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Abstract

I give a pedagogical derivation of the Cramér-Rao Bound, which
gives a lower bound on the variance of estimators used in statistical
point estimation, commonly used to give numerical estimates of the
systematic uncertainties in a measurement.

1 Derivation

For estimators θ̂i of parameters θi in a given model with liklihood function
L, the bias of these estimators bi is defined as

bi ≡ E[θ̂i(x)− θi] ≡
∫
dx L(x, θ) (θ̂i(x)− θi)

Note that the estimators θ̂i depend on the observable x, and the likelihood
function L depends on x and the paramters of the model θ. For ease of
notation these dependencies will now be left implicit. The observable could
be a tuple of many measurements x = {x1, x2, . . . xN}, in which case the
integral over x actual denotes integrals over each independent measurement.∫

dx =

∫
dx1

∫
dx2 · · ·

∫
dxN

In that case, the likelihood function is the joint likelihood function, which is
a product of the likelihood functions for each measurement.

L =
N∏
i=1

Li
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Taking the derivative of the bias with respect to its corresponding pa-
rameter gives

∂bi
∂θi

=

∫
dx (θ̂i − θi)

∂L

∂θi︸︷︷︸
L ∂ lnL

∂θi

−
∫
dx L︸ ︷︷ ︸
1

1 +
∂bi
∂θi

=

∫
dx (θ̂i − θi) L

∂ lnL

∂θi(
1 +

∂bi
∂θi

)(
1 +

∂bj
∂θj

)
=

[∫
dx (θ̂i − θi) L

∂ lnL

∂θi

] [∫
dx (θ̂j − θj) L

∂ lnL

∂θj

]
Then we use the Cauchy-Schwarz inequality:∣∣∣∣∫ dx f(x) g(x)

∣∣∣∣2 ≤ ∫ dx |f(x)|2 ·
∫
dx |g(x)|2

(
1 +

∂bi
∂θi

)(
1 +

∂bj
∂θj

)
≤
[∫

dx L (θ̂i − θi)(θ̂j − θj)
] [∫

dx L
∂ lnL

∂θi

∂ lnL

∂θj

]
The first integral is the covariance of the estimators.

Vij ≡ Cov[θ̂i, θ̂j] ≡
∫
dx L (θ̂i − θi)(θ̂j − θj)

The second integral is defined as the Fisher information matrix.

Iij ≡ E

[
∂ lnL

∂θi

∂ lnL

∂θj

]
≡
∫
dx L

∂ lnL

∂θi

∂ lnL

∂θj

A more convenient and equivalent expression for Iij can be derived as follows.
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Consider the following.

E

[
∂2 lnL

∂θi ∂θj

]
= E

[
∂

∂θi

(
1

L

∂L

∂θj

)]
= E

[
− 1

L2

∂L

∂θi

∂L

∂θj
+

1

L

∂

∂θi

∂L

∂θj

]
= −E

[
∂ lnL

∂θi

∂ lnL

∂θj

]
+ E

[
1

L

∂

∂θi

(
L
∂ lnL

∂θj

)]
= −Iij +

∫
dx L

1

L

∂

∂θi

(
L
∂ lnL

∂θj

)
= −Iij +

∂

∂θi

∫
dx L

∂ lnL

∂θj

= −Iij +
∂

∂θi

∫
dx L

1

L

∂L

∂θj

= −Iij +
∂

∂θi

∂

∂θj

∫
dx L

= −Iij +
∂

∂θi

∂

∂θj
(1) = −Iij

Therefore

Iij ≡ E

[
∂ lnL

∂θi

∂ lnL

∂θj

]
≡ E

[
− ∂

2 lnL

∂θi ∂θj

]
One can see that the Fisher information matrix measures the curvature of the
likelihood function in parameters space, averaged over the possible observed
data. Intuitively, this means the larger the value of Iij, the more sharply
pronounced the likelihood function is in that region, and the more sensitive
the experiment is to the parameters of the model.

Plugging these expressions back into the inequality we derived by us-
ing the Cauchy-Schwarz inequality, we have the general expression for the
Cramér-Rao bound.

