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ABSTRACT
Radiative transfer is an important component of hydrodynamic simulations as it determines the thermal
properties of a physical system. It is especially important in cases where heating and cooling regulate sig-
nificant processes, such as in the collapse of molecular clouds, the development of gravitational instabilities
in protostellar discs, disc-planet interactions, and planet migration. We compare two approximate radiative
transfer methods which indirectly estimate optical depths within hydrodynamic simulations using two dif-
ferent metrics: (i) the gravitational potential and density of the gas (Stamatellos et al.), and (ii) the pressure
scale-height (Lombardi et al.). We find that both methods are accurate for spherical configurations e.g. in
collapsing molecular clouds and within clumps that form in protostellar discs. However, the pressure scale-
height approach is more accurate in protostellar discs (low and high-mass discs, discs with spiral features,
discs with embedded planets). We also investigate the β-cooling approximation which is commonly used
when simulating protostellar discs, and in which the cooling time is proportional to the orbital period of the
gas. We demonstrate that the use of a constant β cannot capture the wide range of spatial and temporal vari-
ations of cooling in protostellar discs, which may affect the development of gravitational instabilities, planet
migration, planet mass growth, and the orbital properties of planets.

Key words: hydrodynamics - radiative transfer - methods: numerical - protoplanetary sys-
tems: planet-disc interactions, protoplanetary discs

1 INTRODUCTION

Full 3-dimensional, wavelength dependent radiative transfer within
hydrodynamic simulations is computationally expensive (e.g.
Harries 2015; Harries et al. 2017). It is only typically used to post-
process snapshots of simulations to produce synthetic observations
(e.g. RADMC-3D; Dullemond 2012). However, the inclusion of ra-
diative transfer is important when an accurate treatment of the ther-
mal evolution of the system is needed.

There are various methods which efficiently include approx-
imate radiative transfer in hydrodynamic simulations, each with
their underlying simplifying assumptions (Oxley & Woolfson
2003; Whitehouse & Bate 2004; Stamatellos et al. 2007b;
Forgan et al. 2009; Young et al. 2012; Lombardi et al. 2015).
There are two main types of approach: (i) using the diffusion
approximation (e.g. Whitehouse & Bate 2004; Boley et al. 2006;
Commerçon et al. 2011b,a), a method which may still be compu-
tationally expensive, or (ii) use a metric to estimate the optical
depth for each element of the fluid and hence the heating/cooling
rate (Stamatellos et al. 2007b; Forgan et al. 2009; Young et al.
2012; Lombardi et al. 2015). Another method that is used in
the context of protostellar discs is the β-cooling approximation
(e.g. Gammie 2001; Rice et al. 2003b). This method assumes
that the temporal evolution of the specific internal energy, u, is
inversely proportional to the cooling time such that u̇ = −u/tcool.
The cooling time is set inversely proportional to the Keplerian
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frequency with a constant β, i.e. tcool(R) = βΩ−1(R), where
R is the distance from the central star as measured on the disc
midplane. This method over-simplifies the underlying physics but
comes at low computational cost.

Stamatellos et al. (2007b) proposed a radiative transfer
method which uses the gravitational potential and the density of
gas as a metric to estimate the optical depth through which a gas
element cools. This is then used to calculate an estimated cool-
ing rate, and, in the optically thick case, reduces to the diffusion
approximation. The method works well for roughly spherical sys-
tems and results in an increase of computational time by less than
∼ 5%. However, Wilkins & Clarke (2012) showed that the cool-
ing rate calculated with the Stamatellos et al. (2007b) method can
be systematically underestimated in the optically thick midplane of
protostellar discs. Therefore, the Stamatellos et al. (2007b) method
therefore may not be suitable to provide accurate cooling rates in
non-spherical systems. This method has been combined with the
diffusion approximation to increase accuracy in high-optical depth
regions (e.g. Forgan et al. 2009).

Young et al. (2012) proposed a method, in the context of pro-
tostellar discs, that uses the gravitational potential in the z direction
only, i.e. out of the disc midplane. From this, they obtain accurate
estimates (within a few tens of percent) of column density and opti-
cal depths. However, when fragments form due to the gravitational
instability in massive discs, the Stamatellos et al. (2007b) gives bet-
ter estimates of the cooling rates within the dense fragments, which
can be assumed to be approximately spherical.

Instead of using the gravitational potential to estimate the opti-
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cal depth, Lombardi et al. (2015) propose to use the pressure scale-
height. This retains the majority of the characteristics of the orig-
inal Stamatellos et al. (2007b) method, merely employing a differ-
ent metric to estimate optical depth. It is shown to provide a much
more accurate estimate of cooling rate in spherical polytropes and
protostellar discs with specified density and temperature profiles.

The aim of this paper is to compare how the above methods
(Stamatellos et al. 2007b; Lombardi et al. 2015), behave when ap-
plied in actual hydrodynamic simulations. We test the two methods
in the context of collapsing clouds and protostellar discs. In the
case of the latter, we consider relaxed discs, discs with spiral arms,
discs with clumps, and discs with embedded planets which carve
gaps. We also examine whether the β-cooling method, which is
widely used for protostellar discs, provides a good approximation
to the thermal physics. Such tests of different methods are needed
as radiative transfer plays a critical role in many cases (e.g. disc
fragmentation and gap opening in discs with planets).

In Section 2 we describe the radiative transfer techniques
in more detail. Section 3 shows the comparison between the
aforementioned methods for the collapse of spherically-symmetric
cloud. We test the behaviour of both methods for protostellar discs
in Section 4 and for discs with embedded planets in Section 5. A
discussion on the performance of the β-cooling approximation is
presented in Section 6. A comparison to demonstrate the effect on
dynamical evolution from the two radiative transfer methods dis-
cussed, as well as the β-cooling approximation, is presented in Sec-
tion 7. We summarise our results in Section 8.

