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analyzed by using the sum of square error surface tool. 

 The experimental kinetic data of cellulose pyrolysis was processed by using the 

logistic DAEM coupled with the pattern search method for parameter estimation. 

 Many parameter sets of the logistic DAEM can fit the data at different heating rates 

very well for both simulated and experimental processes, and the kinetic 

compensation effect between the parameters has been found. 

 

Abstract 

The kinetic compensation effect in the logistic distributed activation energy model 

(DAEM) for lignocellulosic biomass pyrolysis was investigated. The sum of square 

error (SSE) surface tool was used to analyze two theoretically simulated logistic DAEM 

processes for cellulose and xylan pyrolysis. The logistic DAEM coupled with the 

pattern search method for parameter estimation was used to analyze the experimental 

data of cellulose pyrolysis. The results showed that many parameter sets of the logistic 

DAEM could fit the data at different heating rates very well for both simulated and 

experimental processes, and a perfect linear relationship between the logarithm of the 

frequency factor and the mean value of the activation energy distribution was found. 

The parameters of the logistic DAEM can be estimated by coupling the optimization 

method and isoconversional kinetic methods. The results would be helpful for chemical 

kinetic analysis using DAEM. 
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1 Introduction 

The distributed activation energy model (DAEM) was originally developed by Pitt 

(1962) in order to analyze coal pyrolysis kinetics and later modified by Anthony (1976). 

Nowadays, it is considered as the most comprehensive model for describing the 

pyrolysis kinetics of lignocellulosic biomass and its components (Cai et al., 2014; Zhou 

et al., 2017). It assumes an infinite number of irreversible first order parallel reactions 

with different activation energies. The difference in activation energy is usually 

represented by a continuous distribution function f(E). With some assumptions, the 

general form of the DAEM equation can be obtained (Cai et al., 2014): 
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where α is the degree of conversion, t is the time, A is the frequency factor, E is the 

activation energy, R is the universal gas constant, T is the absolute temperature, and g(E) 

is the activation energy distribution. 

In general, g(E) is assumed to follow a Gaussian distribution because of its 

simplicity (Cai et al., 2014). However, the Gaussian distribution is not accurate enough 

for the initial and final stages of biomass pyrolysis. To describe reactions more 

accurately, the logistic distribution was proposed to present the activation energy 

distribution and applied to successfully describe cellulose pyrolysis kinetics (Cai et al., 

2011a; Cai et al., 2011b): 
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where b = 
3


, E0 and σ are the mean value and standard deviation of the logistic 

distribution, respectively. Latest developments of utilizing the logistic DAEM to fit the 

experimental kinetic data of biomass pyrolysis satisfactorily can be found in recent 

studies (Chen et al., 2017; Ghodke & Mandapati, 2018; Kirtania & Bhattacharya, 2015; 

Xiong et al., 2016). 

Most laboratory experiments involving lignocellulosic pyrolysis kinetics are 

carried out under non-isothermal conditions at a linear heating rate β = dT/dt (Mishra 

& Mohanty, 2018). Under the linear heating program, Equation (2) becomes: 
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There is no exact analytical solution of Equation (3). In our previous studies (Cai 

et al., 2014), the numerical calculation method was developed for processing the double 

integration in Equation (3). 

In order to simplify the calculation, the frequency factor (A) in the DAEM was 

usually fixed at a certain constant value (Güneş & Güneş, 2008; Várhegyi et al., 2011). 

In our previous study (Cai & Liu, 2008), a dependence of the frequency factor upon 

temperature (A = A0T
n) was proposed to improve the fit of the experimental kinetic data 

of biomass pyrolysis. The linear relationship between the logarithm of the frequency 

factor and the mean value of the activation energy distribution was introduced (Czajka 

et al., 2016; Huang et al., 2017): 

 0ln A aE b    (4) 

where a and b are constants. The above dependence is also called as the kinetic 
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compensation effect. 

