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ABSTRACT

Miocene (ca. 18  Ma) subduction-related basalts and basaltic andesites 
from Monte Arcuentu, southern Sardinia, Italy, show a remarkable correlation 
between 87Sr/86Sr (from ~0.705 to ~0.711) over a small range of SiO2 (~51–
58 wt%) that contrasts with most other orogenic volcanic suites worldwide. 
New high-precision Pb and Hf isotope data help to constrain the petrogenesis 
of these rocks.

The most primitive Monte Arcuentu rocks (MgO >8.5 wt%) were sourced 
from a mantle wedge metasomatized by melts derived from terrigenous sedi
ment, likely derived from Archean terranes of northern Africa. This gave rise 
to magmas with high 87Sr/86Sr (0.705–0.709) and 207Pb/204Pb (15.65–15.67) with 
moderate εHf (–1 to +8) and εNd (–6 to +1), but it does not account for the full 
range of compositions observed. More evolved rocks (MgO <8.5 wt%) have 
higher 87Sr/86Sr (up to 0.711) and 207Pb/204Pb (up to 15.68), with εHf and εNd as 
low as –8 and –9, respectively. Mixing calculations suggest that evolved rocks 
with low Rb/Ba and low 206Pb/204Pb interacted with lower crust similar compo-
sitionally to that exposed today in Calabria, Italy, which was formerly in crustal 
continuity with Sardinia. High Rb/Ba and high 206Pb/204Pb magmas interacted 
with lithospheric mantle similar to that sampled by Italian lamproites. Par-
tial melting of lower crustal and upper mantle lithologies was facilitated by 
the rapid extension, and subsequent passive mantle upwelling, that occurred 
as Sardinia drifted away from the European plate during the Oligo-Miocene 
(ca. 32–15 Ma). Fractional crystallization under these PT conditions involved 
olivine + clinopyroxene with little or no plagioclase, such that differentiation 
proceeded without significant increase in SiO2. The Monte Arcuentu rocks 
provide insights into assimilation process in the lower crust and lithospheric 
mantle that may be obscured by upper crustal assimilation–fractional crystal-
lization (AFC) processes in other orogenic suites.

INTRODUCTION

Establishing the geochemical characteristics of the mantle beneath the west-
ern Mediterranean, and the processes that gave rise to those characteristics, is 
essential for understanding the geodynamic evolution of the region (Peccerillo 
and Lustrino, 2005; Avanzinelli et al., 2009; Lustrino et al., 2011). However, the 
range of petrologic components and processes that may be involved, particu-
larly in subduction-related magma genesis, makes this a challenging task.

High-field-strength elements (HSFE) are commonly used to investigate 
subduction petrogenesis, because they tend to behave in a “conservative” 
fashion, i.e., immobile and retained in the subducted slab (Pearce et al., 1995; 
Keppler, 2017; Zirakparvar, 2017). Thus, they may provide the best chance to 
identify a geochemical “baseline” from which to estimate fluxes of more mo-
bile elements (Pearce et al., 2007). It is argued that Hf isotopes can also be used 
to “see through” subduction processes into the nature of the sub-arc mantle 
wedge (Kempton et al., 2001; Jicha et al., 2004; Barry et al., 2006; Pearce et al., 
2007). In contrast, mobile or “non-conservative” elements, such as large-ion-
lithophile elements (LILE), are readily mobilized by fluids and easily trans-
ported from the slab into the mantle wedge. Volcanic arc magmas derived by 
melting of that mantle are then enriched in those elements.

However, Hf may not always behave as a conservative element, particularly 
where partial melting of subducted sediments is involved (Woodhead et al., 
2001; Hanyu et al., 2002; Münker et al., 2004; Tollstrup and Gill, 2005; Tollstrup 
et al., 2010; Handley et al., 2011). Therefore, where sub-arc mantle enrichment 
processes are dominated by aqueous fluids, Hf is likely to be conservative, but 
where silicate melts are involved, particularly of subducted sediments, Hf may 
behave in a non-conservative fashion.

Here we examine a suite of subduction-related rocks from Monte Arcuentu, 
Sardinia, Italy, in the western Mediterranean, not only to better understand the 
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geodynamic evolution of this region, but also to further explore the behavior of 
Hf during subduction and the question of sediment melt versus aqueous fluid 
enrichment of the mantle wedge. We have chosen this locality because previ-
ous research has suggested the petrogenesis of these rocks was dominated 
by mantle metasomatic processes rather than crustal contamination (Downes 
et al., 2001). Here we report new Hf and high-precision Pb isotope data for the 
previously studied samples.

The Cenozoic igneous rocks of Sardinia can be divided into two main groups 
(Lustrino et al., 2011, 2013): a late Eocene–middle Miocene subduction-related 
(SR; ca. 38–15 Ma) group and a middle Miocene–Pleistocene anorogenic group 
(ca. 12–0.1 Ma). Our study focuses on the Monte Arcuentu volcano products 
belonging to the older activity. We will show that Monte Arcuentu is geochem-
ically distinct from the rest of the SR magmatism on Sardinia, and other oro-
genic magmatism globally, preserving a record of its metasomatized mantle 
source in the most primitive rocks, which is overprinted by interaction with 
lithospheric mantle and/or lower crust in the more evolved rocks.

GEOLOGIC BACKGROUND

Sardinia, Italy, and Corsica, France, form a small continental micro-plate in 
the western Mediterranean, situated between Neogene oceanic-type crust and 
thinned continental crust of the Tyrrhenian Sea to the east and the Ligurian-
Provençal Basin to the west (Fig. 1). It consists of an ~25–35-km-thick crust 
(Splendore and Marotta, 2013), whose late Precambrian to Paleozoic basement 
was deformed and metamorphosed during the Caledonian and Hercynian 
orogenies and extensively intruded by calc-alkaline granitoids (Tommasini 
et al., 1995; Rossi et al., 2009; Casini et al., 2015). The basement is overlain by 
Mesozoic sediments that were deposited when Sardinia was part of the pas-
sive margin of southern Europe (Carminati et al., 2010).

The geodynamics of the western Mediterranean are complex, but essen-
tially involve subduction with different polarities of the Alpine Tethys oceanic 
lithosphere due to northward migration of Africa during the Mesozoic (Réhault 
et al., 1984, 2012; Carminati et al., 2010). Detailed reviews of the geologic evolu-
tion of the region are given by Carminati et al. (2012), Lustrino et al. (2013) and 
references therein, so only essential aspects will be mentioned here.

During the Cretaceous, subduction was oriented in a southeast direction 
beneath the approaching African promontory known as Adria, but once it had 
docked with Europe during the Eocene, the direction of subduction of Tethys 
lithosphere flipped and the remaining oceanic lithosphere was subducted 
west-northwest beneath Europe, giving birth to the Apennine-Maghrebian sub-
duction system (Fig. 1B; Gueguen et al.; 1998; Carminati et al., 2012; Lustrino 
et al., 2017). At the beginning of the Oligocene, Sardinia was part of the Iberian 
Peninsula, but back-arc spreading split it away, initiating a southeast-directed 
drifting stage from ca. 32–23 Ma. The Sardinia–Corsica micro-plate then began 
rotating ~60° counterclockwise during the Miocene (23–15 Ma) until it reached 
its current position and orientation during the Langhian (Gattacceca et al., 2007; 

Advokaat et al., 2014) (Fig. 1B). During middle to late Miocene, oceanic slab roll-
back resulted in passive asthenospheric upwelling in the back-arc domain and 
opening of the Ligurian-Provençal Basin (Lustrino et al., 2009). At ca. 10 Ma, back-
arc basin spreading resumed east of Sardinia–Corsica, eventually leading to for-
mation of the Tyrrhenian Sea (Carminati et al., 2010, 2012). The subduction hinge 
also shifted eastward, where it exists today beneath Calabria and the Aeolian arc.

