii ii £i ft . i x-z 3 I'-'4 Ui < < , : U 4
O A 14 1 3 3 <11 3 ib • t lb L-4' 3 11 Ci •- £ f-~< Ci O :r i.i < c*. < .3
3 Mi 3 to it to .£?. TO 3 13 3 O 11 • <b ib vi o 3 J ib I»x a ill to C4 . *
i * cr -b t-4- to < i ill Z“x r4 Hi ex ft l“-l 3 3 13 Ui Mi u< 3 M- Zf ft <i» CT 0 “3

1 »z- X I-4- ib Z*x, Z->. Cl ft t-i- “f I-..1 Ul e ib £ 3 z~. zx n n C Ul 3^ I £3 Ut
X z--. X u-* n .+ »-4 3 fb ib 3 3 3 zx Z-X I4- Ui n i-4- flS 3

n zx z. zz. U n 13 ft u> 3 (-4. z-x ♦-* LX. ib •o n 3 ci <1 tv S
TO n 11 3 13 3 I-4' ct 3 ft fi) Z-. n 3 Ui n ft c a tx Ul
3 01 Cl □ n n ft 3 ft £• O ib wJ n ib £.1. o 3 <-t Ui 3 o a"; ft
ft irt TJ ft T3 H 3 ft 3 ui 3 3 iC ft- 13 zx, z*. n □ 3 3 ft' ft 3 ib 3 3
3 □ 3 3 3 3 rt 4-f 3 Z-x J 3 o rt u4- j .'.f »• i Ul it fT

M- ft ft ft Ci. to* 3 £ ft n "O 3 3 3T 3 U4- ib £ M- n
ft :i 3 r4 3 3 <1< Ci O I-* n fi 3 13 3 ft LX. ifi 3 3 t »3
«3 4Xi □ to I--4 3 3 O 13 3 ft 3 ft U.J 3 rr 3
ill 13 •b U it 3 ill 3 IO 3 3 13 ft <3- 3 ft C to M C.' o
ft 3 to i-4- 3 3 c ft ft 3 :t 3 -b ib sr ft 3 3 to £-• tu

□ 3 X to i£3 3 Ifl - HI 3 ~l ft- tb »-• 3 ft n 3” M- Ci 3 ft iO
- a •to Hi to ft 3 til ft £i t~-z* ib -XZ ex. HZ zr

3 XI O i-4- *-Z 3 in ci 3 ct Ui Ui C Ui ex o n 33
4 o rj X >b O m- rr c l£i £ Ui •b 3 er tr lit 3

■& • Cl f t ib £i a ui "O r4 -b Ui Ui o Ct- O c
!. • • O u~ .t fi 3 o ib ft 3 O A £ to fZ
ft a ib 13 bi 3 Ml x.z- i -• ■* i--4 "O b 3 ft rzfc

to i-4 3 ■vz> O XI i'i -zz -xz- -.-z 3 b x< • •
b rt IO o ft t- *• ■b *-z rt £3 •fe>
• 3 *• mi Ui O 3 to 4
J to x«z X-Z UI f--4 I-4* ■it

?C" 111 LX U< ft ib □ ez
PJ it b Cl ■MZ Ui 3 ♦T* n

'• P-J -to < X to »—*
3 "to IB ci 3 to

3 xz *.z 3 x-Z CL. c
U4 _*■ 3 < Ul

c
fi*

IQ
3"
ft

"b
O
3 Cl-

it
•to
□ o

n
wr

-b
o
-I

□
r»
ft
i~-
O
□
ftl
I—4

o
3
TJ
Ci
iti

a >J a 0 p 0 p t’ G G t It Ml ‘.I! < ii • » > ti
0 03 O' £,n 4 - b.» f'J ‘ ’ O G 00 4 G- C« ft

I I ' ! t i i I ’ J i ! I ' i i
I I I i I I i 1 i I i J J I ! I

. ~. f..4 t~* t-~* I”-* 1—• I-- ' j.,,4 »—* . _
IB iB iB IB IB m IB •ft ift

b i i . t »”t *•'(■ . { <rt~ ri xl < r (3
F'* 4
Ui Xi 13 n m CP n gj P 1- IB

f P J> Pi o o O r 0 13 -h
'S3 Til H r o T3 u ft-

W ,P CJ II it a o ft f... ?«■
;o II T- < <

If ri a •■ • cr ft
ii •o 13 ft U II II ii -c

< » It di id XJ IB
• i ft C‘f it 04 ft o a o ft
Ift a XI -j rr xi x» T? TJ lit
et* -f;i U'l Z-X X-. -1 4ft U’l Ul 441 rt-

4.0 ct z~. rt ri ft rt O
*1 1 5 3 -1 "4 -4 -1 1
‘4 ? II 3 ZX, x-*. x*x, (ft

a II S
r

—. G3 > >
X_Z r 13 11

' - o U 13
«— fi r r

<
cr

?■--*
tfc 4—« 1—' • -U l-x*

e_
C
ill

« j
•fl

•B rr <1 Hi IB ill ill fii i-r CT IB
<4 it r{- ft- . 1 . (• !-*•

r O 1 □
r ft Pl O 13 a -ft z IB ft n
m H m 4—1 1—4 rt 1^, r

ii il 3T < jC z C □ c
ii H m c 3 Ift u?

Ci O Ii if co in 3 u
Ci -a o o n r
o 4ft 414 ’O ft o it ii »J- 3> i
4ft .4" •ri­ u» “ft ft i— 1-4 m
.:T -4 ft <*T 4ft 4ft a o r
-4 z*s •li­ ft- 13 13 CL in ii
z-x. ft -4 ui Ul i-

s 3 z~. z->. •■t .ft- 3 iX ft
3 4'\ «.,/ ft ft lift ft 13

A S II 1 / 3 3 •*». 3 4ft
I) 3 a 13 X. ■B % 4.1

m s a s cT -a
•— 4 1 "1

5 •wZ a z 4*t
ro s

■w +
3 +
4—- x
□
lh w
Ct
lB

n
a
3
-Q
c
<*•
ft
rt
ft-
O
3

01 m tn
4 & ui

- » i 4 i I i i •
•4 0- t« i~ t.0 M f ■

I I i I I I 5

Cl I ■

-I b.l !-j i.I i 5 I.I tj Pi Pi |-J I’ i l» I I* 1 }>’ l£i PI p i - • - ■
J R >Ji F i.-j l‘J “ O 0 (.0 -1 £? i.fl -h t-J l‘J »•• O <t ID

4 (. f-<’- ijwH?. j. ,,t. fi-J. J*/. i;J. £ '/ £ £ i i

i R £fl R, i..j Pl i . J» in J

• I I I I) I I » I 1 I I I I I t ! i I I
I i I ; ; i I i I i I i I i I i i ! 1 I i !

t ’ I J ! I • I !
5 I I i ! 5 i i 5

V,j M
a m p­
i i i
; i ;

f .4 » j -«-* j ■*. 4
ill ID IB ill ip HI ® »
--1 • ! - i . i rt i f * t ii

a.
<b
n
o
a,
rti

. > n i’i
z

U, u'. r i
C. C f’i
a ci x
. 4 ...4
FI FI It

a m
n o
M Ti

M J
II

H II

o

O

m
IS 3

Ck

a o
-pj -p.
•+>
.4. q
j.i j*
Ci. I—‘
•U l»

l~J Z'
O >

Hl FI
~i
J> II
«x..

II
3

= <p
n s
a
3
US
ft
a*
3
f-p

£^-»4 1 • b-« w tr^A f^-4 Ui
Ip III ID ip Ip Ip Ip ift IP ill Ip IB •
<r cr ri cl CT .1 H' ii ft ft .3 tl e G

•»
-J ~i 3 n k-*- Ui cr ct CT o T3 J-4 X

W ill Ui 1-1 u~ c C to o ■j 4-4. H 15
5 Si 3 m 3 -b -b li’t Hl n

rt> i» n -t. • t 3 3 iU £ . b-*
3 3 u* 1! <• ip •y It U-4 b-
f.X cr lb 3 «;r 3 H- m
iB it* X | 4 II C 1 1 II ..I
i it c 13 +. Ui

ip x ip X it -b >-» i •
ex 3 ■1 IP M II

II iU. X 3 ip
’ • II * • o
ii -b II II II

ill J
3 r- o < f-A
M 144 f-4 ID M

ID o Cl O •b
3 et o

o 3
♦c 3

~b Cl
b o o O

O 3 -I -b
“5 Hl in

Z
tx r< 3> 13.
«fc o .4. o* fit

•<> m C
•b isz s f. 3
n at ■b c

o ip t'—•
M* -t. in —iJ IP
3 3

•b n. ii'i
fc

-i n 1 i W
* 3T O ip

”C3 Z
*-»• iff o
a. mmS -b
•D >

ft □ z X
r*« rt —1 X
o
3 -fc Ui
ifl w-

ip
O ~i

K*
tx
Ui

b-•
3

ex
Ol
xb

3
«-»•

a
3

-b
o
~i
3
Ui

ijl
I

141
'-J

•o
04

IO
»?.*

£X.

5 !• . !• f IH I* ! :m fu |«i Pf i'i hi pi PJ pj '•) P.t Pi Pi Pi Pi f»i |i Pi »i Pi -i Pi i'i Pi Pi PS Pi Pi P:
pi Li i-i i-i i-i !•• i.u vi vi Vi pi Pi P.t pi flj i t h p.i tj - i t r • i -t- >•-> o «...• 1
0 GO i li Ui P- 1-0 Pi t’ i t 0 i.U -i O’ f.n t.0 pj i • Ci O tri j o .(1 p. I,J p.1 r~’ Ci Cl Oi 4 0

I I I I ' i ! * i i t* i I i »
! I I I i I ! i i I i I i i I

! I
I i

; i i i i i
I ! I 1 I I

< ! 1 1 I I » I
I i i I P J I I

Gt r-4 - - -- XJ •rj x> Ci 13 3 o
■e IB 3 3 3 3 zr 3

1*3 ft »I Cl ip re «Ti •P ip ru o
M o 3 tx tx i’i- a. tx <i
3 Cl a i» ♦Ti f» <0 •e ip <B ip

r« fi it f->l 4--» i—1 O *43 tx n n n n n 3 O.
o Pi ''X Ip •Ti tti Ip 3 O ifi t—4 r-J }w<rt I-.-.-* < C
3 3 re rt tii ri »’! <•+- T3 Mi n ip >P fp iP 1
T3 -o Cl ft I---4 3 3 -1 3 3 • 4 <P
O n ie 3 X tfj -h n Ifl a* <0 Ul ip iP li
Hi u> 3 in •TX «e b i , “V f-4*- XI
it< ip < ci 0i it u H it <e IX. 3

Ti t£) 2 2. s ♦ii ip
r4- ti h« t*4« h* (• • ti X* ex tx. i- 4 i"4 3 3* fX

i 4 tl H 3 U Cc CL fX M 3 f-x IB r.4. o C 3 ■P
it to i n> «h re 3 <rt iO n Ui iO 3 n
IV it tX □ 3 3 i-4- re f-4. o k4-’ l>- or C-4

zr tP ii rt' rf- <rt ft X-i 3 rj.. £X 2 n rtl C4
•Il <a -ti m ii- »-“• 3 ifi & 3 Ci 3
□ 3 3 X b ~b •ti a« 2 s rt! rp
< re r-. Ui 1— »-*• - i-4 -w s: 3

13 m *0 m IB U3 ■v ci
f fi 3 3 "b i-4- Pi

3> «--> X C -ti 3
b u 3 i — 4'* 3

it v*> Ul n 2 s z n •p i4
ft C. - r X •4; ct 3 3

3* Ul ifi < s 2 n w- X3 a TJ TI Ui
3T xi 3 □ o 3 ’i 3
ip tX te Ui 3 3 ifi iV <P 3 3

■■ 3 x» ”O £X Cl. ex. Ci Ui IP
•P Ci Xx K Cl ■•h fp is 3 3
3 zt ‘fi Ui Cl Ci Ci r» rt •i« a*
< ex Uj - fl» 3 r~- r-^ >•—«* i—■

•'vs ❖ ip w fll Ui 4»4
r* 2 -b 3 3 3

3 3 C Hi •P ip
IP ■3 *45 3 ■■4%

ct T3 ip n lit
X3 T3 M ct 2 s 2 2 .■r
M- ►--* n Cl 3i 3
3 o te £ i zr c I-4,

x- ui X 3 3 CL. 3 Ci
□ > IP >3- (Ti 3 n 3
i'i I*’** IB 2 .t i--.
<3 *13 3 M-

3 3 r r< 2 x*» o 3
-ti f--4 zr •< o 3 Ui
O i—4 Ul 3 2 3
"1 ** T?l ip

o
3 lA
ip t. H*
r» Qi *■ <T *
c t-»
~i u) M O
ifi ffi 3 rt

zr

ifi ip
►- J
Vi Ci
ip

i’t
i

Ui
1 «•
to

trj
s£2

Ul
lui
ijl

» ;

rt-
XT
((> ~b

Ifi
ct
~i

ri
rt

13 !’! Pi Il.j •i. i‘.i !• J 1 ! nJ hi «u p 1 1-4 Pl IM P-.’ W 1M iu in i j ft! ft : !O Pi fU 13 1 p i lu !■ i ftj Pi
•.J 4 I J l! IT- £* IT t> 0 f> 0- o l! f i l.fl • n •..ri <f ui »0 Tft UI II -P 4- J- l-= 4- t*

to r» i i-a. o 0 iTj 4 a Ui to w r * o 0 Oi 1 0 to .p UI P 1 a O.i I O'- ui r< to pj r ' O

1 i 1 ! I 1 » 1 5 1 1 i 1 i ! 1 1 1 i 1 i 1 5 i h-i. i 1 ill! I I
1 i 1 ! I I 1 i t-* 1 1 1 I 1 1 1 i i i 1 i ! I 1 1 1 1 111! 1 1

•to ~h '+/ M’,, ift or K"* • *
a a a t» 3 ip Ui
~i 3 3 3 3s Cs Ui u< TO
e e e £ o i-,4. TJ 3
Ui Ui u< Ui 3 3 fiu O <P
3 •1 3 3 £ U< Hi u< rf- <'•* t-•“* TJ ■V j i
*x IX Ci. £X IP a T3 Ci ,3 ip Ip Ip Ip ip TJ 3 ift

3 ■i;> T3 TJ ip rf- ft 3 rt Ui Ci. H
t"~4 n ip Tj •X. ili iD • 3
w* u X 3 3 3 3 ID 3 3 ux Uj IX. £ ip
ui 3 T? O •a £i <X Ci 3 Ui i
rft Ci •i 3 < T3 ut II II II h i
•ft ib .‘-1. tri o "(3 Ii
X ?«. .3 n ii j.4. It II M- !i
a TJ 1 ■p u- II 3 ex £fc» Cl. 3 3

Ci. iti in rt U3 n ip rti ift I-* III 4 * rt
c 3" £X a 3 3 3 H-i I 3s (ii

1 1 T» 3 ill «1 .ft IS 3 . r it- • t Ml 3
\? V □ ift 3 t-r- t-J. Hi 3s 3

rf < a» 3 3 -t-i 3s ip
TJ 'O “j 3 Ui I--' w II #—•
3 3 < •r> is ift 0) 3-
.3 4 s,.- z**> IP 3 3 3 3.
3 3 • • » 4 P-*. c

II JH4 *• 'h 3 3 -to □
rt Ui ’fu * ~b z z s et n

tffr Ui C H* M- w 3> ❖ zr *3
zr Ul X X ■2 • Ul • ♦ u>
lift ex o .-v • TJ 3 tJ

iD in a. T* Ul 73
Ti 3 X3 ip Ti Ui

3 3 ii J 'Cl +>
< ID -u O Pl CL ip 0

IX. Uu 3 a o 4 3 3
ip c z IX
3> O * Ui
r- 2 O

<T lu 3 M “f’J rt rj
,^4. tJ 3* "** •ft
Ill x> Ul (Cl a *

-to

0)
I

iP

o
ip

U'l
It’

£0

■K~
3
o
ri

+i
O
3

J
ID
r<
c.
3
Ui
M­
G
3

J
ux

□
t-a
»- -•

~b
£ft

ui
«<

t3
GT

Ol

iD
3
<

□

I-‘

■s-r x t■->■
3

•w 3s
> M-
TJ X
X» -■
r
< 3>

T3
- TJ

r
fts -<,

o -t>
X
m ~
n
X -
r
H
tn
H

o
3
(it
3*

-3
r

n
O
3
ui
<T

3
u>

Ui
i-f
Ui

Vi Li hi
O O O
O' « n J­

! i I I
I I i I I I

• ■ ■?. . ' , ’■ - -'C ■' c
til Cl V.S t-i Pi i'.i Pl I .1 Pl H.1 l«i Hi Pi Pl Pi 13 Pl M 1. , p 1 !• i i. 1 b! P.l ft.i i’l S i Pl Pl Pi
• 3 O .. • m c- i, Ij -i 1.1 b V i. r, ■ ;.■ 11 Hi .1: ,1, ,fj i.n ,4, tVj ill';
Q :o 4* o o da o o ot (j w h o o co 4 o «a .o to io o o co i a <.« t-

I I I 1 I I I I I I t J 1 i l | | | 1 i i | i J | I } J 1 f
! I i I I I I I I i I ! I i f I 1 i l 1 i I I f I 1 !

-b 4, b ■b b ~b •+j *b +1 ti -b “b "it -h 4, -b -+J •+j 4j ■h 3j b +i •b b +J b -b “b b ti b h
o a a O 0 a a O o a a a o O a a a Ci a Ci a O o o O Ci o o O a a 13 O o
-J 3 4 -4 3 ! 3 4 3 3 4 3 i 4 3 4 3 4 3 3 -4 •4 3 I 3 -i 3 3 4 3 3 3 3 4
6 £ P £ £ £ e £ e £ £ c £ l
in u> in a* ill a. ili in at in tit lit Ur in fit in ib a. in In lit Ut in lit in Mt lit Ui in Ut in Ui & «n
-1 4 -4 ’! 3 3 3 4 3 3 a 3 3 3 3 3 -i i 3 -1 3 • 1 4 3 3 3 •4 3 3 3 4 3 3
a, IX l-'». Ci ii it 1*X Cl tx Ci, <x Pi. Q. c«. i.Y a. Ci. Cl. Ct. <X 11 Ci. Ct. Ci. Ci. Ci Ci. ii. £i £X 1..Y Cc Ci- Ci. to

1
ill »fl h IM iii Ml XJ <0 Ci. Ut i-j U» Ml lit 3 i-‘ lt‘4 Mt Ifl 3 =’■ rt Mt 3 b 3 n Ct mi n Q ut
•4 3 C XX ■T ~l 3 3 a «i a n M- Oi XJ *C < .it tit in XT C ill m »4 iii a zr t—4 lit *-■ Ci XJ I—4 .
•1 i □ Ct c. a t-4 1 Ci n r» rt *- •* ci- III Ul Mt ti-. .4 Cl 5 Ml C j ftl 3 4 ui m b •? ;i Mi 1« 1
H I »-• n £ E £ 3 Ct -*r t-* •Tl £ it ♦--« Ct O n £ *; t ■ 1 111 3 3 •n 3 C m t.i i-j- »r CI
z*s» ft in it- 1 C. in J 3 •b Ml c xr Ol cr i—• it i-4 in ul r-4 O r-4

3 Xi XJ 3 in 3 n •<x • t in <4- X tb 4 m t«. t-4 1 IB Sit
43 XJ O < 3 XI >s « li IQ 1 a 3 3 in ?•*» Ml in 3 n» *.v> 1 i CO
3 3 □ •B 3 TJ Ml —>• ,.-4. l*t n 3 o X rt it •~. rt V I-4- <r:
rt .4 b ct 3 ft XI r» -ci CJ n n ft ♦,.» ill 3 a 1 XJ 1 1 3 ni
3 3 t4 4»- 3 rt 3 3 XI X? 3 r.T 3 X4 /-s *-t 14 i-4. 3 1 *../ 4 V XJ ‘ • XI <4‘ ft

ou □ X 3 t-4- ft 3 3 3- O rt 3 3 .3 1. 1 1 <t □ 3 •it
4» ~ >”>. rt JR» 3 3 ■ t ft 3 o 3 ct »-«• id ? 43 3 XJ <4 Xt rf 1 •3

to 4 3 f—I 3 □ 3 1 cr 3 3 3 3 3 *.,/
TJ a xj n 'w U3r Mu 1 O XJ rt -w rt ft
□ 3 3 - x» -z •■ O 3 3 3 "j 43
r4 <4 rt 3 xs n ”, ’ fjr- 1 1 it 3
3 ■4 ■4 t- <4 3 Xi X5 n tr o 3 C4 13

□ 3 <t 3 3 Ci o o -»»■ 3 U»
1 rt 3 ft ct 3 o 4-4 »Ci

3 3 i-4 v»* iB
■a ■ < 1 3
3
ft

XJ
□

O
o

I
V

•w

4 ft 1 • -o n
-3 3 X) 0

it 3 □
I 3 rt rt

•w
3

XS ■x
3
ft n
4 Ml

’j
b* •
2J
to

»