In widely used chemical kinetics,  /d

d

E RTAe f
t


  (where f(α) is the reaction 

model), the kinetic compensation effect states a kind of linear relationship between the 

logarithm of the frequency factor (lnA) and the activation energy (E). The kinetic 

compensation effect has been observed in numerous kinetic studies of solid-state 

reactions. Koga (1994) tried to find the intrinsic mechanism of the kinetic compensation 

effect and found that such dependence was caused by the properties of the general 

kinetic equation. Yip et al. (2011) studied the low-temperature oxidation of coal chars 

and found that the kinetic compensation effect was a result of the selective oxidation of 

coal chars with heterogeneous carbon structures according to FT-Raman spectroscopic 

analysis. Some purely mathematical reasons such as the random experimental and 

systematic errors also cause the compensation effect (Barrie, 2012a; Barrie, 2012b). 

According to an physical explanation, the compensation effect is caused by a 

correlation between the enthalpy change and the entropy change on going from the 

reagents to the transition state of the reaction (Perez-Benito, 2013). Parmon (2016) 

studied the kinetic compensation effect in complex stepwise reactions and found that 

the existence of the ‘isokinetic’ temperature in homogeneous systems caused the 

compensation effect. 

There are many studies about the kinetic compensation effect in general chemical 

kinetics. However, the systematic analysis of the kinetic compensation effect in the 

DAEM is still missing. Therefore, the aim of this study is to analyze the intrinsic 

mechanism of the kinetic compensation effect in the DAEM by analyzing the 
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theoretical simulated data and experimental data of biomass pyrolysis. 

 

2 Experiments and methods 

2.1 Kinetic experiments of cellulose pyrolysis 

The experimental kinetic data of cellulose pyrolysis were obtained from Refs 

(Conesa et al., 1995; Conesa et al., 2004). In the experiments, the sample Whatman No. 

6 paper was used as a representative material of cellulose. The kinetic experiments of 

cellulose pyrolysis were carried out on a thermogravimetric analyzer (Perkin-Elmer 

thermobalance model TGA7) under an inert atmosphere from room temperature to 450 ℃ 

at the heating rates of 5, 25 and 50 K min-1. The experiments were repeated three times 

and their reproductivity was good. The experimental weight loss data obtained at each 

heating rate were averaged. 

A biomass pyrolysis process involves the dehydration stage. The mechanism of 

water evaporation is different from that of the decomposition of biopolymer 

components. Therefore, the removal of the dehydration stage from the experimental 

weight loss data is the first thing for processing data. Kinetic analysis is commonly 

carried out based on the conversion degree. Therefore, the data needs to be transferred 

to the form of the conversion degree: 
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where wi, w(T) and wf are the initial weight, the weight at the temperature T, and the 
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final weight, respectively. Detailed information about processing data can be found in 

in our previous paper (Cai et al., 2018). 

 

2.2 Pattern search method for DAEM parameter estimation 

For fitting the experimental data of cellulose pyrolysis to the logistic DAEM, some 

estimation of the model parameters is needed. Then, the following objective function 

included the data obtained at different heating rates is defined for parameter estimation: 

  
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where the subscripts exp and cal represent the experimental data and the values 

calculated from the logistic DAEM, respectively, i refers to the ith data point, j refers 

to the jth heating rate, nd,j is the number of data points at the jth heating rate and nh is 

the number of heating rates. 

To obtain the parameters minimizing the objective function (6), a certain 

optimization method should be used. The function (6) has no obvious expression, and 

it is difficult to obtain its derivative information. In this study, the pattern search method 

is used. It can be used on functions that are not continuous or differentiable. The method 

can perform the poll and optional search step at every iteration. In addition, it can be 

used to perform robust local optimization more efficiently and effectively (Lewis et al., 

2000). 

For the implementation of the pattern search method, the Global Optimization 

Toolbox in MATLAB was used. 
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3 Results and discussion 

3.1 Analysis of theoretically simulated data 

For obtaining the theoretically simulated data, the parameter values of two 

theoretical DAEM processes (as listed in Table 1), used for describing cellulose and 

xylan pyrolysis (Cai et al., 2013), were considered. Figure 1 shows the α – T curves of 

two simulated DAEM processes. 

