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Abstract Several periods of geomagnetically induced currents (GICs) were detected in the Halfway Bush
substation in Dunedin, South Island, New Zealand, as a result of intense geomagnetic storm activity during 6
to 9 September 2017. Unprecedented data coverage from a unique combination of instrumentation is
analyzed, that is, measurements of GIC on the single-phase bank transformer T4 located within the
substation, nearby magnetic field perturbation measurements, very low frequency (VLF) wideband
measurements detecting the presence of power system harmonics, and high-voltage harmonic distortion
measurements. Two solar wind shocks occurred within 25 hr, generating four distinct periods of GIC. Two
of the GIC events were associated with the arrival of the shocks themselves. These generated large but
short-lived GIC effects that resulted in no observable harmonic generation. Nearby and more distant
magnetometers showed good agreement in measuring these global-scale magnetic field perturbations.
However, two subsequent longer-lasting GIC periods, up to 30 min in duration, generated harmonics
detected by the VLF receiver systems, when GIC levels continuously exceeded 15 A in T4. Nearby and more
distant magnetometers showed differences in their measurements of the magnetic field perturbations at
these times, suggesting the influence of small-scale ionospheric current structures close to Dunedin. VLF
receiver systems picked up harmonics from the substation, up to the 30th harmonic, consistent with
observed high-voltage increases in even harmonic distortion, along with small decreases in odd
harmonic distortion.

1. Introduction

Rapid fluctuations of the Earth’s magnetic field can lead to geomagnetically induced currents (GIC) flowing in
high-voltage transformers and power systems (Pirjola & Boteler, 2017). Fluctuating ionospheric current
systems induce quasi-direct current (DC) in the surface of the Earth, which can enter intoman-made transmis-
sions lines (Molinski, 2002). The effects of GIC on long transmission lines, such as the early telegraph systems,
have been noted since the 1840s (Boteler et al., 1998). Typically the largest GIC levels occur for the fastest rate
of change of the geomagnetic field, with the most extreme changes being seen in the region of the auroral
electrojet (Birkeland, 1908; Cummings & Dessler, 1967). However, the latitude of the electrojet varies depend-
ing on the level of geomagnetic activity (see Oughton et al., 2017, for a comprehensive discussion), with high
geomagnetic storming displacing the electrojet equatorward from geomagnetic high latitudes to midlati-
tudes (Thomson et al., 2011), which would include the southern regions of New Zealand’s South Island
relevant to this study.

During a GIC event unidirectional DC flux adds to the alternating current flux in transformer cores for alter-
nate half cycles potentially leading to peak magnetic flux levels that drive saturation. This can lead to an
increase in the reactive power absorbed by the transformer, potential voltage collapses, and the creation
of significant voltage harmonics into the power system (Girgis & Vedante, 2015). Power systems are
affected by harmonic distortion through tripping of protective relays, such as those on voltage regulation
capacitor banks, which can then result in power outages (Molinski, 2002). Ultimately, the size and impact
of induced currents flowing in power systems are a complex interplay between processes driving

CLILVERD ET AL. 1

Space Weather

RESEARCH ARTICLE
10.1029/2018SW001822

Special Section:
Space Weather Events of 4-10
September 2017

Key Points:
• Analysis of a transformer in New
Zealand shows a sequence of large
geomagnetically induced currents
(GIC) associated with a storm period

• Unique combination of
measurements show primarily even
harmonics generated by transformer
saturation when GIC > 15 A

• During study period only
longer-lasting GIC generated
observable harmonics but limited
GIC impact from impulsive solar
wind shock events

Correspondence to:
M. A. Clilverd,
macl@bas.ac.uk

Citation:
Clilverd, M. A., Rodger, C. J., Brundell,
J. B., Dalzell, M., Martin, I., Mac Manus,
D. H., et al. (2018). Long-lasting
geomagnetically induced currents and
harmonic distortion observed in New
Zealand during the 7–8 September
2017 disturbed period. Space
Weather, 16. https://doi.org/10.1029/
2018SW001822

Received 4 FEB 2018
Accepted 19 MAY 2018
Accepted article online 25 MAY 2018

©2018 Crown copyright. This article is
published with the permission of the
Controller of HMSO and the Queen's
Printer for Scotland.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/157859684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-7388-1529
http://orcid.org/0000-0002-6770-2707
http://orcid.org/0000-0002-3891-6765
http://orcid.org/0000-0002-0772-148X
http://orcid.org/0000-0002-7291-3648
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1542-7390
http://dx.doi.org/10.1029/2018SW001822
http://dx.doi.org/10.1029/2018SW001822
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291542-7390/specialsection/SW-SEPT2017
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291542-7390/specialsection/SW-SEPT2017
mailto:macl@bas.ac.uk
https://doi.org/10.1029/2018SW001822
https://doi.org/10.1029/2018SW001822
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2018SW001822&domain=pdf&date_stamp=2018-06-19


geomagnetic field variations (Pulkkinen et al., 2003), the proximity of the power system to the auroral elec-
trojet latitude, the power system network configuration, and the underlying surface conductivity structures
(e.g., Divett et al., 2017).