LU II LU !-i bi
u u bi Vi i.s

o n oo 4

bi i-i GJ LU ui t.J bi bi b.l LU
I-J b- LU b.i b- Lb fib P.i Ci Cl
a •/I -t- ui PJ J-X o 0 it) -4

i GJ I i I PJ 1 i U i
I i I i i i } i i J

ui ;.i i..i i-i Ui b,i UI i.j b! bi UI t i Ui I I iu iU : I iu
• ’ i I • J b 1 :« 1 b • i ' , • I ’ ► ■ I • > • I ■ i ' I • (• • t ’■ i i I :
a hi 4-. i.o t»j • ■ o -bi ffl -i o di -u tu i*j >■- o -o co

I i i i » } } I I I I I I I i i i i 1
i ! i i I i i i I I I i i I i 1 i J 1

er T> ft. -u -t,» -fcl -fj "ti 3i -b ti 3j -+> -f'4 3. -b •b
•ft 3 a o a a o a o a O o Cl CJ o O a O

Ci 3 3 3 3 3 3 1 t 3' 3 1 3 3 3
►* ib € E ec £ £ e e e E e e £ £ £ £ u
3 ift ai IB IB »h IB IB lh u> ift Ui IB ift in hi IB

IT T> ex “J 3 3 1 3 3 i 3 3 3 *1 3 3 3 3
Ift 3 c Cl. Cl. Cl O. Ci a. i t Ci Ci. Cl. (X IX £X Cl ex n
id a 1

n ift n i-• 3 a Ci 3 .ft ill . + IB ift r- »• TJ r *
..1 ift a o 3 3 O 'i it •J TJ 3 □ O fij o*

f,T fe. i—• e IX r J 3 'I » 11 3 c: U" •i» Ti J .3" <
Ift 3' >ft 1 C 3 ft X' u- CT It! <9 UJ ill t..j ft ♦ * tn zr «p

IC1 t - ct »- 3 rt ■r-, 3' #•--* »-* t-x n {X iC.' 3’ 3 •—*
J* •-- tft ft’ a> O a cr cr rt- t- « •ft
3 Ift ift ip 3 <T TJ 3 n «—• IT o cr cr cr 13 3

cr e l"~« 3 ex Of Z-. 3 ■-■- X“ o a cr I—* CJ" n !—• j-i-4 3 nj 1 i
ift ift < u* n it ■w c-v Ci • t Ci i-* X o a O .3
tlj u *4 3 •ft ft ft 3 vz w- X a n o n n n 3 -3

• < l~4 < ** □ TJ TJ -V- ri X Ci Srf> X* >7 i

3 •ft TJ it a 3 ^w* >7 Z-v '. * ”3
TJ £ a ? $ tft rt V
o 3 •ft •ft HI ft ct ■"H tC, 3 tJ 13 Ui 1
til u ft 3 ”J" ft • 3 □ ft <. /

ef < 3 ift 3 ift * rfi • I -J Or
<® 3 It »-•• «~ 3 3 3 M o

ti iti j-i •ft ct < n 3 o
3 3 ti O 3 H ui 1 t

i /
Uj I*

TJ IB ift ex < a » >
o 3 3 O □ 3
HI (ft ii u- u TJ TJ

3 3 □
4 •ft m •T • t

3 □ 1 "1
t—* < IB
ift 3 3
3 a 2

ICS Cl
ft •ft
:r ~h TJ

□ a
Ui

□ 3
th lh A
3 3 tt
•ft •ft

0-
O

«rt t*j.
zr o
•B

u-
a

Vj t-j Vi l-.t 1x4 t.d vj VJ Vi VJ VJ VJ v! it VJ Vj Vj VJ Vt
i ' 1 •4 i i (r 0 0 0 i' o ’? V V l> ■ it VI rt:

fit f- V.j ItJ rt O Jj 0J i v Ml 4- vj iCi L* O 0 in 4

1 » i i 1 4- 1 1 i i 1 VJ i i 1 i 1 1 V)
-•& 1 ! I 1 1 1 1 i i 1 1 1 VJ 1 (i ! !

Vi It W VI hi IJ VJ VJ IJ I-I VJ Vi I-l
<r < t • h <r -. n • /t <it i■ - j. , t. .
O' tn -&» b.t i*j I-■ o Vj ffl -3 0 o» 4-

Vt VJ
{’■

W fO

! I i 1 M I £J i I* i
I I
I i

GT 13 ©
J 3 VI

Ij CL 1
H* Ci fc
□ ©

if v-> Cl t © »« 3
■+, C i j O

rt -J t-* CL »- —
ft ili it
zr IB fli

cr or © CL e ® «v
© 3 IB •V z 3 3 Ui
irt tft Ci •n 0) It - - ** o rt
M- *P w- rt □ ill 3 rt ©
3 □ zr < rt rt S IB 3

Q" s-> rS £ © rt rt rt -- © 3r © © (--S e
to rt 3" © 3 zr 3- ? © Z,. 3 □
Vj rt- rt- © © o © it < »;
M- © II < 3 IB Xl ri «-1
□ © X> © © © © < 3 3 3 s ©

xs to <!• 13 © 3 3 3 3 3 z>» M < ft II XJ
3 z-» it 3 © z». © <• -< < £ i—• a n
© o © < z-. «**. 3 CL © Ui o
< M- Cl < 3 < 3 - - • © Cl. 3 3 i«
z-*. rf © © L*. li © II rt CL rt- -rt Ci Ui <

il* rt -1 t—' X 11 rt © © 3 3 it t
3 3 e H 'J rt rt Ui rt © ill
© t*X 3 >4. rt © XT 3 XJ 3 3 X3 3
X to 3 »-• o ill f—» a. © CL o © w © rt
rt "+> fti rt ii> © 3 Hi 3 X Ui t-j

J 3 © -rt © rt © © © rt O
Cl ii> © 3 3 3 3 <-■>- +
© XS © 3 < © cr a.
rt •w O CL ■«-» #> V «“• © J—X li

3 ‘ * © ■LZ © li •rt
II © It 3 3 o

•w IJ *-!• © © I! i£t 3
□ cr © z»S X It c. bi •*z ex

• • H* 3 i—< ci- 3 © 3 o
li m- © CL t-t' 3 Ui © <.4

3 B Cc »«* Ui rt*
ili iCi © rt © |~4 rt lii
Z"» c .X 3 -rt 3 cr

© rt 3 O ©
3 u< 3 Cl 3
© © Cl w ' LZ © £
M © 3
rt 3 -rt ©

O 3
CJ. Cl
© * © •w
rt
3

“4
©
3
«i

Cl
O

I. c- <- t- 4' i- !- r- i'i i'i t.'i i'i l-j t'i i«j £>4 £0 b» £-1 »•.: to 1-4 I-i to i.o ■-.! to ui io i-i »o i"
o <4 ,> n «> o < i o ij o •*! n c o o ii ii to to to co to ib to to to to < < . i

-0 £0 4 0 Ul 4- CO Pj O -O 04 4 t> tJi f- bj Rj m C O CO 4 0 til ts, to f'.l ’ ' B GO i 0

3 ! ' i ? PJ I 1
113 1 3 i

I i
Pj bj

i I i
! I I

O
I

I i '
3 ! ! i i I

I I I
! t 1

!
P.i

I
b.t

I—• lj
Ui
fp «B

CT XI iti CT Xi ai W 33 (a
«£f 3 □ Ui 3 3 re ■J 3
iui O Ci •Ci O Ci m Cl Ci
4**» Cl n Cl
Z3 *P 3 <u 3 ffi

b Ui
e
’• (i,

cr
b

Hir--*
<P

ft !-”•
ip <tl

Cf fi Hi Ul (P or e li U3
rf> Hi □r 3 ip 3 li Hl r ai ti

1C) *-4-4 ii O Ci. •Ci M- 3 ct %
•-», *-i 11 » 6 |i- it C O 3. □ ip a
3 I—* ii cP 3 Hl »—• XJ M- 5 O o

1— Hi .3 3 ’X3 Ci 4“*‘ ~b r-i Hi r-i ~b ip
Hi ft- 3 fP Ui 1ft > □ 4**- S ■b 3 ip *«* 3
«rT 3 !■• 3 I***4 n »-

Hi 3 1-1 IP ip <0 iP r-< •b
a. 3 IP 3 i-* H li <t 4-1 3 (fi x» Ui s

X Ul < 3 tP rt ill
★' £ cf 3 T3 O s b O it it 3 Qi

11 -J Ci. 3 11 Ct .TT Zt M- Ci. ui
t-i- £X <T s t""i •u 3 3 M r—4

ill <> <0 ‘P 3 IP fiU O 3 Ul id
Hi b XI 3 6 ax

3 3 •b Hi ip ■a 3 ip
•b 3 CL Ui II 3 in i~*-
O Ui ip 3 i-—4 et < 1 XJ
"5 3 t. tit Hi 3 :x •u

Hi 3 s 3 b
Ul ,i->. Ui Ul 3 4'--*
ar 3 M 3 IP 4—•
Cl et Ui 3 •o ip U> 04
e zr 3 XJ Ui *• a.

(6 ie c cr *-»■ —■
3T O

i-i *-/ 3 'b
Ci -b Ut X

? 3 Ui
ii h-* iP

•x
U

<

11 ®
□

3
Cl
<b

3
Ui
3
ift

Cl
O

O

o
c
□
n.

•b
M-

01
rt

IP
4^

id
□
Ci
3
m
Ci.

nil
esc w

rits
“ n

“
•

naira < ths id
)

*
u not found

b, b. i ■ i ■ b* bj i.U b.J b' b< l.j b bi bj ’b. PJ • ’.j |. . 1

-ft' V?

! I i
PJ

4 3 1 4
M 0 t.n 4-

A 1- •s X. I4 +•• -£. * > .is, C- Is 4- A c. 4s, »• & jx. 4* I’* o. 4- Jfc. ,3i x>
1 -4 4 0-

rj
n i t cr o- *T 0- o 11 I.'- <l ift (J- t u tr­ til 04 ir . -1 <i< 4-* 4- ■£< 4.

t.j fO t-4 o co • 4 O' Ol 4* tJ pj I-* O 4.1 01 '-4 et Ul 4- w PJ . r ti 0.4 -4 0

1 ! 1 1 ? i 1 04 i 4'-* 4 i CO 1 1 1 i W i i 1 ! I 1 1 1 I
to 1 4* 1 04 i 1 1 1 1 1 i 1 CO i 1 i : 4 1 1 i 1 1 » 1 1 1

Hi
3
CM-

e id
3 3
X4 Ci
ft

r:

4^

in
i

Ul
i—1

u»
M
i-*

ift IB
—4 3
Ui Cx

o
ift
ui

b 1.

□ 3 ift zr :T ::r zr Ui
U3 to □ tft iu tu £ft uz tn
O in Ili or X4- t—< < ift M- < •ft I-4- < ift I-4- < 3 -x:
Ci in 3 tft -b tu •ft i-4 -b ift I-4 "b X- -b tft cr Ul
Ci tu ex Uft <-t UI Ift .‘••S Ui J-s ft
Ci llJ X4- ? -ft ut ift Hi ill Ul I! tft
tC io 3 Q. £ uz UZ s uz a 3
•0 »->• fit cr ij- i-j ft n< ex Ul 9 ex Ul 3 CL ul 3 3 ct

•lX b 3 ift b tft zr 3 II ift uz cr fft •i.' IT 4Z 3 cr 3 m
3n M- ex UJ ft •ft 3 -b 3 1—4 3 Ui 3 ift u> •a
“1 < o i-4 ? a ex s ft II Ift ft 1! O ft n II ct ft
O ui ift 3 O tft 3 *ft Ift ft tft (ft ift «i 5 T5
3 3 ~b 1—* Ui ift IJ- u-i. ift Ci 3 -b b X "Z. ift z 111 M a B Ui

•ft UZ 3 Ift -+.• 3 i—. < •—4 Ui x-s • • o •3- Ixtl
4) ex i» UI Cl. in 3 ft* tft ft 3 .3 If z zr- ift
J> o u ft- X4 Ui O n UJ zr -rr^~ rn z m 5 04 •ft
4J i-j. -fl 3 u~ 3 ft It ift J> l«4 iJ- -3 ft 3
3> tft «» b 3 Mi o 3 b ex 3 3 ft ft A ft 3 ft 3> ar
r ZT <"•'* <0 cr t—** It CM a Ot ■zr zc m zr ft ft Ul Z ift m I-*
r o o Ui 111 b ift Ift ill ift •ft ZJ ift -3 3 1ft 4*
m e uz a X“ II m ft* r. 3 3 3 •ft UZi < ft-
r ex 3 cr X i-j 3 ift tft Ift -b

rt o a il £ ft XI iu Ifl ex. ift ift 3 I—4 3 i-4
in •t< «• o <-r ar- 3 i r-> Ift l—4 C ex t
> X n (1 Cl n O ifl to UI I-. 4 ill O t'J ift ft)
01 ft i—4 ft 3 £ 3 ift ift tft e a f». M- 4—.
r a z ift ft 3 ft

<«. ui ft ** tft ex ex tft 3 Ul ct Ul TJ
3 m a i-t Cl f«. tft ft Z) Ui
s s ct O <ft 3 tft tft < ft

zr «*■<» I-4- tu 3 Ui ZT
o IX tu ft ft ft 3 r-4 3

Ci o zr ift £ C c Ui
-b ift pj tft •ft 3 a- 3

3 3 rt- * < •t ■w to
ift < *n tft Ul *44- r4.
» □ 3 X- ifl Ul •w'
et- Ul r- c < I-4
UI *w 3 Ift Ui Ift 3 ift

UZ rn •w t-4 ill C 1—■
3 C 3 Ui
cr ift in

z ft
m sx zr

fft
3

m

<

Ol
X*
PJ

□ □ 3
ft

i« .41 ci < 1 *• r- « - 4-. S - U C ! • .
, . O r. r. ,i » ;■ n :■ 1, n sj r« n u>
to I' I b’ O C) 0:1 M 0 di -b to Id . ' o 0

1 i 1 i 1 1 1 ' 1 i i : <•- 1 1
I I I 1 *-* I I I I I I I I I 1

iB nxi
3 >b 3

Ui ex m O
lb ri
ui 3 in

« T3 e 3 1—< ex
3 □r .!• .11 U) c

n in I-*1 T_J ft az 3
Cl 3 •fi O Hi
3 a> •h Ui •0 c
a X3 •n • I J ft Ci
»-i- 3 Ci ■li Ui Bi
r- in w« cr 3 ft
it) 3 W3 n •B ;r
3 IB H* r.r 3

et* Ui Ui
3 II 3

II it)
n n

-a :x TT
□ I
Bi -w- V
3
IB O ui

“1 ft
+ "J
+ I--* H-

m 3
n ft uj
=r rt-

3

n
3*

o
3

n
=r

II

o
3

n

II

ex
a

. li HI ill Ht H! HI Hi Hl Hl <li Hl Hl Hi HI Hl ni nl nl Hl Hl Hi Hl Hl HI US HI Ui Hi UI «JI Hl HI ft Hi
j. f. H H I l'« I I t-i l.-.l l.i l .i bl b. bi !■) bJ IH In ' 1)«.■ |H |H !H 'H IH - ' n ■ • . , • i • . •
iff t- bj lu H . . 4.1 £0 • i o Hl r-. t-1 IU <-» f I M 00 I 0- hi 4- bj PJ i~- O O CO 4 0 Ul -_,j |u

I I i i 5 1 I I I I I I ft) I t I •-* I I I i I I I I 1 I 1 I I I ** i
t I t-* i I PJ i I I I I I I I I I 1 I I I »-*• I I I I I I I I i-* I i I I

CT TJ cr -a ip cr a
3 ID “J 3 ip 3 3 ip -1
n m o n m o c*. in a

H 11
□ >u

c ID IT l-i t-J Cl < c e I—* 1—« n. (-* t-i Cl.
3 3 •0 -b ID «l c 3 zr ID iD c 3j 3 C
rt Ci- m rt ct "1 3 »••- 3 H t u. 3
Ui t*- 7X to Ui t-i ■6 Ui 1 ID
ct 3 Ut < rt cr ID < t iXX m

< t-i t* I—* t-i <• n .«. ■ti 3 t- C.
it. 3> ■1, m m II o XT II X cr 3 -I

rt’ • t rt rt li 3 3 Ui 14 13 3
ii 111 ct n < rt 3 ll ♦D

3 uz f-t Ui z t-i Ui •0 -w •D n id II cr
(B !•■*■ t->- 3 ID •—| I H CT X O CT Ci x
t-i -b m CT *h rt lii TJ 3 1 TJ 3”
ui XT rt 2 rt n. L f Tt t»-
<0 Ui rt li 5h il 10 e Ui (ft 3

t-i Ui 3 -•X x i 3- X TJ t—< 3
n rt 3 6 3 H. ■Q h 10 TO 3 a
0 '• 3> Cl. 3 3 rn rl
3 it t_ it o o ID -J
Cl XT ii ui 3
3» li* CT. n iC. 3 •— ID

3 n 0 0 3 3 3
< o 3 CT n.

TJ 3 3 CT Cl.
~ Ui .D ff. II 0

3 ,0 X X TI
i-» n X rt 'CJ X < 0
.p o TJ .A ID

1 *l. 3
rt Ci. 3 ti
UI a 3
3 XT i- II
a •D 3

TJ
ID
m
ID

i"J-
1.1

in as
ZX +3
rt rt
ID bi
1 3
3 3

□
<t>
X
Ct
Ui

3
a

r.a
r
CJ
O

tci
ZX
rt
IU
3
3

rt
-J
C
.It

V
rti

CL
<D
■+>
ul

t.
lb

i ii "i * ft • i; ut i ft < -i ut . :t • t < fi . 11 . i . ft
I ' 4 ‘ 4 | i 4 j 11 IT ii 11

O !» -4 O' Ul fc* l-i iU .3 43 Oi 4 O' Ui U t-j iu u

il Hl <fl Uf Ul Ul .’1 .ft .ft Ui Ul Ul .ii Ul u: .1 ..l . I ui ui
if U O i.i |i- ui i n ut U’ in ul u: Ul • fl i n fts . ft. u

“J O' Ui 4. I i fU u O <1 tO -| 0

I PJ I I i 5 ; ; I i i i J
i i i I I I I I l I i I

I I 1 I I i
tilt

i 1
lilt

If! 3
Ul o
I- l"l

CT TJ
(fl -1

U3 o
r< n

□ a. TJ <D
-J H e u- t—t r-** cx. < C fw. i—< M XJ 13
»B •te ~T -fct ift c ;J Ift Mi 3 3 c co
TJ ct rt’ 4 rt* ft fX 1-. u 1 1
III XJ l~* XJ »0 ih u n ift fh
Oi 1 i& 3 < O cr lh < <(T X ■ft

< O ct r»> u <—* o < ... r-‘ u;i
r-‘ O zr O CX o ti c I-* €#
tii Ut It < ill • t It 3 Ul »-•*

it < /■, < A X it rt i& Cl­
fl) IB »- t-t- T3 o (ft Ci ift 01

Ul O' r—•* -u "b 3> it u- - XU O' zr a i—t X. or
3> It Ift 3 ift lh r- IB TJ Ui

Cl CL Iti zr zr or □ H- -fo X < o X ct
3" < O o ft. (ft (b □ u XI m z XJ ih

Ift ift a n < < < cf- X ,-s I 3
•+, < o ift •ft ip o. *-.?

