
Engineering Context-Aware Systems and Applications: A survey

Unai Alegrea,∗, Juan Carlos Augustoa, Tony Clarkb

aResearch Group On the Development of Intelligent Environments (GOODIES),
Middlesex University, London, United Kingdom

bDepartment of computing,
Sheffield Hallam University, Sheffield, United Kingdom

Abstract

Context-awareness is an essential component of systems developed in areas like Intelligent Environments, Pervasive &
Ubiquitous Computing and Ambient Intelligence. In these emerging fields, there is a need for computerized systems to
have a higher understanding of the situations in which to provide services or functionalities, to adapt accordingly. The
literature shows that researchers modify existing engineering methods in order to better fit the needs of context-aware
computing. These efforts are typically disconnected from each other and generally focus on solving specific development
issues. We encourage the creation of a more holistic and unified engineering process that is tailored for the demands of
these systems. For this purpose, we study the state-of-the-art in the development of context-aware systems, focusing on:
A) Methodologies for developing context-aware systems, analysing the reasons behind their lack of adoption and features
that the community wish they can use; B) Context-aware system engineering challenges and techniques applied during the
most common development stages; C) Context-aware systems conceptualization.

Keywords: Context-Aware Systems Engineering, Context-Aware Computing, Context-awareness, Context-sensitive, Sentient
Computing, Pervasive & Ubiquitous Computing, Intelligent Environments, Ambient Intelligence, Software Engineering,
Systems Engineering.

1. Introduction

The miniaturization process of electronics has made a wide
range of small devices available with sensing and computing
capabilities, taking the computational paradigm out of the desk-
top. This has opened up new possibilities for interacting with
technologies, bringing them closer to people’s daily life expe-
riences. The vision of Mark Weiser [1], predicted a trend in
which computers disappear by becoming embedded in our daily
lives. His view has influenced research in new emerging areas
such as Pervasive & Ubiquitous Computing, Intelligent Envi-
ronments or Ambient Intelligence. The systems developed in
these fields need to recognize the context in which they are ex-
ecuting. In this way, they can understand better the situations
in which the user expects services delivered and in which way.
The aim is to minimize the user effort, enhancing the usabil-
ity and enabling a better human-computer interaction. Never-
theless, the expectations on context-aware systems (C-AS) can
differ from their real abilities [2]. There is a significant con-
trast between the development needs of systems with contex-
tual awareness, compared to the traditional ones. The liter-
ature shows a constant modification of conventional develop-
ment techniques and methods, to make them suit the C-AS de-
velopment demands. The challenges of C-AS development are

∗Corresponding author. Tel.: +447871513023
Email addresses: u.alegre@mdx.ac.uk (Unai Alegre),

j.augusto@mdx.ac.uk (Juan Carlos Augusto), t.clark@shu.ac.uk (Tony
Clark)

diverse and complex, provoking these techniques to be com-
monly disconnected from each other, and focused on solving
specific issues. The evidence suggests that there is a need of
unifying research for developing C-AS. The aim of this survey
is to provide better understanding on the basis for an engineer-
ing process that is tailored to the demands of C-AS. Our inten-
tion is not to provide a whole new engineering process, how-
ever, we hope the findings of this article may encourage and
inform such future steps within the community. Our research is
based on a literature review and the results of a questionnaire
carried out to a total of 750 researchers1. The remainder of this
paper is as follows: Section 2 presents the state-of-the-art in
context-aware systems and its conceptualization. In Section 3,
challenges and techniques used for C-AS development in each
of the most common stages of a system development process.
Then, several methodologies are reviewed in Section 4, compar-
ing their methods and tools. We analyse the reasons behind the
lack of acceptance in methodologies, as well as the features that
could have better acceptance. We conclude in Section 5, sug-
gesting new directions for Context-Aware Systems Engineering
(C-ASE).

1The participants were selected from seven conference proceedings be-
tween 2011 and 2014: CONTEXT 2011/2013, AmI 2011/2012/2013, IE
2011/2012/2013/2014, UbiComp 2011/2012/2013, Pervasive 2011/2012, IoT
2012, ICCASA 2012/2013. From these, 280 papers were selected as poten-
tially containing researchers with some experience in context-aware computing.
A list of 750 names of context-aware systems developers was gathered from the
papers and used for contacting the contestants.

Preprint submitted to Journal of Systems and Software February 1, 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aston Publications Explorer

https://core.ac.uk/display/157860075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Context-aware systems

This section focuses on the state-of-the-art in the conceptu-
alization of context and context-awareness for the purpose of
developing C-AS. First, we study the basic concepts, identify-
ing a lack of agreement in their definition. Second, we analyse
more in depth the causes behind that lack of consensus. Finally,
we consider the conceptual limitations of C-AS to characterize
their features and interaction types. Through all the section, for
illustration purposes, we include an example of a context-aware
smart-phone that is able to detect when is intruding into social
situations in order to avoid unnecessary interruptions [2].

2.1. Context and context-awareness
In order to implement systems that are able to use the im-

plicit situational information, there is a need to understand the
concept of context [3]. This subsection briefly analyses what
the community understands by “context”.

2.1.1. Context
Although “context” is a term that most people tacitly un-

derstand, they find it difficult to elucidate [3]. Many multi-
disciplinary areas use context to enhance their possibilities.
Each area understands the notion as a reflection of its own con-
cerns, making it difficult to define [4]. In the literature, several
definitions can be found [3] [4] [5] [6] [7] [8] [9]. A detailed
comparison between the differences and similarities of these is
out the scope of this survey. Nevertheless, it has to be acknowl-
edged that there is no consensus on the definition of context.
Also, we highlight that Dey’s [10] is the most acknowledged
one, considering it as “any information that can be used to
characterize the situation of an entity”, where “an entity can
be a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves”.

2.1.2. Categories of context
Not only is difficult to reach an agreement in what context

is, but also on how can it be categorized. Many authors have
introduced different context categories and taxonomies [9] [11]
[12] [13]. Perera et al. [9] recently presented a broad com-
parison between them, including their relationship, advantages
and disadvantages. They acknowledge two different types of
categorization schemes: operational and conceptual. While the
operational one helps to understand the issues and challenges
of data acquisition techniques, the conceptual allows an under-
standing of the relationships between different contexts. Af-
ter comparing all the different categorization schemes, they ac-
knowledge that there is no single one that can accommodate
all the demands for context-awareness in the internet of things
paradigm.

2.1.3. Context-awareness
Dey [10] also defined a system as context-aware if “it uses

context to provide relevant information and/or services to the
user, where relevancy depends on the user’s task”. Indepen-
dently from this definition, the adjective “context-aware” is

generally used in the literature to describe any type of sys-
tem that is able to use context. Also, systems that have char-
acteristics which could be considered as “context-aware” use
other terms (e.g.,“smart”, “intelligent”) or do not mention any.
For instance, let us think about the feature of smartphones that
changes the orientation of the screen (landscape/portrait mode)
depending on the phone position. Although it could be con-
sidered as “context-aware”, is typically known by other terms.
Also, recently created applications such as Google Now [14]
use different terms for this kind of features. On one hand, the
great variety of systems and features to be considered “context-
aware” make very difficult to make a definition that is suitable
for all of them. On the other hand, since “context-awareness”
relies on the definition of context, and since there is no con-
sensus on its definition, it is very difficult to characterize what
contextual-awareness is.

2.2. The challenges of context

The lack of agreement in the conceptualization of context
and context-awareness is just the superficial evidence of a much
deeper issue. This subsection studies the ins and outs of con-
text, explaining why there is no consensus and identifying some
limitations of these systems.

2.2.1. Context, human activity and human behaviour
Although primitive C-AS can be relatively easy developed

(e.g., weather display depending on user location), there is
much more potential in applications that involve a deeper con-
text consciousness. The ambition is to create computational
systems that are able to understand not only simple contexts, but
others such as their environment, the person that is using the de-
vice, or the social context in which they are executing services.
The deeper conciousness to be implemented, the greater under-
standing it requires on the complex relation between context,
human activity and human behaviour. Following, we briefly
analyse some theories on this relation:

Situated Action: Suchman [15] acknowledged that com-
puter artefacts are build relying on an underlying concep-
tion, based on the planning model of human action. She
introduces the Situated Action, an alternative in which it
is analysed how people find meaning in actions or how
should they construct it. Instead of producing formal mod-
els of knowledge and action, she proposes exploring their
relationship to the particular circumstances in which they
occur. The unit of analysis of Situated Action is not the
individual, not the environment, but a relation between the
two [16].

Activity Theory: Claims that context is defined by the ac-
tivity itself. “Activity comprises a subject (the person or
group doing the activity), an object (the need or desire that
motivates the activity), and operations (the way an activ-
ity is carried out). Artefacts and environment are seen as
entities that mediate activity” [17]. The unit of analysis in
this theory is an activity [16].

2



Distributed Cognition: Takes into account the representa-
tion of knowledge both inside the heads of individuals and
in the world [18]. The system is not considered relative to
an individual but to a distributed collection of interacting
people and artefacts [16]. Hence, the unit of analysis in
this theory is the whole system, centring in its functional-
ity and understanding the coordination among individuals
and artefacts [16].

The Locales Framework: Tries to understand the nature
of social activity and work, and how locale can support
these activities [17] [19]. Locales are considered as a so-
cial worlds that apportion and use particular locations and
means for accomplish work. These, are abstract, and do
not necessarily need to have a fixed meaning or be associ-
ated to a physical space.

Ethnomethodology: Focuses on the way people make
sense to their everyday world, capturing a range of phe-
nomena associated with the use of mundane knowledge
and reasoning procedures.

Initially, the reader could think that embedding a deeper con-
textual awareness into systems is just a matter of understanding
the context through one of these theories and then creating a
programmable model with the result. But the fact is that these
theories work differently. They all share an understanding of
social facts as having no objective reality beyond the ability of
individuals and groups to recognise and orient towards them.
Conversely, the developers of C-AS will naturally seek to re-
duce complex observable phenomena to essences or simplified
models that capture underlying patterns, abstracted from the de-
tail of particular occasions. These models, try to seek an objec-
tive reality in social facts, entering in conflict with the founda-
tions of most theories in social analysis, which are incompatible
with the idea of a stable external world that is unproblemati-
cally recognized by all. This issue was recognised by Dourish
[5]. He acknowledged that the problem comes from the over-
lapping of two philosophical traditions behind the understand-
ing of context: Positivism and phenomenology. Context-aware
computing stems from computer science, that derives from the
rational, empirical and scientific tradition of positivism. On the
other hand, phenomenology, is the background behind many of
the theories to explain context in complex human behaviour and
activity. The incompatibilities between these standpoints help
to explain what are the limitations that exist when developing
C-AS, as it is further described in the next subsection.

2.2.2. The limits of Context-Aware Systems
Once that the reader is aware that there are tensions between

two incompatible philosophical backgrounds, s/he can start
to understand why is so difficult to find an agreement on the
definition of context. In what regards to its conceptualization,
phenomenology recognizes context as an interaction problem,
considering that: “(I) Context is particular to each occasion
of activity or action; (II) The scope of contextual features is
defined dynamically; (III) Context may or may be not relevant
to some particular activity; (IV) Context arises from activity,

being actively produced, maintained an enacted.” [5]. In this
approach, the context can only be understood as the situation
arises. Then, there is no need to unearth the underlying
models that will describe the objective reality behind context,
alleviating developers from the task of having to foresee it. For
making this possible, there is a need to make machines exhibit
human-like cognitive skills. The idea is to extract the mathe-
matical model of a brain, imitate it in a computer, and train it to
satisfy the user needs [20]. Nevertheless, it has to be mentioned
that there has been a long debate about the feasibility of com-
putational systems mimicking human-like intellect since the
early origins of artificial intelligence [21] [22] [23] [24] [25].
Although it is not the purpose of this survey to analyse in depth
these theories and argue about them, we would like to stress
that they acknowledge some issues that artificial intelligence
and context-aware computing have not been able to solve yet.
For example, the limitation of computers to acquire expertise
in the same degree and areas as humans, due to their different
form of embodiment [22]. What is important for the reader is to
understand that the contextual awareness of machines is from
a radically different nature than the one of humans. Also, that
computational systems are good at gathering and aggregating
data, but humans are still better at recognizing contexts and
determining what action is appropriate in a certain situation [2].

On the other hand, positivism looks at context as a repre-
sentational problem, considering it as a “form of information,
delineable, stable and separable from activity” [5]. The
definitions made in the context-aware field, naturally adopt
this point of view. For instance, Dey’s definition [10] allows
designers to use the concept for determining why a situation
occurs and use this to encode some action in the application
[26], making the concept operational in terms of the actors and
information sources [17]. Nevertheless, since the definition
inherently has a positivist view, the potential of C-AS remains
limited to the context that developers are able to encode and
foresee. Let us retake the example of the context-aware phone
that is able to silence itself at certain situations. For instance,
let us imagine that developers want to detect that the user is at
the cinema. For this task, they can use the built-in sensors of
the phone to detect luminosity, location, motionlessness and
ambient sound. Then, they can program a rule to silence the
phone whenever its sensors indicate certain values. In this way,
the phone can detect when the user is at the cinema, but for
detecting a completely different situation, the sensor values that
will silence the phone (or even the sensors used) could be com-
pletely different. The problem of having to program computers,
is that developers must know beforehand the context that they
need to program. But they might not be able to foresee some
situations. The user might be at a job interview, s/he might be
sleeping when some irrelevant notifications or calls arrive, the
user could be in the middle of a wedding, funeral, trial, having
a very important conversation, in the library, etc. The list of
unforeseen or undetectable contexts can be endless. Besides,
some situations can be specific issues of one user, or may not
be useful enough to carry the effort of implementing them (e.g.,
they may just happen once in the whole system life-cycle).

3



Summarizing, if developers can not determine all that can be
affected by an action, it will be very difficult to write a closed
and comprehensive set of actions to take in those cases. There
are three tasks that a developer may find difficult, or even
impossible, when developing a C-AS under this perspective
[17]: (A) Enumerate the set of contextual states that may
exist; (B) Know what information could accurately determine
a contextual state within that set; (C) State what appropriate
action should be taken in a particular state.

As it can be observed, the development of C-AS is inherently
in conflict with two opposite philosophical paradigms. Due to
the limitations in both approaches, the near future of C-AS de-
velopment should not be seen directly towards creating exclu-
sively systems that exhibit human-like contextual awareness,
nor to exclusively programming them on the basis of foreseen
context. The creation of C-AS in the near future, comes through
a combination of the current advances in both approaches, pro-
viding a higher cooperation between humans and computers
and making the most of each others qualities.

2.3. Towards the characterization of context-aware systems

In this subsection we focus on the aspects characterizing
context-dependent applications in order to better engineer them.
Taking into account the influence of C-AS limitations, we ex-
plore the ways in which C-AS can interact with users, catego-
rizing them. Finally, with the interaction categories in mind, we
characterize the features of these systems.

2.3.1. Interacting with a Context-Aware System
Inspired in the human-like contextual awareness, C-AS

were originally intended to monitor the context and then act
accordingly without any human mediation. The aim of having
an autonomous system is to reduce the user intervention, easing
its use and decreasing user distraction [27]. As discussed in
the previous section, humans are fitted with better contextual
understanding capabilities. So, when a system takes away
the user control due to a misinterpretation of the context, in
situations where the user has a better understanding of what
is happening, the user can reject the system and stop using it.
In order to alleviate this problem, other viewpoints propose to
change the autonomy of C-AS, enabling the users to have more
control over the system actions. Let us retake the auto-silence
smartphone example. Instead of letting the phone itself decide
when to silence, a machine could answer when someone is
calling [2]: “Lee has been motionless in a dim place with a high
ambient of sound for the last 45 minutes. Continue with the call
or leave a message?”. In this way, the higher understanding of
context that humans naturally have, can be used to complement
the decision making about the system actions, depending on
the situation. As readers can observe, there are different ways
to interact with C-AS. Barkhuus et al. [28] classified them
into: A) Personalization, in which the users are able to set their
preferences, likes and expectations to the system manually [9];
B) Passive context-awareness, where the system is constantly
monitoring the environment and offers choices to the users in

order to take actions; C) Active context-awareness, where the
system is continuously monitoring the environment and acts
autonomously.

We have classified the interaction with C-AS in two different
modalities: Execution and configuration. The first one refers
to the actions/behaviours of the system when a specific situ-
ation arises (e.g., auto-silence smartphone receives a call at 4
a.m. and decides to silence it). The second one is related to
the adjustment of actions/behaviours that a system will be ex-
hibiting in the future (e.g., according to the preferences of a
certain user, the phone is configured so that future calls coming
at 4 a.m. are not automatically silenced). Both execution and
configuration modalities are independent between themselves,
but they can both have a degree in between: I) Active, where
the system changes its content autonomously; and II) Passive,
where the user has explicit involvement in the actions taken by
the system. Following, we analyse them more in depth:

Active Execution: In this interaction type, the systems
act autonomously depending on the context in which they
are embedded. For example, the screen of a smart-phone
can switch from landscape to portrait automatically, de-
pending on the values of its accelerometer. The heater in
a smart-house can be autonomously switched on and off

when the values of a thermometer sensor reach a certain
point. In this approach the vision of self-adaptive systems
is paramount, which are able to adjust their behaviour in
response to their perception of the environment and the
system itself [29] [30]. Mizouni et al. [31] presented a
framework for context-aware self-adaptive mobile appli-
cations using the advantages of the software product line
feature modelling to manage variability. Projects such as
MUSIC [32] [33] [34], also support the development of
self-adaptive systems in ubiquitous environments.

Passive Execution: The users are involved in the action
taking process of the system, where they specify how the
application should change in a specific situation [35]. The
system can present available services for that specific situ-
ation or ask for permission to take an action. The user can
also receive additional information of the context that can
support their decision taking, or cues about why the sys-
tem is behaving in a certain way. Dey and Newberger [36]
encourage the use of intelligibility features to let the user
control the system. Those techniques can help expose the
inner workings and inputs of context-aware applications
that tend to be opaque to users due to their implicit sensing
and actions [37]. It allows understanding how a context-
aware application is working or behaving by showing it
and can be used to allow a better user control. Lim and
Dey [38], present the intelligibility tool-kit to give support
for context-aware applications. They facilitate developers
to obtain eight types of explanations from the most popular
decision models of context-aware applications.

Active Configuration: In this interaction type, the system
is able to learn from the user preferences in order to au-
tonomously evolve his rules for future behaviour, after

4



the system is implemented. Mori and Inverardi [39] [40]
present a software life-cycle process for context-aware
adaptive systems, where they characterize context by fore-
seen and unforeseen variations. In the first case the system
evolves in order to keep satisfied a fixed set of require-
ments while in the second one the system evolves in order
to respond to requirements variations that are unknown at
design-time. In a later work [41], they focus on a decision
support mechanism for simultaneous adaptation to system
execution context and user preferences. Aztiria et al. [42]
introduce a system which is able to discover patterns in
the user actions to learn their frequent behaviour when in-
teracting with Intelligent Environments. The system can
generate automatically context-aware reasoning rules [43].

Passive Configuration: The user is involved in the manual
personalization of his/her preferences, likes, and expecta-
tions of the system, after its implementation. By reduc-
ing the complexity of programming, it enables the system
behaviour configuration to inexperienced users. These,
acting as non-professional developers, can create, mod-
ify, or extend existing context-aware artefacts. Lieberman
et al.[44], originally introduced this approach, classifying
the type of activities2 involved in it as: A) Parametrization
or customizations, considered as activities that allow users
to choose among alternative behaviours already available
in the application; B) Program creation and modification,
in the form of activities that imply some alteration, aim-
ing at creating from scratch or modifying existing software
artefacts. In what regards to C-AS, the Trigger-action pro-
gramming3 [45] [46] is recently gaining more popularity.
In this approach, the end-users can handle simplified if-
then programming rules that match a trigger with an ac-
tion. Dey et al. [47] proposed iCap, a system that is the
intermediate layer between low level tool-kits and users.
They also present a specific solution [48] for user control,
based on their Context Tool-kit [49].

C-AS do not necessarily have to be completely active or pas-
sive, they can have hybrid approaches with different degrees in
between. For example, the autonomy level can be adjustable,
enabling human users to collaborate with computational sys-
tems managing the system behaviour as a team. Ball et al.
[50] consider enabling human-agent teamwork in Intelligent
Environments by employing concepts of adjustable-autonomy
and mixed-initiative interaction. Such approaches reduce the
chance of guesswork needing to be done. If the user or agent
can not manage the system in the usual way, they can seek help
from each other, inheriting the benefits from autonomy level
that is implemented. On the other hand, it also inherits the
drawbacks from its opposite autonomy level. The advantages
and disadvantages of the different interaction categories are pre-
sented in Table 1.

