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ABSTRACT

Complex interacting systems permeate the modern world. Many diverse nat-
ural, social and human made systems—ranging from food webs to human contact
networks, to the Internet—can be studied in the context of network science. This the-
sis is a compendium of research in applied network science, investigating structural
and dynamical patterns behind the formation of networks and processes supported
on them.

Trophic food webs—networks of who eats whom in an ecosystem—have fas-
cinated network scientists since data from field observations of the gut content of
species first became available. The empirical patterns in food webs reveal a rich
hierarchy of feeding patterns. We study how global structure of food webs relates to
species immediate diet over a range of 46 different ecosystems. Our finding suggest
that food webs fall broadly into two different families based on the extent of species
tendency towards omnivory.

Drawing inspiration from food webs, we investigate how trophic networks
support spreading processes on them. We find that the interplay of dynamics and
network structure determines the extent and duration of contagion. We uncover two
distinct modes of operation—short-lived outbreaks with high incidence and endemic
infections. These results could be important for understanding spreading phenomena
such as epidemics, rumours, shocks to ecosystems and neuronal avalanches.

Finally, we study the emergence of structural order in random network mod-
els. Random networks serve as null models to empirical networks to help uncover
significant non-random patterns but are also interesting to study in their own right.
We study the effect of triadic ties in delaying the formation of extensive giant compo-
nents—connected components taking over the majority of the network. Our results
show that, depending on the network formation process, order in the form of a giant
component can emerge even with a significant number of triadic ties.

xii



CHAPTER 1

INTRODUCTION

We live in a connected world. Networks of nodes, representing agents, elements or
entities, interacting via a set of connections or links are ubiquitous in nature, society
and artificial systems. Ecosystems are often characterized by the trophic networks of
food webs—feeding relationships between species [201]. Chemical reactions between
molecules in cells lead to the study of interactomes—networks describing interaction
relationships, typically between proteins [254]. A typical human brain consists of
10" neurons connected together via 10'* synapses [80, [I17] resulting in a large
network over which neural activity propagates. People are connected socially via
various kinds of relationships—social friendships in real life [255] and on social media
such as Facebook [155] and Twitter [146], collaborations in science [I80], physical
contact based on the proximity of interactions which leads to the study of human
contact networks in epidemiology of infectious disease [72, [141], and many others.
Power grids consist of generators, transformers and substations all linked together
with high-voltage transmission lines [5] while the Internet is made up of computers
connected to each other [194]. The ubiquity of networked systems has lead to the
rise of network science—the study of the formation, structure and function of these
systems.

With the availability of data and increased computational power, network
science has emerged over the past two decades as the de facto framework of studying
complex, interacting systems. The main strength of the network science approach is
its ability to abstract a variety of very diverse systems into the language of networks.
The tools developed for studying generic networks are then readily applied to net-

works arising from the observation of empirical systems. Techniques ranging from
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measurements of various network properties to building stochastic network models
to explain the formation of real world systems have resulted in an unprecedented
insight into the organization and function of complex networked systems [42].

In this thesis we study various structural and dynamical properties of networks—
both with a view to studying empirical networks as well as random network models
in their own right. The thesis is laid out as follows.

Chapter [2] introduces the minimum background information on network sci-
ence to follow the arguments developed in later chapters. We focus on defining the
most widely used network types and structural network properties in modelling real
world systems. We also introduce the notion of random networks and their im-
portance as null models of empirical networks. We motivate the study of random
network models in their own right via highlighting some emergent properties (e.g.
vanishing clustering coefficient, formation of a giant connected component) in two
popular random network models—the Erdés-Rényi random graph and the configu-
ration model. We close our discussion by mentioning a number of other widely used
random network models that are beyond the scope of this thesis.

In Chapter[3|we study a particular example of a networked system—ecological
food webs. Food webs, viewed as networks, are an abstract representation of who eats
whom in an ecosystem. Theoretical ecologists have been fascinated by the intricate,
non-random patterns observed in the structure of food webs as reconstructed by field
ecologists by examining species gut content or by direct observation of animal diet.
This interest has resulted in a number of theoretical models of food web formation
from simple rules to explain the observed structured in nature, however the existing
models cannot fully account for all of the patterns. In this chapter we study the
structure of 46 empirical food webs. We focus on the characterization of food webs
based on local preying patterns formalized in the concept of network motifs. We
show that almost all food webs fall into one of two families distinguished by the
overall extent of omnivory, the tendency of species to consume prey from multiple
hierarchical levels. We formulate a new food web model—the generalized preferential
preying model—that can successfully produce artificial food webs belonging to either
family and can replicate the structure of empirical food webs remarkably well.

In Chapter [ we move beyond structural analysis of networks by considering
dynamical processes spreading through a network. Inspired by the model for food
webs, we study how an initial pulse of activity spreads through these types of trophic
networks. We study this under two paradigmatic processes—a complex contagion
process inspired by epidemiology and a neural network process. Our results based on

numerical simulations uncover that the topology of the network can have a significant
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qualitative impact on the spreading properties of both processes. The underlying
topology can determine whether the pulse of activity will percolate through the entire
network or remain confined to a small subset of nodes, and also whether the activity
will quickly die out or become endemic and endure indefinitely. These results could
help our understanding of many spreading processes naturally supported on top
of network topologies such as epidemics, rumours, shocks to ecosystems, neuronal
avalanches and many others.

Finally, in Chapter [5| we combine both structure and dynamics of networks
by studying how the structure of random networks changes as they undergo random
link dynamics. A large number of empirical networks, particularly human social net-
works, exhibit a large number of triangles or triadic ties which confirms the common
belief that a person’s friends are likely to be friends with each other. This observa-
tion has spurred a large interest in studying random network models that can create
a significant number of triangles. Despite the plethora of theoretical research, some
questions about such highly clustered networks remain evasive due do the edge inde-
pendence assumption being violated and techniques developed for networks without
triangles or small loops in general do not apply. In this chapter we explore simple
relaxation dynamics of highly clustered networks to an unclustered (uncorrelated)
equilibrium state under two link rewiring schemes. We study the evolution of the
clustering coefficient and the presence of a giant connected component. We find that
under both dynamics a giant connected component emerges via a continuous phase
transition at a different critical point than in equilibrium networks. Additionally,
we derive time evolution equations for various general network properties. Our re-
sults could help us understand the properties of random network ensembles better,

specifically when dealing with highly unusual samples.



CHAPTER 2

BACKGROUND

Network science has exploded in popularity in the last couple of decades. Networks
are used to describe diverse complex, interacting systems, from power grids to hu-
man brain networks, and network science has become a paradigmatic framework of
analysing complex datasets that admit a network interpretation.

Despite the recent peak of interest in network science, driven by the avail-
ability of data and increased computational power, the roots of modern network
science date back to the early 18th century and Euler who studied the famous Seven
Bridges of Kénigsberg problem [91] (see Biggs et al. [40] for a reprinted and trans-
lated version). This was the beginning of graph theory—the mathematical study of
the properties of pairwise relationships of network structures.

While graph theory has traditionally studied fixed and immutable network
structures, a probabilistic theory of networks was initiated by Erdds, Rényi and
Gilbert in the 1960s |88, 89, [105]. This approach treats networks as random vari-
ables and any fixed network is assumed to originate from a probability distribution
over networks or as a realization of some underlying random process. Network prop-
erties are then studied as averages over the whole probability distribution under
consideration.

The probabilistic approach has been very successful at studying empirical
networks because it recognizes the stochastic nature of network formation in the real
world. Even though we only observe one realization of a real network structure at any
given time (e.g. the structure of the Internet, while changing over time, has a fixed
structure at any given point in time), the formation of it is assumed to be the result

of some random process. The insight offered by network science is then to measure
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the properties of the empirical network and compare it to expectation values of
various random network models in a quest to find out the formation principles behind
the empirical network. In many instances new random network models based on
simple rules are formulated that can provide explanations for the empirical network
structures we observe. This can lead to further insight about the function of the
network.

While random network models are often motivated by the need to study em-
pirical networks, they are objects of interest in their own right. Random networks
often exhibit a rich structural phenomenology as parameters of the network forma-
tion process are changed. Furthermore, stochastic processes taking place on top of
random networks can lead to new and interesting phenomena [77]. Tools from statis-
tical physics are indispensable to studying random networks and random processes
on random networks in their own right.

In this chapter we introduce the the terminology and the fundamental defini-
tions of networks, starting from graph theory basics to introducing some of the most
popular probabilistic network models. Often the networks studied in network science
are called complex networks—this is to emphasize that most empirical networks as
well as random network models have non-trivial structural features as opposed to
simple networks such as regular lattices or trees. The majority of real-world exam-
ples such as the Internet, the World Wide Web, social networks—are all complex
but possibly in different ways. Many random network models produce complex net-
works because of the emergence of non-trivial patterns in the network formation
process. While there is no universal definition of what exactly makes a network
complex, the term is used to emphasize the lack of regularity and a high degree of
non-trivial topological features which in turn motivates the methodology of studying

these networks.

2.1 Complex networks

A network is a collection of nodes, representing interacting agents such as people in a
social network or species in an ecological food web, together with links, representing
interactions between the agents, who is friends with whom in a social network or what
species prey on each other in a food web. Networks are studied mathematically in the
language of graph theory. Sometimes a distinction between networks and graphs is
made in the literature, the former describing naturally occurring networked systems
while the latter describing the abstract notion of a collection of nodes and links.

