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Abstract

We study asymptotic behaviour of stochastic approximation procedures
with three main characteristics: truncations with random moving bounds, a
matrix valued random step-size sequence, and a dynamically changing random
regression function. In particular, we show that under quite mild conditions,
stochastic approximation procedures are asymptotically linear in the statistical
sense, that is, they can be represented as weighted sums of random variables.
Therefore, a suitable form of the central limit theorem can be applied to de-
rive asymptotic distribution of the corresponding processes. The theory is
illustrated by various examples and special cases.
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1 Introduction

This paper is the final part of the series of papers devoted to the study of truncated
Stochastic approximation (SA) with moving bounds. The classical problem of SA is
concerned with finding a unique zero, say z0, of a real valued function R(z) : R→ R
when only noisy measurements of R are available. To estimate z0, consider a sequence
defined recursively as

Zt = Zt−1 + γt [R(Zt−1) + εt] , t = 1, 2, . . .

where {εt} is a sequence of zero-mean random variables and {γt} is a deterministic
sequence of positive numbers. This is the classical Robbins-Monro SA procedure (see
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Robbins and Monro (1951)), which under certain conditions converges to the root z0

of the equation R(z) = 0. (Comprehensive surveys of the SA technique can be found
in Benveniste et al. (1990), Borkar (2008), Kushner and Yin (2003), Lai (2003), and
Kushner (2010).)

In applications however, it is important to consider the setting when the function
R changes over the time. So, let us assume that the objective now is to find a
common root z0 of a dynamically changing sequence of functions Rt(z). Also, in
certain circumstances it might be necessary to confine the values of the procedure to
a certain set, or to a sequence of sets by applying a truncation operator. This happens
if, e.g., the functions in the recursive equation are defined only for certain values of the
parameter. Truncations may also be useful when certain standard assumptions, e.g.,
conditions on the growth rate of the relevant functions are not satisfied. Truncations
may also help to make an efficient use of auxiliary information concerning the value
of the unknown parameter. For example, we might have auxiliary information about
the root z0, e.g. a set, possibly time dependent, that contains the value of the
unknown root. In order to study these procedures in an unified manner, we consider
a SA of the following form

Zt = ΦUt

(
Zt−1 + γt(Zt−1)

[
Rt(Zt−1) + εt(Zt−1)

])
, t = 1, 2, . . .

where Z0 ∈ Rm is some starting value, Rt(z) is a predictable process with the prop-
erty that Rt(z

0) = 0 for all t’s, γt(z) is a matrix-valued predictable step-size sequence,
Ut ⊂ Rm is a random sequence of truncation sets, and Φ is the truncation operator
which returns the procedure to Ut every time the updated value leaves the trunca-
tion set (see Section 2.1 for details). These SA procedures have the following main
characteristics: (1) inhomogeneous random functions Rt; (2) state dependent matrix
valued random step-sizes; (3) truncations with random and moving (shrinking or
expanding) bounds. The main motivation for these comes from parametric statis-
tical applications: (1) is needed for recursive parameter estimation procedures for
non i.i.d. models; (2) is required to guarantee asymptotic optimality and efficiency
of statistical estimation; (3) is needed for various different adaptive truncations, in
particular, for the ones arising by auxiliary estimators (see Sharia (2014) for a more
detailed discussions of these extensions).

Note that the idea of truncations goes back to Khasminskii and Nevelson (1972)
and Fabian (1978) (see also Chen and Zhu (1986), Chen et al.(1987), Andradóttir
(1995), Sharia (1997), Tadic (1997,1998), Lelong (2008). A comprehensive bibliog-
raphy and some comparisons can be found in Sharia (2014)).

Convergence of the above class of procedures was studied in Sharia (2014) and the
results on rate of convergence were established in Sharia and Zhong (2016). In this
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paper, we derive further asymptotic properties of these procedures. In particular,
we show that under quite mild conditions, SA procedures are asymptotically linear
in the statistical sense, that is, they can be represented as weighted sums of random
variables. Therefore, a suitable form of the central limit theorem can be applied
to derive asymptotic distribution of the corresponding SA process. Since some of
the conditions in the main statements might be difficult to interpret, we present
explanatory remarks and corollaries. We also discuss the case of the classical SA and
demonstrate that truncations with moving bounds make it possible to use SA even
when the standard conditions on the function R do not hold. Finally, applications
of the above results are discussed and some simulations are presented to illustrate
the theoretical results of the paper. Proofs of some technical parts are postponed to
Appendices.

2 Main results

2.1 Notation and preliminaries

Let (Ω, F , F = (Ft)t≥0, P ) be a stochastic basis satisfying the usual conditions.
Suppose that for each t = 1, 2, . . . , we have (B(Rm)×F)-measurable functions

Rt(z) = Rt(z, ω) : Rm × Ω→ Rm

εt(z) = εt(z, ω) : Rm × Ω→ Rm

γt(z) = γt(z, ω) : Rm × Ω→ Rm×m

such that for each z ∈ Rm, the processes Rt(z) and γt(z) are predictable, i.e., Rt(z)
and γt(z) are Ft−1 measurable for each t. Suppose also that for each z ∈ Rm, the pro-
cess εt(z) is a martingale difference, i.e., εt(z) is Ft measurable and E {εt(z) | Ft−1} =
0. We also assume that

Rt(z
0) = 0

for each t = 1, 2, . . . , where z0 ∈ Rm is a non-random vector.
Suppose that h = h(z) is a real valued function of z ∈ Rm. Denote by h′(z)

the row-vector of partial derivatives of h with respect to the components of z, that

is, h′(z) =
(

∂
∂z1
h(z), . . . , ∂

∂zm
h(z)

)
. Also, we denote by h′′(z) the matrix of second

partial derivatives. The m × m identity matrix is denoted by I. Denote by [a]+

and [a]− the positive and negative parts of a ∈ R, i.e. [a]+ = max(a, 0) and [a]− =
min(a, 0).
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Let U ⊂ Rm is a closed convex set and define a truncation operator as a function
ΦU(z) : Rm −→ Rm, such that

ΦU(z) =

{
z if z ∈ U
z∗ if z /∈ U,

where z∗ is a point in U , that minimizes the distance to z.
Suppose that z0 ∈ Rm. We say that a random sequence of sets Ut = Ut(ω)

(t = 1, 2, . . . ) from Rm is admissible for z0 if

• for each t and ω, Ut(ω) is a closed convex subset of Rm;
• for each t and z ∈ Rm, the truncation ΦUt(z) is Ft measurable;
• z0 ∈ Ut eventually, i.e., for almost all ω there exist t0(ω) <∞ such that z0 ∈ Ut(ω)
whenever t > t0(ω).

