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Abstract: We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural 

network and load-balanced Locality Sensitive Hashing (LSH) indexing. We propose a deep constrained siamese hash coding 

neural network combined with deep feature learning. Our neural network is able to extract effective features for near 

duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH 

method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query 

time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image 

detection. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our deep siamese hash 

encoding network and load-balanced LSH. 

Index terms: Near duplicate image detection, Load-balanced locality-sensitive hashing, Deep constrained siamese neural 

network, Deep feature extraction. 

 

1. Introduction 

With the rapid development of multimedia technology, 

the amount of digital images has become overwhelmingly 

huge. Images may have many near duplicates on the 

Internet, as easily observed by Google or Yahoo. Near 

duplicate images are transformed versions of an original 

image obtained by blurring, geometric manipulations [1], 

noise pollution, compression, content enhancement, cutting 

out, and keeping part, etc. Fig. 1 shows two examples of 

near duplicate images on the web. Image near duplication 

leads to a huge waste of network resources, and can be a 

sign of illegal activity, such as image copyright 

infringement. Therefore, efficient and effective near 

duplicate image detection is an importance issue in image 

management and web content security. 

 

 

 

 

 

 

 

Fig. 1. Two examples of near duplicate images on the web. 

 

In the last decade, various approaches have been 

proposed for near duplicate image detection [2, 3, 4, 5, 6, 7, 

8]. One of the major challenges for near duplicate image 

detection is to extract effective image features to improve 

the detection accuracy. Another challenge is to improve the 

detection efficiency, since the image database is usually 

very large. In the following, we briefly review the related 

work on image feature extraction and feature indexing for 

near duplicate image detection. 

1.1. Related work 

1.1.1. Feature extraction 

A number of features have been proposed for near 

duplicate image detection. Kim [31] extracted Discrete 

Cosine Transform (DCT) coefficients-based features for 

detecting near duplicate images. The DCT coefficients- 

based features are robust to noise but sensitive to rotations. 

Wu et al. [32] used differences of Multi-Resolution 

Histograms (MRH) as features for near duplicate image 

detection. MRHs can be calculated quickly, but they are 

sensitive to geometric affine transformations. The Vector of 

Locally Aggregated Descriptors (VLAD) [23] and Bag of 

Features (BoFs) [34] which cluster local features, such as 
those obtained by the Scale Invariant Feature Transform 

(SIFT), into global features have been widely used for near 

duplicate image detection. However, these global features 

are sensitive to noise and blurring. The gist features in [19] 

are appropriate for describing scenes. They are robust to 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/157859753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

many types of image content operations, but sensitive to 

geometric operations, such as rotation. Lei et al. [35] 

proposed Radon transformation-based High Order Invariant 

Moment (HOIM) features for near duplicate image 

detection. The HOIM features are very robust to image 

rotation and scale variation, but sensitive to local image 

editing. Zheng et al. [36] proposed the Salient Covariance 

(SCOV) matrix features which were used to detect near 

duplicate images. The SCOV features are specified in a 

visually salient Riemannian space. They cannot be used for 

general indexing. The above image features are designed by 

human operators. They depend on human experience and 

skill. They may achieve good performance on particular 

datasets or in specific domains, but they lack generalization 

capability. 

In recent years, deep learning has been applied to 

automatically extract features from images [37, 38]. 

Krizhevsky et al. [37] trained a deep convolutional neural 

network (CNN), AlexNet, to extract features for large scale 

image classification. The contribution of image features 

from different layers in AlexNet was investigated by Zeiler 

and Fergus [39]. In [40], the Hebbian theory was combined 

with CNN to produce multi-scale features for image 

classification. Deep learning of features has been used for 

supervised hashing for image retrieval. Xia et al. [25] 

proposed a CNN-based hashing method which decomposes 

a similarity indicator matrix into hash codes for samples 

and used the obtained hash codes to train the CNN. 

However, when the number of images increases the 

computational time for the matrix decomposition increases 

drastically. Li et al. [26] proposed a deep pairwise 

supervised hashing method in which a neural network 

consisting of two CNNs was trained using pairs of images. 

However, binary constraint was not imposed on hash codes 

in the training process. This influences the quality of the 

produced hash codes. In general, the features extracted 

automatically by deep learning are more generalized and 

effective than the features designed by human operators. It 

is necessary to design new deep hash coding neural 

networks to automatically extract features for near duplicate 

image detection. 

1.1.2. Feature indexing 

Because image databases are usually very large, 

efficient near duplicate image detection usually utilizes a 

two-stage model. The first stage indexes near duplicate 

images to the same class in order to reduce the number of 

candidate matches to a query. The second stage 

exhaustively searches the results from the first stage to 

obtain the final near duplicate images. This model is 

referred to as a coarse-to-fine model. It is apparent that the 

index constructed in the first stage determines the detection 

efficiency. Tree-structured indexing, such as k-d tree, is 

very effective when the dimension of the feature vectors is 

low. However, if the dimension is large, search in the k-d 

tree or other tree-structured indexing works no better than 

brute-force linear search [10]. The dimension of the image 

feature vectors is usually large, so tree-structured indexing 
is inappropriate for near duplicate image detection. Up to 

now, locality-sensitive hashing (LSH) [9, 11, 15, 28, 33], 

which maps high-dimensional image feature vectors to a 

low-dimensional space to produce a family of binary hash 

codes, has been the most popular indexing method for near 

duplicate image detection. For example, Ke et al. [4] 

applied the basic LSH to near duplicate image detection. 