Ml 3 n o O i
(a Ml cr "4 o V U

*r u. S -ts x» 3
t-*- 3 o 1 ft a A •ft X3 .3 Ti
□ IX £ x ft ft O w X 3 3 Ui
-f-j tt < 1 Ift 1 a rt- U4
I-*- X- *•«/ -1 £3 rt 3 a.
X 4t 9 Z 3r

3 It «+■ ft ft TJ u ih O
cT 37 Z3 zr 3 3 J

cl* zr t- ‘ft .ft .ft CT IU M-
n zr IB 3 3 3 3 i rt < 4
3 m 3 a •b
to TJ M- I..1 O XU 3 ... X
in ,-S X 3 XJ 3 ri

.ft IB .ft u
□ -b X -+> zr »n
IB w- XJ M- ift

< M CJ X T- X 3 u«
cr o r-s X*. ih
Ml ~4 Ul 3

UT r- □
o 3 - z •V Z !—* |.4.
o cr n o »-» »—■
<n < a fb -3 j,..-
X Ift
XI - ui I—*

XJ •ft Ift
r-u o o o •ft

J X3 XU CJ
Ul 3» IB Ml ■ft

M- X X X Ift
•s—1 X XJ XJ XJ x

—■I
n tb CJI 03

IB 3
m •w»

ul to
fft s. ■s--

<
- IB
o i™.
XJ Ift
IB <B

Ul

S-algol System page I fcf

if navei "/“) then i n f i x < DIV , v , opexp(5 >) else
if have' "rem* then mf i x (REM , v , o p e x p < 5 >)
else oldv >

while . '• = oldv

it' on-: < 4 do
repeat
< o 1 d v : « v

v = if have; *!+" >
if syrnb--'#
else infix

if have!)
else oldv >

while v "’ = oldv

then
" then
l PLUS
then

< nextsymb pinfix(PLUS,v, op e x p(4 >)

))
/ v ,

i n f i x (
op exp (4)) else

MINUS > v > opexp; 4

if p r i o I 3 do
reseat
{ c 1 d v : ~ v

v : - if r.avet *‘ = ") then
if symb = “ =*? fcber.f nextsymb; p i nf i x (EQ, v, ope xp (3 >) >
else infix (EG ; v . op exp (3) > else

if have< > then i n f i x < NE (V/ o p e x p (3)) else
if have-.) then l n f i x < LT , v , op exp(3)) else
if have() then inf i x(GT , v / o p e x p (3 >) else
if have< "<»«) then inf i x(lE > v , o p e x p (3)) else
if have(”>»» the n i n f i x (GE v , o p e x p < 3))
else oldv >

while v "“= oldv

if pr io Z 2 do
while have() do

v = infix(PARAND > v , opexp<2))

if o r io 0 do

G G p G O P- G p P' G G 0 It tl P P G G 0 I! 0 it l>
• * *■ ^--4 1

0 . h j-. i.t lu . • o G iXt

’ I
I i

~o
H
6
n
lb
ci.
c
3

IB
3
Cl

0 P P Cl­ G P G I? 0 P G G G G G 0
to t u CO io I’’ l.-.l to II I'.I iM !M •M ft- l‘.J ! • I'M

1 G .Ji to IM ► * C‘ US GJ J G Ml ■G to Bj

1 1 i l~* 1 I i I I I < J-*- I I I t
1 ! t 1 1 I I t-‘ i I i I i t I -

cr XJ ■B O’ XJ i/5
<b 3 J .n 3 3
id a a. ItJ G £X

G G p- P P P P 0

I I 1
I W 1

•xt G-
I I
I I

<ti
-+«
Ul

XJ
3
rt
i

< fit i-S

(A
IB

lit r.
U~
3
ft It
Ui
X iB

x
XJ

= 3
m
X *'
XI
"» 3
111 c
Ui UI
Ui it

tx
O (ti
3

rS i— rS i-*
-h

Ui
<C

< 3 *
Or

ii it it

K Ut
rt"

Ut
or
3
cr

tt

Zn CJ »->•
G O <+ X' w
3 Z «• 3
rn to m

3
n
»—•
iB

IB
rt

Hi <

ui
<*
IB
3 Hl
r+ >“■
<B 3
3 xs

M

it

IB
a.
C
-1

Ct
a
3

h +>

rr
(B

Ut

rt- -4 < ‘v‘ Ci, III *a 3> i
Ui rt o □ + j-

Z. 1 -- 3" x> rr 1 X
t- -4 c ♦B 3 n
rt IB 3 rt -
Ut • t 3 ’-Z

zr -• It ex n
< IB a. G
IB 3 3 H- a n
J— f» 3 < a >
C X *fc» <
iB ct

Hi X ti
mC tt
3 I 1' <
cr 3

3 t-.
3 -.4 n t> i-
iB 33 i- x a
X iB r X T3
rt t—1 < <15
IB U» o K
it iti - 3 . i t)
3 *13 iB a zs
a < r •t> r

c 1 3
*-O 03 X •?•

3) ---.
IB IB r Cl -
j--■ M- c X
Ui 3 0) rn <
IB o £*)

►-• -
IB r

< »—i
Pi

•* ~4

o -
TJ
iB O
X Xi

XJ IB
X

XJ
O

- O

w

o
at
<

c-’,
Oi !■•

I iU
i t

t
XJ”
I-*

OJ
ux
Ut
flt
IB
3

11
Ui

ItJ
IB

rwv nrr'5,p» ----- ---------------------------------------~™

£—al*:L System p«ge on

begin
let d s = clause
while '3--5f “ or starter do
begin

1st d = clause
if d; defn name = ds(defn.name then

if d its defn > is map and ds< its defn > is map then
ronstruct a list of alternatives from the two clauses

ds its. defn) « trys(cons(ds(its. defn > ,
const d(its. defn) , nil)),

nil > else
if d its defn is -rap and ds< its defn) is trys then
begin

add clause d to list of alternatives for ds
let list := ds(its.defn , clauses)
while list" tl) "- = nil do

list = 1i s t(11)
list tl = c o n s < d (its. cefn) , nil)

end
else er-*or Inconsistent definition of “ ++ d(defn. name , the. id))

else begin
distinct names

d(next defn) - d s
d s = d

end
end
d s

end

procedure : 1 a _■ se (pntr 1
b e g i n

let names - namelist
if have ’•« *) than defn names . expr nil , nil)

4 J J J 4 1 .4 i J J t 1 I
. ’ «. ’ t •- I ' , ' i • . i i t i ; i_j i . O l..»

Ul Jc 64 W «-* O « 04 -4 0- <J1 GJ

4 4 4 0 P
. , i • - . -? '
40 » - . i -0 CO

<>• p
u o
• j o-

n p p p o p
0 II 0 Ij I H

f.rt 4 - to pj f- < i

n-
<n <V
JJ m

» i ' i 4 ! t jU I ! »-• I I
I ! I IU ! i 5 « I I i I !

I I) I I
i *-* , PJ I

I 4
I I

I PJ (| I I I I
I I

it P 0 0 P P
Pl P Pi P; P P4

4 0 'J! 4 « GJ PJ

, I PJ
I I I

1 I
PJ I

cr
m

ua

ru
3
Ci.

n
3 .n

oi- t— rn cr TI <x to ID cr •-* t-i CT
ti CD 3 in 3 c i-i □ CO -ta •0 c

ct ti 11. I o 3 in cx era .+ 3
ui l-i- n iD Hi (.4. Ul iD

«c* -fa 3 m J ij. 3a
3 Q e l-i •X t* 3 3 3 • 1 •a 3 3
ra­ • • '..r ■o C O ID ID ID c ra­ 14 3"

ii ? »-* 3 3 TJ 33 3 3 in U<
ti it I—* ‘D 3 «j ID <-t il t.

31 ID Ti Oi 3 3 cr G
Z > 3 3 i—» ta t> cr CT •0 £ 3 1
1> t—1 H- TJ fft a—* ID iD ii 3
:< r t~i ii 3 *■ -*■ ' 3 3 CD
m i CT , ID 3 I-‘ 33

It 3 <D 3 ID Ci II o 3
ct ID 3 cr X I, S 3 <1
3" 3 3 TJ Ul 33 3
>D <0 □ 3 14 +. -w- -ta
3 i-- 3 TJ .3 Ui -*4-

cr 3 3 3 f i li
Oi it* ct l-i Ui
3 3 3 I—' ID -rj
a <u

Ci
-o

0-1
r

Cl
Ci

J
.1,
3
iti
3
Cl'
<D

l'T
rr
ID
3 ‘

-TJ

>D
fi

Ci
o

33
3
«<

ci
o

ii

TJ

CD
3
ct
Ui

ill O
Id i 1
i-i
3 U’l

CX 3 w- -4*
ID «J b id
-ta 3 . J*
3 ID □ 10

3 U# 3
ii 3

3 CD CO
Ul l ui
J
ID CT
id 41 M* flit

3 *Q
it ct Hi
3

3 i... f-<-
CT' ID CX
Ui :< i

Cl.. i-c
Ci

3 u-
i-i 3
i- “J

Cl
3
a—

3
H-
i- •Ti

C
3
n
t-r
»-i-
O
3

3
•ta

”0
O
33
to

.... .

•1 4 i 1 i : I ! i 1
i. : i • . J . J,-. I-

-0 tti i C it: t- t-J PJ » • ■ «

I I
I i I I I

i 1 I I I I
! I

I I i 4 14 4 i » *4 i I 4 4 4 4 -4 4 4 4
bi I- t-j i J 1,4 1-4 i.. If I bj 1,4 f'J pi p i pi p i p.i PJ Pi Pl Pl «• *•
o eu j 0 til 41. i-i PJ I •’ O 0 trj '•1 O' Ul 4& t,i f'J O 4j 03 4 Ct

4 ' I f'J 1 1 i i ' ' PJ l i i 1 PJ 4 4 1 1 1 4 1 pj
pj i i 1 1 f'J 1 1 4 1 ! i PJ i 1 i (PJ 1 1 1 1 I 1

cr 13 •B
fii 3 3
to O o.
f n
3 •B

I’I n Of i-.- ib
i'i 3 C. -t»
3 O 3 in
Ifl n •b zr fi)
***. «B lb

C» . 3 < ifl
la c U> uz

o 1 3 rf-S 3
fi. IB ct

3 |~<U S £li
u< 3 M- X
»—* ►— lA 2 X*

i-> ft
* ifl 2

ft T}
4- 1 ft Q
’b V zr 3

1 iB 3
rr •v* x> 3 Qi
fv 3 i™.
< 'Cl ft n
fb 3 3 o

ft 3 •w*
3 tfl

2 -r-..

3>

ft t.
3 O
fi) 3
3 9

uj
3 (—‘
t—
M- v
Ui
ft ifi

IB u»
h — IB
Ul
fi) -t>

3
t*-

Hi cr h-»- *B t;r I-i- fi) tr I, IB a
3 <B b 3 fij +1 3 -t. 3 in
ti io Ci io Ct, Il".i fi Uu t

M Tr i-i zr I-*- Ui Ul
3 IB 3 Ui IB 3 uz •B | i

3 •: » 3 t. fit < t--i 4 3. J i-‘ |i I "la ti *i
c fU Ui c 1—I ■t. iB Ui IB or Ifl t. ib 1 »
u» •’** «1 Ui ill •b X >B X I---4
rt It .3 II »B M ft- It It 3 ft ti
or or ft 2 Ul •B Ui Mt

□ fi) n Hi tfl 4 UZ Cl O fi) i-i- 3 uz |£Z
a-*v, 04 2 i/-\. o 3 2 3 fj O i—1 -t. »B 3 Ul

3 3 3 < or 3 z tfl 3 or ct
s »T> n Ui O tit ■w (li 0! ib 3 or IB

i - o ct 3 1—* .3 3 <b fii < 3
•- Ct ---■ c ft :p 3 3 3 Ut
if(Tr tfl fi) 3 z IB or
rt Hi •9 i, 2 >B i-i -3 9 •B ii C

Ti]> ct z 3 ft iB 3 O at
x~. Ul fp Ui ifl it 9 T3
-J IO zr or ib

< ib 3 < fp IB -t. to
'w4 lb ct C ib 3 3 ib

»--■* i-i- 3 i-i »P
c O c tx
<B 3 ft IB 3

zr IB f'J
■B It 3 pj

"v 3 IB
II 3

i-i O cr
ft 3 >b
111 tit 3

ib
< Ci.
tb -h
f—* -w-
C
fi)

rt
zr
-B

□
C
3

ct
9 zr
ai <n
3 3
fls
3 “b
or
«© ’
3 I!
(B

•3
3
c
n
*t

It

I
►*•
ft
u)

<
fli
i~»
C
fi)

et
ZT
f©

□
c
3

3
IB
TJ
IB
ct
>-*•
rt
O'-
o
3

3>

-X.*

764 —
"35 —

-< o
, -p7

728 -i
"2? —
~®G —

<P1---

end

error* lag -.~ true
unreco ered = true
message given : = t”ue
u rite n S y n t a >. target • expected where " / synib / " -Found in: zn 'n"

606 --
607 --
£02 -1
£09 —
310 —

92 1- begin
procedure s - ow. te ; t

let p - buffer ptr­

ie t lines - 2
! Fine start of last two lines ir, the circular text bu-F-Fer
repeat
< c = if p = 0 then buffer. size else a - i

lines = if text.buffer p - " 'n*‘ then lines - 1 else
if text. buffer-' p = “ “ or p = buffer, ptr then 0
else lines ?

while lines > 0
• write out those lines
repeat
< P = < + 1 ! rem buffer, size

write text buffers p) >
while p r- buffer ptr
message given . » false

end

311 — lexical analysis routines procedure identifier above)
• £i2 --

procedure get char
begin

ch ;= if eof(input, file then ENOCH
else read (input, file)

if echo and input file s. i do write ch

213 —
£14 1-
£15 --
£ 1 fc —

5- e 1gc I Sq s t er page 2r

- . 5 — b offer ptr . = ■- -■."■'fer.pt” •* 1) r em buffe r. size
5b5 — text buffer(buffer ptr > - c h
52C — o« ■ ss i jp oh ~ :l z n " then 0 el s e

' 521 — if ch - "'t” then ■-. ps d i v 8 r 1) ♦ 3
3-.2 — else p s * 1
523 if message.given and 1 .: h - " , n or c h = ENOCH)

- 524 -1 end
text

e~5 --
'Lx. 6 —“

—
3-23 1~
829 —
330 —
3 31 -1
532 —
833 ~~

p r o c e dure layout
b e g i n

while .: h =
□ o s n = p s

end

<* *7 t I fx »' 7 **• * I*x *7 ** * ’* /“j 37 4* f £7 •p*

- ’ —„ _ -r
j ---
336 — procedure rextsymb

’ .327 i _ begin

346
347
3 48

proceb-re read..word string first -> string >
begin

let name ~ first
g e t c h a r
while letterC ch > or digit*' ch > or ch - do
< name = rame +* ch getchar >
r ame

end

rt ff. «c

procedure try(string s)
begin

symb ~ ch

1'r.i ’ti ifi VI Cfi ifi I.fi Ifi I'; Ifi ifi Ifi Ifi ifi ifi i'i ifi ifi ifi ifi ifi (fi ifi ifi ifi ifi ifi ifi ifi ifi ifi ifi ifi i'i
ifi ifi ifi ifi Ifi ifi 1 I ill ! ■ ! i ' fi fi fi fi fi1 fi fi’ fi ‘ i 'fi » ii ’!■ tf «u Hi
ui I- I.,! (U r- o fi ifi 4 i> J-rt 4- ifi I'I O fi Ifi -4 fi <1 fi- W JU -• ifi fi Cfi 4 fi «.fi fi bj fU

• I i
I I I

PJ
!

I I
1 1

III!
i I ! I

PJ
I

I i
PJ CO

I I
I I

I 1 I
fi I i

fi
I

I I
! 5

GO I I
i 1 !

O" TJ Kb ir a IB
3 3 •ft j 3

MX O ex MX a tx
l-J M m- Ci
3 3 •b

MX Ct, Cl MX t** j rx
*fs fi fi tb C ib !|t Kft c

3 3 3 3 3 3
n Cl n n ib n ft tb
3T 3 zr zr zr ct zr

u.< Ib (U Ul lb
it It It 3 3 ti 3

Ul n
O Ci s 3 Ci

3 ZS at
<£* ifi □ »>-*. ib 3
C c s 3 3 Ui
a a ux ri
~t H 3 <?•* ct
(fi Ifi JX fi tb

<b W’ zr 3
ct 3 3 3
7T 3‘ 3
ib tb r'< 1
3 3 C V

•b 3
t i 3 3 C3
O J ti< 3
3 O 3 3
Ui -i Ci 3
3**. .«~s XT

>b
ft ui
3 c
ib 1
J Cl \/

3**. fi~*
o o

n ib 3
3- •b 3

tx 3

(fi •«-3
*• ct

3
Uj r*

3
Ui ia
3 X
3

3
‘tl *’
f~>

3
c
3 K’4
3
ib ‘•V
3
n »i>
zr <->
ift ui
£X ib

tb
3
tx

ib O' Hi CT t£'j
J <b 3 tb ts •tl td
tx MX tx MX 3-

t-j Ui t-t- Ul Ci Cf
3 «cx tb 3 3

t— lit 3 1"** 3 e 3 s>
fit •c n l/> ib XT cr 3 ii
Ul 3 Hi m C

nr it 3 it tti
< •{• tb
Oi 2 •tz 2
i—• II zt Ct
c •-3 r.r ZT
»& O 3.

a r
2. Ci P

« Ifi o "3-
~t £ iU

J J» J
h- 2 3
►** -4

mt
I. tb

3
ui ft

3
m
3

3 «i~
3
Cf

it,
3
tX

ifi
i

lii
J—f
•it

ifi

a
ib

ux
Ip

pj
ifi

•it
3
tx

n
3

II

m

pj

m
2
C3
Ct
X

ex
O

l£X
IB
ct
n
zr
it,
3

• •

Ji 1, 1.1 o «i >1 n
I • «-!.

ii CT, J 0 til P-

i I I ! I i
f I I 1 I

ij

t-j PJ

I
I

•4 13 4, 15 i.i ij 0 il o 0 fl 03 03 IT, ir­ Oi 03 tn Oi Oi 04 tu Oi Ol O,
«■» O j. • 0 • i • < o o o O 0 -ii 0 0 is 0 U 0 0 Cl 0 0‘ CO Oi Oj
o o 03 *•4 0 tn 4- to iti t* 0 •0 CO •4 O' tli 4-i bi 1.J I-' o •43 co ■4 o

i 1 I 1 i PJ 1 I 1 1 1 i 1 1 1 I P,l i ! 1 i f 1 1 1
1 i 1 i 1 ! i PJ 1 1 i i i 1 1 i f ! PJ i i 1 i

cr T» ij) cr O m
Hi "J 3 IB 3 3 01
ici C) n IO Ci a. I

r» Cl fl)
3 U) 3 IB

ii.
c
i

a., c
O

~3
Ift *B

ti.,i

otn

□ *■■■>
Ift

*O ft
ll<
Ul 3

■ ' >£3 ft"
II fl. fl)

ft

i£2
cx s z x X i~i 3 »ta n
ip Cl. •ft 3 3 cx O« ft 3 3 -b 1t IB (M* M- zr Q
”b fll • 1 fl) •ft i» U tu a t -i a, -1 Ul CX X. ft IB iB
Ul ^-4 zr ui e -b 2 O’ z 2 c. fft «**. t n
c Hi (J hi * X Ili ill t • ©
b-* ft s r. * ’ Ip T. e ul o n Ll
rh IB *• *• •4 X Ci 11)

2 ** - 03 2 -i i 1
5 * Ol -4 r a. ht

’* w z a e O 31 4 3 r>4 n
3 3 b zr to T| 43 a IQ <0 □r-

Ci. £ O a •b iB 0 t_ •b 3
ift ch il. 3 2 3 f in £ O
3 -J n iB IB III o
ft 111 ZT •* X m -i + i
!•* »■« o u< Ci.
b ill Z z * IM

»-* * cc •w fli fli)
■ft * ;; n 3
~i Hi 'I CI o

Z to ill fX
ftX $•• -4 3 fl)

e 3 IB ili X
o M* b uC

Jirwt M’ s *- n
tx 3

2
ft zr
t-‘ fll
o
3 14
ill z

T)
□
ft
3

to
ri Ili I-*- H-
a "ti (••
3 ifj ft
ui lt« c »B

3 9.

n
i'i
Ci

a
ci,

r u:. 3 .-i-
iB US Ul n
i ft -, o

n >B u<
::i n fX *f a

n Ui 3T ■B
IT J ill V

■ j zr
ift

•w 3
ui
rt
3
M- a.
3 ft

•43 3" U l
z-» j£» ft

3
c ri M.
3 i»- 3
3 O US
fli ift
ct I-i-
n 3 C
3T us 3
U) 3
fi /S ftl

C
a
rt
flj

Ul
IB
ct

ft
O

. X. .. . ' '

ci.

rx
03 h-

(D

S-*

—
j.. ft*- ^c*t ».A t • ft-* i- ■ L-’ r^*« ft-’- *-* ft- • • r- ft* ft’ . ■ t—’

*3 < i A fj • » a * i •;.« o fti i.i *3 o O «.> o ft j o ft.. o o o u u -n 0 0 -i U 0 ■i H li ii
i 1 t'.l ft* ft .’ t ■ L-* 1 ■/. <•• -* o •?i (i o o o O o o O Ij • i -n si o ti Ii ij 0 n 1T» p j
j-«A o -0 £0 O' ui -r* w f-j ft; a 03 4 o i il 4* tu iu i- e O 0 co •.} a i u to f‘i • fj 0 Pi

1 I 1 » i 1 ! I I i i) i i I i I i i ft- I f i I i I i i ' i ! t
i ; i i i i i I i I t 1 1 I ►* I I I i I

in ift tft ift
Ui ill Ui Ui
Mi Ui Ml Mi Mi a >0 tX ft- n CX t—4 7. n □
L-4 r i ft'* •B n -ti ill o iB M c o rr c
o a a a iu Ui *T CX n Mt 3 m H< 3
CT cr or rr vt cx c iT a n *-*- 7 UT

Cft- x„ 7 C ft- rj <0 Ci <-ft n s ffc
c 7 it- 5 7 <T< i ’■ & i
fti iftft*- ft*- li ft*

Ui Ml ul
3

ft i ’♦ *•* n
1 i~--* j—a ■ i

*C: o 3
Mi M< ui

I i 1 « ! I I I I I I

___________ .

Ct
-ii tl

ft—
iJU IB iB or fa r* i» cx ift ft*- ill ft*- iB — cr r.s rx ct O’
♦-« 7 3 fti i—‘ 3 <B ft-* -b i-* “ft» #4 ■+> O O O o a Ol

d cx l£3 ,11 cx ifj Hi Ui ui O O O o 0 tC*
f’J ft*- r& Hi ft*- IB iy »B IB IB Ui *-* ft- ft* •ri

n .-~. 3 ■d 3 d 7 7 1 7
T3 Cf ft* u'j rj- u .. ffl 3 to «B fl ltd < < <; < 0»
•* 3> o iB O ft* -1 C d ■zr tti Oi Ut Cu Ui zi
it 0 o c-i 1 - O i-t ft*- -d 3 ♦-• 7 iu ft- ft* ft* h-4 ft*
7 TJ fr*-*4 u, M» Mi IQ 7 tfi - *>-1 .