 

Table 1. Parameter values for simulated data for DAEM processes 

 

log10A 

 (A is expressed in s-1) 

E0 

(kJ mol-1) 

σ  

(kJ mol-

1) 

β  

(K min-

1) 

Simulated 

cellulose 

pyrolysis process 

13.9 210.5 1.5 10 

Simulated xylan 

pyrolysis process 

12.7 178.3 5.8 10 
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Figure 1. Conversion curves of two simulated DAEM processes for cellulose and 

xylan pyrolysis at 10 K min-1 

 

According to Equation (3), it can be obtained that the conversion of a theoretically 

simulated DAEM process is a function of T, A, E0, σ, and β. To investigate the effect of 

the variation of the parameters A and E0 on the simulated DAEM process, the sum of 

square error (SSE) surface tool is employed: 
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where nd is the number of data points, the subscript sim represents the values of the 
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simulated process, while the subscript var is the varying values for the parameters A 

and E0. The SSE function is a measure of the discrepancy between the data calculated 

from the parameters Avar and E0,var and the simulated data. 

Figure 2 (a) and (b) show the SSE color map surfaces with the variation of Avar 

and E0,var for simulated cellulose and xylan pyrolysis processes, respectively. It can be 

obtained that there is a long sharp valley in the SSE surface for both simulated processes. 

About 30 minimum SSE value points located in the valley are selected (also presented 

in Figure 2 (a) and (b)). As shown in Figure 2 (c) and (d), a perfect linear relationship 

between log10A and E0 of those points for both simulated cellulose and xylan pyrolysis 

processes is found. For convenience, those points will be called as compensation effect 

points in further analysis. Table 2 lists the linear regression results of log10A versus E0 

for compensation effect points. From the above analyses, it can be obtained that the 

parameter sets corresponding to those compensation points can describe the simulated 

data at 10 K min-1 very well. 
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Figure 2. SSE surface for simulated (a) cellulose and (b) xylan pyrolysis processes, 

and linear fitting of compensation effect points for simulated (c) cellulose and (d) 

xylan pyrolysis processes at 10 K min-1 

 

Table 2. Linear fit results of compensation effect points for simulated processes at 10 

K min-1 

 

In order to check whether the parameter sets corresponding to those compensation 

effect points can describe the data at other heating rates, the data at the heating rates of 

 a b R2 

Simulated cellulose pyrolysis process 0.08631 -4.26819 0.99989 

Simulated xylan pyrolysis process 0.09527 -4.28093 0.99978 
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2.5, 5, 20 and 40 K min-1 for both simulated cellulose and xylan pyrolysis processes 

were considered. For this purpose, the parameter sets A and B (minimum and maximum 

log10A and E0 values, as shown in Table 3) were selected for the following analyses. 

 

Table 3. Parameter values of parameter sets A and B for simulated cellulose and xylan 

pyrolysis processes 

 Parameter set 

log10A 

 (A is expressed in 

s-1) 

E0 

(kJ mol-

1) 

σ  

(kJ mol-

1) 

Simulated cellulose pyrolysis 

process 

Parameter set A 13.48 205.6 1.5 

Parameter set B 14.32 215.4 1.5 

Simulated xylan pyrolysis 

process 

Parameter set A 12.26 173.7 5.8 

Parameter set B 13.14 182.9 5.8 

 

Figure 3 shows the comparison among the α-T curves with the reference parameter 

set, parameter set A and parameter set B at different heating rates for both simulated 

cellulose and xylan pyrolysis processes. From Figure 3, it can be obtained that the α-

T curves with the parameter sets A and B are very close to the α-T curve with the 

reference parameter set at different heating rates. This indicates that the kinetic 

compensation effect existed in the parameters log10A and E0 is independent on the 

heating rate. 
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Figure 3. α-T curves with reference parameter set, parameter set A and parameter set 

B at (a) 2.5 K min-1; (b) 5 K min-1; (c) 20 K min-1; (d) 40 K min-1 for simulated 
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cellulose pyrolysis process and (e) 2.5 K min-1; (f) 5 K min-1; (g) 20 K min-1; (h) 40 

K min-1 for simulated xylan pyrolysis process 

 