High peak current pulses in transformers generate leakage flux (Albertson et al., 1992) rich in harmonics,
increasing winding temperatures through larger eddy current losses in the windings. Heating can also occur
in structural parts of a transformer, with tank wall hot spots subject to temperatures as high as 175 °C
(Kappenman, 1996). Temperature increases within a transformer are influenced by both the magnitude of
the GIC and its duration. Large GIC levels have been observed to flow in power systems as a result of inter-
planetary solar wind magnetic field (IMF) shock events deforming the Earth’s protective geomagnetic field
(Fiori et al., 2014; Rodger et al., 2017). The short duration of the high GIC levels in IMF shock cases would
be expected to cause significantly smaller temperature increases in transformer windings than for longer
duration events, potentially limiting the damage or aging of any transformers exposed to these large currents
(Viljanen et al., 2001).

Two additional geomagnetic drivers of GIC have been identified: substorms and geomagnetic pulsations.
All three drivers involve significant changes in the ground-level magnetic field. Substorms have a peak
occurrence around 00 MLT (magnetic local time) and can have durations of about an hour, while geo-
magnetic pulsations such as ULF Pc5 waves can occur toward the end of a storm period, producing
extended GIC periods (several hours) primarily found in the MLT morning period (Pulkkinen et al.,
2003). GIC levels associated with geomagnetic pulsations tend to be smaller than those associated with
substorms and shocks.

However, the analysis of dissolved gases (DGA) in transformer oils, which can be generated by the break-
down of insulator materials as a result of high operating temperatures, has suggested that there can be
accumulative damage to, or aging of, transformers through repeated exposure to GICs (Albertson et al.,
1992). Regular checks of DGA from 16 transformers in South Africa showed increased gas levels following
two large geomagnetic storms in November 2003 (Gaunt & Coetzee, 2007). Three transformers tripped dur-
ing the storms, and three were taken out of service several months later with high DGA levels. Inspection
showed there was heat damage, mostly to paper insulation, in various parts of the transformers. The
damage was initiated by local overheating causing low temperature thermal degradation as set out in
Mollman and Pahlavanpour (1999).

The currents of a transformer driven into half cycle saturation contain harmonics of various orders, some
even and some odd. Power networks are typically designed to cope with odd harmonics as they are pro-
duced by multiple processes. In contrast, even harmonic events are rare and are uniquely produced by GIC
(Ramírez-Nińo et al., 2016). As such, networks can be stressed by low levels of even harmonics as they are
not normally present (Gish et al., 1995). Boteler et al. (1989) presented measurements of increased harmonic
currents due to GIC in a 1,200-MVA transformer on the British Columbia Hydro 500-kV system. Measurements
were made of the fundamental and second-order harmonics, indicating that during the GIC anticipated odd
harmonics produced were by symmetrical saturation, but some very strong low order even harmonics were
also generated. The tripping of an overcurrent relay in the Swedish power system during the large geomag-
netic storm of October 2003 was triggered by GIC-induced harmonic distortion (Pulkkinen et al., 2005), with
the relay being particularly sensitive to the third harmonic. Harmonic distortion data with a time resolution of
1 hr showed a 1.5% peak in the zero-sequence voltage (sum of the fundamental frequency, third, sixth har-
monic, etc.) at the time of the power outage. Note that there are currently very few events reported with
simultaneous harmonic distortion and GIC measurements.

Enhanced harmonics from nearby power systems have previously been observed with a very low frequency
(VLF) receiver during the sudden commencement of a geomagnetic storm as observed in Canada (Hayashi
et al., 1978). Enhanced GIC levels giving rise to near saturation of transformer core material were postulated,
although no power network current measurements were available at the time. Prior to the storm only odd
harmonics were observed, however, following the sudden commencement intense even harmonics up to
720 Hz (twelfth harmonic) appeared as well as some enhancement of the third and ninth harmonics (180
and 520 Hz). Short-lived (tens of seconds) periods with enhanced harmonic amplitude were observed over
the following 5 min as damped magnetic field oscillations occurred. The highest even harmonic excited
was the eighteenth (1,080 Hz).
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Clilverd et al. (2010) correlated the occurrence rate of ~1-s VLF noise bursts with GIC magnitude for a geo-
magnetic storm in May 2005. The noise bursts observed in northern Finland were observed in the 20- to
25-kHz range and were thought to be generated by nearby electrical arcing caused by the geomagnetic
storm. Corroborating wideband VLF data (0.1–30 kHz) were not available at the time, and the correlation
with GIC magnitude was from the distant location of Scotland, which merely indicated that the storm was
capable of creating GIC. Although power line harmonic radiation has been observed extensively by VLF
receivers on the ground and in space (Němec et al., 2006; Yearby et al., 1983), very few VLF wideband
spectral observations of GIC transformer saturation effects associated with individual space weather events
have been published.