2 EFFICIENT RADIATIVE TRANSFER METHODS

The radiative transfer technique ascribed to Stamatellos et al.
(2007b) is used to determine the heating and cooling of the gas.
The method incorporates the effects from the rotational and vibra-
tional degrees of freedom of H2, the dissociation of H2, ice melt-
ing, dust sublimation, bound-free, free-free, and electron scattering
interactions. The equation of state used and the effect of each as-
sumed constituent are described in detail in §3 of Stamatellos et al.
(2007b). The heating/cooling rate requires an estimate of the col-
umn density through which the heating/cooling happens as well as
the local opacity. It is expressed as

du

dt
=

4σSB

(
T 4

BGR − T 4
)

Σ̄2κ̄R (ρ, T ) + κ−1
P (ρ, T )

, (1)

where σSB is the Stefan-Boltzmann constant, TBGR is the pseudo-
background temperature below which the gas cannot cool radia-
tively, Σ̄ is the mass-weighted mean column density, and κ̄R and
κP are the Rosseland- and Planck-mean opacities, respectively. In
the original Stamatellos et al. (2007b) method, the estimated mass-
weighted column density is found via the local density ρ and grav-
itational potential ψ such that

Σ̄ = ζ

(
−ψρ
4πG

)1/2

, (2)

where ζ = 0.372 is a dimensionless coefficient with a weak depen-
dence on polytropic index (set to n = 1.5). Particles are assumed
to be surrounded by a pseudo-cloud represented by a polytrope. A
particle heats or cools according to the characteristic optical depth
of its pseudo-cloud (wherein the particle can be located at any posi-
tion to account for non-spherical local geometry). The optical depth
can be found via

τ = Σ̄κ̄. (3)

When considering the collapse of a 1 M� spherical cloud of gas,
the method has been shown to produce similar results to the sim-
ulations of Masunaga & Inutsuka (2000), which is a 1-D hydrody-
namic simulation where the radiative transfer is treated accurately
(Stamatellos et al. 2007b).

Lombardi et al. (2015) argue that the use of the gravitational
potential as a metric overestimates column densities and optical
depths in non-spherical configurations such as discs. Instead, they
propose the use of pressure scale-height as a metric for calculating
the optical depth. This is because the pressure gradient is typically
oriented in the direction in which the optical depth increases most
rapidly, i.e. approximately perpendicular to the disc midplane. The
Lombardi et al. (2015) form for the estimated mass-weighted col-
umn density is

Σ̄ = ζ′
P

|ah|
, (4)

where ζ′ = 1.014 is a dimensionless coefficient. P is the pres-
sure of the gas and ah the hydrodynamical acceleration (i.e. the ac-
celeration without any gravitational nor viscous contribution). This
quantity can be expressed in terms of the pressure gradient such
that

ah =
−∇P
ρ

. (5)

For either method, the required quantities are readily available in
any hydrodynamic method.

For a given particle density and temperature, a density-sorted
look-up table can be used to find: specific internal energy; mean-
molecular mass; mass-weighted optical depth; Rosseland- and
Planck-mean optical depths; ratio of specific heat capacities; and
the first adiabatic index. This removes the requirement of calcu-
lating computationally-expensive integrals on-the-fly (see §2.2 of
Stamatellos et al. (2007b)).

We note that although the above methods have been de-
vised for Smooth Particle Hydrodynamics (Gingold & Monaghan
1977; Lucy 1977), they can be applied to grid-based (e.g.
Fryxell et al. 2000) and meshless techniques (Lanson & Vila 2008;
Gaburov & Nitadori 2011; Hopkins 2015).

3 CLOUD COLLAPSE

We utilise the Graphical Astrophysics code for N-body Dynam-
ics and Lagrangian Fluids (GANDALF, Hubber et al. 2018) to
perform simulations of a collapsing molecular cloud, using the
Stamatellos et al. (2007b) and Lombardi et al. (2015) methods of
estimating optical depths. The cloud is initially static, has a mass
of 1.5 M� and is isothermal with a temperature 5 K. The cloud is
represented byN ≈ 2×106 SPH particles distributed such that the
density profile of the cloud is uniform across its radiusRcloud = 104

AU.
Figure 1 shows the evolution of the central density and temper-

ature for the two methods of estimating optical depths. Initially, the
cloud collapses almost isothermally and the core temperature in-
creases slowly with increasing density. The core temperature starts
to increase rapidly as the cloud becomes optically thick (ρ ∼
10−13 g cm−3). At ∼ 100 K the rotational degrees of freedom
of molecular hydrogen are excited and the temperature increases
at a slower rate as the gravitational energy is diverted away from
heating the cloud. The increasing temperature leads to increased
thermal pressure that is able to slow down the collapse and the first
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Figure 1. The evolution of central temperature as a function of central den-
sity for the collapse of an initially isothermal, non-rotating, 1.5 M� cloud
with a radius of 104 AU. The radiative transfer methods of Stamatellos et al.
(2007b) and Lombardi et al. (2015) are in good agreement.

hydrostatic core forms (Larson 1969; Masunaga & Inutsuka 2000;
Whitehouse & Bate 2006; Stamatellos et al. 2007b). The first core
contracts and heats slowly to ∼ 2000 K at which point hydrogen
begins to dissociate. This results in the second collapse and the for-
mation of the second hydrostatic core (the protostar).