In reality, both terms convey exactly the same meaning and information, so in the
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context of this thesis we will use the terms interchangeably.

In graph theory terms, we represent a network as a tuple G = (V, E) where
V is the set of nodes (vertices) and E is the set of links (edges). It is customary
to denote the number of nodes and the number of links as N = |V| and L = |E|
respectively. We shall label the nodes by integer indices V' = {1,..., N} and links
by e;j € E where i,j € {1,..., N} are indices of the nodes at the ends of link e;;.

A very convenient representation of a network is its adjacency matriz A. This
is an N x N matrix whose entries a;; indicate a presence or absence of links between

nodes ¢ and j:

0i; = life; € £ (2.1)
0 otherwise.

A network is undirected if its adjacency matrix is symmetric, that is A =
AT. Undirected networks are common models of systems in which interaction be-
tween agents are inherently devoid of directionality. Examples include the Internet,
composed of computers (nodes) and network connection between them (links), co-
authorship networks of scientific disciplines and sexual contact networks.

Links can also have directionality. For example, a survey asking people to
name their friends would likely result in some pairs of friends 4, j only one of whom
named the other as a friend. The World Wide Web—a collection of websites with
hyperlinks pointing from website to website—is a directed network since hyperlinks
need not be reciprocated. Similarly, food webs—networks of whom-eats-whom in
an ecological community—are directed because prey rarely feed on their predators.
In directed networks the adjacency matrix is no longer symmetric because of the
inherently asymmetric nature of directed links.

A network is simple if it does not allow self-edges (self-loops), i.e. a;; = 0 for
all ¢ € V', or multi-edges, i.e. F is a set rather than a multiset. In this thesis we
will be mainly concerned with studying simple undirected networks (Chapter [5)) and
simple directed networks (Chapters [3| and .

More general types of networks are often studied. For example, weighted
networks place different weights or strengths on links to emphasize the often het-
erogeneous importance of different links (e.g. the weights could be distances or
throughput in a transportation network [1511 [I87], collaboration frequency in scien-
tific collaboration networks [I79] or strength of relationships in social networks [110]
to name a few). Temporal networks assume that the connectivity of the network
depends on time, i.e. the adjacency matrix is no longer static but is rather a func-

tion of an independent time variable A(¢) [I19]. This approach is useful in studying



CHAPTER 2. BACKGROUND 7

evolving networks over time as opposed to static snapshots. Recently multilayer
networks have become popular in modelling systems that consist of multiple distinct
but interconnected networks [43, [I42]. These can be useful for studying systems
such as transportation networks in which interchanges are served by different types
of transport links or social media networks in which users interact on several social
media platforms. Many other types and generalizations of networks have been in-
troduced, but we focus on simple undirected and directed networks in the following
work.

We now turn to describing some basic network measures and models which
provide the basis of quantitative research in network science. While there is a large
body of literature relating to a multitude of network properties and network mod-
els, we have selected here some of the most fundamental concepts with particular
attention devoted to those which will be the subject of study in later chapters. The
material presented here can be found in a number of introductory books on network
science [211, 54] [I85]. A number of high quality reviews on research in network struc-
ture and dynamics that develop these concepts have also been published over the
years [6l, 42] [77].

2.2 Network properties

2.2.1 Network degrees

The node degree is the number of links attached to it. Using the adjacency matrix,

the degree of node i is given by

k; = Zaij. (2'2>

The collection of all degrees {k1,ko,...,k,} defines the degree sequence of the net-
work.

In any undirected network we have the useful identity that the sum of all
degrees equals twice the number of links (since any link contributes to the degree of

two nodes):

> ki=2L. (2.3)
eV
This is the so called handshake lemma first proven by Euler [91] as part of the
resolution to the Seven Bridges of Kénigsberg problem (see Biggs et al. [40] for a

reprinted and translated version).
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In directed networks, the directionality of links naturally leads to the notions
of in-degree and out-degree, counting the number of links pointing to and away from

a node respectively:

ER =" a, (2.4)

JEV
B = aij. (2.5)
JEV
The equivalent to the handshake lemma in directed networks does not have
the factor of two since each link contributes one to total in-degree and out-degree

count:

doEr=) kM =L (2.6)

eV 2%

The mean degree of an undirected network is defined as

1
(k) = ; k;. (2.7)
Combining the expression for the mean degree and the identity given by eq. we
get another identity, true for any undirected network:
2L
(k) = N (2.8)
This simple identity will be useful in Chapter [f] for deriving analytical expressions
for various properties in random network models.
The equivalent descriptions of mean in-degree and mean out-degree in di-

rected networks turn out to be equal:

in 1 in 1 ou ou
(W) = = Sk = TR = (R = (k), (2.9)
N - N -
eV i€V
leading to
(k) = =. (2.10)

The density or connectance of an undirected network measures how many
links are present in the network out of all possible links. In undirected networks this

is given by
2L (k)

PENIN-1) N_-T

(2.11)
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For directed networks, the factor of two is absent from the definition. A network in
which p — 0 as N — oo is called sparse while for dense networks p remains non-
zero. Equivalently, in sparse networks the number of links scales at most linearly
with the number of nodes, L ~ N, while in dense networks it must scale with the
square of the number of nodes, L ~ N2. Of course, the definitions of sparse and
dense networks make sense only in the infinite network limit, so they are of limited
use to empirical networks. Nevertheless, most real world networks are in fact sparse
[21, Sec. 2.4] in the sense that L < N2.

The mean degree (k) and the density p together with the number of nodes
N and links L forms a very basic but useful set of summary statistics to gauge the
large-scale properties of the network in question at a glance. However, we can gain

a lot more insight by studying the full degree distribution defined as
Ny,
N )
where Nj is the number of nodes with degree k. The degree distribution has the in-

P = (2.12)

terpretation that py is the probability of selecting a random node with degree k. The
degree distribution has become a crucial network metric because it was discovered
that many network structures from diverse areas exhibit a common pattern—their

degree distribution is a power law [20], 22, [194]:
pr x k7. (2.13)

In directed networks, the degree distribution is bivariate: pg; denotes the
probability of a random node simultaneously having an in-degree k and an out-
degree [. The marginals py = > ; pw and p; = >, i give the in-degree and out-

degree distributions respectively.

2.2.2 Components

Networks can be connected—meaning there exists a path between any two nodes i
and j in the network—or disconnected, in which case the network consists of a union
of connected components. Components are of interest because the size and number
of these have a direct impact on any dynamics on the network. For example, a con-
tact network that is fragmented into many small components is immune to endemic
infections as any disease will not be able to spread beyond the small component it
originated in. A disconnected component in a power grid could equally be immune
from power outages originating somewhere else in the network or, to the contrary,

suffer from a complete power outage due to having been disconnected from the main
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grid.

There are two qualitatively different types of components—the so called giant
components and small components. In an empirical network it is common to find that
a large proportion of nodes form one, big component while the rest of the network
is composed of much smaller components, disconnected from the largest component
(e.g. see fig. . Sometimes the largest component in an empirical network is
called the giant component—however this is a slight abuse of terminology as there
is a specific definition of what it means to be a giant component in network science.
A giant component of a network model is defined as a component whose size grows
linearly with the number of nodes N while small components are those whose size
remains constant.

The component structure of directed networks is much more complicated
[78, 233] due to the fundamental fact that the reachability of node j from node i
via a directed path does not guarantee the existence of a reciprocal path from j
to i. Because of this, we distinguish several types of giant components in directed
networks. A directed network can be decomposed into a giant weakly connected com-
ponent (GWCC), corresponding to the giant component if we replaced all directed
links with undirected ones, and small directed components. Then, the GWCC can be
decomposed further into the giant strongly connected component (GSCC), in which
there is a directed path between any pair of nodes, the giant in-component (GIN),
a set of nodes from which it is possible to reach the GSCC, and finally the giant
out-component (GOUT), formed by the nodes that can be reached from the GSCC.
This is supplemented by a hierarchy of finite, directed structures called tubes and
tendrils [233].

We will describe the formation of giant components in some random network
models in Section [2.3] and the study of giant components in relation to network
clustering will be the topic of Chapter

2.2.3 Clustering

A network property that has attracted a lot of attention due to its prominence in
social networks [246] is that of clustermgﬂ or transitivity. Clustering is concerned
with quantifying the number of triangles—closed loops of length three—in networks.
The importance attached to triangles in networks comes from the simple observation
that in social networks it is highly likely that many friends of a given person will be

friends amongst themselves—thus leading to the presence of triangles.

Not to be confused with finding closely related clusters of nodes as in community detection.
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The extent of clustering in an undirected network is generally measured by
the clustering coefficient (sometimes called the global clustering coefficient or tran-
sitivity) [185] defined as

3N, tr (A3
=28 _ ( 2 , (2.14)
N Ziqﬁj (A )ij

where N is the number of triangles and N, is the number of connected triples in

a network. Note that each triangle contributes three to the number of connected
triples so that the factor of three in this definition normalizes the clustering coefficient
to be in [0,1]. This definition also admits a probabilistic interpretation—it is the
probability that a randomly chosen connected triple is closed.