2Further information about the different ways of customization can be found
in Lieberman et al.[44].

3More information about Trigger-action programming can be found in Sec-
tion 3.4.2.3.

2.3.2. Features of a Context-Aware System
Schilit et al. [13] first identified different classes of context-

aware applications. Pascoe et al. [55], later aimed at identifying
the core features of context-awareness. Dey and Abowd [3] pre-
sented a categorization for features of context-aware applica-
tions, based on the classification of Schilit and Pascoe, namely:

1. Presentation of information and services to the user.
2. Automatic execution of a service.
3. Tagging of context to information for a latter retrieval.

The first feature decides which information and services are
presented to the user, based on context. Nearby located ob-
jects might be emphasized, or for instance, a printer command
might print to the nearest printer. The second feature is the au-
tomatic execution of a service. For example, let us consider a
smart home environment. “When a user starts driving home
from their office, a context-aware application employed in the
house should switch on the air condition system the coffee ma-
chine to be ready to use by the time the user steps into their
house” [9]. Finally, they present “contextual augmentation”,
which extends the capabilities of sensing, reacting and interact-
ing with the environment by using additional information. This
is achieved by associating digital data with a particular context.
For example, a tour guide can augment reality by presenting
information about the attractions that they are surrounded by
or are approaching [55]. In the previous subsections, we dis-
cuss the need to: A) Take into account the current limitations of
C-AS; B) Include the different interaction levels; C) The main
challenges that are still open in the context-aware computing
field. In order to accommodate these demands, we propose to
extend Dey and Abowd’s features of C-AS into:

1. Presentation of information to the stakeholders
2. Active or passive execution of a service
3. Active or passive configuration of a service
4. Tagging context to information

The first one is very similar to Dey and Abowd’s. It keeps the
essence of Pascoe’s “presenting context”, but Schilit’s “prox-
imate selection” and “contextual commands” are merged with
our second feature. We have introduced the notion of collabora-
tion among stakeholders rather than just the users. We can have
different “situations of interest” according to the category of
stakeholders (e.g., for a primary user it could be that the system
is aware on the weather forecast, but for the engineers it may
be that the system is aware of the level of battery in the mo-
bile phone). So, we can differentiate Primary users’ contexts,
Secondary users’ or system engineers’, among others. Some
contexts of interest from all these stakeholders will typically
intersect. They do not necessarily have to be disjoint, equally
they do not have to be exactly the same, there are no a-priori
relations and it all depends on the applications and personal
choices. Even when some “situations of interest” may be the
same for different stakeholders, they may be interested in them
for different reasons and may expect different outcomes from
the system when those situations materialize. The contextual
information might arrive to some secondary or tertiary users

5



Name Pros Cons Name Pros Cons

Active Execution
(Self-adaptivity)

• Little or no effort required
by users [51]
• No special user knowledge

is needed [51]

• Difficult to ensure that the
system will take an appropri-
ate action (Difficult to validate
and verify the system)
• Loss of control over what the

system is executing and why
[51]
• There are still some open is-

sues [29] [52]
• Developers have all the burden
• Users can be uncomfortable

not understanding what hap-
pens with the information that
the machine gathers from them

Passive
Execution

(Intelligibility
& Control)

• Augments the trust of
users [53] since they
understand better how the
system works
• Easier to evaluate the sys-

tem behaviour
• The system will take the

actions that the user wants

• Requires developers to under-
stand how to generate explana-
tions [38]
• The users might not have

enough expertise to take deci-
sions on their own
• Applications need to convey

more information to explain
actions to users [53]
• May compromise the privacy

of users if they are used on so-
cial interactions
• Users can use their higher con-

text understanding for a better
control the system [53] [2]

Active
Configuration

(Learning &
Adapting)

• Little or no effort required
by users
• No special user knowledge

is needed
• Can unearth needs, prefer-

ences or habits difficult to
see in other ways [42]

• Difficult to determine when
rules should be created or
deleted
• The rules are based on sensors

values (inaccuracy and uncer-
tainty)
• Loss of control over what the

system is executing and why
[51]

Passive
Configuration

(End-user
programming)

• Offers greater motivation,
control, ownership, cre-
ativity and quality to end-
users [54]
• Users are in control; users

know their tasks best [51]
• Releases developers bur-

den

• Users might be forced to con-
tribute and cooperate in con-
text for which they could lack
experience [54]
• Meta-design is more complex

and abstract than design
• Complexity is increased (users

need to learn adaptation com-
ponents); Systems may be-
come incompatible [51]

Table 1: Comparative analysis on the interactivity levels that context-aware systems can have.

that make the choices over the actions of the system, based on
the users needs. Such as what happens in projects like POSEI-
DON4 [56], where there is a need of secondary users (e.g., par-
ents) to take care of the primary ones (i.e., person with Down’s
Syndrome). Our second feature includes all the different in-
volvement degrees of the user in the system actions, as the situ-
ation arises when it is executing. A service can be automatically
triggered, being the system autonomous in its decision. But it
also can ask the approval of the user, or display a certain list of
possible choices, as in Schilit’s “proximate selection”, to enable
further collaboration between the system and the users. The
third feature is related with being more useful to the stakehold-
ers, relating its services to their preferences and needs, which
can evolve in time. C-AS can adapt to these through the active
or passive configuration of the system, as explained in the pre-
vious subsection. Finally, the last feature is the same as Dey
and Abowd’s.

3. Context-aware systems development techniques

We have investigated the state-of-the-art in C-AS, under-
standing better its conceptualization. In this section, we first
analyse the challenges of building such systems. Second,
we study the C-AS development techniques in the literature
throughout the most common stages of a development process:
Requirements Elicitation, Analysis & Design, Implementation
and Deployment and Maintenance.

3.1. Development Challenges
The following subsection highlights the challenges and de-

mands of C-AS development. We focus more in the context

4POSEIDON stands for PersOnalized Smart Environments to increase In-
clusion of people with DOwn’s syNdrome

information handling, as it is the most important and complex
need. We also describe issues related to the diversity of systems
and other important technological demands.

3.1.1. Diverse and specific systems
Almost any type of computerized system could potentially

benefit from having contextual understanding. Although differ-
ent kind of systems can be found next to the adjective “context-
aware”, the process of embedding contextual awareness can be
dramatically different depending on the system type. For exam-
ple, it is not the same to implement it in: a smart-phone appli-
cation, a robot, a ubiquitous system or a web application [57],
a context-aware animal species recognition [58], or an adap-
tive e-book [59], etc. Typically, context-awareness is a feature
added on top of an existing system or functionality. Then, the
implementation of such a feature depends intrinsically on the
system where it is going to be implemented. Let us take the
example of the context-aware smart-phone that is able to detect
when is intruding into social situations in order to avoid unnec-
essary interruptions. In this case, the features will be developed
on top of the phone, its operating system, and its application to
make calls. This fact turns the system into a very ad-hoc solu-
tion. The main problem of being so specific, is that the amount
of work employed to develop it will be difficult to reuse, even
for developing the same for a different operating system.

3.1.2. Context information handling
In order to enable context-awareness, there is always a need

of capturing context information and making it available to ap-
plications and systems [60]. C-AS require separating how con-
text is acquired from how it is used, so that applications are
able to use contextual information without knowing the details
of a sensor and how can it be implemented [49] [61]. The tech-
niques for context information management have been widely

6



researched and are well understood [9]. Despite the advances,
the challenge for an engineering process is to facilitate the de-
velopment and reuse of structures that enable context infor-
mation management and support the adaptation to the specific
needs of the applications/systems. Following, the life-cycle [9]
of context information is used as a reference to better clarify the
issues that this information management may entail:

Acquisition: First, the context information needs to be
gathered. Generally, this happens from multiple and dis-
tributed resources, which makes the quality and authentic-
ity of information difficult to achieve. On the other hand,
sensors in general, are likely to provide inaccurate, over-
lapping, contradictory or missing data (e.g., providing the
same information at different timings or with a jitter) [62].
It also has to be mentioned, that the addition and removal
of context resources can give rise to scalability issues. Fi-
nally, it has to be taken into account that it will be difficult
to obtain contextual information if many users share the
same physical sensors and service resources [63].

Modelling: After the information is sensed, it needs to be
translated into usable values. In this process, real world
concepts are translated into modelling constructs. A raw
value of a user position may be in the form of: “42.85, -
2.683333”. This information must be translated into more
understandable information such as the name of a city,
street, etc. These models require [64] [61]: 1) To repre-
sent any kind of context information, reflecting the entities
of the real world and their relations; 2) Uniquely identify
the contextual information, context and entities; 3) To be
simple, reusable, expandable and able to use the informa-
tion at runtime; 4) Validate pieces of data and encode its
uncertainty.

Reasoning: Based on the modelled data, different kinds of
conclusions can be inferred, where this data can be seen as
evidence to support the conclusion [65]. In this way, new
knowledge and understanding is obtained, based on the
available context [66]. . This process has typically three
different phases [9]: (1) Context pre-processing, where
data is cleaned to get rid of invalid, inaccurate and non de-
sirable values; (2) Sensor data fusion, in which sensor data
is combined to produce more accurate and dependable in-
formation; (3) Context inference, from low-level informa-
tion to high-level one. In what regards to reasoning, repre-
sentation expressiveness is in mutual conflict with sound-
ness, completeness and efficiency [67].

Dissemination: Finally, both low-level and high-level con-
text need to be distributed to the consumer. The context
information must have high availability, ideally to be pro-
vided it in real-time. Another desirable feature is to dis-
cover new services that could provide new context infor-
mation [65].

It also has to be mentioned that context information will in-
herently contain important data related to the users, what raises
some privacy issues. Privacy concerns may differ from user to

user, and may also be dynamically changing over time. The
balance between privacy and the system potential is delicate,
where the developer may fall into ethical issues. A detailed ex-
amination of these issues is not the focus of this survey, but the
reader can have more information about ethical concerns that
can influence the area at engineering level in [68]. Besides, it
is difficult to obtain, ensure and evaluate the good Quality of
Context (QoC) information, which depends on its [69]: Preci-
sion, probability of correctness, trustworthiness, resolution and
contemporaneity.

3.1.3. Technological demands
The technological challenges are not only focused on the in-

formation management. We have classified the remaining rele-
vant needs of C-AS systems into:

• Flexibility versus change: Once the context information is
provided, the rest of the system configuration can happen
in many forms, that depend on the specific implementation
of the system itself. Although the particular implementa-
tions can vary, a need that seems invariant is supporting a
high amount of changes.
• Cost: C-AS are expensive to develop, deploy, execute and

maintain. The amount of information that they need to
manage makes them resource hungry [70] and dependable
on a very expensive structure.
• Reliability: C-AS must be reliable, especially if they are

going to be used in tasks where an error can put a human
life at risk. Even if they are not able to offer a continu-
ous delivery of some services properly, they at least should
be capable to perform its required basic functions tolerat-
ing errors, faults and failures. Fault tolerance in pervasive
systems can be increased by [71]: (1) Efficiently detect-
ing faults; (2) Isolating faults, to prevent its propagation to
other parts of the system; (3) Providing a transparent fault
tolerance; and (4) Good fault reporting mechanisms. Be-
sides, it is difficult to evaluate the correctness of C-AS due
to their increasing size and device diversity.
• Infrastructure: The expensiveness and complexity of C-

AS development makes highly desirable for developers to
have tools that support and ease their effort during the de-
velopment of their systems. An infrastructure [72], is soft-
ware that supports construction or operation of other soft-
ware, comprising systems that range from tool-kits to net-
work services or other sorts of platforms. So, it enables
applications that could not otherwise be built or would be
prohibitively difficult, slow or expensive. This kind of in-
frastructures are typical in C-AS development. Neverthe-
less, a certain infrastructure affords only certain styles of
application and interface. This creates a tension between
easing the development and the flexibility of the infras-
tructure, and it is a challenge itself.

Although the field has matured in the latest years, developers
have still many issues to overcome when developing C-AS. The
next step is to fathom the techniques proposed to develop this
kind of systems.

7



3.2. Requirements elicitation

The requirement elicitation process helps developers to reach
a better understanding of the user needs and demands by finding
a systematic approach for eliciting, analysing, documenting,
validating and managing software requirements from individ-
ual stakeholders [73] [74] [75]. If the right requirements are not
well defined prior to the development of the system, it will be
more likely to fail meeting the user and other stakeholder’s ex-
pectations. Some conventional techniques for eliciting require-
ments can be classified into [76]: Interviews, questionnaires,
task analysis, domain analysis, introspection, repertory grids,
card sorting, laddering, group work, brainstorming, joint ap-
plication development, requirements workshops, ethnography
based, observation, protocol analysis, apprenticing, prototyp-
ing, goal based, scenario-based and viewpoints. The aim of this
subsection is not to deeply review them, but to focus in require-
ment elicitation techniques that have been tailored for meeting
the needs of C-AS development. We have classified them into:
A) Context categorizations; B) User-centred and Social Science
based; C) Requirements modelling D) Adaptive and goal ori-
ented. We compare their advantages and disadvantages in Ta-
ble 2. Finally, we analyse previous works for identifying com-
mon features of requirements elicitation techniques for C-AS,
to which we add our conclusions.

3.2.1. Categories of context in Requirements Elicitation
Some requirements engineering techniques are based on

context-classifications. Krogstie [77] studies the challenges
that specify the requirements to applications running on mo-
bile technology. He presents six context categories (i.e., spatio-
temporal, environment, personal, task-oriented, social and in-
formation contexts) to guide the design of customised stake-
holder interviews. Hong et al. [78] present a methodology
for requirements elicitation in context-aware ubiquitous appli-
cation design. In their approach, they propose to use the notion
of extended context, categorizing it into: A) Computing con-
text, referring to the hardware configuration used; B) User con-
text, that represents all the human factors such as user’s profiles
or calendars; and C) Physical context, that considers the non–
computing-related information provided by a real world envi-
ronment. Kolos-Mazuryk et al. [79], based on [35] [13], present
a classification of contextual and non-contextual distinguishing
properties of ubiquitous applications. On the contextual prop-
erties, they acknowledge C-AS as having: I) Dynamic environ-
ment; II) Variable bandwidth; III) Changing display character-
istics; IV) Changing user environment; V) The target platform
is not known in advance. Finally, they present an initial phase
of a requirements engineering process.

3.2.2. User-Centred and Social Science based approaches
Sutcliffe et al. [80] introduce a Personal and Contextual

Requirements Engineering framework (PC-RE), a method for
their capture that incorporates a trade-off analysis to decide
how personal requirements should be implemented. They pro-
vide three different layers: Stakeholders, user characteristics
and personal goals. These, can change over space and time.

In what regards to requirements elicitation for C-AS develop-
ment, they consider the locales conceptual framework [19] for
including spatial implications in requirements. They acknowl-
edge that monitoring requirements for this kind of applications
needs to be specified for: A) The devices and sensors that cap-
ture environmental input; B) Functions and processes that in-
terpret low-level data into streams of meaningful data; C) In-
terpreters that make sense of the data using a model of the do-
main; D) Models of the domain. They acknowledge that the
results of interpreters (e.g., body temperature above a certain
threshold is dangerous for a patient) are frequently ambiguous
so further requirements need to be considered: I) Intelligibil-
ity feedback functions; II) Default interpretations when data in-
put is not available or is inadequate; III) Mediation dialogues
should be planned to enable users override systems’ decision.

Kjaer [81] proposes a requirement gathering process for the
design of context-aware middleware. They video-recorded and
documented the activities of people who worked at a farm while
they were doing their daily work. Using an ethnographic study
to classify the context, they determined requirements for the
middleware they were trying to develop. Evans et al. [82]
present R4IE, a framework for a requirements engineering pro-
cess for Intelligent Environments, in which context-awareness
is a primary feature. Their work is similar to Sutcliffe’s but they
include stakeholder profiling with individual user customiza-
tion. They also introduce a core ethical model, enhancing the
addressing of the issues of social context and ethnicity, consid-
ering privacy.

3.2.3. Requirements Modelling
Desmet et al. [83] present Context-Oriented Domain Analy-

sis (CODA), a systematic approach for gathering requirements
of C-AS. It enforces modellers to think by means of “context-
unaware” behaviour, which can be further refined according
to “context-aware dependant adaptations” at certain “valida-
tion points”. They also identify existing relationships between
context-dependent adaptations. CODA can be represented: in a
tree structure (graphically), using XML for writing its diagrams
(textually) and mapping its semantics to elements in the deci-
sion tables (structurally). Choi et al. [84] propose a method for
requirements gathering in C-AS based on variations of UML
Use Case Diagrams. They classify context-aware services in
five types, in order to give stakeholders a better understanding
when analysing C-AS. They also introduce a process for re-
quirements analysis, context-aware use case diagram, context-
switch diagram and dynamic service model for context-aware
systems. In a further work [85], they introduce decision tables
or trees. They encourage analysts and stakeholders to pay at-
tention to context related issues such as system platform, target
users, intelligence, possible context-aware services and agree-
ment with other stakeholders as well as understanding context
with decision tables and trees. Ruiz et al. [86] describe a model-
driven engineering approach targeting non-functional require-
ments, where they: A) Derive a model-driven system design
that meets specific requirements; B) Generate code that im-
plements such design. Sitou and Spanfelner [87] present RE-
CAWAR a requirements engineering process for context-aware

8



R
eq

u
ir

em
en

ts
E

li
ci

ta
ti

on

Approaches

• Context categories
• Requirements Modelling

• User Centred
& Social Science
Based approaches

• Adaptive
& Goal Oriented

A
n

al
y
si

s
&

D
es

ig
n

Design Patterns

• Ubiquitous Com-
puting Features

• Fluid Interac-
tions

• Privacy
• Physical-virtual

spaces

• Monitoring
• Adaptation
• Decision-making

Architectural Patterns

• Event-Control-
Action

• Sense-Compute-
Control

• Blackboard
• Actions Pattern

• Context Source
& Management
Hierarchy

Verification

• Model-Checking:
– SPIN
– µKLAIM
– AFChecker

• Simulation &
test-case
generation:

– CASS
– DiaSim
– Bigraphs &

EFSM
– Automated

generation
of tests

Typical Process

• Framing • Encoding • Unifying • Evaluating

Im
p

le
m

en
ta

ti
on

Context-Information Management

• Acquisition:
– Responsibility
– Frequency
– Source
– Sensor Type
– Acquisition

Process

• Modelling:
– Key-Value
– Markup

Scheme
– Graphical
– Object Ori-

ented
– Logic Based
– Ontology Based

• Reasoning:
– Supervised

learning
– Unsupervised

learning
– Fuzzy Logic
– Ontological
– Probabilistic

• Dissemination:
– Query
– Subscription

Programming Paradigms

• Conventional
– Object-Oriented
– Aspect-Oriented
– Feature-Oriented

∗ SPL
– Service-Oriented

• Emerging
– Agent-Oriented
– Holoparadigm
– Context-Oriented

• Model Driven
– DSL

∗ Trigger-action pro-
gramming

D
ep

lo
y
m

en
t

&
M

ai
n
te

n
an

ce

Maintenance

• Corrective:
– Intelligibility

• Adaptive
• Perfective
• Preventive:

– Surrogate Application/Device
Usage

– Alternative Notification
Mechanisms

– Context Information Error
Handling

– N-Version Approach
– Fault Notification

Figure 1: Summary of the techniques/approaches used for Context-Aware Systems Engineering.



and adaptive systems. It provides an integrated model for the
usage context based on different models: I) User Model, where
the participants aspects are represented, characterizing the users
and user groups; II) Task Model, to represent the activities as-
pects, identifying which task and interactions are needed to per-
form it; III) Domain Model, that consists of any user visible,
operable objects in the applications’ domain, representing the
operational environment aspects; IV) Platform Model, that rep-
resents the physical infrastructure and the relationship between
the involved devices; V) Dialogue model, where the interaction
between the user and the system is depicted; VI) Presentation
model, that shows visual haptic and audio elements needed for
the interaction. Through an iterative process, stable needs are
identified, as well as such that may change according to the con-
text. The stable needs result in the functionality of the system,
while the situational needs are further analysed to specify the
adaptation logic.