The late Eocene–middle Miocene SR volcanism on Sardinia consists of 
medium-K arc tholeiites to high-K calc-alkaline rocks, mostly emplaced during 
an Aquitanian-Langhian flare-up phase (Beccaluva et al., 1985; Lecca et al., 1997; 
Morra et al., 1997; Lustrino et al., 2009; Conte et al., 2010). The earliest sporadic 
volcanic products (ca. 38–24 Ma) were andesitic, whereas the bulk of the magma-
tism (22 and 18 Ma) consisted of dacite to rhyolite ignimbrite flows (e.g., Lecca 
et al., 1997) associated with formation of the Sardinia Rift (Fig. 1). Minor products 
were generated until ca. 15 Ma in the southern (e.g., Sulcis; Morra et al., 1994; 
Conte et al., 2010; Gisbert and Gimeno, 2017) and central sectors of the island 
(e.g., Mt. Arci). With relocation of the subduction zone farther east—roughly 
coeval with the opening of the Tyrrhenian Sea and the potassic-ultrapotassic 
volcanism of peninsular Italy—the late Miocene to Pleistocene (ca. 12–0.1 Ma) 
volcanism of Sardinia shifted abruptly from orogenic to anorogenic in character, 
with sodic alkaline to tholeiitic lavas (Lustrino et al., 2007; 2013).

Our study builds on that of Downes et  al. (2001) of the Miocene Monte 
Arcuentu volcano, located within the southern extension of the Oligo–Miocene 
Sardinia Rift on the southern margin of the younger (Plio–Pleistocene) Campidano 
graben (Fig. 1A). Earlier studies encompassed a wider geographic area, referred 
to collectively as the Arcuentu Volcanic Complex (Assorgia et al., 1995; Brotzu 
et al., 1997). These studies include a more compositionally diverse volcano-sedi
mentary succession that has been divided into four units (A to D) based on age 
(Brotzu et al., 1997). The eruptive products include a thick set of lavas (unit C; ca. 
20–18 Ma) that overlie older submarine volcaniclastic deposits (units A and B; ca. 
30–22 Ma). The volcaniclastic deposits are crosscut by numerous, ca. 18-m.y.-
old basaltic dikes (unit D; ca. 18–17 Ma). The samples for our study are from the 
uppermost (Burdigalian age) units located at the center of the complex at Monte 
Arcuentu, equivalent to upper unit C and unit D of Brotzu et al. (1997).

GEOCHEMISTRY OF THE ARCUENTU ROCKS

Arcuentu volcanic rocks (here including both Arcuentu Volcanic Complex 
and Monte Arcuentu) are largely basaltic andesites with minor basalts and 
andesites (Downes et al., 2001; Franciosi et al., 2003; Lustrino et al., 2013). They 
are distinct from most other SR volcanic rocks of Sardinia in that they have 
lower total alkalis (Na2O + K2O) for a given SiO2, and highly evolved composi-
tions are absent (Fig. 2). In an AFM diagram (Fig. 3), the Arcuentu rocks strad-
dle the boundary between tholeiitic and calc-alkaline rocks proposed by Irvine 
and Baragar (1971), but a traditional Peacock (1931) plot clearly classifies them 
as calcic rather than calc-alkaline (Fig. 4). Figure 3 also shows that their high 
MgO character places them among the most primitive of Sardinia SR rocks. 

http://geosphere.gsapubs.org
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Major and trace element variations versus MgO (Downes et al., 2001) highlight 
the dominant role of mafic mineral fractionation in producing much of the 
observed compositional spectrum.

Arcuentu rocks have trace element features typical of other SR magmas 
worldwide, i.e., strong depletions in the HFSE such as Nb, Ta, and Ti; en
richment in LILE such as Rb, Ba, and Th; high concentrations of Pb and enrich-

ment of light rare-earth elements (LREE) relative to heavy rare-earth elements 
(HREE) (Supplemental Fig. S11). However, there are noticeable differences 
between Arcuentu rocks and other Sardinia SR rocks in the abundances and 
evolutionary trends of several key major and trace elements (Fig. 5). Other SR 
rocks show decreasing TiO2 with increasing SiO2, whereas Arcuentu shows 
only a weak correlation between these two elements and, if anything, the 
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Figure 1. (A) Simplified sketch map of Sardinia, Italy, reporting the main igneous rocks divided 
into two main groups, the late Eocene–middle Miocene subduction-related (SR) igneous rocks 
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VT—Valencia Trough; LPB—Ligurian-Provenҫal Basin; AB—Algerian Basin.

Kempton et al., Supplemental Materials, Figures S1 – S5

Figure S1. Primi�ve-mantle-normalized mul�-element plot for Monte Arcuentu volcanic rocks. 
The grey field shows the total range of concentra�ons for each element. Individual samples 
plo�ed are those analyzed for Hf and Pb isotopes in this study. Normalizing values from Sun 
and McDonough (1989).

Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systema�cs of oceanic basalts; implica�ons
for mantle composi�on and processes, in Magma�sm in the ocean basins. Saunders, A.D. and
Norry, M.J., eds., Geological Society of London, London, v. 42, p. 313-345.

1Supplemental Figures. S1: Primitive-mantle-normal-
ized multi-element plot for Monte Arcuentu volcanic 
rocks. S2: SiO2 versus selected major and trace ele-
ments from Monte Arcuentu and other Sardinia sub-
duction-related (SR) rocks. S3: SiO2 versus selected 
major and trace elements from Monte Arcuentu and 
other Sardinia SR rocks. S4: SiO2 versus selected 
major and trace elements from Monte Arcuentu and 
other Sardinia SR rocks. S5: Selected major and trace 
elements versus MgO for Monte Arcuentu and other 
Sardinia SR rocks. Please visit https://​doi​.org​/10​.1130​
/GES01584​.S1 or the full-text article on www​.gsapubs​
.org to view the Supplemental Figures.
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opposite trend. Furthermore, concentrations of TiO2 and Al2O3 (Figs. 5A and 
5B), as well as P2O5 (Fig. S2A [footnote 1]), tend to be lower for a given SiO2 
content than in other Sardinia SR rocks. Both Arcuentu and other Sardinia SR 
rocks exhibit weak negative correlations between CaO/Al2O3 versus SiO2 and 
Mg# [i.e., Mg/(Mg+(0.9*Fe))] versus SiO2, but the trends for Arcuentu rocks 
are much steeper and the values higher, on average, for a given SiO2 (Figs. 
S2B and S2C). Their relatively primitive nature is demonstrated by their Ni 
(Fig. 5C) and Cr (Fig. S2D) contents. Conversely, Sr concentrations are signifi-
cantly lower for a given SiO2 than other Sardinia SR rocks (Fig. 5D).

Compositional similarities between the Arcuentu rocks and some other 
Sardinia SR rocks are noteworthy. Some rocks from Montresta and Marmilla, 
Sardinia, Italy, have high MgO, Ni, and Cr contents, but most of these rocks 
have lower SiO2 contents (Morra et al., 1997; Mattioli et al., 2000); they are also 
isotopically distinct (discussed below).