The Lombardi et al. (2015) method gives similar results re-
garding the central density and temperature of the cloud with the
Stamatellos et al. (2007b) method, which is turn compares very
well with the Masunaga & Inutsuka (2000) method, indicating that
both methods work reasonably well for spherical geometries. The
second collapse in the case of the Stamatellos et al. (2007b) method
is delayed by ∼ 100 yr, which may arise due to a slight over-
estimate in optical depth and thus less efficient cooling, as can
be seen from the slightly higher temperatures calculated by this
method (see Fig. 1).

4 PROTOSTELLAR DISCS

Protostellar discs form due to the turbulence and/or initial rotation
of their progenitor molecular clouds. Their study is important as
they are the birthplace of planets, which can form either through
core accretion (e.g Safronov & Zvjagina 1969; Lissauer 1993), or
by gravitational fragmentation of discs (Whitworth & Stamatellos
2006; Stamatellos et al. 2007a; Stamatellos & Whitworth 2009;
Kratter et al. 2010; Zhu et al. 2012). Massive protostellar discs
fragment if two conditions are met: (i) They are gravitationally un-
stable i.e.

Q ≡ κcs
πGΣ

< Qcrit, (6)

whereQ is the Toomre parameter (Toomre 1964), κ is the epicyclic
frequency, cs is the local sound speed and Σ is the disc surface den-
sity. The value of Qcrit is on the order of unity. (ii) They cool suffi-
ciently fast, i.e. tCOOL < (0.5 − 2)tORB, where tORB is the local or-
bital period (Gammie 2001; Johnson & Gammie 2003; Rice et al.
2003b, 2005). Both requirements are dependent on the thermal
properties of the disc, and so it is important that the cooling rate and

the disc temperature are accurately calculated with the employed
radiative transfer method.

Here, we present comparisons of estimated optical depth
and cooling rate obtained via the Stamatellos et al. (2007b) and
Lombardi et al. (2015) radiative transfer methods. In Section 4.1
we present our comparison methodology. Section 4.2 considers
a low-mass relaxed disc. Section 4.3 considers a high-mass disc
which fragments forming spiral arms (Section 4.4) and eventually
gravitationally bound clumps (Section 4.5).

4.1 Methodology

We use the Graphical Astrophysics code for N-body Dynamics and
Lagrangian Fluids (GANDALF, Hubber et al. 2018) to perform sim-
ulations protostellar discs (§4) and protostellar discs with embed-
ded planets (§5). From these simulations we select snapshots for
which we compare the behaviour of the Stamatellos et al. (2007b)
and Lombardi et al. (2015) radiative transfer methods.

The estimated column density for both the gravitational poten-
tial and pressure scale-height metrics, Σ̄ ≡ Σest, is found by post-
processing a snapshot of the GANDALF hydrodynamic simulation.
The corresponding estimated optical depth is τ̄ ≡ τest = Σestκ̄R,
where κ̄R is the mass-weighted opacity for each method (note that
this is slightly different for the two methods, see Lombardi et al.
(2015)). The column density and optical depth are calculated for
each particle in the simulation. We emphasise that we calculate
the optical depths and cooling rates for the same snapshots for
both methods, i.e. using the same density and temperature disc
configurations. We provide azimuthally-averaged radial profiles of
the optical depth and cooling rates at the disc midplane (defined
such as |z| < 0.5 AU) and also vertical to the disc midplane pro-
files of the same quantities. We also calculate the actual values of
column density and optical depth by integrating from the gas ele-
ment which we consider, to the disc surface along the z-axis (per-
pendicular to the disc midplane) such that Σactual =

∫
ρ dz and

τactual =
∫
κ (ρ, T ) ρ dz.

The estimated cooling-rate per unit mass can then be found via
Equation 1. We normalise this with respect to 4σSB

(
T 4 − T 4

BGR

)
such that we define the quantity

u̇est ≡ −
du

dt

∣∣∣∣
est

1

4σSB (T 4 − T 4
BGR)

=
1

Σ̄2κ̄R + κ−1
P

(7)

to represent the estimated cooling-rate per unit mass. We compare
this with the actual cooling-rate per unit mass which is calculated
using the actual optical depth and column density, hence

u̇actual ≡ −
du

dt

∣∣∣∣
actual

1

4σSB (T 4 − T 4
BGR)

=
1

Σ
(
τR + τ−1

P

) , (8)

where τR and τP are the optical depths calculated using the
Rosseland-mean and Planck-mean opacities, respectively (which in
many cases are assumed to be the same). We note that the above
equation is itself an approximation to the diffusion approximation
(Mihalas 1970) in which the radiative flux is

F = − 4

3κRρ
∇
(
σSBT

4) . (9)

From this, we obtain the cooling rate per unit mass which is

u̇ =
1

ρ
∇ · F ≈ σSBT

4

κRΣ2
≈ σSBT

4

τRΣ
, (10)

and has the same form of Equation 8 in the optically thick limit.
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4.2 Relaxed low-mass disc

We simulate a protostellar disc with a mass of 0.01 M� around a
1 M� protostar.N ≈ 2×106 SPH particles are distributed between
radii of 5 and 100 AU such that the initial column density and tem-
perature profiles follow Σ(R) ∝ R−1 and T (R) ∝ R−1/2, respec-
tively. The temperature at 1 AU from the central star is T0 = 250 K.
The disc is heated by an ambient radiation field of 10 K.

A steady-state is reached after a few outer orbital periods,
shown in Figure 2a. The disc is optically thin, thus both the Sta-
matellos and Lombardi methods provide accurate cooling rate esti-
mates (see Figure 2b). However, the Stamatellos method generally
overestimates the optical depth, especially in the inner disc, con-
sequently underestimating the cooling rate. We also take an annu-
lus of the disc between 34 and 36 AU and show the azimuthally-
averaged vertical profiles of optical depth and cooling rate (Figure
2d, e). The cooling rate from the disc midplane to the surface is ac-
curately estimated as the region is optically thin. In this regime, the
optical depth is not important for calculating the cooling rate (see
Equation 1).