3.2.4. Adaptive and Goal-Oriented
Finkelstein and Savigni [88] present a framework for require-

ments engineering in context-aware services, where they pro-
pose that requirements themselves can change during the sys-
tem execution. They difference between: A) Goals, as a fixed
objective of the service; B) Requirements, as a more volatile
concept that can be influenced by the context. Oyama et al. [89]
describe an approach of service requirements analysis using the
feedback of contexts, to support the elicitation of user inten-
tions and goals robustly. They identify two approaches in the
evolvability of C-AS: I) Short-term evolution, to handle excep-
tions and to make correct reactions at runtime; II) Long-term
evolution, to monitor user behaviour and capture new system
requirements based on human intentions. Baresi et al. [90]
present FLAGS, a goal model that adds adaptive goals in order
to embed adaptation countermeasures, fostering self-adaptation
by considering requirements as live, runtime entities. They dis-
tinguish between: 1) Crisp goals, whose satisfaction is Boolean;
2) Fuzzy goals, whose satisfaction is represented through fuzzy
constraints. Adaptation countermeasures are triggered by vio-
lated goals and the goal model is modified accordingly to main-
tain a coherent view of the system and enforce adaptation di-
rectives on the running system. Siadat and Song [91] discuss
the state-of-the-art requirements for adaptive systems, under the
notion that requirements that are engineered at design time may
require further reasoning or refinement at runtime in order to
adapt to dynamic context-driven changes.

3.2.5. Conclusions
Other surveys have also studied the requirement elicitation

techniques specialized for C-AS development. Following, we
analyse their view on the most common characteristics in re-
quirements elicitation for C-AS. Preuveneers and Novais [92]
present a survey of the best software engineering practices in
Ambient Intelligence. In all the approaches they surveyed for
requirements elicitation, they highlight: A) The importance to
actively involve the end-user and to develop an elicitation pro-
cess that is customized to the competences of the end user;
B) The need for an explicit representation of the context and

Name Pros Cons
Pre-categorized • Can complement other re-

quirement elicitation tech-
niques

• Categories might be too broad
or to narrow
• Categorization schemes can

not accommodate all the de-
mands for C-AS [9]

Social Science
Based

• Complement the SW en-
gineering knowledge with
the one of social experts
• More complete require-

ments

• Complexity of including social
experts as new stakeholders
• Cost

User Centred • Focuses on the needs of the
stakeholders
• Improves the usability

• Requires user involvement

Model Driven • Forces developers to have
different views
• Help to decide the bound-

aries between elicitation
and design
• Enables better traceability

• Different readers can make
different interpretations
• Hard to capture non-functional

requirements

Adaptive & Goal
Oriented

• Provides means to capture
and analyse variability
• Opens the way to require-

ments evolution

• Difficult to determine when
the behaviour of the system
meets the requirements

Table 2: Comparative analysis on the advantages and disadvantages of the
different requirement elicitation techniques that are specialized for

context-aware systems development.

goals of the user, and how the context impacts the interac-
tion with the user; C) An explicit formalization of which re-
quirements are relevant for a given context and how the these
can evolve when the context change. Alshaikh and Boughton
[8] analyse how context works in requirements elicitation. In
early stages, context is associated with the task of setting sys-
tem boundaries, while in later stages, context is used implic-
itly within the scenario-based requirements (common-sense ap-
proach). Finally, they distinguish between context and require-
ments. Context is defined through the user’s situation and Re-
quirements are described focusing on the user’s interaction with
the system. Evans et al. [82] classify the prominent themes
in requirements elicitation focused on context-awareness for
Intelligent Environments: 1) The consideration, adoption and
possible enhancement of a context taxonomy; 2) A general as-
sumption that systems need to be adaptable to be context-aware;
3) Elicitation techniques used to capture end-user cognitive
tasks require enhancement to account for context-awareness;
4) Identification of target user groups and acknowledgement
that contextual requirements for either profile may evolve over
time; 5) Requirements themselves might be context-driven;
6) The consideration of cultural context; 7) The adoption
of goal-oriented requirements engineering where higher-order
goals are apparent in the domain. They also acknowledge that
there is lack of standards in what regards to requirements en-
gineering for C-AS. From the literature review, we insight that
a requirements elicitation process, tailored to the demands of
C-AS, needs to support engineers:

1. Identifying situations in which services that are relevant to
the stakeholders could be provided. We acknowledge that

10



social sciences and social experts could potentially help to
understand better these situations.

2. Determining how the system is going to detect those situa-
tions. It does not have to be an exhaustive description, but
it should facilitate the future design on how the contextual
information is going to be acquired, modelled, reasoned
and distributed.

3. Choosing how the system will interact5 with the stakehold-
ers:

(a) Determining the behaviour that the system will ex-
hibit in those situations.

(b) Identifying the possible configurations that can help
to evolve the system after its implementation.

3.3. Analysis and Design
When the system requirements are well specified, an analysis

can ease the development plan through a better understanding
of the system implementation. The design brings developers
closer to a feasible implementation plan. It has to be acknowl-
edged that there is no set of universally accepted basic design
and development principles, or standards, which lead to a uni-
form approach to the efficient C-AS development. The aim of
this subsection is to study the different approaches for analysing
and designing C-AS. We first focus on the design process it-
self, to examine more in depth: A) The different architectures
of C-AS and architecture patterns used for design; B) Middle-
ware; C) Design-Patterns; and D) Design evaluation.

3.3.1. Design process
Bauer et al. [93] identified the most common practices used

by developers when designing a C-AS, dividing the process
into: A) Framing: Designers will articulate and explore a con-
cept of context, which imposes a set of limitations on what ex-
ist inside and outside the design space their work inhabits [93].
B) Encoding: In this stage designers will discuss the behaviour
of the system and instantiate a vocabulary or codes to express
its behaviour. C) Unifying: As the designers explore the design
space, certain possible design solutions are brought to the fore-
ground, which impose additional constraints over other con-
cerns the designers address. D) Evaluating: The designer will
focus on a solution that satisfies the constraints according to
their encoded formulation of context, determining if they have
arrived at a satisfactory solution.

3.3.2. Architectures
An architecture is an abstraction, that generalizes the sys-

tems, without showing detailed implementation such as code
or circuits. This subsection studies the architectures used for
C-AS development. Due to their diversity, C-AS have adopted
disparate ranges of architectures. Table 3 shows the different
classifications of architectures according to existing literature
surveys. Following, we analyse the works that classify generic
architectures and we study the different architectural patterns
that can be used for creating C-AS.

5More information about interaction categories can be found in Section
2.3.1

Author(s) Winograd Chen et al. Perera et al.

Reference [94] [95] [9]

Year 2001 2004 2014

Architecture
Types

• Widgets
• Networked

Services
• Blackboard

Model

• Direct Sensor
Access
• Middleware

Based
• Context

Server

• Component
Based
• Distributed
• Service

Based
• Node Based
• Centralized
• Client-Server

Table 3: Different architecture classifications for context-aware systems.

3.3.2.1. Generic architectures. Other works also study the
common parts that different architectures have, providing a
generic architecture for C-AS. Baldauf et al. [96] present a
survey on C-AS, in which they introduce an abstract layer ar-
chitecture for C-AS that is divided in: A) Sensors; B) Raw
data retrieval; C) Storage/Management; D) Pre-processing; and
E) Application. Hong et al. [63] introduce a literature review of
C-AS, in which they classify architectural layers of these sys-
tems into: I) Concept and Research; II) Network infrastructure
layer; III) Middleware layer; IV) Application layer; and V) In-
frastructure layer.

3.3.2.2. Architectural patterns. An architectural pattern is a
set of architectural design decisions that are applicable to a re-
curring design problem, and parametrized to account for differ-
ent software development contexts in which that problem ap-
pears [97]. We have gathered from the literature, the following
patterns:

• Context Sources & Managers Hierarchy [98]: This archi-
tectural pattern aims at providing a structural schema to
enable the distribution and composition of context infor-
mation processing components (Context Sources and Con-
text Managers). A Context Source encapsulates single do-
main sensors (e.g., blood pressure), while a Context Man-
ager component covers multiple domain context sources
(e.g., integration of blood pressure with heart beat mea-
sures) [99]. The structural schema consists of hierarchical
chains of them, in which the outcome of a context infor-
mation processing unit may become input for the higher
level unit in the hierarchy. It offers a flexible and decou-
pled distribution of context processing activities (sensing,
aggregating, inferring and predicting). It also improves
collaboration among context information owners allowing
new parties to join the collaborative network in order to
provide richer context information.
• Blackboards [94]: The architectural style arose in artifi-

cial intelligence applications and its intuitive sense is one
of many diverse experts sitting around a blackboard, all
attempting to cooperate in the solution of a large, com-
plex problem [97]. As an architectural pattern, it adopts a
data-centric point of view. Rather than sending requests to
distributed components and getting call-backs from them,
a process posts messages to a common message board, to
which others can subscribe to receive messages matching

11



a specified pattern that have been posted. All communica-
tions go through a centralized server.
• Event-Control-Action [98]: It has been devised in order

to decouple context concerns from reaction ones, under
the control of an application model. This pattern provides
a structural scheme to enable the coordination, configu-
ration and cooperation of distributed functionality within
services platforms. Divides the information management
related tasks from the ones that trigger actions, under the
control of an application behaviour description. It pro-
vides the following structural scheme: A) Event, where
tasks about the gathering and processing of context infor-
mation are placed in; B) Control, that connects the context
events with the actions to take; C) Action, that triggers the
behaviour of the application.
• Sense-Compute-Control (SCC) [97]: Also known as

Sensor-Controller-Actuator, this architectural pattern was
tailored for applications that interact with the environ-
ment through sensors and actuators. Its architecture is
divided in four layers [100]: I) Capture, which gath-
ers the useful information from the environment; II) Re-
finement, where the information from the environment
is treated; III) Control, where the decisions over the ac-
tions are taken; IV) Action, where the orders from the
control layer are received and orders are executed. Al-
though it presents a different layer for separating the acqui-
sition of contextual information from its treatment, SCC
resembles the Event-Control-Action (ECA) pattern, that
presents solutions for recurring problems associated with
managing context information and reacting upon context
changes [101]. The main difference between these two
patterns is the domain of application. While ECA fits
better in environments where software-based changes are
expected, SCC is conceived for systems that imply in-
teractions among numerous heterogeneous devices, many
of them directly interacting with their physical surround-
ings through sensors and actuators [102]. This pattern
can be found in disparate application domains such as
[100][102]: Ubiquitous computing, automotive & avion-
ics, smart houses/offices/cities and industrial control sys-
tems among others.
• Actions Pattern [98]: It provides a structure of compo-

nents that support designing and implementing of action-
related concerns. Its structure divides action purposes
from action implementations in order to better coordinate
the composition of actions. Its component arrangement
includes Action Resolvers, Action Providers and Action
Implementors. The Action Resolver breaks compound
actions into indivisible service units. Then, the Action
Provider delegates them to the proper concrete action im-
plementations (Action Implementor). An action might be
performed independently or in parallel, while some actions
depend on or trigger others.

The applicability and benefits of the presented architectural
patterns can be observed in Table 4.

Pattern Applicability Benefits
Context Sources

& Managers
Hierarchy

• Context information
processing
• Decentralization

• Encapsulation, effective, flexi-
ble and decoupled distribution
of context information man-
agement activities
• Filtering unnecessary informa-

tion

Blackboards • Context information
processing
• Centralization
• Complex problem

solving

• Knowledge is reusable
• Knowledge sources can work

concurrently
• Easy to add/remove

knowledge

Event-Control-
Action

• Trigger-action
applications
• Software-based

actions

• Distribution of responsibilities
• Dynamic deployment and

development of applications
• Extensible and flexible appli-

cations

Sense-Compute-
Control

• Trigger-action
applications
• Large number of

heterogeneous devices
(sensors and actuators)
• Static environments

• Distribution of responsibilities
• Dynamic deployment and de-

velopment of applications
• Extensible and flexible appli-

cations
• Allows the control of various

devices

Actions Pattern • Action management
• Actions performed in

parallel
• Dependency

between actions

• Avoids permanent binding be-
tween action and purpose
• Enables different implementa-

tions at platform run-time
• Actions may be changed or ex-

tended independently

Table 4: Benefits and applicability of architectural patterns for context-aware
systems.

3.3.3. Middleware
Middleware is the most used structure to collect context in-

formation, support the deployment of sensors and hide hetero-
geneity. By separating how context is used from how it is ac-
quired, it eases the development of a generic set of applica-
tions by reusing and customizing the necessary structure for
context manipulation. Although many middleware approaches
have been presented, it is difficult to achieve a universal mid-
dleware tool, applicable to any area, and capable of solving all
the challenges involved in the context provision to applications,
despite the many standpoints in the literature [9]. In this di-
rection, approaches like UniversAAL6, aim at creating an open
platform and reference specification that makes technically fea-
sible and economically viable to develop Ambient Assisted Liv-
ing solutions. In order to better reuse their middleware, they
provide a market in which developers will upload their appli-
cations to make them available to users. Besides, the ReAAL7

initiative has rolled-out active and independent living applica-
tions on top of UniversAAL, and has tested them with users in
real life. Middleware has been deeply analysed in the literature.
For this reason, it is out of the scope of this survey to deeply
analyse them. The reader can find broader comparisons and
studies related to middleware in Perera et al. [9], Preuveneers
and Novais [92], Kjaer [103], Baldauf et al. [96] or Henricksen
et al. [104], among others.

6http://www.universaal.org/
7http://www.cip-reaal.eu/

12



3.3.4. Design patterns
A design pattern is a semi-structured description of an ex-

pert’s method for solving a recurrent problem, which includes
a description of the problem itself and the context in which
the method is applicable, but does not include directives which
bind the solution to unique circumstances [105]. As in other
domains, design patters have also been suggested for context-
aware computing. They can help designers to focus on what
they want to implement without having to resolve recurrent is-
sues. Usually, problems have a strong relationship with the plat-
form where they are going to be executed, which makes their
identification ad-hoc and difficult to reuse. We have classified
the different patterns that can be obtained from the literature,
according to the problem they intend to solve:

• Ubicomp features: Enable ubiquitous and pervasive com-
puting features.
• Fluid interactions: Solve common problems that arise

from providing a better interaction with the users.
• Privacy: Address issues related with the confidentiality of

the user data.
• Physical-virtual spaces: Looks at how physical objects

and spaces can be merged with the virtual.
• Monitoring: Enable to systematically observe the system

itself and environmental conditions.
• Adaptations: To dynamically perform structural and be-

havioural changes in an adaptive system without leaving it
in an erroneous or inconsistent state.
• Decision making: Mechanisms to solve problems related

with taking decisions.

It is difficult to determine design patterns that can be
universally reused. Instead, they help to solve some specific
problems that might not be necessarily applicable to any C-AS.
Besides, it must also be acknowledged that there is no widely
recognized technique for finding appropriate design patterns
from existing C-AS. Due to space restrictions, a further anal-
ysis of these patterns is not provided, but each of the patterns
is related to its corresponding paper in table 5. More informa-
tion about design patterns can be also found in [92] [106] [107].

3.3.5. Design evaluation
The system complexity and hence the likely number of de-

sign errors, grows exponentially with the number of interacting
system components. Although program testing can be a very
effective way to show the presence of bugs, it is inadequate
for showing their absence [112]. In these cases, verification
techniques are used to explore some general properties about
the behaviour of a program. Most of the verification done
in C-AS is in the form of model checking, an approach to
formal verification that proves whether if a model meets
a given specification. Along with verification techniques,
C-AS are usually evaluated by using simulations. In these
experiments, the behaviour of a system is imitated in order to
provide a preliminary understanding of its performance. The
rest of the section discusses some representative samples of the

Ubicomp features &
Decision making

Fluid Interactions Privacy

Ubicomp features
[108] Upfront Value

Proposition
[108] Personal Ubicomp
[108] Ubicomp for groups
[108] Ubicomp for places
[108] Exploration and

navigation guides
[108] Enhanced

emergency response
[108] Personal memory aids
[108] Smart homes
[108] Augmented

reality games
[108] Streamlining

business operations
[109] Global data proxies

Decision making
[107] Adaptation detector
[107] Case-based reasoning
[107] Divide & conquer
[107] Architecture-based
[107] Trade-off based

[109] [108] Follow-me
displays

[109] [108] Context-
sensitive I/O

[110] Typified context
element

[108] Scale of interaction
[108] Sense-making of

services and devices
[108] Streamlining

repetitive tasks
[108] Keeping users

in control
[108] Serendipity

in exploration
[108] Active teaching
[108] Resolving ambiguity
[108] Ambient displays
[108] Pick and drop
[109] Appropriate levels

of attention and
anticipation

[108] Fair information
practices

[108] Respecting social
organizations

[108] Building trust
and credibility

[108] Reasonable
level of control

[108] Appropriate
privacy feedback

[108] Privacy sensitive
architectures

[108] Partial identification
[108] Physical privacy zones
[108] Blurred personal data
[108] Limited access

to personal data
[108] Invisible mode
[108] Limited data retention
[108] Notification on access

of personal information
[108] Privacy mirrors
[108] Keep personal data on

personal devices

Monitoring Physical-Virtual Spaces Adaptations

[111] Flyweight
[111] Hybrid mediator-

observer
[111] Enactor
[111] Flexible context pro-

cessing
[107] Sensor factory
[107] Reflective monitoring
[107] Context-based routing

[109] [108] Physical-virtual
associations

[110] Active context element
[108] Active Map
[108] Tropical information
[108] Successful experience

capture
[108] User-created content
[108] Find a place
[108] Find a friend
[108] Notifier

[111] Strategy
[110] Rule-based adaptation
[110] Context wrapper
[107] Component insertion
[107] Component removal
[107] Server reconfiguration
[107] Decentralized reconfig-

uration

Table 5: Classification of design patterns used for context-aware systems
development based on their applicability.

state-of-the-art for evaluating the design of a C-AS.

3.3.5.1. Formal Verification. Formal verification techniques
provide a safer development of systems in intelligent envi-
ronments, what leads to increase their reliability [113]. Au-
gusto et al. [114] show techniques as well as tools that can
be used to model processes and interactions, detecting prob-
lems through simulation and verification in early stages of the
development. On a further work, Augusto and Hornos [115],
present a methodological guide which provides strategies and
suggestions on how to model, simulate and verify these types
of systems. Is divided in four stages: A) Informal modelling;
B) Structural modelling; C) Behavioural modelling; D) Simu-
lation and verification. The methodology is centred on a refine-
ment strategy which starts identifying the core components of
Intelligent Environments (sensors/actuators, actors, interfaces
and communication mechanisms) and then working on succes-
sive models of increasing complexity. Although their method-
ology is tool-independent, they illustrate it using SPIN [116],
a generic and open verification system that supports the design
and verification of asynchronous process systems. Preuveneers
and Berbers [117] also support a model checking approach in
order to being able to verify the many possible configurations
and contextual situation that a C-AS can be in. They discuss

13



the major benefits and weaknesses of the SPIN tool. D’Errico
and Loreti [118] present a set of formal tools that allows speci-
fying systems along with a model-checking algorithm to verify
whether considered specification satisfy the expected proper-
ties. They introduce µKLAIM, based on a simplified version
of a Kernel language for agent interaction and mobility [119],
which is based on an assume-guarantee approach: A system is
not considered as isolated, but in conjunction with assumptions
on the environment behaviour where is executed. The system
can be specified in: I) Process, accurately defined; II) Environ-
ment, more abstract and formalized by logical formulae. To
specify properties of µKLAIM systems they use modal logic
(MoMo) that allows describing interactions that the enclosing
environments can have. Liu et al. [120] present AFChecker, a
public available tool to improve user’s fault detection and in-
spection experiences. It has three major components: 1) Model
checker based on a technique for fault patterns and their au-
tomated identification [121]. Which derives a state transition
model from a set of user-configured adaptation rules and veri-
fies the model to detect five8 common types of adaptation faults;
2) Constraint inference engine, that infers both deterministic
and probabilistic constraints based on CHOCO9 by analysing
the propositional atoms in the user-configured adaptation rules;
3) Fault Report Processor, that processes the fault reports gen-
erated by its underlying model checker. The ranking of fault
reports for user’s inspection can be dynamic or static, depend-
ing on the interaction mode.