Assume that Z0 ∈ Rm is some starting value and consider the procedure

Zt = ΦUt

(
Zt−1 + γt(Zt−1)Ψt(Zt−1)

)
, t = 1, 2, . . . (2.1)

where Ut is admissible for z0,

Ψt(z) = Rt(z) + εt(z),

and Rt(z), εt(z), γt(z) are random fields defined above. Everywhere in this work, we
assume that

E {Ψt(Zt−1) | Ft−1} = Rt(Zt−1) (2.2)

and
E
{
εTt (Zt−1)εt(Zt−1) | Ft−1

}
=
[
E
{
εTt (z)εt(z) | Ft−1

}]
z=Zt−1

, (2.3)

and the conditional expectations (2.2) and (2.3) are assumed to be finite.

Remark 2.1 Condition (2.2) ensures that εt(Zt−1) is a martingale difference. Con-
ditions (2.2) and (2.3) obviously hold if, e.g., the measurement errors εt(u) are in-
dependent random variables, or if they are state independent. In general, since we
assume that all conditional expectations are calculated as integrals w.r.t. corre-
sponding regular conditional probability measures (see the convention below), these
conditions can be checked using disintegration formula (see, e.g., Theorem 5.4 in
Kallenberg (2002)).
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Convention.
• Everywhere in the present work convergence and all relations between random vari-
ables are meant with probability one w.r.t. the measure P unless specified otherwise.
• A sequence of random variables (ζt)t≥1 has a property eventually if for every ω
in a set Ω0 of P probability 1, the realisation ζt(ω) has this property for all t greater
than some t0(ω) <∞.
• All conditional expectations are calculated as integrals w.r.t. corresponding regular
conditional probability measures.
• The infz∈U h(z) of a real valued function h(z) is 1 whenever U = ∅.

2.2 Notes on convergence

Remark 2.2 This subsection contains simple results describing sufficient conditions
for convergence and rate of convergence. We decided to present this material here
for the sake of completeness, noting that the proof, as well as a number of different
sets of sufficient conditions, can be found in Sharia (2014) and Sharia and Zhong
(2016).

Proposition 2.3 Suppose that Zt is a process defined by (2.1), Ut are admissible
truncations for z0.

• Suppose that

(D1) for large t’s
(z − z0)TRt(z) ≤ 0 if z ∈ Ut−1;

(D2) there exists a predictable process rt > 0 such that

sup
z∈Ut−1

E {‖Rt(z) + εt(z)‖2 | Ft−1}
1 + ‖z − zo‖2

≤ rt

eventually, and
∞∑
t=1

rta
−2
t <∞, P -a.s..

Then ‖Zt − z0‖ converges (P -a.s.) to a finite limit.

• Furthermore, if

(D3) for each ε ∈ (0, 1), there exists a predictable process νt > 0 such that

inf
ε≤‖z−zo‖≤1/ε

z∈Ut−1

−(z − z0)TRt(z) > νt
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eventually, where
∞∑
t=1

νta
−1
t =∞, P -a.s.

Then Zt converges (P -a.s.) to z0.

• Finally, if

(W1)

∆T
t−1Rt(Zt−1) ≤ −

1

2
∆at‖∆t−1‖2

eventually;

(W2) there exist 0 < δ ≤ 1 such that,

∞∑
t=1

aδ−2t E
{
‖(Rt(Zt−1) + εt(Zt−1))‖2 | Ft−1

}
<∞.

Then aδt‖Zt − z0‖2 converges to a finite limit (P -a.s.).

Proof. See Remark 3.6 above.

2.3 Asymptotic linearity

In this subsection we establish that under certain conditions, the SA process defined
by (2.1) is asymptotically linear in the statistical sense, that is, it can be represented
as a weighted sum of random variables. Therefore, a suitable form of the central
limit theorem can be applied to derive the corresponding asymptotic distribution.

Theorem 2.4 Suppose that process Zt is defined by (2.1) and

(E1)
Zt = Zt−1 + γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)] eventually. (2.4)

Suppose also that there exists a sequence of invertible random matrices At such that

(E2)
A−1t −→ 0 and Atγt(z

0)At −→ η in probability,

where η <∞ (P -a.s.) is a finite matrix;
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(E3)

lim
t→∞

A−1t

t∑
s=1

[
∆γ−1s (z0)∆s−1 + R̃s(z

0 + ∆s−1)
]

= 0

in probability, where

∆γ−1s (z0) = γ−1s (z0)− γ−1s−1(z0),

∆s = Zs − z0 and R̃s(z) = γ−1s (z0)γs(z)Rs(z);

(E4)

lim
t→∞

A−1t

t∑
s=1

[
ε̃s(z

0 + ∆s−1)− εs(z0)
]

= 0

in probability, where
ε̃s(z) = γ−1s (z0)γs(z)εs(z).

Then At(Zt − Z∗t ) −→ 0 in probability where

Z∗t = z0 + γt(z
0)

t∑
s=1

εs(z
0);

that is, Zt is locally asymptotically linear in z0 with γt = γt(z
0) and ψt = εt(z

0).