RESULTS

Our new Hf and high-precision Pb isotope data for Monte Arcuentu are 
presented in Table 1 and Figures 6–8, where they are shown relative to other 
Cenozoic volcanic rocks of the western Mediterranean. Analytical details can 
be found in the Appendix. In the 176Hf/177Hf versus 143Nd/144Nd diagram (Fig. 
6), Monte Arcuentu rocks form an array that plots roughly parallel to the Ter-
restrial Array (Vervoort et al., 2011), with εHf values ranging from +8 to –8 and 
ΔεHf (i.e., the vertical deviation from the terrestrial array) ranging from –0.2 
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to +3.7. The most radiogenic compositions are only slightly less radiogenic 
than calc-alkaline volcanics from the Aeolian islands of Alicudi and Filicudi. 
Peccerillo et al. (1993) interpreted these islands as being derived from mantle 
sources that are among the least modified by subduction zone processes in the 
Aeolian arc. In contrast, the least radiogenic Hf and Nd isotope compositions 
overlap the fields for Roman Province volcanics and Italian lamproites. Her-

cynian lower crustal xenoliths and sediments from the Eastern Mediterranean 
and Ionian Sea exhibit wide ranges in Nd and Hf isotope values and overlap 
the Monte Arcuentu rocks for all but the most radiogenic compositions. There 
are few published Hf isotope data for other Sardinia SR rocks, but the three 
samples reported by Lustrino et al. (2013) plot parallel to and slightly below the 
Monte Arcuentu array, close to the Terrestrial Array (Fig. 6).
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In a 207Pb/204Pb versus 206Pb/204Pb diagram (Fig. 7A), the Monte Arcuentu 
data plot between the HIMU (i.e., high μ, where μ = 238U/204Pb) and EM (enriched 
mantle) end-members of Stracke (2012). They have high 207Pb/204Pb values for 
a given 206Pb/204Pb, in common with most volcanic rocks from the Aeolian arc 
and central Italy. Monte Arcuentu rocks have lower 206Pb/204Pb than most other 
orogenic magmatism of the region but show some overlap with rocks from 
the Roman Province and Italian lamproites (Figs. 7A and 7B). They exhibit a 
Y-shaped vertical array, the low 207Pb/204Pb end of which points toward the 
composition of some tholeiitic basalts from the Tyrrhenian Sea (Fig. 7A). The 
high 207Pb/204Pb–high 206Pb/204Pb branch overlaps the compositions of Eastern 
Mediterranean sediments, as well as Italian lamproites, although most of the 
sediments have higher 206Pb/204Pb and 207Pb/204Pb. The high 207Pb/204Pb–low 
206Pb/204Pb branch extends toward the compositions of some Hercynian base-
ment rocks of Calabria and lower crustal xenoliths from the Massif Central. In 
contrast, most other Sardinia SR rocks have lower 207Pb/204Pb and/or 206Pb/204Pb 
ratios (Fig. 7B) that scatter between the Campanian Province field and unradio-
genic Plio–Pleistocene anorogenic volcanics (UPV) of Sardinia (Fig. 7).

Many of the older literature data in this diagram appear to exhibit vertical 
arrays similar to Monte Arcuentu. However, most of these older data were col-
lected using thermal ionization mass spectrometry, the analytical uncertainty 
for which is usually an order of magnitude greater or more than that of the new 
multicollector–inductively coupled plasma–mass spectrometer (MC-ICP-MS) 
Pb data reported here for Monte Arcuentu. Because the variations in 207Pb/204Pb 
tend to be small, this greater analytical uncertainty can make it difficult to rec-
ognize trends within these older data.

In 208Pb/204Pb versus 206Pb/204Pb space, the Monte Arcuentu rocks plot at a 
steep angle to the trends exhibited by most localities of the western Mediterra-
nean (Fig. 8A), clearly indicating that mixing is responsible for the Pb isotope 
variations. The low 208Pb/204Pb end of the array trends toward Tyrrhenian Sea 
tholeiites, overlapping the fields for Eastern Mediterranean and Ionian Sea 
sediments, whereas the high 208Pb/204Pb data trend toward the compositions of 
some Calabrian basement and Hercynian lower crust (Fig. 8B), although these 
crustal rocks exhibit a considerable range in Pb isotope compositions.

DISCUSSION

Crustal Contamination versus Source Enrichment

Based on major and trace element modeling, Brotzu et al. (1997) concluded 
that the petrogenesis of Arcuentu Complex rocks was dominated by fractional 
crystallization in mid- to shallow crustal reservoirs and that crustal contamina-
tion was negligible. Focusing on the rocks from Monte Arcuentu, as opposed 
to the broader Arcuentu complex, Downes et al. (2001) reinforced this con-
clusion using Sr, Nd, and O isotope data, and instead attributed the observed 
isotopic variations to mantle metasomatism, i.e., enrichment of the sub-arc 
mantle wedge via subduction. One aspect of the geochemistry that strongly 
supports this argument is the unusual variation shown by the Monte Arcuentu 
rocks in 87Sr/86Sr versus SiO2 (Fig. 9). In this diagram, the Monte Arcuentu 
samples display a remarkably steep correlation that contrasts with most other 
orogenic volcanic rocks. Arc volcanics from Tonga-Fiji-Vanuatu and the North-
ern, Central, and Southern Volcanic Zones of the Andes, for example, exhibit 
broad trends with slopes that are much shallower than the Arcuentu Complex 
(Fig. 9A). Rocks from the Altiplano-Puna back-arc region of the Central Andes 
exhibit greater compositional diversity, but the increase in 87Sr/86Sr with in-
creasing SiO2 for individual centers is still significantly less than that observed 
for the Arcuentu Complex (Fig. 9A; see Figs. S3A–S3C [footnote 1]). At low SiO2 
contents, subduction enrichment is likely to be responsible for at least some 
of the increase in 87Sr/86Sr relative to depleted mantle, but the spread to high 
SiO2 is generally ascribed to combined fractional crystallization—assimilation 
in crustal magma chambers and/or deep crustal MASH (Melting, Assimilation, 
Stagnation, Homogenization; Hildreth and Moorbath, 1988) zones. Data for 
several islands of the Aeolian Arc follow similar trends to those of the Andes 
and Tonga-Fiji-Vanuatu. Rocks from Alicudi have low, depleted-mantle-like 
87Sr/86Sr and hence record the smallest degree of subduction enrichment 
among Aeolian arc volcanoes (Peccerillo et  al., 1993). The horizontal arrays 
for Vulcano and Stromboli, with their higher 87Sr/86Sr compositions, indicate 
either progressively greater mantle enrichment or crustal contamination (or 

TABLE 1. Hf AND Pb ISOTOPE DATA FOR MONTE ARCUENTU BASALTS AND BASALTIC ANDESITES

Sample Lu Hf 176Hf/177Hf εHf18
206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

ST43 Dike 0.22 1.5 0.282795 0.95 18.6177 15.6651 38.7824
ST46 Dike 0.27 1.1 0.283010 8.40 18.6758 15.6441 38.7187
ST62 Lava 0.44 3.6 0.282557 –7.41 18.5745 15.6778 38.9546
ST84 Breccia 0.37 3.9 0.282572 –6.84 18.5806 15.6833 39.0440
ST117 Lava 0.31 2.2 0.282702 –2.33 18.7421 15.6822 38.7447
ST142 Dike 0.25 1.5 0.282754 –0.53 18.6899 15.6725 38.9102
ST347 Lava 2.1 0.282671 –3.42* 18.7627 15.6812 38.7644
ST357 Lava 0.40 3.5 0.282568 –6.81 18.5894 15.6815 38.9263
ST360 Lava 0.26 1.6 0.282909 4.95 18.6619 15.6565 38.7865

Notes: Age data from Assorgia et al. (1995). Lu and Hf concentrations from Downes et al. (2001).
*Lu concentration not available; εHf calculated assuming an average 176Lu/177Hf for the suite of 0.021.
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both). In contrast, the steep array for Monte Arcuentu overlaps the fields for 
medium- to high-K volcanics of central-southern Italy (Campanian Province, 
Ernici-Roccamonfina, Vulsini Mountains) and trends toward the field for Italian 
lamproites. Although the Monte Arcuentu rocks are clearly not as K-rich as 
the Italian lamproites, the trend suggests that metasomatized mantle, similar 
to that producing the potassic and ultrapotassic magmas of central Italy, was 
involved in their petrogenesis.