Chum et al. [6] combined the term frequency-inverse 

document frequency weighting with the min-hash method 

for near duplicate image detection. Cao et al. [14] proposed 

the weakly supervised LSH for near duplicate image 

detection. The effectiveness of LSH depends on the family 

of hash functions. In turn, the hash functions depend on 

similarity measures. For example, the p-stable distribution 

LSH [12] depends on the 
p
 distance, the min-hash [6] on 

the Jaccard coefficient distance, and the kernelized LSH [13] 

on the angle-based distance. 

For near duplicate image detection, the existing 

LSH-based methods achieve very good accuracy, but the 

detection speed is influenced by a peculiarity: there are “hot 

spot” images which have a very large amount of duplicates 

and there are images which have few or even no duplicates. 

As a result, the existing LSH methods usually map too 

many samples into some buckets while other buckets 

contain too few samples. This is referred to as unbalanced 

indexing. Obviously, the number of candidates returned by 

the LSH structure dominates the detection efficiency. As 

the distribution of query samples is usually similar to the 

distribution of the samples in the indexed database, query 

samples are likely to be mapped into the larger buckets. 

This increases the search time for matches to the query. 

1.2. Our work 

With the aim of handling the above limitations in 

feature extraction and LSH for near duplicate image 

detection, we propose a deep siamese hash encoding neural 

network combined with deep feature learning and a 

load-balanced LSH method to carry out more efficient and 

more accurate near duplicate image detection. The main 

contributions of this work are summarized as follows: 

 There are two CNNs in our deep siamese hash 

encoding network. The duplicate indicators for 

pairs of images are used to train the network. The 

binary regularization for hash codes is added in 

the training process, with the result that the 

obtained deep features are more appropriate for 

near duplicate image detection. 

 Our load-balanced LSH is an efficient indexing 

structure which contains load-balanced buckets. 

This improves the efficiency of near duplicate 

image detection. 

 We theoretically derive an upper bound on the 

bucket size for load balanced LSH. This upper 

bound guarantees the search performance. 

 We present an effective and efficient load 

balanced LSH-based near duplicate image 

detection method, including initialization, basic 

hashing, local redistribution, and neighbor-probe 

search in an appropriate number of neighboring 

buckets. 

The rest of the paper is organized as follows: Section 2 
briefly introduces LSH. Section 3 presents our deep 

constrained siamese hash coding neural network. Section 4 

proposes our load-balanced LSH. Section 5 shows the 

experimental results. Section 6 summarizes the paper. 
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2. LSH 

LSH is mainly used to index feature vectors extracted 

from samples for reducing the search time for the nearest 

neighbors to each query. It is based on hash functions, hash 

mapping functions, and hash tables. 

Definition 1: The (R, c) near neighbor (NN) 

problem [11, 12, 44]: Let 0R   be a threshold and 1c   

be an approximation factor. Given a query q, if there exists 
a sample p such that the distance between the feature 

vectors of p and q is less than or equal to R 

( distance( , )p q R ), then the indexing structure is required 

to return all the samples whose distances to q are less than 

cR. 

LSH solves the (R, c)-NN problem by mapping similar 

samples into the same bucket with higher probability than 

dissimilar samples. Samples in the same bucket are said to 

collide. LSH is based on a family of hash functions with the 

property that similar samples have higher collision 

probability than dissimilar samples. Formally, an LSH 

family is defined as follows: 

Definition 2: 1 2( , , , )R c P P -sensitive LSH [11, 12, 44]: 

Let F be a family of functions { }  which map each 

sample to a bucket. Let 1P  and 2P  be two collision 

probabilities satisfying 1 2P P . A family F is called 

1 2( , , , )R c P P  sensitive, when a function F  which is 

chosen uniformly at random satisfies the following two 

conditions for any two given samples p and q: 

 If distance( , )p q R , then ( ) ( )p q   (i.e., p 

and q collide) with probability at least 1P . 

 If distance( , )p q cR , then ( ) ( )p q   with 

probability at most 2P . 

Constructing an LSH index structure for efficient 

approximate nearest neighbor search depends on the 

number L of hash tables and the number V of bits of hash 

codes. We define a family G of random hash mapping 

functions {g}, where each function g is obtained by 

concatenating V functions 1 , 2 , …, V  randomly 

selected from F: 1 2( ) [ ( ), ( ),..., ( )]Vg p p p p   . As a hash 

function η maps a sample into a one-bit hash code, a hash 

mapping function g maps a sample into a V-bits’ hash code. 

A hash mapping function corresponds to a hash table which 

consists of a number of buckets. Each bucket corresponds 

to a V-bits’ hash code. A sample is mapped into a bucket in 

each table. Then, L hash tables are constructed using L hash 

mapping functions 
1{ ()}L

i ig 
. Given query q, the samples 

lying in the L buckets in the L hash tables are considered as 

its near duplicate candidates. 

3. Deep Constrained Siamese Hash 

Coding Network 

LSH depends on features extracted from samples. We 

extract deep features for images by designing a new deep 

hash coding network. 
Current hash coding networks based on the deep 

learning of features usually include Convolutional Neural 

Network Hashing (CNNH) [25] and the deep pairwise 
supervised hashing network [26, 45]. The CNNH [25] uses 