In this study we present observations from the Halfway Bush (HWB) substation in Dunedin, South Island,
New Zealand, during 2 days of intense geomagnetic storm activity in September 2017. We combine and
interpret a series of measurements made with high time resolution, including GIC measurements made
within the substation (Mac Manus et al., 2017), magnetometer measurements made very close to Dunedin,
broadband VLF observations made at the substation, and harmonic distortion measurements made on a
110-kV high-voltage line linked to HWB single-phase bank transformer T4. We investigate the impact of
short-lived sudden commencement storm effects, along with longer-lasting substorm-like events that
produced more significant responses within the substation. We identify GIC levels that produced harmonic
distortion, identify the components present, and describe the geomagnetic perturbation characteristics.
We suggest that this is an unusually complete set of space weather observations, providing direct evidence
of GIC saturation to a transformer, along with measurements of the GIC and resultant harmonics.

2. Experimental Data Sets

The 4–11 September 2017 interval was one of the most flare-productive periods of solar cycle 24. Two
active regions produced more than 15 M-class flares, and 3 X-class. A coronal mass ejection associated
with a 6 September X9 flare produced severe geomagnetic storming on 7 and 8 September. Two solar
wind shock events impacted the magnetosphere, causing rapid fluctuations of the geomagnetic field.
Shocks were identified by Solar and Heliospheric Observatory at 23:13 UT on 6 September 2017 and
22:38 UT on 7 September 2017 (http://umtof.umd.edu/pm/). With solar wind speeds of 600–700 km/s
the propagation time for the shocks to reach the magnetosphere is in the order of ~30 min. Figure 1 sum-
marizes the solar wind and geomagnetic conditions for 6 to 10 September 2017 using the DSCOVR mea-
surements made at L1, and ground-based geomagnetic activity measurements. An indication of the levels
of geomagnetic substorm activity is given by the Wp index (Nosé et al., 2012), shown in the lower panel of
this figure.

The arrival of the first shock late on 6 September can be seen in Figure 1 as a sudden increase in all para-
meters. This includes IMF Bz, suggesting that the initial disturbance is a sudden impulse rather than a sud-
den storm commencement and would therefore be only weakly geoeffective as a result (Joselyn &
Tsurutani, 1990). During the first few hours of 7 September a recovery ensues. The second shock is seen
at ~23 UT on 7 September, with solar wind speeds exceeding 700 km/s and a very strongly negative IMF
Bz. Such shocks are known as sudden storm commencements (SSCs) and are usually geoeffective (Joselyn
& Tsurutani, 1990). Finally, at ~12 UT on 8 September another strongly negative Bz period is seen, and the
solar wind speed remains high (>700 km/s). A steady recovery occurs in all parameters throughout the
remainder of 8 September.

2.1. New Zealand GIC Observations

Measurements of transformer DC neutral current have been made at the HWB substation in Dunedin by
Transpower New Zealand Limited since an expansion of its monitoring network in the South Island in 2013
(Mac Manus et al., 2017). The substation includes the 50-Hz single-phase bank transformer T4, which was
notably damaged by GIC effects on 6 November 2001 (Béland & Small, 2004; Marshall et al., 2012). Neutral
currents were monitored using Hall effect current transducers (Liaisons Electroniques-Mécaniques [LEM]
model LT 505-S) with typical sampling during a GIC event of 4 s. A detailed description of this data set, along
with the corrections to remove stray Earth return currents, was presented by Mac Manus et al. (2017). The
HWB T4 GIC observations reported in this study use the corrected data set.
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Total harmonic distortion (THD) measurements were made at circuit breaker CB532, which is connected to
HWB T4 and T6 on the 110-kV bus. The percentage of THD for odd and even harmonics on each of the three
phases were sampled every 10 min.

2.2. Magnetometers

The proximity of the auroral electrojet is a key factor in the characteristics of the induced currents experi-
enced by power systems (Pulkkinen et al., 2003). Figure 2 shows an image from a Suomi National Polar-
orbiting Partnership satellite overpass of New Zealand from 13:36:13 to 13:53:32 UT on 8 September 2017.
The map indicates the location of Dunedin in New Zealand and also shows bright auroral features just south
of the South Island. The position of the bright auroral features at ~60°S geomagnetic latitude (L = 4) in the
figure are indicative of the location of the auroral electrojet (Wallis et al., 1976) where its proximity to
Dunedin would be anticipated as part of a severe geomagnetic storm period, which displaces the electrojet
equatorward (Oughton et al., 2017). Figure 2 also shows the location of the Eyrewell (EYR) magnetometer
operated by GNS Science, New Zealand, which is part of INTERMAGNET (http://www.intermagnet.org/).
EYR is ~300 km from Dunedin. A detailed description of the construction of EYR 1-min averages of the hor-
izontal component of the magnetic field is given in Mac Manus et al. (2017), and the data are included in this
study to relate the magnetometer measurements for the current time period to previous studies in this
region (e.g., Mac Manus et al., 2017; Rodger et al., 2017).