4.3 High-mass disc

We simulate a massive protostellar disc which develops spiral
features, undergoes fragmentation, forming dense, gravitationally-
bound clumps. The disc has an initial mass of 0.2 M� and at-
tends a 0.8 M� protostar. N ≈ 2 × 106 SPH particles are dis-
tributed between radii of 5 and 100 AU such that the initial col-
umn density and temperature profiles follow Σ(R) ∝ R−1 and
T (R) ∝ R−1/2, respectively. The temperature at 1 AU from the
central star is T0 = 250 K. The disc is heated by an ambient radia-
tion field of 10 K.

Figure 3a shows the column density of the disc before any
significant dynamical evolution occurs. The disc midplane is op-
tically thick (out to a radius of ∼ 30 AU), but the optical depth
does not drop below τ = 0.1 further out (Figure 3b). The Sta-
matellos method overestimates the optical depth by a factor of a
few throughout the disc. The Lombardi method yields a better esti-
mate for both the optical depth and the cooling rate. Similar results
are found when considering the vertical profiles of these quantities
in a radial annulus between 34 and 36 AU (Figure 3d, e).

4.4 High-mass disc with spiral arms

After some time, the disc becomes unstable and spiral arms begin to
form. This is shown in Figure 4a. The optical depth and cooling rate
at the disc midplane are well described by the Lombardi method,
but are over- and underestimated, respectively, by the Stamatellos
method. The cooling rate estimated by the Stamatellos method is
in agreement with the actual value when the disc is optically thin
(Figure 4b). We consider two cylindrical regions with base radius
of 5 AU wherein we perform vertical analyses: one cylinder is in-
side a spiral arm and and the other outside (see marked regions in
Figure 4a). Outside the spiral arm, the disc is optically thin and the
cooling rate is estimated well by both methods (Figure 4e, dashed
lines). However, inside the spiral arm where the disc is optically
thick, the Stamatellos method overestimates the optical depth and
therefore the cooling rate. The Lombardi method provides more
accurate values for both quantities (Figure 4e, solid lines).

4.5 High-mass disc with clumps

The disc eventually fragments and dense clumps form. The col-
umn density snapshot in Figure 5a contains four clumps. The cen-
tral density of the densest clump is ∼ 10−6 g cm−3 and for the
least dense clump is ∼ 10−10 g cm−3. Figure 5b shows that both
the Stamatellos and Lombardi methods give good estimates of the
azimuthally-averaged optical depth at the disc midplane, but it
should be noted that an azimuthally-averaged analysis is not ideal
for describing this disc, as it is highly non-axisymmetric. Therefore
we focus on two of the clumps: the inner, densest clump, and the
least dense clump. We consider a cylinder with base radius of 5 AU
centred on each of these clumps and we perform a vertical analysis
in the direction perpendicular to the disc midplane. Figure 5d shows
the optical depth comparison. We find that for the least dense clump
(dashed lines), the Stamatellos method is accurate in the centre of
the clump. The Lombardi method overestimates the optical depth
by a factor ∼ 2. In the centre of the densest clump, both methods
are inaccurate, but only by a factor of a few. In general - for the disc
as a whole as well as the clumps - the Lombardi method estimates
the cooling rate well, whilst the Stamatellos method systematically
underestimates the cooling rate.

5 PROTOSTELLAR DISCS WITH EMBEDDED
PLANETS

The gravitational interaction between a planet and the surround-
ing disc may result in the formation of planet-induced gaps (e.g.
Goldreich & Tremaine 1980; Lin & Papaloizou 1993; Bryden et al.
1999; Kley & Nelson 2012). Such structures may provide indirect
evidence for the presence of planets in discs. The Crida et al. (2006)
semi-analytical criterion for gap formation involves the balance be-
tween the tidal torque which opens the gap and the viscous torque
which closes the gap. It has been shown that planets with masses
down to 10 M⊕ can open gaps (Duffell & MacFadyen 2012). How-
ever, for migrating planets, a gap must form on a rapid enough
timescale. Malik et al. (2015) argue that a gap can only form pro-
vided the gap opening time is longer than the migration timescale of
the planet. The accurate treatment of the radiative transfer in such
planet-disc systems is important and may play a significant role
when determining the rate and the direction (i.e. inwards or out-
wards) of migration, and the final mass of the planet (Stamatellos
2015; Benı́tez-Llambay et al. 2015; Stamatellos & Inutsuka 2018).

Here we examine two cases of protostellar discs with embed-
ded planets: one with an embedded 1.4 MJ planet (§5.1) and one
with an embedded higher-mass, 11 MJ, planet (§5.2). We com-
pare the estimated optical depth and cooling rate obtained via
the Stamatellos et al. (2007b) and Lombardi et al. (2015) radiative
transfer methods.