An alternative to the clustering coefficient is to consider the local clustering
of each node [248|. The local clustering coefficient of node i quantifies how likely any
two neighbours of node i are neighbours between themselves:

e Djm %ij@jmQm;

¢ = (kf) =Tk 1) (2.15)

where e; is the number of such existing connections between node 7’s neighbours and

(k;) is the maximum possible number of such connections. Having computed this for

all nodes, one can average to obtain the average clustering coefficient of the network:

C = ]1[;/0 (2.16)

Local clustering is mainly interesting because it has been shown to correlate

with degree in many empirical networks [67, 243] often as a power law ¢ o k™¢,

where ¢;, is the average clustering coeflicient across nodes with degree k. Note that

despite their similarities, the global and the average clustering coefficients are not

equivalent, see fig. Furthermore, it is possible to design networks whose global

and average clustering coefficients demonstrably converge to different limits [217,

Apendix C|. We shall favour the global clustering coefficient because of its easier
interpretation and calculation in Chapter

Definitions of clustering have been extended to directed networks [93], but

the directedness of links have resulted in a proliferation of alternative definitions

[54]. Instead, it is more common to analyse directed networks in terms of its motifs

which we discuss next.
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Figure 2.1: Example of a network in which C' = 0.75 # 0.83 = C.

2.2.4 Network motifs

To reduce the complexities involved in studying large networks as a whole, a popular
approach has been to focus on the occurrence patterns of much smaller subgraphs
[I71]. These smaller subgraphs called motifsﬂ can offer insight into the evolution
and organization of a networked system. This is because the recurrence of certain
motifs can signal a particular functional role in the network [I71], 222].

The study of network motifs is particularly popular in directed networks in
which measures such as the clustering coefficient can be difficult to define. The
smallest meaningful motifs (beyond single links) are the connected subgraphs on
three nodes. In the undirected case there are only two such motifs—a triangle and
a wedge which is not a triangle (also known as a connected triplet or a 2-star)—
which naturally leads to the definition of the clustering coefficient—the proportion
of wedges which are also triangles. On the other hand, in directed networks there
are 13 possible motifs, see fig. 2.2l This number grows very quickly if we consider
even larger structures—there are 6 motifs on four nodes in undirected networks [173]
and 199 motifs in directed networks [206].

AAAAA
A A AL L AN

Figure 2.2: The 13 unique connected motifs on directed networks. These can be
separated into two groups: (a) five triads, S1-S5, that only contain single links, (b)
eight triads, D1-D8, that have double links.

Network motifs are interesting to study for the same reason as clustering—

in many real networks some motifs are significantly more abundant than others,

2Sometimes the term is used to implicitly describe network subgraphs which occur at significantly
higher numbers than expected according to some null model, here our use of the term is synonymous
with subgraph.
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especially when compared to some network null model. Practically, one measures
the number of occurrences Nys of motif M in the real network, generates an ensemble
of random networks to act as a null model and measure the occurrences of M in each
of the random networks. We can then write down a statistical significance z-score
for motif M:

opr = 200 = (Nt )rand (2.17)
Orand

where (Np)rand and oyang are the randomized ensemble average and standard devi-
ation of the appearance of M in the random ensemble, respectively. Thus, if zps is
significantly different from zero, it can be evidence of different mechanisms influenc-

ing the evolution of the real network.
The last question is, what null model to use? A popular choice is the config-
uration model which considers all networks with a fixed degree sequence. We discuss

random network models next.

2.3 Random network models

Randomness is ubiquitous in nature. From a simple flipping of a coin to explaining
the physical phenomena in thermodynamics, random numbers, random variables and
the framework of statistical modelling is an indispensable tool. The same is true for
network science in which random network models play a role analogous to random
variables in statistics or ensembles in statistical physics.

The use of random network models in network science is twofold. First,
they can serve as null models in hypothesis testing about real network formation.
For example, comparing an empirical network such as a friendship network between
schoolchildren to an ensemble of randomly generated networks with a fixed number
of nodes and links (equal to the same quantities observed in the real network), we can
test the hypothesis that social networks form completely randomly. If many of the
network properties (degree distribution, clustering, etc.) in the artificial ensemble
are not comparable to the same properties measured in the empirical network, we
can reject the “full randomness” hypothesis and argue that there is evidence for some
hidden mechanisms in social network formation or test the randomness hypothesis
against some other random network model with more constraints [184].

Secondly, stochasticity is an inherent feature in empirical network formation.
Indeed, at first sight real networks like the one in fig. appear to be at least
partially randomly connected and it is not unthinkable that in the real world there

is a great degree of stochasticity when links of a network are formed. For example,
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we only observe a single snapshot of the World Wide Web of hyperlinks pointing
from website to website at any given moment. However, arguably the appearance of
the observed network has been influenced by many small, random events and if we
were to turn back time and repeat the evolution of the World Wide Web, we would
ostensibly arrive at a different configuration. One of the major aims of network
science is to formulate network models that reproduce properties of real networks
thus shedding light on the evolution and function of networked systems but in doing
so it is crucial to consider stochastic models of network formation. The term complex
networks emphasizes the point that real networked systems often exhibit non-trivial,
highly irregular properties, often driven by inherent stochasticity in model formation,
as opposed to the structural regularity of lattice models (fig. often studied in
statistical physics [153].

I (S

| @RI Ne\
D84 N
\ Y

Figure 2.3: Left: regular 2D lattice. Right: Erd&s-Rényi random graph. Both
networks have N = 100 nodes and L = 180 links. Figure created using [198].

These considerations motivate the study of random network models, both as
models of empirical network formation and in their own right. There is a plethora
of of such models, but we focus our discussion on two of the most influential ones—
the Erdgs-Rényi random graph and the configuration model-—which will also be the
subject of Chapters [3] and 5]

2.3.1 Erdés-Rényi random graph

Erdés-Rényi random graph (henceforth ER model), sometimes just called the ran-
dom network model or the random graph, is one of the simplest random network

models and the subject of the first systematic studies of random network ensembles
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Figure 2.4: Protein interaction network of yeast S. cerevisiae with N = 2018 nodes
representing proteins and L = 2930 links representing binding interactions [254].
Figure created using [198].
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Figure 2.5: The network of the electrical power grid of the Western United States
with N = 4941 nodes and L = 6594 links. The nodes represent generators, trans-
formers and substations, and the links are high-voltage transmission lines between

them [248]. Figure created using [198§].
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initiated by Erdés and Rényi [88, 9], and Gilbert [105]. The ER model, typically
denoted by G(N, L), as originally studied by Erdés and Rényi is defined by placing
a fixed number of links L randomly between a fixed number of nodes N, prohibit-
ing the placement of multiple links and self-loops so that the resulting network is a
simple undirected network. Because there are (gf ) choices for placing L links, each
G(N, L) network is only a specific realization amongst many potential candidates
with different placements of links (see fig. for an example realization). As such, a
complete description of the properties of the G(N, L) model would have to take into
account the whole statistical ensemble of all possible realizations of networks. This is
in fact a fundamental feature of all random network models—they are not defined in
terms of a single randomly generated network but rather as an ensemble of networks
by assigning a probability distribution over all possible network realizations. For
example, in the case of the G(INV, L) model, the probability distribution P(G) over
all networks G is given by P(G) = 1/Qy p, for all simple networks G with exactly N
nodes and L links, where Q) 1, is the number of such networks, and zero otherwise
[185].

A closely related model to the G(N, L) model is the G(V,p) model first
studied by Gilbert [105]. In this model, instead of fixing the number of links L a
priori, each of the potential (g ) links is realized with some fixed probability p. The
G(N,p) thus defines a different ensemble of random networks since, unlike in the
G(N, L) model, each network realization can potentially have a different number of
links. The G(V, p) model is usually preferred because it allows for easier calculations
of network properties [21], 42} [185] and as such is the de facto version of the ER model.
Finally, one can show that in the large network limit, both ensembles are equivalent
[14, 225], i.e. when N — oo, most networks in the G(NN, p) ensemble have a number
of links close to the expected number of links.

The ER model readily admits an extension to directed networks—the G(N, L)
model is exactly the same, but the links are directed, while the G(N, p) model realizes
N(N —1) possible links with probability p as there are twice as many directed links
possible compared to the undirected case.

We now describe some properties of the ER model that we will make use of
in Chapter [5] Detailed derivations of these results can be found in any introductory

book on network science such as Newman [185] or Barabasi and Posfai [21].

Probability of a network. As already discussed, the probability of generating a
specific network in the G(V, L) model is uniform in the total number of networks

Q. with N nodes and L links, and zero otherwise. By contrast, in the G(N,p)
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model any simple network can be generated with probability pL(l — p)(g)_L.
Mean degree. In the G(N, L) model, the mean degree is just (k) = 2& and is
in fact the same for all network realizations. In the G(N,p) model, the expected

number of links is (L) = p(g]) so that the mean degree is (k) = % =p(N —1).

Degree distribution. In the G(V,p) model the degree distribution is a binomial:

P = (Nk_ 1>p’“ 1—-p)N1E (2.18)

In many cases the G(NV,p) model is studied in the limit of large networks, i.e. as
N — oo, since some of the analytical calculations become exact only in this limit.
Typically the so called sparse limit is considered [I85, p. 134 in which the mean
degree (k) is fixed. In this limit the degree distribution is Poisson:

k k
P = €_<k><k>' : (2.19)

Because of this result, ER networks are sometimes called Poisson random graphs.
This result is also the first to suggest that the ER model is inadequate for modelling
real world networks because the degree distributions are rarely as homogeneous as a
Poisson distribution and much more often feature heavy tails, often manifested as a

power law degree distribution [20), [180].