a semantic similarity indicator matrix [Sij] where an entry 

Sij is 1 if images i and j are semantically similar, and is -1 if 

they are semantically dissimilar. The matrix is decomposed 

into hash codes for samples. The obtained hash codes are 

used as supervised information to train a CNN. After a test 

image is input into the trained CNN, its output is the hash 

code for the test image. The deep pairwise supervised 

hashing [26, 45] inputs each pair of images into a neural 

network which consists of two CNNs. Whether the two 

images are semantically similar is used as supervised 

information for learning. The loss function of the neural 

network is the logarithm of the likelihood loss of pairwise 

samples. The hash codes of images are output from the last 

fully connected layer. The limitations of the CNNH are as 

follows: As the number of images increases, both the 

computational time and the storage space for the 

decomposition of the semantic similarity indicator matrix 

into hash codes rapidly increase. The limitation of the deep 

pairwise supervised hashing is that binary constraint on the 

hash codes is not carried out, and then the quality of the 

generated hash code is influenced. With the aim of handling 

the limitations of these two supervised deep hash coding 

networks, we propose a deep constrained siamese hash 

coding network 

3.1. Network structure 

Fig. 2 shows the structure of our deep constrained 

siamese hash coding network. It consists of two 

symmetrical CNNs which have identical structures and 

parameters. Pairs of images are input into the network. In 

the CNNs, we replace the FC8 fully connected layer having 

1000 nodes in the AlexNet [37] with the FC8 fully 

connected layer having d nodes. In contrast with the CNNH 

which uses hash codes obtained by decomposing the 

semantic similarity indicator matrix as the supervised 

signals, we simulate the learning of hash codes by imposing 

1 and -1 switching attributes into the last fully connected 

layer of the CNN. We add a latent layer H with V nodes 

between the fully connected layer FC8 and the layer of the 

loss function in the CNN. This latent layer maps the 

features extracted from the FC7 layer to hash codes. In this 

latent layer, we use the hyperbolic tangent (tanh) function 

[41, 42, 43] as the activation function, which is formulated 

as: 

exp( ) exp( )
tanh : ( )

exp( ) exp( )

x x
h x

x x

 


 
              (1) 

where x is an input real value. The range of the tanh 

function is (-1,1). It is appropriate for the hash coding task. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The deep constrained siamese hash coding network. 
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3.2. Loss function 

The loss function layer includes the contrastive loss 

function which measures the similarity of each input pair of 

images and the regularization function which adds the 

binary constraint to the output of the latent layer H. 

Let {0,1}   be the near duplicate indicator, where 

1   represents that the two input images are nearly 

duplicate and 0   represents that they are not nearly 

duplicate. Let a and b be the V-dimensional vectors output 

from the latent layers in the two CNNs of our network for a 

pair of images. These vectors are also called approximate 

hash codes. The hash codes can be obtained by rounding 

the components of the approximate hash codes into integers. 

Let 
va  and 

vb  be the v-th values in a and b. The 

contrastive loss function is defined as: 

 2 2

1

1
(1 )max( ,0)

2

V

c v v v v

v

E a b margin a b
V

 


       (2) 

where margin is used to adjust the effect of the image pairs 

which are not nearly duplicate on the entire loss function, 

i.e., only when the loss is within a specific range (less than 

margin), the loss is included in the loss function. When the 

two input images are nearly duplicate, i.e., 1  , the 

contrastive loss is equal to the distance between the 

approximate hash codes of the two input images, and the 

contrastive loss is minimized by making the output 

approximate hash codes as identical as possible. When the 

two input images are not nearly duplicate, i.e., 0  , the 

contrastive loss is minimized by making the output 

approximate hash codes as dissimilar as possible. In this 

way, this contrastive loss function ensures that the learnt 

hash codes preserve semantic similarity information about 

the input image pairs. 

We define a two-valued constraint term for the loss 

function, in order to ensure that the approximate hash code 

components approach 1 or -1 and increase the quality of the 

produced hash codes. The Hamming distance between the 

hash codes ih  and jh  of a pair of images i and j can be 

represented using the scalar product of ih  and jh : 

 1
dis ( , ) ,

2
H i j i jV h h h h .           (3) 

The Hamming distance is transformed to be represented 

using the cosine distance: 

 dis ( , ) 1 cos( , )
2

H i j i j

V
 h h h h           (4) 

where 

,
cos( , )

i j

i j

i j


h h

h h
h h

.               (5) 

Let â  be the vector whose v-th element is va , i.e., 
ˆ[ ] vv aa . In order to make the hash codes approximate to 

binary values -1 and 1, we add the following hash 

regularization term to the loss function: 

 ˆˆcos( , ) cos( , )hE   a 1 b 1 .            (6) 

where 1 is the V-dimensional vector in which all the entries 
are 1. We take the cosine distance between the vector 

whose entries are absolute values of approximate hash 

codes output from hidden layers H in the network and the 

vector 1 as a regularization term. As a result, the output 

approximate hash codes may approach 1 or -1, and then the 

quality of the produced hash codes is improved. 

We define the entire loss function of our deep 

constrained siamese hash coding network by c hE E E  . 

This loss function includes near duplication information of 

image pairs and hash coding constraint. This ensures that 

near duplicate images have similar hash codes with a high 

probability. 

3.3. Network training 

The initial values of the network parameters of the 

CNNs in our deep constrained siamese hash coding 

network are taken from the AlexNet which is trained into 

1000 classes using the ImageNet dataset. We carry out fine 

tuning on the AlexNet using the UKbench image dataset 

and the CIFAR-10 image dataset to obtain the image feature 

representation for the specific domain of near duplicate 

image detection. 

We transfer the tuned network parameters into our 

deep constrained siamese hashing network. The near 

duplicate image dataset is used to train the deep constrained 

siamese hash coding network. The weights of one of the 

CNNs in our network are updated using the method in the 

Caffe [27] CNN deep learning library. The weights of 

another CNN are just copied from the trained CNN. For a 

new image, we calculate the output out (Hj) of each node j 
in the latent layer H. We binarize out (Hj) into a hash code 

jh  as follows: 

1 ( ) 0

1

j

j

out H
h

otherwise


 


.              (7) 

3.4. Indexing construction 

There are two methods to construct a sample index 

using the learnt network. One method directly uses the hash 

codes generated from the latent layer H to construct the 

index structure for the final search. The other method 

extracts image features from the FC8 layer and then 

combines the extracted image features with the LSH to 

construct a LSH-based index structure. 