Proof. Using the notation γt = γt(z
0), εt = εt(z

0) and ∆t = Zt − z0, (2.4) can be
rewritten as

∆t −∆t−1 = γtR̃t(Zt−1) + γtε̃t(Zt−1)

eventually. Multiplying both sides by γ−1t , we have

t∑
s=1

[γ−1s ∆s − γ−1s−1∆s−1] =
t∑

s=1

[∆γ−1s ∆s−1 + R̃s(Zs−1) + ε̃s(Zs−1)],

and since the sum on the left hand side reduces to γ−1t ∆t − γ−10 ∆0, we obtain

∆t = γt

[
Ht +

t∑
s=1

ε̃s(Zs−1) + γ−10 ∆0

]
eventually, where

Ht =
t∑

s=1

[∆γ−1s ∆s−1 + R̃s(Zs−1)].
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Since Zt − Z∗t = ∆t − (Z∗t − z0), we have

Zt − Z∗t = γt

[
Ht + γ−10 ∆0

]
+ γt

t∑
s=1

[
ε̃s(Zt−1)− εs

]
,

and

At(Zt − Z∗t ) = AtγtAtA
−1
t

[
Ht + γ−10 ∆0

]
+ AtγtAtA

−1
t

t∑
s=1

[
ε̃s(Zt−1)− εs

]
eventually. By conditions (E2), (E3) and (E4), we have

AtγtAt
P−→ η, A−1t

[
Ht + γ−10 ∆0

]
P−→ 0 and A−1t

t∑
s=1

[
ε̃s(Zt−1)− εs

]
P−→ 0

Therefore, At(Zt − Z∗t ) −→ 0 in probability, that is, Zt is locally asymptotically
linear at z0. �

Proposition 2.5 Suppose that At in Theorem 2.4 are positive definite diagonal ma-
trices with non-decreasing elements and

(Q1)

A−2t

t∑
s=1

As

[
∆γ−1s (z0)∆s−1 + R̃s(z

0 + ∆s−1)
]
−→ 0

in probability, where R̃t is defined in (E3). Then (E3) in Theorem 2.4 holds.

Proof. Denote
χs = As[∆γ

−1
s (z0)∆s−1 + R̃s(z

0 + ∆s−1)]

and

A−1t

t∑
s=1

[∆γ−1s (z0)∆s−1 + R̃s(z
0 + ∆s−1)] = A−1t

t∑
s=1

A−1s χs .

Let us denote Ps = A−1s and Qs =
∑s

m=1 χm. Then using the formula (summation
by parts)

t∑
s=1

Ps∆Qs = PtQt −
t∑

s=1

∆PsQs−1 with Q0 = 0 ,
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we obtain

A−1t

t∑
s=1

A−1s χs = A−2t

t∑
s=1

χs + Gt where Gt = −A−1t
t∑

s=1

∆A−1s

s−1∑
m=1

χm.

Since As are diagonal,

∆A−1s = A−1s − A−1s−1 = −A−1s (As − As−1)A−1s−1 = −∆AsA
−1
s A−1s−1.

Therefore,

Gt = A−1t

t∑
s=1

∆As

{
A−1s A−1s−1

s−1∑
m=1

χm

}
.

Denote by A
(j,j)
s the j-th diagonal element of As. Since 0 ≤ A

(j,j)
s−1 ≤ A

(j,j)
s for all j,

A−2s−1

s−1∑
m=1

χm −→ 0 =⇒ A−1s A−1s−1

s−1∑
m=1

χm −→ 0.

Because of the diagonality, we can apply the Toeplitz Lemma to the elements of Gt,
which gives

A−1t

t∑
s=1

[∆γ−1s (z0)∆s− 1 + R̃s(z
0 + ∆s−1)] = A−2t

t∑
s=1

χs + Gt −→ 0 .

�

Proposition 2.6 Suppose that At in Theorem 2.4 are positive definite diagonal ma-
trices with non-decreasing elements. Denote by α(j) the j-th element of α ∈ Rm and
by A(j,j) the j-th diagonal element of matrix A. Suppose also that

(Q2)

lim
t→∞

(A
(j,j)
t )−2

t∑
s=1

E
{[
ε̃(j)s (z0 + ∆s−1)− ε(j)s (z0)

]2∣∣∣Fs−1} = 0

in probability P for all j = 1, ...,m, where ε̃s is defined in (E4). Then (E4) in
Theorem 2.4 holds.

Proof. Denote Mt =
∑t

s=1

[
ε̃s(z

0 + ∆s−1) − εs(z0)
]
. By the assumptions, Mt is a

martingale and the quadratic characteristic 〈M (j)〉t of the jth component M
(j)
t is

〈M (j)〉t =
t∑

s=1

Ez0
{[
ε̃(j)s (z0 + ∆s−1)− ε(j)s (z0)

]2∣∣∣Fs−1}.
9



Using the Lenglart-Rebolledo inequality (see e.g., Liptser and Shiryayev (1989), Sec-
tion 1.9), we have

P
{

(M
(j)
t )2 ≥ K2(A

(j,j)
t )2

}
≤ ε

K
+ P

{
〈M (j)〉t ≥ ε(A

(j,j)
t )2

}
for each K > 0 and ε > 0. Now by (Q2), 〈M (j)〉t/(A(j,j)

t )2 −→ 0 in probability P

and therefore M
(j)
t /A

(j,j)
t −→ 0 in probability P . Since At is diagonal, (E4) holds.�

Remark 2.7 Let us use Condition (E3) in Theorem 2.4 to construct an optimal
step-size sequence γt(z

0). Consider condition (Q1) in the one-dimensional case. Since
Rt(z

0) = 0, we have

At

[
∆γ−1t (z0)∆t−1 + R̃t(z

0 + ∆t−1)
]

=

[
∆γ−1t (z0) + et

Rt(z
0 + ∆t−1)−Rt(z

0)

∆t−1

]
At∆t−1,

where et = γ−1t (z0)γt(z
0 +∆t−1). In most applications, the rate of At is

√
t and

√
t∆t

is stochastically bounded. Therefore, for (Q1) to hold, one should at least have the
convergence

∆γ−1t (z0) + et
Rt(z

0 + ∆t−1)−Rt(z
0)

∆t−1
−→ 0.

