
1

Deep Constrained Siamese Hash Coding Network and Load-Balanced

Locality-Sensitive Hashing for Near Duplicate Image Detection

Weiming Hu, Yabo Fan, and Junliang Xing

(National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190)

{wmhu, yabo.fan, jlxing}@nlpr.ia.ac.cn

Liang Sun

(School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026)

slucius@mail.ustc.edu.cn

Zhaoquan Cai

(Huizhou University, Huizhou, Guangdong, China, 516007)

gd0752888@126.com

Stephen Maybank

(Department of Computer Science and Information Systems, Birkbeck College, Malet Street, London WC1E 7HX)

sjmaybank@dcs.bbk.ac.uk

Abstract: We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural

network and load-balanced Locality Sensitive Hashing (LSH) indexing. We propose a deep constrained siamese hash coding

neural network combined with deep feature learning. Our neural network is able to extract effective features for near

duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH

method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query

time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image

detection. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our deep siamese hash

encoding network and load-balanced LSH.

Index terms: Near duplicate image detection, Load-balanced locality-sensitive hashing, Deep constrained siamese neural

network, Deep feature extraction.

1. Introduction

With the rapid development of multimedia technology,

the amount of digital images has become overwhelmingly

huge. Images may have many near duplicates on the

Internet, as easily observed by Google or Yahoo. Near

duplicate images are transformed versions of an original

image obtained by blurring, geometric manipulations [1],

noise pollution, compression, content enhancement, cutting

out, and keeping part, etc. Fig. 1 shows two examples of

near duplicate images on the web. Image near duplication

leads to a huge waste of network resources, and can be a

sign of illegal activity, such as image copyright

infringement. Therefore, efficient and effective near

duplicate image detection is an importance issue in image

management and web content security.

Fig. 1. Two examples of near duplicate images on the web.

In the last decade, various approaches have been

proposed for near duplicate image detection [2, 3, 4, 5, 6, 7,

8]. One of the major challenges for near duplicate image

detection is to extract effective image features to improve

the detection accuracy. Another challenge is to improve the

detection efficiency, since the image database is usually

very large. In the following, we briefly review the related

work on image feature extraction and feature indexing for

near duplicate image detection.

1.1. Related work

1.1.1. Feature extraction

A number of features have been proposed for near

duplicate image detection. Kim [31] extracted Discrete

Cosine Transform (DCT) coefficients-based features for

detecting near duplicate images. The DCT coefficients-

based features are robust to noise but sensitive to rotations.

Wu et al. [32] used differences of Multi-Resolution

Histograms (MRH) as features for near duplicate image

detection. MRHs can be calculated quickly, but they are

sensitive to geometric affine transformations. The Vector of

Locally Aggregated Descriptors (VLAD) [23] and Bag of

Features (BoFs) [34] which cluster local features, such as
those obtained by the Scale Invariant Feature Transform

(SIFT), into global features have been widely used for near

duplicate image detection. However, these global features

are sensitive to noise and blurring. The gist features in [19]

are appropriate for describing scenes. They are robust to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/157859753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

many types of image content operations, but sensitive to

geometric operations, such as rotation. Lei et al. [35]

proposed Radon transformation-based High Order Invariant

Moment (HOIM) features for near duplicate image

detection. The HOIM features are very robust to image

rotation and scale variation, but sensitive to local image

editing. Zheng et al. [36] proposed the Salient Covariance

(SCOV) matrix features which were used to detect near

duplicate images. The SCOV features are specified in a

visually salient Riemannian space. They cannot be used for

general indexing. The above image features are designed by

human operators. They depend on human experience and

skill. They may achieve good performance on particular

datasets or in specific domains, but they lack generalization

capability.

In recent years, deep learning has been applied to

automatically extract features from images [37, 38].

Krizhevsky et al. [37] trained a deep convolutional neural

network (CNN), AlexNet, to extract features for large scale

image classification. The contribution of image features

from different layers in AlexNet was investigated by Zeiler

and Fergus [39]. In [40], the Hebbian theory was combined

with CNN to produce multi-scale features for image

classification. Deep learning of features has been used for

supervised hashing for image retrieval. Xia et al. [25]

proposed a CNN-based hashing method which decomposes

a similarity indicator matrix into hash codes for samples

and used the obtained hash codes to train the CNN.

However, when the number of images increases the

computational time for the matrix decomposition increases

drastically. Li et al. [26] proposed a deep pairwise

supervised hashing method in which a neural network

consisting of two CNNs was trained using pairs of images.

However, binary constraint was not imposed on hash codes

in the training process. This influences the quality of the

produced hash codes. In general, the features extracted

automatically by deep learning are more generalized and

effective than the features designed by human operators. It

is necessary to design new deep hash coding neural

networks to automatically extract features for near duplicate

image detection.

1.1.2. Feature indexing

Because image databases are usually very large,

efficient near duplicate image detection usually utilizes a

two-stage model. The first stage indexes near duplicate

images to the same class in order to reduce the number of

candidate matches to a query. The second stage

exhaustively searches the results from the first stage to

obtain the final near duplicate images. This model is

referred to as a coarse-to-fine model. It is apparent that the

index constructed in the first stage determines the detection

efficiency. Tree-structured indexing, such as k-d tree, is

very effective when the dimension of the feature vectors is

low. However, if the dimension is large, search in the k-d

tree or other tree-structured indexing works no better than

brute-force linear search [10]. The dimension of the image

feature vectors is usually large, so tree-structured indexing
is inappropriate for near duplicate image detection. Up to

now, locality-sensitive hashing (LSH) [9, 11, 15, 28, 33],

which maps high-dimensional image feature vectors to a

low-dimensional space to produce a family of binary hash

codes, has been the most popular indexing method for near

duplicate image detection. For example, Ke et al. [4]

applied the basic LSH to near duplicate image detection.

Chum et al. [6] combined the term frequency-inverse

document frequency weighting with the min-hash method

for near duplicate image detection. Cao et al. [14] proposed

the weakly supervised LSH for near duplicate image

detection. The effectiveness of LSH depends on the family

of hash functions. In turn, the hash functions depend on

similarity measures. For example, the p-stable distribution

LSH [12] depends on the
p
 distance, the min-hash [6] on

the Jaccard coefficient distance, and the kernelized LSH [13]

on the angle-based distance.

For near duplicate image detection, the existing

LSH-based methods achieve very good accuracy, but the

detection speed is influenced by a peculiarity: there are “hot

spot” images which have a very large amount of duplicates

and there are images which have few or even no duplicates.

As a result, the existing LSH methods usually map too

many samples into some buckets while other buckets

contain too few samples. This is referred to as unbalanced

indexing. Obviously, the number of candidates returned by

the LSH structure dominates the detection efficiency. As

the distribution of query samples is usually similar to the

distribution of the samples in the indexed database, query

samples are likely to be mapped into the larger buckets.