In the first method, given a query image q as well as 

its learnt hash code qh , according to the distances between 

the learnt hash code qh  of q and the learnt hash code set 

1 2{ , ,..., }H N  h h h  of the image set, we find the near 

duplicate candidate image set 1 2{ , ,..., }c c c
mI I I   for the 

image q. Then, the final search is carried out on this 

candidate set. The limitation of the first method is that there 

is only one hash table for the index structure. 

In the second method, features for images are 

extracted from the FC8 layer of the trained network. Using 

these extracted features, a LSH-based index is constructed. 

Given a query image, the near duplicate candidate image 

set is found based on the constructed index. Let qx  and 

ix  be the FC8 layer feature vectors of the query image q 

and the i-th candidate image c
iI . The distance between q 

and c
iI  is q ix x . The smaller the distance the more 

similar q and c
iI  are, and the more likely it is that they are 

near duplicates. The top k near duplicate images are found. 

The second method can construct a number of hash tables, 

so it can find more accurate results. 
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As the inputs to our network are pairs of images 

together with their near duplicate indicators, the features 

extracted from the network are more appropriate for near 

duplicate image detection. The binary regularization (6) in 

the loss function makes the extracted features more 

effective for constructing LSH. 

4. Load-Balanced LSH 

As test samples are usually distributed similarly to the 

training samples, query samples tend to fall into larger 

buckets in a hash table. This may significantly influence the 

efficiency of near duplicate image detection. The key idea 

of load-balanced LSH is to hash the image feature vectors 

into buckets such that the loads of the buckets balanced. In 

this way, query samples do not fall into larger buckets and 

the detection efficiency of the index structure is increased. 

In the following, we first theoretically derive an upper 

bound on the hash bucket size, and then use the upper 

bound to construct a load-balanced LSH. 

4.1. Upper bound on hash bucket size 

It is necessary to estimate the upper bound 
LB  on 

the numbers of samples in a bucket for load-balanced LSH. 

Let 

1

2

log(1/ )

log(1/ )

P

P
                   (8) 

where P1 and P2 are defined in Section 2. The parameter 

  governs the search performance of the index structure. 

The smaller the ρ, the more efficient the search. 

As stated in [16], given a family of (R, c, P1, 

P2)-sensitive hash functions, for n d-dimensional samples, 

the required space for the LSH index structure which is 

effective for the (R, c)-NN problem is: 
1dn n  .                  (9) 

From (9), it is seen that the space is determined by ρ. We 

estimate the an upper bound for ρ according to the lower 

bound for 1P  and the upper bound for 2P .  

Let τ be the number of degrees of freedom for the 

chi-squared distribution, and dW  be a random 

projection matrix. For a vector dx , the value 
2 2

/T
W x x is distributed with probability 

  2

2 2
/T

x
P  x x , where 2 ( )P y


 for variable y is the 

chi-squared distribution: 

2

1
2 2

2

( )

2
2

y

y e
P y






 


 

 
 

.              (10) 

As proved in [16], the lower bound for P1 is 

1

2

1 1
.

2
1 1

1
24

P






 
  

 

.            (11) 

The upper bound for P2 is 

2

2 2

2

1
4

P

c







 
 

 

.              (12) 

Substitution of (11) and (12) into (8) yields: 

2

2 2

2

1 1
log 2 1

24

1
log 1

2 4

1 1 2log 2
log 1

24
.

2log 2
log 1

4

c

c














 



 
  
   

  
 


 

  
  

  
 

 
   

 


 
  

 

         (13) 

The right hand term of the equality sign in (13) has the 

form 1 2 3 4( ) / ( )e e e e  , where 1 2 3 4, , , 0e e e e  . This form 

is transformed as follows: 

2
1

11 2 1 2

43 4 3 14
3

33

1
1

1

11

e
e

ee e e e

ee e e ee
e

ee

 
 

   
   

      
 

.      (14) 

Taylor series expansion 1/ (1 ) 1 ( )x O x    for variable x 

yields: 

4

4 3

3

1
= 1

1

e
O

e e

e

  
   

  

.             (15) 

Then, (14) is transformed to 

1 2 1 2 4

3 4 3 1 3

= 1 1
e e e e e

O
e e e e e

   
          

.        (16) 

Substitution of the right hand term of the equality sign in 

(13) into (16) yields: 

2

2

1 1
log 1

2 2log 24
1

1 1
log 1log 1

244

2log 2
1 .

log 1
4

c

O
c

 








  
    

    
    

      
   

  
  
  
   

     
   

   (17) 

The inequality / ( 1) log( 1)x x x x     for variable 0x   

yields: 

2 22

2

2

2

2

2 2

2 2

1 1 1 1 2log 1
2 24 4 4

log 1
4 44

4

4

1 ( 2)( 4 )

4

1 ( 8) 1 1
1 1 .

24

c cc

c

c

c

c

c c
O

c c


   

 





 



 

     
 

 
 
 

 


 


     
         

   

     (18) 

It is apparent that  
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2log 2 log

1 1 1
log 1 log 1

24 4

log log

1

4

O

O O

 

 
 

 






 
 
 
    

      
    

 
 

         
  

  

      (19) 

2 22

2log 2 2log 2 2log 2 1
= =

log 1
44

O O O O
c cc  




   
   

                           

.  (20) 

Substitution of (18), (19), and (20) into (17) yields 

2 2

1 1 log 1 log
1 1O O

c c

 


  

      
          

      
.   (21) 

In this way, an upper bound for ρ is obtained [16]. For 

practical duplicate image detection problems, the number n 

of images in the database tends to be very large. Therefore, 

we can consider the upper bound for ρ as n . The 

degree τ of freedom is directly proportional to n: τ n. So, 

log
lim 0
n




 .               (22) 

Substitution of (22) into (21) yields 

2

1

c
  .                  (23) 

By substituting (23) into (9), the required storage 

space for LSH indexing is: 
21 1/cdn n  .                 (24) 

Let B be the maximum number of buckets per hash table. It 

is usually determined manually according to the number of 

bits of hash codes and the number of samples. The upper 

bound on the load-balanced hash bucket size is defined as: 

 
21 1/c

LB

dn n

LB

 
 

  
 
 

.               (25) 

This means that when n d-dimension samples are stored in 

L hash tables, each table maintains at most B buckets and 

each bucket stores at most LB  samples. In most cases, it 

is sufficient to set c=2. 