Vij ≥

(
1 + ∂bi

∂θi

)(
1 +

∂bj
∂θj

)
E
[
− ∂2 lnL
∂θi ∂θj

] (1)

It is often the case that the bias of a well chosen estimator is asymtotically
zero in the large sample limit. In which case, the bound for the covariance
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matrix of unbiased estimators simplifies to the following.

Vij ≥
(

E

[
− ∂

2 lnL

∂θi ∂θj

])−1
The diagonal elements of which give the variance of the estimators.

Vii = σ2
θ̂i
≥
(

E

[
−∂

2 lnL

∂θ2i

])−1
The efficiency of an unbiased estimator is defined as

ε(θ̂i) ≡

(
E
[
−∂2 lnL

∂θ2i

])−1
σ2
θ̂i

The efficiency is therefore less than or equal to one, and equal to one in the
case that the Cramér-Rao bound becomes an equality.

If the estimators are unbiased and efficient (ε = 1), it is evident that the
covariance matrix of the estimators is given by the following.

Vij =

(
E

[
− ∂

2 lnL

∂θi ∂θj

])−1
It can be shown that in the large sample limit, Maximum Likelihood Esti-
mators (MLE) are asymptotically unbiased and efficient.

Since integrating the second derivatives of the likelihood function over all
possible observables is often prohibitive in practice, one often estimates this
expectation value by the numerically determined second derivatives evaluated
at the point of maximum likelihood.

Vij ≈
(
− ∂2 lnL

∂θi ∂θj

∣∣∣∣
θ=θ̂

)−1
Therefore, the variance of the estimators can be estimated by

σ2
θ̂i
≈

(
−∂

2 lnL

∂θ2i

∣∣∣∣
θi=θ̂i

)−1
(2)
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2 Example

The purpose of equation 2 is to estimate the variance of an estimator when
an analytic calculation is not practical. In this example, however, we will
study a case where an analytic calculation of the variance is trivial such that
we make the validity of equation 2 apparent.

Consider an experiment withN repeated measurements that are Gaussian
distributed. The likelihood function is therefore

L =
N∏
i=1

1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
The MLE for the mean, µ, can be found by maximizing the likelihood func-
tion, or equivalently, its natural logrhythm.

lnL = −N ln(σ
√

2π)−
N∑
i=1

(xi − µ)2

2σ2

0 =
∂ lnL

∂µ
=

N∑
i=1

(xi − µ)

σ2

⇒ µ̂ =
1

N

N∑
i=1

xi

Therefore the MLE of µ is just the mean of the sample, as one might expect.
Calculating the second derivative of the likelihood gives

∂2 lnL

∂µ2
= −N

σ2

Therefore, equation 2 gives the following for the variance of this estimator

σ2
µ̂ =

σ2

N
(3)

which can easily be shown to be the variance of the sample mean of any
distribution as follows.

Let

x̄ ≡ 1

N

N∑
i=1

xi

5



E [x̄] = E

[
1

N

N∑
i=1

xi

]
=

1

N

N∑
i=1

E [xi] =
1

N

N∑
i=1

µ = µ

Thefore, x̄ is an unbiased estimator of the mean. Now we calculate the
variance.

V [x̄] = E
[
x̄2
]
− (E [x̄])2

= E

[(
1

N

N∑
i=1

xi

)(
1

N

N∑
j=1

xj

)]
− µ2

=
1

N2

(
N∑
i=1

E
[
x2i
]

+
N∑
i 6=j

E [xi xj]

)
− µ2

For the first sum, note that

V [x] = σ2 = E
[
x2
]
− (E [x])2 = E

[
x2
]
− µ2

⇒ E
[
x2
]

= µ2 + σ2

For the second sum, recall that the individual measurements xi are made
independently, therefore

E [x1 x2] = E [x1] E [x2] = µ2

Therefore

V [x̄] =
1

N2

(
µ2 + σ2 + (N2 −N)µ2

)
− µ2 =

σ2

N

in agreement with the variance we calculated using the Cramér-Rao bound
(equation 3), implying that µ̂ is indeed an efficient estimator.
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