Approach Applicability Pros Cons

• Tool:
SPIN [116]
• Language:

PROMELA
[122]
• Methodology:

MIRIE [115]

Intelligent
Environments

[113],
Multi-agent

systems
[123],

Environments
with multiple

devices
and/or
sensors

• Identify contexts that
can give rise to con-
flicting actions
• Supportive finding

non-deterministic
system behaviours
• Provide counter-

examples for unverifi-
able situations

• Natural explicit repre-
sentation of time
• Difficult to model ex-

ternal influences
• Easy to overlook de-

pendencies among con-
text variables
• In complex situations,

many state spaces are
difficult to process effi-
ciently

• Tool:
µKLAIM
[118]
• Language:

KLAIM [119]
MoMo [124]
• Methodology:
µKLAIM
[118]

Code on
Demand,
Remote

Evaluation,
Mobile
Agents,

Distributed
Systems

• Allows specifying
systems by means of
mixed specifications
• Associativity and com-

mutativity of parallel
and non-deterministic
operators

• Descriptions of the
whole system are
required to stablish
system properties

• Tool:
AFChecker
[120]
• Language:

CHOCO9

• Methodology:
5

User-
configured
rule-based
adaptations

• Alleviates the false
positive problem
• Users can validate their

own rules

• Only considers con-
straints on a binary
basis
• Might be too resource

consuming for execut-
ing in a mobile device

Table 6: Comparative analysis on the advantages and disadvantages of the
different approaches for validating context-aware systems through model

checking.

8Non-deterministic adaptations, dead rule predicates, dead states (meaning
that no rules can be satisfied in these states), adaptation traces and unreachable
states.

9Open source Java library. http://choco-solver.org/

3.3.5.2. Simulation and test-case generation. Park et al. [125]
present CASS, a simulation tool for smart-homes that is able
to generate virtual people in order to perceive its movements
and actions through sensors. The tool is programmed in Java,
and it allows modifying and deleting sensors/devices according
to the developers preferences. After, it can perceive simulated
movements of virtual people, generating proper values for each
sensor type. They also describe the system architecture and hi-
erarchical rule structure model for smart-homes. Wang et al.
[126], provide an approach for automating the generation of
tests for context-aware pervasive applications. They provide an
integrated solution to identify when context changes may be rel-
evant, and a control mechanism to guide the execution of tests
into potentially interesting contextual scenarios as defined by a
coverage criterion that is context-cognizant. Their solution can
be used to enhance other test suites of context-aware applica-
tions.

Bertran et al. [127] introduced DiaSuite, a tool suite
for the development of sense-compute-control applications.
Within their suite of tools, they present DiaSim [128], a
parametrized simulator to ease the acquisition, testing and
interfacing of a variety of software and hardware components.
The simulator is parametrized to a high-level description of
the target environment, written in their own specification
language (DiaSpec). This description is used to generate both
a programming framework to develop the simulation logic and
an emulation layer to execute applications. Furthermore, the
simulation can be rendered, allowing to visually monitor and
debug the system. Their tool can be found as an Eclipse10

plugin. Yu et al. [129] apply a bi-graphical reaction system to
model the environment that interacts with the middleware and
domain services in the development of C-AS. To model the
data entities in the environment, they extend the bi-graphical
sorting predicate logic and build a meta-model. Then, they
create a model of the middleware using an extended finite state
machine. By synchronizing the bi-graphical reaction system
with the state machine, they can generate test cases to verify
the interactions between the environment and the middleware.
Finally, they show the reductions of the number of test cases
by using a bi-graphical pattern-flow based testing on an airport
example. Their tool is also in the form of an Eclipse10 plugin.

Generally, authors recognize three main issues when simu-
lating C-AS[127][129]: Modelling, source simulation and per-
formance. First, it is difficult to determine what to model and
in what granularity. Likewise, the model needs to be accurate
enough to match such granularity. Second, some issues about
the correctness of the stimulus producers may arise when either
the logged data are replayed from actual sensors or a domain-
specific modelling function is introduced. Emulated sensors
must be programmed in such way, that for a given input, they
produce the same output as its equivalent real sensor. Besides,
merging the different intensities of simulated sensors requires

10 Eclipse is an integrated development environment (IDE) from the open
source community of tools, projects and collaborative working groups Eclipse.
https://eclipse.org/

14



domain-specific knowledge. Finally, physical spaces may in-
volve lots of services, accurate simulation models and rich sim-
ulation logics which can be resource consuming.

Approach Features Limitations Tool
Support

CASS
[125]

• Simulate virtual people
perceiving simulated
movements in sensors
• Able to detect rule con-

flicts

• Very ad-hoc
• Only applicable to

smart home develop-
ment

3

Automated
generation

of tests
[126]

• Enhance existing test-
suites
• Identify when context

changes might be rele-
vant

• Static analysis tools are
conservative
• Infeasible drivers

5

DiaSim
[128]

• Automatically gener-
ates an emulation layer
to run the application
code unchanged
• Generation of a simu-

lation framework to al-
low the development of
the simulation logic

• The simulation logic
has to be done by de-
velopers

3

Bi-graphs
& EFSM

[129]

• Test cases are gener-
ated tracing the inter-
actions between the bi-
graphical model and
the middleware
• The number of test

cases is reduced by us-
ing a bi-graphical pat-
tern flow

• Assumes that mid-
dleware invokes only
atomic services
• Reaction rules are trig-

gered in matches with
agents and/or a middle-
ware analysis result

3

Table 7: Comparative analysis on the features and limitations of the different
approaches for evaluating context-aware systems through simulations.

3.4. Implementation
After a good design and verified plan, there is a need to re-

alize the implementation of the ideas into a tangible system.
In this subsection we analyse the most common techniques for
context information management and the most acknowledged
programming paradigms that have been used for C-AS devel-
opment.

3.4.1. Context information management techniques
There has been some research in what regards to context in-

formation management techniques [130] [131] [61] [132] [96].
Perera et al. [9], presented what we consider the most complete
survey on it. They classified the context information life-cycle
into: 1) Acquisition; 2) Modelling; 3) Reasoning; and 4) Dis-
semination. They analysed each of the techniques and com-
pared their advantages and disadvantages. Following, a brief
summary of the main techniques for this purpose.

3.4.1.1. Acquisition. For acquiring context, they discuss five
factors that need to be considered when developing context-
aware middleware solutions:

I) Responsibility: (a) Pull, the data is obtained from the sen-
sors with a request; (b) Push, the sensor gives the data
(periodically or instantly) to the software component that
is responsible of obtaining it.

II) Frequency: (a) Instant, when events occur instantly (e.g.,
Switching on a light or opening a door); (b) Interval, when
events span a certain period.

III) Source: (a) Directly from sensor hardware; (b) Acquire
through a middleware infrastructure or solution; (c) Ac-
quire from context servers (e.g., databases or web ser-
vices).

IV) Sensor types [132]: (a) Physical, that generate sensor data
by themselves; (b) Virtual, that do not necessary create
sensor data by themselves and can retrieve data from many
sources publishing it as sensor data; (c) Logical, that com-
bine physical and virtual sensors to produce more mean-
ingful information.

V) Acquisition process: (a) Sense, in which the data is
sensed through sensors, including the data stored in
databases; (b) Derive, in which the information is gen-
erated by performing computational operations on sen-
sor data; (c) Manually provided, in which users provide
context information manually via preferred setting options
such as preferences.

3.4.1.2. Modelling and Representation Techniques. In order to
implement models related to context, there is a need of plat-
forms and techniques with the power to support the expression
and handling needs of context information. Below, a brief in-
troduction to the most commonly used techniques for context
modelling [130]:

I) Key-Value: The simplest form of context models, involv-
ing a name and context value pairs. Used to model lim-
ited amount of data such as user preferences and applica-
tion configurations. Contain mostly independent and non-
related pieces of information, which are suitable for lim-
ited data transferring and any other less complex tempo-
rary modelling requirements.

II) Markup Scheme: Hierarchical data structures are formed
using these models, consisting of mark-up tags, attributes
and content. It can be the intermediate data organisation
format as well as mode of data transfer over network. It
can be used to decouple data structures used by two com-
ponents in a system.

III) Graphical: Modelling of context using graphical notation
as UML, Object-Role Modelling, and other DSLs. Ideal
for long term and large volume of permanent data archival.
Historic context can be stored in databases.

IV) Object Oriented: Take advantage of object-oriented con-
cepts and techniques as encapsulation and inheritance. To
represent context in programming code level. It allows
context runtime manipulation.They work on a very short
term, temporary and mostly stored in computer memory.
Also, support data transfer over network.

V) Logic Based: Use facts, expressions and rules to define
formal models. Different facts can be inferred separately
and then used in existing rules to derive higher context
knowledge. It is used for generating high-level context
using low-level one, generating new knowledge. It is also
used for modelling events and actions as well as for defin-
ing constraints and restrictions.

15



VI) Ontology Based: Can be used to describe taxonomies of
concepts, including relationships. Besides, they allow dif-
ferent context reasoning techniques and inference rules.
Rather than storing data on ontologies, data can be stored
in appropriate data sources, while structure is provided by
ontologies.

All techniques have their strong points and drawbacks, although
ontologies are the most widely adopted approaches, still have
some deficiencies that could be mitigated in hybrid approaches
[61]. Although the representation and information retrieval in
ontologies can be complex, they support semantic reasoning,
expressive representations of context, have strong validation,
are application independent, allow sharing, have strong support
by standardizations and have fairly sophisticated tools avail-
able.

3.4.1.3. Reasoning. Once the context is modelled, there is a
need of creating new knowledge and have a better understand-
ing based on the currently sensed context. Techniques for this
purpose can be divided into [9]:

I) Supervised Learning: Training examples are collected to
label them according to the expected results. Finally, a
function can generate the expected results using the train-
ing data. Techniques such as decision trees, Bayesian Net-
works, Artificial Neural Networks and Support Vector Ma-
chines are considered in this group.

II) Unsupervised Learning: Techniques that can find hidden
structures in unlabelled data. Such as K-nearest neighbour,
Kohonen Self Organizing Map (KSOM), Noise and outlier
detection and Support Vector Machines.

III) Rules: One of the simplest, straightforward and popular
reasoning methods. They usually have an IF-THEN-ELSE
structure, but they can be based on simple mapping asso-
ciations of IDs to entities (RFID) [38].

IV) Fuzzy Logic: Allows approximate reasoning instead of
fixed one, extending the Boolean values form 0 or 1 to
expressions that simulate closeness to a natural language.
The confidence values represent degrees of membership
rather than probability.

V) Ontological: Based on description logic, ontological rea-
soning is supported by OWL and RDF, rules as SWRL, are
increasingly popular.

VI) Probabilistic: It allows decisions to be made based on
probabilities attached to the facts related to the problem.
These include techniques such as Dempster-Shafer, Hid-
den Markov Models and Naive Bayes.

3.4.1.4. Dissemination. Once the context information is ready,
it has to be distributed to the consumers, and it is closely related
to context acquisition. The distribution techniques are:

I) Query: The context consumer makes a request in certain
manner so that they can obtain some specific results.

II) Subscription: The context consumer subscribes with the
context management system. Then, this system will return
the results periodically.

3.4.2. Programming paradigms
A programming paradigm is the structuring of thought that

determines the foundation of a programming activity, influenc-
ing the structure and elements of programs. In this subsection,
the mostly used programming paradigms for the C-AS devel-
opment are briefly analysed. We have classified them into:
A) Conventional; B) Emerging; C) Model Driven. The inten-
tion is not to have thorough research on them, but to highlight
the most important bits on each of them. Due to space con-
straints, many papers have been omitted from each approach.
A table comparing all the paradigms can be found in Table 8.

3.4.2.1. Conventional programming paradigms. In this sub-
section we briefly overview approaches based on programming
paradigms that were originally conceived for the creation of
conventional software systems, but that have been tried for the
development of C-AS. We have divided it into four different
approaches: A) Object-oriented; B) Aspect-oriented; C) Fea-
ture-oriented; and D) Service-oriented.

A) Object-oriented: Is the dominant programming paradigm
for conventional software development. Considers the
idea of building a software system by decomposing a prob-
lem into objects. These, abstract together behaviour and
data into a single conceptual entity. Fortier et al. [133]
introduce a programming and execution model support-
ing the development and execution of location-aware ap-
plications in mobile distributed systems. They show how
to: A) Separate application concerns of C-AS to improve
modularity; B) Ojectify context-aware services; Deal with
contextual information; C) Model context; and D) Take
advantage of transparent distribution mechanisms in mo-
bile environments. Graff et al. [134] present an architec-
ture for developing context-aware applications. They use
and extend the dependency mechanism to connect differ-
ent layers to avoid cluttering the application with rules or
customization code.

B) Aspect-oriented: This paradigm [135] complements the
object-oriented approach and was created for giving re-
sponse to the programming problems for which neither
procedural nor object-oriented programming techniques
were sufficient to clearly capture important design deci-
sions that a program must implement. It addresses the
cases where behaviours have a difficult to define structure,
because they are scattered across methods, classes, object
hierarchies or even entire object models. For this purpose
the approach uses Aspects, properties for which the im-
plementation can not be cleanly encapsulated in a gener-
alized procedure. The attractiveness for C-AS developers
is that enables a system to adopt new features as it is cre-
ated. Developers can dynamically modify the static object-
oriented model to grow a system in order to meet new re-
quirements. Tanter et al. [136] present an open framework
for context-aware aspects to both restrict the scope of as-
pects according to the context and allow aspect definitions
to access information associated to the context. Dantas et
al. [137] show a comparative study on aspect-oriented pro-

16



O
bj

ec
t-

or
ie

nt
ed

A
sp

ec
t-

or
ie

nt
ed

Fe
at

ur
e-

or
ie

nt
ed

So
ft

w
ar

e
Pr

od
uc

t
L

in
es

Se
rv

ic
e-

or
ie

nt
ed

A
ge

nt
-o

ri
en

te
d

H
ol

op
ar

ad
ig

m
C

on
te

xt
-o

ri
en

te
d

M
od

el
-d

ri
ve

n
D

om
ai

n
Sp

ec
ifi

c
L

an
gu

ag
e

Tr
ig

ge
r-

ac
tio

n
pr

og
ra

m
m

in
g

B
ui

ld
in

g
U

ni
t

O
bj

ec
t:

C
om

bi
na

tio
n

of
va

ri
ab

le
s,

fu
nc

tio
ns

an
d

st
ru

ct
ur

es

A
sp

ec
t:

Pr
op

er
tie

s
fo

rw
hi

ch
th

e
im

pl
em

en
ta

tio
n

ca
n

no
tb

e
cl

ea
nl

y
en

ca
ps

ul
at

ed
in

a
ge

ne
ra

liz
ed

pr
oc

ed
ur

e

Fe
at

ur
e:

U
ni

to
f

fu
nc

tio
na

lit
y

of
a

so
ft

w
ar

e
sy

st
em

th
at

:1
)S

at
is

fie
s

a
re

qu
ir

em
en

t;
2)

R
ep

re
se

nt
s

a
de

si
gn

de
ci

si
on

;o
r3

)
Pr

ov
id

es
a

po
te

nt
ia

l
co

nfi
gu

ra
tio

n
op

tio
n

P
ro

du
ct

Li
ne

:
Sa

tis
fy

di
ff

er
en

t
sp

ec
ifi

c
ne

ed
s

by
us

in
g

a
co

m
m

on
se

t
of

co
re

as
se

ts
in

a
pr

es
cr

ib
ed

w
ay

Se
rv

ic
e:

So
ft

w
ar

e
av

ai
la

bl
e

to
cu

st
om

er
s

ov
er

a
ne

tw
or

k

A
ge

nt
:

E
nt

ity
w

ho
se

st
at

e
co

ns
is

ts
of

m
en

ta
l

pr
op

er
tie

s
(b

el
ie

fs
,

ca
pa

bi
lit

ie
s,

ch
oi

ce
s

an
d

co
m

m
itm

en
ts

)

B
ei

ng
:

C
om

bi
na

tio
n

of
in

te
rf

ac
e,

be
ha

vi
ou

r
an

d
hi

st
or

y

C
om

bi
na

tio
n

of
:1

)
B

eh
av

io
ur

al
va

ri
at

io
ns

;2
)

L
ay

er
s;

3)
L

ay
er

ac
tiv

a-
tio

n/
de

ac
tiv

at
io

n
m

ec
ha

ni
sm

s;
an

d
4)

L
ay

er
sc

op
e

M
od

el
:

Si
m

pl
ifi

ed
re

pr
es

en
ta

tio
n

of
a

co
nc

ep
t

D
om

ai
n

M
od

el
:

N
ot

at
io

n
ta

ilo
re

d
to

ex
pr

es
s

th
e

re
le

va
nt

co
nc

ep
ts

,f
ea

tu
re

s
an

d
to

pi
cs

th
at

ar
e

re
la

te
d

to
a

sp
ec

ifi
c

pr
ob

le
m

.

C
on

di
tio

na
l

st
at

em
en

ts
in

th
e

fo
rm

of
“i

ft
hi

s
th

en
th

at
”

G
en

er
al

A
pp

lic
ab

ili
ty

•
E

nc
ap

su
la

tin
g

be
ha

vi
ou

r
an

d
da

ta

•
E

nc
ap

su
la

tin
g

cr
os

s-
cu

tti
ng

co
nc

er
ns

(H
o-

m
og

en
eo

us
,

dy
na

m
ic

an
d

fe
a-

tu
re

in
te

gr
at

io
n

[1
40

])

•
E

nc
ap

su
la

tin
g

cr
os

s-
cu

tti
ng

co
nc

er
ns

(H
et

er
og

en
e-

ou
s,

St
at

ic
an

d
fe

at
ur

e
co

m
po

si
-

tio
n

[1
40

])

•
M

an
ag

e
va

ri
ab

ili
ty

•
In

te
gr

at
e

di
s-

tr
ib

ut
ed

sy
st

em
s

•
C

om
pl

ex
co

m
-

m
un

ic
at

io
n

[1
41

]
•

E
nt

ity
co

op
er

a-
tio

n,
ne

go
tia

tio
n

an
d

co
m

pe
tit

io
n

•
A

ut
on

om
ou

s
be

-
ha

vi
ou

r[
14

1]
•

V
ar

ia
bl

e
sy

st
em

pu
rp

os
e

[1
41

]

•
U

bi
qu

ito
us

co
m

-
pu

tin
g

•
D

is
tr

ib
ut

ed
pr

o-
gr

am
s

•
A

da
pt

th
e

be
-

ha
vi

ou
r

of
en

ti-
tie

s
dy

na
m

ic
al

ly
[1

42
]

•
D

ea
l

w
ith

co
m

-
pl

ex
ity

•
G

ui
de

th
e

de
ve

l-
op

m
en

t

•
Sp

ec
ia

liz
at

io
n

of
fe

at
ur

es
fo

ra
pa

r-
tic

ul
ar

do
m

ai
n

•
A

llo
w

in
g

un
ex

-
pe

ri
en

ce
d

us
er

s
to

pr
og

ra
m

th
e

be
ha

vi
ou

r
of

di
ff

er
en

t
de

vi
ce

s
an

d
ap

pl
ic

at
io

ns

A
dv

an
ta

ge
s

•
M

od
ul

ar
ity

•
M

ai
nt

ai
n-

ab
ili

ty
(M

od
ifi

ab
ili

ty
,

E
xt

en
si

bi
lit

y
an

d
R

e-
us

ab
ili

ty
)

•
M

at
ur

e
ap

pr
oa

ch

•

C
om

pl
em

en
ta

tio
n

of
ob

je
ct

-
or

ie
nt

ed
•

B
et

te
r

m
ai

nt
ai

n-
ab

ili
ty

an
d

co
de

un
de

rs
ta

nd
in

g

•

C
om

pl
em

en
ta

tio
n

of
ob

je
ct

-
or

ie
nt

ed
•

B
et

te
r

m
ai

n-
ta

in
ab

ili
ty

an
d

co
de

un
de

rs
ta

nd
in

g

•
R

e-
us

ab
ili

ty
•

So
ft

w
ar

e
qu

al
ity

co
nt

ro
l

•
B

et
te

r
re

qu
ir

e-
m

en
ts

an
al

ys
is

•
R

ed
uc

e
m

ai
nt

e-
na

nc
e

an
d

te
st

in
g

co
st

s

•
Pl

at
fo

rm
an

d
L

oc
at

io
n

in
de

-
pe

nd
en

ce
•

M
ai

nt
ai

na
bi

lit
y

(M
od

ul
ar

ity
an

d
R

eu
se

)
•

Sc
al

ab
ili

ty

•
Pr

oc
es

si
ng

sp
ee

d-
up

[1
43

]
•

R
ed

uc
ed

co
m

-
m

un
ic

at
io

n
ba

nd
w

id
th

[1
43

]
•

In
cr

ea
se

d
re

lia
-

bi
lit

y
[1

43
]

•
N

ot
ev

al
ua

te
d

ye
t
•

E
na

bl
e

so
ft

w
ar

e
en

tit
ie

s
to

ad
ap

t
th

ei
r

be
ha

vi
ou

r
dy

na
m

ic
al

ly
[1

42
]

•
L

ay
er

s
in

cr
ea

se
re

-u
sa

bi
lit

y
[1

42
]