4.2. Load-balanced LSH 

The upper bound on the bucket size derived from 

theoretical analysis is used to construct the load-balanced 

LSH. It is noted that the buckets are ranked in the 

ascending order of the hash codes. We design our 

load-balanced LSH in the following way: If the number of 

samples placed into the same bucket exceeds the upper 

bound LB , the extra samples are reassigned into 

neighboring buckets. In Fig. 3, the load-balanced LSH 

structure is compared with the basic LSH structure. It is 

seen that at most three samples are assigned into the same 
bucket in the load-balanced LSH structure and there are 

five samples lying in the same bucket in the basic LSH 

structure. 

 

 

 

 

 

 

 

 

 

 

 (a) Basic LSH structure        (b) Load-balanced LSH structure 

Fig. 3. Basic LSH versus load-balanced LSH: Basic LSH may have 
unbalanced structure which naturally leads to inefficient search. The 
load-balanced LSH has balanced buckets, which improve the 
efficiency of the search. 

 

We first initialize the hash mapping functions using 

the basic LSH family. Then, basic hashing is carried out to 

map all the samples into buckets without considering the 

upper bound on the bucket size. When the number of the 

samples in a bucket exceeds the upper bound, local 

redistribution is carried out to move some samples in this 

bucket to neighboring buckets. When all the buckets 

conform to the size constraint, the load balanced LSH 

structure is constructed. For detecting near duplicates to a 

given sample q, the samples in the buckets to which q’s 

hash codes correspond and the samples in the neighboring 

buckets are the candidates. To sum up, our load-balanced 

LSH method consists of the following four steps: 

initialization of LSH functions, basic hashing, local 

redistribution of buckets, and neighbor probe search. 

4.2.1. Initialization 

Our load-balanced LSH uses a family of Hamming 

LSH functions [10] and a family of Euclidean distance LSH 

functions [12] to construct the basic LSH mapping function. 

The Hamming LSH functions map samples into a 

Hamming space. For a d-dimensional sample dx , the 

Hamming LSH family is defined as 

1{ : ( ) {0,1}}d
i iF x    , where ix  is the i-th component 

of x and function ( )ix  yields a binary code for ix  under 

a given threshold. From F, we randomly select V functions 

which are concatenated to form a mapping function g() for 

mapping each sample into a V-bits’ hash code. 

A family of the Euclidean distance LSH is a set of 

functions formulated as: 

, ( )
T

w b

b

r


 
  
 

w x
x              (26) 

where w is a d-dimension parameter vector with entries 

generated from the Gaussian distribution, and parameter b 

is a real number chosen uniformly from the range [0, r] (r is 

a constant). These hash functions ,{ : }d
b Z   map a 

d-dimensional vector into a set of integers. 

4.2.2. Basic hashing 

Using the constructed mapping functions 1{ ()}L
l lg   

corresponding to L hash tables, each sample is mapped into 
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a bucket ( )lg x  in each hash table l, where the upper 

bound on the bucket size is not considered. 

4.2.3. Local redistribution 

A local redistribution process is carried out to balance 

the loads of the buckets. We use the initial hash tables to 

compute every bucket’s virtual center VC which is the 

average of the feature vectors of the initial samples in the 

bucket: 

( )

1
t

bucket ttn 

 
x

VC x               (27) 

where tn  is the initial number of samples in bucket t. 
Then, the buckets in each hash table are checked one by 

one in the order of hash codes in the hash table. If the 

number tn  of samples in a bucket t exceeds the upper 

bound 
LB

, we compute the distances between the current 

samples in the bucket and the virtual center VC of the 

bucket, and sort the samples by these distances in 

descending order. Then, the first ( ) LBn t   samples are 

chosen and sent to the next bucket t+1. After that, the 

samples in the next bucket t+1 are processed in the same 

way as in the bucket t. If the number of the samples in the 

last bucket exceeds LB , then the chosen farthest samples 

are sent to the first bucket, and the local redistribution 

process restarts from the first bucket. When all buckets 

conform to the 
LB

 constraint, the load balanced LSH 

construction is finalized. In order to guarantee the stability 

of the hash buckets and the accuracy of detection, the 

virtual center VC for each bucket is computed only once for 

the basic hashing. It is not updated during the local 

redistribution process. The local redistribution process for 

each hash table is outlined as follows: 

Step 1: Compute the virtual centers of all the buckets based on the 

results of the basic hashing; 

     t=1; 

Step 2: Compute the distances from the samples in bucket t to the 

virtual center of the bucket; 

Step 3: If ( ) LBn t   

Choose ( ) LBn t   samples with farthest distances to 

the virtual center of bucket t; 

            If the t-th bucket is the last one 

              Send these chosen samples to the first bucket; 

          t=1; 

              Go To Step 2; 

            Otherwise 

Send these chosen samples to bucket t+1; 

  1t t  ; 

              Go To Step 2; 

        End If 

        Otherwise 

If the t-th bucket is the last one 

     Go To Step 4 

Otherwise 

1t t  ; 

Go To Step 2; 

        End If 

   End If 

Step 4: End 

4.2.4. Neighbor-probe search 

To cooperate with the local redistribution operation, 

the load-balanced LSH must probe more than one bucket 

for approximate nearest neighbors search. Suppose that a 

query sample q is mapped into the bucket ( )lg q  in the l-th 

hash table. We probe the bucket ( )lg p  and the next   

buckets to find the near duplicate samples. The number   

of the buckets next to the bucket ( )lh q  is determined by: 

LB

LB lM


 
  

 
                (28) 

where lM  is the mean of the numbers of samples in the 

buckets in the l-th hash table. The more the mean number 

of samples in buckets, the more the buckets to be searched. 