The Monte Arcuentu rocks also contrast with the other Sardinia SR rocks 
(Fig. 9B). Instead of the steep, well-defined trend shown by Monte Arcuentu, 
other SR rocks form a broad, concave downward array that extends both to 
lower and higher SiO2, but with a more limited range in 87Sr/86Sr. None of the 
other Sardinia SR rocks have 87Sr/86Sr values greater than ~0.709, whereas 
the Monte Arcuentu rocks have 87Sr/86Sr values up to ~0.711. Conversely, the 
lowest 87Sr/86Sr for Monte Arcuentu is ~0.705, even for basaltic rocks with 
relatively high Mg numbers [i.e., Mg# >0.68], whereas ~10% of the other 
SR rocks have 87Sr/86Sr less than ~0.705, some as low as 0.7035 (Lustrino 
et al., 2013).

Within the broad array of Sardinia SR rocks, each volcanic center tends 
to be slightly different, so the data are summarized in Figure 9C using a best-
fit polynomial to represent each center. For most centers, the curves show 
an overall positive correlation between 87Sr/86Sr and SiO2, suggesting that the 
magmas have undergone moderate amounts of crustal contamination (Lus-
trino et al., 2013). However, two areas show an unusual pattern in which the 
87Sr/86Sr values decrease as the magmas become more evolved. This has been 
interpreted by Lustrino et al. (2013) as evidence that the most differentiated SR 
rocks formed by partial melting of preexisting basaltic lower crust. The down-
ward limb of the curve represents a mixing trajectory between mildly evolved 
and contaminated melts of the upward limb (i.e., 87Sr/86Sr increasing with SiO2) 
and silica-rich partial melts derived from previously underplated basaltic/gab-
broic SR rocks. This model requires an exceptional heat source to produce 
siliceous melts from mafic lower crust, which Lustrino et al. (2013) argue was 
due to rapid upwelling of hot asthenospheric mantle resulting from high rates 
of separation of Sardinia from continental Europe during the Oligo–Miocene 
(Morra et al., 1997; Mattioli et al., 2000).
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Table  A1), and subduction-related (SR) volcanics from Tonga-Fiji-Vanuatu 
(Pearce et al., 2007), and the arc front of the Northern, Central and Southern 
Volcanic Zones (NVZ, CVZ, and SVZ) of the Andes. Data sources for the Andes 
as follows: NVZ from the compilation of Hidalgo et al. (2012, their supplemen-
tary data file); Southern Volcanic Zone (SVZ) data from Hickey-Vargas et al. 
(2016) and references identified by these authors as SVZ arc front; CVZ frontal 
arc data from the compilation of Mamani et al. (2010, their repository item), 
plus data from Davidson et al. (1990) and Freymuth et al. (2015). Solid blue 
arrow indicates inferred trend for mantle metasomatism/subduction enrich-
ment. Solid black arrow indicates variation in 87Sr/86Sr with increasing SiO2 as 
a function of fractional crystallization alone; dotted arrow indicates slope of 
the regression for data on volcanic products from the CVZ back-arc region, ex-
cluding ignimbrites (see Fig. S3). (B) Monte Arcuentu samples shown relative 
to other Sardinia SR rocks (Lustrino et al., 2013). Solid line indicates linear re-
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R2 = 0.39. (C) Monte Arcuentu shown relative to other Sardinia SR rocks with 
the individual volcanic centers identified by Lustrino et al. (2013) represented 
by a best-fit second order polynomial.
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The best fit curve through the data for Marmilla forms a steep parabola that 
passes through most of the Monte Arcuentu data. However, all but one sam-
ple from Marmilla plot within the low SiO2 end of the Monte Arcuentu array 
(87Sr/86Sr <0.7088); therefore, the parabola is constrained by one evolved sam-
ple only (with ~71 wt% SiO2). Nonetheless, the Marmilla samples show some 
major and trace element similarities to the Monte Arcuentu rocks, e.g., low 
Al2O3 and high MgO for a given SiO2. These two localities are separated by less 
than 30 km across the Campidano graben and prior to this Plio–Pleistocene 
extension would have been even closer, suggesting they may record similar 
petrogenetic processes.

A second argument presented by Downes et al. (2001) in favor of subduc-
tion-modified mantle sources for Monte Arcuentu magmas is the variation of 
Sr isotopes with δ18O. In δ18O versus 87Sr/86Sr (not shown), the data for clino
pyroxene separates form a positive correlation that is only slightly concave 
upward (Downes et  al., 2001). Calculated mixing curves between primitive 
Monte Arcuentu basalts and Hercynian felsic granulites pass through the ma-
jority of the data but require assimilation in excess of 40% felsic crust. Assimi-
lation of this much felsic crust by the most primitive basaltic rocks in the suite 
would result in significant increases in SiO2, which are not observed.

Source Enrichment

Sediment Melting versus Fluid Fluxing

If we accept that crustal contamination is not the main process responsible 
for the compositional variations observed within the Monte Arcuentu suite, 
then the likely alternative is source enrichment. Melting of a pyroxenite-rich 
sub-arc mantle (e.g., Lambart et al., 2013) can be ruled out on the basis of major 
and trace element systematics (see Figs. S4A and S4B [footnote 1]). We, there-
fore, consider source enrichment via sediments recycled during subduction, 
as suggested by the 87Sr/86Sr versus SiO2 trend (Fig. 9A). The questions that 
follow are: (a) What was the nature of the sediments? and, (b) Was the process 
controlled by dehydration of sediments or was sediment melting involved?

Numerous studies have now shown that Hf, and to a lesser extent Nd, tend 
to behave as conservative elements in the arc environment when aqueous 
fluids alone are involved (Johnson and Plank, 1999; Kempton et al., 2001; Barry 
et al., 2006; Pearce et al. 2007). Assuming a mantle source similar to that for 
Etna as the composition of the unmodified mantle wedge (Fig. 6), the Monte 
Arcuentu samples with the most depleted Nd and Hf isotopic ratios could be 
explained by interaction between that mantle and fluids derived from sub-
ducted sediments. That is, subduction fluxing by aqueous fluid carrying Nd 
(as a non-conservative element) but little Hf (a conservative element) could re-
duce the Nd isotope ratio of the mantle wedge while having little effect on the 
Hf isotope composition (Pearce et al., 2007). The result would be an offset in 
isotopic composition like that observed between Etna and the most depleted 
Monte Arcuentu rocks (Fig. 6). However, this mechanism by itself cannot ac-
count for the more enriched isotope signatures observed within the Monte 

Arcuentu suite. It is also inconsistent with the Pb isotope systematics (Fig. 7), 
since Monte Arcuentu samples do not plot along a mixing line between sedi-
ments and Etna mantle. Therefore, sediment melting is required to explain the 
full range of εNd and εHf values for Monte Arcuentu rocks.

Trace element plots, such as Th/Nb versus Ba/Nb (Fig. 10), also support 
an origin via sediment melting rather than fluid fluxing. Ba tends to be in-
compatible regardless of whether the process is sediment melting or sediment 
dehydration, but Th varies from compatible (immobile) in aqueous fluids to 
incompatible (mobile) during sediment melting (Johnson and Plank, 1999). 
Therefore, a high Th/Nb for a given Ba/Nb, as observed for Monte Arcuentu, 
is consistent with metasomatism of the mantle source via sediment melting.

Nature of the Subducted Sediment

To further constrain the nature of the subducted sediment, we need to place 
some constraints on the isotopic composition of the mantle source prior to 
metasomatism. Pb isotope data rule out a mantle source like that giving rise to 
Etna or the Iblean Plateau. Conversely, while Pb isotope data appear to rule out 
the depleted mantle (DM) end-member as the source for the Monte Arcuentu 
rocks, a slightly more radiogenic DM source, like that of some Tyrrhenian Sea 
basalts, is consistent with the low 206Pb/204Pb end of the Monte Arcuentu ver-
tical array (Fig. 7A). We, therefore, model possible mixing scenarios between 
Tyrrhenian Sea-type mantle and subducted sediment using Sr, Nd, and Hf iso-
tope data (Figs. 11 and 12).