This increases the search time for matches to the query.

1.2. Our work

With the aim of handling the above limitations in

feature extraction and LSH for near duplicate image

detection, we propose a deep siamese hash encoding neural

network combined with deep feature learning and a

load-balanced LSH method to carry out more efficient and

more accurate near duplicate image detection. The main

contributions of this work are summarized as follows:

 There are two CNNs in our deep siamese hash

encoding network. The duplicate indicators for

pairs of images are used to train the network. The

binary regularization for hash codes is added in

the training process, with the result that the

obtained deep features are more appropriate for

near duplicate image detection.

 Our load-balanced LSH is an efficient indexing

structure which contains load-balanced buckets.

This improves the efficiency of near duplicate

image detection.

 We theoretically derive an upper bound on the

bucket size for load balanced LSH. This upper

bound guarantees the search performance.

 We present an effective and efficient load

balanced LSH-based near duplicate image

detection method, including initialization, basic

hashing, local redistribution, and neighbor-probe

search in an appropriate number of neighboring

buckets.

The rest of the paper is organized as follows: Section 2
briefly introduces LSH. Section 3 presents our deep

constrained siamese hash coding neural network. Section 4

proposes our load-balanced LSH. Section 5 shows the

experimental results. Section 6 summarizes the paper.

3

2. LSH

LSH is mainly used to index feature vectors extracted

from samples for reducing the search time for the nearest

neighbors to each query. It is based on hash functions, hash

mapping functions, and hash tables.

Definition 1: The (R, c) near neighbor (NN)

problem [11, 12, 44]: Let 0R  be a threshold and 1c 

be an approximation factor. Given a query q, if there exists
a sample p such that the distance between the feature

vectors of p and q is less than or equal to R

(distance(,)p q R), then the indexing structure is required

to return all the samples whose distances to q are less than

cR.

LSH solves the (R, c)-NN problem by mapping similar

samples into the same bucket with higher probability than

dissimilar samples. Samples in the same bucket are said to

collide. LSH is based on a family of hash functions with the

property that similar samples have higher collision

probability than dissimilar samples. Formally, an LSH

family is defined as follows:

Definition 2: 1 2(, , ,)R c P P -sensitive LSH [11, 12, 44]:

Let F be a family of functions { } which map each

sample to a bucket. Let 1P and 2P be two collision

probabilities satisfying 1 2P P . A family F is called

1 2(, , ,)R c P P sensitive, when a function F which is

chosen uniformly at random satisfies the following two

conditions for any two given samples p and q:

 If distance(,)p q R , then () ()p q  (i.e., p

and q collide) with probability at least 1P .

 If distance(,)p q cR , then () ()p q  with

probability at most 2P .

Constructing an LSH index structure for efficient

approximate nearest neighbor search depends on the

number L of hash tables and the number V of bits of hash

codes. We define a family G of random hash mapping

functions {g}, where each function g is obtained by

concatenating V functions 1 , 2 , …, V randomly

selected from F: 1 2() [(), (),..., ()]Vg p p p p   . As a hash

function η maps a sample into a one-bit hash code, a hash

mapping function g maps a sample into a V-bits’ hash code.

A hash mapping function corresponds to a hash table which

consists of a number of buckets. Each bucket corresponds

to a V-bits’ hash code. A sample is mapped into a bucket in

each table. Then, L hash tables are constructed using L hash

mapping functions
1{ ()}L

i ig 
. Given query q, the samples

lying in the L buckets in the L hash tables are considered as

its near duplicate candidates.

3. Deep Constrained Siamese Hash

Coding Network

LSH depends on features extracted from samples. We

extract deep features for images by designing a new deep

hash coding network.
Current hash coding networks based on the deep

learning of features usually include Convolutional Neural

Network Hashing (CNNH) [25] and the deep pairwise
supervised hashing network [26, 45]. The CNNH [25] uses

a semantic similarity indicator matrix [Sij] where an entry

Sij is 1 if images i and j are semantically similar, and is -1 if

they are semantically dissimilar. The matrix is decomposed

into hash codes for samples. The obtained hash codes are

used as supervised information to train a CNN. After a test

image is input into the trained CNN, its output is the hash

code for the test image. The deep pairwise supervised

hashing [26, 45] inputs each pair of images into a neural

network which consists of two CNNs. Whether the two

images are semantically similar is used as supervised

information for learning. The loss function of the neural

network is the logarithm of the likelihood loss of pairwise

samples. The hash codes of images are output from the last

fully connected layer. The limitations of the CNNH are as

follows: As the number of images increases, both the

computational time and the storage space for the

decomposition of the semantic similarity indicator matrix

into hash codes rapidly increase. The limitation of the deep

pairwise supervised hashing is that binary constraint on the

hash codes is not carried out, and then the quality of the

generated hash code is influenced. With the aim of handling

the limitations of these two supervised deep hash coding

networks, we propose a deep constrained siamese hash

coding network

3.1. Network structure

Fig. 2 shows the structure of our deep constrained

siamese hash coding network. It consists of two

symmetrical CNNs which have identical structures and

parameters. Pairs of images are input into the network. In

the CNNs, we replace the FC8 fully connected layer having

1000 nodes in the AlexNet [37] with the FC8 fully

connected layer having d nodes. In contrast with the CNNH

which uses hash codes obtained by decomposing the

semantic similarity indicator matrix as the supervised

signals, we simulate the learning of hash codes by imposing

1 and -1 switching attributes into the last fully connected

layer of the CNN. We add a latent layer H with V nodes

between the fully connected layer FC8 and the layer of the

loss function in the CNN. This latent layer maps the

features extracted from the FC7 layer to hash codes. In this

latent layer, we use the hyperbolic tangent (tanh) function

[41, 42, 43] as the activation function, which is formulated

as:

exp() exp()
tanh : ()

exp() exp()

x x
h x

x x

 


 
 (1)

where x is an input real value. The range of the tanh

function is (-1,1). It is appropriate for the hash coding task.

Fig. 2. The deep constrained siamese hash coding network.

4

3.2. Loss function

The loss function layer includes the contrastive loss

function which measures the similarity of each input pair of

images and the regularization function which adds the

binary constraint to the output of the latent layer H.

Let {0,1}  be the near duplicate indicator, where

1  represents that the two input images are nearly

duplicate and 0  represents that they are not nearly

duplicate. Let a and b be the V-dimensional vectors output

from the latent layers in the two CNNs of our network for a

pair of images. These vectors are also called approximate

hash codes. The hash codes can be obtained by rounding

the components of the approximate hash codes into integers.