In this way, the near duplicate images can be detected 

efficiently. 

4.2.5. Discussion 

The CNN model can be trained incrementally by using 

the previous models to initialize the new model. Our 

indexing construction method currently cannot be 

incremental. However, the construction process is very 

efficient. The indexing structure can be reconstructed very 

efficiently. We will study how to incrementally construct 

the indexing structure in our future work. 

5. Experiments 

We adopted the following three public benchmark 

image datasets to evaluate the effectiveness of our deep 

constrained siamese hash coding network and 

load-balanced LSH: 

 The CIFAR-10 dataset: It consists of 60,000 

color images with size 32×32. These images have 

10 classes, and each class contains 6,000 images. 

The dataset was divided into a training set with 

50,000 images and a test set with 10,000 images. 

The images from the same class are treated as 

near duplicated. Since the experiments were 

conducted to evaluate the effectiveness of 

different hashing methods, the experimental 

findings are also referable to other treatments of 

near duplication. 

 The UKbench dataset [17]: It consists of 10,200 

color images with size 640×480. It contains 2,550 

different scenes. Each scene has four near 

duplicate images. The dataset was divided into a 

training set with 7,550 images and a test set with 

2,550 images. 

 The INRIA Copydays dataset [18]: It consists 
of 157 images, and for each image 20 near 

duplicate versions were generated by JPEG 

compression, scaling, noise blurring, and image 

coding format conversion. 
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In these datasets, there are many similar images which 

produce a number of very large buckets using the basic 

hashing, making the load of the buckets unbalanced. 

On the CIFAR-10 dataset, the mean Relevance 

Precision (mRP) was used as the metric for accuracy 

evaluation. Let k be the number of image candidates 

returned by the index structure. The mRP is defined as: 

1

1
RP ( )

k

i

m Rel i
k 

               (29) 

where ( )Rel i  is 1 if the i-th returned candiate is a 

duplicate of the query image, otherwise it is 0. This is an 

absolute measure of accuracy. 

On the UKbench dataset, the relative mRP, the 

absolute precision N-S (Normalized Similarity) score, and 

the acceleration factor were used as metrics for 

performance evaluation. Let indexing  be the number of the 

correct candidates in the top k candidates returned by the 

indexing method. Let exhaustive  be the number of the 

correct candidates in the top k candidates returned by 

exhaustive search. The relative mRP is defined as: 

RP( )
indexing

exhaustive

m relative



 .            (30) 

This mRP depends on the accuracy of exhaustive search, 

i.e., the results of exhaustive search are used as the baseline. 

Let 4
i  be the number of the correct results for image i in 

the top 4 returned candidates. The N-S score is defined as: 

4

1

1
N-S score

4

Tn
i

iTn




                (31) 

where Tn  is the number of the images in the test set. The 

N-S score is an absolute precision. The acceleration factor 

is defined as / rn n , where n is the total number of images 

in the dataset and rn  is the number of image candidates 

returned by the index structure. Exhausive search examines 

all the n samples, so the acceleration factor is the detection 

efficiency estimation relative to exhaustive search. 

5.1. Deep constrained siamese hash coding 

network 

Two indexing methods have been constructed. One 

method (the first method) directly uses the hash codes 

output from the deep constrained siamese hash coding 

network to construct the indexing structure. Another 

method (the second method) uses the features extracted 

from the FC8 layer in the network to construct a LSH-based 

index structure. The value of d for the FC8 layer is set to 

1000. The two methods were compared with the following 

indexing methods: 

 Traditional feature-based index structures, 

namely ITQ in [29], KSH in [30]: Each image 

was represented by a 32-dimensional gist feature 

vector [19]. These features were used to construct 

the index structure. 

 Deep feature and LSH combined index 

structure: We used the training samples in the 

CIFAR-10 dataset to tune the AlexNet. Image 
features were extracted from the FC7 layer in the 

tuned network. Then, LSH was used to index the 

images. 

 Convolutional neural network hashing 

(CNNH)-based indexing structure: The near 

duplicate indicator matrix-based deep hash 

coding learning network [25] was used to 

generate 48-bit hash codes for images. 

Table 1. Comparison between different features-based indexing 

structures with different bit lengths on the CIFAR-10 dataset 

Methods 
mRP 

12-bit 24-bit 32-bit 48-bit 

The first method 0.76 0.77 0.787 0.79 

The second method  0.876 0.88 0.88 0.898 

AlexNet + 
load-balanced LSH 

0.62 0.64 0.645 0.65 

CNNH 0.539 0.576 0.572 0.589 

KSH 0.303 0.337 0.346 0.356 

ITQ 0.162 0.169 0.172 0.175 

 

On the CIFAR-10 dataset, 5000 images were 

randomly selected from each class, 50000 images in total, 

as the training images. For training the network, each image 

pair’s label indicating whether the two images are 

duplicated was determined by the ground truth of the 

images. We selected 1000 images randomly from each of 

the 10 classes, 10000 images in total, as the set of query 

images. Table 1 shows the results of different indexing 

methods with different bit lengths for the hash codes. It 

shows how our methods compare with ITQ, KSH, CNNH, 

and the tuned AlexNet and LSH combined method. Fig. 4 

shows the mRPs of the different methods for 48-bit hash 

codes when the number of returned images changes. It is 

seen that our methods yield more accurate results than the 

competing methods. The results of the network and LSH 

combined method (the second method) are more accurate 

than the results of our method only based on the hash codes 

output from our network (the first method). This is because 

the non-LSH method only produces one hash table while 

the network and LSH combined method produces a number 

of hash tables. The reason why the CNNH-based method 

does not yield results comparable to the results of our 

methods is the information loss in the decomposition of the 

near duplication indicator matrix into hash codes. 