If γt(z) is continuous, given that ∆t −→ 0, we expect et −→ 1. Therefore, we should
have

∆γ−1t (z0) ≈ −R′t(z0).
Using the similar arguments for the multi-dimensional cases, we expect the above
relation to hold for large t’s, where R′t(z

0) is the matrix of the derivatives of Rt(z)
at z = z0. So, an optimal choice of the step-size sequence should be

γ−1t (z) = −
t∑

s=1

R′s(z),

or a sequence which is asymptotically equivalent to this sum.

Remark 2.8 (a) Condition (E1) in Theorem 2.4 holds if the truncations in (2.1)
do not occur for large t’s. More precisely, (E1) holds if for t > T the truncations in
(2.1) do not occur for some, possibly random T .
(b) Let us now consider the case when Ut is a shrinking sequence. For example,
suppose that a consistent, but not necessarily efficient, auxiliary estimator Z̃t is
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available. Then one can take the truncations on Ut = S(Z̃t, rt), which is a sequence
of closed spherical sets in Rm with the center at Z̃t and the radius rt −→ 0. The
resulting procedure is obviously consistent, as ‖Zt − Z̃t‖ ≤ rt −→ 0 and Z̃t −→ z0.
However, if rt decreases too rapidly, condition (E1) may fail to hold. Intuitively, it is
quite obvious that we should not allow rt to decreases too rapidly, as it may result in
Zt having the same asymptotic properties as Z̃t, which might not be optimal. This
truncation will be admissible if ‖Z̃t − z0‖ < rt eventually. In these circumstances,
(E1) will hold if the procedure generates the sequence Zt which converges to z0 faster
than rt converges to 0.
(c) The considerations described in (b) lead to the following construction. Suppose
that an auxiliary estimator Z̃t has a convergence rate dt, in the sense that dt is a
sequence of positive r.v.’s such that dt −→ ∞ and dt(Z̃t − z0) → 0 P -a.s. Let us
consider the following truncation sets

Ut = S
(
Z̃t, c(d

−1
t + a−1t )

)
,

where c and at are positive and at −→∞. Then the truncation sequence is obviously
admissible since ‖Z̃t−z0‖ < cd−1t eventually. Now, if we can claim (using Proposition
2.3 or otherwise) that at‖Zt− z0‖ −→ 0, then condition (E1) holds. Indeed, suppose
that (E1) does not hold, that is, the truncations in (2.1) occur infinitely many times
on a set A of positive probability. This would imply that Zt appears on the surface
of the spheres Ut infinitely many times on A. Since z0 ∈ S(Z̃t, cd

−1
t ) eventually, we

obtain that ‖Zt − z0‖ ≥ ca−1t infinitely many times on A, which contradicts our
assumptions.

Another possible choice of the truncation sequence is

Ut = S
(
Z̃t, c

(
d−1t ∨ a−1t

))
.

(Here, a ∨ b = max(a, b) and a ∧ b = min(a, b)). If we can claim by Proposition 2.3
or otherwise that at‖Zt − z0‖ → 0, then condition (E1) holds. Indeed, suppose that
(E1) does not hold, that is, on a set A of positive probability the truncations in (2.1)
occur infinitely many times. This would imply that

‖Z̃t − Zt‖ = c(d−1t ∨ a−1t )

and

1 = c−1(dt ∧ at)‖Z̃t − Zt‖ ≤ c−1(dt ∧ at)‖Z̃t − z0‖+ c−1(dt ∧ at)‖Zt − z0‖

infinitely many times on A, which contradicts our assumptions.
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3 Special models and examples

3.1 Classical problem of stochastic approximation

Consider the classical problem of stochastic approximation to find a root z0 of the
equation R(z0) = 0. Note that in the classical case, the step-size sequence can
in general be of the form form γt(Zt−1) = a−1t γ(Zt−1). However, without loss of
generality we can assume that γt = a−1t I, since γ(Zt−1) can be included in R and εt.
Therefore, taking the step-size sequence γt = a−1t I, where at −→ ∞ is a predictable
scalar process, let us consider the procedure

Zt = ΦUt

(
Zt−1 + a−1t [R(Zt−1) + εt(Zt−1)]

)
. (3.1)

Remark 3.1 In the corollary below we derive simple sufficient conditions for asymp-
totic linearity in the case when at = t. We also assume, using Proposition 2.3 or
otherwise, that tδ/2(Zt − z0) −→ 0 for any δ ∈ (0, 1). Note also that the condition
(A1) below requires that the procedure is designed in such a way that the truncations
in (3.1) do not occur for large t’s (see Remark 2.8 for a detailed discussion of this
requirement).

Corollary 3.2 Suppose that Zt is defined by (3.1), at = t and tδ/2(Zt − z0) −→ 0
for any δ ∈ (0, 1). Suppose also that

(A1)

Zt = Zt−1 +
1

t
[R(Zt−1) + εt(Zt−1)] eventually;

(A2)
R(z0 + u) = −u+ α(u) where ‖α(u)‖ = O(u1+ε)

as u→ 0 for some ε > 0;

(A3)

t−1
t∑

s=1

E
{[
εs(z

0 + us)− εs(z0)
]2∣∣∣Fs−1} <∞,

where us is any predictable process with the property us −→ 0.

Then Zt is asymptotically linear.

12



Proof. Let At =
√
tI, then AtγtAt = I since γt = I/t. Condition (E2) in Theorem

2.4 is satisfied. On the other hand, since R̃(z) = R(z) and ∆γ−1t = I, we have

A−2t

t∑
s=1

As

[
∆γ−1s ∆s−1 + R̃s(Zs−1)

]
=

1

t

t∑
s=1

√
s[∆s−1+R(z0+∆s−1)] =

1

t

t∑
s=1

√
sα(∆s−1).