r i’i 3 n 3 .««.
Mi < < H eft EX Ci d Ui Ul Ui Ut Hi
iu lli » fti h > <B 3 x> f. f 7 7 "H d 7 i.i
Mi - t~ 4 ii ft* n n n Ui TI O 3 »Q IO W3 to to •ii
ft* il* Or y-S il’ zr 7j o 7 Tl CX ifi
o -b 7 fti z -i Hi r~ tx r IB ft 11 ft*- ♦ * M* I-* IB
cr C 8 id 3 3> IO 7 -c IB XT < <->, zr Ui Ui Ui Mi

<«.. 3 O = fti 3- IB 3
1 n X ct 5 rt <B •1* 3 ft* fi r» 3
V <.-f- •jr ct- zr ft> 3 •d ft-* t~* Ci .T C !fti
EX ft ’ * zr fti 1! ft j zr IB -fti 7 i-j *** o U’J 3 o
13 til H iB 3 tl •B 3 c ux c Cl tl) M- -m{

a 7 li 3 —. 3 7 c Cf
i-* U3 n n n n i'i TI Ci n eft 7
'***■’ 7 3> U> 3 J» fi 3T IB .1. *^r

in ft.
r

3 Hi fti r I*' zr - Hi 7
3 7 fJi Ci. 3 d tn Ui IB £B to o
CL m CX n 7 7 3

•>«* n id n id C ft*-
n n rr 3 Ul £b

A CZ (B 7
/’» li • j 7 fi *d

ct-
"J
a;

.. ,

ui
ct
7

n
eft

O Q Cl o
cr <T tr cr

m
-4
>
n

ib w tj tb a f TJ 1-1 TJ ifl Ui
3 ib “4 3 IB -ti 3 3 3 •t if
re m o CX UJ O 0 0 3 3

f- i'i »•< in n rt Ci C c
3 Hi 3 -4 «i M* tb fi­ ib n Ci

in Ci. -4 t-*- f in t—”• > tx LX at ex ct Ct'
•ti ■■•-I c •b +. tl -4 ifi Ci c. n c 1 1 c c~ li

> -J Ul . t 3 •42 “j tC J 3 j
in O ib C 3 in Ci ill n •U n ib ffi •b

•yr. fj ib 4 3 li fr-’~ t—
> TJ cf lb > tb TJ IB O ,i. f-4 Ci Ui
n c C n Ul 3 O c z c ct-
y.-, ti Ul t—• j: C t-i- T3 ’ • Ct 3 fb

zr ct f- f <jt 8 Cf tl TJ n
ui ifl i? if ct -< Cf wr

to. ct St <•'• > - cf Ui ~te n Cf r x
TJ Qt tb «i □ ti ZT c» lii r T 0

ft n ti <e x- *—1 c TJ TJ
XT X" "’J •»-< m 3 Ul ib 3 3
.~- o **4 U'l 1 ffi cf 3-

*,/ it • J. X ~4 «S V 3 3
M- TJ ~r o o > o

m Ct □ X- o e 3 o it
~4 ® ct -j e T •i ct o Ci
2» 3 -4 tb “j t-i. -j ex T3
r> f 3 ct — m
'K f* 1 a. it ib ct 1»
13 ct o ■b Hi u
n ifi it 13 2 3
n -4 3 -i 5 Ul Ci fb

—l 3> tb Ul *-«*• ct' Ul Ui
X n Ui ~4 Ui rt Ct'

c > Cl 3
Ci. |w«r4 t“'i se~- f-
O * Cf 3

□ c «0
in m o t'i ri 3 3

-4 r.r CO Cl m it
J> 3> lb »-• IB c
o O ct Ci z 3 cr £X
"<i" ;s, Ib t—< -ti TJ
a n n r ♦—* ci
m X~ X a HZ
u CL • •L 3 C I’I

-i T> t-J it 15 2 t-J
X t‘< ci.

3 <b

fl­ fb □
+ it tx 0

< I ' t’ i • r • (■ ' I -• k* J-* i ' i • i ' i • I ’ i ■ i ' ‘ « • I •' I " '
I J . c» . « o . j .< o i , . I . . < = i ; < .• I . » . O * • O • .1 I - . . . I I I I • I I . - . . . >) I- I
1'. £?i P »5J tft ift tft P: Pi 40 ' | 4 i i I ; J i i P P 4ft P P P P P P P »i. • u • n « I
-0 tft -4 ft U» (ft M <- O ft <X» ft ft ‘ft ftc (ft t'l O ft fft 4 ft 04 l.j 40 ► ' O ft GO 4 ft

i> | , • T* t ’ r ’ t-* I * »*-*• i * » *• 4 ’ t-* » '

i I !
i I I

I
PJ

! 4 I
I I 4

I I I
i I !

PJ I Pi
1 P,i I

I I I ! «
I I i 4 I I

I ! I
i~* 4 i

i I i I
4 4 14 1

4 4
! I

tx o
Sit ft

Uft O
m- n
'J .B

o.
c
ft

pi
3
Ck

rS
o
ft
ft

4U
ft

tft fO 4..0 o lit I-
c
•A
TJ

t_ o
tft tft nt

rn <o

w ft
in ct ft3
c; o rn
r.3 tft tft

m

n
t>
ft
ft
ft

n
o

it
r

o
<
r>
r

K It tl it

rft i ft tft □
C C C <x»
3 5 .1 -
ft T! ft ft

4.0
r
a
—4
>•>
ft
a
•a

.-S
•+.

o O
a (0
tft -ft
FI 2>

Ci

Hi

«n
it

tft o
o

ft» f&
ft

ft
at ft
X ffi
ft- X

ft
tft

tft

0 !l

a rft
* it C
to ‘3
a. 13

in
ft
-1
(-4-
□

t£l

m
c
cr

n
nr
n

Ci fn yj
C. ft £
3 < a
rj
—■ r.

nr
n

Ci I) li li it

ftj. tft ft (ft
!<■ C. t» -ft
i—i ftj K J>
tii ftj ft o
.u — •

n ~
CO ft
c o

n w»
o c
TJ (A
o< ’ft
.ft
IB ft
tft £1.

in
Cl

»- a
us ft tft

O
ft Ci
Sit fli

ct

■ >

=.

a

n
nr
n
»-»t

-a

m
z
<

41
ft

3
il>
M-
ft

ft
XT

3
’5

tft

tft
<
tft
r

cr o rS T3 -o
tn ft e Ufl ft ft
i«i 13 ...j 3 O ii P’i

it © li (ft ri I
ft ifi it £ tit c in in

Ci. n> Ci .A Ci.

C c "ft c • x 1
ft s *ft ft i a
<u ift tft ib rf

ft n ii
t-~t 2. m rt- ifi tu
O ft a. fft nr
Di *• ftt C < Mt
n B n 3 fit ft

f IB o .It
n + n 3
o s TJ o
ft - in tft ft
ct (0 O

C tft
ttJ Fi €»

n Ui
n Mi n.i
•< ft”
Ci Mi ft
r C i- *

ct- ft
s n'j i.-J
s ri ro

ft «c nt
c n C

oc

w i“i
«c.

m
z f-
<*■

n
C

ft

j j j .j , •». *-<- j-.-.* , .*■ » a j ’
f. ‘ | * » * i- ' ' >• ’ ‘ 4 * t * i ■’ i ‘ ‘ I
Jl.j P ’* {* ! ' j ‘ ' ' ' 1 ! ' « ’ * ’ ’ ' ‘ ‘ O
iu 10 G 0 t.0 U O' Ut -- b.t tO G U CO

, Z. j. • i , • i - , • i-A »> •
r<. *.3. j-X
Ci O o Ci

..

< t. j -/ |-A | ’ j- ’ - ft* i * $>■"*• j* ! | 4 *
i--- ; i j 4> i, i . i , t

. i . . . , • . fj O ij 0 :> 0 O It ii
4 P Ul G) f' j c« • i 0 CO •4 i? Ui 4- CO (O i-'-

i
1

i i t » I t t , I f i '
1 I J I 1 1 } 1 t I I I I i I

i t I I i I i i i I
I i i I I 1 i I I

I I
i I

1 ! t
1 I !

te U>
Ml Hl

Ul rS T3 S-* O te
l£i C -i T □
b—4 3 M- fxi i~> i—‘ a O cc
© te T> c IB n i'i
cr Ml Cl te te
fo a j-4. Ifi t-«- IB «-*• rj •3, to c.
w to O -1-, XJ o ♦-4 c •b 1 • li r-i H te Ut c C « i
lit c C4 te Ul IB -t ill Ml ct ■1 t-i IT

03 O rt <•-- tl rr in TJ Ifi ii IB li <A te m
m zr t— ZT Ul te Ui -ti f~l

Cl fd ill te tr~• 1+ . — -fi .4^. te t'4 Ul ■<
<• - □ et 1 o Ui zr I""! ct ifi I-i O
Cl 4—. zr it n ♦«•• H- •B te fj zr IM r~
r m i—• ■W IB J i »r IM T .c IB tB

zr It “J Ul Ui IB ? Tt it •» T H C * •
< ».n rt c >-4- I"*- tl i-i :r ti i j 13 ti «

<*■4 et ' tu a V Ui Tl -1 ifi II Tl »/♦ >*V.
0 Hl •H zr ffi Ul Ui i’i •t r Ul Ct Ml IT

m IU nt IU H •B Pi Ifi o c o
t.n i.J ft □ fi 9 a ct- 0 »--4 '0 •Tj f-4. ZJ cr Ci.

C •ta* et ifi ^2 -i-J TJ 3T -i •4 te rM <± •B
to z< zr Tl -f 3 i“i IB «/< rt ifi n
r TJ Ct ii« Ui ft* 3 rt- zr az
o o 3 .-*> 0 j> tfi ZT te 4 T» Cl

1—• ex Ml fr—I tfi te -> tf !"■
► - j.—* o o O l-h z r<- 3

ift £3 O IT Ui i’i
n n >-• te ®

> «“ Ci c Ci
Ci Ui Ul i’i rt- T3 O
c C C. «x

T3 -S3 r» -j T> ui
r~. l-’i IB te w

T> •t» ill to ct 1-4
Ui ■II ill z~. zr ifi
rt U v 13 •B C
zr zr • • Ui XI
te IB ti •w •— ^4
“3 T -ci
<w Ui Lfi

».T
•B p-i 13“
i Cl ifi
Ul IT i
IB .■»r

MX
Cl
j._i
lb
Ui

+
IB
t—>
Ui
IB

I i
i I

i ■ j • i • | - c • i • . ■ i • « • t • t • i ' »-*• t ‘ t■ • i ■ r* l ’
*.< ,< t’ >• b t' »• «• ‘ I I-’ »•’ i’ »■’
<UI -Jl • 1! 1.11 <rt « ii ‘ii lit }- t- 4- i- I-

4 tT <Ji 4s 10 I*J i“ O O Lb O {.< ttl

I i I
I i 1

i I
i w

4 - A
t.J flj

1 ■ , •
r *-

l.’l l ij 4’J
o n Hl 4

I I I I i fU I I I
i J ? I I »

I
fO

' i
i t

a

«Ci

|. ?. X
1 4 ♦ ’ f '
bj i.J bi
t> tJl 4-

i I
1 I

■ ’ « ’ 1 ' i • > ' 1 ' I ' 1 ’
; ’ f-, S- j---’ f.. •. * :* , " ; 5 ’ j» * r ‘
bj .-I bi t'i h.i «»i i>i !U -i Vi
bj fli b- O -O 04 4 it ii f-

i i ’ (i t j i b* i
i I I I I t I I *» I

n Ci •B or n m ex r* ... —
3 tit O □ IB O □ m o iti
o Hi i i £X «3 o a.. m a 1X1 cr -4
□ >B in rS b«- m b* m IB iTl »B (U
fO 3 3 rr (a •13

tO »
». UI
r-i

Ct a

c 1 <x
r ■'

it. w- XI rt Sil
fl Xl)B «T» a c 3 <

Hi 11 •X Ui Ui C f-
ill 3 < j-i. ex SC it- IJ

rt Ui < <X Ml o c
rS b“* Ui n 1+ 0 3

ti) i—• 0 In <n Xl
n it 3 n 4-t O
C UI li rt- Xl
if) .«%
□r n Ul <—« ill
oi a C O o
*X •i. in 0 Q 0
Ui 3 Xl XT t~J 1.1
< i UI «! c m 3
35“ III 3 xs o. 13

Ci. z~. C
m <X X

< < Ct. o sr Ui
111 IB o IB <-T

1-1 4+ a H
sr m n O

».!• ft) 0 3
3 • 3

M* b Ui
:n rt

1-1 s z
0 r- «c
Ui 0
Cl., rtJ -w-

-j
n tft
a IB
3 s
n

X* '-

w
zrI...
Ci
<
Cir

S">

.1 y.

o >-t
X> 3’

 -

«i IJ Oj Oj Ol 1.0 (1.1 tu 1.U (U ili tu ' i j I
O U tu JO tft if pj < • . I 0 tu J

■ ' 4
tft &

•i J -1
GJ M m-

! 0 I? 0 O O 0
f , Jj 0.1 4 0 tft (’

I J
I

f'J
1 I
1 I

' i
I i

PJ
I

I i
I I

I'll
I i I I

i ? 1
I l i

PJ 1
1 1

I
PJ

i i
t i

PJ i
I 1

O 1.1 O O .11 . I!
UJ p i . • <J n a,

' i l l i i
I i ! PJ i I

s «-s 9 n ci
Ci □ ift o
tit 73 t. tt ai tj o tft ci
ft O O C o C -J tft in
(U cu 3 tft fti ta fft

tft cf zr £ :x tn p’
3 tft
-~> rt
f > fft

c
r»

tx
• - tft

- +j

O Ift
.3
ft t •
tft VT

cf

fit
It cf
3 Ct CJ n Cl (ft rS S' rS t^’ • hi
O o sc CJ X“ ■< .4 -Ti ih
tx o S'. m o Cl n t~- fft fl
ra f1 Ut C-. □ r O O tft p- to Ci ft>
<31 in c: cr 3 73 Cf u't t~t Tl ""-.J 3
+ *•> ifi 4-~* o CL Cf tft fft c .ft > cf n

fr—*■ s - w ft ■ ift ift tft cf o O
f-t iff m Si cx zr ?r: tft
hi Ti ct It ift (ft if
<T tx < • i cf cti
to ft. '€3 tft (ft II rf-

tx to IB O 3 ft a c»
e f. TX cf ft" TJ T3 o O
a* Cl 3> m Ift i-ft o o J
»-*• CJ o at ift Cf a A <i
/•*" i i 5- Ift fft ul to

fO Ci I! n •1 rt »-*
o >r -1 ift <rt cf

3 o ~j n □ Ift
pj. m n -*-• 5C" 111

(Gt c tf-
Hi zr m o t*-*

cf 3 o O
£ • -»• cf Ip

ax :r a M-
"b zr fft n
(M rt 3 *■ z,
4- - it 3

f. Cl to XT O
ill O O m 3

3 o 3 nt
A." m

0
HE
»t

tt

X
ft

ti."
tE

b
fj

fit•fi£ cf3O •fi3 £3ill

,■ ». »• i' I' I 4 - i» »’ I’ i i* (• t' «•* 1 ’ t ’ (-* i' i-‘ i~> »’ *’ 1 3 t •• 1’ 1* i- »' i‘

‘t s IO |>. ftj !. j !• f J c I M P1 rO P 1 P.i HI »• 1 j. I IO Pi)■.: Pl i«i •• < fO Pi P1 . • <• . ■ • • . ■ ♦ • ‘ ■ • ■
p■■ io rj pi f-i fti <' »• • »• • • *-■’ • • ‘ • o o • t > t « i j i < jj o ii « is j) b n
Ml 4-- bi Pl • • o Ti o."l 3 o- <ji b bl fl 1 O 0 £0 4 G ■ n 4-> to PJ O 0 ffi -4 0 ‘fl & to (• •

i 1
I !

i I ! 5 ! i 1 1 < 1 1 I i to 1 1 1 1 1 • i to i i
! i 1 1 ! 1 1 I ! 1 to 1 1 1 1 ! !i i i i to i i i

I I I to

a* to C'i a Cl ill cr to Ci.
o to J O 3 Cl 3 <b O (fl
<- ri -b a to to CL iTl to -tj ©.
it m m *t» JTj M- to a» ffl
2T X ZJ c -ti
• f.4. X X* 'S3 »-•■ J-™4 to
cr to cr ill a C Ui rt C
i-4 w cr t-~t J.v.
a -to O »- x-* a Cl zr 3 it
n w» n a O 3 Ui to € • • to
x- 3 X* -b r> ai n (7 TJ 3 to t-. • •

m4’ X" 3b o Hi r-i. •ti ||
X M- 3 n © rt 31 Ui Ti

M w .t JK“ 3 fli tfl or ©
li TJ

to J. u T.-J t*' tfi
n □ zr o UK it
X-> to 3 Ui X3 ib
a
Ml

in 3
•fl «i

Ui
it

•fl Ci
3 >-

c j.-. < IB fli
3 fli rt n < to
ffl 3 xr to • •

rt s i-4 II

to
3
tC

II
t>

fl« TJ
rt O

Cl Ui ill it 3* “O
ti r--1 ti to u>
to Ui Ci 3 rt

fli TJ to
-... tii n

sc”
fi O ill
z ‘fl n r<
< Ci. »r o

3
n TJ rt
o c
3 UI to
rt 3‘ rt

UJ
S> it to

fli o
fli n ci

X- in
U»
•ft ill 3

74 to to
tn

|i 3
»- -• T3 O
2T © .T
irt TJ ZT

Ui ®
to rt 7
ill fli flB *t ci

»“ it
- ZF

U cr <u
3s 3
Ui II
r- TJ a
U» O i
i» T> -H

Ui to
rt" •<
in to
n r
se

to
O
z
a

a
&
ex

rS

to to
to it

a
3.

to

to
—I

Ci

to
I

to

<£»

to
.£
u»
it

3

, i j.j. i-’ I *•* 1 ' »-* 1« m- h ft'*- (-• , ’ t ». t- r » > i • «-»• i <• . • i ' *, *•* i ••
»< 1 hj p i o.i in IU I’i s Pi P ! 11 0 1 iu pi I’i ill in ft j f‘t fj P i t« i fu oj »i In ft ft pj f i pj Pj
cP Hi U'l OJi lii .31 OB Ui U! .is ■F r- p. •ft ,p. 4i -* F f. F i.i b.i i-i i-i t-i i-i ft ft i.J ft pj ft Pl r
0 Of I 0 Ul w fU r*A O 0 03 '4 0 on p to l'.i t • O 0 £0 '4 0 Ui •F ft Iu rJ o f) 00 -4 O'

1 I 1 1 i 1 I IU 1 i ! » i fU i I i 1 (111 I 1 ru 1 i i PJ : 1 1 1 1
1 f'J 1 1 I t i 1 !U ! 1 1 1 1 l 1 1 1 nj 1 1 i t I i IO f 1 I i 1 1 ! i

.1. Cf •B Cr r> IB cr .ii cr ft' w Ci
3 i£l 3 ifl b o :> ft) -.3 b Oj Ifi
G U-.1 <x id a S3, id iZi. US ft 1

-• • f~*i ft*- 01 m ft*' Of O PI U--
3 3 •4 ,3 .1 a a f

ft O', t j 1 J Ifi I J I. Ifl ft* > n 01 1 1 Ol ftt ft- TJ n 03 M- l£J
o > 1 o ft I-* o Ui 111 O Ift a fi t • o c Fi in Ift tJ
a, ij rs 1 3 -1 Ui O □ < et □ <; ex, J? 1J ift fi, ui ♦*» 4^
C*. PI m •n c IB 1 rt IB G rr c Tl Pi IB Ct- n

ift < < 3 Ift cf rt G 03

n rt- fil fi fil rt IB u> TJ • * n cf zr 3T IB M.
o tf* Ui tft rt O ftj a 3 rr H X*, II ,-r O Iff IB I’I J •ft
3
ct

c
M*

c
1,1

c
ifl

or 3
rt ti

T3 e
Ci o

3*
•Ti

3
ci-

n
x: Ui Ul

in
■B

Ft

TJ Tl -o n o-i o < X*, c c B
Ml o •a rf O £'J ii> ift tft Ifl
c* <if 3 O IB i-i ib -J c Of TJ o
•ft 3 Ct *o U‘» Pf £ Ifi O

JU. i-*- TO ift < ill Tf a
b ct ct '{• SB (U et- ift ct- 0! T,
n IP «< ~i x*% i ifi c .■T ■■r Cl ** ft-- U,
•xr ■r . a.. e rt ift ~r Ift IB ct <3 US

IB < < -j XT* O iti X*. cf Mi ft -It
-3 fi. Ci. UJ ft- SB ift o 3 .■*r
< ft-- rt 3 in c. Of n >1, ill

IB ti c. ft) Ci X” 3 --ft
•w s til tfl •a fi <ft •c" fl

Ci. f3 FI •w c n -4
* ifl

ii if II ft
rr *•• rt I!

n
II

cf
•4

-b in ft fi IB r-*’ rt 1 c
tl, 3 o 3 ct ift ifl * r FI IB
t-J i> J> IB ift “J <
ifl r ft 3 its lA c ft* P ct
IB c r ift < .'.3 c. rtf ift I zr

> X* IB £B < m C IB
•H - TJ < 1> □
m
t 1

rt
O

ib H
m

o 0.3 O
** Xw- n

’-.X cf X-
:r-

3 » £
o * □ Ui

cf
o
<
m
-J
e
“i

ct
fi)

m
2

O
c3
“U

«•-' . < e • i-' (• 4 '
<1 I «• I f'J (’ « !• ! i‘J I’ ! I’I

1J 4 •- , •/
|U !’j I’J
Ift OJ II.