Let
va and

vb be the v-th values in a and b. The

contrastive loss function is defined as:

 2 2

1

1
(1)max(,0)

2

V

c v v v v

v

E a b margin a b
V

 


      (2)

where margin is used to adjust the effect of the image pairs

which are not nearly duplicate on the entire loss function,

i.e., only when the loss is within a specific range (less than

margin), the loss is included in the loss function. When the

two input images are nearly duplicate, i.e., 1  , the

contrastive loss is equal to the distance between the

approximate hash codes of the two input images, and the

contrastive loss is minimized by making the output

approximate hash codes as identical as possible. When the

two input images are not nearly duplicate, i.e., 0  , the

contrastive loss is minimized by making the output

approximate hash codes as dissimilar as possible. In this

way, this contrastive loss function ensures that the learnt

hash codes preserve semantic similarity information about

the input image pairs.

We define a two-valued constraint term for the loss

function, in order to ensure that the approximate hash code

components approach 1 or -1 and increase the quality of the

produced hash codes. The Hamming distance between the

hash codes ih and jh of a pair of images i and j can be

represented using the scalar product of ih and jh :

 1
dis (,) ,

2
H i j i jV h h h h . (3)

The Hamming distance is transformed to be represented

using the cosine distance:

 dis (,) 1 cos(,)
2

H i j i j

V
 h h h h (4)

where

,
cos(,)

i j

i j

i j


h h

h h
h h

. (5)

Let â be the vector whose v-th element is va , i.e.,
ˆ[] vv aa . In order to make the hash codes approximate to

binary values -1 and 1, we add the following hash

regularization term to the loss function:

 ˆˆcos(,) cos(,)hE   a 1 b 1 . (6)

where 1 is the V-dimensional vector in which all the entries
are 1. We take the cosine distance between the vector

whose entries are absolute values of approximate hash

codes output from hidden layers H in the network and the

vector 1 as a regularization term. As a result, the output

approximate hash codes may approach 1 or -1, and then the

quality of the produced hash codes is improved.

We define the entire loss function of our deep

constrained siamese hash coding network by c hE E E  .

This loss function includes near duplication information of

image pairs and hash coding constraint. This ensures that

near duplicate images have similar hash codes with a high

probability.

3.3. Network training

The initial values of the network parameters of the

CNNs in our deep constrained siamese hash coding

network are taken from the AlexNet which is trained into

1000 classes using the ImageNet dataset. We carry out fine

tuning on the AlexNet using the UKbench image dataset

and the CIFAR-10 image dataset to obtain the image feature

representation for the specific domain of near duplicate

image detection.

We transfer the tuned network parameters into our

deep constrained siamese hashing network. The near

duplicate image dataset is used to train the deep constrained

siamese hash coding network. The weights of one of the

CNNs in our network are updated using the method in the

Caffe [27] CNN deep learning library. The weights of

another CNN are just copied from the trained CNN. For a

new image, we calculate the output out (Hj) of each node j
in the latent layer H. We binarize out (Hj) into a hash code

jh as follows:

1 () 0

1

j

j

out H
h

otherwise


 


. (7)

3.4. Indexing construction

There are two methods to construct a sample index

using the learnt network. One method directly uses the hash

codes generated from the latent layer H to construct the

index structure for the final search. The other method

extracts image features from the FC8 layer and then

combines the extracted image features with the LSH to

construct a LSH-based index structure.

In the first method, given a query image q as well as

its learnt hash code qh , according to the distances between

the learnt hash code qh of q and the learnt hash code set

1 2{ , ,..., }H N  h h h of the image set, we find the near

duplicate candidate image set 1 2{ , ,..., }c c c
mI I I for the

image q. Then, the final search is carried out on this

candidate set. The limitation of the first method is that there

is only one hash table for the index structure.

In the second method, features for images are

extracted from the FC8 layer of the trained network. Using

these extracted features, a LSH-based index is constructed.

Given a query image, the near duplicate candidate image

set is found based on the constructed index. Let qx and

ix be the FC8 layer feature vectors of the query image q

and the i-th candidate image c
iI . The distance between q

and c
iI is q ix x . The smaller the distance the more

similar q and c
iI are, and the more likely it is that they are

near duplicates. The top k near duplicate images are found.

The second method can construct a number of hash tables,

so it can find more accurate results.

5

As the inputs to our network are pairs of images

together with their near duplicate indicators, the features

extracted from the network are more appropriate for near

duplicate image detection. The binary regularization (6) in

the loss function makes the extracted features more

effective for constructing LSH.

4. Load-Balanced LSH

As test samples are usually distributed similarly to the

training samples, query samples tend to fall into larger

buckets in a hash table. This may significantly influence the

efficiency of near duplicate image detection. The key idea

of load-balanced LSH is to hash the image feature vectors

into buckets such that the loads of the buckets balanced. In

this way, query samples do not fall into larger buckets and

the detection efficiency of the index structure is increased.

In the following, we first theoretically derive an upper

bound on the hash bucket size, and then use the upper

bound to construct a load-balanced LSH.

4.1. Upper bound on hash bucket size

It is necessary to estimate the upper bound
LB on

the numbers of samples in a bucket for load-balanced LSH.

Let

1

2

log(1/)

log(1/)

P

P
  (8)

where P1 and P2 are defined in Section 2. The parameter

 governs the search performance of the index structure.

The smaller the ρ, the more efficient the search.

As stated in [16], given a family of (R, c, P1,

P2)-sensitive hash functions, for n d-dimensional samples,

the required space for the LSH index structure which is

effective for the (R, c)-NN problem is:
1dn n  . (9)

From (9), it is seen that the space is determined by ρ. We

estimate the an upper bound for ρ according to the lower

bound for 1P and the upper bound for 2P .

Let τ be the number of degrees of freedom for the

chi-squared distribution, and dW be a random

projection matrix. For a vector dx , the value
2 2

/T
W x x is distributed with probability

  2

2 2
/T

x
P  x x , where 2 ()P y


 for variable y is the

chi-squared distribution:

2

1
2 2

2

()

2
2

y

y e
P y






 


 

 
 

. (10)

As proved in [16], the lower bound for P1 is

1

2

1 1
.

2
1 1

1
24

P






 
  

 

. (11)

The upper bound for P2 is

2

2 2

2

1
4

P

c







 
 

 

. (12)

Substitution of (11) and (12) into (8) yields:

2

2 2

2

1 1
log 2 1

24

1
log 1

2 4

1 1 2log 2
log 1

24
.