 

 

 

 

 

 

 

 

 

Fig. 4. The results for the 48-bit hash codes on the CIFAR dataset. 

 

On the UKbench dataset, the features extracted from 

our deep constrained siamese hash coding network were 

compared with the SIFT Bag-of-words Features (BoFs) 

extracted from images and the features extracted from the 
tuned AlexNet. Fig. 5 shows the curves of the relative 

mRPs versus the acceleration factors for the SIFT BoFs and 

LSH combined method, our network and LSH combined 

method, and our network and load-balanced LSH combined 
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method, where the number L of hash tables is 20. Fig. 6 

shows the curves of the relative mRPs versus the 

acceleration factors for the AlexNet features and LSH 

combined methods and our network and LSH combined 

methods. The relative mRP achieves 1.0 means that the 

hashing process does not reduce the mRP value compared 

with the exhaustive searching. It is seen that the features 

extracted from our neural network yield more accurate 

results than the traditional SIFT BoFs and the features 

extracted from traditional deep neural network, i.e., under 

the same acceleration factor the features extracted from our 

neural network obtain higher mRPs. This illustrates that our 

deep constrained siamese hash coding network effectively 

learns the features which are appropriate for constructing 

LSH index structures. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Comparison between the features from the FC8 layer in our 

network and the SIFT-based BoFs on the UKbench dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Comparison between the features extracted from our hash 

coding network and the features from the tuned AlexNet on the 

UKbench dataset. 

 

5.2. Load-balanced LSH 

We first verify the effectiveness of the upper bound on 

the load-balanced bucket size, then the effectiveness of the 

load-balanced LSH. 

5.2.1. Analysis of load-balanced upper bound 

The key idea of our load-balanced LSH is to hash the 

image feature vectors into buckets which contain an 

appropriate number of samples. It is important to verify the 

effectiveness of the theoretically derived value of the 
parameter LB  in designing the load balanced LSH. We 

explored the effect of 
LB

 on the accuracy and efficiency 

for searching near duplicate images on the UKbench 

dataset. 

 

 

 

 

 

 

 

 

 

Fig. 7. The results of the load-balanced Euclidean LSH with different 

values of LB  (L=20). 

 

We extracted 320-dimensional gist features [19] for 

each image. We mapped all the 10,200 images in the dataset 

into each of 20 hash tables. Each table contains at most 

2000 buckets. Based on (25) in Section 4.1, the threshold 

LB  is estimated as: 
1+0.25320 10200+10200

84
2 0 0

=
0 2 0

LB




 .         (32) 

The Euclidean distance-based LSH was used. Fig. 7 shows 

the curves of the relative mRP versus the acceleration factor 

for searching near duplicate images when LB  takes the 

values 50, 60, 84, 100, 120, and  . When LB  is infinite, 

i.e., there is no limit to the load in a bucket, the 

load-balanced LSH is reduced to the basic LSH. From the 

results, we observe that when 
LB

 is 84 the best detection 

accuracy and efficiency are achieved. This clearly 

illustrates the effectiveness of the theoretically derived 

value of the upper bound LB . 

5.2.2. Performance comparison with basic LSH 

In order to show the effectiveness of our proposed 

load-balanced LSH for near duplicate image detection, we 

compared our load-balanced LSH with the basic LSH on 

the three benchmark dataset: the CIFAR dataset, the 

UKbench dataset, and the INRIA Copydays dataset. 

1) The CIFAR dataset 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison between our load-balanced Hamming LSH and 

the Hamming LSH when deep features are used (L=20). 

 

On the CIFAR dataset, we compared the 

load-balanced Hamming LSH with the Hamming LSH 

using the features extracted from the FC7 layer in the tuned 

AlexNet and the 1000 dimensional features extracted from 

the FC8 layer in our deep constrained siamese hash coding 
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network. The results are shown in Fig. 8. It is seen that 

when the features from AlexNet or the features from our 

neural network are used, under the same acceleration factor 

the load-balanced Hamming LSH yields more accurate 

results than the Hamming LSH, and under the same mRP 

the load-balanced Hamming LSH works more rapidly. 

2) The UKbench dataset 

On the UKbench dataset, we compared our 

load-balanced LSH with the basic LSH using two global 

features: the 320-dimensional gist features [19] and the 

400-dimensional SIFT [20]-based BoFs. The Hamming 

LSH (HLSH) and the Euclidean LSH (E2LSH) were used. 

For the Euclidean LSH, the number of hash tables was 

varied for different types of features to obtain a range of 

performances. For the gist features, the number of hash 

tables was set to 20 and 30, and correspondingly the upper 

bound LB  on the hash bucket was 84 and 54. For the 

SIFT-based BoFs, the number of hash tables was set to 15 

and 20, and correspondingly the upper bound on the bucket 

size was 134 and 100. Figs. 9 and 10 show the results in 

terms of relative mRP versus acceleration factor for the gist 

features and the SIFT-based BoFs, respectively. From the 

comparisons, we observe that, at the same detection 

accuracy, the load-balanced Euclidean/Hamming LSH has a 

higher acceleration factor than the basic 

Euclidean/Hamming LSH. These results clearly illustrate 

the effectiveness of the load balanced LSH. 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparisons between our load-balanced LSH and basic LSH 

for the gist features on the UKbench dataset. 