4 ft <n

. • . • • i ‘ p.
Pi iu '-I n hi
J ,-J 7, & *!,

hj :■ i !■ ! I
0 0 11 ft i

ta io c:,

in
tft
ta ■ >

o

■j

a*
ci
th
n

i
■ii

J
•+> t. -t.

■o

O

io

1 I 1 1 1 ! 1 i 1 { 1 i i 1 > i : i ru i Sill 1 M 1
I 1 1 1 1 1 1 1 1 1 1 i 1 Pj l i i i I i i i ru i . . i

t -l J-J. »-.» I • , • j ’ , • |.A I • r *■ C-> « ■ »-• I • I- * H t ’ t • VJ I ' ♦ » I ■' t • , • «-• i -• H* ♦ * I •« I •
bi :/i l-j tj -.i v: tU i i t l i-i hi i-i i-i »,U i-j t i t-J i-i Ut l«.< l.i tU b» b.t l-i L-l W L-i I'i f«» Pl IU »• J Vi
}' i I J fj 1'J !•: !• I i-t I i • -■ > ■ ■ ' r ■ «-* f' > • > ’ ♦ • • ■ O C< < J O «7< ■ > > <> ■ ' 0 0 u ’1 >< b

•4 CP Ul -ft. b) fO O 0 03 M 0- f.fl -C tU W O U GO -4 Q Ul C tU fU v* G 0 CO U f> Ul C

I I 1 1 I i i I I I hx 1 i i I ' ! l 1 ' » i
H* i I ! i I I I t- ! I i I ! i 1 i (i ; i i I

I I l i ! I i I) :
w- i j | | I i i

I—* TJ
o c
Oi ut
a zr

ut
n d­
O th
J n
ct */

• I

n
o
Z)
in

cr
U«
ui
»-*■
□

TJ
~i
o
n
tit Cu i, ,J

n G3 3> > n Ct. Ci O l»a •B m
n r 13 n lu c O a UJ -b tn
r o Tl Ti ut -» O ri U ill i
o ct r r »b III rn pi C tB
x_ < < X ■■t t-« Ci t -

li. LT cr |"J 1- iB .-!• Lj •ij
□ IB O 3 Ut in 3 o
£X tea Ul o •b w r ' TJ |T| fr*-*

»- Ih o !’l rS ’•
TJ TJ z~. X 1! •nn m TJ »-» uX

o z •—< tC *■*• o O 3 Ui
□ < ur 3 ►-— II tt O ■b
cT cr b O a i- IB

ID cr i-* M- rt ct n rn X
fti fu t—* O M sc* iB a 5*!«
d- it CJ rt 3 a o

e I'I JKT o Cl m m rj
Ok zr «- TJ -’■S >-*

O iB a> Ti
o n "1 ♦Tl Ul
a «-> IB IQ i£>
rn lh o li lb

•u
Iu

r
m

Ci
Ul Ul n
C fc rn
ut Ui
IJ TJ 2
t£i IB □ IB
I 3 o i-'

CX tx •J
tU IB ID
cx CX s

*•

fl o m
O o -■
a «3 <
m m

>b IB
fU I-*

-

- '•

rn m
z z
< c

- -

-t. -b
Ot Hi
i—.
UI ut
TO IB

S-*

LU
Ji

D2T
r , 7-.p i~.-6
J1329 —
me i-
1221 —

1233

-77= __
;• 1226 —

l32'T —
1338 1-

1240 —
r 1341 --

.342 -1

1344 —

...
■r r ■ ____. A -J»4 /

-—
- - A ~i v
1 2 3 i —

< let code = infixC AclPL’!
i n t i x (APPuY -■ c omp a 5 e <

CODEC el)) ,
CODEC e2))

cent, at - code > "none" > INCYCL >

^LLEPL 12
' let code - mt' i ? ; APP _Y ,

infix(APPLY > append >
CODEC el > > >

CODEC e2) ?
cent, ate code / •none'1) > INCYCL >

EG# Nt equa 1. bloc;-

PaRQR,PAPAND. pr block

default ’ CODE is aritb operation or relation

13-32 — case SUE.CYCL of
1223 — "none’

; 1224 1- begin
1255 — save contC "once'1)
1256 — c on t at< CODEC e2) .« "none")

- 1257 --1 end

" o r> c e
if STACK’- top is suspended then
begin

0
Ul

r-• f~ ’ i * I *i ■ f.-A f .J j. A | » <•• •’■ t-> t~> t • i-> ► • I" ft* i- ■ I ft*. F- i J. f"A-< i--’- 1 ’ <- • »-> ♦ -* t -
ffi i-i -J ffi I-I I-i i,j ffi i-i t-J io i-1 l-l i-i id ffi id ffi r-i ffi ffi t-J nJ vs ffi ffi IJ .-I ffi

IJ ffi ffi in ffi OJ ffi ffi ffi ffi 4 4 •i 4 1 -4 I 4 4 i,> it j! ffi ffi tb ffi I»
o 43 ffi 1 a Ui 4- ffi IU t-J- o ffi ffi --J 0 Ml 4^ ffi PJ a jj 03 -J ffi <J1 X. ffi pj

! ! 1
I I 1 I I I

f I I t I i i I I I i I i I 1 i PJ i ’ f’J I i i 1 I 1 I
I i I t I I I i I i-A t PJ I i i i PJ I i ! 1 ! *-‘ 1 I i I

ffi
i

Ih
Ci.
.!<
T*
ti.
C

et
ffi

cr K- (fl tZ ft* lit
Hi 3* Zi IB *b IB tx •ti ft

t£3 a. tCi 3 (b 3 IB
)•♦■ 03 p'3 ft* ifi ■ « £X m Cl 3

Ift I-* J--*
3 3

3> <B
z
t'3 o I-J

□ ~i
ffi

M* rS I-*
3 z

u> «B IB O ft-1 ■< O &» tit fi ct* tfl «- rt) a I—* »-* e—«• .P ffi Cl us t-*
< ct rt Ml Ci 3 < <t K 3 ii) t — t„ rt* -ts IB »—• -t O ft) ©
rt) iB r et­ a» 4.4 Ci. ICt Ul hi ri rt ut ffi 3 < .3 M

rt> IB ft-* n ft* Ul 3" ift 1 rt « ft)
n PJ i- * 3 ui n iB <3 ffc 3 ft IB tfl tft 3 (Ci
o IB et o -b O • n Ul X) -+• 3 O a ft) r» iTj
3 II It tit :j rr Tj O ft) c tl) -t* •b rt O *£3
ct <3 ♦-T 3 < ftt n II ft) ifl 3 ' 3'
r. T3 ■o n O «— e3 <B 3- XT 3 3 .-t *3

o O © T3 ifl rx ■P «i b*
2 ■o Tj •B - tx ft*- ft. • ! ri­ 3 ft*- II tj t'3 r.s

<3 tft tfl Ct 3 rf Ifl rt o ft. IB 3 Ul f» a
e et •'."I" O Ul £ ii t Ct •J IU 3 TJ 3 a
•-j- IB Ut XJ t» tfl ct 3C et O tfl 3
n n ti i I -o c ffi -x r**. --- 13 ift Ci fi
IB X~ :sr -w *D Ci tfl a ffi □ 111 -ftx rt’

j3 ft— T3 X) a 5 u) O C rt £ Cj
IB tfl IB m iT Ci r> 3 ft) •j O

tfl -b <3 □ £ I-. i’i Cl ft.- Xft X)
et ft) Ci i-j- ib a ftx et X- tCi Ifl

ul n IB .0 CI 3 ft) 1-J- 3“ zr *3
C O x- tx ft* US tx 3 UJ rr ft)
tfi Ct 2 <- b J Ct

T3 Ct .3 *w ti t-- a X*
«tt zr a X a
3 iU « 3 <x
Ci. 3 rt" O
rft
Ci.

et
□r
(ti
3

ffi
Cl
a
m

ft)
«~t

a.
a
3i

I (-'■ (• I • I i ‘ 1-1'
‘i Ji. !.. ti !'. I.

I' i P P 1 f i -■ I P • P 1
O ill - j 0 4 n I- 14

! I I
, PJ

i 1 »
j 1 !

I’ | ' ,(I f' , • , •• »-• i • > ■■ 1’ t ■• I •* t ■> i'

■tr. I- r- p. -ti 4- I". -- ,i-. 4'~ 1 • • I-- .'.I. 4- to r . ■. r. to to i..s f.J l»i 14
I* IVi P? (• , • rt rt rt 1-4 J...ft ■ 1 4 Ci o - i C* >4 Ci C' O !3 0 4.1 -0
PJ O 0 Of 4 tr . ii -b t.4 1X3 rt o n 03 •4 0 t.n 4- Gj P..1 1-4 O 43 £0 '4 C

} 1 1 i j 1 : i 1 i PJ i i PJ 1 I i ! 1 I i-4 1 1 1 i 1
! i I I I 1 1 i 1 i 1 1 ro I I :• ! i 1 1 1 i rt ; 1 i I

fO
3
ci

Hi
3
rt

o
b }- -1 rt

o Ci C
<au H a. in

a. TT
Ui Mi

&» 1 1*1 rt-
c (•*’ o ib
h-j rt 3 Ci
ft zr rt X"

*-• 3 3
i'b ib
rt ui

□ Ui C
o rt 1-4
rt 1-4- rt

O
«-** □

M
H’ 3

o o Ti O H
|Fj J |Tj K4

3 < :s z m c
Of >.’■

a TJ 1-. ■ —
•b ■Ii c
m i — tfl rt
14 Ml zr
J flj *n 01 1-4

rt I-* rt 3 »b
Ui IS ib U<
rt rt rt Cl II 6

X" HJ
3 c»- £tf ib
ib 3 e
ui tl II ib 1 ib
C 3 !»J 3
I-4 < < 4-'. rt
rt- Hi fli

1-. I-- Ci 1"4-
it PJ I-*- O .4

a .•+■
Ti n I—4 in o
r Ui rt rt o c~«-
C tf» 3" zr fli -
tn ib ib fO rt. 3 rt

rt. e Mi

Ml
J T.. 14
rt o o

X> T3
3 Mi Ui

C rt rt
3 ill (li

n n
O xr xr

o
13

ib
3
Ui

rt

tfj
1

ib
i.-i
u i
o

e~‘ 1-
T. <s m

rt rt

< < <
ui Ot ill
i„ i i- -■*

rt flj PJ,

►- li ii

CT ib tfl
ib 3 rt
irt rt 0.i

H-i 3
J z

ib I-1 n 3 Ti
t“ •» o ib c
ui Ci 3 < lii
Oi r rt <b zr Xi

9 «i Ui
Qi tfi rt id
rt fb lb m

n
a 95-

•3 o
Ci ii
ib lb Pf
3 1'

>b
ftj

O 3
O c

cr cr o or 3 73 3 3 3 U 9 3 3 ib n Ci
O O O o C C C C C in rt O i ib M- o
O O o o 3 3 9 3 3 *--x ta tfi «i
»-i I-* .••«. f-s ,4*^ s^- 3 M 3 3

* O ft rt tfi
< < < < ib Ui &» tb ib 3 . * rt 01
Ui lii Ui u» •■h 3 3 z
•—4 l“4 i-4 3 rt. I + 1-* • < < fli C

fli lb Cj £b

i. .•
*U a II V

9 < tr rr cr •
O

CT rt •— v — TJ

cr cr cr tr O

—

fi’ f- • I 4 CT‘ * ’ i ‘ f »A | ’ f ►•Ut M l-i 1 1 • 1^- i ' i •■ <•4 I * i ' t-’- , » »•-* 1*'*’ »-• f-i-P ♦** 1 -•- I V-

fe. ir* I. tAa Jf -tfc ■•i t;4 ft S:. I'- f- i- 4-. h4 j;. 4a 4* :u fl I'. .{■.. i- fl {• jj 1. jj' -ti*
ft IT it It •« > n as i.fi 13i i ii ti: i.il Ut iji u 4- •u 4- r- 1* l-l fl i.U w LU fu hi £3 1-1 LU LU GJ

LU pj t-i o 0 © a ui O4 W Pj t-t o o ro “•‘4 Ul OJ Pj fw-?. o ft co • i f> III 4* tu PJ o

I I
I PJ I
1 t I

t i I
: nj i

i i
I I

I PJ I
I I 1

I i »-*• i
i i i I 1

I : i i I I • i t
s j i l I I I I i

i ; ! i
i i i i i

X3 111 ct 'O
9 4— fi "j
Cl Ui »".i
n ut n c«
■fi 9 ifi

3 s Cl IX n Ifi IX
Ci- a 3 ifi c Cl < c ©

3 O u» 9 3 o 9 3
3 Ci 3 ifi lb in Cl ■fi BI

40 IB IB c t-*

CT
ifi

40

;.U ;fi
C. w
tu u
■ ct*

O rC
•< '

TJ
f--i •*!

ttf

□ <
■TT t<

1,11
id

or CT- 4-u f»-* Hl ifi n a i-L O XJ M»
•fi ti fi ro Ifi F c. il 3 rt

40 rt- <t 17 cy O XJ M» 9“ Ifi
CT- "b ti f-~4 ♦-=* a n 9 3 9 St
3 fit o tfi o o t» X" •li tu CT-

XJ TJ fa-4 9 9 Ci 9 n n < J (.--» T3
c c •0 3 9 ■Ci 55“ JS” CT- 40 1
111 ill <T ifi to 3 Cl Ml Ct ifi
zr :r f-~i l— & c i-S -r < IJ
Ml Ml Tl F-1 •ft ffi CT ifi

rt ct CT XJ 3 C» •o

!fi tfi ■ ifi ill ti ti Ifi Cl. C
n n *rt- 9 fi Ul
lt ?r n j.,.. xs TJ IO *-»■ O ‘

fi o O. <♦ o Ml 3 ifi
T3 XI © 9 i,

tfi +-. r4 Ml rt Ml Mi to ifi
-i

40
zr
iti
3

ct rt
a. &
n n
Mr 5«r

<t

Ml

IU *
. t
l£j

3 3 ifi tn tfi
m IX ■Ci rt rt

rt" £• CT- ct* ifi
zr 3 Ifi Oi Ml
ifi - ill CT* XJ rn ft 9 <t

l“* o C z •fi >Q
Cl f> Ml OJ ifi <“ Ml ifi
a Cl Ifi LL zr rt 9
3 9 Ml to
Ul 3 Cl rt it tfi 3
cf tfi Ci tfi 9 ct- 1

I—‘ 3 n Cl ill CT* ■ *
rt x~ IB

fi —i* X3
Ct 3 3
zr Fl i~- rt
<fi Z 9

< f.
Ci O *—*
O 9
3 9
•Jl . _ tfi
rt i—•

3
- ifi -

Ml
- ri tfi

ifi 9
tfi O ■Ci

Id

3 m
CT- 2.

<:

zj 5 a ” 0 - y S t P 3 p 3

save. cont "From. equal”)
c on t. a t < next » " tw i c e ”)

1-E7
;--S

INCYCL
an c else

-- if FirmaL is repetition then
2- a e g i r
— let xtsval -*= lookup! Formal! the. rp

let next " infix EQ , Formal the.
— push stack! itsval)
-- push stack! arg
— save cent 'f-am equal”
— cont, at (next "twice"
-- INCYCL
-2 end else
— i f a r g is suspend e.d then
-ic£ begin
— push stack*' Formal)
— save. cont! "binding" ?

c o n t. a t (■: c sr s ? erg) , "none”)
-- INCYCL
“s£ end e 1 s e
__ iF arg is cons .then ! formal is cons

beg in
— push stack! Formal! tl >)
~~ push stack! arg (11 >)
— p u =' s tac k (f orma I ' h d))

p u s h s t a c k ! arg (h d >

— save cont! : frame inding'*)
— cont at! CODE , SUB.CYCL) ; INCYCL

end else
2- beg in
— pushstack! FAIL
— load, cont

ENV)
, arg >

I

r • ,... r • l~" f*A» t» t • t> - fr-X t-a' b-A i • HA f'. i •’• ft* ,• •- ft* tft ft* ft ’ »•-*■ ♦--»■
fi <-i Ui ill ifi • II til t. is Ul Hi fl Vi i-i Ul u ui ifl • •! .11 • fl .H Ml en Ui Ul Ui Ul Ul Ul ui CT
i.i Iu Pj f'j M ;u ■■ 1 <V ;• f'J 1 1 H-*A i •-■ j..... !<•£» r ’ *■* » ' ft-4’ i-/ ft' i < o o tj 1 J « ■ o a o Q
O -ft t'O --4 0" Ul f- tU Iu »-»• o •ft ill M p Ui Ji o i'j fr-’ o fj Ui '•4 »>• Ui 4- i,j p i ►-* O

5 1 pj i 1 i I 1 !
,

1 1 1 PJ i I 1 t 1 i 1 PJ I Jt-A 1 i » i i 1
i i i 1 1 i i 1 i W- PJ i i 1 1 ft) 1 ! 1 i i i 1 1 1 1 1 i i i b-.

..

3
UD

t t

b
’■i
o
a
cr
w-□
ct
H ID
3 3

40 Ct.
m

TT ' ' 3 V
ffi tX Ift

10 tO
ft* »-.•
3 3

tf.
3
ct.

ft*- ui tX ft»- ft"*
b •n 3 ip •fj tit

«+■ ex
>•• i

it i
».t.

H

ffi
3

(D
3

Z
i:”j Ci Pl

3 ID ffi
3 3

< < <' i j c < <
r. 3 <7

II II r rt Il 11

n o ffi li T| tS
> o rt > O
t“~4 a ift r-t O
r ift 3 1“ tft

rt O < rt
iu ffi O 4f Pi

j n tj zr fi
Ok sr Pl ffi

3
O -

tx □ Of tx
fl) a s 3 ffi

•0 m tx ex 10
l_t. .—. ftt’ M-
:. i J, 3

ft.t ft-.. ftt’ ex t—t XI i—*
ib ID 3 M’ o C Hi
rt ct +> □ tfl ill in 3

ft. tx. cr
3 3 X 2 •- Ui • - rt rt

ffi fi rt 3' sr
II rr a O u. 3 3

o "O 3 rt n rt O O
ift 3 rt t'i *- 3- e e
3 •w i**S iD
3 |{ et- - • ..

PJ il 3 -n 3 |j II
-->■ X) ID 3> ID

a > 3 tx -a
(3 J> 33 Tj = r tft o o
O *t> ffi Tj IX M- TJ XJ
a X) rr r I— v 3 tfl tft
m r £p ■< 3 t- rt rt
— •< n IX 3 0t 111

X“ <X t-t- Uj n n
ID - 3T 3 3«r .nr
ft) ID id tx

3 3 s ►*.
-~* ffi 1 3

ct O tx
0 c: t-t-

— 3 vt 3
ID id
3

. —

3 :r ili 3 tft
a> 3 ID ID C

3'

ift
r

3

Pf

3'
C
3

3
ffi

3T rt z 3 rt
3 < ;x

3 ID TJ ID
X" 3 3 > 3

a
■D 0 1—i

r
ffi

■ts i»

-ii
3

tfl

3

3
<

rt
O

ift

3
ii l3 ift t. £3
3 3 3 -4 3
o ID IX. Cl

3
iti

tii " ..7. tx cx
in

3
0

o
f-
3

in 0 Ci. c ex
C ct »-*
tx 3 1 •b 3

1
o •D

•D
ift

3 lift

Ui Ci ct a rt
3
rt irt- i£T

O

3

rt

O

ex
O
-t. c

ift

ct
Ci

O

cr

0

O
cr
M.

fti cr 1
ex

3

3 rr ift o rt
ex 3* fi- 3 zr
u-
3

ID 3
n

(b (D

fti n ift a Ul
C
3
Tj

3 “4

O
T

i ■ I • i • . ■
• Jl

p. p. p.
lT» 1 Oi

. i ... t
A bi
O <i

Ui ■ ii
P- 4*
•fc. LU

Ci.

u>IQ

,

I (I

to* »•’ (,A i>A t...! ft r-' i-j.