•
R

ed
uc

e
ri

sk
•

B
et

te
r

un
de

r-
st

an
di

ng
am

on
g

st
ak

eh
ol

de
rs

•
R

ed
uc

e
co

st
s

•
Pr

od
uc

tiv
ity

•
L

on
g

te
rm

co
st

•
Pl

at
fo

rm
in

de
-

pe
nd

en
ce

•
O

ff
er

s
gr

ea
te

r
m

ot
iv

at
io

n,
co

nt
ro

l,
ow

ne
r-

sh
ip

,
cr

ea
tiv

ity
an

d
qu

al
ity

to
en

d-
us

er
s

[5
4]

•
U

se
rs

ar
e

in
co

n-
tr

ol
;

us
er

s
kn

ow
th

ei
r

ta
sk

s
be

st
[5

1]
•

R
el

ea
se

s
de

ve
l-

op
er

s
bu

rd
en

•

D
is

ad
va

nt
ag

es
•

Im
pe

rf
ec

t
la

n-
gu

ag
es

(S
pe

ed
an

d
Si

ze
)

•
Pl

an
ni

ng
eff

or
t

•
H

ow
to

sp
ec

if
y

as
pe

ct
s

•
W

ha
t

co
m

-
po

si
tio

n
an

d
im

pl
em

en
ta

tio
n

m
ec

ha
ni

sm
s

to
pr

ov
id

e
•

W
ha

t
im

pl
em

en
-

ta
tio

n

•
A

rc
hi

te
ct

ur
al

in
-

te
gr

ity
•

Su
pe

rfi
ci

al
kn

ow
le

dg
e

on
la

ye
rs

•
R

eq
ui

re
s

co
m

-
m

un
ic

at
io

n
th

ro
ug

h
th

e
or

ga
ni

za
tio

n
[1

44
]

•
L

ac
k

of
gu

id
e-

lin
es

,
te

ch
ni

qu
es

an
d

to
ol

s
fo

r
pr

od
uc

t
lin

e
ar

-
ch

ite
ct

ur
e

de
si

gn
[1

44
]

•
E

xp
er

t
kn

ow
l-

ed
ge

of
th

e
ap

pl
ic

at
io

n
do

m
ai

n
[1

44
]

•
A

va
ila

bi
lit

y
•

Se
cu

ri
ty

•
In

ve
st

m
en

tc
os

t
•

R
es

po
ns

e
tim

e
an

d
m

ac
hi

ne
lo

ad
•

Se
rv

ic
e

m
an

ag
e-

m
en

tc
om

pl
ex

ity

•
T

he
be

ne
fit

s
of

th
is

pa
ra

di
gm

ha
ve

no
t

be
en

de
m

on
st

ra
te

d
[1

45
]

•
St

ill
m

at
ur

in
g

ar
ea

•
N

ot
ev

al
ua

te
d

ye
t
•

C
ur

re
nt

pr
og

ra
m

-
m

in
g

la
ng

ua
ge

im
pl

em
en

ta
tio

ns
co

ul
d

ha
ve

pe
r-

fo
rm

an
ce

is
su

es
[1

46
]

•
D

o
no

t
su

pp
or

t
st

at
ic

ch
an

ge
s

•
St

ill
m

at
ur

in
g

ar
ea

•
Sp

ec
if

yi
ng

de
ta

ils
•

In
tr

od
uc

es
ri

gi
d-

ity

•
Sh

or
tt

er
m

co
st

•
Tr

ai
ni

ng
pe

rs
on

-
ne

l
•

To
o

sp
e-

ci
fic

/g
en

er
ic

m
od

el
s

•
D

om
ai

n
K

no
w

l-
ed

ge
re

qu
ir

ed

•
U

se
rs

ha
ve

to
th

in
k

ab
ou

t
ru

le
s

or
fin

d
th

em
on

a
st

or
e

•
Sy

st
em

s
m

ay
be

-
co

m
e

in
co

m
pa

ti-
bl

e
or

in
tr

od
uc

e
in

co
ns

is
te

nc
ie

s

Ta
bl

e
8:

C
om

pa
ra

tiv
e

an
al

ys
is

on
th

e
ad

va
nt

ag
es

an
d

di
sa

dv
an

ta
ge

s
of

th
e

di
ff

er
en

tp
ro

gr
am

m
in

g
pa

ra
di

gm
s

us
ed

or
cr

ea
te

d
fo

rc
on

te
xt

-a
w

ar
e

sy
st

em
de

ve
lo

pm
en

t.

17



gramming for C-AS, identifying CSAspectAJ as the most
complete between the evaluated approaches, in what re-
gards to synchronization issues, transparency, joint-point
models, exception handling and implementation availabil-
ity. Fuentes et al. [138] [139] presented an approach to
design and implement aspect-oriented context-aware ap-
plications, run and test the design models, and show how
these models map into an implementation.

C) Feature-oriented: Feature-Oriented Software Develop-
ment (FOSD) is a paradigm for the construction, cus-
tomization, and synthesis of large-scale software systems
[147]. A feature is a unit of functionality of a software sys-
tem that satisfies a requirement, represents a design deci-
sion, and provides a potential configuration option [147].
To this level of detail, feature-oriented programming re-
sembles aspect-oriented programming. Both paradigms
focus on a specific class of design and implementation
of problems called cross-cutting concerns. These, are a
design decision or issue whose implementation is scat-
tered through the modules of code, violating the separa-
tion of concerns and modularity. Nevertheless, they are
not competing approaches and can be used in combina-
tion to overcome individual limitations [140]. Ubayashi
et al. [148] try to reduce the complexity of context-aware
design by separating concerns. The demand of C-AS for
static changes can benefit from the use of Software Prod-
uct Line Engineering, reusing artefacts over a set of simi-
lar programs, called a Software Product Line (SPL) [149].
Both feature-oriented and aspect-oriented paradigms have
been used along with SPL for C-AS development. Never-
theless, it has to be mentioned that , the approaches using
SPL and the aspect-oriented paradigm are more popular.
Following, we analyse more in depth the combination of
them:

- Software Product Lines (SPL): Fernandes et al. [150]
[151] propose UbiFEX, an approach that supports
feature analysis process for context-aware SPL and
feature notation that provides context information
representation as well as context rules specification.
Parra et al. [152] create a composition of assets bind-
ing context adaptation to features for a context-aware
Dynamic Software Product Line (DSPL), named
CAPucine. In mobile computing, Marinho et al.
[153] show a SPL for mobile and context-aware ap-
plications, along with the approach used to build it
and a verification mechanism [154]. Kramer et al.
[155] present an approach to support static and dy-
namic variability of a single code base of GUI docu-
ments within features, providing tool support. They
also present a generic context acquisition engine for
mobile devices [156]. This engine is used as a sin-
gle customizable acquisition mechanism which can
monitor, manage and disseminate context informa-
tion to applications that are running on the same de-
vice. It also supports the composition of captured
context events.

D) Service-oriented: The service-oriented approach to pro-
gramming is based on the idea of composing applications
by discovering and invoking network-available services
to accomplish some task. In this paradigm, services are
used as fundamental elements for developing applications.
Kapitsaki et al. [157] survey methodologies and solutions
for context-aware service engineering. They also acknowl-
edge that the service engineering community lacks of a
universally accepted basic design and development princi-
ples that can lead to a uniform approach to context-aware
service development. Abeywickrama [158] claims for the
need of solid software engineering methodologies needed
for context ware development and execution. They present
a software-engineering-based approach, using a model-
driven architecture, aspect-oriented modelling and formal
model checking.

3.4.2.2. Emerging programming paradigms. In this subsec-
tion we focus on new emerging programming paradigms that
can be potentially used for the development of C-AS or were
created specifically to build them.

A) Agent-oriented: This paradigm stems from a branch of
Artificial Intelligence (AI) that attempts to combine dis-
tributed systems, AI and software engineering in a single
discipline [159] [160]. It adopts the agent [161] abstrac-
tion for software development, which introduces the no-
tion of mentality into the programming environment. Un-
der this approach, the agent is used as the basic building
block for creating software. An agent is an entity, whose
state is viewed as consisting of mental components such
as beliefs, capabilities, choices and commitments. They
are usually considered as able to control their own be-
haviour in the furtherance of their own goals, being au-
tonomous [162]. Different agents can be combined in a so
called Multi-Agent System (MAS), in order to solve prob-
lems that are more difficult or impossible to achieve for
an individual agent or system. The approach has been ac-
knowledged as a promising in C-AS development by some
authors [63] [163]. As an example, Murukannaiah and
Singh [164] present Xipho, an agent oriented methodol-
ogy that assists the developer in systematically modelling
a context-aware personal agent (CPA) via cognitive con-
structs.

B) Holoparadigm: Victoria-Barbosa et al. [165] present
holoparadigm, which integrates different programming
paradigms in order to develop distributed/embedded sys-
tems. The paradigm is based on an abstraction called Be-
ing, which can be elementary or composed of other be-
ings. An elementary being is an atomic being without
composition levels. Is divided into: (1) Interface, describ-
ing the possible interactions among beings, (2) Behaviour,
that contains actions composed, which implement the be-
ing’s functionality and (3) History, a synchronized shared
storage space in a being, which supports the communi-
cation and synchronization among the behaviour actions.
On the other hand, a composed being may be formed from
other beings that can be executed concurrently and shares

18



the history with its component beings. In order to coor-
dinate the actions a model is used based on blackboard
architecture. In further works [166] [167] they propose
to apply a programming model specifically designed for
the specification of context-aware applications, based on
holoparadigm. It is intended to simplify the mobility man-
agement and the implementation of C-AS.

C) Context-oriented: Context Oriented Programming (COP)
[142] is a technique to enable context-dependent com-
putation. Is concerned with programming language con-
structs to represent and manipulate behavioural variations.
COP tries to isolate the definitions from the business logic
of application, conceptually separating context provision-
ing from the execution of the adaptable software. They
identify four essential language properties to support COP
[142]: 1) Means to specify behavioural variations; 2)
Means to group variations into layers; 3) Dynamic activa-
tion and deactivation of layers based on context; 4) Means
to explicitly and dynamically control the scope of layers.
Salvaneschi et al. [106] give an overview of the COP
techniques from the perspective of software engineering,
recognising it as an apparently natural approach for this
kind of systems. They acknowledge that supporting dy-
namic adaptation through proper language-level abstrac-
tions allows addressing the issues of adaptive software
and avoid the decision logic for adaptive applications’ be-
haviour to be scattered. Appeltauer et al. [146] present
a comparison of presented context-oriented programming
languages and acknowledge that they still have some per-
formance penalties.

3.4.2.3. Model Driven Development. As compilers let pro-
grammers specify what the machine should do instead of how
it should do it, Model-Driven Development (MDD) [168] aims
to specify the system via high-level abstraction models that will
be transformed into code. Models aim to reduce risk, helping to
understand both a complex problem and its potential solutions
before undertaking the expense and effort of a full implemen-
tation [169]. Sheng and Benatallah [170] presented Contex-
tUML, a modelling language based on the Unified Modelling
Language (UML) [171] for the model-driven development of
context-aware web services. Serral et al. [172] [173] intro-
duce a model-driven development method for context-aware
pervasive systems. It applies the Model-Driven Architecture
(MDA) [168] and Software Factories (SF), along with the Per-
vML modelling language and the SOUPA ontology. Tesoriero
et al. [174] presented CAUCE, a methodology based on MDA
[168], to provide a model-driven development of applications
for Ubiquitous Computing environments. It is also worthy
to be mentioned that there are some Domain Specific Lan-
guages (DSL) for the development of context-aware software
systems [175] [176]. Recently, a domain specific language
called Trigger-action programming [47] [45] [46] is gaining
popularity. Following, we briefly explain it:

- Trigger-action programming: Is a programming model
based on the End-User Development paradigm [44], where

average users can manually customize a service accord-
ing to their preferences, likes and expectations [46]. By
reducing the complexity of programming, expressing the
system behaviour becomes accessible to end-users. These,
only need to handle simplified if-then programming rules
that match a trigger with an action. Is starting to emerge
in areas such as smart-homes/buildings [177] or smart-
phones [178]. Services and applications such as IFTTT 11

or Tasker 12 let end-users create rules with sensors/devices
that they already have and use in their daily life. A re-
cent study [45] has found that this approach can express
the most desired behaviours in order to personalize smart-
home devices. Through a usability test conducted to 226
participants, they encountered that users without experi-
ence can learn to create programs containing multiple trig-
gers or actions obtained by extending the IFTTT language,
that can express only one trigger and one action.

3.5. Deployment and Maintenance
Once the system is implemented, a typical life-cycle does

not end. It is followed by evaluation and maintenance phases.
Also, techniques such as documentation, training and support
are highly recommended, as they help future maintenance and
enhancement, as well as user acceptance. This subsection anal-
yses the evaluation and maintenance techniques for a C-AS
specialized development. Maintenance is the modification of
a software product after its delivery in order to correct faults,
improve performance or other attributes13. C-AS require han-
dling change faster and cheaper than conventional approaches.
An initial design tends to become outdated or insufficient fairly
quickly because of changing requirements [44]. Despite the
evolutionary nature of C-AS, it is difficult to find in the litera-
ture approaches exclusively focused on improving the mainte-
nance of C-AS. In the classical software engineering paradigm,
there are four core maintenance activities [179]: (1) Adaptive;
(2) Perfective; (3) Corrective; and (4) Preventive.

3.5.0.4. Corrective. It is involved with fixing errors, faults or
bugs in the system to restore. A bug is a defect that causes the
system not to behave in the expected way. Debugging is the me-
thodical process of finding a reducing the number of software
and hardware defects in order to make the system behave in the
expected way. It gets difficult to find bugs when it comes to
classical programming, so in C-AS, where information is more
complex to handle, it gets even more complicated. It has to be
acknowledged that there is still very little research in special-
ized debugging methods for C-AS. Moos et al. [180] propose
the use of intelligibility to help users debugging why the system
is not working. In their approach, debugging for C-AS is intro-
duced as a mean to assist the users in discovering the cause of

11IFTTT (If This Then That): Is a web-based service that allows users to
create chains of simple conditional statements, triggered based on changes to
other devices or web services (Facebook,Gmail,Calendar). https://ifttt.com/

12Tasker: An android application for performing tasks based on contexts (ap-
plication,time,date,location,event,gesture) defined in user profiles or in click-
able or timer home screen widgets. http://tasker.dinglisch.net/

13ISO/IEC 14764:2006

19



the failure. In order to achieve this, they propose to include an
information exchange approach from “explanatory debugging”.

3.5.0.5. Preventive. It tries to prevent problems with the sys-
tem before they occur, anticipating adaptive maintenance needs
before users experience problems. Failure handling issues are
the most concerned theme of research for C-AS within mainte-
nance. Chetan et al. [71] classify the possible failures into:
(1) Device failures, due to the different kind of devices that
conform a pervasive system; (2) Application failures, that in-
clude application crashes due to bugs, operating system errors,
not handled exceptions, and faulty usage; (3) Network failures,
due to the different connection channels that devices can have;
(4) Service failures, as service crashes due to bugs and oper-
ating system errors, faulty operation of services, wrong infer-
ring and lossy delivery of events. Kulkarni and Tripathi [181]
present a framework for programming robust context applica-
tions. They use a recovery model that consists of mechanisms
for asynchronous event handling and synchronous exception
handling. It integrates event handling at the object level with
exception handling at the role level to build robust role-based
context-aware applications. The exception interface for roles
provides the ability for users to handle exceptions. In order to
complement their application-level recovery mechanisms, au-
thors suggest to use techniques such as replicating the trusted
servers and running the various managers in a primary backup.
The techniques for failure detection can be classified into [71]:

• Surrogate Application/Device Usage: Upon failure, the
process is restarted and restored from a stable storage de-
vice.
• Alternate Notification mechanisms: The system notifies

the personnel trough different devices. If the system
discovers that a notification device has failed, it should
reroute the message trough a different notification chan-
nel.
• Handling errors in sensing and inferring context: De-

tecting errors happened during the sensing and inferring
phases of context information. This could be done by em-
ploying redundancy (multiple sensors that sense the same),
so that the results can be compared. Another technique
could be to let users identify any errors that might experi-
ence.
• N-Version approach: Executing in N different implemen-

tations the same task and giving the correct answer to an
arbitrator.
• Fault notification mechanisms: Notify the errors in the de-

vices that the user is using. This creates a dependency
graph that could span numerous applications, services and
devices.

3.5.0.6. Adaptive & Perfective. Adaptive maintenance is in-
volved with adapting the system to the ever changing hardware
and software developments. The adaptiveness concern present
in C-AS literature is more related with the behavioural changes
that the context triggers, more than the platforms in which the
system will be executing. On the other hand, perfective main-
tenance is concerned with the improvement of the system fea-

Engineering

27%

Matureness

23%

Diversity

9%

Industry

11%

Understanding

9%

User

7%
Privacy

7%

Others

9%

Figure 2: Pie chart showing the response rate in each of the categories.

tures. To the extent of our knowledge, there is very little adap-
tive or perfective maintenance techniques for the development
of C-AS.

4. Methodologies for context-aware systems development

The previous section analyses different techniques that have
been used for developing C-AS. These, are typically focused on
addressing a specific problem in the development and are gen-
erally independent from each other. On this section, we focus
on the unification of different techniques into methodologies
that can be used for C-AS development. We assess the needs of
a methodology specifically conceived for this purpose through
a questionnaire done to 750 researchers that have conducted
some research related to C-AS development. First, we include
experts opinion in order to clarify why there is no commonly
accepted methodology for this purpose. Second, we identify
which features would a methodology require to have better ac-
ceptance in the community. Finally, we study existing efforts
in creating a unified methodology for C-AS development. For
this, we study the coverage of actual methodologies for the most
common development stages and for their desirable features ac-
cording to the questionnaire.

4.1. Assessing the needs of a methodology
In an open question of our questionnaire, contestants were

asked about the main reasons for not having a commonly ac-
cepted methodology or tool for developing marketable C-AS.
The responses were classified in eight different categories:
Engineering, Matureness, Diversity, Industry, Understanding,
User, Privacy and Others. The pie chart from Figure 2, shows
the response rate obtained in each of the categories.

a) Engineering: There are lack of standards for representing
information, models and general-purpose support. Bet-
ter managerial support should be provided once C-AS are
rolled out along with proper documentation. These sys-
tems must integrate other sub-systems (that sometimes use
emergent ever-changing technologies). Interoperability is-
sues were recognized as well as the absence of common
middleware solutions to ease its development. Besides, the
diversity of hardware-software requirements, that trade-
off with each other and the absence of common vocabu-
lary/concepts when developing C-AS has been acknowl-
edged. The difficulty to adequate a prototype to a real sys-

20



tem has not been evaluated. The research field has a big-
ger focus in the deliverables more than in the engineering
process. Finally, software development companies believe
that the application of formal methods in the early stages
of a project delays them.

b) Matureness: The immatureness of the field was acknowl-
edged, due to the technology: Expensive, invasive-size,
not too powerful/useful or that depends on other technolo-
gies that are still evolving. Also, the infrastructure is ei-
ther still very expensive or it has not been developed for
the public yet.

c) Diversity: Survey respondents also stated that there are
many alternatives (SW Architectures, algorithms, meth-
ods, techniques, etc.), that can be required in a multiple
type of developments (from operating systems to home
automation), apart from the diversity of possible scenar-
ios. One of the participants believes that context should be
approached in different ways and another that the problem
is that “different developers/researchers focus on different
aspects”.

d) Industry: There is a need for the industry to invest behind
the development of these systems. Some even acknowl-
edge that the reasons why companies do not invest money
in C-AS are that: “There is no clear business for “context-
something” applications, users don’t care, they have it al-
ready” or that “Daily life environments not being equipped
with appropriate seamlessly integrated devices for deliv-
ering contextualized application’s functions”.

e) Understanding: There is no shared understanding of con-
text and systems get the term wrong. One of the partici-
pants highlighted that there is no common vocabulary and
concepts for C-AS.

f) User: The user is a factor that influences the lack of ac-
ceptance. Participants report that the user opinions are
not taken into account neither during the development nor
while the system is executing. They also believe that users
are not confident with C-AS.

g) Privacy: Is one of the reasons behind the absence of ac-
quisition of tools/methodologies. Mainly because the user
does not feel comfortable with “a machine knowing too
much about humans”. They also recognise the lack of full
control about the collected data. One of the contributors
to the poll, states that user privacy should be taken into
account from the first stages of the design.

h) Others: A couple of experts referred to intelligibility and
the control about the information of the user and the ac-
tivities carried out in the environment. Others proposed
that there was no union of communities that study the
field and there is no reuse of knowledge between re-
searchers/companies. Finally, one of the survey respon-
dents believes that presented C-AS do not work in perfect
(or nearly perfect) real-time environments.