Clustering coefficient. Because in the G(N, p) model all links are independently
realized with probability p, the clustering coefficient takes the same value C' = p =
%. Thus, in the sparse limit the clustering coefficient vanishes and there are almost
no triangles in a typical network. In fact, one can calculate the expected number of
loops of any fixed size which turns out to be independent of network size [39]. This
means that ER networks are locally tree-like—Ilacking in short loops as observed in
many real networks. This constitutes a second major shortcoming of ER networks

as a model for real networks.

Giant component. Consider the two limiting cases of the G(N,p) model: for
p = 0, there are no links in the network and it is completely disconnected while for
p = 1, all of the possible (“];[ ) links are present, the network is connected and is in
fact the complete graph on N nodes. The largest connected component in each case
is of size 1 and N respectively. However, if we increase IV, in the first case for p = 0,

the largest component is always of the same size 1, independent of network size,
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while in the p = 1 case it is linear in N. Such a connected component that grows
linearly with network size is called a giant component.

One of the most interesting properties of the ER model is that a giant com-
ponent emerges spontaneously as we increase the connection probability p or equiv-
alently the mean degree (k) in the sparse limit case. There exists a critical value
of connection probability p. (equivalently, a critical mean degree (k).) at which the
largest component stops being of fixed size and independent of N and becomes
extensive—grows linearly with N. This phenomenon is called a phase transition and
is ubiquitous in the natural sciences [226] and statistical mechanics [221], examples
of which include the water-ice transition and the ferromagnetic-paramagnetic tran-
sition in magnetic materials, both manifesting under changing temperature. In the
case of random networks, the connection probability p or the mean degree (k) are
analogous to temperature.

It turns out that for the ER model, the transition to a giant component in the
sparse limit occurs at (k). = 1, that is, a giant component that grows linearly with N
is present when the average degree of the network is at least one. Moreover, it is the
only giant component as the second largest component only grows logarithmically
with N [e.g. seed8, Ch. 6, or[83 Ch. 2|, so most of the time we talk about the giant
component. The emergence of the giant component is an example of phenomena
studied in percolation theory [2].

It is important to note that the presence of a giant component is not the same
as the whole network becoming connected. Indeed, a giant component can exist and
only encompass a minority of nodes if the mean degree is only slightly larger than
one. In fig. [2.6] we show the evolution of the size of the giant component in the
G(N,p) model in the sparse limit both analytically and via numerical simulation.
We observe that there is no giant component present for any value of mean degree
(k) < 1, while for (k) > 1 a giant component exists and occupies a fixed fraction of
nodes in the network. Note, however, that for the network to become fully connected,
the mean degree must be much larger than the critical degree (k). = 1.

The emergence of a giant component in random network models with clus-

tering will be our main focus in Chapter

2.3.2 Configuration model

While the ER model was instrumental in launching the study of random networks,
its application to modelling real network structures was quickly realized to be lim-
ited because many of its properties were not exhibited by real networks. Perhaps

the most important roadblock to its success is that it produce networks with homo-
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Figure 2.6: Emergence of the giant connected component in the G(N, p) model. The
solid line is the analytic solution for the fraction of nodes S in the giant component
in the N — oo limit while the circles are the mean values from a simulation of 100
networks with N = 10* nodes.

geneous, Poisson degree distributions, while real networks often exhibit heavy-tailed
degree distributions such as the power-law pp ~ k=7 [20] 22, 194]. To remedy this
shortcoming, random network models with arbitrary degree distributions have been
proposed, the most popular of which is the configuration model, sometimes also
called the generalized random graph model as it is a generalization of the ER model.

The configuration model dates back to Bender and Canfield [32] and Bollobéas
[49] who define a random network ensemble with a fixed degree sequence. The idea
is to fix the number of nodes N and the degree sequence k = {k1, ko, ..., kn}, and
to construct realizations of networks with the given degree sequence by assigning to
each node a number of half-edges or stubs equal to its degree and forming edges by
randomly pairing the half-edges. This procedure generates a network with exactly
the desired degree sequence. Importantly, this construction generates each network
with degree sequence k with uniform probability [I74] which is crucial for accurately
calculating properties of the network ensemble in expected value.

Of course, not every integer sequence is a degree sequence—it has to satisfy
some constraints to be able to generate a network, i.e. it has to be graphic. One

trivial condition is the handshake lemma we already introduced in Section [2.2

D ki =2L, (2.20)

where L is the number of links. But this is not the only requirement for a degree
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sequence to be graphic, a necessary and sufficient condition is given by the Erd&s-
Gallai theorem [I0I]. A popular algorithm for deciding whether a given degree
sequence is graphic is the Havel-Hakimi algorithim [IT1), I14]. An improvement
providing a linear time algorithm has recently been proposed [74].

The CM has some caveats, most importantly, because of the random match-
ing of half-edges, it is prone to creating both self-edges and multiple connections
leading to networks that are not simple. One might be tempted to reject any poten-
tial matchings of half-edges that would result in a self-edge or multi-edge, but doing
so would violate the uniform sampling property and thus invalidate the analytical
calculation of network properties [I85]. Two other approaches to dealing with these
shortcomings have been proposed—erasing any self-edges and multi-edges after the
network construction or rejecting any completed networks that have these from the
ensemble [51], but both methods generate slightly different ensembles with different
network properties. In practice it is preferable to allow the creation of these unin-
tended artefacts even if the real network systems that are being modelled do not
have these features, the reason being that for a large class of degree sequences (i.e.
those obeying the so called structural cutoff for which the maximum degree kpax is
no larger than ((k)N)/2 [45]) both the number of self-edges and multi-edges created
during the CM process is fixed and independent of network size meaning that for
large networks these constitute a negligible fraction of all links and can be safely
ignored [185] p. 436].

These caveats have been resolved by a direct network construction method
from a given degree sequence that has recently been proposed [41l [74]. This method
generates biased samples of simple networks from the CM with appropriate weights,
enabling the calculation of average properties in the network ensemble. This tech-
nique has also been extended to directed networks [140] and networks with prescribed
degree correlations [27].

A slightly different definition of the CM was introduced by Newman et al.
[183] who, instead of fixing the degree sequence k of the ensemble at the outset,
prescribe drawing a valid degree sequence from a fixed degree distribution p for
each new network realization. This means that the degree sequence will be different
from network to network, but the resulting ensemble of networks will have the same
degree distribution on average.

The two different ensembles are sometimes referred to as the microcanonical
ensemble (with hard constraints) and the canonical ensemble (with soft constraints)
in analogy to the two maximum entropy ensembles in statistical physics in which

either all possible states with a fixed energy E are considered (microcanonical) or
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the states can have different energies as long as the average energy (F) is fixed
(canonical) [221]. The existence of two distinct CM ensembles also parallels the two
distinct ER models—the fixed link model G(/V, L) and the average fixed link model
G(N,p), and the correspondence to the microcanonical and canonical ensembles of
the ER models is the same. Interestingly, while the two ER models are equivalent
in the thermodynamic N — oo limit, the two CM ensembles are not equivalent even
in the N — oo limit due to the fact that the number of constraints in this case
grows linearly with N unlike in the ER case [14] 225]. This motivates the need for
a principled choice of exactly which model to use in applications as results obtained
from either ensemble may differ significantly.

The CM model can also be generalized to directed networks. In this case,
instead of specifying the degree sequence k = {ky,ko,...,kn}, we specify the bi-
degree sequence of pairs of in-degrees and out-degrees: k = {(ki*, kut), (kit, k§ut),
oy (KB EQE) Y [90, T40]. As with the undirected version, one can consider instead

the canonical ensemble by specifying the bivariate joint degree distribution py;.

Link probability Unlike in the ER model in which each link has the same prob-
ability p of being realized, the CM model has heterogeneous link probabilities which
depend on the degree sequence. For a large class of degree distributions which are
not heavy tailed [15, [36l 185], in the CM model the probability of creating a link

between nodes ¢ and j is given by

Dij = (IZ;?V (2.21)
This expression, however, is generally not valid for heavy-tailed degree distributions
such as the power-law. In such cases, the expressions for p;; take a more complicated
form involving “hidden variables” [46, [60] related to Lagrange multipliers arising from
the constrained maximisation problem when solving for p;; [15, 224]. This slightly
more complex situation corresponds to natural correlations arising in the CM for
heavy-tailed degree distributions which are not present for more homogeneous degree
distributions [36, 46, 129]. The link probabilities p;; allows one to calculate the
probability of generating any particular network structure as in the case of the ER

model, although the precise expression is more involved [15].

Clustering coefficient. The clustering coefficient in the CM is given by

L () — ())”

=N e

(2.22)
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Thus, clustering only depends on the first two moments of the degree distribution.
Like in the ER model, the clustering coefficient scales as N~! and vanishes in the
large network limit, however, an important difference is that this more general ex-
pression involves the second moment of the degree distribution (k?) in the numerator
which can be large in highly skewed degree distributions like the power law pg, ~ k=7
for v € (2,3) and thus make the clustering coefficient non-negligible in finite networks
[66].

