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Abstract

I show that the momentum operator in quantum mechanics, in
the position representation, commonly known to be a derivative with
respect to a spacial x-coordinate, can be derived by identifying mo-
mentum as the generator of space translations.

1 Translation Operator

Given an eigenstate of position |~x〉, with eigenvalue x, we define a Transla-
tion Operator, T (~a), which transforms an eigenstate of position to another
eigenstate of position, with the eigenvalue increased by ~a.

T (~a) |~x〉 ≡ |~x+ ~a〉 (1)

By the following argument, we note that the adjoint of T (~a) moves a state
backward. It transforms an eigenstate of position to another eigenstate of
position, with the eigenvalue decreased by ~a.

〈~x′ |T (~a) | ~x〉 = 〈~x′ | ~x+ ~a〉 (2)

= δ((~x+ ~a)− ~x′) (3)

= δ(~x− (~x′ − ~a)) (4)

= 〈~x′ − ~a | ~x〉 (5)

⇒ 〈~x′|T (~a) = 〈~x′ − ~a| (6)
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T †(~a) |~x′〉 = |~x′ − ~a〉 (7)

Note that if we translate forwards by some amount, it is the same as trans-
lating backwards by negative that amount.

T (~a) = T †(−~a) (8)

If we translate a state forwards and then backwards by the same amount,
the state remains unchanged. This implies that the translation operator is
unitary.

T †(~a) T (~a) |~x〉 = |~x〉 (9)

⇒ T †(~a) = T−1(~a) (10)

Any unitary operator can be written as

T (~a) = e−i
~K·~a (11)

1 = T †(~a) T (~a) (12)

= ei
~K†·~a e−i

~K·~a (13)

= ei(
~K†− ~K)·~a (14)

⇒ ~K = ~K† (15)

Where evidently, ~K must be hermitian. In general, when writing a unitary
operator this way, the operators ~K are known as the generators of what ever
unitary operator one is expressing, in this case: translation.

2 Eigenstates of ~K

Let us call the eigenstates of ~K, which are also eigenstates of T (~a), |~k〉.

~K |~k〉 = ~k |~k〉 and T (~a) |~k〉 = e−i
~k·~a |~k〉 (16)

Let us consider the position projection of the translation operator acting
on an eigenstate of translation. Letting the translation operator, operate to
the right, we have

〈~x|T (~a)|~k〉 = e−i
~k·~a 〈~x|~k〉 (17)

= e−i
~k·~a ψ~k(~x) (18)
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where we have defined the wavefunction to be

ψ~k(~x) = 〈~x|~k〉 (19)

Now consider the same projection, replacing T (~a) with T †(−~a), and let-
ting it operate to the left.

〈~x|T (~a)|~k〉 = 〈~x|T †(−~a)|~k〉 (20)

= 〈~x− ~a|~k〉 (21)

= ψ~k(~x− ~a) (22)

Equating the two methods, we have

ψ~k(~x− ~a) = e−i
~k·~a ψ~k(~x) (23)

Letting ~x = 0, and ~a = −~y, we recognize that this gives plane wave solutions
for the wavefunction.

ψ~k(~y) = ψ~k(0) ei
~k·~y (24)

As hypothesized by de Broglie, and first experimentally verified by elec-
tron diffraction, a particle in an eigenstate of momentum has a wavefunction
with with a wavevector, ~k, related to its momentum ~p by

~p = ~ ~k (25)

This means that the ~K operator that we have been discussing is indeed the
wavevector operator. We can now write the translation operator as

T (~a) = e−i
~P ·~a/~ (26)

Aside from the constant, ~, momentum is the generator of translation.

3 Matrix Elements of ~P in the |~x〉 Basis

For simplicity, let us now consider translation in only one dimension.

T (a) = e−iPa/~ (27)

The following clever manipulation reveals how to write the momentum op-
erator in terms of the translation operator.

∂

∂a

∣∣∣∣
a=0

T (a) = − i
~
P (28)
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P = i~
∂

∂a

∣∣∣∣
a=0

T (a) (29)

We should now ask what the matrix elements are of the momentum operator
in the position basis.

〈x′ |P |x〉 = i~
∂

∂a

∣∣∣∣
a=0

〈x′ |T (a) |x〉 (30)

= i~
∂

∂a

∣∣∣∣
a=0

δ(x+ a− x′) (31)

= i~ δ′(x− x′) (32)

4 ~P Acting on a Wavefunction

We should now take a digression to investigate what is meaning of this deriva-
tive of a delta function, δ′(x). We integrate by parts, a δ′(x − y) acting on
some arbitrary function, f(x). Note that the boundary term is zero because
δ(x− y) is zero on the boundary, provided a boundary of integration is not
at position y.∫

δ′(x− y) f(x) dx = 0−
∫
δ(x− y) f ′(x) dx (33)

= −f ′(y) (34)

Evidently, the derivative of a delta function is sort of a tool for evaluating
the derivative of some function at a certain point.

Now we may ask how we can represent the momentum operator in the
position basis. Because the number of states in the position basis are un-
countably infinite, a matrix representation would be awkward. We see by
the following argument that there is a much more elegant way of writing the
momentum operator.

Consider the momentum operator acting on the wavefunction of some
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state state |ψ〉.

P ψ(x) = 〈x |P |ψ〉 (35)

=

∫
〈x|P |x′〉 〈x′|ψ〉 dx′ (36)

= i~
∫
δ′(x′ − x) ψ(x′) dx′ (37)

= −i~ ∂ψ(x′)

∂x′

∣∣∣∣
x′=x

(38)

= −i~ ∂ψ(x)

∂x
(39)

∴ P → −i~ ∂

∂x
(40)
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