2log 2
log 1

4

c

c














 



 
  
   

  
 


 

  
  

  
 

 
   

 


 
  

 

 (13)

The right hand term of the equality sign in (13) has the

form 1 2 3 4() / ()e e e e  , where 1 2 3 4, , , 0e e e e  . This form

is transformed as follows:

2
1

11 2 1 2

43 4 3 14
3

33

1
1

1

11

e
e

ee e e e

ee e e ee
e

ee

 
 

   
   

      
 

. (14)

Taylor series expansion 1/ (1) 1 ()x O x   for variable x

yields:

4

4 3

3

1
= 1

1

e
O

e e

e

  
   

  

. (15)

Then, (14) is transformed to

1 2 1 2 4

3 4 3 1 3

= 1 1
e e e e e

O
e e e e e

   
          

. (16)

Substitution of the right hand term of the equality sign in

(13) into (16) yields:

2

2

1 1
log 1

2 2log 24
1

1 1
log 1log 1

244

2log 2
1 .

log 1
4

c

O
c

 








  
    

    
    

      
   

  
  
  
   

     
   

 (17)

The inequality / (1) log(1)x x x x    for variable 0x 

yields:

2 22

2

2

2

2

2 2

2 2

1 1 1 1 2log 1
2 24 4 4

log 1
4 44

4

4

1 (2)(4)

4

1 (8) 1 1
1 1 .

24

c cc

c

c

c

c

c c
O

c c


   

 





 



 

     
 

 
 
 

 


 


     
         

   

 (18)

It is apparent that

6

2log 2 log

1 1 1
log 1 log 1

24 4

log log

1

4

O

O O

 

 
 

 






 
 
 
    

      
    

 
 

         
  

  

 (19)

2 22

2log 2 2log 2 2log 2 1
= =

log 1
44

O O O O
c cc  




   
   

                           

. (20)

Substitution of (18), (19), and (20) into (17) yields

2 2

1 1 log 1 log
1 1O O

c c

 


  

      
          

      
. (21)

In this way, an upper bound for ρ is obtained [16]. For

practical duplicate image detection problems, the number n

of images in the database tends to be very large. Therefore,

we can consider the upper bound for ρ as n . The

degree τ of freedom is directly proportional to n: τ n. So,

log
lim 0
n




 . (22)

Substitution of (22) into (21) yields

2

1

c
  . (23)

By substituting (23) into (9), the required storage

space for LSH indexing is:
21 1/cdn n  . (24)

Let B be the maximum number of buckets per hash table. It

is usually determined manually according to the number of

bits of hash codes and the number of samples. The upper

bound on the load-balanced hash bucket size is defined as:

 
21 1/c

LB

dn n

LB

 
 

  
 
 

. (25)

This means that when n d-dimension samples are stored in

L hash tables, each table maintains at most B buckets and

each bucket stores at most LB samples. In most cases, it

is sufficient to set c=2.

4.2. Load-balanced LSH

The upper bound on the bucket size derived from

theoretical analysis is used to construct the load-balanced

LSH. It is noted that the buckets are ranked in the

ascending order of the hash codes. We design our

load-balanced LSH in the following way: If the number of

samples placed into the same bucket exceeds the upper

bound LB , the extra samples are reassigned into

neighboring buckets. In Fig. 3, the load-balanced LSH

structure is compared with the basic LSH structure. It is

seen that at most three samples are assigned into the same
bucket in the load-balanced LSH structure and there are

five samples lying in the same bucket in the basic LSH

structure.

 (a) Basic LSH structure (b) Load-balanced LSH structure

Fig. 3. Basic LSH versus load-balanced LSH: Basic LSH may have
unbalanced structure which naturally leads to inefficient search. The
load-balanced LSH has balanced buckets, which improve the
efficiency of the search.

We first initialize the hash mapping functions using

the basic LSH family. Then, basic hashing is carried out to

map all the samples into buckets without considering the

upper bound on the bucket size. When the number of the

samples in a bucket exceeds the upper bound, local

redistribution is carried out to move some samples in this

bucket to neighboring buckets. When all the buckets

conform to the size constraint, the load balanced LSH

structure is constructed. For detecting near duplicates to a

given sample q, the samples in the buckets to which q’s

hash codes correspond and the samples in the neighboring

buckets are the candidates. To sum up, our load-balanced

LSH method consists of the following four steps:

initialization of LSH functions, basic hashing, local

redistribution of buckets, and neighbor probe search.

4.2.1. Initialization

Our load-balanced LSH uses a family of Hamming

LSH functions [10] and a family of Euclidean distance LSH

functions [12] to construct the basic LSH mapping function.

The Hamming LSH functions map samples into a

Hamming space. For a d-dimensional sample dx , the

Hamming LSH family is defined as

1{ : () {0,1}}d
i iF x    , where ix is the i-th component

of x and function ()ix yields a binary code for ix under

a given threshold. From F, we randomly select V functions

which are concatenated to form a mapping function g() for

mapping each sample into a V-bits’ hash code.

A family of the Euclidean distance LSH is a set of

functions formulated as:

, ()
T

w b

b

r


 
  
 

w x
x (26)

where w is a d-dimension parameter vector with entries

generated from the Gaussian distribution, and parameter b

is a real number chosen uniformly from the range [0, r] (r is

a constant). These hash functions ,{ : }d
b Z  map a

d-dimensional vector into a set of integers.

4.2.2. Basic hashing

Using the constructed mapping functions 1{ ()}L
l lg 

corresponding to L hash tables, each sample is mapped into

7

a bucket ()lg x in each hash table l, where the upper

bound on the bucket size is not considered.

4.2.3. Local redistribution

A local redistribution process is carried out to balance

the loads of the buckets. We use the initial hash tables to

compute every bucket’s virtual center VC which is the

average of the feature vectors of the initial samples in the

bucket:

()

1
t

bucket ttn 

 
x

VC x (27)

where tn is the initial number of samples in bucket t.
Then, the buckets in each hash table are checked one by

one in the order of hash codes in the hash table. If the

number tn of samples in a bucket t exceeds the upper

bound
LB

, we compute the distances between the current

samples in the bucket and the virtual center VC of the

bucket, and sort the samples by these distances in

descending order. Then, the first () LBn t  samples are

chosen and sent to the next bucket t+1. After that, the

samples in the next bucket t+1 are processed in the same

way as in the bucket t. If the number of the samples in the

last bucket exceeds LB , then the chosen farthest samples

are sent to the first bucket, and the local redistribution

process restarts from the first bucket. When all buckets

conform to the
LB

 constraint, the load balanced LSH

construction is finalized. In order to guarantee the stability

of the hash buckets and the accuracy of detection, the

virtual center VC for each bucket is computed only once for

the basic hashing. It is not updated during the local

redistribution process. The local redistribution process for

each hash table is outlined as follows:

Step 1: Compute the virtual centers of all the buckets based on the

results of the basic hashing;

 t=1;

Step 2: Compute the distances from the samples in bucket t to the

virtual center of the bucket;