Giant component. The emergence of the giant component in the CM was first
studied by Molloy and Reed [174] [I75] who showed that the CM has a giant compo-

nent if and only if

(k?) —2(k) > 0. (2.23)

This condition, now commonly known as the Molloy-Reed condition, thus general-
izes the corresponding result for the ER model and, like the clustering coefficient,
only depends on the first two moments of the degree distribution. Because of the
appearance of the second moment of the degree distribution, as in the case of the
clustering coefficient, for power law degree distributions with the exponent v < 3 a
giant component is always present. This fact has been used to show that power-law
networks are exceptionally resilient to random failures of nodes [64] but at the same
time susceptible to targeted attacks [65] as well as large scale invasions by infectious
diseases [181] [192] 193].

2.3.3 Other important models

We briefly mention a few other influential random network models that will not be
the subject of this thesis.

The small-world network model, also known as the Watts-Strogatz (WS)
model is a model of networks that exhibits both the small-world property—the typ-
ical average distance between nodes is logarithmic in the network size—and high
clustering [248]. It is based on a probabilistic rewiring procedure of edges and inter-
polates between a regular ring lattice and an Erdés-Rényi random graph. The main
limitation of this model is the homogeneous degree distribution.

The preferential attachment model, also know as the Barabdsi-Albert (BA)
model is a growing network model formulated to explain the formation of the World
Wide Web [20]. The “growth” part refers to new nodes arriving in the system while

“preferential attachment” ensures that they get preferentially linked with existing
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high-degree nodes. The main appeal of this model is that it produces a true scale-
free degree distribution py o< k™3, however its clustering coefficient still vanishes
with system size as C' oc N0 albeit slower than in the ER random graph. The
BA model has also been extended to be able to generate scale-free degree distribu-
tions with any exponent in the range (—2,00) [144] [145]. It has also been modified
to include intrinsic node fitness that influences the preferential attachment beyond
just the node degree, this is known as the Bianconi—Barabdsi model [38] and can
account for degree correlations in modelling the Internet. It also exhibits interesting
condensation transitions [37].

The stochastic block model [118] is a network model for producing networks
with community structure—subsets of nodes characterized by denser connections
between them than with other “external” nodes [108]. This model is basically an ex-
tension of the ER model in that it partitions the nodes into sets of disjoint partitions
(communities) and assigns links between nodes in communities and links between
nodes from different communities with altered probabilities. Various extensions have
been proposed to account for more realistic network structures: overlapping com-
munities [4], degree heterogeneity [134], directed networks and multigraphs [197],
and weighted networks [3] to name a few. Networks with community structure and
community detection in empirical networks is a vast subject area in network science,
comprehensive reviews of the subject include Fortunato [96], Fortunato and Hric
[97].

Spatial networks or geometric graphs are models of networks in which nodes
are explicitly embedded in some underlying coordinate space and links between nodes
are made via some distance metric. The study of spatial networks goes back to
Gilbert [106] and has attracted a lot of attention in the following decades [24] 199].
Spatial networks are attractive to model real systems in which the underlying space
is relevant, examples include transportation networks [152], Internet [252], power
grids (fig. [5], neural networks in the brain [52] and many others.

Ezxponential random graphs are a class of generative network models that ap-
ply Jayne’s principle of maximum entropy [126, [127] to generate maximally random
networks with pre-defined constraints. This method borrows heavily from statistical
mechanics in that it treats a realization of a specific network as a microstate of the
statistical ensemble of all random networks with the desired macroscopic properties
(enforced by constraints). Random networks are obtained by maximising the Gibbs
entropy [70] of the probability distribution of graphs subject to constraints of inter-
est (e.g. number of triangles/clustering [53, 191] 230], degree sequence [14] 15} [36],

degree correlations [34], community structure [I00]). This method is very flexible
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because almost any network structure can be encoded as a constrained optimization
problem. The drawback is that the models get analytically intractable very quickly
when the constraint go beyond very simple [190] and even sampling the ensemble via
Markov Chain Monte Carlo can yield unsatisfactory results [121], [191]. These types
of random network models have been particularly popular in social sciences where

they are also known as p* models [213] 214].



CHAPTER 3

NOVEL PATTERNS IN FOOD WEB MODELLING

Food webs are abstract representations of which species consume which others in an
ecosystem [62], 87, [189] 20T]. In a network-based description, species are represented
by nodes and their trophic interactions are represented by directed links, pointing
from prey to predator [81, 82, 201]. In practice, food webs are inferred by field
ecologists, typically by studying species gut content or by direct observation of animal
diet (e.g. see [163] for a description of the resolution of Little Rock Lake food web).
Figure is an example of such a food web and illustrates why directed networks
are the natural theoretical abstraction for the study of their properties.

Much work has been devoted to understanding the origin and meaning of the
particular feeding patterns observed in various ecosystems [103] 167, 202]. Faced with
the complexity of whole food webs, many researchers have focused on the interactions
among subsets of species, through the analysis of small, connected subgraphs, or
motifs |25, 50l 56], [196], 229]. However, the emergence of these motifs corresponding
to specific preying behaviours is still not well understood. In this chapter we study
the structure of 46 empirical food webs in the context of a new food web metric and
accompanying model which allows us to classify food webs into two broad families

according to their motif structure.

3.1 Background

3.1.1 Trophic coherence

Consider a directed network of N nodes characterized by the N x N adjacency

matrix A with elements a;; = 1 if there is a directed link from i to j and a;; = 0

26
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Chesapeake Bay Waterbird Food Web
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Figure 3.1: A subset of the Chesapeake Bay food web focusing on trophic interactions

between water birds [200].
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otherwise. The in-degree and the out-degree of node j are defined as k}“ =) . ai; and
k:;?Ut = ), aji respectively. We shall assume that our network is weakly connected—
there is only one weakly connected component—and that there is a positive number
of nodes B > 0 with &™ = 0 which we will call basal nodes. It is standard in ecology
[131), 154] to define the trophic level s; of node j as

1
s; = 1+ ﬁ E Q5 S; (3.1)
J 7

if k}“ > 0ors; =1if k}“ = 0. In other words, the trophic level of basal nodes
(autotrophs in the ecological context) is set to be s = 1 by convention while the
other nodes (consumer species) are assigned the average trophic level of their in-
neighbours (prey, resources), plus one.

Equation defines a linear system which can be solved for s; to assign a
trophic level to every node in the network. In order to do this, two conditions must
hold. First, there must be at least one basal node, B > 0 which we have assumed
is the case; and second, every node in the network must be reachable by a path
from at least one basal node. Note that food webs in particular always satisfy both
conditions so that a unique solution for trophic levels exists.

Next, following Johnson et al. [I31], we associate a trophic distance to each
link ¢j by x;; = s; — s; E| Then consider the distribution of trophic distances p(x) as
measured on a network. By eq. , this always has mean (z) = 1 and standard
deviation g = \/(22) — 1 which we will call the trophic incoherence parameter.

The trophic incoherence parameter is thus a measure of the homogeneity of
the trophic distance distribution p(z): the more similar the trophic distances of
all links, the more coherent the network. For perfectly coherent networks we have
g = 0 which translates to having only integer valued trophic levels. In the context of
ecology, this would characterize a food web in which species feed on prey only one
trophic level below their own and there are distinct groups of “herbivores” feeding
only on basal species, “predators” feeding only on “herbivores” and so on. For less
coherent networks, ¢ > 0 indicates a less ordered trophic structure where the trophic
levels can have fractional values and species tend to prey on a broader range of
trophic levels. Thus trophic coherence can be seen as an average measure of trophic
specialization of consumer species in a food web.

Figure [3.2| shows two examples of food webs with vastly different trophic
structures: Crystal Lake (Delta) [239], a highly coherent network with ¢ = 0.17 and
Coachella Valley [204], a highly incoherent terrestrial food web with ¢ = 1.21.

!This is not a distance in the mathematical sense since it can assume negative values.
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54 %

1

Figure 3.2: Examples of different degrees of trophic coherence in food webs. Left:
Crystal Lake (Delta) [239]—a highly coherent network with ¢ = 0.17, note that
only one link prevents the network from being perfectly coherent (¢ = 0). Right:
Coachella Valley [204]—an incoherent network with ¢ = 1.21, note the high number
of nodes falling between integer trophic levels due to the complex patterns of trophic
links.

Trophic coherence as measured by ¢ has been shown to be the best statistical
predictor of linear stability as well as a number of structural properties of empirical
food webs [76, [I31]. It has also been related to the cycle structure and distribution

of eigenvalues in directed networks [12§].

3.1.2 Food web motifs

Faced with the complexities of studying large networked systems, scientists have
sought to gain insight by looking at the role of smaller local modules or subgraphs
embedded within the whole network structure [123], sometimes termed “building
blocks” of networks [I7I]. There is a large scientific interest in studying the sub-
graph composition of both empirical networks [143] 206] and popular network models
[18, 99, 123], studying correlations between subgraph counts and global network mea-
sures [243], and formulating network models that can prescribe different subgraph
frequencies in a bid to uncover a new class of null models [95], 133}, (156, 211, 212].

Because the number of possible non-isomorphic graphs on n vertices grows
very quickly even for small n, it is customary to study the smallest possible sub-
graphs that would give rise to non-trivial behaviour. In particular, as we are study-
ing directed networks, we will be focusing on the three-node connected subgraphs
(henceforth triads) of which there are exactly 13 distinct ones (fig. [3.3).