By (A2), there exists a constant K > 0 such that

‖
√
sα(∆s−1)‖ ≤ K

∥∥√s∆1+ε
s−1
∥∥ = K

∥∥∥∥√ s

s− 1

[
(s− 1)

1
2(1+ε) ∆s−1

]1+ε∥∥∥∥
eventually. Since 1/[2(1+ε)] < 1/2, we have (s−1)1/[2(1+ε)]∆s−1 −→ 0, and therefore
‖
√
sα(∆s−1)‖ −→ 0 as ∆s −→ 0. Thus, by the Toeplitz Lemma (see Lemma 5.1 in

Appendix A),

1

t

t∑
s=1

√
sα(∆s−1) −→ 0

So, (Q2) in Proposition 2.5 holds implying that condition (E3) in Theorem 2.4 is
satisfied. Since ε̃t(z) = εt(z), it follows from (A3) that condition (Q2) in Proposition
2.6 holds. This implies that (E4) in Theorem 2.4 holds. Thus, all the conditions of
Theorem 2.4 hold, implying that Zt is asymptotically linear. �

Remark 3.3 Using asymptotic linearity, the asymptotic normality is an immediate
consequence of Corollary 3.2. Indeed, we have

√
t(Zt − Z∗t ) −→ 0 in probability,

where

Z∗t = z0 +
1

t

t∑
s=1

εs(z
0).

So, Zt and Z∗t have the same asymptotic distribution. Now, to obtain the asymptotic
distribution of Zt, it remains only to apply the central limit theorem for martingales.

Remark 3.4 Note that condition (A2) above assumes that R function should be
scaled in such a way that the derivative at z0 is −1. Alternatively, a step-size
sequence should be considered of the form γt(Zt−1) = t−1γ(Zt−1), with appropriately
chosen γ(Zt−1). Detailed discussion of selection of an appropriate step-size sequence
in the context of statistical parametric estimation is given in Section 3.3.

Example 3.5 Let l be a positive integer and

R(z) = −
l∑

i=1

Ci(z − z0)i,
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where z, z0 ∈ R and Ci are real constants. Suppose that

(z − z0)R(z) ≤ 0 for all z ∈ R.

Unless l = 1, we cannot use the standard SA without truncations as the standard
condition on the rate of growth at infinity does not hold. So, we consider Zt defined
by (3.1) with a slowly expanding truncation sequence Ut = [−ut, ut], where

∞∑
t=1

u2lt a−2t <∞.

We can assume for example, that ut = Ctr/2l, where C and r are some positive
constants and r < 1. One can also take a truncation sequence which is independent
of l, e.g., ut = C log t, where C is a positive constant.

Suppose for simplicity that the measurement errors are state free with the prop-
erty that

∑∞
t=1 σ

2
t a
−2
t < ∞, where σ2

t = E {ε2t | Ft−1}. Then |Zt − z0| converges
(P -a.s.) to a finite limit. Furthermore, if z0 is a unique root, then Zt −→ z0 (P -a.s.)
provided that

∑∞
t=1 a

−1
t = ∞. Finally, if Zt is defined by (3.1) with at = C1t, then

tα(Zt − z0)
a.s.−−→ 0 for any α < 1/2 (see Sharia and Zhong (2016) for details). So,

it follows that conditions in Corollary 3.2 hold (with R replaced by C−11 R), imply-
ing that Zt is locally asymptotically linear. Now, depending on the nature of the
error terms, one can apply a suitable form of the central limit theorem to obtain
asymptotic normality of Zt.

3.2 Linear procedures

Consider the recursive procedure

Zt = Zt−1 + γt(ht − βtZt−1) (3.2)

where γt is a predictable positive definite matrix process, βt is a predictable pos-
itive semi-definite matrix process and ht is an adapted vector process (i.e., ht is
Ft-measurable for t ≥ 1). If we assume that E{ht|Ft−1} = βtz

0, we can view (3.2)
as a SA procedure designed to find the common root z0 of the linear functions

Rt(u) = E{ht − βtu|Ft−1} = E{ht|Ft−1} − βtu = βt(z
0 − u)

which is observed with the random noise

εt = εt(u) = ht − βtu−Rt(u) = ht − E{ht|Ft−1} = ht − βtz0.

14



Remark 3.6 Recursive procedures (3.2) are linear in the sense that they locate the
common root z0 of the linear functions Rt(u) = βt(z

0 − u). The second part of the
corollary below shows that the process Zt is asymptotically linear in the statistical
sense, that is, it can be represented as a weighted sum of random variables. The first
part of the corollary below contains sufficient conditions for convergence and rate of
convergence. We decided to present this material here for the sake of completeness,
noting that the proof can be found in Sharia and Zhong (2016) (note also that (G1)
below will hold if, e.g., ∆γ−1t = βt).

Corollary 3.7 Suppose that Zt is defined by (3.2) with E(ht|Ft−1) = βtz
0 and at is

a non-decreasing positive predictable process.

1. Suppose that

(G1) ∆γ−1t − 2βt + βtγtβt is negative semi-definite eventually;

(G2)
∞∑
t=1

a−1t E{(ht − βtz0)Tγt(ht − βtz0)|Ft−1} <∞.

Then a−1t (Zt − z0)Tγ−1t (Zt − z0) converges to a finite limit (P-a.s.).

2. Suppose that γt −→ 0 and

γ
1/2
t

t∑
s=1

(∆γ−1s − βs)∆s−1 −→ 0 (3.3)

in probability, where ∆t = Zt − z0.
Then Zt is asymptotically linear, that is,

γ
1/2
t (Zt − z0) = γ

−1/2
t

t∑
s=1

εs + rt(z
0),

where rt(z
0) −→ 0 in probability.