5.1 Disc with an embedded 1.4 MJ planet

We consider a disc with an initial mass 0.005 M� surrounding a
1 M� protostar. A 1 MJ mass planet is embedded within the disc
at a radius of 5.2 AU. The initial disc extends out to 15.6 AU, with
a surface density profile Σ(R) ∝ R−1/2 (e.g. Bate et al. 2003),
temperature profile T (R) ∝ R−3/4, and is represented by 106 SPH
particles. The temperature at 1 AU from the central star is T0 =
250 K. The planet migrates slightly inwards (0.1 AU) and increases
in mass by accreting gas from the disc. At the snapshot presented
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Figure 2. A low-mass disc which has evolved for a few outer orbital periods and has reached a steady-state. Panel (a): a column density snapshot where the
dashed white line represents the radius at which we perform an analysis perpendicular to the disc midplane. Panels (b) and (c): comparisons of azimuthally-
averaged optical depth and cooling rate at the disc midplane (|z| < 0.5 AU). Panels (d) and (e): azimuthally-averaged optical depth and cooling rate
perpendicular to the disc midplane for a radial annulus of 34−36 AU. The upper plots in panels (b-e) show the ratio between estimated and actual values. The
black dashed lines represent equality. The disc is optically thin, and as such, both methods give good estimates of the cooling rate. The Stamatellos method
generally overestimates the optical depth at the disc midplane, especially in the inner disc region, consequently underestimating the cooling rate.
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Figure 3. A high-mass disc which has not yet undergone significant evolution. Panel (a): a column density snapshot where the dashed white line represents the
radius at which we perform an analysis perpendicular to the disc midplane. Panels (b) and (c): comparisons of azimuthally-averaged optical depth and cooling
rate at the disc midplane. Panels (d) and (e): azimuthally-averaged optical depth and cooling rate perpendicular to the disc midplane for a radial annulus of
34 − 36 AU. The upper plots in panels (b-e) show the ratio between estimated and actual values. The black dashed lines represent equality. The Stamatellos
method overestimates the optical depth at the disc midplane by a factor∼ 5 at all disc radii, but the Lombardi method yields a more accurate estimate. This is
reflected in the cooling rate. Similar results are found when considering the optical depth and cooling profiles perpendicular to the disc midplane (d-e).
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Figure 4. A high-mass disc which has evolved to form spiral arms. Panel (a): a column density snapshot. White circles represent cylindrical regions where
we perform an analysis perpendicular to the disc midplane. Panels (b) and (c): comparisons of azimuthally-averaged optical depth and cooling rate at the disc
midplane. Panels (d) and (e): optical depth and cooling rate comparisons perpendicular to the disc midplane inside (solid lines), and outside (dashed lines) of
a spiral arm. The upper plots in panels (b-e) show the ratio between estimated and actual values. The black dashed lines represent equality. The optical depth
and cooling rate at the disc midplane are well estimated by the Lombardi method at all disc radii, but are over- and underestimated by the Stamatellos method,
respectively. Vertically to the disc midplane, the same result is observed within a spiral arm. However, outside of the spiral arms, where the disc is optically
thin, both methods yield a good estimate for the cooling rate.
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Figure 5. A high-mass disc which has evolved to form dense clumps. Panel (a): a column density snapshot. White circles represent regions where vertical
analyses are performed. Panels (b) and (c): comparisons of azimuthally-averaged optical depth and cooling rate at the disc midplane. Panels (d) and (e): optical
depth and cooling rate comparisons perpendicular to the disc midplane for the densest clump (solid lines), and the least dense clump (dashed lines). The upper
plots in panels (b-e) show the ratio between estimated and actual values. The black dashed lines represent equality. The optical depth is generally overestimated
by the Stamatellos method. The Lombardi method gives a better estimate, even within the dense clump. The cooling rate is also estimated more accurately.
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Figure 6. A disc which has an embedded 1.4 MJ planet at a radius of 5.1 AU. Panel (a): a column density snapshot. Panels (b) and (c): comparisons of
azimuthally-averaged optical depth and cooling rate at the disc midplane. The vertical black dashed lines in panels (b) and (c) represent the location of the
planet. Panels (d) and (e): optical depth and cooling rate comparisons perpendicular to the disc midplane between radial annuli of 4− 6 AU (in the gap, solid
lines), and 3 − 4 AU (interior to the gap, dashed lines). Gas within RHILL = 0.6 AU of the planet is excluded when analysing the gap. The upper plots in
panels (b-e) show the ratio between estimated and actual values. The black dashed lines represent equality. The Stamatellos method overestimates the optical
depth by a factor of 3 or more throughout the disc. The Lombardi method estimates the optical depth within a factor of 2, and it also gives an accurate estimate
of the cooling rate, both inside and outside the planet-induced gap.
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here (Figure 6a) the planet is at 5.1 AU and has carved out a gap
between 4 and 6 AU. Its mass has increased to 1.4 MJ.

The density of the disc is high and as such, the disc is opti-
cally thick (Figure 6b). The Stamatellos method overestimates the
optical depth at the disc midplane throughout the disc by a factor
of a few, whilst the Lombardi method provides a better estimate
(accurate within a factor of ∼ 2). This is reflected in the estimated
cooling rates (Figure 6c).

Vertical profiles are shown for radial annuli at the planet gap
(4 − 6 AU; Figure 6d, e - solid lines) as well as on a region inte-
rior to the gap (3− 4 AU, Figure 6d, e - dashed lines). We exclude
gas within the Hill radius (RHILL = 0.6 AU) of the planet when
analysing the gap region. Both of these regions are optically thick.
Again, the Lombardi method provides a better estimate for the op-
tical depth and cooling rate.

In the gap region, which is important for the evolution of the
planet, the Lombardi method is very accurate, whereas the Sta-
matellos method overestimates the optical depth, and therefore un-
derestimates the cooling rate.

5.2 Disc with an embedded 11 MJ planet

We simulate a system comprising a star which has an initial mass
1 M�, that is attended by a protostellar disc with mass 0.1 M� and
initial radius 100 AU. The disc is modelled by 106 SPH particles,
and has initial surface density and temperature profiles Σ(R) ∝
R−1 and T (R) ∝ R−3/4, respectively (Stamatellos 2015). The
temperature at 1 AU from the central star is T0 = 250 K. A
planet with an initial mass 1 MJ is embedded in the disc at radius
of 50 AU. At the snapshot we present (Figure 7a) the disc mass has
dropped to 0.08 M� and the planet mass has increased to 11 MJ.
The planet has migrated inwards and is located at a radial distance
of 36 AU. It has carved a gap between ∼ 30 and ∼ 40 AU.