Figure 1. A summary plot of the solar wind and geomagnetic conditions during the disturbed period in September 2017.
DSCOVR solar wind speed Vx, and interplanetary magnetic field components (Btot and Bz) are shown in the upper two
panels. Geomagnetic activity index Dst and substorm activity index Wp are shown in the lower two panels. Vertical dotted
blue lines indicate the times of interplanetary shocks reported by the Solar and Heliospheric Observatory spacecraft.
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In order to compare the HWB T4 GIC observations to changing magnetic
field properties associated with the nearby auroral electrojet during the
severe geomagnetic storm of 7/8 September 2017, we use local mag-
netic field measurements made at Swampy Summit close to Dunedin.
The locations of the HWB substation (yellow star), and the Swampy
Summit (University of Otago) measurement site (blue square) are shown
in Figure 3, plotted on a map of the local Dunedin region. The magnet-
ometer at Swampy Summit is a Bartington three-axis magnetic field sen-
sor (MAG-03MSESL70). There is a 7-km separation between the HWB
substation and the magnetometer. One-minute average magnetic field
component values were calculated in a similar way to those at EYR.

Also shown in Figure 3 is the location of a magnetometer at
Middlemarch (purple square), 40 km from the HWB substation.
The three-axial fluxgate-type magnetometer is part to the CRUX
array (http://www1.osakac.ac.jp/crux/) operated by Osaka Electro-
Communication University, Japan. It was originally installed in March
2011 with 1-s sampling. The system has been described in Obana
et al. (2015).

2.3. VLF Observations

Broadband VLF measurements over the frequency range 0–48 kHz were
made at the HWB substation site using two orthogonal vertical mag-
netic field loop antennas connected to a computer via a sound card as
described in Clilverd et al. (2009). Although there were strong local sig-
nals from the substation, the gain of the system was set to not overload
the aerial preamplifier or the sound card input. The time resolution of
the logged data was 10 s, with 46-Hz bins (48-kHz sampling using a
1,024-point Fast Fourier Transform (FFT)). A similar broadband VLF sys-
temwas also operating at Swampy Summit 7 km away to the north, very
close to the site of the Swampy magnetometer. At the Swampy Summit
location spectra with 0- to 48-kHz range, 10-s sampling, and 92-Hz reso-
lution were being logged. The two orthogonal VLF aerials at Swampy are
orientated in north-south and east-west directions.

3. Magnetic Field and GIC Perturbations

The rate of change of the horizontal magnetic field H component
(H0 = dH/dt) at EYR and Middlemarch for 6 to 9 September 2017 are
shown in the upper two panels of Figure 4 (EYR on the top and
Middlemarch below). The lower two panels show the Swampy Summit
magnetometer H0 and HWB T4 GIC for the same period. Four time peri-
ods are marked by red lines, based on the times of four distinct peaks in
the rate of change of the H component of the EYR data. The times of the
peaks are shown in each panel as vertical red lines and marked 1, 2, 3,
and 4 in sequence. These four lines are at the following times: (1)
23:48 UT 6 September 2017, (2) 08:56 UT 7 September 2017, (3)
23:02 UT 7 September 2017, and (4) 12:50 UT 8 September 2017.

The four numbered events in EYR H0 (upper-middle panel) correspond
well with features in either the solar wind or geomagnetic index data,
described in section 2. Events 1 and 3 occur at the times of the two solar
wind shocks arriving at Earth, with the second one generating signifi-
cantly larger rates of change at EYR, Middlemarch, and Swampy
Summit than the first (~35 nT/min cf. ~7 nT/min). Following both events,
the disturbances gradually decline over a period of about 10 hr (the grid

Figure 2. Image provided by a Suomi National Polar-orbiting Partnership
satellite overpass of New Zealand, very shortly after the period of peak GIC
on 8 September 2017 in the local time early morning. The image was
generated by the Near-Constant Contrast product made by the Day/Night
Band of the VIIRS sensor. The VIIRS image granules shown here span from
13:36:13 to 13:53:32 UT, with the spacecraft moving north to south. The
locations of Eyrewell and Dunedin, South Island, are indicated by squares.
Contours of constant geomagnetic latitude are shown as solid, dash-dotted,
and dotted lines. VIIRS = Visible Infrared Imaging Radiometer Suite.

Figure 3. Map of the Dunedin region showing the relative locations of the
Halfway Bush (HWB) substation as a yellow star, and the University of
Otago research station in the hills of Dunedin at Swampy Summit (blue
square). In addition, the Osaka University magnetometer at Middlemarch
~37 km from Swampy is also plotted (magenta square). Note that the overall
location of Dunedin is also shown in Figure 2.
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size is 12 hr in the panels). Event 2 is associated with a small substorm
following a period of intermittent IMF Bz southward and produces GIC
at T4 that are insignificant enough to not be considered further in this
study (i.e., ~6 A). Event 4 occurs shortly after the strong negative devia-
tion of IMF Bz at ~12 UT on 8 September, generating EYR H0 rates of
change of 26 nT/min, and 29 nT/min at Middlemarch.