Proof. Let us check the conditions of Theorem 2.4 for At = γ
−1/2
t . Conditions (E1)

and (E2) trivially hold. Since εt(u) = ht− βtz0 is state free (i.e. does not depend on
u), (E4) also holds. Since R̃t(Zt−1) = Rt(Zt−1) = −βt∆t−1, we have

A−1t

t∑
s=1

(
∆γ−1s (z0)∆s−1 + R̃s(z

0 + ∆s−1)
)

= γ
1/2
t

t∑
s=1

(∆γ−1s − βs)∆s−1 ,

15



and (E3) now follows from (3.3). Thus, all conditions of Theorem 2.4 are satisfied
which implies the required result. �

Example 3.8 Corollary 3.7 can be applied to study asymptotic behaviour of recur-
sive least squares estimators in regression or time series models. To demonstrate
this, let us consider a simple example of AR(1) process

Xt = θXt−1 + ξt,

where ξt is a sequence of square integrable random variables with mean zero. Consider
the recursive least squares (LS) estimator of θ defined by

θ̂t = θ̂t−1 + Î−1t Xt−1

(
Xt − θ̂t−1Xt−1

)
,

Ît = Ît−1 +X2
t−1, t = 1, 2, . . .

where θ̂0 and Î0 > 0 are any starting points and Ît = Î0 +
∑t

s=1X
2
s−1. This procedure

is clearly a particular case of (3.2) with

z0 = θ, Zt = θ̂t, γt = Î−1t , ht = Xt−1Xt, βt = X2
t−1.

Since ∆γ−1t = X2
t−1 = βt, condition (G1) holds (see Corollary 5.2 in Sharia and

Zhong (2016)). Also, since

ht − βtz0 = Xt−1(Xt −Xt−1θ) = Xt−1ξt,

it follows that

E{(ht − βtz0)Tγt(ht − βtz0)|Ft−1} = X2
t−1Î

−1
t E{ξ2t |Ft−1}.

Let 0 < δ < 1. Then taking at = Îδt in (G2) we obtain

∞∑
t=1

a−1t E{(ht − βtz0)Tγt(ht − βtz0)|Ft−1} =
∞∑
t=1

1

Î1+δt

X2
t−1E{ξ2t |Ft−1}

Now, since ∆Ît = X2
t−1, if Ît →∞ then the sum above is finite even if the conditional

variances E{ξ2t |Ft−1} go to infinity with rate Îδ
0

t , as far as δ0 < δ (this trivially follows
from, e.g., Lemma 6.3 in Sharia and Zhong (2016)).

Let us now assume for simplicity that ξt is a sequence of i.i.d. r.v.’s with mean
zero and variance 1. Then consistency and rate of convergence follows without any
further moment assumptions on the innovation process. Indeed, since Ît → ∞ for
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any θ ∈ R (see, e.g, Shiryayev (1984, Ch.VII, §5), it follows that all the conditions
of part 1 in Corollary 3.7 hold implying that I1+δt (θ̂t − θ)2 converges a.s. to a finite
limit for any 0 < δ < 1 and θ ∈ R.

Furthermore, since ∆γ−1t = βt, (3.3) trivially holds. It therefore follows that θ̂t
is asymptotically linear and asymptotic normality is now obtained by applying the
central limit theorem for i.i.d. random variables.

3.3 Application to parameter estimation

Let X1, . . . , Xn be random variables with a joint distribution depending on an un-
known parameter θ. Then an M -estimator of θ is defined as a solution of the esti-
mating equation

n∑
i=1

ψi(θ) = 0, (3.4)

where ψi(θ) = ψi(X
i
1; θ), i = 1, 2, . . . , n, are suitably chosen functions which may, in

general, depend on the vector X i
1 = (X1, . . . , Xi) of all past and present observations.

If fi(x, θ) = fi(x, θ|X1, . . . , Xi−1) is the conditional probability density function or
probability function of the observation Xi, given X1, . . . , Xi−1, then one can obtain
a MLE (maximum likelihood estimator) on choosing

ψi(θ) = lt(θ) = [f ′i(θ,Xi|X i−1
1 )]T/fi(θ,Xi|X i−1

1 ). (3.5)

Besides MLEs, the class of M -estimators includes estimators with special properties
such as robustness. Under certain regularity and ergodicity conditions, it can be
proved that there exists a consistent sequence of solutions of (3.4) which has the
property of local asymptotic linearity.

Let us consider estimation procedures which are recursive in the sense that each
successive estimator is obtained from the previous one by a simple adjustment. In
particular, we consider a class of estimators

θ̂t = ΦUt

[
θ̂t−1 + γt(θ̂t−1)ψt(θ̂t−1)

]
, t ≥ 1,

where ψt is a suitably chosen vector process, γt is a matrix valued step-size process,
and θ̂0 ∈ Rm is an initial value. This type of recursive estimators are especially
convenient when the corresponding ψ-functions are non-linear in θ and therefore,
solving (3.4) would require a numerical method (see e.g., Example 3.9). A detailed
discussion and a heuristic justification of this estimation procedure are given in Sharia
(2008).
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The above procedure can be rewritten in the SA form. Indeed, assume that θ is
an arbitrary but fixed value of the parameter and denote

Rt(z) = Eθ {ψt(z) | Ft−1} and εt(z) = (ψt(z)−Rt(z)) .

Following the argument in Remark 2.7 (see also Sharia (2010)), an optimal step-size
sequence would be

γ−1t (θ) = −
t∑

s=1

R′s(θ)

If ψt(z) is differentiable w.r.t. z and differentiation of Rt(z) = Eθ{ψt(z) | Ft−1} is
allowed under the integral sign, then R′t(z) = Eθ{ψ′t(z) | Ft−1}. This implies that,
for a given sequence of estimating functions ψt(θ), another possible choice of the
step-size sequence is

γt(θ)
−1 = −

t∑
s=1

Eθ{ψ′s(θ) | Fs−1},

or any sequence with the increments

Mγ−1t (θ) = γ−1t (θ)− γ−1t−1(θ) = −Eθ{ψ′t(θ) | Ft−1}.

Also, since ψt(θ) is typically a P θ-martingale difference,

0 =

∫
ψt(θ, x | X t−1

1 )ft(θ, x | X t−1
1 )µ(dx),

and if the differentiation w.r.t. θ is allowed under the integral sign, then (see Sharia
(2010) for details)

Eθ{ψ′t(θ) | Ft−1} = −Eθ{ψt(θ)lTt (θ) | Ft−1},

where lt(θ) is defined in (3.5). Therefore, another possible choice of the step-soze
sequence is any sequence with the increments

Mγ−1t (θ) = γ−1t (θ)− γ−1t−1(θ) = Eθ{ψt(θ)lTt (θ) | Ft−1}.