Miocene to Quaternary sediments from the central and eastern Mediter-
ranean (Klaver et al., 2015) have been well characterized in terms of Sr, Nd, 
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Pb, and Hf isotopes; however, Figure 11 shows that, on average, the Sr-Nd  
isotope compositions of these sediments are too low and too high, respec-
tively, to serve as the contaminant required by the Monte Arcuentu array. This 
is in part because of their high-biogenic carbonate content (Klaver et al., 2015). 
Such sediments tend to have 87Sr/86Sr values that are limited by the compo-
sition of seawater (~0.709 or less), which is considerably lower than the most 
radiogenic Monte Arcuentu samples (~0.711). Fluvial input from the Nile also 
tends to have relatively unradiogenic Sr and Pb isotope compositions com-
bined with radiogenic Nd-Hf isotope ratios (Klaver et al., 2015). As a result, 
contamination of the mantle source by sediments like those in the eastern 
Mediterranean is unable to explain the full range of Sr-Nd-Pb-Hf isotope com-
positions at Monte Arcuentu. Sediments from farther west in the Ionian Sea 
have slightly higher 87Sr/86Sr (~0.7115), but their 143Nd/144Nd and 176Hf/177Hf val-
ues overlap the enriched end of the Monte Arcuentu data (Figs. 11 and 12). 
Thus, the amount of mantle contamination that would be required would be 
unrealistically large, i.e., >80%, to explain the most enriched samples (Fig. 11). 
Their 207Pb/204Pb values are also too low to explain the compositional range of 
Monte Arcuentu rocks (Fig. 7B).

An alternative source for the subducted sediment component could be 
Hercynian-age rocks of Europe. However, mixing curves calculated between 
Tyrrhenian Sea-type mantle and examples of Hercynian crust (Downes et al., 
1997) do not pass through the data (Fig. 11).

Klaver et al. (2015) reported a few Mediterranean sediments with higher 
87Sr/86Sr values (up to 0.7146), as well as lower 143Nd/144Nd (down to 0.51207) 
and noted that the abundance of this component increases westward. They 
interpreted this as evidence for an increased contribution from Sahara dust 
at these sites. If we assume a subducted sediment composition dominated by 
dust from the western Sahara (Grousset et al., 1998; Scheuvens et al., 2013), 
the resulting mixing curve reproduces the Monte Arcuentu Sr-Nd isotope ar-
ray (Fig. 11). Less than 3% sediment addition is required to explain the most 
primitive (MgO >8.5 wt%) compositions and <12% to encompass the full range 
of analyses. Given Sardinia’s location in the western Mediterranean, it is not 
unrealistic to assume that sediments of this type dominated the subducted 
component beneath Sardinia.

Hf isotope data, however, indicate that the subducted sediment component 
is unlikely to consist of Sahara dust alone, as Sahara-derived aerosols tend 

0.5118

0.5120

0.5122

0.5124

0.5126

0.5128

0.5130

0.5132

0.702 0.707 0.712 0.717 0.722 0.727

MORB

TS

Sahara loess and sediment

HLC

87 86Sr/ Sr

14
3

14
4

N
d/

N
d

Italian
lamproites

HUC

Monte Arcuentu
Arcuentu Complex
Other SR volcanics
E Mediterranean sediments
Ionian Sea sediments
Calabrian basement

Figure 11. Plot of 143Nd/144Nd versus 87Sr/86Sr show-
ing results of representative mixing calculations. 
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Tyrrhenian Sea (TS) mantle and Sahara sedi-
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5% mixing; 1% divisions are shown as tick marks 
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composition of TS is inferred from Tyrrhenian 
Sea basalt data (Beccaluva et al., 1990): 87Sr/86Sr = 
0.70393, 143Nd/144Nd = 0.51291, Sr = 21.1 ppm, Nd = 
1.35 ppm. Isotopic values for Sahara sediment are 
based on the west Sahara potential source area 
defined by Scheuvens et  al. (2013) with elemen-
tal concentrations estimated from Grousset et al. 
(1998): 87Sr/86Sr = 0.720, 143Nd/144Nd = 0.51195, Sr = 
142 ppm, Nd = 30.2 ppm. The dotted green curve 
represents mixing between average TS mantle 
and Eastern Mediterranean sediments from Klaver 
et  al. (2015): 87Sr/86Sr  = 0.70954, 143Nd/144Nd  = 
0.51227, Sr = 834 ppm, Nd = 21.7 ppm. The dashed 
orange curve represents mixing between average 
TS mantle and Ionian Sea sediments (Kempton, 
unpublished data): 87Sr/86Sr = 0.71147, 143Nd/144Nd = 
0.51216, Sr = 282 ppm, Nd = 28 ppm. The dotted 
blue curve represents mixing between average 
TS mantle and average Hercynian Upper Crust 
(HUC) calculated from data in Downes et al. (1997): 
87Sr/86Sr  = 0.72315, 143Nd/144Nd  = 0.512148, Sr  = 
138 ppm, Nd = 26 ppm; only the first 10% mixing 
interval is indicated for the Eastern Mediterra-
nean, Ionian, and Hercynian Upper Crust curves. 
Shown for reference is the average composition 
of Hercynian Lower Crust (HLC) calculated from 
lower crustal xenolith data in Downes et al. (1990, 
1991). Other data sources as in Table A1. MORB—
mid-oceanic ridge basalt.
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to have radiogenic 176Hf/177Hf for a given 143Nd/144Nd (Pourmand et al., 2014), 
and plot significantly above the terrestrial array (Fig. 12). Bayon et al. (2009) 
found that the Nd and Hf isotope systems are decoupled during continental 
weathering and sediment transport. Nd isotopes are not significantly fraction-
ated during these processes, but a major fraction of Hf is hosted in zircon, 
which tends to be sorted into silt and sand fractions during sediment transport 
(Patchett et al., 1984). As a result, weathering and sediment transport produce 
two distinct arrays in the εHf versus εNd diagram: a “zircon-bearing sediment 
array” and a “zircon-free sediment array” (Fig. 12). Mixing calculations in-
volving these two end-members suggest that neither extreme can explain the 
Monte Arcuentu data array: Contamination by zircon-poor sediment produces 
a concave downward curve, whereas zircon-bearing sediment produces a con-
cave upward curve (Fig. 12). However, a mixture of fine- and coarse-grained 
sediment produces a curve that passes through the data, suggesting the sed-
iment contributing to the metasomatism of the Monte Arcuentu mantle was a 
mixture of both fine-grained, zircon-free sediment, and coarser, zircon-bearing 
continental shelf-type sediments.

Consistent with the interpretation that the sediment contaminant was 
terrigenous in origin is the good correlation (R2  = 0.8) exhibited by Monte 
Arcuentu samples in a plot of 176Lu/177Hf versus 146Sm/144Nd (Fig. 13), where 
the data overlap the fields for turbidites and terrestrial clays. By comparison, 
hydrogenetic and hydrothermal sediments extend to significantly higher 
176Lu/177Hf values not observed at Monte Arcuentu.

Therefore, Sr-Nd-Hf isotope data are consistent with a model in which the 
sediments involved in metasomatism of the Monte Arcuentu mantle source 
were (i ) predominantly terrigenous in origin, (ii ) derived from Archean ter-
ranes of northern Africa, and (iii ) contributed to the mantle wedge through 
melting rather than dehydration.

Pb isotope analyses of Saharan sediments are limited, and aerosols, even 
from remote areas, are at least partly of anthropogenic origin (Abouchami 
et al., 2013; Kumar et al., 2014). Nonetheless, available data appear to be in-
consistent with the mixing model proposed above based on Sr-Nd-Hf iso-
topes. Surface sediments from the Bodélé Depression, thought to be one of 
the largest sources of Saharan dust (Abouchami et al., 2013), have Pb isotope 
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compositions that are more radiogenic than most sediments from the eastern 
Mediterranean (206Pb/204Pb >18.9). If representative of the full range of com-
positions for Sahara aerosols and sediments, they cannot explain the Monte 
Arcuentu data, particularly the rocks that have high 207Pb/204Pb and 208Pb/204Pb 
at low 206Pb/204Pb (Figs. 7B and 8B). Thus, the full range of Pb isotope data 
for Monte Arcuentu cannot be explained by mantle metasomatism alone in 
response to subduction of any known sediments.