4.2. Desirable features for a methodology
Participants were also asked to evaluate how important

they considered some features in the development of C-AS.
From 0 to 5, where 0 is the lowest in importance and 5 the

highest. The participants were also asked to suggest features
they would include in a methodology that were not considered
in the previous questionnaire. The answers were similar to
the proposed features. Results can be graphically observed in
Figure 3. The choices given where:

3 3.5 4 4.5 5

1.A Help Defining
A a Context
1.B Situations
A a Representation
1.C User Interaction
A a Representation
2.A Device Relations
A a Representation
2.B Human Relations
A a Representation

2.C Cooperative
A a Environment

3.A Context Modelling

3.B Context Reasoning

3.C Privacy

4.A Context Source
A a Management

4.B Knowledge Sharing

4.C Scalability

5.A Testing

5.B Quality of Context

5.C Traceability

5.D Conflict Resolution

6.A System Evolution

6.B Deployment

7.A Context Relevancy

3.5

5

4

3.5

4.5

5

3.5

3

4

3.5

5

4.5

4

3

3.5

4.5

4

3

3.5

Importance

Figure 3: Bar graph showing the importance that contestants would give to
including certain features in a context-aware development process.

1.A Help to Define Context: The support to understand the
context notion within the boundaries of the system to be
developed. For example, coining vocabulary to define the
system features.

1.B Situations Representation: The ability to represent situa-
tions in which the system is intended to act in a certain
way in order to better understand them.

1.C User Interaction Representation: To be able to represent
and model the interactions between the system and the

21



users.
2.A Device Relations Representation: To represent and model

the relations between devices.
2.B Human Relations Representation: To allow the represen-

tation and modelling of human relations and interactions.
2.C Cooperative Environment: To allow the combination of

different environments in order to represent the details that
would enable them to work together.

3.A Context Modelling: The ability to model the context infor-
mation, for example using ontologies.

3.B Context Reasoning: To model the reasoning of the context
information in order to choose the information that should
infer or the actions that it should take.

3.C Privacy: Enable the secure use of the information relative
to users, so that is not interfered by other people or orga-
nizations.

4.A Context Source Management: It explicitly specifies how
the context data will be obtained.

4.B Knowledge Sharing: It allows defining how will the sys-
tem distribute the knowledge within its own boundaries
and outside them.

4.C Scalability: Supports the system to handle a growing
amount of work effectively, or enables the system expan-
sion/reduction to accommodate that growth/decrease.

5.A Testing: Ensures that the system meets its requirements.
5.B Quality of Context: It provides a good quality of precision,

probability of correctness, trustworthiness, resolution and
contemporaneity of context information [69].

5.C Traceability: Allows tracking a given set or type of infor-
mation to a given degree.

5.D Conflict Resolution: Enable the conflict resolution of the
C-AS, considering it as the process that enables a system
to provide its safety-critical functionalities by recovering
from errors and faults and preventing the system failure.

6.A System Evolution: Supports evolution and maintenance of
the system.

6.B Deployment: Eases the system deployment.
7.A Context Relevancy: It allows defining which contexts are

relevant depending on the situation.

4.3. Existing methodologies and tools
Following, a brief description of the main existing method-

ologies that are related to the C-AS development is provided.
It has to be mentioned that methodologies published in confer-
ences are often only theoretical and do not present tool support.
For this reason, and due to space restrictions, the methodolo-
gies, frameworks and tools here presented are only the ones
published on journals.

Context Toolkit [49]: Was one of the first efforts to fa-
cilitate the development and deployment of context-aware
applications by providing a framework to support it. It
provides abstractions to separate the details of how things
are done from actually doing them: (1) Context Widget,
to separate the details of sensing context from actually us-
ing it; (2) Context Interpreter, to reason sensor data us-
ing different reasoning techniques; (3) Context aggregator

(Server), to collect multiple pieces of context information
that are related into a common repository; (4) Enactors,
that serve as application units that acquire and take actions
based upon context. Widgets, servers, interpreters and en-
actors are allowed to run on different computers, commu-
nicating over a network. This toolkit has been further ex-
tended by other authors [38] [47].

ISAMadapt [182]: Provides an integrated environment
aimed at building general-purpose pervasive applications.
It works on the basis of four main abstractions: Context,
adapter adaptation commands, and adaptive behaviour
management policies. They focus on supporting the
follow-me semantics for building generic applications for
building pervasive applications, investigating how context-
awareness can be expressed at the programming language
level. They offer an integrated software infrastructure both
to design pervasive applications and to manage a pervasive
environment at global scale.

Context Modelling Language (CML) [183]: Was created
as a tool to assist designers exploring and specifying the
context requirements of context-aware applications. They
propose a set of conceptual models to support the software
engineering process, including context modelling tech-
niques, a preference model for requirements representa-
tion and two programming models. Along with it, they
present an engineering process supported by a software in-
frastructure. The infrastructure is divided in seven phases:
(1) Context Gathering, that allows the use of context in-
terpreters and aggregators; (2) Context reception layer; (4)
Context management layer; (5) Query layer;(6) Adapta-
tion layer and (7) Application layer. Their work introduced
improved opportunities for tool support into the software
engineering process.

The MUSIC14 Project: Methodology to facilitate the de-
velopment of adaptive applications in open, heterogeneous
Ubiquitous Computing environments. The methodology
includes tool support and an adaptation middleware and
is based on the separation of concerns between the busi-
ness logic, context-awareness and adaptation. Design and
implementation of context-aware adaptive applications is
done via model-driven development. They provide a soft-
ware development framework for the automation of the
adaptation of the software at run-time, including: (I) A
modelling language; (II) Generic and reusable middleware
components that automate text monitoring & management
and adaptation; (III) Tools to support the development:
such as design models, transformation, deployment, test-
ing and validation ones.

OPEN: OPEN [184] is an ontology-based cooperative
programming framework for the rapid prototyping, shar-
ing, and personalization of context-aware applications for

14MUSIC [32] [33]: Component-based planning framework that optimizes
context-aware variations, partially funded by the European Commission under
research grant IST-035166 lasting from October 2006 to March 2010.

22



N
o.

N
am

e

Year

Reference
Requirements Elicitation Technique

Middleware
Verification Technique

Maintenance Technique

Requirements Elicitation Tool

Analysisand DesignTool

Development Tool
Evaluation Tool
Maintenance Tool
Situations Representation
Cooperative Environments
Knowledge Sharing

Human Relations Representation
Scalability

ConflictRes- olution

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

(1
7)

(1
8)

(a
)

C
on

te
xt

To
ol

ki
t

20
01

[4
9]

-
3

-
-

-
3

3
-

-
3

*
3

*
3

-
(b

)
IS

A
M

ad
ap

t
20

02
[1

82
]

-
3

-
-

-
3

3
-

-
3

*
-

*
3

-
(c

)
C

M
L

20
06

[1
83

]
*

3
W

B
,B

B
-

-
3

3
3

-
3

*
3

*
*

-
(d

)
C

A
M

U
S

20
07

[1
85

]
-

-
-

-
-

3
3

-
-

3
*

*
*

*
-

(e
)

M
U

SI
C

20
12

[3
2]

*
3

Si
m

.
*

-
3

3
3

-
3

*
*

*
3

-
(f

)
O

PE
N

20
11

[1
84

]
-

-
-

*
-

3
3

-
-

3
*

*
*

3
-

(g
)

C
A

-P
SC

F
20

10
[1

86
]

-
3

M
D

*
-

3
3

-
-

*
*

*
*

3
-

(h
)

-
20

10
[1

87
]

So
3

-
-

-
3

3
-

-
*

*
*

3
3

-
(i

)
M

IR
IE

20
13

[1
15

]
-

-
Fr

m
.

*
-

3
-

3
-

3
*

-
*

3
-

(j
)

Pe
rD

e
20

14
[1

88
]

-
3

Si
m

.
*

-
3

3
-

-
3

*
-

3
3

-
(k

)
D

ia
Su

ite
20

14
[1

27
]

-
3

Si
m

.
Pe

rf
.,*

-
3

3
3

3
3

*
-

*
3

3

Ta
bl

e
9:

C
om

pa
ri

so
n

of
ex

is
tin

g
m

et
ho

do
lo

gi
es

to
de

ve
lo

p
C

-A
S.

G
en

er
al

Sy
m

bo
ls

fo
r

Te
ch

ni
qu

es
:“

3
”

=
U

se
s

a
te

ch
ni

qu
e/

H
as

to
ol

su
pp

or
t,

“-
”

=
D

oe
s

no
tu

se
a

te
ch

ni
qu

e/
D

oe
s

no
th

av
e

to
ol

su
pp

or
t;

“*
”

=
M

en
tio

ns
a

te
ch

ni
qu

e
bu

ti
s

no
te

xp
la

in
ed

in
de

ta
il;

(4
)R

eq
ui

re
m

en
ts

E
lic

ita
tio

n
Te

ch
ni

qu
e:

“S
o”

=
So

ci
al

sc
ie

nc
es

ba
se

d
te

ch
ni

qu
es

;(
6)

Ve
ri

fic
at

io
n

Te
ch

ni
qu

e:
“W

B
”

=
W

hi
te

bo
x

ve
ri

fic
at

io
n,

“B
B

”
=

B
la

ck
bo

x,
“S

im
.”

=
Si

m
ul

at
io

n
ba

se
d,

“M
.D

.”
=

M
od

el
dr

iv
en

,“
Fr

m
.”

=
Fo

rm
al

(7
)M

ai
nt

en
an

ce
Te

ch
ni

qu
e:

“P
er

f.”
=

Pe
rf

ec
tiv

e;

R
.E

.
C

on
te

xt
-A

w
ar

e
Sp

ec
ia

lis
ed

Te
ch

ni
qu

es

R
.E

.
Tr

ad
iti

on
al

Te
ch

ni
qu

es

A
rc

hi
te

ct
ur

e
Pa

tte
rn

s
D

es
ig

n
Pa

tte
rn

s
M

id
dl

e-
w

ar
e

V
er

ifi
-

ca
tio

n
Pr

og
ra

m
m

in
g

Pa
ra

di
gm

s
C

on
te

xt
In

fo
rm

at
io

n
M

an
ag

em
en

t

D
ep

lo
ym

en
t

&
M

ai
nt

e-
na

nc
e

Te
ch

ni
qu

es

Si
tu

at
io

ns
R

ep
re

se
nt

at
io

n
V

is
ua

liz
at

io
n

Sc
en

ar
io

B
as

ed
-

-
*

*
*

M
od

el
lin

g,
R

ea
so

ni
ng

-

C
oo

pe
ra

tiv
e

E
nv

ir
on

m
en

ts
-

-
-

*
*

*
*

-
K

no
w

le
dg

e
Sh

ar
in

g
-

-
-

*
*

*
H

ol
op

ar
ad

ig
m

D
is

se
m

in
at

io
n,

A
cq

ui
si

tio
n

-

H
um

an
R

el
at

io
ns

R
ep

re
se

nt
at

io
n

So
ci

al
Sc

ie
nc

e
B

as
ed

E
th

no
gr

ap
hy

B
as

ed
,

O
bs

er
va

tio
n

-
-

*
*

-
-

-

Sc
al

ab
ili

ty
-

-
E

C
A

,
C

S&
M

H
,

SC
C

,
B

la
ck

-
bo

ar
ds

*
*

*
Fe

O
&

SP
L

*
A

da
pt

iv
e

C
on

fli
ct

R
es

ol
ut

io
n

-
-

*
*

*
*

*
*

Pr
ev

en
tiv

e

E
C

A
=

E
ve

nt
-C

on
tr

ol
-A

ct
io

n,
C

S&
M

H
=

C
on

te
xt

So
ur

ce
an

d
M

an
ag

er
s

H
ie

ra
rc

hy
,S

C
C

=
Se

ns
e-

C
om

pu
te

-C
on

tr
ol

;
Fe

O
&

SP
L

=
Fe

at
ur

e
O

ri
en

te
d

an
d

So
ft

w
ar

e
Pr

od
uc

tL
in

es
;“

-”
=

T
he

re
is

no
te

ch
ni

qu
e

;
“*

”
=

N
ot

co
m

pa
ra

bl
e

w
ith

in
th

e
sc

op
e

of
th

is
su

rv
ey

.

Ta
bl

e
10

:C
om

pa
ri

so
n

of
th

e
fe

at
ur

es
th

at
a

m
et

ho
do

lo
gy

fo
rC

-A
S

de
ve

lo
pm

en
ts

ho
ul

d
su

pp
or

tr
el

at
ed

to
th

e
st

at
e-

of
-t

he
-a

rt
te

ch
ni

qu
es

.



users with diverse technical skills. To meet diverse de-
veloper requirements in the development and customiza-
tion of context-aware applications, it implements three
programming modes with diverse complexity: (1) Incre-
mental mode, for high-level users, which supports the cre-
ation of new context-aware applications; (2) Composition
mode, a programming mode for middle-level users; and
(3) Parametrization mode, for low-level users, to enable
them customize existing applications.

CA-PSCF [186]: is a model-driven approach to facilitate
the creation of a context modelling framework that aims
to simplify the design and implementation of pervasive
services. It uses model-driven development to provide
a systematic methodology that facilitates the generation
of modelling frameworks and supports the overall service
creation process. The process is as follows: (1) The oAW
editor is used to define a code template, which conforms
to a context meta-model; (2) With the context editor a con-
text model is defined and validated; (3) With the context
model and the code template, the work-flow execution en-
gine generates service code. Optionally, models can be
transformed(4): Source domain models are transformed to
target domain models in a different domain language.

Human-Centred Computing Methodology for Cooperative
Ambient Intelligence: Gross [187] introduces a coopera-
tive Ambient Intelligence methodology, elaborated on ex-
isting approaches for organising software engineering and
user-centred design processes. It suggests a new human-
centred computing methodology for this aim. He acknowl-
edges that many research issues remain for each phase in
terms of: (1) Methods to be applied; (2) The adaptation
of the method concerning the characteristics of the tar-
geted technological innovation; and (3) The properties of
the results of each phase. The life-cycle is divided into:
(A) Identifying the need for cooperative Ambient Intelli-
gence; (B) Understand the situation of use; (C) Specify
the user, ambient and cooperation requirements; (D) Pro-
duce software and hardware design solutions; (E) Produce
embedded interaction and adaptation design solutions; (F)
Perform software and hardware evaluation; (G) Perform
overall evaluation in living laboratory; (H) Reach speci-
fied user, ambient and cooperation satisfaction.

MIRIE [115]: The Methodology for Improving the Re-
liability of Intelligent Environments, has been created to
guide and inform the development of more reliable Intel-
ligent Environments. The methodology is centred on a re-
finement strategy which starts identifying the core com-
ponents of the Intelligent Environment (sensors/actuators,
actors, interfaces and communication mechanisms) and
then working through successive models of increasing
complexity. The methodology is illustrated with SPIN
and using the PROMELA modelling language but it is ac-
tually tool-independent. In [115] a detailed explanation
on the use of formal verification to support the develop-
ment of Intelligent Environments is given. Whilst other
approaches mention the possibility of using verification

and give a few examples the above publication provides
a step by step and detailed explanation of how developers
can benefit from formal methods at a pragmatic and prac-
tical level. The methodology has been applied to several
Intelligent Environments, one of which is a real Ambient
Assisted Living system which is explained in the article as
the main case study.

PerDe [188]: Is a development environment that orients
the designs of Pervasive Computing applications towards
the user’s needs. It provides a domain-specific design lan-
guage and a set of graphical tool-kits covering some de-
velopment life-cycle stages for this kind of applications.
It provides means to structure the application and allows
the developer to build an application: (1) Focusing on the
human situations evolved to the physical surrounding; (2)
Characterizing the application along with attributes of a
new application model by representing the intentions as
the task requirements, service specification and instantia-
tion of services in devices abstractly; (3) Specifying a pro-
gramming structure that trades-off between the function
requirement and the device capability; (4) Rapid prototyp-
ing.

DiaSuite [127]: Is a tool-based development methodology
that uses a software design approach to drive the devel-
opment process in the domain of Sense/Compute/Control
(SCC) applications. It provides a design language called
DiaSpec, dedicated to the SCC paradigm, based on two
layers: Taxonomy and application design. The application
specification can be represented by its data flow using an
oriented graph. In addition, DiaSuite has a compiler that
produces a dedicated Java programming framework, guid-
ing the programmer to implement the various parts of the
software system (Entities, context operators and control
operators). The suite also includes a 2D-graphical ren-
derer, for simulation proposes. The deployment can be
done either in distributed execution platform or local.

4.4. Coverage of desirable features
The coverage of the most desirable features of our question-

naire compared to the existing methodologies can be observed
in Table 9. We have considered to leave a deeper comparison
out of this survey, as it is not possible to measure them in a
useful way, due to their disparate aims and themes. Instead, we
analyse the state-of-art techniques that could be used for creat-
ing the most desirable features of a methodology according to
our questionnaire.

Situations Representation: During the requirement elic-
itation stage, techniques such as Executable Use Cases
[189] or the tool presented by Perez and Valderas [190]
can be used in order to represent situations that will help
to gather context-related requirements. There is not much
presence of situations representation during the rest of the
most common stages of development. Although specific
middleware infrastructures might have features for repre-
senting situations during this phase. All context informa-
tion modelling and reasoning techniques need to enable

24



the situation representation, but there is no support for un-
derstanding the situations and the contexts that they are
going to be represented, stemming from the requirements.

Cooperative Environments: The cooperation between en-
vironments is a technique that stems from Ubiquitous
Computing. The support in what regards to techniques
for the cooperation between environments in context-
awareness is very little, there is more support for this in
other fields like Systems Engineering or Distributed Sys-
tems, which are out of the scope of this survey.

Knowledge Sharing: Is not taken into account during the
early stages of the development. The techniques used for
these are Queries and Subscribers as explained in Sec-
tion 3.4.1.4. Although the deep analysis of programming
paradigms is out of the scope of this survey it has to
be mentioned that Holoparadigm, enables the knowledge
sharing at programming level.

Human Relations Representation: As discussed in section
2.1, the human relationships and interactions are explained
using social sciences, which stem from a phenomenolog-
ical philosophical tradition. Bauer et al. acknowledge
that during the C-AS system development, in its life-cycle,
starts from a more highlighted phenomenological perspec-
tive and proceeds slowly transforming into a more posi-
tivist one. We can observe that human relations represen-
tation have more presence in early stages of the develop-
ment, and lose support as the development process con-
tinues. Using behavioural studies are helpful to capture
more completely human relationships and interactions into
requirements of the system as shown by Kjaer [81] and
Fuentes et al. [191]. Ethnography based and observation
techniques can also be used for this purpose.

Scalability: The majority of the architecture patterns that
are specific for C-AS development enable the scalability
of the system. From these the highlighted ones are Event-
Condition-Action, Context Source and Managers Hierar-
chy, Sense-Compute-Control and Blackboards. Neverthe-
less, it has to be mentioned that each of them enable dif-
ferent types of scalability and that a further analysis is out
of the boundaries of this survey. Although the intention
is not to have a thoughtful comparison of programming
paradigms, Feature Oriented one is prominent. Especially
when it tends to Software Product Lines. Finally, the clas-
sical adaptive maintenance techniques will enable also the
scalability. It is very difficult to measure scalability in De-
sign Patterns, Middleware and Verification.

Conflict Resolution: There is very little support during the
whole life-cycle of context-aware development for conflict
resolution. Preventive maintenance can help to enable this
feature. Also, the framework presented by Kulkarni and
Tripathi [181], as well as other techniques like Surrogate
Application/Device Usage, Alternate notification mecha-
nisms, Handling errors in sensing and inferring context,
N-Version Approach and Fault Toleration Mechanisms.

The results of the comparison show quite weak support in the
state-of-the-art techniques for the most desirable features of a
methodology, as it can be observed in Table 10.

4.5. Coverage of development stages

Generally, the engineering techniques are more concerned
with the design and information management of C-AS, there
is less attention focused on other stages the development pro-
cess. The following subsection analyses the techniques and tool
support of the methodologies through these stages.

4.5.1. Techniques
In general, there are no techniques for the early and latest

stages of the development process. The human-centred comput-
ing methodology [187] mentions that ethnomethodologically
informed ethnography can be applied for understanding the sit-
uation of use, but they do not deeply explain how the technique
should be applied. Also, MUSIC [32] and CML [183] mention
requirements, but do not explain into detail the techniques. Di-
aSuite [127] offers perfective maintenance for the system, but
does not support adaptive, preventive or corrective ones. The
most used verification technique is simulation, but generally
the verification support is not very strong. Finally, it has to
be mentioned that most of the methodologies offer middleware
support.