The Swampy Summit magnetometer data are shown in the lower left-
hand panel of Figure 4. Ostensibly, the Swampy H0 look very similar to
those from EYR, particularly for events 1, 2, and 3. However, event 4
has a much higher H0 (71 nT/min cf. 26 nT/min), and the peak also occurs
slightly earlier than at that of EYR (i.e., 9 min beforehand). These obser-
vations suggest that event 4 just after 12 UT on 8 September 2017 has
localized magnetic field fluctuations closer to Dunedin than Eyrewell,
which is consistent with the proximity of the auroral electrojet to
Dunedin as identified in Figure 2. This is also consistent with the power
grid modeling of Butala et al. (2017), who found that the fidelity
between measured GIC levels and modeling using magnetometer
proxies is a function of the distance between the two measurements,
with shorter separation distances providing more successful modeling
outcomes. However, Middlemarch shows a similar peak H0 to EYR
(29 nT/min cf. 26 nT/m), which is much lower than the Swampy
Summit 71 nT/min despite there being only 37 km between the two
sites. These observations clearly indicate significant small-scale features
in the magnetic field perturbations close to Dunedin, which will be
explored in more detail in Figure 5.

The HWB T4 GIC levels show similar characteristics to the Swampy H0,
with comparatively small induced current values for events 1 and 2, high
levels for event 3, and even higher levels for event 4 (up to ~49 A).
Taking into account the differences in the three magnetometer sites,
these results suggest that event 4 generates large localized fluctuations
of the magnetic field and induces large localized currents at the substa-
tion. The magnitude of the GIC is similar to those shown for a geomag-
netic storm on 2 October 2013 (see Figure 7; Mac Manus et al., 2017),
and about half of the peak GIC value thought to have damaged the
HWB T4 transformer during a short-duration impulse on 6 November
2001 (Rodger et al., 2017). Following event 4, GIC effects continue to
influence T4 for more than 6 hr, gradually subsiding to levels <5 A.

In Figure 5 we concentrate on the two largest GIC events—event 3 and
4—showing EYR, Swampy Summit, and HWB T4 data, along with the
Wp index for the same periods. Here the left-hand column shows
observations around event 3 (22:00 UT on 7 September to 03:30 UT
on 8 September 2017) and the right-hand column shows the observa-
tions around event 4 (10:00 to 15:00 UT on 8 September 2017). As in
the previous figure, red lines identify the times of peak H0 at EYR.
Event 3 is triggered by the L1 solar wind shock at 22:38 UT, which then
arrives at Earth at 23:02 UT. The levels of H0 at EYR and Swampy are
similar (~35 nT/min) and occur at the same time, confirming a large-
scale perturbation of the magnetosphere as shown by the Dst variation
in Figure 1. The ~34-A GIC at T4 lasts only a few minutes, although GIC
resulting from further magnetic perturbations continue for several
hours at lower levels. From 01:00 to 02:00 UT T4 shows a longer period
of enhanced GIC lasting ~45 min, exceeding >15 A for about 5 min at
about 01:45 UT. This response would not be predicted through

Figure 4. Magnetic field observations from Eyrewell (EYR, first panel),
Middlemarch and Swampy Summit (second and third panels), and Halfway
Bush (HWB) transformer T4 geomagnetically induced current (GIC)
magnitude measurements (lower panel) across the 6–9 September 2017
geomagnetically disturbed period. Four time periods are marked by red
lines, based on the times of four distinct peaks in the rate of change of the H
component of the EYR data. These times are shown in each panel.
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inspection of the equivalent EYR magnetometer H0 data but can be seen as an extended period of relatively
high levels of H0 at Swampy Summit (>10 nT/min). This enhancement of GIC, occurring about 2 to 3 hr after
the arrival of the solar wind shock at 23:02 UT, is consistent with the effects of a geomagnetic substorm
(Pulkkinen et al., 2003) as indicated by the Wp index shown in the lower panel. However, the
enhancement is probably only noticeable in the Swampy Summit magnetometer H0 data because of

Figure 5. Detailed examination of the magnetic field rate of change and geomagnetically induced current (GIC) variations
during the large events 3 (left-hand column) and 4 (right-hand column) identified in Figure 4. Upper panels: Eyrewell
(EYR) H0; middle panels: Swampy Summit H’ and Halfway Bush T4 GIC magnitude; lower panel: Wp index. Red lines indicate
the times of peaks in H0 at EYR. HWB = Halfway Bush.
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Dunedin’s proximity to the auroral electrojet, which had been displaced equatorward as a result of the prior
shock arrival and the associated negative IMF Bz.