A Case for Both Source Enrichment and Crustal Contamination?

The analysis above suggests that, while source contamination can explain 
some of the compositional variation in the Monte Arcuentu rocks, neither 
source metasomatism nor crustal contamination alone can explain the full 
range of major element, trace element and isotope compositions observed. 

In order to resolve this conundrum, we revisit the major and trace element 
characteristics of the Arcuentu rocks. Most of the lavas are too evolved to have 
equilibrated directly with mantle peridotite. MgO contents are as low as 2.4 
wt%, requiring significant amounts of differentiation of primitive magmas to 
explain these evolved compositions (e.g., Toothill et al., 2007; Melekhova et al., 
2015). Yet, we show in Figure 5 that, except for two andesites, most Arcuentu 
rocks have less than 58 wt% SiO2, and correlations between SiO2 and most 
major and trace elements tend to be weak—variations that differ from many of 
the orogenic volcanic suites from Sardinia.

In contrast, many of these elements show significant correlations with 
MgO (Fig. 14)—Al2O3, TiO2, and Sr increase with decreasing MgO, whereas 
most other Sardinia SR rocks show scattered but broadly positive correlations. 
Furthermore, Monte Arcuentu rocks that have the lowest MgO contents tend to 
have the highest 87Sr/86Sr and 207Pb/204Pb, and lowest 143Nd/144Nd and 176Hf/177Hf 
values, i.e., isotope variations broadly correlate with indices of magmatic dif-
ferentiation (Figs. 15A and 15B). Although weak correlations are observed be-
tween SiO2 and most major and trace elements (Fig. 5), SiO2 correlates pos-
itively with 207Pb/204Pb and negatively with 143Nd/144Nd (and 176Hf/177Hf) (Figs. 
16A and 16B), similar to the correlation observed between SiO2 and 87Sr/86Sr 
(Figs. 9 and 16C). These trends suggest a role for assimilation-fractional crys-
tallization (AFC) processes, but different from those recorded by most orogenic 
volcanic rocks (e.g., Figs. 9A and 9B; Fig. S3 [footnote 1]).

The limited range in SiO2 within the Monte Arcuentu suite indicates that 
either the magmas underwent limited fractional crystallization or that SiO2 was 
buffered during the process. MgO contents as low as 2.8 wt% (for rocks with 
~52 wt% SiO2) confirm that fractional crystallization has occurred. The positive 
correlation between MgO and Ni (Fig. 14C), and the wide range in Ni contents 
can be modeled as the result of ~10%–15% olivine fractionation, depending on 
the D-value assumed; and while the Ni concentrations observed are relatively 
high for arc rocks, they are lower than in melts in equilibrium with primitive 
mantle (e.g., ~400–500 ppm). Fractionation of ~30% olivine would be required 
to account for this compositional range, assuming a parental magma origi-
nally in equilibrium with the mantle. Yet, olivine fractionation alone will quickly 
drive up the SiO2 concentration of the residual melt due to the low SiO2 content 
of olivine, a feature not observed at Monte Arcuentu (Fig. 2).

Therefore, the fractionating assemblage must have been a combination of 
phases with a bulk solid SiO2 composition similar to that of the parental melt. 
The observed increases in TiO2 and Al2O3 (and Sr) with increasing degree of 
fractionation (Fig. 14) indicate that Fe-Ti oxides and plagioclase were not sig-
nificant fractionating phases. The absence of plagioclase in the fractionating 
assemblage suggests that the Monte Arcuentu rocks evolved over a range 
of near-Moho and lower-crustal depths, i.e., pressures higher than the stabil-
ity of plagioclase, similar to the Lesser Antilles (Melekhova et al., 2015).

Mafic cumulates consisting of varying proportions of Fe- and Al-rich clino-
pyroxene and olivine are common in lower crustal xenolith suites (Kempton, 
1987; Kempton and Dungan, 1989; Cigolini, 2007; Perinelli et al., 2017). Indeed, 
Muroi and Arai (2014) report a suite of wehrlites, clinopyroxenites and dunites, 
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which they interpret as cumulates from the sub-arc Moho. The crystallization 
sequence implied by these xenoliths is distinct from that of olivine-saturated 
magmas at low pressure and involves a process whereby olivine- and clino
pyroxene-oversaturated melts fluctuate around the olivine-clinopyroxene co-
tectic as the melts evolve, resulting in the crystallization of abundant wehrlites, 
clinopyroxenites, and dunites in the upper mantle and lower crust.

Depending on the proportion of clinopyroxene to olivine, such fraction-
ating assemblages would not significantly increase the SiO2 of the residual 
liquid, but would result in significant magmatic differentiation, driving liquids 
to low MgO contents, as well as low Ni and Cr. The roughly constant CaO con-
tents of Monte Arcuentu rocks as a function of MgO (Fig. S5A [footnote 1]) sug-
gest that clinopyroxene and olivine fractionated in roughly equal proportions.
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An implication of this scenario is that Monte Arcuentu parental magmas 
stalled near the Moho, where they potentially interacted with, and became 
contaminated by, lithospheric mantle and/or mafic lower crust. Assimilation 
of mafic lower crust has often been discounted on thermodynamic grounds, 
but thermodynamic modeling studies (Annen and Sparks, 2002; Dufek and 
Bergantz, 2005; Annen et al., 2006; Solano et al., 2012) have shown that, for 
high rates of melt accumulation and high melt fractions, repeated overlapping 
basaltic intrusions into a deep “hot zone” at the base of the crust allows melt 
to remain compositionally stable for long periods. Each increment of basalt 
intrusion into the deep “hot zone” can generate partial melting of surrounding 
rocks due to heat transfer, with the nature of the resulting hybrid melt depend-
ing on the spectrum of lithologies available in the portion of lithosphere (crust 
or mantle) intruded (e.g., Gao et al., 2016) and the details of the AFC process.

Isotope and trace element variations in the Monte Arcuentu suite provide 
us with geochemical evidence for the nature of these deep crust/upper mantle 
interactions without the geochemical overprinting of mid- to upper crustal AFC 
processes seen in most other orogenic suites. The variations in Nd, Sr, and 
Hf isotopes are somewhat less sensitive in this context, because lithospheric 
mantle and lower crust tend to plot in similar parts of the isotope diagrams 
(Figs. 6, 11, and 12), but Pb isotope variations and some key trace element ratios 
are more illuminating.

Assuming that the most primitive basalt compositions have undergone 
limited fractional crystallization and crustal contamination, we can infer that 
their isotopic variability reflects the compositional heterogeneity of the en-
riched mantle source, i.e., metasomatized by melts derived from recycling 
of sediments dominated by Sahara sediment. The most primitive rocks at 
Monte Arcuentu (MgO >8.5 wt %) have a range for 87Sr/86Sr up to 0.709, with 
143Nd/144Nd and 176Hf/177Hf values down to 0.5123 and 0.2828, respectively, and 
207Pb/204Pb values up to 15.673 (Fig. 16). Therefore, isotope compositions out-
side this range must be the product of interactions with the crust and/or litho-
spheric mantle.