Step 3: If () LBn t 

Choose () LBn t  samples with farthest distances to

the virtual center of bucket t;

 If the t-th bucket is the last one

 Send these chosen samples to the first bucket;

 t=1;

 Go To Step 2;

 Otherwise

Send these chosen samples to bucket t+1;

 1t t  ;

 Go To Step 2;

 End If

 Otherwise

If the t-th bucket is the last one

 Go To Step 4

Otherwise

1t t  ;

Go To Step 2;

 End If

 End If

Step 4: End

4.2.4. Neighbor-probe search

To cooperate with the local redistribution operation,

the load-balanced LSH must probe more than one bucket

for approximate nearest neighbors search. Suppose that a

query sample q is mapped into the bucket ()lg q in the l-th

hash table. We probe the bucket ()lg p and the next 

buckets to find the near duplicate samples. The number 

of the buckets next to the bucket ()lh q is determined by:

LB

LB lM


 
  

 
 (28)

where lM is the mean of the numbers of samples in the

buckets in the l-th hash table. The more the mean number

of samples in buckets, the more the buckets to be searched.

In this way, the near duplicate images can be detected

efficiently.

4.2.5. Discussion

The CNN model can be trained incrementally by using

the previous models to initialize the new model. Our

indexing construction method currently cannot be

incremental. However, the construction process is very

efficient. The indexing structure can be reconstructed very

efficiently. We will study how to incrementally construct

the indexing structure in our future work.

5. Experiments

We adopted the following three public benchmark

image datasets to evaluate the effectiveness of our deep

constrained siamese hash coding network and

load-balanced LSH:

 The CIFAR-10 dataset: It consists of 60,000

color images with size 32×32. These images have

10 classes, and each class contains 6,000 images.

The dataset was divided into a training set with

50,000 images and a test set with 10,000 images.

The images from the same class are treated as

near duplicated. Since the experiments were

conducted to evaluate the effectiveness of

different hashing methods, the experimental

findings are also referable to other treatments of

near duplication.

 The UKbench dataset [17]: It consists of 10,200

color images with size 640×480. It contains 2,550

different scenes. Each scene has four near

duplicate images. The dataset was divided into a

training set with 7,550 images and a test set with

2,550 images.

 The INRIA Copydays dataset [18]: It consists
of 157 images, and for each image 20 near

duplicate versions were generated by JPEG

compression, scaling, noise blurring, and image

coding format conversion.

8

In these datasets, there are many similar images which

produce a number of very large buckets using the basic

hashing, making the load of the buckets unbalanced.

On the CIFAR-10 dataset, the mean Relevance

Precision (mRP) was used as the metric for accuracy

evaluation. Let k be the number of image candidates

returned by the index structure. The mRP is defined as:

1

1
RP ()

k

i

m Rel i
k 

  (29)

where ()Rel i is 1 if the i-th returned candiate is a

duplicate of the query image, otherwise it is 0. This is an

absolute measure of accuracy.

On the UKbench dataset, the relative mRP, the

absolute precision N-S (Normalized Similarity) score, and

the acceleration factor were used as metrics for

performance evaluation. Let indexing be the number of the

correct candidates in the top k candidates returned by the

indexing method. Let exhaustive be the number of the

correct candidates in the top k candidates returned by

exhaustive search. The relative mRP is defined as:

RP()
indexing

exhaustive

m relative



 . (30)

This mRP depends on the accuracy of exhaustive search,

i.e., the results of exhaustive search are used as the baseline.

Let 4
i be the number of the correct results for image i in

the top 4 returned candidates. The N-S score is defined as:

4

1

1
N-S score

4

Tn
i

iTn




  (31)

where Tn is the number of the images in the test set. The

N-S score is an absolute precision. The acceleration factor

is defined as / rn n , where n is the total number of images

in the dataset and rn is the number of image candidates

returned by the index structure. Exhausive search examines

all the n samples, so the acceleration factor is the detection

efficiency estimation relative to exhaustive search.

5.1. Deep constrained siamese hash coding

network

Two indexing methods have been constructed. One

method (the first method) directly uses the hash codes

output from the deep constrained siamese hash coding

network to construct the indexing structure. Another

method (the second method) uses the features extracted

from the FC8 layer in the network to construct a LSH-based

index structure. The value of d for the FC8 layer is set to

1000. The two methods were compared with the following

indexing methods:

 Traditional feature-based index structures,

namely ITQ in [29], KSH in [30]: Each image

was represented by a 32-dimensional gist feature

vector [19]. These features were used to construct

the index structure.

 Deep feature and LSH combined index

structure: We used the training samples in the

CIFAR-10 dataset to tune the AlexNet. Image
features were extracted from the FC7 layer in the

tuned network. Then, LSH was used to index the

images.

 Convolutional neural network hashing

(CNNH)-based indexing structure: The near

duplicate indicator matrix-based deep hash

coding learning network [25] was used to

generate 48-bit hash codes for images.

Table 1. Comparison between different features-based indexing

structures with different bit lengths on the CIFAR-10 dataset

Methods
mRP

12-bit 24-bit 32-bit 48-bit

The first method 0.76 0.77 0.787 0.79

The second method 0.876 0.88 0.88 0.898

AlexNet +
load-balanced LSH

0.62 0.64 0.645 0.65

CNNH 0.539 0.576 0.572 0.589

KSH 0.303 0.337 0.346 0.356

ITQ 0.162 0.169 0.172 0.175

On the CIFAR-10 dataset, 5000 images were

randomly selected from each class, 50000 images in total,

as the training images. For training the network, each image

pair’s label indicating whether the two images are

duplicated was determined by the ground truth of the

images. We selected 1000 images randomly from each of

the 10 classes, 10000 images in total, as the set of query

images. Table 1 shows the results of different indexing

methods with different bit lengths for the hash codes. It

shows how our methods compare with ITQ, KSH, CNNH,

and the tuned AlexNet and LSH combined method. Fig. 4

shows the mRPs of the different methods for 48-bit hash

codes when the number of returned images changes. It is

seen that our methods yield more accurate results than the

competing methods. The results of the network and LSH

combined method (the second method) are more accurate

than the results of our method only based on the hash codes

output from our network (the first method). This is because

the non-LSH method only produces one hash table while

the network and LSH combined method produces a number

of hash tables. The reason why the CNNH-based method

does not yield results comparable to the results of our

methods is the information loss in the decomposition of the

near duplication indicator matrix into hash codes.

Fig. 4. The results for the 48-bit hash codes on the CIFAR dataset.