> fl • ii • fl ‘ft < tl • » . '1 . <1 t t
•I •a fj 0 G n ’0 (0 in

0 tii GJ pj {ML O fl tn

1 ! 1 1 i I PJ 1 i
1 1 w I PJ 1 1 PJ l t I

+4
T
u
Ft

Ip
,ct

tii
n
tf

■ <--* » ’ f■ i '«■ i-A ,-A 4..J ■ , ■
It t ii ‘U i fl tfl tii I 1 fl i}l <Ji ill < .ft I, li <51 tjl 'll ..ft lj • U 1,1 > I:

n.i 1x1 in co it: in in • 1 5 j u 1 1 t 4 .1 n i.t n p
5 O i ll A bi PJ H O n :T| 1 fj tii r. bj i> I I . fj tn ! i>

i P) i i I
I I I PJ I

•' i
I I

« PJ ! 1 PJ !
I I PJ I f

i I 1
i t 1 i

I 5
i I

ill ♦n cr fil
3 IP 3

* tfl Ci. IEJ Ci.
cr IP J... r-*4
a# I— □ z

Ufa ft t-4s j-~-• r - if» I .1
n b ffl IB {mJ <

□ cr S-* .r rt Ui 0
i «P r

tp
<r

o
K­
O

-s
•to
in
C

<t

o
Ti

rn
0

o
o
•o

cr
IP
n

iJV ft cr ft £T 0 ft T T
f e -b f ft Hi 0 c -b • t ft Pi

1.1 tX ij.i CL t£j ttl Mi 0 cr 3
C TS ti T t-i ill rx rr «4 ■t ■ j Ct
tfi C 1 ft z: 3 ft tfl & t
~f Ip «“-• tft I-. it IB I' 1 11 TJ a n ri­ □ !>*
tfi t™- O rr ft <3 » -i < O c iZ 0 ft CU H ii
rt Ifl ft tfi rf T Bi 0 3 tfl tfl 3 Cl
Ut IB Cl ,+ Bi ft- rr •y «rf- :c* r ■»• Ci T3 •ra
i j lit -j tii ifl Ifl O O 0
XT Ci Cl 1/4 Ul •t It 3 'J r> x»

O xr li if ill 01 ■to rr 'll B» in
3 .-s if> Cl Ci T cr cr

I» rt cr rt XT XT T 3 «f ft ft
1 Ti Bi -f 0 z-s Pj c: :x Ci it

"J ifl M' 0 3 ip XT rt
PJ *-.Z t • l’t if f ft f

Cl ft rn 111 tii
3 ft n

I> t-r - £X O TJ
rJ ~i rr “1 r” 3
Ti iit ft z •c
r <f 3 tfi -w
< O -

-t »-»
; * ip T

> Cl Bi
-J
Bt
cr
o
T

“,i
lit
□
Ci.

n
o
a
rn

ip
pj

...

”O
1.1

rr
n

Ti

-u fi
O V
Ci J'.!

J- X t--'* i • r • •-• •-* W •** ►* I-' t-« t-* t- i-f H f* • *-*
0 0 0 o- a a O' 0 o a a t a a a tr o 0 0“ O' a a •7 <7 a a a a a a i?
0 tj n •n ■n 43 n n n as co co in 00 as as tn 03 co M 4 •4 -J M 4 -•4 4 0 a

as j a- fji -fc» GJ P.j ►■* a •0 co *>4 a Ul tfi GJ PJ »->• o 4? tn "-4 0 Ul •te* GJ lu jM=X a <i co

Willi t pj i i i i i i i i i i 1 1 1 1 I 11 1 4* i 1 » 1 GJ 1l 1
i pj i ii i i i i i i i 1 1 »-- PJ CO 1 1 1 1 -h 1 11 1 1 I I till1 CO I I

ft
3

4X

rS

flj
ft

<x
o

O'!
5

cr
iB
o

•li
□
XX

f iB *0
ft ft as

a,.

(■ sA

V »
a

OS
uc
tfi
. t ?
a»

fS *■* 3
ft rtf

it) n PI ift ♦—4 tft
c a Z tl) <e iii II C
ui 3 < < ct ct tfi t~• cr a , |

r» ft ft, ~i ft rtf ft) ui
tf* □ 3 Ui •P 3 US ‘O - ■ ,-iv
in a, ii n IB iB ft in o XX M-

rt a 6 G M- C -h
e

3 iB
a □ >ii n i—1 I—* l~» tj r«4 ■B cr i—< *»-• 3
•tf ft 3 O L~* ft <t o c <D 3 zr •B iB Cl

e < Cl. 3 tfi tf! (X W3 ft ft
•tf ■B *-)■ o ur XX :x >u. h-i O 1 ’■
e 3 * □ ti ui ’b XP i~| iB <B TJ

II Cl c TJ ii ii ii n ft k—4 »—• ft. ffi X t—• O C
o O ft ft o ftf ill iB X r—i -b TJ Ul in 1ft

o Cl ui M- M- 3 3 o 3 n U3 b T, •B ft iB ii 3*
a •B Ct ft ft <tz JZ a ft 3f ct O tft

tj TJ ft a • ’ ft < if n <t-
tn - «T» ft ui o < ii O IB o 0)
ct < n o 3" ct -ti Hi < 3 n 3 n
Oi • fc a a iB lb K—4 Ci 3 •B tfi •— rt’ X-
n 3 f—1 ■3 □ □ n IP o Ul 3 3 a>
Jf O :: ift •ft x- id 3 -b tfi C

3 _) <tf ii .). n
•B V/ .- ft i! X o

X-i. Ci li ii 3 3

3 ft XT ft) XX ui
J.O.4
il) fl 3

XO
tf)

or
O

as
fs

a !—• CX a ft •b IB > I-*- ft Ci
Hi- 3 M- ft -b "0 r~> IB uc: Cl

S* ■M* 3 <B)--• O ft 'Tl 3
rt 13 < O

r CL ui IB
3 L—• •w iB < ■< O C
M- ftf iB I-)- 3 XP cr tf.
it) »--• 3 3 Ul 3
Cl tfi fft u, *•

fD ft Z*s or
<t 3 ft •B O
>- •X3-)—• X Cl
3 £X TJ «c
io

n V *■ V
Ci
c

o
3 -

as
:v
~<

XP
3

)“«• <B <
3 X

IO TJ

i 1 I •< *• - ’ I-"* t' a-l i ' »-•> M- a* i-t- If * < ’ t •* t-« ,_x A’- i-t •-• i- ■•- I1-’ p (...• a*
1 4 i J "j •4 i I -o 0 •o 4 i i "4 ' 4 4 i 4 J • j 1 S 4 -1 -V.I ••-4 • J •u -j

t.0 i.j iu I.j !•) i'j fj ft CO f j fi fj fj fj jjj t-i- ("• t-«- ,..a. *"• I • r->- J..JI 1“' IJ
o

o o • ;• O Ci
at 4- t.0 fj o -0 00 ""4 a fit 4> CO IU O 31 CS 4 O' tfl j--. to fj »» o OJ 4 0- tfl

t
I

i 1 1 to 1 1 < i to 1 I 1 * I 1 1 ' 1 t J i ' i 1 J i 1 i 1 I to
i i ! i i CO i 1 5 1 CO 1 1 j i i i 1 » 1 1 1 1 CO 1 ! i 1 1 ! 1

t~* t-J
J -M

O O

t.T
»>
to

- rt)
3a 3

CT I-* I —
it) -b ft)

rt
rjj .T t ' I-i

i) |-4 t-4 fl) CT ib rt" i< 3 rt rt IB

O IB iB 3 ■B 3 fl) b «C <0 1-4 T3 t.) t-i I-i !*i 3

3 rt -r o. irt u tin II G c IB it. ft ill t~ >G
rt f"<- ♦ ♦ ,4. n 3 HI Uj Ul rt rt it rt ifl 1- -

□ ri rt a 3 z 3 t— •t. 3 Cl :x t..-
0) il) :.t o IB IB 13 <-•-• IB Ci n Ml X» XJ TO X) IB l-i- m 3 io Cl Iji tfl
£-J- £ £ 3 >• t—• rt.. C •B t-~ -<• G Ui C c c c rt- t-i n ct fl) fl) •).- XT 3 rt

a> n a in di rt ffl C) 3 < in m ifi m ui G IB £ rt 3 O
□ o £ n 3“ fl) r rt fl) ;t 3' ^r rr fl) CI rt 3 Ci rt“ cr G rt-

□ <3 Ui 3 in in m ffi t'i —r rt >r 3 O c £ zr
m ji li 3 rt ti­ SB n rt- rt- rt- U'l Ul fl. uC 3 rt ii<
G rt- fh er «. rt- o IB a» ih & c 3 di j
n It il X) Ct G 3 n g n Ci U'l 3 tl 1! It rt
o o x- 3 0) rt- XT XT XT ? iB fl) ii 3
a. M- f-' Xt IB <-, t-i O z—* !i e i'i t"« T) id fl
IB tft* rt ifl 11 t—» a <t LI O rt G

ft' 3 fl) to Ul n Ci tl) 3 •j 3 j . **•“. ■i.) rt o
ill O ~i X) n m .3 3 i-i 3 fl rt «IX 01 Ul ZT O

tft • n rt 3 G t’— 3 U3 in U< to f—i 3 in in Z‘. tfl rt IB G
♦—4 i'i X- fj rt Ui - u: t-i c C t-i ux t~. C id 3 m

□ 3 in c t-i- ili Ui t-i- rt- G fj n rt
O i— rt HI E Ci. d) IB r& in zr -b io X* n x- IB
3 a-‘ lii fti rt" O rt- ifl If* rt fb Ui IB o

"0 n di '0 3 in tf? 3 ti- rt cr n X*
a- U X" -ti -W- t-i C. t-“

rt rt r 2T s 5 <B O rt G
w LX ■». in XT rt . w. Cl 3 U'l it

»B < Cl ♦—* •- zr
•- fl) -b •* iB 3-

n -w i-tf O ii O
i-- 3 4-a 3 IB t-> i j 3
o fl) at •vr 3 IB JhX
mi rt t-t 3 id C G 3
c G t-- t-i in in <B
3 3 IB £ t-' IB c £
<B CX Ul di 3

rt rt- m (fj rt
3
C
iff

-3
fl-O

O
rj
m

IB
ru

' ■

I—i s ■' •- * s* * f' '* I- t,: *• i ■*■ i*'-* | .-.t.
■j • I 1 -i I I ! 5 < ; ! -) i 4 i 4 4
it 0 c ft ft ft ft- ft ft ft lis «.,n *« >t <n u* mi
-ft co I o fft 4* (ft pj *- ’ O -ft OCj

*..l f- , ' «.l ».i (-1 i —' f ' t ■ t ’ I ’• i ’ i-• t •' i * I -
I 4 i -4 : i j I i J I t 4 1 1 1 S
it I.li Ji i ft- ft- ••. 4- p. U U u p pj f t pj

i ft <n ps. pj cj » ■ n ft Ci (ft ui •£■ t-j i'.i o -ft ift i ft

t I I-. I ! >■ i i ' 5 5 I I
I I i f i I PJ I 1 ! ! ! i

i ! ' i r*j I I t i i ’ P i * i 1 i I I i
! I ! I i I i PJ ! i I 1 i ! 1 i i p* PJ !

0
fli
T»
fl«
C

tr
fli

u~>
fli
3
Ci.

a
fli
10

fli E it CJ fli O" p- p - 3
n t 3 fli 3 IB +i fli ex.
it p Q. ■0 a IP it
p rt p- i-i P P‘
< ifl 3 iC. 3 3 J Ti

»t> n p iii ifi
til III

nJp■
o
fli
(X

ill III fli
lj it ft

■ ' • r> X3
■ •. O P
i 4 j III
f rt T

m
7?

iT S-' -
XT
.0

fli iti fp n 3 iA rt Ml
it xr n TJ it Ut fli Ui rf- T Ti a* ii

O O C a* 0 03 fli 4't IB ip Cf a ‘O
3 c 3 fli n J..4. fli I*—4 ft- M- ✓*< n P- T> T3 3
O pi rt 3T >r ui w- ~i 3 Mt fli
ft li fli o ■t- i*. rt- U7 e
Mi rt Cl a 3 t-i ‘h 4-«
o 3 Ul t n» «A t;3 3 fli •T Pi 3 3
p- n -S O ti li ii fn t- p- 10 T MJ <
3 *C .nc fcC tfi 3

Mi ifl Mi C’ TJ VI p- ffl 3
3 0 o O *T* 3 T c

3 TJ •n "IT UT 1 |i.«a

O fli n m u*< Ml rt rt
n ft •rt- it rt p-
Pi O zx (fl Cm fli Ml MS to 3- T3

C iU n a n C O flt fp
“4 □ 3T' :*r T r-* 0. 3 fli

H. rt ©
□ ’to 3 rt 4-*.

□
-fo

IV T
X *0

fl<
-t.

fli
-P

O
3
TJ
c
rt
fli
rt

'■J Ci
Ci
3

- <0

□
Ifl
rt
fli
fli
ti

o
T.

fli
3

Mi

ti
C
3

TJ

Ifl
rt

3
10

rt
e

tft
t

in
p»
Ml

ftj

...

i’.i
ci ,

ft.
Ml

<jt
!' i

f.- *- t--* i * t' • «- * » * »•••* ♦ - * <•• »* v■■& f-•* »■ ■"
I I -4 4 4 i .1 j ! 4 4 J ' 1

?? !j b ft X» J,J :.i «j U 05 tb tb 05 tb
o« i o t.fi i..; io i » r.(n a) j o t.n

j •
tb tb ib 4
t*>< • •
Pi ' • • il

fT
«j

a

rx
at
tn
tx.»x

■0

ft’
.x-

i »1
? I

G
-3

•fi

* 'B

I I !
t ! I

•"•• j
t i

3
O
□
• fi

$
: g t

I I I i 1 I I I I I
i 1 I I I I

n - u
Ri 3
u. Rt Q
•JJ Cf

4 i(t
«r* a.

(ft fi f

KJ O fj

M I

ifi
□
ci

ro i • i i I pj i i i i i 1
i w i i i i ; i ; i iu l.i i

rt, ffi
3

n as
G ili
3 <
it fl)

Ut n
rt Ct
**■ 3

rt
I

O
O =
in o

3
n

*0 fti
c* £

or
•fi

c C rt i-,U 43
tn J ft! o C A

•fl Ui ifl iH
n •fi • 4 rt •ti
< < ,g Ul t/« 1- • t
re •fi c n rt Ul O
r (it a to <B 3

•—• g rt"
3 w . -1 rti

•_i •fl u tfi
■to rt W 43 rt

3 O ifi C
C n •*j Ui
Cl w rt rt Ci
rt ro Ml a
•- a rt ro
G ill -1
3 Cl tu

X" •ti
Ci ■n
-to r

< <3 O
rt cr or
3 c-
•Ifi

•-> »w
3
to Ul
rt <■♦•

f -* s
Cl n
Ri a

M- rt w
3 ’•>
R rt (ift
ifi O tt
X 3 s

rt
■w

•w
to*

•li
3
Ci

,.4 t-*
-to tw

rt

n

if

Ui if.
a rt
f® --*•
3
a. cr
iti tx
a

rt

a>
3

Jf

Ut
■3
Ci. 4t ifi <Ci
•fa • • 3 0 ~ „
X ui a

•ti •—i
2 Ifl

rt ru x. ■■
3 • - < ill

•fi Ci rt ■'
r

3
C •t«

it

rt
-3'
•fi
3

a
(fi

«.<

4*

i ’ I-* ! ■• » ' : •- i-f i - H *-» » • I ’ ' *■ ' j ’ f ’ * - ' I-' l~* » ' I ’ f ► » ‘ *-* f» ’ f- I '
ib lb :b Ui Ib sb tb !b ib ib -b tb ;.b i.b i'.b ib ib -b ib ib ib ib Ui ib ib ib ib = b ,b ib iii ib

• 4 i> li p lb i'l r j! il (.! <!': til -i: us tii . ji ,, t.« . n n b. r. -
f o rt ,jj -j :)

i I
I f

f l i
fill

tii 4ft. ib fb

i « i I '
I i i- I I

© «b ib I O' co 4 - fb i'j O -b tb M O' bi *- ib i f >■■■■

i I i
if!)

! ! I i 1 ! i i
iit!

i I
I I

a >n
tie ~i

a uicr i i
iit ffl

iQ -fa

tfl
□
a. to j?

w
3
tx

ill 3
ia >

t-t- fit tr-i »•■« < J »- l‘J ifl
3 C: "Z 3 >7 z -J X-

r’-t H-* I—■ r-~ n n lit a l~t »«• >s‘ n ri fit w rt-
-fa fa tfl Ifl rt -< o fit C ifl ffl < G fit Ifl 3

G rt rt ’ ’ r* 3 < lit rt rt- 3 ct 3 < rt- rt- c
< C < r •t tfl XT ffl r rt ffl O ifl
fit tfi fit < < Ifl <' <’ iff ' < “O
i—‘ 3' 1--4 ffl fit Ifl n rt- Of fit ft ■fl n tii o

lit *-*• t—4 <—4 rt G fit *»-* l—t «t G ‘ •tl
et­ P J «-*■ 3 n W «“»■ 3 <-*

!-• ui fl4. rt >*•»" .••f
Ifl n ti' II II n ft 11 rt Ci . i; •A

X" G G a
3 A tit XI TJ tfl z < to T3 •a ■fl “ 13 iA
C ib 3 a o 3 cr Ui G O 3 rt O c
3 ■1 XJ 13 ‘fl £ TJ XJ 'w* ill £ XJ tft

3 < ifl ffl ffl *-*• ifl fli ro t-t Ui ~o
io fit rt- rt rt rt* Cf n rt
7)
a. r*j

t~-* fit fit
ci n
»r X"

io
n
X"

Hl lit
Z t'l

3f

3
CL
ill
Ci.

tit ti.

I t li t
O fit

□ <
cT ifl

ifl ‘ >
Pj Ht

o o •i.
< 13 3 t-* ***• c
fit ib w ifl

< 3r XJ
PJ fit <fl tfl

3 i“> 3 3
»-*• t> M ifl Cl

HI ifl
X »-*- s < s

3 ui n Ui * ’ rt
C a O fw>t G
3 TJ id M- tfl

■v 3 3
- lA < ffl

rt < < ib fit rn

3

=r fl* fl*
its i-t W pj

rt- id
< ffl
U« •fl rt-

3
fO rn

O
fit
ct-

£
o
-o
TJ
fit
Cl

id

U3

rt
fit

i

ri
G
3
cr

_

I f
I I

f'j
I

I
w

I I
I I

w -»

F - fi* fi* c*- ♦ -» fii •j*. *’ F~* , • i-j FJ F*- F** W- F* F * k ’ » f ' I- • i * F *
, 03 0.1 03 lO 1.0 u.i Ui i7i to 1.0 io to 10 FJ to 03 03 03 t-J 10 io to 03 so 03 01 0.1
i 0 t! n o 0 0 0 0. Jfj Fi it! i73 Ft 0.1 CO to FJ 03 to ■ 4 1 1 1 I ■•! 4
1 Fl 1 O' ti 4- f.u I : F* o Jj Ft J 0 Ol F to i'J t-i. © 0 to .) a oi J- bj f«J

(w
1

1 i i i 1 1 1 1 fo ' i 1 1 (1 1 ro I ('ii 1 1 PJ
1 i 1 W 1 1 ! I 1 1 1 PJ 1 1 1 1 1 1 1 r»J t f i i I i

cr ct- cr t* ft CT' (-*- S-“ 4“S rt SJ .-’"i »—
ft -b 3 •ft -b 3 ift b "CT L-< -b ,^.S CT
Id Ck to Cl­ Id o c a C ft to
F4 . <; »-*• < H- < ift ftj Ul rt < •ft tft Ul rt ie-

rt tft rt tft rt ift i-• CL rt ift rt* a. zr
»--< {nU i-* ro F** "O I*-4 io fi-* -a i—« Ul Ui -i i—‘ Ifl u. rt . r

m Ift fi* w o c Ki o C ib 111 n rt •ft l-L (ft CT i-v ft .}•

rt If ti» ftj Ifi ifi tft in O Ift ui o tft ift
fil tfl Ci zr » Ift ex J i ••“ 3 ii C rt- rt CT 'C

rt rt ift In ifi •'i Ifi of >- ifi rt »T fi-i
«ft .ft n rt rt n cf ib rt rt, rt
£ £ CT o (ft fi*- CT iii ti* !-■ CT
o Ci o 3 ct 1 -•* rt rt c: o w- ti zr rt II
13 X? rt rt ftr rt IO ■b ift -b ft

rt rt Ui rt- !■*■ < < rt < < t-L. U5

Cl Cl ift n O ai an •+> rt 1ft tft -b ft

IO fi-' tft rt i-*- rt fi«- 0 ift F-4 »-•4 tft ift I—* fi-j
rt S3 rt» Ci -b ift U' FJ H- Ci rt Ut o

It II Cl C < ♦-* rt C .*-‘L 0; Li, c o

Fi irt < rt & 1ft b «rt. !-• t .(fi-• o
< <; < o ift ft I—1 rt rt rt- F3 < rt rt rt Fl fv

IP (ft Ift O »—* Ui fr-4. t'-' O < rt’ ~r ••*-• tft CT CT
I-J fi~> III Fl I'J C O Ui II .ft fi. rt* li •6 ft
IO ,...• ro t— F-* ? II tj? ■i— b«» M fi-l

ut II rt u rn IO rt : , II j rt '3 rt rt
»-■ ift »j. -i rt- rr •b rt- rt f .. -b

CT zr ift rt rt II f~ c. a. a. tft (Z 3 3 fi*
fi Cl rti fi* < < ru, (fi ifi -J i M (ft He

n > fi*- fi-* (T ib tft □ CT
a M "j i—* “b (“• rt o CT rt ? If Cl
rt 03 c IQ fO «-*• o CT "CT ili zr II "CT
Ul m O rt ft X id ift t H rt •ft < <

Xt ct 4«>. rt 11 -4^- rt tft tft ■
rt •in rt ■ft O rt <- rt
zr rt zr 13 H < u. II zr ■ rt fo I'J II
te ift Ifi rt o ift i™ ift 71
rt If rt ift •w zr c »--* fo in rt l” (n

•ft rn f'j ■"■ © Fl rt- rt- ©
m
©

•rt
S3

rt
ZT
(ft
3

FJ
Fl
©

rt
rr
ft
□

T|
>
r
0)
m

Tl Cl
1> =T
r (u
to "J
Ft

rt- rt
rt- zr zt
zr ,v ft
ft ‘ rt
• n

zr
Qi
rt

ct ct
ft ft ft rt

■ zr
u t rt rt ft
»o c c rt

3
•n
> ~
r
to
fi

3

ft
F-
i»1
<D

-LL.,, _____________

” ■

IU

ct
□r

I • #•* I • 1 • I- • (• I ' I • i • t-> J • I • f' 1 ‘ ‘ I--' i- • 1» I • I ■’ t • ♦•» t • I • » • •’ . • . • ■ • • »-• t ■ .
Il li Ji II li II Ji Ij IJ ij !| i| n IJ lj Ti !j II n f! Il lj lj ft ft ft H i Ji It r, r} I, i.