The right-hand column of Figure 5 shows observations made in the time period around event 4 (12:00 to
13:00 UT 8 September 2017). This event is driven by severe geomagnetic storming as indicated by strongly
negative IMF Bz and high solar wind speed shown in Figure 1. During this event the transformer T4 experi-
enced long-lasting GIC, with >15 A occurring for ~30 min. The timing of the peak current shows good coin-
cidence with the Swampy Summit magnetometer H0, but less so with the more distant EYR magnetometer
where the peak in H0 is observed ~15 min later. The time difference in peak H0 between EYR and Swampy
Summit appears to stem from differences in the magnitude of short-term variations during the substorm
period; that is, EYR shows four peaks in H0 increasing in magnitude between 12:00 and 13:00 UT, whereas
Swampy Summit shows peaks in H0 at the same times but with the third of the four (at ~12:45 UT) being
the largest. This variation in H0 responses could be due to the equatorwardmovement of the electrojet during
the substorm, with the distance from EYR decreasing during the substorm time period, and the electrojet
passing overhead of Dunedin close to the time of the third peak (~12:45 UT). In order to test this idea,

Figure 6. Wideband very low frequency observations from beside the Halfway Bush (HWB) substation and at Swampy
Summit north-south aerial. Event 3 is shown in the left column and event 4 is shown in the right column. Periods at
about 01:45 UT, and 12:30 UT show evidence of harmonic distortion produced during the high current, long-lasting
geomagnetically induced current (GIC) events. HWB GIC data are plotted in the lower panel in order to provide easy
comparison with the very low frequency data. Vertical red lines indicate times of large H0 at Eyrewell.
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Pearson correlation coefficients were calculated between GIC at HWB
and the magnetic field observations. The calculations were performed
for event 3 and event 4 separately, using 1-min averaged values. The sta-
tistical significance of the Pearson correlation coefficient was examined
via the p value (Martin, 2012). For small p values (p < 0.05) the null
hypothesis may be rejected and the correlation assumed to be statisti-
cally significant. For event 3 data were taken from 22:00 to 00:30 UT,
7/8 September 2017. The Pearson correlation coefficient for HWB-EYR
was r = 0.59 (p = 10�15), while for HWB-Swampy Summit r = 0.60
(p = 10�16). These near-identical results indicate a large-scale perturba-
tion to the magnetic field, which generated similar effects over hundreds
of kilometers. For event 4 data were taken from 10:00 to 15:00 UT, 8
September 2017. The Pearson correlation coefficient for HWB-EYR was
r = 0.38 (p = 10�11), while for HWB-Swampy Summit r = 0.55
(p = 10�25). These results are consistent with small-scale structures being
present and a decrease in correlation with increasing distance from HWB.
In all of these cases the p values are very close to zero, indicating statisti-
cally significant correlations. The Fisher Z test (Preacher, 2002) was also
undertaken in order to test whether the differences between the correla-
tion coefficients found using data from the two different magnetometer
sites in event 3 are significant, and similarly for event 4. The difference
between two independent correlation coefficients are considered signif-
icant if z > modulus (1.96). For event 3, z = �0.133 (for 151 data points);
that is, there is no significant difference between the two correlation
coefficients (0.59 and 0.6). While for the event 4, z = �2.66 (for 301 data
points); that is, the difference between the correlation coefficients (0.38
and 0.55) is significant. This test confirms that the decrease in correlation
with increasing distance from HWB for event 4 is significant.

Unlike the GIC generated by the arrival at Earth of the two solar wind
shocks, event 4 shows a gradual enhancement in GIC levels over about
15 min. This enhancement is probably caused by expanding localized
ionospheric current systems at ~110 km associated with substorm activ-
ity (Pulkkinen et al., 2003) and is coincident with the substorm event that
began just after 12 UT as shown by the Wp index in the lower panel. The

event timing of 12–13 UT (01–02 MLT) is consistent with substorm occurrence close to local midnight MLT.
This event is the most extreme and long lasting of the GIC recorded at the T4 transformer during the 7/8
September 2017 geomagnetic disturbances.

4. Harmonic Distortion Observations

The broadband VLF magnetic field observations undertaken at the HWB substation showed two periods of
enhanced harmonic intensity during the geomagnetic disturbances. The same periods were also detected
by a similar broadband VLF system operating at Swampy Summit 7 km away. The observations are shown in
Figure 6. The two upper panels show the HWB wideband frequency-time data taken around event 3 on the
left (22:00 to 03:30 UT on 7/8 September), and around event 4 on the right (10:00 to 15:00 UT on 8
September). The frequency range is 0–5 kHz, with a frequency resolution of 46 Hz, and 10-s sampling. The
color scale represents signal intensity relative to an arbitrary level. As in our previous figures the red vertical
lines indicate the times of peak H0 at EYR. The middle panels show the same data from Swampy Summit, but
at 92-Hz resolution. Many horizontal lines can be seen in all panels. These represent harmonics generated by
localized loads on the substation and include three intense pulses at ~1 kHz, which are most likely due to a
1,050-Hz ripple injection system used to control domestic hot water heating systems in the Dunedin area
(01:30, 11:00, and 11:15 UT on 8 September). Ripple control in Dunedin was previously described by
Werner et al. (2005). However, at 01:45 and 12:30 UT enhancements of harmonics up to 1.6 kHz are seen at
HWB, and up to 1 kHz at Swampy Summit. These times are coincident with high GIC levels shown in the