On the UKbench dataset, the features extracted from

our deep constrained siamese hash coding network were

compared with the SIFT Bag-of-words Features (BoFs)

extracted from images and the features extracted from the
tuned AlexNet. Fig. 5 shows the curves of the relative

mRPs versus the acceleration factors for the SIFT BoFs and

LSH combined method, our network and LSH combined

method, and our network and load-balanced LSH combined

9

method, where the number L of hash tables is 20. Fig. 6

shows the curves of the relative mRPs versus the

acceleration factors for the AlexNet features and LSH

combined methods and our network and LSH combined

methods. The relative mRP achieves 1.0 means that the

hashing process does not reduce the mRP value compared

with the exhaustive searching. It is seen that the features

extracted from our neural network yield more accurate

results than the traditional SIFT BoFs and the features

extracted from traditional deep neural network, i.e., under

the same acceleration factor the features extracted from our

neural network obtain higher mRPs. This illustrates that our

deep constrained siamese hash coding network effectively

learns the features which are appropriate for constructing

LSH index structures.

Fig. 5. Comparison between the features from the FC8 layer in our

network and the SIFT-based BoFs on the UKbench dataset.

Fig. 6. Comparison between the features extracted from our hash

coding network and the features from the tuned AlexNet on the

UKbench dataset.

5.2. Load-balanced LSH

We first verify the effectiveness of the upper bound on

the load-balanced bucket size, then the effectiveness of the

load-balanced LSH.

5.2.1. Analysis of load-balanced upper bound

The key idea of our load-balanced LSH is to hash the

image feature vectors into buckets which contain an

appropriate number of samples. It is important to verify the

effectiveness of the theoretically derived value of the
parameter LB in designing the load balanced LSH. We

explored the effect of
LB

 on the accuracy and efficiency

for searching near duplicate images on the UKbench

dataset.

Fig. 7. The results of the load-balanced Euclidean LSH with different

values of LB (L=20).

We extracted 320-dimensional gist features [19] for

each image. We mapped all the 10,200 images in the dataset

into each of 20 hash tables. Each table contains at most

2000 buckets. Based on (25) in Section 4.1, the threshold

LB is estimated as:
1+0.25320 10200+10200

84
2 0 0

=
0 2 0

LB




 . (32)

The Euclidean distance-based LSH was used. Fig. 7 shows

the curves of the relative mRP versus the acceleration factor

for searching near duplicate images when LB takes the

values 50, 60, 84, 100, 120, and  . When LB is infinite,

i.e., there is no limit to the load in a bucket, the

load-balanced LSH is reduced to the basic LSH. From the

results, we observe that when
LB

 is 84 the best detection

accuracy and efficiency are achieved. This clearly

illustrates the effectiveness of the theoretically derived

value of the upper bound LB .

5.2.2. Performance comparison with basic LSH

In order to show the effectiveness of our proposed

load-balanced LSH for near duplicate image detection, we

compared our load-balanced LSH with the basic LSH on

the three benchmark dataset: the CIFAR dataset, the

UKbench dataset, and the INRIA Copydays dataset.

1) The CIFAR dataset

Fig. 8. Comparison between our load-balanced Hamming LSH and

the Hamming LSH when deep features are used (L=20).

On the CIFAR dataset, we compared the

load-balanced Hamming LSH with the Hamming LSH

using the features extracted from the FC7 layer in the tuned

AlexNet and the 1000 dimensional features extracted from

the FC8 layer in our deep constrained siamese hash coding

10

network. The results are shown in Fig. 8. It is seen that

when the features from AlexNet or the features from our

neural network are used, under the same acceleration factor

the load-balanced Hamming LSH yields more accurate

results than the Hamming LSH, and under the same mRP

the load-balanced Hamming LSH works more rapidly.

2) The UKbench dataset

On the UKbench dataset, we compared our

load-balanced LSH with the basic LSH using two global

features: the 320-dimensional gist features [19] and the

400-dimensional SIFT [20]-based BoFs. The Hamming

LSH (HLSH) and the Euclidean LSH (E2LSH) were used.

For the Euclidean LSH, the number of hash tables was

varied for different types of features to obtain a range of

performances. For the gist features, the number of hash

tables was set to 20 and 30, and correspondingly the upper

bound LB on the hash bucket was 84 and 54. For the

SIFT-based BoFs, the number of hash tables was set to 15

and 20, and correspondingly the upper bound on the bucket

size was 134 and 100. Figs. 9 and 10 show the results in

terms of relative mRP versus acceleration factor for the gist

features and the SIFT-based BoFs, respectively. From the

comparisons, we observe that, at the same detection

accuracy, the load-balanced Euclidean/Hamming LSH has a

higher acceleration factor than the basic

Euclidean/Hamming LSH. These results clearly illustrate

the effectiveness of the load balanced LSH.

Fig. 9. Comparisons between our load-balanced LSH and basic LSH

for the gist features on the UKbench dataset.

Fig. 10. Comparisons between our load-balanced LSH and the basic

LSH for the SIFT BoFs on the UKbench dataset.

On the UKbench dataset, we compared our
load-balanced LSH with the basic LSH for the tuned

AlexNet features and the features extracted from our deep

constrained siamese hash coding network. The results are

shown in Fig. 11. It is seen that with the same features our

load-balanced LSH outperforms the classic LSH.

Fig. 11. Comparisons between our load-balanced LSH and the basic

LSH for the deep learning features on the UKbench dataset.

Table 2. Comparison between the Euclidean LSH and our

load-balanced Euclidean LSH based on the features obtained by early

fusion of color, LBP and RootSIFT on the UKbench dataset

Evaluation criteria N-S score Image cand. Acce.factor

Basic

E2LSH

V=24 3.462 939.0 10.9

V=25 3.507 953.0 10.7

V=26 3.493 943.0 10.8

V=27 3.484 931.5 11.0

V=28 3.442 883.5 11.5

Proposed

LB-E2LSH

V=24 3.490 620.8 16.4

V=25 3.508 636.2 16.0

V=26 3.506 634.8 16.1

V=27 3.495 625.6 16.3

V=28 3.494 621.7 16.4

Table 3. Comparison between the Hamming LSH and our

load-balanced Hamming LSH based on the features extracted from

our deep constrained siamese hash coding network on the UKbench

dataset

Evaluation criteria N-S score Image cand. Acce.factor

Basic

HLSH

V=12 3.24 638.0 16

V=24 3.45 653.0 15.6

V=32 3.61 643.0 15.9

V=48 3.61 639.5 15.9

Proposed

LB-HLSH

V=12 3.47 421 24.2

V=24 3.58 436.6 23.4

V=32 3.66 434.8 23.5

V=48 3.65 429 23.7

On the UKbench dataset, we estimated the N-S score

of our load-balanced LSH. We carried out early fusion of

normalized color features, LBP [21] features, and RootSIFT

[22] clustering-based VLAD [23] features. The PCA was

used to reduce the dimension of the fused feature vectors to

3000, which retains about 98% of the energy. These 3000

dimensional feature vectors were combined with the

Euclidean LSH (E2LSH) and the load-balanced Euclidean

LSH (LB-E2LSH) to detect near duplicate images. The

number of hash tables was set to 30 (L=30) and

correspondingly the upper bound on the bucket size was
550 (550LB). Table 2 shows the comparison results,

including the N-S score, the number of image candidates,

and the acceleration factor, when hash codes with different

numbers of bits were used. Although our method was

11

designed to detect near duplicate images efficiently, the

N-S scores of our load balanced Euclidean LSH exceed the

score of 3.17 for the min-hash in [6] and 3.42 for the BoF in

[24] on the UKbench dataset. We also combined the

features extracted from our deep constrained siamese hash

coding network with the Hamming LSH (HLSH) and the

load-balanced Hamming LSH (LB-HLSH) to detect near

duplicate images. The results are shown in Table 3. It is

also seen that the load-balanced Hamming LSH is more

efficient and more accurate.