Figure 7b shows that the Lombardi method estimates the opti-
cal depth at the midplane of the disc well within the gap, but over-
estimates it by a factor of a few outside of the gap. The Stamatellos
method overestimates the optical depth at all radii: by a factor of
∼ 2 outside of the gap and ∼ 10 within the gap.

We consider two radial annuli where we perform vertical anal-
yses. One includes the gap (between 33 and 37 AU, Figure 7d, e -
solid lines), the other a region interior to the gap (between 23 and 27
AU, Figure 7d, e - dashed lines). The disc is optically thin within the
gap. Thus the cooling rate is well estimated by both methods. We
exclude gas within the Hill radius of the planet (RHILL = 8.0 AU)
when analysing the gap. The region interior to the gap is optically
thick. The cooling rate is well estimated at all z by the Lombardi
method, but the Stamatellos method underestimates the cooling rate
by up to a factor of 10.

6 TESTING THE β-COOLING APPROXIMATION

The β-cooling approximation (e.g. Gammie 2001; Rice et al.
2003b) is a computationally inexpensive technique used when sim-
ulating accretion discs. This method assumes that the cooling rate
at a given radiusRwithin the disc, is inversely proportional to cool-
ing time such that

u̇ =
u

tcool
, (11)

where the cooling time is

tcool = βΩ−1. (12)

Ω is the Keplerian frequency and β is a dimensionless parameter
which is typically assumed to be between 1 and 20. Provided a
disc is close to Toomre instability (i.e. Q ≈ 1), a disc may only
be able to fragment if the cooling is sufficiently fast (β on the or-
der of a few). The critical value at which gravitational fragmenta-
tion occurs, βcrit, is still debated. Meru & Bate (2011) suggest that
the limit may be as high as βcrit ≈ 30. More recent studies by
Baehr et al. (2017) suggest a value of βcrit = 3.

In this section, we compare the β-cooling approximation with
the cooling rates which we obtain from Equation 8 (which is what
we refer to as actual cooling). We calculate an effective beta, βeff,
in order to determine whether the assumption of a constant β is a
reasonable approximation. Therefore, we define βeff as

βeff =
u

u̇
Ω. (13)

where

u̇ =
4σSBT

4

Σ
(
τR + τ−1

P

) . (14)

We emphasise that when calculating u we use the detailed equation
of state used by Stamatellos et al. (2007b) (see summary in Sec-
tion 2).

We present the βeff that we calculate for the snapshots of pro-
tostellar discs presented in Sections 4 and 5. Figure 8 shows the
azimuthally-averaged βeff at the disc midplane; Figure 9 shows the
value of βeff vertically towards the surface of the disc at the given
regions; Figure 10 shows colour maps of βeff at the disc midplane.
We can see that βeff varies significantly throughout different regions
of each disc, between ∼ 0.1 and ∼ 200.

For the smooth axis-symmetric disc cases that we examine
here (Figures 10a, b), βeff is high in the inner disc regions (βeff >
20) but drops down to ∼ 3 in the outer regions. For the disc with
the spiral arms (Figure 10c), the spirals are regions where βeff ∼ 1,
hence cooling is efficient. Thus, spiral arms may be prone to grav-
itational collapse as thermal energy generated by the contraction
of a forming gas clump can efficiently escape. The dense, bound
clumps in Figure 10d cool inefficiently (βeff ∼ 200), due to being
extremely optically thick.

Figure 10e shows βeff for a disc with a 1.4 MJ embedded
planet. βeff is high in the outer regions but is low within the planet
gap. This may be attributed to the associated high and low optical
depths, respectively, of these regions. For a disc with an embedded
higher-mass 11 MJ planet (Figure 10f), the planet induces a high-
density spiral wake which cools fast (βeff ∼ 1), whereas the gap
region cools slowly (βeff > 50). The region around the planet has a
low βeff (< 1) and thus cools more efficiently.

We see that, as expected, that a region of the disc cools ineffi-
ciently (slowly) when it is optically thin (low-density regions of the
disc, e.g in gaps), efficiently (quickly) when it is just optically thick
(τ ∼ 1, e.g. in spirals induced by gravitational instabilities or plan-
ets), and again inefficiently (slowly) when it becomes extremely
optically thick (in clumps/fragments).

We conclude that the actual cooling rate in a protostellar disc
varies radially, vertically and with time as the disc evolves. Sig-
nificant variations are observed within dense clumps which form
through gravitational fragmentation. This makes the β-cooling
method a rather crude approximation of the disc thermal physics
when considering highly dynamical systems.
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Figure 7. A disc which has an embedded 11 MJ planet at a radius of 36 AU. Panel (a): a column density snapshot. Panels (b) and (c): comparisons of
azimuthally-averaged optical depth and cooling rate at the disc midplane. The vertical black dashed lines in panels (b) and (c) represent the location of the
planet. Panels (d) and (e): optical depth and cooling rate comparisons perpendicular to the disc midplane between radial annuli of 33− 37 AU (inside the gap,
solid lines), and 23 − 27 AU (outside the gap, dashed lines). Gas within RHILL = 8.0 AU of the planet is excluded when analysing the gap. The upper plots
in panels (b-e) show the ratio between estimated and actual values. The black dashed lines represent equality. Both methods overestimate the optical depth in
the outer disc by a factor of 2 or 3. However, the Lombardi method estimates both the optical depth and the cooling within the gap more accurately than the
Stamatellos method. Outside and within the gap, the Lombardi method gives a good estimate for both quantities from the disc midplane to the disc surface.
The Stamatellos method estimates the cooling rate well within the gap as this region is optically thin.
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Figure 8. Azimuthally-averaged effective β at the disc midplane for the following snapshots: (a) a low-mass relaxed disc; (b) a high-mass disc; (c) a high-mass
disc with spirals arms; (d) a high-mass disc with dense clumps; (e) a disc with an embedded 1.4 MJ planet; (f) a disc with an embedded higher-mass 11 MJ