4.5.2. Tool support
There is strong tool support for the design and develop-

ment of C-AS. Nevertheless, they do not offer support for other
stages. No methodology enables the requirement elicitation
with a tool, and only DiaSuite [127] allows the maintenance
with one. MIRIE [115] offers a strong formal verification sup-
port, while MUSIC [32], PerDe [188] and DiaSuite [127] offer
verification based on simulation. It has to be acknowledged that
DiaSuite [127] is one of the most complete methodologies, re-
garding to these factors and within the scope of this survey.

5. Conclusion

This survey has analysed the concept of context and the
reasons behind the lack of agreement on its definition. Taking
into account the limitations of C-AS, we have characterized
their interaction types and features. Then, we analyse the main
challenges in its development. The literature review shows
various techniques and methods that have been modified from
the conventional development to better fit the needs of C-AS
creation. We provide an analysis of these techniques during
different stages of a development life cycle. We acknowledge
that they only target certain aspects of the engineering process,
sometimes only solving specific problems of a system. In
order to go one step further, we focus on methodologies. The
results show little support for the most common stages of a
development process. We have carried out a questionnaire
to understand the main reasons for the lack of adoption of
these methodologies, as well as to identify the features of
a new methodology that could have more acceptance in the

25



community. Our study shows that existing methodologies
lack some features that will make them be accepted by the
community.

Contextual awareness is an attractive feature that has encour-
aged research in the latest decades. Embedding such feature
into a system implies challenges that are to be solved yet. There
is a notable difference between developing a conventional sys-
tem and a context-aware one. Although there is lot of research
related to the development of this kind of systems, this is fo-
cused on solving particular issues. The evidence presented in
this work supports the need of a more holistic and unified ap-
proach for the development of C-AS. Also it should be different
from the classical software engineering approach for creating
these systems. Context-Aware Systems Engineering (C-ASE)
is the study and application of engineering techniques to any
activity involved in the creation of C-AS, including [192] its
analysis, design, assessment, implementation, test maintenance
and re-engineering, among others. Below, we present further
research directions for C-ASE:

• Design Principles and Human Computer Interaction:
There is a need to better understand the potential syner-
gies between phenomenology and positivism philosophi-
cal paradigms in what regards to C-AS engineering. What
are the specific limitations of a C-AS? When can develop-
ers use an autonomous approach? When is it more rec-
ommendable to use a passive one? Not only a further
philosophical research would give a better understanding
on when to use a certain interaction type. It would also
shed light on the conceptualization of context.
• Diversity: The diversity among systems that could exhibit

contextual awareness makes difficult the creation of gen-
eralized methods that can be applied to all of them. The
research in C-ASE should also focus on the differences
among the contextual awareness in different areas of ap-
plication.
• Information management: The technology for handling

contextual information is the most matured in the field
of context-aware computing. Nevertheless, it has still its
challenges to overcome, as explained in Section 3.1.2.
Further research is required in this direction.
• Requirements elicitation: We acknowledge that require-

ment elicitation techniques in context-awareness are still
maturing. The research directions point towards the ben-
efits from merging with social science based approaches.
There is also a need to measure to what extent standard-
ized methods such as SysML or UML cover the needs of
C-AS for this stage of its development.
• Architectural patterns: What are the most common design

problems of C-AS architecture? Can these be categorized?
Can a tailored solution for each of the problems be pro-
posed?
• Programming paradigms: There is a demand to further

study the synergies between the different programming
paradigms. Which paradigm is better for implementing
which features of context-awareness? When does a de-

veloper know that there is a need to use one or another?
Which is the best programming language for C-AS devel-
opment?
• Maintenance and deployment: Once the system is imple-

mented, which are the best ways of detecting an error? The
maintenance and deployment has also several challenges
that need to be further investigated.
• Methodological support: There is a need for a methodol-

ogy that guides the development of a context-aware sys-
tem through all its stages. Standardized methods and tool
support for methodologies are future research objectives
to take into account.

Acknowledgements

The authors would like to acknowledge the anonymous re-
viewers for the comments that have helped to improve the final
result of this survey.

References

[1] M. Weiser, The computer for the 21st century, Scientific american
265 (3) (1991) 94–104.

[2] T. Erickson, Some problems with the notion of context-aware comput-
ing, Communications of the ACM 45 (2) (2002) 102–104.

[3] A. K. Dey, G. D. Abowd, Towards a better understanding of context and
context-awareness, in: In HUC 99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, Springer-Verlag,
1999, pp. 304–307.

[4] M. Bazire, P. Brézillon, Understanding context before using it, in: Mod-
eling and using context, Springer, 2005, pp. 29–40.

[5] P. Dourish, What we talk about when we talk about context, Personal
and ubiquitous computing 8 (1) (2004) 19–30.

[6] A. Zimmermann, A. Lorenz, R. Oppermann, An operational definition
of context, in: Modeling and using context, Springer, 2007, pp. 558–
571.

[7] S. Jumisko-Pyykkö, T. Vainio, Framing the context of use for mo-
bile hci, International Journal of Mobile-Human-Computer-Interaction
(IJMHCI) 3 (4) (2010) 1–28.

[8] Z. Alshaikh, C. Boughton, Notes on synthesis of context between engi-
neering and social science, in: Modeling and Using Context, Springer,
2013, pp. 157–170.

[9] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware
computing for the internet of things: A survey, Communications Surveys
& Tutorials, IEEE 16 (1) (2014) 414–454.

[10] A. K. Dey, Understanding and using context, Personal and Ubiquitous
Computing 5 (2001) 4–7.

[11] K. Henricksen, A framework for context-aware pervasive computing ap-
plications, Ph.D. thesis, University of Queensland (2003).

[12] A. H. Van Bunningen, L. Feng, P. M. Apers, Context for ubiquitous
data management, in: Ubiquitous Data Management, 2005. UDM 2005.
International Workshop on, IEEE, 2005, pp. 17–24.

[13] B. Schilit, N. Adams, R. Want, Context-aware computing applications,
in: Mobile Computing Systems and Applications, 1994. WMCSA 1994.
First Workshop on, IEEE, 1994, pp. 85–90.

[14] https://www.google.co.uk/landing/now/, [Online; Last ac-
cessed 11-December-2015] (2014).

[15] L. A. Suchman, Plans and situated actions: the problem of human-
machine communication, Xerox Corporation, Palo Alto Research Cen-
ter, 1985.

[16] B. A. Nardi, Studying context: A comparison of activity theory, situated
action models, and distributed cognition, Context and consciousness:
Activity theory and human-computer interaction (1996) 69–102.

[17] S. Greenberg, Context as a dynamic construct, Human-Computer Inter-
action 16 (2) (2001) 257–268.

26



[18] N. V. Flor, E. L. Hutchins, A case study of team programming during
perfective software maintenance, in: Empirical studies of programmers:
Fourth workshop, Intellect Books, 1991, p. 36.

[19] G. Fitzpatrick, The locales framework: understanding and designing for
wicked problems, Vol. 1, Springer Science & Business Media, 2003.

[20] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J.
Sherbondy, R. Singh, Cognitive computing, Communications of the
ACM 54 (8) (2011) 62–71.

[21] H. Dreyfus, What Computers can’t do. The Limit of Artificial Intelli-
gence. Revised edition, Harper and Row, New York a.o., 1979.

[22] H. L. Dreyfus, Intelligence without representation–merleau-ponty’s cri-
tique of mental representation the relevance of phenomenology to sci-
entific explanation, Phenomenology and the Cognitive Sciences 1 (4)
(2002) 367–383.

[23] J. R. Lucas, Minds, machines and gödel, Philosophy 36 (137) (1961)
112–127.

[24] J. R. Searle, Minds, brains, and programs, Behavioral and brain sciences
3 (03) (1980) 417–424.

[25] J. Fodor, The Mind Doesn’t Work that Way: The Scope and Limits of
Computational Psychology, Bradford book, MIT Press, 2001.

[26] A. K. Dey, Providing architectural support for building context-aware
applications, Ph.D. thesis, Georgia Institute of Technology (2000).

[27] B. Hardian, J. Indulska, K. Henricksen, Balancing autonomy and user
control in context-aware systems-a survey, in: Pervasive Computing and
Communications Workshops, 2006. PerCom Workshops 2006. Fourth
Annual IEEE International Conference on, IEEE, 2006, pp. 6–pp.

[28] L. Barkhuus, A. Dey, Is context-aware computing taking control away
from the user? three levels of interactivity examined, in: UbiComp
2003: Ubiquitous Computing, Springer, 2003, pp. 149–156.

[29] B. H. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee, J. Ander-
sson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, et al., Software en-
gineering for self-adaptive systems: A research roadmap, in: Software
engineering for self-adaptive systems, Springer, 2009, pp. 1–26.

[30] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and re-
search challenges, ACM Transactions on Autonomous and Adaptive
Systems (TAAS) 4 (2) (2009) 14.

[31] R. Mizouni, M. A. Matar, Z. Al Mahmoud, S. Alzahmi, A. Salah, A
framework for context-aware self-adaptive mobile applications spl, Ex-
pert Systems with applications 41 (16) (2014) 7549–7564.

[32] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo,
A. Mamelli, G. A. Papadopoulos, A development framework and
methodology for self-adapting applications in ubiquitous computing en-
vironments, Journal of Systems and Software 85 (12) (2012) 2840–
2859.

[33] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo,
A. Mamelli, U. Scholz, Music: Middleware support for self-adaptation
in ubiquitous and service-oriented environments, in: Software engineer-
ing for self-adaptive systems, Springer, 2009, pp. 164–182.

[34] K. Geihs, M. Wagner, Context-awareness for self-adaptive applications
in ubiquitous computing environments, in: Context-Aware Systems and
Applications, Springer, 2013, pp. 108–120.

[35] G. Chen, D. Kotz, et al., A survey of context-aware mobile computing
research, Tech. rep., Technical Report TR2000-381, Dept. of Computer
Science, Dartmouth College (2000).

[36] A. K. Dey, A. Newberger, Support for context-aware intelligibility and
control, in: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ACM, 2009, pp. 859–868.

[37] B. Y. Lim, A. K. Dey, Assessing demand for intelligibility in context-
aware applications, in: Proceedings of the 11th international conference
on Ubiquitous computing, ACM, 2009, pp. 195–204.

[38] B. Y. Lim, A. K. Dey, Toolkit to support intelligibility in context-aware
applications, in: Proceedings of the 12th ACM international conference
on Ubiquitous computing, ACM, 2010, pp. 13–22.

[39] M. Mori, A software lifecycle process for context-aware adaptive sys-
tems, in: Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering,
ACM, 2011, pp. 412–415.

[40] P. Inverardi, M. Mori, A software lifecycle process to support consis-
tent evolutions, in: Software Engineering for Self-Adaptive Systems II,
Springer, 2013, pp. 239–264.

[41] M. Mori, F. Li, C. Dorn, P. Inverardi, S. Dustdar, Leveraging state-based

user preferences in context-aware reconfigurations for self-adaptive sys-
tems, in: Software Engineering and Formal Methods, Springer, 2011,
pp. 286–301.

[42] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, D. J. Cook, Learn-
ing frequent behaviors of the users in intelligent environments, Systems,
Man, and Cybernetics: Systems, IEEE Transactions on 43 (6) (2013)
1265–1278.

[43] U. Alegre, J. C. Augusto, A. Aztiria, Temporal reasoning for intuitive
specification of context-awareness, in: Intelligent Environments (IE),
2014 International Conference on, IEEE, 2014, pp. 234–241.

[44] H. Lieberman, F. Paternò, M. Klann, V. Wulf, End-User Development:
An Emerging Paradigm, Vol. 9 of Human-Computer Interaction Series,
Springer Netherlands, Dordrecht, 2006.

[45] B. Ur, E. McManus, M. Pak Yong Ho, M. L. Littman, Practical trigger-
action programming in the smart home, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, 2014, pp.
803–812.

[46] J. Huang, M. Cakmak, Supporting mental model accuracy in trigger-
action programming, in: Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, ACM, 2015,
pp. 215–225.

[47] A. K. Dey, T. Sohn, S. Streng, J. Kodama, icap: Interactive prototyping
of context-aware applications, in: Pervasive Computing, Springer, 2006,
pp. 254–271.

[48] A. Newberger, A. K. Dey, Designer support for context monitoring and
control, IRB-TR-03-017, Intel Research Berkeley (2003).

[49] A. K. Dey, G. D. Abowd, D. Salber, A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applica-
tions, Human-computer interaction 16 (2) (2001) 97–166.

[50] M. Ball, V. Callaghan, M. Gardner, An adjustable-autonomy agent for
intelligent environments, in: Intelligent Environments (IE), 2010 Sixth
International Conference on, IEEE, 2010, pp. 1–6.

[51] G. Fischer, Context-aware systems: the’right’information, at
the’right’time, in the’right’place, in the’right’way, to the’right’person,
in: Proceedings of the International Working Conference on Advanced
Visual Interfaces, ACM, 2012, pp. 287–294.

[52] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, et al., Software engi-
neering for self-adaptive systems: A second research roadmap, in: Soft-
ware Engineering for Self-Adaptive Systems II, Springer, 2013, pp. 1–
32.

[53] B. Y. Lim, Improving trust in context-aware applications with intelligi-
bility, in: Proceedings of the 12th ACM international conference adjunct
papers on Ubiquitous computing-Adjunct, ACM, 2010, pp. 477–480.

[54] G. Fischer, End-user development and meta-design: Foundations for
cultures of participation, in: End-user development, Springer, 2009, pp.
3–14.

[55] J. Pascoe, Adding generic contextual capabilities to wearable computers,
in: Wearable Computers, 1998. Digest of Papers. Second International
Symposium on, IEEE, 1998, pp. 92–99.

[56] D. Kramer, J. C. Augusto, T. Clark, Context-awareness to increase in-
clusion of people with ds in society, in: Workshops at the Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2014.

[57] G. Ghiani, M. Manca, F. Paternò, C. Porta, Beyond responsive design:
context-dependent multimodal augmentation of web applications, in:
Mobile Web Information Systems, Springer, 2014, pp. 71–85.

[58] C. L. T. Yuan, D. A. Ramli, Frog sound identification system for
frog species recognition, in: Context-Aware Systems and Applications,
Springer, 2013, pp. 41–50.

[59] D. Grassi, A. Bouhtouch, G. Cabri, Inbooki: Context-aware adaptive
e-books, in: Context-Aware Systems and Applications, Springer, 2014,
pp. 57–66.

[60] A. K. Dey, G. Kortuem, D. R. Morse, A. Schmidt, Situated interaction
and context-aware computing, Personal and Ubiquitous Computing 5 (1)
(2001) 1–3.

[61] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, D. Riboni, A survey of context modelling and reasoning tech-
niques, Pervasive and Mobile Computing 6 (2) (2010) 161–180.

[62] K. Henricksen, J. Indulska, Modelling and using imperfect context in-
formation, in: Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on, IEEE,

27



2004, pp. 33–37.
[63] J.-y. Hong, E.-h. Suh, S.-J. Kim, Context-aware systems: A literature re-

view and classification, Expert Systems with Applications 36 (4) (2009)
8509–8522.

[64] M. Perttunen, J. Riekki, O. Lassila, Context representation and reason-
ing in pervasive computing: a review, International Journal of Multime-
dia and Ubiquitous Engineering 4 (4) (2009) 1–28.

[65] M. Jonsson, Sensing and making sense: Designing middleware for con-
text aware computing, Ph.D. thesis, The Royal Institute of Technology
School (2007).

[66] A. Bikakis, T. Patkos, G. Antoniou, D. Plexousakis, A survey of
semantics-based approaches for context reasoning in ambient intelli-
gence, in: Constructing ambient intelligence, Springer, 2008, pp. 14–23.

[67] R. Brachman, H. Levesque, Knowledge representation and reasoning,
Elsevier, 2004.

[68] S. Jones, S. Hara, J. Augusto, e-friend: an ethical framework for intelli-
gent environment development, in: Ethics and Information Technology,
Vol. 17, Springer, 2015, pp. 11–25.

[69] T. Buchholz, A. Küpper, M. Schiffers, Quality of context: What it is and
why we need it, in: Proceedings of the workshop of the HP OpenView
University Association, Vol. 2003, 2003, pp. pp–32.

[70] J. Pascoe, N. Ryan, D. Morse, Issues in developing context-aware com-
puting, in: Handheld and ubiquitous computing, Springer, 1999, pp.
208–221.

[71] S. Chetan, A. Ranganathan, R. Campbell, Towards fault tolerance perva-
sive computing, Technology and Society Magazine, IEEE 24 (1) (2005)
38–44.

[72] W. K. Edwards, V. Bellotti, A. K. Dey, M. W. Newman, The challenges
of user-centered design and evaluation for infrastructure, in: Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
ACM, 2003, pp. 297–304.

[73] K. Pohl, Requirements engineering: fundamentals, principles, and tech-
niques, Springer Publishing Company, Incorporated, 2010.

[74] B. Nuseibeh, S. Easterbrook, Requirements engineering: a roadmap, in:
Proceedings of the Conference on the Future of Software Engineering,
ACM, 2000, pp. 35–46.

[75] S. Robertson, J. Robertson, Mastering the requirements process: getting
requirements right, Addison-Wesley, 2012.

[76] D. Zowghi, C. Coulin, Requirements elicitation: A survey of techniques,
approaches, and tools, in: Engineering and managing software require-
ments, Springer, 2005, pp. 19–46.

[77] J. Krogstie, Requirement engineering for mobile information systems,
in: Proceedings of the seventh international workshop on requirements
engineering: Foundations for software quality (REFSQ’01), 2001.

[78] D. Hong, D. K. Chiu, V. Y. Shen, Requirements elicitation for the design
of context-aware applications in a ubiquitous environment, in: Proceed-
ings of the 7th international conference on Electronic commerce, ACM,
2005, pp. 590–596.

[79] L. Kolos-Mazuryk, G. J. Poulisse, P. A. T. van Eck, Requirements engi-
neering for pervasive services, in: Second Workshop on Building Soft-
ware for Pervasive Computing. Position Papers., San Diego, California,
USA, 2005, pp. 18–22.

[80] A. Sutcliffe, S. Fickas, M. M. Sohlberg, Pc-re: a method for personal and
contextual requirements engineering with some experience, Require-
ments Engineering 11 (3) (2006) 157–173.

[81] K. E. Kjær, Ethnographic studies as a requirement gathering process for
the design of context aware middleware, in: Proceedings of the 2007
ACM/IFIP/USENIX international conference on Middleware compan-
ion, ACM, 2007, p. 3.

[82] C. Evans, L. Brodie, J. C. Augusto, Requirements engineering for intelli-
gent environments, in: Intelligent Environments (IE), 2014 International
Conference on, IEEE, 2014, pp. 154–161.

[83] B. Desmet, J. Vallejos, P. Costanza, W. De Meuter, T. DHondt, Context-
oriented domain analysis, in: Modeling and Using Context, Springer,
2007, pp. 178–191.

[84] J. Choi, Context-driven requirements analysis, in: Computational Sci-
ence and Its Applications–ICCSA 2007, Springer, 2007, pp. 739–748.

[85] J. Choi, Y. Lee, Use-case driven requirements analysis for context-aware
systems, in: Computer Applications for Bio-technology, Multimedia,
and Ubiquitous City, Springer, 2012, pp. 202–209.

[86] T. Ruiz-López, C. Rodrı́guez-Domı́nguez, M. J. Rodrı́guez, S. F. Ochoa,

J. L. Garrido, Context-aware self-adaptations: From requirements spec-
ification to code generation, in: Ubiquitous Computing and Ambi-
ent Intelligence. Context-Awareness and Context-Driven Interaction,
Springer, 2013, pp. 46–53.

[87] W. Sitou, B. Spanfelner, Towards requirements engineering for context
adaptive systems, in: Computer Software and Applications Conference,
2007. COMPSAC 2007. 31st Annual International, Vol. 2, IEEE, 2007,
pp. 593–600.

[88] A. Finkelstein, A. Savigni, A framework for requirements engineer-
ing for context-aware services, in: In Proc. of 1 st International Work-
shop From Software Requirements to Architectures (STRAW), 2001,
pp. 200–1.

[89] K. Oyama, H. Jaygarl, J. Xia, C. K. Chang, A. Takeuchi, H. Fujimoto,
Requirements analysis using feedback from context awareness systems,
in: Computer Software and Applications, 2008. COMPSAC’08. 32nd
Annual IEEE International, IEEE, 2008, pp. 625–630.