3) The INRIA Copydays dataset

On the INRIA Copydays dataset, we made the

comparison based on the 320-dimensional gist features and

the 400-dimensional SIFT-based BoFs. The Hamming LSH

and the Euclidean LSH were used to compare the load

balanced LSH with the basic LSH. For the gist features, the

number of hash tables was set to 20, giving a value of 27

for LB . For the SIFT-based BoFs, the number of hash

tables was set to 30, with LB equal to 34. Figs. 12 and 13

show the results for the gist features and the SIFT-based

BoFs respectively. These results show the good

performance of the load balanced LSH.

Fig. 12. Comparisons between our load-balanced LSH and the basic

LSH for the gist features on the INRIA Copydays dataset.

Fig. 13. Comparisons between our load-balanced LSH and the basic

LSH for the SIFT-based BoFs on the INRIA Copydays dataset.

5.3. Remark

In the experiments, different datasets with different
numbers of samples were used, and different dimensions of

feature vectors were used. In all the results, the

load-balanced LSH is more efficient than the basic LSH.

This clearly shows the effectiveness of the upper bound of

the load-balanced hash bucket size.

6. Conclusion

We have proposed a deep constrained siamese hash

coding network to which binary constrained regularization

is added. The training of the network is simple and the

network is able to learn effective image features which are

appropriate for detecting near duplicate images and for

constructing LSH-based indexing. We have further

proposed a load-balanced LSH method for the efficient and

effective detection of near duplicate images. Our load

balanced LSH guarantees to map images into buckets in a

balanced way and to probe an appropriate number of

neighboring buckets for detection. This accelerates the

detection and also obtains good accuracy. Therefore, our

load-balanced LSH is efficient and flexible in contrast with

the basic LSH. The experimental results on three

benchmark datasets demonstrate the effectiveness of our

deep constrained siamese hash coding network and

efficiency of our load-based LSH.

References

1. A. Joly, O. Buisson, and C. Frelicot, “Content-based copy

retrieval using distortion-based probabilistic similarity search,”

IEEE Trans. on Multimedia, vol. 9, no. 2, pp. 293-306, 2007.

2. Z. Wu, Q. Xu, S. Jiang, Q. Huang, P. Cui, and L. Li, “Adding

affine invariant geometric constraint for partial-duplicate image

retrieval,” in Proc. of International Conference on Pattern

Recognition, pp. 842-845, Aug. 2010.

3. Y. Lin, C. Xu, L. Yang, Z. Lin, and H. Zha, “L1-norm global

geometric consistency for partial-duplicate image retrieval,” in

Proc. of IEEE International Conference on Image Processing, pp.

3033-3037, Oct. 2014.

4. Y. Ke, R. Sukthankar, and L. Huston, “Efficient near-duplicate

detection and sub-image retrieval,” in Proc. of ACM

International Conference on Multimedia, pp. 869-876, Jan. 2004.

5. W. Zhao, C. Ngo, H. Tan, and X. Wu, “Near-duplicate keyframe

identification with interest point matching and pattern learning,”

IEEE Trans. on Multimedia, vol. 9, no. 5, pp. 1037-1048, 2004.

6. O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image

detection: min-hash and tf-idf weighting,” in Proc. of British

Machine Vision Conference, pp. 50.1-50.10, 2008.

7. Z. Xu, H. Ling, F. Zou, Z. Lu, and P. Li, “Robust image copy

detection using multi-resolution histogram,” in Proc. of ACM

International Conference on Multimedia Information Retrieval,

pp. 129-136, 2010.

8. Y. Lei, G. Qiu, L. Zheng, and J. Huang, “Fast near-duplicate

image detection using uniform randomized trees,” ACM Trans.

on Multimedia Computing, Communications, and Applications,

vol. 10, no. 4, Article no. 35, 2014.

9. M. Wang W. Zhou, Q. Tian, and H. Li, “A General framework

for linear distance preserving hashing,” IEEE Trans. on Image

Processing, Accepted, 2017.

10. A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high

dimensions via hashing,” in Proc. of International Conference on

Very Large Data Bases, pp. 518-529, 1999.

11. P. Indyk and R. Motwani, “Approximate nearest neighbors:

towards removing the curse of dimensionality,” in Proc. of ACM

Symposium on Theory of computing, pp. 604-613, 1998.

12. M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni,

“Locality-sensitive hashing scheme based on p-stable

distributions,” in Proc. of ACM Symposium on Computational

Geometry, pp. 253-262, 2004.

13. B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing

for scalable image search,” in Proc. of IEEE International

Conference on Computer Vision, pp. 2130-2137, 2009.

14. Y. Cao, H. Zhang, and J. Guo, “Weakly supervised locality

12

sensitive hashing for duplicate image retrieval,” in Proc. of IEEE

International Conference on Image Processing, pp. 2461-2464.

Sep. 2011.

15. Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li,

“Multi-probe LSH: efficient indexing for high-dimensional

similarity search,” in Proc. of International Conference on Very

Large Data Bases, pp. 950-961, 2007.

16. A. Andoni and P. Indyk, “Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions,”

Communications of the ACM, vol. 51, no. 1, pp. 117-122, Jan.

2008.

17. D. Nister and H. Stewenius, “Scalable recognition with a

vocabulary tree,” in Proc. of IEEE Conference on Computer

Vision and Pattern Recognition, pp. 459-468, Oct. 2006.

18. M. Douze, H. Jegou, H. Sandhawalia, L. Amsaleg, and C. Schmid,

“Evaluation of GIST descriptors for web-scale image search,” in

Proc. of ACM International Conference on Image and Video

Retrieval, Article no. 19, 2009.

19. A. Oliva and A.B. Torralba, “Modeling the shape of the scene: a

holistic representation of the spatial envelope,” International

Journal of Computer Vision, vol. 42, no. 3, pp. 145-175, 2001.