planet. Horizontal dashed lines represent βeff = 3. Vertical dotted lines represent the radii of planets (in the last two cases).
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Figure 9. Effective β from the disc midplane to the disc surface for the following snapshots: (a) a low-mass relaxed disc (radial annulus 34 < R < 36 AU);
(b) a high-mass relaxed disc (radial annulus 34 < R < 36 AU); (c) a disc with spirals arms (vertical cylinders with a base with radius of 5 AU regions
centred within a spiral arm, solid line, and outside spiral arms, dashed line); (d) a disc with dense clumps (vertical cylinders with a base with radius of 5 AU
centred within the densest clump, solid line, and the least dense clump, dashed line); (e) a disc with an embedded 1.4 MJ planet (radial annuli 4 < R < 6 AU,
solid line) and 3 < R < 4 AU ,dashed line); (f) a disc with an embedded higher-mass 11 MJ planet (radial annuli 33 < R < 37 AU, solid line) and
23 < R < 27 AU, dashed line). Horizontal dashed lines represent βeff = 3.
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Figure 10. Effective β values at the disc midplane for the following snapshots: (a) a low-mass relaxed disc; (b) a high-mass disc; (c) a disc with spirals arms;
(d) a disc with dense clumps; (e) a disc with an embedded 1.4 MJ planet; (f) a disc with an embedded higher-mass 11 MJ planet. Regions where βeff is lower
cool more efficiently. Gravitational instability is typically considered to occur for β < 3 provided that the Toomre parameter is also on the order of unity.
We show that β varies across the disc, especially within spiral features and dense clumps. As such, it may not be appropriate to assume that β is constant
throughout the disc.
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7 DYNAMICAL EVOLUTION COMPARISON

We perform three simulations to demonstrate the differences that
the β-cooling approximation, the Stamatellos et al. (2007b), and
the Lombardi et al. (2015) radiative transfer methods exhibit. We
simulate a 0.8 M� protostar which is attended by a 0.2 M� disc
with surface density and temperature profiles Σ(R) ∝ R−1 and
T (R) ∝ R−1/2, respectively. N ≈ 2× 106 particles represent the
disc, which is heated by a 10 K external radiative field. No heating
from the central star is included. We test the β-cooling approxima-
tion with a value of β = 3, a limit at which cooling is efficient
enough for gravitational instability to occur (Rice et al. 2003a).

Figure 11 shows the three discs after 1.5 kyr of evolution us-
ing: (a) the β-cooling approximation; (b) the Stamatellos radiative
transfer method; and (c), the Lombardi radiative transfer method.
We note that whilst all three discs become gravitationally unstable,
the β-cooling approximation yields a more stable disc than the two
radiative transfer methods. Due to a generally higher estimation of
the cooling rate, the Lombardi method allows the disc to cool more
efficiently and develop stronger spiral arms.

8 DISCUSSION

We have compared two approximate (but computationally inex-
pensive) methods to include radiative transfer in hydrodynamic
simulations. These methods use two different metrics to calculate
the optical depth through which the gas heats and cools: (i) the
Stamatellos et al. (2007b) method uses the gravitational potential
and the density, and (ii) the Lombardi et al. (2015) method instead
uses the pressure scale-height.

We find that although both methods yield accurate estimates
in the case of collapsing clouds, the use of the pressure scale-height
metric to estimate optical depths (Lombardi et al. 2015) is more ac-
curate when considering protostellar discs. We summarise our re-
sults in Figure 12, which illustrates the difference of optical depth
estimation for the cases we examined in this paper for both meth-
ods. Using the pressure scale-height as a metric, a more accurate
estimate of optical depth (by a factor of 2 or better) and cooling rate
is obtained for protostellar discs in a variety of configurations: low-
mass and high-mass discs, with or without an embedded planet, as
well as gravitationally unstable discs which develop spiral arms and
form bound clumps. The Stamatellos et al. (2007b) method may
overestimate the optical depth by a factor of 10 in some cases, but
the Lombardi et al. (2015) method is generally accurate within a
factor of 3. Consequently, the Stamatellos et al. (2007b) method
underestimates the cooling rate in optically thick protostellar discs,
whereas the Lombardi et al. (2015) method provides better accu-
racy (although generally it also underestimates the cooling rate).
Both methods give accurate estimates in the optically thin regime.

We also compare the cooling rates in hydrodynamic simula-
tions of discs with those of the commonly used β-cooling approx-
imation (e.g. Gammie 2001; Rice et al. 2003b). We find that using
a constant value of β for a disc may not be a suitable approxima-
tion as this parameter may vary radially and vertically throughout
the disc (between ∼ 0.1 and ∼ 200 in the cases that we exam-
ined here). It also varies with time as the disc evolves (e.g. when
spiral arms and/or gaps form in the disc), but most significantly
within dense clumps. The approximate radiative transfer methods
discussed previously may be more appropriate to use as, at com-
parable computational cost, they are adaptive to the changes that
happen as the disc evolves (e.g. the formation of spiral arms and

clumps). Nevertheless, the β-cooling approximation is a useful pa-
rameterisation that facilitates greater control in numerical experi-
ments considering the thermal behaviour of a disc.