Subgraphs such as these have received a lot of attention in food web modelling

because many of these triads admit a straightforward ecological interpretation [229].
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Figure 3.3: The 13 unique connected triads on directed networks. These can be
separated into two groups: (a) five triads, S1-S5, that only contain single links, (b)
eight triads, D1-D8, that have double links (corresponding to mutual predation).

The eight triads D1-D8 feature double links which correspond to mutual predation
between two species. The five single link triads S1-S5 consist of some of the more
basic building blocks of food webs. The triad S1 is a simple food chain [25] 62], S2
represents omnivory (a predator preying on two species at different trophic levels)
[25, 204], triad S3 is a cycle (a relatively rare feature) [204, 229], and triads S4-
S5 represent a predator preying on two species (apparent competition) and two
predators sharing a prey species (direct competition), respectively [50].

One of the most successful methods for gaining insight into the origin and
function of small substructures has been to study their relative prevalence in an
empirically observed network against some null model of a synthetic network which
incorporates some ground hypothesis about the formation process of the empirical
network [I71], 173]. Applying this technique to food webs, ecologists have developed
several competing hypotheses for the relative prevalence of the three-node triads.
The prevailing hypotheses are that these triads emerge as a result of physical con-
straints (e.g. species body size, abstracted by the “niche dimension”) in the assembly
of food webs [50], 229], that functional importance leads to the observed structural
patterns [200], or that certain stability properties favour some subgraphs over others
[50].

Attempts to explain subgraph patterns using the two most established food
web models, the generalized cascade model [228] and the generalized niche model
[250], have been unsatisfactory since either model produces food webs with rigid
three-species subgraph patterns [56], [229] while real food-webs display a far richer
array of local preying patterns [50, 229]. To remedy this disagreement between
theory and observation, we study a new food-web model, the Generalized Preferential
Preying Model (GPPM) [I31] which takes into account the trophic coherence of
networks and can accurately predict the three-species subgraph patterns across a

wide array of distinct types of food-webs.
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3.1.3 Food web models

We briefly describe the two most widely used structural food web models—the Gen-
eralized Cascade Model and the Generalized Niche Model—before introducing the
starting point of modelling food webs with trophic structure via the Preferential

Preying Model.

Cascade Model and Generalized Cascade Model The original Cascade Model
[61] assigns a a random number n; to each species i from the uniform distribution
on [0,1]. Then for all pairs (7, j), i is set to be the consumer of j with some constant
probability p if n; > n; and with probability zero otherwise. If the number of species
is set to be N and the expected number of links to L, the constant probability takes

the form

2L

N T (3.2)

p:

The Cascade Model thus assumes a “pecking order” of species and a rule under which
no species can consume prey higher than itself in the order. On the other hand, the
probability of a species preying on a lower-ranked species is constant regardless of
how far down the hierarchy the potential prey exists. This was the first attempt to
show that networks similar to real food webs could be generated via simple rules and
imposing a hierarchy of species.

The model was later modified so that the number of prey would be instead
drawn from a Beta distribution as in the Niche Model [250] and the new model
was called the Generalized Cascade Model [227]. This amendment improved the
model’s predictions with respect to the distribution of prey and predators (i.e. the

empirically observed degree distributions).

Niche Model and Generalized Niche Model As in the Cascade Model, in
the Niche Model [250] each species i is awarded a uniform random number in [0,1)
called the niche value, but the model refines the Cascade Model by constraining a
species i diet to a subset of species j with lower niche value. Specifically, species 7 is
constrained to consume species j such that ¢; —7;/2 < n; < ¢; +1;/2, i.e. all species
within an interval of size r; centred at ¢; and no others. The range parameter is
defined as r; = x;n; where x; is drawn from the Beta distribution with parameters
(1,8). For a fixed number of species N and an expected number of links L, the

parameter 5 takes the form
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N (N —1)
2L

The centres of the intervals ¢; are drawn from the uniform distribution on [r;/2, n,].

8= L (3.3)

The Niche Model is an improvement on the Cascade Model by allowing for
cannibalism as well as looping—propensity to consume prey above a species trophic
niche. The motivation behind the Niche Model is the so called intervality hypoth-
esis—that there is an intrinsic ordering of species such that the prey of any given
predator are contiguous [63]. Recent work has shown that food webs are biased to-
wards intervality [228], although they are generally not perfectly interval, especially
if species body size is taken as a proxy for niche value [57]. Nevertheless, the Niche
Model has been very successful as it outperforms the Cascade Model in predicting
many structural features of food webs [250)].

The Niche Model was later modified to account for the fact that real food webs
are not maximally interval by introducing an additional contiguity parameter ¢ which
determines the proportion of prey to be allocated according to the original Niche
Model prescription and the rest according to the Generalized Cascade Model [228].
This modified model is known as the Generalized Niche Model and is implemented
as the original Niche Model, but with reduced ranges r; = cx;n;. Then for each
species a number of extra prey kfascade = (1 — ¢)z;n;N is drawn randomly from all
the available species with niche values lower than n; as in the Generalized Cascade
Model. Thus, the Generalized Niche Model interpolates between the Niche Model
(¢ = 1) and the Generalized Cascade Model (¢ = 0).

Preferential Preying Model (PPM) The Preferential Preying Model (PPM)
was introduced by Johnson et al. [I31] as the first food web model to explicitly
model trophic coherence in food webs. It is a growing network model, inspired by
the Barabasi-Albert model of preferential attachment [20], but in the context of a
growing ecosystem through immigration of new species. The model starts with B
nodes (basal species) with trophic levels s = 1 and no links. New nodes are then
added sequentially until the total number of nodes reaches N. Every new node i
is first awarded a random prey node j from all the existing nodes in the network
and assigned a temporary trophic level 5; = 1 + s;. Following this, another s; prey
nodes [ are chosen with a probability that decays with the tentative trophic distance

Ty = s; — §;, specifically:

a1
Py ocexp (_’3311T\> ) (3.4)
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where T is a “temperature” parameter that tunes the trophic coherence: for T' = 0,
perfectly coherent networks are generated (¢ = 0), while ¢ increases monotonically
for T > 0.

The number of prey k; in the original PPM is obtained similarly to the Niche
Model method [227] by setting k; = x;n;, where n; is the number of nodes in the
network when node i arrives and z; is a Beta random variable with parameters (1, 3)
such that

NQ_BQ
2L

where L is the expected number of links in the resulting network. This way the

8= 1, (3.5)

Generalized Cascade Model is recovered in the T' — oo limit while the degree distri-
butions are as in the Generalized Niche Model.

Even though the PPM captures many empirically observed patterns in food
webs, it suffers from a major drawback, namely it can only generate acyclic networks.
While this is a property that is shared by many food webs, it is far from universal
[56] and, in particular, makes the PPM unsuitable for studying mutual predation or
food web motifs. To remedy this, we now describe an extension of the PPM that

can generate cycles.

3.2 Generalized Preferential Preying Model (GPPM)

In this section we extend the PPM model introduced by Johnson et al. [131] in a
way that allows bidirectional links (corresponding to mutual predation) and cycles
of higher order to form thus producing more realistic networks. Again, we denote
by B, N and L the number of basal nodes (autotrophs), the number of total nodes
and the number of links in the network respectively as input parameters.

The network construction begins with B basal nodes and no links. We assign
trophic level s = 1 for all basal nodes. We then proceed to introduce N — B new,
non-basal nodes in the network sequentially. For each such new node j, we pick
exactly one prey node or in-neighbour i at random from among all the existing node
in the network thus creating a link from ¢ to j. In doing so, we assign a temporary
trophic level to node j as §; = 14-5;. After this procedure finishes, we have a network
of N nodes, N — B links and each node 7 has a temporary trophic level §; that is an
integer (since every non-basal node has only one in-neighbour at this point).

Finally, we add the remaining links to the network to bring the total number

of links up to L (in expected value). For this, we choose links to be placed among
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all possible pairs of disconnected nodes (7, j) where j is not a basal nodeﬂ with a
probability P;; that decays with the tentative trophic distance z;; = §; — §; between

them. Specifically, we set

iy —1)?
P;; o< exp (—(]2712)> . (3.6)

As in the original PPM, the “temperature” parameter 1" sets the amount of deviation
from a perfectly coherent network and the probabilities are normalized so that the
expected number of links in the final network is L] At the end of the network
creation process the trophic levels need to be recalculated according to eq. as
the addition of new links will have changed the network topology, and the trophic
levels in the final network need not correspond to the temporary integer valued

trophic levels.
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Figure 3.4: Dependence of the incoherence parameter ¢ on the temperature param-
eter T'. Simulated ensembles of networks have N = 100 nodes B of which are basal
and average non-basal degree (k) = L/(N — B) = 10. The averages are computed
over at least 1000 networks and error bars are one standard deviation of the sample.
The grey line is f(z) = =.

A sample dependence of the trophic incoherence parameter ¢ on T is shown
in fig. The model exhibits a monotonic dependence of ¢ on T which provides
a basis for fitting the model to empirical food webs given the empirically observed

value of q. We also note that the level of incoherence that is achieved at any given

2This ensures no incoming links to basal nodes which would make them non-basal.

3In principle, the link addition process can be amended so that the final number of links is
exactly L not just on average. However, this can be detrimental because in some situations, e.g. for
low T and high link density, the exact number of links L may not be attainable without distorting
the probability distribution set by eq. .
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temperature depends on B/N, the ratio of basal species to all species. Before fitting
the model to empirical data, we explore some interesting properties of the GPPM in

the following section.