Figure 7. (top panel) Wideband very low frequency observations from the
Halfway Bush substation on 8 September 2017, showing the mean ampli-
tude for each frequency bin before (11:45–12:15 UT, blue line) and during
(12:15–12:45 UT, red line) the geomagnetically induced current-induced
enhanced harmonics period. Increases in harmonics can be seen up to
~1,600 Hz. (middle panel) The difference in received amplitude before and
during the geomagnetically induced current > 15 A period. Substantial
increases are seen at several frequencies, notably 300, 600, 950, 1,200, 1,350,
and 1,500 Hz, while some harmonic frequencies show little change (i.e., 750
and 1,250 Hz). (lower panel) The average intensity of the wideband signal in
the range 0–2000 Hz, showing an increase from 12:15 to 12:45 UT.
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lower panels. At Swampy Summit the enhanced harmonics were detected in the directional north-south
aerial, while nothing was seen in the equivalent east-west aerial. As Swampy Summit is located almost
directly north of the HWB substation this observation is regarded as confirmation that the harmonics were
detected directly from the substation rather than via transmission through nearby power lines.

The enhanced harmonics observed are closely associated with time periods when transformer T4 experi-
enced greater than ~15 A GIC. The duration of the two periods also match the length of time that the GIC
exceeds 15 A, that is, 30 min during event 4, and 5 min during the substorm that followed event 3.
Notably, event 3 itself, which generated ~34 A at 23:00 UT on 7 September shows no evidence of any
enhanced harmonics, which is presumably due to the short-lived nature of the shock-induced magnetic
field perturbations.

A more detailed analysis of the 8 September 2017 wideband data is shown in Figure 7. The upper panel
shows the average amplitude of each 46-Hz frequency bin in the range 0–2,500 Hz for the 30min period prior
to the harmonics being present in event 4 (11:45–12:15 UT) compared with the 30-min period where harmo-
nics were present (12:15–12:45 UT). The panel shows that during event 4 the enhanced harmonics spanned
50–1,600 Hz. The middle panel shows the difference between the two lines presented in the upper panel. Six
harmonics that were significantly enhanced during the GIC period are indicated by red vertical dashed lines,
that is, the 300- (sixth), 600- (twelfth), 950- (nineteenth), 1,200- (24th), 1,350- (27th), and 1,500-Hz (thirtieth)
harmonics. Some harmonics were already present prior to event 4; however, there is little evidence of even
harmonics in the VLF spectra, as expected. The harmonics already present included the 750-Hz (fifteenth)
harmonic, which showed no change at the time of the enhanced GIC. However, harmonics in the range
950–1,250 Hz were already present and were enhanced during the GIC period. These observations are con-
sistent with previous work (Hayashi et al., 1978) showing the appearance of strong even harmonics (in our
case numbers 6, 12, 24, and 30), and the enhancement of some already existing odd harmonics (numbers
19 and 27 in this example) during GIC events.

Figure 8. (upper panel) A single line diagram of the Halfway Bush (HWB) substation high-voltage connections, including
the circuit breaker CB532 on a 110-kV connection to Palmserston. (lower panels) Total harmonic distortion (THD)
measurements made at HWB on a 110-kV line across the 6–9 September 2017 geomagnetically disturbed period. The
percentage of THD for odd harmonics (left panel) and even harmonics (right panel) are shown separately. The same four
time periods defined from Figure 4 are also indicated. Data representing the red, yellow, and blue phases (denoted as A, B,
and C, respectively) are shown.
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The lower panel of Figure 7 shows the VLF signal intensity from 0 to 2,000 Hz, averaged with 1-min resolution.
The panel shows an increase in intensity above typical background levels, from 12:15 to 12:45 UT, consistent
with the T4 GIC levels exceeding 15 A and nonlinear saturation beginning to occur. The temporal variation in
0–2,000 Hz average intensity is also consistent with the variation in T4 GIC levels shown in Figure 5, notably
the two peaks that occur at ~12:30 and ~12:45 UT. This suggests a close correlation between the levels of GIC
in the substation and the <2 kHz VLF intensity, with the VLF observations also providing harmonic informa-
tion at the same time.

The strong north-south directionality of the harmonics detected at Swampy Summit, 7 km due north of HWB,
suggests that the signals originate from the local distribution network. Harmonic currents can flow in either
the transmission system or the local distribution network. Transmission line relative impedance defines,
which will happen, particularly in the case of resonant frequencies, which can experience high impedance
for certain line lengths. As a result the harmonic current is forced into the on-site distribution network
(Carroll et al., 1993). The VLF system appears to have the potential to determine, which harmonics are
affected in this way, and the large increase in the amplitude of the 1,350 Hz (27th) harmonic suggests that
it is a local resonant frequency.