Figures 7B and 15B suggest that interaction with lower crust similar to the 
Hercynian basement rocks of Calabria is responsible for the evolved Monte 
Arcuentu rocks with high 207Pb/204Pb and low 206Pb/204Pb. This is not unreason-
able, since Calabria was in crustal continuity with Sardinia–Corsica prior to 
the opening of the Tyrrhenian Sea (Fig. 1B) (Carminati et al., 2010, 2012). The 

contaminant for the evolved Monte Arcuentu rocks with high 207Pb/204Pb–high 
206Pb/204Pb is less clear, but the overlap with compositions of Italian lamproites 
and other potassic volcanic rocks of central Italy suggest that their parental 
magmas may have interacted with lithospheric mantle.

This interpretation is supported by variations in key trace element ratios, 
such as Rb/Ba, which in the Monte Arcuentu rocks correlate with Pb isotope 
ratios, i.e., rocks with high 206Pb/204Pb have high Rb/Ba, whereas those with 
lower 206Pb/204Pb have lower Rb/Ba (Fig. 17A). This is significant because lower 
crust typically has a low Rb/Ba ratio, as shown by Hercynian lower crustal 
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xenoliths of Europe (Downes et al., 1991) and Calabrian basement (Caggianelli 
et al., 1991). Upper crust is distinguished by having much higher Rb/Ba, e.g., 
most Hercynian granitoids (Downes et al., 1997) have Rb/Ba ratios >0.2. The 
lithospheric mantle is likely to be heterogeneous, depending on age and geo-
logic history, but we can infer that in the Mediterranean region its Rb/Ba ratio 
is likely to be high. Italian lamproites, for example, have Rb/Ba ratios up to 0.65 
(Fig. 17A; Prelević et al., 2010). The lamproite from Sisco, Corsica, France—the 

nearest lamproite locality to Monte Arcuentu in time and space—has both high 
Rb/Ba (0.34) and high Pb isotope ratios (206Pb/204Pb = 18.85, 207Pb/204Pb = 15.7).

Further support for this interpretation is provided by the variation in 
143Nd/144Nd versus Rb/Ba (Fig. 17B). High MgO rocks from Monte Arcuentu 
have a limited range of Rb/Ba ratios with 143Nd/144Nd values of 0.5123–0.5127. 
More evolved rocks separate into two groups, the low Rb/Ba–low 143Nd/144Nd 
(and low 206Pb/204Pb) group trend toward the compositions of lower crust, 
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supporting the interpretation that their parental magmas interacted with 
lower crustal lithologies. The high Rb/Ba group trends toward the fields for 
Hercynian granitoids (upper crust) and lithospheric mantle. Because upper 
crust and lithospheric mantle plot in roughly the same part of the diagram, 
we cannot distinguish them based on Figure 17B. However, the variations in 
206Pb/204Pb versus Rb/Ba (Fig. 17A) clearly show that upper crustal contamina-
tion is unlikely, because of its much lower 206Pb/204Pb (and 207Pb/204Pb; Downes 
et al., 1997).

Proposed Model for the Origin of Monte Arcuentu Magmas

Figure 18 summarizes the proposed model for the origin of Monte 
Arcuentu rocks, which are unique among Sardinia SR rocks. Lower Al2O3, 
TiO2, P2O5, and higher Ni and Cr for a given SiO2 or MgO, suggest that the 
Monte Arcuentu mantle source was more depleted than that giving rise to 
other Sardinian SR rocks (Figs. 5, 14, S2 [footnote 1], and S4). Sr, Nd, Pb, 
and Hf isotopes, however, provide evidence for time-integrated enrichment 
relative to DM, suggesting a source that was more akin to that of Tyrrhenian 
Sea tholeiites (Fig. 7).

The mantle source was metasomatized by partial melts derived from sub-
ducted sediments that were predominantly terrigenous and derived from 
Archean terranes of northern Africa. This metasomatized mantle source can 
explain the range of isotope signatures observed in high-MgO basaltic rocks 
but not the full range of isotopic compositions (Figs. 6, 7, and 8). Mixing cal-
culations suggest that less than 3% source contamination is needed to ac-
count for the Sr, Nd, and Hf compositions of the most primitive rocks (Figs. 
11 and 12).

In contrast to most other orogenic settings, most of the Monte Arcuentu pa-
rental magmas stalled at the base of the crust or at the top of the lithospheric 
mantle on their way to the surface and underwent MASH-type processes 
(Hildreth and Moorbath, 1988). As a result, we envisage four possible scenar-
ios to explain the geochemical evolution of the Monte Arcuentu magmas.

(1)	Melts escaped to the surface with minimal interaction with crust or 
lithospheric mantle, preserving the isotopic signature of the metasoma-
tized mantle source. Some of the most primitive rocks may fall into this 
category. They exhibit a range of 87Sr/86Sr values up to 0.709, 143Nd/144Nd 
and 176Hf/177Hf values down to 0.5123 and 0.2828, respectively, and 
207Pb/204Pb values up to 15.673.

(2)	Melts ponded at the Moho and interacted with enriched lithospheric 
mantle. They evolved to low MgO, low Ni and Cr contents as a result of 
olivine and clinopyroxene fractionation and underwent limited enrich-
ment in SiO2. These melts erupted with higher 207Pb/204Pb, 87Sr/86Sr, and 
Rb/Ba, and lower 143Nd/144Nd and 176Hf/177Hf than the primitive lavas of 
(1). Italian lamproites provide an indication of the composition of the 
lithospheric mantle in this scenario.

(3)	Melts ponded within the lower crust and interacted with lithologies 
similar to Calabrian basement or Hercynian lower crust. These melts 
are compositionally similar to (2) but are distinguished by their lower 
206Pb/204Pb and Rb/Ba, inherited from interaction with these older rocks 
(Fig. 17B).

(4)	Melts ponded within and interacted with mid- to upper crust, evolving 
to higher SiO2 and Rb/Ba; 87Sr/86Sr and 143Nd/144Nd compositions over-
lap the range of evolved Monte Arcuentu lavas. We have no Pb or Hf 
analyses of the two Monte Arcuentu andesites, so we do not know pre-
cisely how mid- to upper crustal AFC processes affected these isotope 
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ratios. However, based on data for other Sardinia SR rocks, 207Pb/204Pb 
is likely to be lower than in the melts contaminated by both lithospheric 
mantle and lower crust.

Aside from scenario 4, we have so far ignored the effects of shallow level 
magma chamber processes. However, rocks from Arcuentu are commonly 
porphyritic, including the presence of plagioclase phenocrysts (Brotzu et al., 
1997). Presence of this relatively low-pressure phase is seemingly at odds with 
most of the scenarios above. However, Brotzu et al. (1997) used major and trace 
element modeling to show that shallow-level magma chamber processes af-
fecting the Arcuentu Complex rocks involved fractional crystallization but neg-

ligible crustal contamination. Instead, these authors proposed that Arcuentu 
Complex magmas underwent polybaric fractionation at elevated to moderate 
pressures, and that the shallow-crustal magma chamber was filled by melts 
that were already moderately evolved. Therefore, while Arcuentu Complex 
magmas may have undergone late stage crystallization of plagioclase pheno
crysts to varying degrees in shallow crustal magma chambers, this process 
operated as a closed system and did not obscure key geochemical charac-
teristics inherited from melt interactions that occurred in the lower crust and 
lithospheric mantle.

The model proposed here for the origin of Monte Arcuentu magmas re-
quires high rates of melt accumulation and high melt fractions in order to 
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partially melt the lithospheric mantle and lower crust, given the typically re-
fractory nature of these lithologies, but such a scenario is consistent with the 
rapid rotation and extension that was occurring in southern Sardinia at the 
time (Montigny et al., 1981; Morra et al., 1997; Mattioli et al., 2000; Gattacceca 
et al., 2007; Carminati et al., 2012). The Sardinia–Corsica complex is also one 
of the few places in the western Mediterranean where geophysical data con-
firm the existence of mechanically non-competent crustal layers (Splendore 
and Marotta, 2013). These authors estimate that up to 50% of the upper crust 
and up to 100% of the lower crust are non-competent. There is also a rapid 
decrease in strength, up to two or three orders of magnitude, below the Sar-
dinia–Corsica complex (Splendore and Marotta, 2013).