3.2 Analysis of experimental data 

Figure 4 shows the objective function value, mesh size (which controls the degree 

of how to partition the searching space) and number of function evaluations per interval 

during the iterative optimization calculation process with the initial guess of the 

parameters: log10A=13.9, E0=210.5 kJ mol-1 and σ=1.5 kJ mol-1, which are the same as 

the above simulated cellulose pyrolysis process. The corresponding optimal parameter 

values were established: log10A=13.282, E0=210.532 kJ mol-1 and σ=0.768 kJ mol-1. As 

shown in Figure 5, the comparison between the experimental data and the curves 

calculated from the logistic DAEM with the optimal parameters (log10A=13.282, 

E0=210.532 kJ mol-1 and σ=0.768 kJ mol-1) at three heating rates indicates that the 

model can predict the experimental data quite satisfactorily. 
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Figure 4. Objective function value, mesh size and function evaluations per interval 

during iterative optimization calculation process 
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Figure 5. Comparison between experimental data and model prediction with one 

optimal parameter set: log10A=13.282, E0=210.532 kJ mol-1 and σ=0.768 kJ mol-1 

 

It has been found from many calculation results that different initial guesses of the 

parameters lead to different optimal parameter sets. To investigate the relationship 

between log10A and E0 for various optimal parameter sets, the value of σ is fixed at 

0.768 kJ mol-1. Various optimal parameter sets, the corresponding objective function 

values and R2 values of the experimental data and model predictions at different heating 

rates are obtained and listed in Table 4. It can be obtained that the logistic DAEM with 

different optimal parameter sets leads to the perfect fit of the experimental data at all 

heating rates. 
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Table 4. Several parameter sets optimized with different initial guesses of log10A and 

E0 and fixed value of σ 

No. log10A (A is expressed in s-1) E0 / kJ mol-1 
σ / kJ 

mol-1  
OF value 

R2 

5 K 

min-1 

25 K 

min-1 

50 K 

inin-1 

1 12.840 205.143 0.768 1.79907×10-2 0.99970 0.99971 0.99981 

2 12.924 206.173 0.768 1.58004×10-2 0.99975 0.99973 0.99982 

3 13.021 207.350 0.768 1.37153×10-2 0.99980 0.99976 0.99984 

4 13.081 208.081 0.768 1.26633×10-2 0.99982 0.99977 0.99985 

5 13.196 209.483 0.768 1.11344×10-2 0.99986 0.99979 0.99985 

6 13.282 210.532 0.768 1.04152×10-2 0.99988 0.99981 0.99985 

7 13.402 212.001 0.768 1.02001×10-2 0.99989 0.99981 0.99985 

8 13.563 213.968 0.768 1.04903×10-2 0.99991  0.99985 0.99985 

9 13.697 215.598 0.768 1.17857×10-2 0.99991 0.99986 0.99983 

 

Considering optimal parameter sets listed in Table 4, the curve of log10A versus E0 

is presented in Figure 6, where a perfect linear relationship between log10A and E0 can 

be observed (R2=1.00000): log10A = 0.08196 E0 - 3.97279 (A is expressed in s-1, E0 is 

expressed in kJ mol-1). 
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Figure 6. Linear fit of compensation effect points for experimental data of cellulose 

pyrolysis 

 

4 Implications for biomass pyrolysis kinetic analysis 

According to the above analyses, different parameter sets can fit a logistic DAEM 

process equally well (from the statistical point of view) for both simulated and 

experimental data for biomass pyrolysis. The values of A and E0 differ and the linear 

relationship between log10A and E0 for different parameter sets is found. If the activation 

energy distribution could be pre-determined by means of isoconversional methods (Wu 

et al., 2013), the frequency factor in the logistic DAEM would be determined according 
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to the kinetic compensation effect; or if the frequency factor could be pre-determined, 

the activation energy distribution would be obtained by means of the combination of a 

certain optimization method and the kinetic compensation effect. 

 

5 Conclusions 

The kinetic compensation effect in the logistic DAEM was comprehensively 

studied through processing theoretically simulated cellulose and xylan pyrolysis data 

and experimental data of cellulose pyrolysis by means of the SSE surface tool and 

pattern search method. The results showed that there existed many parameter sets fitting 

the simulated data equally well and that the linear relationship between the logarithm 

of the frequency factor and the mean value of the activation energy distribution (kinetic 

compensation effect in DAEM) independent upon the heating rate was found. The 

results would be helpful for chemical kinetic analysis using DAEM. 
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