 

 

 

 

 

 

 

 

Fig. 10. Comparisons between our load-balanced LSH and the basic 

LSH for the SIFT BoFs on the UKbench dataset. 

 

On the UKbench dataset, we compared our 
load-balanced LSH with the basic LSH for the tuned 

AlexNet features and the features extracted from our deep 

constrained siamese hash coding network. The results are 

shown in Fig. 11. It is seen that with the same features our 

load-balanced LSH outperforms the classic LSH. 

 

 

 

 

 

 

 

 

Fig. 11. Comparisons between our load-balanced LSH and the basic 

LSH for the deep learning features on the UKbench dataset. 
 

Table 2. Comparison between the Euclidean LSH and our 

load-balanced Euclidean LSH based on the features obtained by early 

fusion of color, LBP and RootSIFT on the UKbench dataset 

Evaluation criteria N-S score Image cand. Acce.factor 

Basic 

E2LSH 

V=24 3.462 939.0 10.9 

V=25 3.507 953.0 10.7 

V=26 3.493 943.0 10.8 

V=27 3.484 931.5 11.0 

V=28 3.442 883.5 11.5 

Proposed 

LB-E2LSH 

V=24 3.490 620.8 16.4 

V=25 3.508 636.2 16.0 

V=26 3.506 634.8 16.1 

V=27 3.495 625.6 16.3 

V=28 3.494 621.7 16.4 

 

Table 3. Comparison between the Hamming LSH and our 

load-balanced Hamming LSH based on the features extracted from 

our deep constrained siamese hash coding network on the UKbench 

dataset 

Evaluation criteria N-S score Image cand. Acce.factor 

Basic 

HLSH 

V=12 3.24 638.0 16 

V=24 3.45 653.0 15.6 

V=32 3.61 643.0 15.9 

V=48 3.61 639.5 15.9 

Proposed 

LB-HLSH 

V=12 3.47 421 24.2 

V=24 3.58 436.6 23.4 

V=32 3.66 434.8 23.5 

V=48 3.65 429 23.7 

 

On the UKbench dataset, we estimated the N-S score 

of our load-balanced LSH. We carried out early fusion of 

normalized color features, LBP [21] features, and RootSIFT 

[22] clustering-based VLAD [23] features. The PCA was 

used to reduce the dimension of the fused feature vectors to 

3000, which retains about 98% of the energy. These 3000 

dimensional feature vectors were combined with the 

Euclidean LSH (E2LSH) and the load-balanced Euclidean 

LSH (LB-E2LSH) to detect near duplicate images. The 

number of hash tables was set to 30 (L=30) and 

correspondingly the upper bound on the bucket size was 
550 ( 550LB ). Table 2 shows the comparison results, 

including the N-S score, the number of image candidates, 

and the acceleration factor, when hash codes with different 

numbers of bits were used. Although our method was 
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designed to detect near duplicate images efficiently, the 

N-S scores of our load balanced Euclidean LSH exceed the 

score of 3.17 for the min-hash in [6] and 3.42 for the BoF in 

[24] on the UKbench dataset. We also combined the 

features extracted from our deep constrained siamese hash 

coding network with the Hamming LSH (HLSH) and the 

load-balanced Hamming LSH (LB-HLSH) to detect near 

duplicate images. The results are shown in Table 3. It is 

also seen that the load-balanced Hamming LSH is more 

efficient and more accurate. 

3) The INRIA Copydays dataset 

On the INRIA Copydays dataset, we made the 

comparison based on the 320-dimensional gist features and 

the 400-dimensional SIFT-based BoFs. The Hamming LSH 

and the Euclidean LSH were used to compare the load 

balanced LSH with the basic LSH. For the gist features, the 

number of hash tables was set to 20, giving a value of 27 

for LB . For the SIFT-based BoFs, the number of hash 

tables was set to 30, with LB  equal to 34. Figs. 12 and 13 

show the results for the gist features and the SIFT-based 

BoFs respectively. These results show the good 

performance of the load balanced LSH. 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Comparisons between our load-balanced LSH and the basic 

LSH for the gist features on the INRIA Copydays dataset. 

 

 

 

 

 

 

 

 

 

Fig. 13. Comparisons between our load-balanced LSH and the basic 

LSH for the SIFT-based BoFs on the INRIA Copydays dataset. 

 

5.3. Remark 

In the experiments, different datasets with different 
numbers of samples were used, and different dimensions of 

feature vectors were used. In all the results, the 

load-balanced LSH is more efficient than the basic LSH. 

This clearly shows the effectiveness of the upper bound of 

the load-balanced hash bucket size. 

6. Conclusion 

We have proposed a deep constrained siamese hash 

coding network to which binary constrained regularization 

is added. The training of the network is simple and the 

network is able to learn effective image features which are 

appropriate for detecting near duplicate images and for 

constructing LSH-based indexing. We have further 

proposed a load-balanced LSH method for the efficient and 

effective detection of near duplicate images. Our load 

balanced LSH guarantees to map images into buckets in a 

balanced way and to probe an appropriate number of 

neighboring buckets for detection. This accelerates the 

detection and also obtains good accuracy. Therefore, our 

load-balanced LSH is efficient and flexible in contrast with 

the basic LSH. The experimental results on three 

benchmark datasets demonstrate the effectiveness of our 

deep constrained siamese hash coding network and 

efficiency of our load-based LSH.  
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