Therefore, since the process

M θ
t =

t∑
s=1

ψs(θ)

is a P θ-martingale, the above sequence can be rewritten as

γ−1t (θ) = 〈M θ, U θ〉t
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where U θ
t =

∑t
s=1 ls(θ) is the score martingale.

Let us consider a likelihood case, that is ψt(θ) = lt(θ), the above sequence is the
conditional Fisher information

It(θ) =
t∑

s=1

E{ls(θ)lTs (θ)|Fs−1}. (3.6)

Therefore, the corresponding recursive procedure is

θ̂t = ΦUt

(
θ̂t−1 + I−1t (θ̂t−1)lt(θ̂t−1)

)
, t ≥ 1, (3.7)

Also, given that the model possesses certain ergodicity properties, asymptotic lin-
earity of (3.7) implies asymptotic efficiency. In particular, in the case of i.i.d. obser-
vations, it follows that the above recursive procedure is asymptotically normal with
parameters (0, i−1(θ)), where i(θ) is the one-step Fisher information.

3.3.1 The i.i.d case

Consider the classical scheme of i.i.d. observations X1, X2, ... having a common
probability density function f(x, θ) w.r.t. some σ- finite measure µ, where θ ∈ Rm.
Suppose that ψ(x, θ) is an estimating function with

Eθ {ψ(X1, θ)} =

∫
ψ(x, θ)f(x, θ)µ(dx) = 0.

A recursive estimator θ̂t can be defined by

θ̂t = ΦUt

(
θ̂t−1 + a−1t γ(θ̂t−1)ψ(Xt, θ̂t−1)

)
where at is a non-decreasing real sequence, γ(θ) is an invertible m ×m matrix and
truncation sequence Ut is admissible for θ. In most applications at = t and an optimal
choice of γ(θ) is

γ(θ) =
[
Eθ

{
ψ(Xt, θ)l

T (Xt, θ)
}]−1

where l(x, θ) =
[f ′(x, θ)]T

f(x, θ)
.

Example 3.9 Let X1, X2, . . . be i.i.d. random variables from Gamma(θ, 1) (θ > 0).
Then the the common probability density function is

f(x, θ) =
1

Γ(θ)
xθ−1e−x, θ > 0, x > 0,
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where Γ(θ) is the Gamma function. Denote

log′Γ(θ) =
d

dθ
logΓ(θ), log′′Γ(θ) =

d2

dθ2
logΓ(θ).

Then
f ′(x, θ)

f(x, θ)
= logx− log′Γ(θ) and i(θ) = log′′Γ(θ),

where i(θ) is the one-step Fisher information. Then a recursive likelihood estimation
procedure can be defined as

θ̂t = ΦUt

(
θ̂t−1 +

1

t log′′Γ(θ̂t−1)

[
logXt − log′Γ(θ̂t−1)

])
(3.8)

with Ut = [αt, βt] where αt ↓ 0 and βt ↑ ∞ are sequences of positive numbers. Then
it can be shown that (see Appendix B) if

∞∑
t=1

α2
t−1

t
=∞ and

∞∑
t=1

log2 αt−1 + log2 βt−1
t2

<∞, (3.9)

then θ̂t is strongly consistent and asymptotically efficient, i.e., θ̂t
a.s.−−→ θ as t −→ ∞,

and
L
(
t1/2(θ̂t − θ)|P θ

)
w−→ N

(
0, log′′ Γ(θ)

)
.

For instance,
αt = C1(log (t+ 2))−

1
2 and βt = C2(t+ 2)

with some positive constants C1 and C2, obviously satisfy (3.9).
The above result can be derived by rewriting (3.8) in the form of the stochastic

approximation (see Appendix B for details), i.e.,

θ̂t = ΦUt

(
θ̂t−1 +

1

t

[
R(θ̂t−1) + εt(θ̂t−1)

])
(3.10)

where

R(u) = Rθ(u) =
1

log′′Γ(u)
Eθ{logXt − log′ Γ(u)} =

1

log′′Γ(u)
(log′ Γ(θ)− log′ Γ(u))

and

εt(u) =
1

log′′Γ(u)
[logXt − log′Γ(u)]−R(u).
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4 Simulations

4.1 Finding roots of polynomials

Let us consider a problem described in Section 3.5 with

R(z) = −(z − z0)7 + 2(z − z0)6 − 5(z − z0)5 − 3(z − z0),

and suppose that the random errors are independent Student random variables with
degrees of freedom 7. Consider SA procedure (3.1) with at = 3t and the truncation
sequence Ut = [− log 3t, log 3t]. Then (see Example 3.5), it follow that this procedure
is consistent, i.e., converges almost surely to z0, and asymptotically linear. Also, since
the error terms are i.i.d., it follows that the procedure is asymptotically normal. Note
that the SA without truncations fails to satisfy the standard condition on the rate
of growth at infinity. Here, slowly expanding truncations are used to artificially slow
down the growth of R at infinity.

Figure 1 shows 30 steps of the procedure with starting points at −2, 0 and 5 re-
spectively, where the root z0 = 2. A histogram of the estimator over 500 replications
(with Z0 = 0) is shown in Figure 2.

0 5 10 15 20 25 30

-1
0

1
2

3

Observations

Start at -2
Start at 0
Start at 5

Figure 1: Realizations of the estimator in the polynomial example
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Figure 2: Histogram of the estimator in the polynomial example

4.2 Estimation of the shape parameter of the Gamma dis-
tribution

Let us consider procedure (3.8) in Example 3.9 with following two sets of truncations
Ut = [αt, βt].

(1) FT – Fixed truncations: αt = α and βt = β where 0 < α < β <∞.

(2) MT – Moving truncations: αt = C1[log(t + 2)](−1/2) and βt = C2(t + 2) where
C1 and C2 are positive constants.