3.3 Properties of the GPPM

3.3.1 Limits

The GPPM has two interesting limiting behaviours as we change the temperature
parameter T'. As T — 0, the probability of forming links between trophic levels more
than one apart tends to zero so the model generates perfectly layered networks with
g = 0. In the other extreme, as T — o0, the probability of forming links between
different trophic levels becomes homogeneous and the generated networks become
increasingly more random. In this limit the model generates directed Erdds-Rényi
random graphs with two restrictions (biases) that make it different from fully random
directed ER graphs:

1. The basal nodes are still precluded from receiving any incoming connections.

2. The initial “skeleton” of N — B links is still present, ensuring that the network

is weakly connected.

This interesting deviation from the ER random graph has lead to the study of the
basal network ensemble which is defined as a subset of the ER random graph ensem-
ble in which a number of basal nodes B is fixed and cannot receive any incoming
connections and for every non-basal node, the proportion of incoming links coming
from basal nodes is the same. This is equivalent to fixing the mean degree (k) in the
ER ensemble and leads to highly homogeneous networks in which the distribution

of trophic levels is bimodal [12§].

3.3.2 Distribution of trophic levels

We can calculate the distribution of trophic levels in the GPPM model when T'= 0
exactly and the mean trophic level in the limit 7" — oo which leads to an interesting
crossover behaviour of the mean trophic level in coherent and incoherent networks.

Let T = 0 be fixed, then links can only be formed between integer valued
trophic levels. Furthermore, it is only necessary to consider the first stage of intro-
ducing N — B non-basal nodes and their links because the second stage of introducing

the remaining L — N + B links at 7" = 0 will not alter the values of the trophic levels.
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As before, start with B basal nodes and consider time stepst =0,..., N — B,
where at teach time step a new node is added with one incoming link chosen randomly
from all the existing nodes already in the network. Let n4(t) be the expected number
of nodes on level s at time ¢. Then the first level satisfies nq(t) = B for all time by
the definition of basal nodes. For higher trophic levels we can write

D () = 2D

since the expected increase in the number of nodes at level s 4+ 1 is the fraction of

(3.7)

nodes which are at level s. Rescaling the time variable as x = (¢ + B)/B this reads

d ng (T
] (x) = :E )

This equation can be solved iteratively for any level s given the initial condition

(3.8)

ns(x =1) =ns(t =0) =0 for all s # 1. This gives the general solution

ns (z) = & log*™! (z). (3.9)

Using this, the distribution of trophic levels py(x) is obtained by dividing ns(z) by
the total number of nodes at time ¢ which is B+¢. Solving fort = N—B = x = N/B,

we obtain the distribution of trophic levels once the network has been assembled:

B 1 N
== —log" ! = ). 3.10
Ps = N(Gs—1)1 8 <B> (3.10)
Letting A = log(NN/B) we note that this is a shifted Poisson distribution with support
s €1,2,.... This gives for the mean trophic level
N
(s) =log <B> + 1. (3.11)

Thus, the mean trophic level for coherent networks is logarithmic in the ratio of
total number of nodes to basal nodes. This suggests a slow growth in the mean
trophic level and consequently the mean food chain length in coherent food webs as
a function of the number of species.

What about when T" £ 0?7 We can’t say much about the general case, but
we can perform the calculation of the mean trophic level (s*°) when 7" — oco. Again
consider B basal nodes and N — B non-basal nodes connected via N — B links at
the end of the growth part of the model. The infinite temperature limit means that
we can place the remaining . — N + B links randomly between the nodes as long

as we disallow incoming connections to basal nodes. For simplicity we consider the
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effect of the N — B initial links to have negligible impact on the final values of the
trophic level, i.e. we assume that L > N — B.

Because all links can be placed randomly between the nodes, at the end of
the network creation it must be the case that each non-basal node has, on average,
the same incoming degree (k}{I‘B> which is made up of the same proportion of links

coming from basal nodes, Ly, and links coming from other non-basal nodes, Lnp:

(ki) — L Lp+Ixs
NS N-B N-B
This together with the definition of trophic level (eq. (3.1])) allows us to write down

a self-consistent equation for the mean level of non-basal nodes:

(3.12)

Lnp(sn) LB

=14 —4+ —. 3.13
{swp) =14+ —F—+— (3.13)
Rearranging we obtain
L
<3NB> =—+1. (3.14)
Ly

Thus, the mean trophic level, including basal nodes, is given by [128 ST Appendix|

(s°) = N]:TB<SNB> + % = Iig (1 - ﬁ) +1. (3.15)

If we make the assumption that the number of links L and the number of
basal links Lp are proportional to N and B, respectively, (equivalently, assuming
the average outgoing degree of basal nodes is equal to that of the mean degree of

the network), this simplifies to

(s) = - (3.16)

Thus, in contrast to the coherent T' = 0 case, in the random network limit, the mean
trophic level is linear in the ratio of total nodes to basal nodes suggesting a much
more pronounced growth in the mean food chain length in incoherent food webs as
a function of the number of species.

In fig. [3.5] we plot the mean trophic level (s) of 46 food webs (details to follow
in Section and compare it to the model prediction at 7' = 0. We can see that
the model prediction is very accurate for more coherent food webs (low ¢) while it
is not performing as well for more incoherent food webs. Measuring the absolute
relative error of the prediction versus the actual value, 63% of predictions are within

10% and 78% of predictions are within 20% of the observed values. Furthermore,
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Figure 3.5: (a) Mean trophic level (s) of 46 food webs compared to the analytical
prediction of the GPPM model at T = 0. Food webs are arranged by increasing
trophic incoherence parameter q. Grey bars indicate food web membership to Family
1 as uncovered by a hierarchical clustering algorithm used to compare similarity
of food web motif profiles in Section [3.4] Details of food webs can be found in
Section (b) Relative error of the analytical prediction. (c) Distribution of
relative errors.

even in the case of more incoherent networks, the logarithmic dependence on the
N/ B ratio is a much better approximation than the linear dependence in the T' — oo

limit. This suggests two things:

1. Even highly incoherent food webs (high ¢) are much less random than randomly
assembled GPPM networks.

2. For coherent networks (low ¢) the agreement between the analytical prediction
of the mean trophic level and the actual empirical value suggests that species
“entering” an ecosystem and choosing prey randomly is a good mechanistic

approximation on how some food webs evolve.

3.3.3 Degree distribution

To calculate the degree distribution of the GPPM at T' = 0, we make use of the fact
that the distribution of trophic levels, ps, is a shifted Poisson distribution as derived

in the previous section:

ef)\)\sfl

psszor8:1,2,3..., (317)
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where A = log(IN/B). Denote by N the expected number of nodes at level s. Then
B = Ny = Npy.

In the T' = 0 case, we need to distribute a fixed number of links L uniformly
between any two adjacent trophic levels s, s+ 1. The total number of possible places

to put links is

o0 o0
D NeNey1 =N?) pepss1 = N°C, (3.18)
s=1 s=1

so that each of these places has uniform probability L/N?C of being assigned a link.
The expected number of links between any two adjacent levels s, s + 1 is then given
by

NN, L L
TN2g C PsPstig: (3.19)

From here on we focus on the out-degree distribution (the calculation for the

Ls,s+1 =

in-degree is analogous). The average out-degree at level s is given by

- L L
out __ “s,s+1 _
ket = N, PHine (3.20)

The out-degree distribution of a random node at level s is then given by a

binomial distribution:

L s _
Pldog (0, = 1) = (737 Jak (1 g (3:21)

where ¢, is the probability of attracting one of the Es78+1 links emanating from the

N, nodes at level s:

1 1

qszﬁs:Nps‘

(3.22)

Finally, the out-degree distribution for a random node in the whole network
is given by a mixture of these binomial distributions where the weights are given by

the shifted Poisson distribution of the node trophic levels:

Pldeg (v =k)] = Y pJP[deg (vs = k)]. (3.23)
s=1

It is unclear whether there is a closed form expression for this distribution as
the mixture of binomials differ not only in the probability parameter g5, but also in

the “number of trials” parameter Es,s+1.
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3.4 Motif analysis of food webs

We now come to the main part of the chapter in which we study the effect of trophic
coherence on local topological features in food webs. In particular, we show that the
relative prevalence of three-species motifs, corresponding to local preying patters,
can be explained by the level of trophic coherence in both empirical and model
food webs. This result provides another viewpoint in the debate about the origin
of motif prevalences in food webs and further evidence of the importance of global

organization in food webs [131].

3.4.1 Quantifying triad significance

For any given network the exact number Nj of any of the £ = 1,...,13 connected
triads (fig. is influenced by the network size and the degree distribution of the
vertices. To test the statistical significance of any given triad k, the empirically
observed number Nj is compared against appearances of the same triad in a ran-
domized ensemble of networks serving as a null model [I73]. This comparison gives

a statistical significance or z-score

_ Nk - <Nk>rand

Orand

2k (3.24)

where (Ng)rand and oyang are the randomized ensemble average and standard devi-
ation for triad k, respectively. The z-score of triad k thus measures the deviation of
prevalence in the observed network with respect to the null model.