It is possible to relate the VLF observations of enhanced harmonics from the HWB substation with THD mea-
surements of the 110-kV bus connected to HWB T4, made at circuit breaker CB532 connected to Palmerston.
This is depicted in the HWB single line diagram shown in the upper panel of Figure 8, which shows the high-
voltage connections at the substation. The lower panels of Figure 8 shows the odd THD (left panel) and the
even THD (right panel) for the disturbance period from 12:00 UT, 6 September 2017 to 00:00 UT, 10
September 2017. As before, red vertical lines indicate the event times of peak H0 at EYR. The three compo-
nents of the three-phase electrical power system THD voltage are shown, following the standard naming con-
vention of red, yellow, and blue phases, each alternating current carried by a separate conductor but offset
from each other by one third of a cycle (here denoted as A, B, and C, respectively). The odd harmonics show a
diurnal variation around 1% distortion, with smaller levels of variability occurring particularly during the day-
time in Dunedin (00 UT ± 6 hr). Small percentage perturbations of the order of 0.1–0.2% occur for the first,

Figure 9. Total harmonic distortion (THD) measurements made at Halfway Bush (HWB) for the voltage on a 110-kV line
during the same time periods shown in Figures 4 and 5. The average THD percentage for odd harmonics (upper panels)
and even harmonics (lower panels) are shown separately. Data representing the red, yellow, and blue phases (denoted as A,
B, and C, respectively) are shown. Vertical red lines indicate times of large H0 at Eyrewell.
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third, and fourth GIC events. Even harmonic THD is rarely above a level of 0.05% but does show peaks
that coincide with the third event, the substorm following 3 hr after the third event (about 01:45 UT,
8 September), and very obviously for the fourth event. The largest even THD recorded was ~0.9%, while
the odd THD at the same time was ~0.8%, which should be compared against the steady state upper THD
recommendation of 2.5% for 69–161 kV (IEEE Std 519–2014, 2014).

Detailed even and odd THD changes during events 3 and 4 (with the same time ranges as in Figures 4 and 5)
are shown in Figure 9. The upper panels show the odd harmonic distortion, while the lower panels show the
even harmonic distortion percentages. The red vertical lines indicate the same timing as in previous figures.
Event 3 at 23:00 UT on 7 September shows little clear association with any distortion, odd or even, while the
substorm at 01:45 UT leads to a decrease in odd distortion of ~0.1% at the same time as an increase to 0.4% in
even THD. A similar decrease/increase response can be seen for event 4 at 12:30 UT. Odd THD decreased by
~0.3%, while the even THD increased to as much as ~0.9%. The duration of the elevated even THD during
event 4 is 30–40 min (with 10-min sampling) over the time period 12:20 to 12:50 UT, which agrees well with
the timing of the VLF broadband observations of harmonics, shown earlier.

The observations during this period demonstrate evidence of transformer stress (through generated harmo-
nics) linked to the magnitude of GIC due to changes in the local magnetic field. The data presented in this
study are consistent with existing indirect evidence that geomagnetic storms impact electrical network per-
formance in New Zealand. A study examining ~4 years of New Zealand real-time wholesale electricity prices
and geomagnetic disturbances concluded that the “standard deviation in the nodal price, a measure of
energy losses and transmission constraints, is more likely to be large when the GIC proxy is large” (Forbes
& St. Cyr, 2008). The study reported that real-time market conditions for power grids in multiple locations
around the world were statistically related to geomagnetic disturbances (a GIC proxy) and that this effect
was strongly seen in the New Zealand data.

5. Summary and Discussion

In this study we have analyzed the effects of a geomagnetically disturbed period on the HWB substation
located in Dunedin, New Zealand. There was unprecedented data coverage from a unique set of instruments,
that is, measurements of GIC effects on the T4 transformer housed within HWB, magnetic fieldmeasurements
from a magnetometer located only 7 km from HWB, VLF wideband measurements at, and near, HWB detect-
ing the presence of power system harmonics, and voltage distortion measurements made on a 110-kV line
circuit breaker connected to the T4 transformer.

During 6 and 7 September 2017 two interplanetary solar wind shocks occurred, generating four distinct per-
iods of GIC. The two shock events produced very different levels of disturbance, probably due to the orienta-
tion of the vertical component of the IMF, Bz. Both shocks were closely associated in time with short-lived
spikes in GIC, and were followed by declining effects over 6–10 hr consistent with the effects of geomagnetic
pulsations, but neither shock generated any observable harmonics at HWB, indicating that the substation
transformers were not significantly stressed by the events, even though T4 reported a short-duration peak
GIC of 34 A during the second shock event.

However, two periods of substorm activity generated longer-lasting GIC in T4, with harmonic distortion
detected from the substation when GIC levels exceeded about 15 A. The observations indicated that
half-wave saturation of the transformer occurred continuously for 30min during themost effective substorm.
VLF receiver systems picked up harmonics up to the thirtieth harmonic, with only specific harmonics
enhanced possibly due to in-line impedance resonances in the transmission system. The VLF harmonic obser-
vations were consistent with increases in even harmonic THD detected on a connecting 110-kV line, which
occurred coincidentally with small decreases in odd harmonic THD.

The substorm periods showed better agreement between T4 GIC variations and nearby Swampy Summit
magnetometer data, than for the more distant Middlemarch and EYR magnetometer data. This suggests
that small-scale ionospheric currents were important in the substation response to geomagnetic activity
levels. However, for the global-scale solar wind shock events, data from all three magnetometer sites
(Swampy Summit, Middlemarch, and EYR) showed similar temporal behavior to the relative variations of
the HWB T4 GIC.
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