I i 1 I il t! I’ i- I’ I' P f t> i'' --ii .Ji -ft ti: tit >fl -Jl - li i- ui (• i* i- ’• - • .'> ! i
vj pi f - > « in i c i.« 4- t-j w o ji on j o cu 4-. to jo » j o n ra 4 th tft % w (m -- <. *

i i
) i i

i i I •- i i » i i ' i i i 1 i i I i i i I i i 1 i : n i
i I I i I I I -l I i ! ! I 1 I I i 1 I M i I I I I I t 5

a

-i
o
r.
to

Ci- s n a
to rt to c ifl
rt. Ci •ft 3 tft i
at 3 Ht tft rt to
c •ft a
r--» e tn x» «o
rt •ft cr C 3 it

tr to a rt to frt tft tft rr
ill rt rt. a to ’ -ti rt ♦u

i£i Ci. to t-*- Ci to a l£» lit
M- 1—1 <-4 tn rt < X' 9~*' rt

rt -rt
3>

n u,
Ct a.

O
f~ r.r

□ O
T)n i—

to .ft

Z
O rt
<
o
r

m !■ -
ill <t>

rt
t j to
O to
U
rn

o
□ <

rt Hi
• rt

to n sr
. t o rt

n o

rt
a

rt
0
■O

rt <
rt tft

■ft r»
ci

Cl O
T.

♦— TJ
o c
iit tft
ti ZX

lit
< I rt
O tu

■ ■ ■

rt t- -
XX tft
rt rt

rt
XX
rt
a

- . - n
rt e O

i3
et X’ e n

- c
Ul

u.»
« o 1! o t rt -ft

nt z M' sn 0 l-» II it to
TJ “1 rt TJ tft rt rt»
o to e o n o Xl c»
13 tie T3 to tft to O o cs rt «ft
ui n tft c z c a TJ Ti ill
rt- tft to «/♦ o ht to
to rt s to TJ rn rt rt
o •XT o tft ** to to n
X“ rt (i> n n t.

o a zr «n rt X” E3
e to rt i. TJ

a o t-i. M- • rt? to
rt rt X rt

rt- ns ».r o to »**
*• xr z to o rt- rt ♦-S’ rt

<ft rt rt to rt to

3 il
ot m

i it n
rt rt to
tft rt

O O rt
»— rt xr

rt to tft
=r O
tft 3 rt rr
3 C a

n
>
r
tn
pi

ft rt

C
•ft rt
j- 3
ui
«ft rt

rt O
3

rt tj
(D to
rt rt

33
C
m

Tl

r
tn
m

■ ' j-r.- ■ ...

M
P)

fi ru b‘ b-’ b* I-.’ b» bi­ f~S. »• j,-.-. . ■ f-. F. i j <• ■ f..j. f ’
O O n n n n <G u ■n ll n n n n n <1 0 ij o 0

O •' « O n n ■i> n n n n -0 li n pi pi tn Pi P; i.n as Pi
P i f-.X a li pj ••-I 0 eft «h G) fj »■■•■ t s •n co ti ii p- GJ Ifi

» i ' » '
0 0 fl

Pi Pi 4
i-- o n

i i ' •

O ,j O <-J c>
Ct s'. o •;;> (’
4 o- f.,i 4- iO

i
1

I 1 i
1 I 1

1 I i
I i b

1
1

1
i !

1 1
I 1

! I I
1 »-* 1

I
IU

1
I

pj
i

1 1
I 1

I I
1 1

1 I
1 1

XS SB O" XJ
-fo X 3 it) X

ij Cl. U-J o
cO fi i-i- n
-X IB 3 IB
3> Cl rt U'l n
O c a IU c

i 3 < X
x-X us <b IB fi)

rt o £u n J
tt 3 rt C‘j o

XJ f"t 3 3 iB
if rt IS 3

-»»■ o bs <x
cr o cr

b- b-f t::i S b4
Ul O pi o o

rt -s 3 Cl
US 3T n X”
C IB tB
us i-vt. t-» su tb |.f4. Ct-
a <» | ■ if
ti) ■'W •w z b
3 3 r-t r« ‘jl
IX O <. O <£» C
iB rt fi) t j 3 iA b-*
IX X C-s r ITT •:X

3 n US |.-4.
rt O X fi) ill IA
3 3 IB rf
SB it) ”fe rS o»
3 C b* C iii

ft Ut

I !
I I

i'i
X
in
1>

r

H

Pl
ti>

t • < ■ i * > • t *
n -n o n »i
J I -i I '

tn j a > i x-

II!!
lit!

Z H X
o r* ci

0) :

XI
c
ifl
rx
u»
.-t
u>
n

h
o
tu
tx

n
a
□
it

Ct x>
IS «i

ui cx
it) <B

X t-r
(it ~r
u» fi)

3

-

Cl
a
a
rn

u
X
IB
-b

O
XT

1 f- ~t *1 f- X b*- b»- X X
iti -b fb ili 'b IB • b b fS ITS
Hi Ut Ul

X
(ti

n ut

ill U)
-J 3

ii)
-J X
fit iu

I! ‘I ui I! *»» «i is st

liill
1
X

rt i~

■..ft
0

X
b*
r. tT

o
r 3
ix u) 0
tn
—t Iii
m j
n i.-.,.
rj

X
' lb

uf
X
ns i
ui il

m

□ x-
C Ui
3
—• 3

c
I 3

X X
i» X
ui iB

X

X
zr
lb

3
C
=t

ii 3-
i <t id
x *n m ifi ’B
b4 T) r**- i'i.
~ r c i--

i.n m ~
Z Pi »
O X x •»
*4 n zr ns us

J2T IB Ui
- fi) 3

f-4

Cr
a

II li

■x "n
n >
c r
in tn

in

IB <B

p a g s4 If 3 V - »» > ■

2. ?os o e g i n
2:2s — let ~ a c oT = pop s t a o k
2010 — save. : an t ("onee5 c
o -11 — cent. a 11 c oer •= £ r a t o r
2 2 2 —. INCYCL.

' 2013 -i end else
■■ 22 1 l- begin
! r:-3

;-.i6
— let r s t o r = pop S t 3 C a
— if r,ator is s tr i c t or

•r*-:r 7*
• 20 IS

2- b e g i n
p u s h s t a c k < rater >

22: ~ — s a e . c o n t C " t u.1 i c e "
22 20 — cart . a t (C ODE- e2

; — ■' -- ■<'•• - ■ - -2 end else
t - .. 3.3. — if rater is c 1 os •?” e the

2 “23 — if r a t o r C f n. d e f)
’ 2224 c£~" begi n f a single

C 0 § 1* '

Tone

«. -

pushstackC rate”) • for error report
pushstackC rat o r < r n. a e $) (form) >
let rar.d ~ if CODEC e2 ? isnt suspended

then suspended* CODEC e2) > ENV ,
else CODEC e2 >

p u s h « t a : * < rand

ENV := defnC APrLY
r a I o r (f n en v)

-save cortf “bindinq done”)

qo nS(rat cr , CODE(e2
» nil

cent. at < CODE f
INCYCL

end else multiple
begin

let erg

: comeback u i t h the
bindi ng")

.soses

- if 2ODh< e2 > isnt suspended
then susaentedf CODEC e2) / ENV ,

false)

) ,
)

en v

false >

2042 —
«, - ■- ■ __■** —
20^4 —

il .w.—
-- .-■ — .

2 1 -6 —
2C-47 —
z:--e —
£2, '^- •* •

el-se CODE' a 2)
let claus - rator- -r def) ■■ clauses >
1st this try = claws* h d)
let a r g 11 s t ~ 1 : r k < r a t o r (?n <3e4 ■ (args. so. far) ,

arg)

20 5l?
2 “ f 1 —
~ .. 7 1 - -

2:53 --
> 205 4 --

2 1 5 5 -—
& . Zti
2057 —
2 058 -~
z - ~z —
2060 —

20x2 —
2063 —
7 "■ L. ~:—z: 2r. . 6 C----
2066 —
x. ? 6 /
c - - - _?

" 5a;2069 —
• 2 ' “O' 2-

p u s h s t a c » < rator)
p w s h s t a c ;•■ •a r g 1 i s t) in case need of another trys
p u s h s t a c k 1 clause t1 F) ‘ throwing away the hd it no

matc h or part ia I round
p usb s tac this, try
p u s h s t a c ar g11 s t

ENu IQDEi e2 > > ,« defn(APPLY - conS(rator ,
rator C fn. env) ,

save contC “try done" ■■
try" ?cont. at* CODE j

INCYCL

end else ie not closure

rator is trys then

n i 1 >

! comeback with

1 an snv

11
begin

pushstack< closured re tor , ENV))
cont at- CODE . once'*) 3 is "ones'*

INCYCL
end else
if rator is binding.err then
beg in

p u s h s t ac k(rate r)
load, cont

end else
0 pushstac- err2' APPLY - rator , CODE(e2)))

load cont

once more

‘ n ot a m/ c cycle

S-aigc1 Sqster page

2 -2
22 7 7 —
2:'"3 -1 e n d
z.:?9
2780 —
2 33 1 procedure got c p n t r / a 1 -b0 0 1
2082 — i-f STACKS. top) = val or STACK-. rest top)
2132 — else False
s. - 7. '4 —
2:32 —
2 13-6 — procedure a r 11 h. block
2 13“ — case SUS. Cv’CL o-F
2238 —
2 389 — -‘none”.
2 : 90 1- begin
23-1 — nodes -node 5*1
25-7 — p u s h s t 5 c i' (nil ■
22 “3 — U3wn CODECal >.< ENV, STACK "right
2294 — p u 3 h 51 sc '• ; s u 5 p e n 3 e 2 -, 1 ODE! a 2 ■ ■ ENv > -False) -■
22 95 — cent attCODE#“data. waxt“)
2 5C6 -1 end
2097 —
•2098 -- 51 data o/axt
2 :•?? 1- begin
21 30 — let -a -STACK< top) let b:=£7ACK' ” s 31 j top '■
i i -‘ 1. — case true 0 3
21:2 —
21 23 a is er val b is er. vai
21 34 C. begin
2125 a: =0 0 p s t a c k .• b =p op s tac k
2l 3fc --- P . sts t ac • er2CODE ‘ car0p ; b; a >)
213 •' --- load cont-PS(ihs. set' -Tai 5 e
2.103 -2 end
2109

val then true

f'j p.i ft PJ PJ Pi {•• PJ Hi fj Pl Pl PJ Pl Pi ft ft ft Pj iu ft I" ft «U iu Pi fi Iu fu ft |U ft. Pi ft
I r J. - , • » ‘ (-J f. I-i1 r—* f- * I j -2. ,•- f ' »• *• t" * t"*- i ' i‘ * t- ’ J~' t' 3 i «• '*• * ’ #’■* f ’ ’ 7 ’■"* > ' j '

I- 4.4 I-i. i-J I.J id b> id I.j u.J id I.J Pj Pj Pi *1 Pi !>! ft I'J I't
id P.i <•* ' > 0 03 4 0 Ul j’. id pj r* O ij 00 4 O' Ui 4* Cd P.s ’ O <s Hi 4 0 Ui 4-'. Cd I’d f * j

I I
I I I I I I I I

I I 1 ! t i ’ I i I ! I 1
I ? I I I 1 i

I
I'J I 1 I

PJ !
I PJ

1 i I 1 ’ i
I I I I I

ii o ex
tf

tft
c

r ex i—• 9 13 fP cr a> CT
03 c <T 0 iU □ H> ift
C •T J +4 £X ta ex ir.
t-3 if ft*

rt C

fj 1
i i

fj -0 ill rj □ n u O k* (»-* ta IP t— Tl i-< j~4 ■ IX»
O c TJ c 0 ift < "j rt rt rt tft C. C (P VI Ui ri
□ VI U* Ut tx IP n u< Ul li ift Ul rt
rt 'jr f. 73’ ip ft r cr ex zr 13 T ‘J

Vi □ tft Ul f ’* £ td O Ui j c & vr
ift rt rt c O s n rt S3 rt II 3 •c.
rt (b CM "Ci 0 f’i 3 O Ui UJ IP a. -j Tl n cu fl

fl n n li ■ti X* CT 3 n ft fi i-i r* Hi Sb rt
x~ c ■XT Ui <0 rt x- ft' X- < c ut J t*- z ip

n —v Cl □ £t ... n & in co ip e* tft
0 Ut I’d 0 O £ TJ ib X* ■J c in <
Cl C. a. J CO -J '■■ '-r f"* .j 0 Cr
*0 til ip IT vl □ •2 O »-

•13 ip UJ (ft i - P.J c ' J O ■ »•*
* UJ 3 2r «■». II O ip t- 9 f~.. i’j rn U’ T*

—» + ex Ul r> » 111 l"‘ -t> **« !U U
(X 1 L4 O ex v> a □ id

ex Ip I-I 31 Ul Cf tj ip Ul et l‘u C IP
in ex O ib Fl Mi fS rt zr •1 9
CT z-x CL rt rt O n rt LT t» O
ty 0 id ift TJ U4 J j> ;jr *V S3 <■>

0 Ul r< rt r” ip 3 •Jt IT
e rj < tt ~i ijj 3 C <P t.j
iii rn -te O T? I'd □ C 3 O J
i-4. > ill T3 en C rt J-.
■t m t- 3 4

? PJ uj lii i—« ❖ 0
•-<* -» 41 or zr 11 cr
* > - Ui or rt
m 0 ift XX rt zr
z >r tft rt xx ib

S-‘ <2 w ib Xt a>
*» '• rr IP J
rt» □ C
iM □ c jj
j-,-4 II c 3
ift -te 3
ffi ifi Ul

■•I

zr
rt rt

XT
41
3>

H
dj
C
m

■

S-sl;?’ System o a c e

21*4 --
Si 45 -- “data wait the behaviour o? or/'anc-node
Si 46 -- it enoug ~ info do iog i ■:
Si 47 i 5 CODE infix.op) - FAR OR and got< TRUE)) or
St AS — CODE .Mix op - FARAMO and got< FALSE)) then
249 i- •f
S i 50 1st a = popstacba - popstack

2 i 51 — pushstacb. if' CODE iMix.op = FAROE then TRUE
T ’• ~ T* else FALSE

53 —)
Si 54 — load, cont
2 i 5 5 — PS(lhs. set: «■£a;«@ don t expect to be c 1 o c k ed up
«: i 56 -i V else
t' " ~ — i f i-s •- a 1 < S"'AC top an: isval<STACK<rest.top)> then
S 1 56 i- rf 1st a ®pop stack let b=pop stack
- • CO a . ■- T — if a is nt logic or b is nt logic then
•- • t. A x - - U — pushstac'- .err21 CODE<iMix. op b a b>> else

a 5 t a u 11

pjshstac* if CODE"infix pp>=PARAND then TRUE else FALSE)
load, cont
FS< ihs. set) =false

> else

1 do monitoring and/or spawning
mani tor

write “'nNEVER"

p r o c e dure r> o ni tor
< let a«STACK< top)r i et b-STACK‘rest top)

if ~ (a i s noth©r e and b is nothere) do
if a is suspended then

i* isvai(b) then
-DSTACK ' top / =b spawn a,nil STACKCrest)H
else * b is n o t h e r e

right">>

5 21” 3 2~
; 2l30 -2

25 i
21S2 —
2; 83 —
2--84
2135 —
2136 —

! ' 2137 -1
J 2138 —

■; r c _ _■ .
2190 1-
2-.91 --
2'.-2 2-
2.-3 -2
£-94 --

' 21-'5 —
2 b - 6 — ~
7-.C-7---

J 2133 2-
: 2.39 —
: 2230 -2

■' 22"; -1
| 2202 —
f 2203 —
I 2204 --
I 2203 —
t* __| H.-- .. C

; * PSC spawn : n and late co
Oso ewr(a n x I 3 TACi* • 1 I eft “ • ■■ 1 e t ad j «b (•
c\chld/5ize =3Cj-n2i b<ctId, spawncn):

else a isnt suspended
i~ b is suspended then spawn1 b nil, STACKH

nib size)
=true?

e = t) j “right1’)
else
if b isnt notner-s lo P5f'lhs set? =true

i e b is uaI

3UTO'CL •

procedure act regCcpntr p >
< let act. p s ~0

let i -p
repeat < if i(sub,cycle)‘ d eta. wa it" do a •: t. p ■

i : « i < n e x t) >
while i^ = o
ps.no<psptr =act. 55, csptr -pspt~+l
samp I • =s a ~p 1+sml
if p s p t r ' 20 d c
■C psptr:=1:for i»l to 20 do

•(output d. ’ ps no<xb -ps.no(i):
>

end o* m. stuff

t ■ ------ ■

-act. ps+i

=0?

procedure syst&mf cpntr input. ?>p input, env)
begin

procedure processor(cpntr ps)

if j s ; is Tib in c” p s . is i a .3 d or ps sub. c y:1 e > ”” d e a 4 “ then
ki11 p5. else
beg in

1 load context

PE = ps
STACK = p 3 5)
E/.v = p S (E 5
CODE ~ p s ' c >
DUthP : ~ p s t d >

SUB CYCL ps SLlb
PEE SLOT Z2 ft « j* 3 (res

STACKDEPTK
CELLS

p s < stackdecth)
p s (cells '

kick

s only if it is active
if SUB. CYCL '‘data wait" do
if CODE isnt overwrite ani CODE isnt ceerse and
CODE isnt Print and
’• CODE is infix and CODE(infix . op)-APPLYb) do
s i z e u p(PS)

SIDE - p s size may have been side-effected
* by si z eup

...... . -

S- a 1 3 - - oy □ ter page ~.~r

s -3. X. "f w — ‘ 1t e r a t a o n n u rn o e r o t kick -3
5247
2248

~ —
:nc v x

' 2249 — mt 11 a ineye 1 e d 0
3~ b e g i n

Jl- .4 L i. aval . cone
X------
27 22

-3 end

2724 — 5 a v a t fa e c 0 n t s x t
- *n -n <r s c. Jt» w' —
2 ? =~.
•-< — 552L O-’

— P 3 < s > : - STACK
— ps E) : « ENV

' 22~8 — pe ■ci: =•- CODE
22?9
22^0

~~ ps i' d > -- DUMP

•, OIU i — P 3 sub. c yds ~ SUB. CYC 4
I £262 — P 3 res. s lot) » RES SLOT
■f 2 2 c. 2 —
,' £264 — ~ o need to s ava size 1 tak

2 2 c. 5 — ps stack depth ? - STACKD
2 2 ~ 6 — P '5 < cells) ■— CELLS
S.x.6/ —
2268 —
7 7 ~ Q —

; ££70 ~2 end
XX i —

. — ~ -r mXXX. —
** •— -r -n ~~

- -T r«X.X ** —

output 0. t I
not = r s a d i
output 0 f >

!*'nspawn mb an no of cycle:

3 i 1 C s t am

*■0
x. .• ^ i
2252
'2253
2234
2 335
•*< -» ** .X X *L ±>
225?
2255
225-

' 2250
:7c-iXX 1
XX * -X
2253
2 2 4
2 2 5 5
2256
2?5?
22-5 —
225 5 —
2200 —
2301
2 202 —

1st first - p r o c s s s •■.
— •s 13 c «•: (n I 1 -• nil 0 > ,
— i ft p u t e n v .•
— i npu t exp
— dump Print 3 “print1 » nil 3
— dump(mam "dummy “< nil /nil)) f
__ ‘ none" .
— s t a c k < n 11 nil / 0) < a dummy since the first
— ! ps does not need one

— true /
nil , send s its result nor left or right

— © 1 of pntr t nil , nil 3 3
— nil -
— nil .
— false j 1 I h s not set

•5 i Z <9

2304 —
n-v-.c__..X-~ - ----
2306 --
2 2: ~ —

~ ■■. — — “
2310
2 211 —
2 212 —
2213 ™-

T 4. 7 2 «.

first

u
0
0

next) :- first

father) .- first

’ chai" it in

> cells

1 stack deptr

J- p- 4 - <-

i I 1
I I I

PI Pi Pi Pi P i Pi Pi Pi pi Pl
to i.i £0 to to to to to to to

*.« t- IX GJ to to io 1.0 io
bi Pi ,.x O fi 01 -i 0 (A 4&

1 1 i i I 1 1 1 1 Fti
I I i 1 1 i~* 1 I Pi 1

•i P.t Pi Pi Pl Pi Pl Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi P!