Many hydrodynamic simulations of protostellar discs (in
the context of e.g. disc evolution, disc fragmentation, disc-
planet interactions, planet migration) have used such approxi-
mations for the radiative transfer to avoid excessive computa-
tional cost (e.g Rice et al. 2003a; Lodato & Rice 2004; Clarke et al.
2007; Lodato et al. 2007; Forgan & Rice 2009; Meru & Bate 2010;
Stamatellos & Whitworth 2011; Ilee et al. 2017). Their results need
to be seen in the context of the accuracy of the radiative transfer
method used.

Studies of disc fragmentation (e.g Stamatellos & Whitworth
2009; Stamatellos et al. 2011) that use the Stamatellos et al.
(2007b) method may have underestimated disc cooling by a fac-
tor of a few, so that their discs are less prone to fragmentation. This
would mean that even discs with lower masses than the ones stud-
ied by Stamatellos et al. (2011) may be able to fragment (i.e. a disc
with mass less than 0.25 M� around a 0.7 M� star). However, we
should note that the uncertainties in the disc opacities could also
be up to an order of magnitude, i.e. the uncertainty introduced is
similar to that of the Stamatellos et al. (2007b) method.

Disc simulations using the β-cooling approximation also suf-
fer from uncertainties in calculating cooling rates. For discs that
start off optically thin, the cooling is inefficient (i.e. βeff is large).
The βeff decreases (i.e. the cooling becomes more efficient) as
the density increases in spiral arms and in the region around a
planet (i.e. its circumplanetary disc). If the density continues to in-
crease (i.e. if clumps form) the cooling becomes inefficient due to
the high optical depth, and the βeff increases. The use of a con-
stant β misses this variation of cooling efficiency (both in space
and time). Therefore the physics of disc fragmentation may not be
captured appropriately. We demonstrate that a disc evolved using
the β-cooling approximation, with a value of β = 3, results in a
more stable disc as compared to similar simulations which employ
the Stamatellos et al. (2007b) and Lombardi et al. (2015) radiative
transfer methods (see Section 7).

In the case of planets embedded in discs, it has been
suggested that efficient cooling promotes gas accretion
(Nayakshin 2017; Stamatellos & Inutsuka 2018) and dust ac-
cretion (Humphries & Nayakshin 2018) onto the planet. Therefore,
cooling rates may affect the mass growth of planets, their metallic-
ity, and their associated circumplanetary discs. This in turn results
in different migration rates, final masses and orbital characteristics
for these planets e.g. as seen in Stamatellos (2015) in comparison
with Baruteau et al. (2011) (see Stamatellos & Inutsuka 2018).

9 CONCLUSION

Approximate radiative transfer methods are useful due to their com-
putational efficiency, but they should be treated with caution as ra-
diative transfer may, in many cases, fundamentally affect the evolu-
tion of an astrophysical system. The Lombardi et al. (2015) method
(that uses the pressure scale-height to calculate optical depths) is
more accurate than the Stamatellos et al. (2007b) method (that uses
the gravitational potential and the gas density as a proxy for opti-
cal depths) for disc simulations. Both methods behave accurately
for spherical geometries (i.e. collapsing clouds or clumps in discs).
When used for modelling protostellar discs, both methods are more
accurate than the β-cooling approximation (at similar computa-
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Figure 11. Surface density plots of a 0.2 M� disc around a 0.8 M� protostar after 1.5 kyr of evolution. Panel (a): a disc evolved using the β-cooling
approximation with β = 3. Panel (b): a disc evolved using the Stamatellos et al. (2007b) radiative transfer method. Panel (c): a disc evolved using the
Lombardi et al. (2015) method. Each disc becomes gravitationally unstable, but it is clear that the Lombardi disc (panel c) is more unstable, demonstrated by
the stronger, more detailed spiral arms.
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Figure 12. The ratio between estimated and actual optical depth for: (a) the Stamatellos et al. (2007b) method; (b) the Lombardi et al. (2015) method. Various
disc configurations are shown. Radii have been normalised to the outer radius of each disc. The black dashed lines represent equal values of estimated and
actual optical depth. The upper and lower grey dashed lines represent factors of 3 over- and underestimation respectively. The Lombardi et al. (2015) metric of
estimating optical depths provides better accuracy in all cases presented. The optical depth is accurate by a factor of less than 3. The Stamatellos et al. (2007b)
method is accurate within dense clumps/fragments.

tional cost), which nevertheless is a good tool for controlled nu-
merical experiments of disc thermodynamics.

ACKNOWLEDGEMENTS

The authors would like to thank Richard Booth and David Hub-
ber for the correspondence on the implementation of the methods
used within this paper as well as useful comments. Thanks are

given to the anonymous referee for constructive suggestions. Sur-
face density plots were produced using the SPLASH software pack-
age (Price 2007). AM is supported by STFC grant ST/N504014/1.
DS is partly supported by STFC grant ST/M000877/1. This work
used the DiRAC Complexity system, operated by the University
of Leicester IT Services, which forms part of the STFC DiRAC
HPC Facility1. This equipment is funded by BIS National E-

1 http://www.dirac.ac.uk

Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/sty1290/4998870
by University of Central Lancashire user
on 31 May 2018



16 Mercer et al.

Infrastructure capital grant ST/K000373/1 and STFC DiRAC Op-
erations grant ST/K0003259/1. DiRAC is part of the UK National
E-Infrastructure.

REFERENCES

Baehr H., Klahr H., Kratter K. M., 2017, ApJ, 848, 40
Baruteau C., Meru F., Paardekooper S.-J., 2011, MNRAS, 416, 1971
Bate M. R., Lubow S. H., Ogilvie G. I., Miller K. A., 2003, MNRAS,

341, 213
Benı́tez-Llambay P., Masset F., Koenigsberger G., Szulágyi J., 2015,
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