Figure 3 shows realizations of procedures (3.8) when θ = 0.1 and the starting point
θ̂0 = 1, C1 = 0.1, C2 = 1 in MT, and α = 0.003, β = 100 in FT. As we can see, the
MT estimator approaches the true value of θ following a zigzag path. However, the
FT estimator moves very slowly towards the true value of θ, caused by singularity
at 0 of the functions appearing in the procedure.
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Figure 3: Performance of the estimator of the parameter in the Gamma distribution

5 Appendix

Lemma 5.1 (The Toeplitz Lemma) Let {an} be a sequence of non-negative numbers
such that

∑∞
n=1 an diverges. If νn −→ ν∞ as n −→∞, then

lim
n−→∞

∑n
i=1 aiνi∑n
i=1 ai

= ν∞ .

Proof. Proof can be found in Loève (1977, P.250). �

Properties of Gamma distribution In Example 3.9, we will need the following
properties of the Gamma function (see, e.g., Whittaker (1927), 12.16). log′Γ is
increasing, log′′Γ is decreasing and continuous,

log′′Γ(x) ≤ 1 + x

x2

and

log′′Γ(x) ≥ 1

x
. (5.1)
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Also (see Cramer (1946), 12.5.4),

log′Γ(x) ≤ ln(x).

Then,

Eθ {logX1} = log′Γ(θ), Eθ
{

(logX1)
2} = log′′Γ(θ) + (log′Γ(θ))

2
, (5.2)

Eθ

{
(logX1 − log′Γ(θ))

2
}

= log′′Γ(θ).

Using (5.1) and (5.2) we obtain

Eθ
{
‖R(u) + εt(u)‖2 | Ft−1

}
=

log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))
2

(log′′Γ(u))2
. (5.3)

The convergence to θ of the estimator defined by (3.8) is shown in Sharia (2014). To
establish the rate of convergence, let us show that the conditions of Corollary 4.5 in
Sharia and Zhong (2016) hold. Since

R′(u) =
dR(u)

du
= − log′′Γ(u)

log′′Γ(u)
− log′′′Γ(u)

[log′′Γ(u)]2
(log′ Γ(θ)− log′ Γ(u))

= −1− log′′′Γ(u)

[log′′Γ(u)]2
(log′ Γ(θ)− log′ Γ(u)) ,

we have R′(θ) = −1 ≤ −1/2 and condition (B1) of Corollary 4.5 in Sharia and Zhong
(2016) holds. Since Eθ {εt(u) | Ft−1} = 0, we have

Eθ
{

[R(u) + ε(u)]2 | Ft−1
}

= R2(u) + Eθ
{
ε2t (u) | Ft−1

}
. (5.4)

Using (5.3) and (5.4),

Eθ
{
ε2t (u) | Ft−1

}
≤ Eθ

{
[R(u) + ε(u)]2 | Ft−1

}
= log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))

2
,

which is obviously a continuous function of u. Thus, for any vt −→ 0, we have
Eθ {ε2t (θ + vt) | Ft−1} converges to a finite limit and so condition (BB) in Corollary
4.7 in Sharia and Zhong (2016) holds. Therefore, all the conditions of this corollary
are satisfied with at = t implying that tδ(θ̂t − θ)2

a.s.−−→ 0 for any δ < 1.
Furthermore, since the second derivative of R(u) exists, R′(θ) = −1, and R(θ) =

0, by the Taylor expansion,

R(θ + u) = −u+R′′(ũ)u2
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for small u’s and for some ũ > 0. Therefore, condition (A2) in Corollary 3.2 holds.
It is also easy to check that

Eθ

{[
εs(θ + us)− εs(θ)

]2∣∣∣Fs−1} −→ 0

for any predictable process us −→ 0. Condition (A3) is immediate from the Toeplitz
Lemma. Thus, estimator θ̂t defined by (3.10) is asymptotic linear. Now, using the
CLT for i.i.d. r.v.’s, it follows that θ̂t is asymptotically efficient.
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[1] Andradóttir, S. A stochastic approximation algorithm with varying bounds.
Operations Research 43, 6 (1995), 1037–1048.

[2] Benveniste, A., Métivier, M., and Priouret, P. Stochastic approxima-
tions and adaptive algorithms. Springer-Verlag, 1990.

[3] Borkar, V. S. Stochastic approximation. Cambridge Books (2008).

[4] Chen, H. F., Guo, L., and Gao, A.-J. Convergence and robustness of
the robbins-monro algorithm truncated at randomly varying bounds. Stochastic
Processes and their Applications 27 (1987), 217–231.

[5] Chen, H. F., and Zhu, Y. M. Stochastic approximation procedures with
randomly varying truncations. Scientia Sinica Series A Mathematical Physical
Astronomical & Technical Sciences 29, 9 (1986), 914–926.

[6] Cramer, H. Mathematical Methods of Statistics. Princeton University Press,
Princeton, 1946.

[7] Fabian, V. On asymptotically efficient recursive estimation. The Annals of
Statistics (1978), 854–866.

[8] Kallenberg, O. Foundations of modern probability. springer, 2002.

[9] Khasminskii, R. Z., and Nevelson, M. B. Stochastic approximation and
recursive estimation. Nauka, Moscow, 1972.

[10] Kushner, H. J. Stochastic approximation: a survey. Wiley Interdisciplinary
Reviews: Computational Statistics 2, 1 (2010), 87–96.

25



[11] Kushner, H. J., and Yin, G. Stochastic approximation and recursive algo-
rithms and applications, vol. 35. Springer Science & Business Media, 2003.

[12] Lai, T. L. Stochastic approximation. Annals of Statistics (2003), 391–406.

[13] Lelong, J. Almost sure convergence of randomly truncated stochastic algo-
rithms under verifiable conditions. Statistics & Probability Letters 78, 16 (2008),
2632–2636.

[14] Liptser, R., and Shiryayev, A. N. Theory of martingales. Mathematics
and its Applications. Kluwer, Dordrecht (1989), 835–873.
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