[90] L. Baresi, L. Pasquale, P. Spoletini, Fuzzy goals for requirements-driven
adaptation, in: Requirements Engineering Conference (RE), 2010 18th
IEEE International, IEEE, 2010, pp. 125–134.

[91] S. H. Siadat, M. Song, Understanding requirement engineering for
context-aware service-based applications, Journal of Software Engineer-
ing and Applications 5 (8) (2012) 536–544.

[92] D. Preuveneers, P. Novais, A survey of software engineering best prac-
tices for the development of smart applications in ambient intelligence,
Journal of Ambient Intelligence and Smart Environments 4 (3) (2012)
149–162.

[93] J. S. Bauer, M. W. Newman, J. A. Kientz, What designers talk about
when they talk about context, Human–Computer Interaction 29 (5-6)
(2014) 420–450.

[94] T. Winograd, Architectures for context, Human-Computer Interaction
16 (2) (2001) 401–419.

[95] H. Chen, An intelligent broker architecture for pervasive context-aware
systems, Ph.D. thesis, University of Maryland (2004).

[96] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware sys-
tems, International Journal of Ad Hoc and Ubiquitous Computing 2 (4)
(2007) 263–277.

[97] R. Taylor, N. Medvidovic, E. Dashofy, Software Architecture: Founda-
tions, Theory, and Practice, Wiley, 2009.

[98] P. D. Costa, L. F. Pires, M. van Sinderen, Architectural patterns for
context-aware services platforms, in: Ubiquitous Computing, Proceed-
ings of the 2nd International Workshop on Ubiquitous Computing,
IWUC 2005, In conjunction with ICEIS 2005, Miami, USA, May 2005,
2005, pp. 3–18.

[99] I. Khalil, Handbook of research on mobile multimedia, IGI Global,
2008.

[100] D. Cassou, Développement logiciel orienté paradigme de conception:
la programmation dirigée par la spécification, Ph.D. thesis, Université
Sciences et Technologies-Bordeaux I (2011).

[101] L. Daniele, P. D. Costa, L. F. Pires, Towards a rule-based approach for
context-aware applications, in: Dependable and Adaptable Networks
and Services, Springer, 2007, pp. 33–43.

[102] P. Patel, B. Morin, S. Chaudhary, A model-driven development frame-
work for developing sense-compute-control applications, in: Proceed-
ings of the 1st International Workshop on Modern Software Engineering
Methods for Industrial Automation, ACM, 2014, pp. 52–61.

[103] K. E. Kjær, A survey of context-aware middleware, in: Proceedings of
the 25th conference on IASTED International Multi-Conference: Soft-
ware Engineering, ACTA Press, 2007, pp. 148–155.

[104] K. Henricksen, J. Indulska, T. McFadden, S. Balasubramaniam, Middle-
ware for distributed context-aware systems, in: On the Move to Mean-
ingful Internet Systems 2005: CoopIS, DOA, and ODBASE, Springer,
2005, pp. 846–863.

[105] Y. Mor, N. Winters, Design approaches in technology-enhanced learn-
ing, Interactive Learning Environments 15 (1) (2007) 61–75.

[106] G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming:
A software engineering perspective, Journal of Systems and Software
85 (8) (2012) 1801–1817.

[107] A. J. Ramirez, B. H. Cheng, Design patterns for developing dynami-
cally adaptive systems, in: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, ACM,
2010, pp. 49–58.

28



[108] E. S. Chung, J. I. Hong, J. Lin, M. K. Prabaker, J. A. Landay, A. L. Liu,
Development and evaluation of emerging design patterns for ubiquitous
computing, in: Proceedings of the 5th conference on Designing inter-
active systems: processes, practices, methods, and techniques, ACM,
2004, pp. 233–242.

[109] J. A. Landay, G. Borriello, Design patterns for ubiquitous computing,
Computer 36 (8) (2003) 93–95.

[110] G. Rossi, S. Gordillo, F. Lyardet, Design patterns for context-aware
adaptation, in: Applications and the Internet Workshops, 2005. Saint
Workshops 2005. The 2005 Symposium on, IEEE, 2005, pp. 170–173.

[111] O. Riva, C. Di Flora, S. Russo, K. Raatikainen, Unearthing design pat-
terns to support context-awareness, in: Pervasive Computing and Com-
munications Workshops, 2006. PerCom Workshops 2006. Fourth An-
nual IEEE International Conference on, IEEE, 2006, pp. 5–pp.

[112] E. W. Dijkstra, The humble programmer, Communications of the ACM
15 (10) (1972) 859–866.

[113] J. C. Augusto, Increasing reliability in the development of intelligent
environments, in: Intelligent Environments 2009: Proceedings of the 5th
International Conference on Intelligent Environments, Barcelona 2009,
Vol. 2, IOS Press, 2009, p. 134.

[114] J. C. Augusto, H. Zheng, M. Mulvenna, H. Wang, W. Carswell, P. Jef-
fers, Design and modelling of the nocturnal aal care system, in: Ambient
Intelligence-Software and Applications, Springer, 2011, pp. 109–116.

[115] J. C. Augusto, M. J. Hornos, Software simulation and verification to
increase the reliability of intelligent environments, Advances in Engi-
neering Software 58 (2013) 18–34.

[116] G. J. Holzmann, The model checker spin, IEEE Transactions on software
engineering 23 (5) (1997) 279–295.

[117] D. Preuveneers, Y. Berbers, Consistency in context-aware behavior: a
model checking approach., in: Intelligent Environments (Workshops),
2012, pp. 401–412.

[118] L. DErrico, M. Loreti, Context aware specification and verification of
distributed systems, in: Trustworthy Global Computing, Springer, 2012,
pp. 142–159.

[119] R. De Nicola, G. L. Ferrari, R. Pugliese, Klaim: A kernel language for
agents interaction and mobility, Software Engineering, IEEE Transac-
tions on 24 (5) (1998) 315–330.

[120] Y. Liu, C. Xu, S. Cheung, Afchecker: Effective model checking for
context-aware adaptive applications, Journal of Systems and Software
86 (3) (2013) 854–867.

[121] M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, Z. Wang, Context-
aware adaptive applications: Fault patterns and their automated iden-
tification, Software Engineering, IEEE Transactions on 36 (5) (2010)
644–661.

[122] R. Gerth, Concise promela reference, 1997, URL http://cm. bell-labs.
com/cm/cs/what/spin/Man/Quick. html.

[123] J. C. Augusto, M. J. Hornos, Designing more reliable mas-based ambi-
ent intelligence systems., in: T. Bosse (Ed.), Agents and Ambient Intel-
ligence, Vol. 12 of Ambient Intelligence and Smart Environments, IOS
Press, 2012, pp. 65–90.

[124] R. De Nicola, M. Loreti, Momo: A modal logic for reasoning about
mobility, in: Formal Methods for Components and Objects, Springer,
2005, pp. 95–119.

[125] J. Park, M. Moon, S. Hwang, K. Yeom, Cass: A context-aware sim-
ulation system for smart home, in: Software Engineering Research,
Management & Applications, 2007. SERA 2007. 5th ACIS International
Conference on, IEEE, 2007, pp. 461–467.

[126] Z. Wang, S. Elbaum, D. S. Rosenblum, Automated generation of
context-aware tests, in: Software Engineering, 2007. ICSE 2007. 29th
International Conference on, IEEE, 2007, pp. 406–415.

[127] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Balland, C. Consel,
Diasuite: A tool suite to develop sense/compute/control applications,
Science of Computer Programming 79 (2014) 39–51.

[128] J. Bruneau, W. Jouve, C. Consel, Diasim: A parameterized simulator
for pervasive computing applications, in: Mobile and Ubiquitous Sys-
tems: Networking & Services, MobiQuitous, 2009. MobiQuitous’ 09.
6th Annual International, IEEE, 2009, pp. 1–10.

[129] L. Yu, W. T. Tsai, Y. Jiang, J. Gao, Generating test cases for context-
aware applications using bigraphs, in: Software Security and Reliability,
2014 Eighth International Conference on, IEEE, 2014, pp. 137–146.

[130] T. Strang, C. Linnhoff-Popien, A context modeling survey, in: In: Work-

shop on Advanced Context Modelling, Reasoning and Management,
UbiComp 2004 - The Sixth International Conference on Ubiquitous
Computing, Nottingham/England, Springer-Verlag, 2004, pp. 31–41.

[131] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, L. Tanca, A
data-oriented survey of context models, SIGMOD Rec. 36 (4) (2007)
19–26.

[132] J. Indulska, P. Sutton, Location management in pervasive systems, in:
Proceedings of the Australasian information security workshop confer-
ence on ACSW frontiers 2003-Volume 21, Australian Computer Society,
Inc., 2003, pp. 143–151.

[133] A. Fortier, N. Canibano, J. Grigera, G. Rossi, S. Gordillo, An object-
oriented approach for context-aware applications, in: Advances in
Smalltalk, Springer, 2007, pp. 23–46.

[134] D. Graff, M. Werner, H. Parzyjegla, J. Richling, G. Mühl, An object-
oriented and context-aware approach for distributed mobile applications,
in: Architecture of Computing Systems (ARCS), 2010 23rd Interna-
tional Conference on, VDE, 2010, pp. 1–10.

[135] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, J. Irwin, Aspect-oriented programming, Springer, 1997.

[136] É. Tanter, K. Gybels, M. Denker, A. Bergel, Context-aware aspects, in:
Software Composition, Springer, 2006, pp. 227–242.

[137] F. Dantas, T. Batista, N. Cacho, Towards aspect-oriented programming
for context-aware systems: A comparative study, in: Proceedings of the
1st International Workshop on Software Engineering for Pervasive Com-
puting Applications, Systems, and Environments, IEEE Computer Soci-
ety, 2007, p. 4.

[138] L. Fuentes, N. Gámez, P. Sánchez, Aspect-oriented design and imple-
mentation of context-aware pervasive applications, ISSE 5 (1) (2009)
79–93.

[139] L. Fuentes, N. Gamez, P. Sanchez, Aspect-oriented executable uml mod-
els for context-aware pervasive applications, in: Model-based Method-
ologies for Pervasive and Embedded Software, 2008. MOMPES 2008.
5th International Workshop on, IEEE, 2008, pp. 34–43.

[140] S. Apel, The role of features and aspects in software develop-
ment, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Univer-
sitätsbibliothek (2007).

[141] R. Evans, P. Kearney, G. Caire, F. Garijo, J. Gomez Sanz, J. Pavon,
F. Leal, P. Chainho, P. Massonet, Message: Methodology for engineer-
ing systems of software agents, EURESCOM, EDIN (2001) 0223–0907.

[142] R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented program-
ming, Journal of Object Technology, ETH Zurich, 7 (3) (2008) 125–151.

[143] V. R. Lesser, Cooperative multiagent systems: A personal view of the
state of the art, Knowledge and Data Engineering, IEEE Transactions on
11 (1) (1999) 133–142.

[144] P. Heymans, J.-C. Trigaux, Software product line: state of the art, Re-
latório Técnico EPH3310300R0462/215315, Product Line ENgineering
of food TraceabilitY software (PLENTY) Project, Institut dInforma-
tique, FUNDP, Namur.

[145] A. Sturm, O. Shehory, Agent-oriented software engineering: Revisiting
the state of the art, in: Agent-Oriented Software Engineering, Springer,
2014, pp. 13–26.

[146] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, M. Perscheid, A
comparison of context-oriented programming languages, in: Interna-
tional Workshop on Context-Oriented Programming, ACM, 2009, p. 6.

[147] S. Apel, C. Kästner, An overview of feature-oriented software develop-
ment., Journal of Object Technology 8 (5) (2009) 49–84.

[148] N. Ubayashi, S. Nakajima, Context-aware feature-oriented modeling
with an aspect extension of VDM, in: Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC), Seoul, Korea, March 11-15,
2007, 2007, pp. 1269–1274.

[149] D. Kramer, Unified gui adaptation in dynamic software product lines,
Ph.D. thesis, University of West London (2014).

[150] P. Fernandes, C. Werner, L. G. P. Murta, Feature modeling for context-
aware software product lines., in: The 20th International Conference on
Software Engineering and Knowledge Engineering (SEKE), 2008, pp.
758–763.

[151] P. Fernandes, C. Werner, E. Teixeira, An approach for feature modeling
of context-aware software product line., Journal of Universal Computer
Science (JUCS) 17 (5) (2011) 807–829.

[152] C. Parra, X. Blanc, L. Duchien, Context awareness for dynamic service-
oriented product lines, in: Proceedings of the 13th International Soft-

29



ware Product Line Conference, Carnegie Mellon University, 2009, pp.
131–140.

[153] F. G. Marinho, R. Andrade, C. Werner, W. Viana, M. E. Maia, L. S.
Rocha, E. Teixeira, V. L. Dantas, F. Lima, S. Aguiar, et al., Mobiline:
A nested software product line for the domain of mobile and context-
aware applications, Science of Computer Programming 78 (12) (2013)
2381–2398.

[154] F. G. Marinho, R. M. Andrade, C. Werner, A verification mechanism of
feature models for mobile and context-aware software product lines, in:
Software Components, Architectures and Reuse (SBCARS), 2011 Fifth
Brazilian Symposium on, IEEE, 2011, pp. 1–10.

[155] D. Kramer, S. Oussena, P. Komisarczuk, T. Clark, Using document-
oriented guis in dynamic software product lines, in: ACM SIGPLAN
Notices, ACM, 2013, pp. 85–94.

[156] D. Kramer, A. Kocurova, S. Oussena, T. Clark, P. Komisarczuk, An ex-
tensible, self contained, layered approach to context acquisition, in: Pro-
ceedings of the Third International Workshop on Middleware for Perva-
sive Mobile and Embedded Computing, ACM, 2011, p. 6.

[157] G. M. Kapitsaki, G. N. Prezerakos, N. D. Tselikas, I. S. Venieris,
Context-aware service engineering: A survey, Journal of Systems and
Software 82 (8) (2009) 1285–1297.

[158] D. B. Abeywickrama, Context-aware services engineering for service-
oriented architectures, in: Web Services Foundations, Springer, 2014,
pp. 291–317.

[159] O. M. Shehory, A. Sturm, A brief introduction to agents, in: Agent-
oriented software engineering: reflections on architectures, methodolo-
gies, languages, and frameworks, Springer, 2014, pp. 3–3.

[160] T. Bosse, Agents and Ambient Intelligence: Achievements and Chal-
lenges in the Intersection of Agent Technology and Ambient Intelli-
gence, IOS Press, Amsterdam, The Netherlands, The Netherlands, 2012.

[161] Y. Shoham, An overview of agent-oriented programming, Software
agents 4.

[162] M. Wooldridge, An introduction to multiagent systems, John Wiley &
Sons, 2009.

[163] A. R. d. M. Neves, Á. M. G. Carvalho, C. G. Ralha, Agent-based ar-
chitecture for context-aware and personalized event recommendation,
Expert Systems with Applications 41 (2) (2014) 563–573.

[164] P. K. Murukannaiah, M. P. Singh, Xipho: Extending tropos to engi-
neer context-aware personal agents, in: Proceedings of the 2014 interna-
tional conference on Autonomous agents and multi-agent systems, Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2014, pp. 309–316.

[165] J. L. Barbosa, A. C. Yamin, P. Vargas, I. Augustin, C. F. Geyer,
Holoparadigm: a multiparadigm model oriented to development of dis-
tributed systems, in: Parallel and Distributed Systems, 2002. Proceed-
ings. Ninth International Conference on, IEEE, 2002, pp. 165–170.

[166] A. C. Yamin, J. V. Barbosa, I. Augustin, L. C. da Silva, R. Real,
C. Geyer, G. Cavalheiro, Towards merging context-aware, mobile and
grid computing, International Journal of High Performance Computing
Applications 17 (2) (2003) 191–203.

[167] J. Barbosa, F. Dillenburg, G. Lermen, A. Garzao, C. Costa, J. Rosa, To-
wards a programming model for context-aware applications, Computer
Languages, Systems & Structures 38 (3) (2012) 199–213.

[168] J. Miller, J. Mukerji, Mda guide version 1.0.1, Tech. rep., Object Man-
agement Group (OMG) (2003).

[169] B. Selic, The pragmatics of model-driven development, IEEE software
20 (5) (2003) 19–25.

[170] Q. Z. Sheng, B. Benatallah, Contextuml: a uml-based modeling lan-
guage for model-driven development of context-aware web services, in:
Mobile Business, 2005. ICMB 2005. International Conference on, IEEE,
2005, pp. 206–212.

[171] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley Professional, 2005.

[172] E. Serral, P. Valderas, V. Pelechano, A model driven development
method for developing context-aware pervasive systems, in: Ubiquitous
Intelligence and Computing, Springer, 2008, pp. 662–676.

[173] E. Serral, P. Valderas, V. Pelechano, Towards the model driven develop-
ment of context-aware pervasive systems, Pervasive and Mobile Com-
puting 6 (2) (2010) 254–280.

[174] R. Tesoriero, J. A. Gallud, M. D. Lozano, V. M. R. Penichet, Cauce:
Model-driven development of context-aware applications for ubiqui-

tous computing environments., Journal of Universal Computer Science
16 (15) (2010) 2111–2138.

[175] A. Sindico, V. Grassi, Model driven development of context aware soft-
ware systems, in: International workshop on context-oriented program-
ming, ACM, 2009, p. 7.

[176] J. R. Hoyos, J. Garcı́a-Molina, J. A. Botı́a, Mlcontext: a context-
modeling language for context-aware systems, Electronic Communica-
tions of the EASST 28 (2010).

[177] A. A. Nacci, B. Balaji, P. Spoletini, R. Gupta, D. Sciuto, Y. Agarwal,
Buildingrules: a trigger-action based system to manage complex com-
mercial buildings, in: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2015 ACM International Symposium on Wearable Computers,
ACM, 2015, pp. 381–384.

[178] G. Lucci, F. Paternò, Understanding end-user development of context-
dependent applications in smartphones, in: Human-Centered Software
Engineering, Springer, 2014, pp. 182–198.

[179] B. P. Lientz, E. B. Swanson, Software maintenance management,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1980.

[180] D. Moos, S. Bader, T. Kirste, From intelligibility to debuggability in
context-aware systems, in: KI 2014: Advances in Artificial Intelligence,
Springer, 2014, pp. 219–224.

[181] D. Kulkarni, A. Tripathi, A framework for programming robust context-
aware applications, Software Engineering, IEEE Transactions on 36 (2)
(2010) 184–197.

[182] I. Augustin, A. C. Yamin, L. C. da Silva, R. A. Real, G. Frainer, C. F.
Geyer, Isamadapt: abstractions and tools for designing general-purpose
pervasive applications, Software: Practice and Experience 36 (11-12)
(2006) 1231–1256.

[183] K. Henricksen, J. Indulska, Developing context-aware pervasive com-
puting applications: Models and approach, Pervasive and mobile com-
puting 2 (1) (2006) 37–64.

[184] B. Guo, D. Zhang, M. Imai, Toward a cooperative programming frame-
work for context-aware applications, Personal and Ubiquitous Comput-
ing 15 (3) (2011) 221–233.

[185] A. Moon, H. Kim, H. Kim, S. Lee, Context-aware active services in
ubiquitous computing environments, ETRI journal 29 (2) (2007) 169–
178.

[186] A. Achilleos, K. Yang, N. Georgalas, Context modelling and a context-
aware framework for pervasive service creation: A model-driven ap-
proach, Pervasive and Mobile Computing 6 (2) (2010) 281–296.

[187] T. Gross, Towards a new human-centred computing methodology for
cooperative ambient intelligence, Journal of Ambient Intelligence and
Humanized Computing 1 (1) (2010) 31–42.

[188] L. Tang, Z. Yu, H. Wang, X. Zhou, Z. Duan, Methodology and tools for
pervasive application development, International Journal of Distributed
Sensor Networks 2014.

[189] J. Baek Jorgensen, C. Bossen, Executable use cases: requirements for a
pervasive health care system, Software, IEEE 21 (2) (2004) 34–41.

[190] F. Pérez, P. Valderas, Allowing end-users to actively participate within
the elicitation of pervasive system requirements through immediate vi-
sualization, in: Requirements Engineering Visualization (REV), 2009
Fourth International Workshop on, IEEE, 2009, pp. 31–40.

[191] R. Fuentes-Fernández, J. J. Gómez-Sanz, J. Pavón, Understanding the
human context in requirements elicitation, Requirements engineering
15 (3) (2010) 267–283.

[192] P. A. Laplante, What every engineer should know about software engi-
neering, CRC Press, 2007.

30