The fact that Monte Arcuentu may represent some of the latest stages of 
orogenic magmatism on Sardinia may have contributed to the predominance 
of lower crustal/upper mantle interactions. Earlier phases of orogenic magma-
tism would have provided the heat needed to “soften” the lower crust, making 
it possible for assimilation of these otherwise refractory lithologies over time. 
Furthermore, the tectonic conditions following rotation of Sardinia at 18 Ma, 
i.e., high rates of extension, may have facilitated more rapid ascent of magmas 
with minimal interaction with mid- to upper crust (Morra et al., 1997; Mattioli 
et al., 2000). This clearly contrasts with the petrogenesis of most other Sardinia 
SR rocks, which appear to have differentiated and assimilated larger propor-
tions of middle to upper crust (Guarino et al., 2011; Lustrino et al., 2013).

Whether the mantle-derived melts interact with pre-existing (old) crust or 
basalts/gabbros from earlier melt injection events may relate to crustal struc-
ture and/or length of time over which magmatism has occurred. Geophysical 
data suggest that the overall crustal thickness of Sardinia is similar north to 
south, with the north slightly thicker (Splendore and Marotta, 2013). However, 
the upper crust is believed to be thicker than the lower crust in the north, 
whereas the reverse is true for the south where the lower crust is thicker. It is 
intriguing to speculate whether this thicker lower crust in southern Sardinia is 
the cause or the outcome of the petrogenetic model proposed here, i.e., Monte 
Arcuentu lavas predominantly ponding and crystallizing in the lower crust, 
thickening it, or whether a thicker lower crust presented a greater barrier to 
ascent, forcing more magmas to stall here in their ascent to the surface. More 
detailed petrologic study of individual volcanic centers across Sardinia may 
help to resolve this question.

CONCLUSIONS

•	 Miocene subduction-related volcanic rocks from Monte Arcuentu, south-
ern Sardinia, are compositionally unique compared with most orogenic 
magmas. They exhibit a wide range in Sr, Nd, Pb, and Hf isotopic com-
positions and MgO for a very limited range in SiO2. These compositional 
variations reflect AFC processes that occurred mainly in the lower crust 
and upper mantle where clinopyroxene and olivine were the predomi-
nant fractionating phases rather than plagioclase.

•	 The parental magmas were derived from a mantle source that had been 
metasomatized by partial melts derived from subducted sediment. Trace 
element and isotopic ratios for the most primitive rocks (MgO >8 wt%) 
suggest a high proportion of terrigenous or detrital material within the 
subducted sediment, most likely derived from the Archean terranes of 
northern Africa, and contamination of a mantle source similar to that giv-
ing rise to Tyrrhenian Sea basalts.

•	 Because mantle enrichment processes were dominated by sediment 
melting rather than sediment dehydration, Hf behaved as a mobile, 
non-conservative element.

•	 Trace element and isotopic ratios for the more evolved rocks in the 
suite provide evidence for assimilation of lower crust and/or litho-
spheric mantle.

•	 Partial melting of these normally refractory lithologies was facilitated 
by the rapid phase of extension and rotation of Sardinia during the 
mid-Miocene.

•	 The Monte Arcuentu rocks provide insights into assimilation processes in 
the lower crust and lithospheric mantle that may be obscured by upper 
crustal AFC processes in other orogenic suites.
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APPENDIX. ANALYTICAL METHODS

Samples for Pb and Hf isotope analysis were prepared at the NERC Isotope Geosciences Lab-
oratory (NIGL) following procedures outlines in Kempton (1995) and Kempton et al. (2000) for 
Pb and Hf, respectively. All samples were dissolved from hand-picked chips that were leached in 
cold, dilute HCL for ~30 min to remove the effects of low temperature alteration, although the low 
loss on ignition (LOI) for the dike and lava samples (<1.1 wt%; Downes et al., 2001) indicates the 
rocks are relatively fresh. The LOI for breccia sample ST84 is slightly higher at 1.88 wt%. Pb iso-
topes were analyzed on a Neptune MC-ICP-MS at Thermo Scientific, Bremen, Germany, using the 
Tl-doping method to correct for mass fractionation during the run. All Pb isotope ratios have been 
corrected relative to the NIST NBS 981 composition of Todt et al. (1996). Based on repeated runs of 
NBS 981, the reproducibility of whole rock Pb isotope measurements is better than ± 0.01% (2σ). 
Hf isotopes were analyzed on a Neptune MC-ICP-MS at Goethe Universität Frankfurt, Germany. 
Within-run standard error for Hf isotope measurements is normally less than 22 ppm (2σ). Mini-
mum uncertainties are derived from external precision of standard measurements, which average 
43 ppm (2σ). Replicate analysis of internal rock standard, pk-G-D12, over the course of analysis 
yields 0.283048 ± 12 (2σ, n = 27), which is indistinguishable from previously reported value deter-
mined by MC-ICP-MS (Kempton et al., 2000). The data are corrected for mass fractionation during 
the run by normalization to 179Hf/177Hf of 0.7325 and are reported relative to an accepted value of 
the Hf isotope standard JMC 475 of 0.282160.
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TABLE A1. SOURCES OF ISOTOPE DATA USED IN THE CONSTRUCTION OF DIAGRAMS

Isotope ratios Sr Nd Pb Hf

Sardinia, including Monte Arcuentu
this study X X
Downes et al. (2001) X X
Lustrino et al. (2013) and references therein X X X X

Etna
Armienti et al. (1989) X X
Gasperini et al. (2002) X X
Spence (2012) X X X X
Tonarini et al. (1995) X X
Viccaro and Cristofolini (2008) X X X
Viccaro et al. (2011) X

Iblean Plateau
Gasperini et al. (2002) X X
Kempton (unpublished data) X X
Tonarini et al. (1996) X X
Trua et al. (1998) X X X

Tyrrhenian Sea
Beccaluva et al. (1990) X X
Gasperini et al. (2002) X X
Trua et al. (2003) X X

Western Aeolian Arc (Alicudi and Filicudi)
Francalanci et al. (1993) X X X
Gasperini et al. (2002) X
Kempton (unpublished data) X
Peccerillo et al. (1993) X X X
Peccerillo et al. (2004) X X X
Santo et al. (2004) X X X

Vulcano
De Astis et al. (2000) X X X
Del Moro et al. (1998) X X X
Gasperini et al. (2002) X
Gioncada et al. (2003) X X X

Stromboli
Francalanci et al. (1993) X X
Kempton (unpublished data) X X
Landi et al. (2009) X X

Campanian Province
Ayuso et al. (1998) X X X
Belkin and De Vivo (1993) X X X
D’Antonio and Di Girolamo (1994) X X X
D’Antonio et al. (1999) X X X
De Astis et al. (2006) X X X
Di Renzo et al. (2007) X X X
Gasperini et al. (2002) X
Hawkesworth and Vollmer (1979) X X
Kempton (unpublished data) X X
Orsi et al. (1995) X X X
Pappalardo et al. (2002) X X X

Ernici & Roccamonfina
Civetta et al. (1981) X X X
Conticelli et al. (2009) X X X
Gasperini et al. (2002) X X X X

Roman Province
Conticelli et al. (1997) X X
Fornaseri et al. (1963) X X
Gasperini et al. (2002) X X X X
Perini et al. (2004) X X X
Rogers et al. (1985) X X

Italian lamproites
Conticelli et al. (2013) X X X
Kempton (unpublished data) X X X X
Prelević et al. (2010) X X X X

Eastern Mediterranean Sea sediments
Klaver et al. (2015) X X X X

Ionian Sea sediments
Kempton (unpublished data) X X X X

Hercynian crust
Downes et al. (1990, 1991, 1997) X X X
Vervoort et al. (2000) X

Calabrian basement
Caggianelli et al. (1991) X X X
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