«O ftj n O 0 01 4 0 Ui

I ! t » ! I i i
i I I I I I I I

Pi Pl p i Pl Pi • ‘ • ■ ' « 1 • '
4- i-jt Pi i-* o o oi j o at r-

1 i i i J I I ‘ i i
I i I ! I 1 I I I I

•P□
ex

01 x?
»-(-t
M O
m n

IB
V ex o a i •-* e £ i til H‘ F, t3 3

c c c ill -j XT kj Ct 3 3 U1 a
l -1 • t .1 ct M- t-* "O it 1^4 M- XJ «x

a IP 1.1 a ct i® ’ ct •:T Ip II
r-’ c C M m IB in < Il 1® 3 UH

eh ct <r t- 1 > - 1 o
Oi ti x X z cT 1» = II li
t-t ex ex i-* •4"^ IP i
ft 3 3 3 ~i tP o ex .1 o

-fl -h 6 r X »-»• n 3 M' <i «
•- - xi 3 .-t O ip . — . Mi

i M’ * ICi M- o tt 9
V 1 XI h •» * i® XJ 1-t ft

iit IB »-«• * * fr-4- <® u7i J—» XT ZT
er It ft m o M- I® I®
a 3 o 3 «£: o ^■4. 3
o O tfl o 3 3 bl 3 IP
—» A. <x £ »-<• Hi C M

M- 3 Hi T 3 m I'M 3 l-t
w O bi ijZt 3 < er ip

—w it 0) ••-•• Id t~» <p ip 3
£ 1- X o 3 3 3 Pi

<*• -fc» 3 M. itt •f H
S v . x ip »B 3 O O

o 3 a x «a 3 3
3 Mi 3 et

h«- ex O O tu 3 -1 a
O ex Ct n — 3 s a 3

It C-i »P 3 i® • ex fx. O
Ut Ip <*•

1- O •o til 3 1 Mi I®
Hi m 111 t"» M •p Hi

♦ r4 Ml 3 □ Hi
ff iei Ui tit

** s XJ Hi
? 3 3

1! a. K-
HZ. 3

3 ct
M- lit 3

ip O
Ct ex

ex. ip
a Ip

X
TJ
IP
3
13.
IP
Q.

Ci
r

■ a
n n

y

O

t~> -j
i;u •
uJ 3
rt- l/a

i •

til
i

Hi
c*

a.)
Ct

II
"1 4s

□ 3
«i Hl

Oi

Hi
• t
<P
3

5b
tCs
®

..... .

2248 --
2249 -
2350 —

~ 7 4J

; : G * — ... ^—-
2354 —
2255 -~
•- 7 •» A-__
2 257 —
2 258 —
- 7 : O____
■~---------

-.2t;3 —
2361 —
2 2-2 —

2 -1.4
3-5 - -

procedure spawn(cpntr code • env , slot >
if *'isval< code) and :ode isnt no there and
code i s n t e r ✓ a I do
case true of

code is const :
slot< top) - CGde< the. const

cstring sub. cy >

code is coerse and code(the susp < its. env) = EVALUATED ,
code is suspended and code its.env) = EVALUATED :
slot(top t - if code is coerse then ccde(the susp , its.vai)

else c o d e < 11s v a I ?

code is coarse end codec. t~e. s-sp lock ? >
2Zv6 — c o d e i s suspends and c od e J oc k
XL 7. w / -- si 0 t (top) ' ~ 1 •p •: c d e is c 0 e r s-e t hen code*' the SUSP)
2 368 — e 1 - I z e c od e
c ~ - q
2.3 7Q sub c y "right 11 and A. late
2 2 ~ 1 __ j e code i s n t car se e n d c ode i sn t suspended then
- 7 - •**. ~ 7 CL — 5 i of-' top) • XT S U sp ends .- (C 0 d s / snv , f a Is e > else
CL 7 — 5 0 t 5 top ; if c od e s S U 5 nr sn d e d then code
2 3 “4 — el s e cod 9 { the s u sp)
23^.5 __
2 7 F 6 —
-k — -r ~yX. 7 / -- def au i r
~ 7 • b 1- b e g in
2^9 -- iX et env - if C 0 d e I s s U 3 p e n d ,g d then code! its. env)
2 33 2 —
2 221 -

else e n v

: ; c .2
2333
2334
•r-'TJC
2336
3' -

c."’’
2 3 ^0
23-1
2392 -~-
2?.-2
-■ •' X dX *t

22- 3
23- *
239?

7 2 • O X - O
23-9
2- ::

.t - «X - 4.
■ 2402

1 2 72 3
2 ■ ••
2 -•; ~
24C6

; 2407
2 ■-■: s
2409
24'.. 0
2- .. i
3 4-- 2St ‘r i. S.

.4 1 3
41 4
4? 1 ■=•

3 3 0 ? -v «S-alsol Syste

1 S t C 0 2 S - I 4 c o c e i a 5 . s p e "i d sc than : ode 11s. val)
e1 sa coda

— let r- Q - J P 5 - p r o c e s 5 ■•
— stack(nil , nil » 0 5 ,
— env »
— c ode <
— dump • dead » sub. cy # nil > nil) ,
•— T 14 s u b • cy - "right then "none" else
— if sob ' - M ”* "costs e1’ then "none" else
— i f s «j b . c y - “left" then "none" else
— sub. cy
— slot
— i 4 s j b cy = “right " then false else true
— i 4 s j b cy-"l eft" then LEFT else RITE ,
— S i of

pc. ,
p n t r C nil > mi 3 ,

— ml /
— •False
— i4 sub C y » “ r i g h t “ then PSCsize) else 0 >
— 0. ! c ells
— I 9 5 u fc.

A
. cy—"right" then PS<stacxdepth) el

—
U t
0 : 1 OCX

— >
—
— it sub c y = “ri ght“ than •J ■ ~ J + l el se i :- i+l

—
5 1 01 < top > - n q t h e r e (neujp s)

s make room in data dep
—
— FS data d ep » 2) » FS< da t-s dep , 1)
— PS (data dap / 1 > = n e !j p s

- 1 ' 1 _• l * =

rain it in the rir

r»ups(next > - last in ring(next)
last i rs. r i n g next = n e us p s
last. in.ring = neups

1 end

1~
p r oc ed or a f i n d . p s
begin

let wante d =
repeat -anted
utile uanted <

cent” ring -> pntr >

ring
■ ~ wanted(next)

next > ring

wanted
-1 end

— procedure -md fatherC pntr ps pntr)
— if p s ■- next = p s then p s else
1 - begin

1 e t p t r = p s < next)

— let step := false
K- repeat<
— for i ~ I to 2 do
— if ptr< data dep , i) ~ p s do stop
— n ci y

uh i1e stop - false do p tr - p t r (next

— p t r
-1 end

--

-i_
__

__
__

__
__

__
__

__
__

_

1 5- p = £ird. •father ps
let i = 1
while p • data dap i) - p s do i : = i. 1
ir i - do p (data d e p > 1 > = p < data dap > 2 >
p • d a t a. d e p » <=~) — nil

i r p s line) =R I T£ d •:
< p ; c e 11 s) ~ p < z s

P <’ s t a c k d e p t h ••
y

?lls)>p = '(csl 1'S)
~ps<stackdepth> >

it messages and p s (c ;« is main do
b e g i n

o u t p U t O r i “ 'ncomp otat ion completes'n" »
" nits size in m/c steps" »

• n s i z e - " « p s < size > ,
'nmaximom stackdepth = “ ps(stackdepth >

" n c e 11 s used = " > p s < cells) ,
" nloc< cycles = “ , psc lock.cycles > >

‘ 'n“ /
ntotai locks = " > GLOCK

"n 'n"
end

unlock'. p s)
end else
•Per i = i to have, chid ps J co kill' p s(data. dep> i) >

procedure Led u»a i t

* s: 7 7_

...
...

...
...

...

procedure d»olarer pntr is e-> pntr)
begin

procedure deci' pntr form expr guess > oldenv -> pntr)
if form is id tnsn
if expr is suspended then defn: form , expr , oldenv » expr)
else

p«fn< form s-spendsdi exo" guess false) > oldenv , expr) else
if ■Fo'r-. l 3 const or form is repetition then oldenv
else
begin ' form is cons (a list)

let com. expr « if expr is suspended then expr else
suspended-: expr , guess , false)

let hdcode - suspended^ prefixC HD
nil > false

1st tlcode - suspended: prefix(TL » coerseC com. expr)) >
nil j false

coerse< com. expr)) ,

254S —
~ = _i<p __
TotO ~2

env ~ deci form(hd ■ > hdcode , guess , oldenv)
env = deci' form(tl) tlcode , guess > env >

env
end

;C = - -s_

—

Pi PJ pt PJ Pi !*i i’i pt Pi pl P.J I" PJ pi
fft .ii it) ill .il .1 • ti t.«t .ft .ii lii .11 «Ji lit
iT- 1.0 it CO tO t.0 Jill!!!)

ft fi t ti i’i i.tl til .ii .Ji 'ii iti . ii ii
i 1 o O O 0 ii O n it O it

Oi T- bi PJ O O 1.0 i 1' tft J- LO Ps • i t O tO J O' tft T- IO PJ t”* ‘ *

! 1 I I I ! f I I I I PJ I t <
! I I I i i 1 PJ « I ! i I I I

i i i i ;
i i i i i

I I !
I I I

PJ PJ P i PJ PI Pi PJ ft t
i-i 1 li «ji ' ii ft hi .ft ifi
..ft .ft . ft i.jt .Ji Ui 'ft f.’i
0 03 4 O- Cft to Pi

I 1 i 1 Pj 1 i i
1 PJ I 1 1 1 I J

T>
"J
o
fl
i»

fft
3
Ct

er a
iv 3

Ut
3
tx

3 «i.
tl ro tB cr i-i- fc ex «XJ Ul Ul Ul id (B cr e 1-J
C r—* "to 3 fp t-. cr c c C C C C 3 IB zr fp i’j
3 Ui O. U?1 3 Hi Hl ift IB fB fl Ul rt 1
ift iB >ti i->- IB Ir—* IP Ut Ui Ui Ui Ul t-i «—• i'P

3 3 □ • 8 ift ift Ifl tfl ifl J IB ta i •*
tl< ro •p 11 < £ Ift < Ip f- .--s il ib c Ul
3 3 t- •* te :r 3 3 <B o Ul 3 tx fp ■,<
3 U'l il I-.- < II < 3 o to 3 i-> ti < ifl »»» t s
0 <«*s «B 3 I". < x- ij IB Ct iB
3 iD 3 IB 3 c 3 X ... -te II to
x*i M- iB 3 h-»‘ 'B II It ? o rt 3 II II U X.

rt 3 (B t"'‘ 3 •B i—‘ II Ui £1 Ct if.
til Ul J < "J rt ip XT d fp 3 ■fi Cl 3 ex Cf
«t t-1 ti rt < XJ fX 3 3 i;i fj fp te a. IB m
3 Ct. ,-V „r Hi o < »-*• e te 3 3 n ft™1 to 3

iti > <B ii ? x-s rt 3 •n 3 t~* J
3 -to c 31 .3 ii Hi 3 •w •B <-< il.
ifi 3 z 0 IB : 3 ID 0

c? r 3 3 < fp 3 3 rt ex □
3 m -< < M- X d Ifl it ft to TJ
fl) o X"'. !—• <3 Si II n d .—I £t.
tfl <t fp IB ib fft IB ill
ift - zr 3 CD Cl 3 3 i« 3 IB te tl .B
il' ift .0 3 IB < - < 3 < 3 3 Ip

U3l 3 3 ■W. tl -to X**. < < ■te □
it- tU rt 3 fp -j’ 3

3 3 ‘ft tl. 3 -te * 1
•w* ip i-« il 3 fp < 0 3 rt Ci 3 O'

t-i ill te 3 ip ui IB ift
X.X- te 3 1 M f. 3

3 * ul it Cl 3 to TJ
Cl. 3 zr •it B“ *

tu TJ o fl te 3
-to 3 3 £ •D 3 w
3 IB rt te 3

3 3 fp
ti
trt

3
lit
3
tit

IX
o

3
k.
3
fp

tx
Cl

ui
c
ili
ift
ill

-_____________________.__

p u s h s t a c x < T1)
save, cont("print’1 > ' the Tl
pushs tac k(Hd >

en d

v is closure -Function id* v true)

default
begin

output o. f , 1 nlliegal Expression,
s h oiu (v)
activity = notgoing ’ a flag to print

incycle - false ‘ exit the main process
end

1 if have output an object

if v is logic or v is num or v is cha~ or v = nil or v is closure

begin
flush, o f >

~i

-J zf •» System

end2z96
■7 „ «; y
265-3
2 61 9
2660
2661

p r 0 c s d u re s h c w (pntr V)
oy< v(i f ✓ i; const then sh

2-~ 2 — if v is id then 0 u t p u t of
2c6'3 — if v is rsum ‘then outp U t 0 . f
2 c- 6 4 — if v is char then
2665 — output 0. f > C3S e v 0 f
2666 — ‘ML ; "nV
26-6 7 — SP : “sp ’*
2-cS — NP : ’"ftp “
26x9 — TAB "tab II
•26 ‘"’ 0 — default : U»/i + +
26 1 — 1 f V is logic then output 0
~ ~ -"2 — i f v = nil 11e n output 0 f
2673 — 1 f V is cons then
26 74 1- begin
2t?5 — output 0. f / ,s < ’
26 6 — repeat
7 - 2- < show(v(hd
26 ”8 — output 0 f ii . n
7 -..' 9 c V . ~ V < 11) >
230 — while v is cons
eJ "j 8 1 — 5 h 0 w (v ■■
2 c. 3-2 — output 0 f » ’ V
2633 -1 end e 1 se
«c 6 S 4 -- if V is cord then
2 c.-3 5 1- begin
2 *c c. 6 — show--, . , tea t))
2 6-7 — output . f 1 '' -

the const) > else
v ■ the. id) el3e

tne nu»r ? else

vC the char) else
■? . v C the bool ? else

" (> “ e 15 e

sh OW • v(lef t. f or k))

~ a t -

2 7 £ — 0 tOU t f* 4* u \ v (
2c37 -1 e n d el 5 e
2fc?0 — i * V 1 - 1 os u r e th e n f j r c 7 i 0 n i d (v
“ C •t. ” A 1f V X S 3 L" 3 I e "■ d e d ther sh w ('«■ ‘ its
2^92 — i f v i s St F I 4" ><4f *«/ h e n o u t p u o. f _• V (
2 c - 3 — « -F v i •5 r e p e 1111 on then = ft OUJ< v < th
2 z. ■■ 4 — if V I 5 mao th en
26 4 5 1- beg in
-1 - c — 0 0 t p u t o f u

Z r u e > sis
<• a 1 •* > a 1 s e

-2c-7
*■> 2?

1st f = v
while - is map do
begin

sh om i f (-For»Ti

v night for* >

-s --
2*-«9 2-

:

— -» i - - 0 - J t p u t 0 - f
72 — f . » f • b 0 d
13 -2 en d

- 74 — sh ow< f >
1~ 1 5 — ou t p U t 0 . c ii . u. / }
1 ;*• A- o -1 en d el s g
./ v ‘ — if v is tr-US t hen
. 8 i~ begin

'■. ~ " '. 7- —
m 2-
2713 *—

let t - v (clauses >
while t nil do
beg in

shauK t(hd)
output 0. f » ’* 'n“
t : » t (11 >

en d
«. •• i ~t
2";5
2''1 6 — i end else
~ ~ - ”T__ if v is er V 3 1 then s h o w(v(a rg else

-» ’ z? __~ ■ - o i f i 3 p "Sf ix then show pr efi x(/) el
r 7 ; 9 — i f v i s i n *' I ? do
2 "20 — case v < inf i: oo) of

"F » ^.i ;~7

0 e g i n
a. i. G —
♦> •• -• sS- «. ‘1

a u t p u t o. *■
show(v(el ?)

*-> 7 ** « a.
s G

output o f “ "
shew*' v< s2 > ?

2~2E ~i
2729 --
£‘T30 i~
£~3l —
2732 —

2734 —
2 "'35 -i
2"26 --
2"3-” i
2~3S
2~39 —
2 "40 --
2’41 —
2 ” 4 2 —
2-43 -1
2 "44 —
<i. t ~ ’

2" 46 —
2747 ~
2" :S -
2’49 -
27£0

BLOCS*

end

begin

o U t p U t 0 +' ” ; "

d e >3 u I c

end

b e g i n

end

showC v(e2 ; the expression
output o. £ , n where C”
showenvC v(el 4)
output a f , "3 “

output o.-f , •'C “
show< vC el))
0 U t D U t O r , " 11
5 h 0 w (V (9 2) ?
o u t p U t 0 t , “) "

v(in-Fix. op ■ mnemonic > ,

procedure show. pre-Pi x (cpntr v
case v(pr e4 i > op) o4

CHECKLIST: show(v< e .)

LI STEPP begin
output : t / “List Uantad: <?'
s h o w ■ ,• ■ e '■ ?
output o * >

S-ali:1 au^teft

2~tc ?nd

• ta
” 9

COND c agin
0 u t p u : o f

276C showi. v(e))

- •- , -5 end
output 0 f

i. t -•' —
2^-4 1- L'NDEF •j e g i n

X.
~ i 7
-s
69

-±

2“~’3 l-

4 I

default

en d

begin

output o. *
show< v(e) /
output p -F .• *'

'i!jnd e-F ined: ?

a. • «£•
■ T -t ■? -J

output o t , v qr»-F i j op
show' v '■ e))

— 1 SHi
■=. / / -T
- - - ~

x 6
r t c o u n t)

27"8
2 79

1-

2~so —
'Ci
”C. □

.;. Z 5J
2~'c4
£"35
2^36
2 ~E ~
2"S8
2789

3-

procedure > n owenv< pntr env i

begin
let i ~ c o u n t
let ds :« env
while i > 0 and ds 'v=s nil do
begin

:•? ds(defn.name > A'= APPLv do
begin

output O. t H"
a h o w < d s ’ d e t n. n a m e) >
output o. f , “• = “
ahow< ds its de-Fn >
i : = i - 1

rnssPonic) »

~ -4
7 ~'U? 7
2 f 2

a s

TC -------

2^37 —

7'•CO---

£3C3
7 0 ; 4
_ _ . j.-x :. •. .
7 " 3
■Z~':2 ?
2£‘iS
2303 3

a i a. c i v

71 '«•«' it fX-

23'. 4
0/- •*<74 Q i. %.•

a n d

- d s < next, defn .
end
output a. f » !' ' n . 'n

procedure f u n c t i o n id pntr t bool brackets
begin

procedure equivC pntr object , definition -> bool >
! abject is a closure which we are comparing with definition in env
if definition is suspended and definition(its val) is closure then

or ■act « definition* 11 s. v a 1 or is, same closure
begin

Let obj - object' fn dsf > ! map or trys
let dsf - befinition(its val , fn, def > * map or trys
□ b j ~ def or

obj is trys and def is trys and
begin

is first clause for obj a clause of def ?
let obj. first - obj< clauses , hd >
let defs : ~ def (clauses)
while defs A'= nil and obj. first defs(hd) do

defs ~ d e f s < 11)
defs nil

endz:> o —
£5 * *7 -2 end

r £S — else f a1 se ! definiti or cannot be
~ 3 - —

74 .~u -- p r c 8 J u r a findi p-n t r obj , env ->
— - -17, 7., Jk 2- beg i n
~ 2 "’ 7 let env = env

«. " J 8 4 **" ~
•s. *3 - 0 — • ---
2 £27 —

.. - 1 1 e en.- - 11 and ’"eq/uiv obj , env its. def n ■' > do
snv - 5nv(next, de + n {

1 * env - nil t n e n nil
else env< defn name

end--.. Z. z. 4 “ C

2529 --
~ 3 Lj “ ~

2Z3i ---
■“■ O "?• -~' _ ._

! J u n ; 110 n. 1 d

■25 53 — 1 e t ran e = find { f , the env)
25 34 — ’ 1 f bra ck 8 tS d o output 0. f »♦ '» f> open top level
25 3 5 — i f n a m e "*ss nil then s h otu (name)
2536 2- e 1 s e beg in
25 3" — 1 e t f e n v — f < f n. e n v >
23 35 -~
0 s? ~ —~ .■

2340 3-
Z£4':---
25 42 —
2543 —
2544 4-
J ~ ~ X _
25-4 --
25;:‘" -~
aT t. 4 S “4
2549 —3
2550 ~2
2351 --
~ Z ~ — 1

ans

end

25t4 --
2555 —
7 - = ~ —

let name = f 1 n d (f f. e n v)
if name A' = nil then shcu/< name)
else begin

' get partial mapping
let -ap » lookup(APPLY , f env)
if ap - nil then output 0 f » “Function id
else begin

function. id< ap(hd) > -false)
output 0. f / “ "
show(ap(tl ? >

end

error

end

if brackets do 0utput ’ close top level only

’ main program
«. z. „■.

■' ——— ■ , — — -r r—------- ---- -----------------------

P
 F

 0
 Q

 T* 3
 .T!

'
 j 3flR

 p i 1 @ a
a*

•> •*

f’i
:•!
i J
43

_____________________ ___