20. D.G. Lowe, “Distinctive image features from scale-invariant

keypoints,” International Journal of Computer Vision, vol. 60, no.

2, pp. 91-110, 2004.

21. T. Ojala, M. Pietikainen, and T. Maenpaa, “A generalized local

binary pattern operator for multiresolution gray scale and rotation

invariant texture classification,” in Proc. of IEEE International

Conference on Advances in Pattern Recognition, pp. 399-408,

May 2001.

22. R. Arandjelovic and A. Zisserman, “Three things everyone

should know to improve object retrieval,” in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, pp.

2911-2918, June 2012.

23. H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C.

Schmid, “Aggregating local image descriptors into compact

codes,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 34, no. 9, pp. 1704-1716, 2012.

24. H. Jegou, M. Douze, and C. Schmid, “Improving bag-of-feature

for large scale image search,” International Journal of Computer

Vision, vol. 87, no. 3, pp. 316-336, 2010.

25. R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing

for image retrieval via image representation learning,” in Proc. of

AAAI Conference on Artificial Intelligence, pp. 2156-2162, 2014.

26. W.-J. Li, S. Wang, and W.-C. Kang, “Feature learning based deep

supervised hashing with pairwise labels,” in Proc. of

International Joint Conference on Artificial Intelligence, pp.

1711-1717, 2016.

27. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R.

Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional

architecture for fast feature embedding,” in Proc. of ACM

international conference on Multimedia, pp. 675-678, 2014.

28. S. Korman and S. Avidan, “Coherency sensitive hashing,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no.

6, pp. 1099-1112, June 2016.

29. Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative

quantization: a procrustean approach to learning binary codes for

large-scale image retrieval,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 35, no. 12, pp. 2916-2929, Dec.

2013.

30. W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised

hashing with kernels,” in Proc. of IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2074-2081, 2012.

31. C. Kim, “Content-based image copy detection,” Signal Process:

Image Communication, vol. 18, no. 3, pp. 169-181, 2003.

32. M.-N. Wu, C.-C. Lin, and C.-C. Chang, “Content-based image

copy detection,” Journal of Systems and Software, vol. 80, no. 7,

pp. 1057-1069, 2007.

33. K. Li, G.-J. Qi, J. Ye, and K.A. Hua, “Linear subspace ranking

hashing for cross-modal retrieval,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 39, no. 9, pp. 1825-1838,

Sep. 2017.

34. J. Sivic and A. Zisserman, “Video Google: a text retrieval

approach to object matching in videos,” in Proc. of IEEE

International Conference on Computer Vision, pp. 1470-1477,

2003.

35. Y. Lei, Y. Wang, and J. Huang, “Robust image hash in radon

transform domain for authentication,” Signal Process: Image

Communication, vol. 26, no. 6, pp. 280-288, 2011.

36. L. Zheng, Y. Lei, G. Qiu, and J. Huang, “Near-duplicate image

detection in a visually salient Riemannian space,” IEEE Trans.

on Information Forensics and Security, vol. 7, no. 5, pp.

1578õ1593, 2012.

37. A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet

classification with deep convolutional neural networks,” in Proc.

of Advances in Neural Information Processing Systems, pp.

1097-1105, 2012.

38. M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and

transferring midlevel image representations using convolutional

neural networks,” in Proc. of IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1717-1724, 2014.

39. M.D. Zeiler and R. Fergus, “Visualizing and understanding

convolutional networks,” in Proc. of European Conference on

Computer Vision, pp. 818-833, 2014.

40. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.

Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L.

Fei-Fei, “ImageNet large scale visual recognition challenge,”

International Journal of Computer Vision, vol. 115, no. 3, pp.

211-252, Dec. 2015.

41. Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear discrete hashing,”

IEEE Trans. on Multimedia, vol. 19, no. 1, pp. 123-135, Jan.

2017.

42. V.E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep

hashing for compact binary codes learning,” in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition, pp.

2475-2483, 2015.

43. Z. Chen and J. Zhou, “Collaborative multiview hashing,” Pattern

Recognition, vol. 75, pp. 149-160, Mar. 2018.

44. G. Lin, C. Shen, D. Suter, and A.V.D. Hengel, “A general

two-step approach to learning-based hashing,” in Proc. of IEEE

International Conference on Computer Vision, pp. 2552-2559,

2013.

45. X. Li, G. Lin, C. Shen, A. Hengel, and A. Dick, “Learning hash

functions using column generation,” in Proc. of International

Conference on Machine Learning, pp. 142-150, 2013.

Weiming Hu received the Ph.D. degree from the

department of computer science and engineering,

Zhejiang University in 1998. From April 1998 to

March 2000, he was a postdoctoral research fellow

with the Institute of Computer Science and

Technology, Peking University. Now he is a professor

in the Institute of Automation, Chinese Academy of Sciences. His

research interests are in visual motion analysis and recognition of

web objectionable information.

Yabo Fan received the B.S. degree in Electronic

Information Science and Technology from Nanjing

University, Jiangsu, China, in 2013, and the Master

degree in Pattern Recognition and Intelligent System

from Institute of Automation, Chinese Academy of

Sciences, Beijing, China, in 2016. His current

research interests mainly focus on deep learning and computer vision

13

problems related to classification and hashing.

Junliang Xing received the B.S. degree in computer

science and mathematics from Xi'an Jiaotong

University, Shaanxi, China, in 2007, and the Ph.D.

degree in computer science from Tsinghua University,

Beijing, China, in 2012. He is currently an assistant

professor with the National Laboratory of Pattern

Recognition, Institute of Automation, Chinese Academy of Sciences,

Beijing, China. His current research interests mainly focus on

computer vision problems related to faces and humans.

Liang Sun received the B.S. degree in Automation

from Hefei University of Technology, Hefei，China,

in 2016. He is a Joint training of graduate students

with University of Science and Technology of China,

Hefei, China and the National Laboratory of Pattern

Recognition, Institute of Automation, Chinese

Academy of Sciences, Beijing, China. His current research interests

mainly focus on deep learning and video captioning.

Zhaoquan Cai received the bachelor degree in

Computer Science and Technology from South China

University of Technology in 1998, and the master

degree in Computer Science and Technology from

Huazhong University of Science and Technology,

Wuhan, China in 2006. He is currently the director of

the Science Research Management Department in Huizhou

University. His current research interests mainly focus on computer

networks, intelligent computing and database.

Stephen Maybank received a BA in Mathematics

from King's college Cambridge in 1976 and a PhD in

computer science from Birkbeck college, University

of London in 1988. Now he is a professor in the

School of Computer Science and Information Systems,

Birkbeck College. His research interests include the

geometry of multiple images, camera calibration, visual surveillance

etc.