The z-scores of all 13 triads can be summarized in a triad significance profile
(TSP) which is a vector z = {z;} with components zj, for each triad k. Additionally,
the normalized version of the TSP is often used to compare networks of different

sizes and link densities [I73]. This is given by

g={—h % (3.25)

\ 11:):1 %

The randomization procedure used to obtain the randomized ensemble statis-
tics is a matter of choice. A careful selection of null model is important to discern
between real effects and artefacts present in the TSP [29]. In our analysis, we follow
the configuration model (CM) prescription [183, [I85], and preserve the number of
incoming and outgoing links for each node (the degree sequence) while randomizing
links via a Markov chain Monte Carlo switching algorithm [I71], [I73]. This preserves

both the total number of nodes (species) and the links (trophic interactions) in the
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network. The generation of randomized networks and counts of triads was carried
out with mfinder, the algorithm used by Milo et al. in their seminal work on network
motifs [136, [I71].

It is important to emphasize that the TSP is a relative measure of which
triads are over- and under-represented with respect to the null model provided by
the randomized CM networks. The over-(under-)representation as indicated by a
positive (negative) z-score indicates that these triads appear more (less) frequently
than in the randomized networks but do not imply an absolute saturation (absence)
of said triads. Nevertheless, the TSP is an adequate tool for comparing networks of

different sizes and degree distributions.

3.4.2 Comparing networks based on triad significance

To quantitatively compare networks based on their TSP, we use Pearson’s correlation
coefficient r between the normalized z-score vectors 2% and 2° of networks a and b,
respectively [173, 229]. This is defined as

T G- (-2

(n—1)0za04

, (3.26)

where n e
so_ Zimifi (3.27)
n

and

n—1
k=1

n

ogn = | — 3 (5 - z0)? (3.28)
are the mean and the standard deviation of the normalized z-score vectors, a and b
specify the networks, k is an index over the triads and n = 13 is the total number
of triads.

With this definition a value of r close to 1 indicates that the two networks have
very similar TSPs and thus patterns of over- and under-represented triads, a value
close to 0 indicates no similarity, and a value close to —1 indicates anti-similarity—
i.e. triads over-represented in one network will typically be under-represented in the
other (and vice versa).

Comparing the empirical networks is straightforward as we just calculate the
r-coefficient pairwise for the z-score vectors of all 46 food webs in our database. On
the other hand, for comparison with the model, for each empirical network we fit
our food-web model to the data, generate 1000 instances of a model network and

then compute the r-coefficient of the empirical z-score vector and the average z-score
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vector of the model-generated ensemble.

3.4.3 Clustering food webs into families

To uncover clusters of food webs with similar TSPs, we use a hierarchical, agglomera-
tive clustering algorithm [92] based on the Pearson’s correlation coefficient r between

TSPs. First, we need to convert this to a distance measure. We define

d=201-7r). (3.29)

This definition ensures that d is a Euclidean metric [241] and we can readily apply
hierarchical clustering. We use the UPGMA (average linkage) algorithm [92] to

uncover the full cluster hierarchy.

3.4.4 Empirical food web data

We study the triad significance profile (T'SP) in 46 empirical food webs from a variety
of environments: marine, freshwater (river and lake) and terrestrial. Table gives

the relevant summary statistics of each food web.



Table 3.1: An alphabetical list of the 46 food webs studied in the paper. From left to right, the columns are for: name, number of
species IV, number of basal species B, number of links L, ecosystem type, trophic incoherence parameter ¢, value of the temperature
parameter T' found to yield (on average) the empirical ¢ with our model, references to original work, and the numerical ID.

Food web N B L q T Type Reference ID
Akatore Stream 84 43 227 0.16 0.40 River [231]1 232] 235] 5
Benguela Current 20 2 196 0.69 0.65  Marine [251] 39
Berwick Stream 7735 240  0.18 0.40 River [231] 232) 235] 7
Blackrock Stream 8 49 375 0.19 042 River [231] 232] 235]

Bridge Broom Lake 25 8 104  0.53 0.64 Lake [115] 28
Broad Stream 94 53 564 0.14 0.37 River [231] 232] 235] 1
Canton Creek 102 54 696 0.15 0.38 River [235] 4
Caribbean (2005) 249 5 3302 0.73 0.69 Marine [26] 41
Caribbean Reef 50 535 0.94 0.82  Marine [186] 43
Carpinteria Salt Marsh Reserve 126 50 541  0.65 0.85  Marine [150] 36
Caitlins Stream 48 14 110 0.20 0.41 River [231] 232] 235] 12
Chesapeake Bay 31 67 045 0.62  Marine [1] 240] 26
Coachella Valley 29 243 1.21 1.02 Terrestrial [203] 45
Coweeta (1) 58 28 126 0.30 0.52 River [231] 232] 235] 20
Crystal Lake (Delta) 19 3 30 017 0.43 Lake [239] 6
Cypress (Wet Season) 64 12 439 0.63 0.66 Terrestrial [236] 34
Dempsters Stream (Autumn) 83 46 414 0.21 0.43 River [231] 232] 235] 13
El Verde Rainforest 155 28 1507 1.01 0.99 Terrestrial [244] 44
Everglades Graminoid Marshes 64 4 681 1.35 1.10 Terrestrial [238] 46
Florida Bay 121 14 1767 0.59 0.59 Marine [237] 29
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German Stream
Grassland (U.K.)
Healy Stream
Kyeburn Stream
LilKyeburn Stream
Little Rock Lake
Lough Hyne
Mangrove Estuary (Wet Season)
Martins Stream
Maspalomas Pond
Michigan Lake
Narragansett Bay
Narrowdale Stream
N.E. Shelf

North Col Stream
Powder Stream
Scotch Broom
Skipwith Pond

St. Marks Estuary
St. Martin Island
Stony Stream
Sutton Stream (Autumn)
Troy Stream

Venlaw Stream

84
61
96
98
78
92
349
90
105
18
33
31
71
79
78
78
85
25
48
42
109
80
7
66

48

47
o8
42
12

48

28

25
32

61
49
40
30

352
97
634
629
375
984
5102
1151
343
24
127
111
154
1378
241
268
219
189
218
205
827
335
181
187

0.20
0.40
0.22
0.18
0.23
0.67
0.60
0.67
0.32
0.49
0.37
0.61
0.23
0.73
0.28
0.22
0.40
0.61
0.63
0.59
0.15
0.15
0.19
0.23

0.43
0.69
0.42
0.41
0.44
0.65
0.60
0.63
0.51
1.01
0.48
0.68
0.44
0.66
0.45
0.42
0.54
0.54
0.67
0.63
0.38
0.40
0.42
0.44

River
River
River
River
River
Lake
Lake
Marine
River
Lake
Lake
Marine
River
Marine
River
River
Terrestrial
Lake
Marine
Terrestrial
River
River
River

River

[231] 232] 235]

[231] 232] 235]
[231] 232] 235]
[231] 232] 235]

11
24
15

18
37
31
38
21
27
22
33
17
42
19
14
23
32
35
30

10
16
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Weddell Sea
Ythan Estuary

483 61
82 5

15317 0.72 0.68
391 0.42 0.50

Marine

Marine

[124]
[122]

40
25
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3.5 Results

3.5.1 Motifs in empirical food webs

The main results are summarized in figs. and

Figure [3.6] shows the pairwise Pearson correlation coefficients of the triad
significance profiles between all 46 food webs. The food webs are arranged by in-
creasing incoherence parameter g so that more coherent food webs are assigned a
lower ID. Red hue or warmer colours indicate a larger coefficient, while blue hue or
colder colours indicate an anti-correlation in the TSPs.

We see that roughly two families of food webs emerge with similar TSPs.
The first family (roughly ID 1-22) is characterized by relatively high coherence (low
incoherence parameter ¢), for which the similarities in the TSPs are very high (r >
0.8).

There is a second family of food webs, characterized by a high incoherence
parameter ¢, that also show high similarities in their TSPs. Membership to this
second family is not as clear as there is a tighter core of food webs belonging to it,

with a periphery that only shares some similarities.
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Figure 3.6: Pearson’s correlation coefficient of the triad significance profiles (left) and
clustering of food webs into two families (right). Left: The coefficient is measured
pairwise between all pairs of empirical food webs. Warmer colours indicate greater
similarity while colder colours indicate dissimilarity. The food webs are arranged
according to increasing incoherence parameter (left to right and top to bottom).
Black crosses just below the heatmap indicate membership to Family 1 according to
a clustering algorithm. Right: Dendrogram of the hierarchical clustering algorithm
applied to food webs based on the distance d = y/2(1 —r). A threshold distance
d. = 1.1 uncovers two large families with smaller subclusters within.

To make these ideas more precise, we performed hierarchical clustering of
food webs based on a distance metric derived from the pairwise Pearson correlation

coefficients. The resulting clusters are shown as a dendrogram in fig.[3.6] By choosing
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a threshold distance d., we can group food webs into a number of distinct families
based on the similarities of their TSPs. Setting d. = 1.1, we identify two families
which include all webs. Family 1 consists of food webs with ID 1-22, 25, 28, 29, 31,
36, 41, 44, 46 whereas Family 2 contains webs with ID 23, 24, 26, 27, 30, 32-35, 37-
40, 42, 43, 45. We also observe that these larger families contain within themselves
smaller, even more closely related clusters (e.g ID 1-22 corresponding to very low
qQ)-

Setting a lower threshold distance could provide a more fine-grained classi-
fication of food webs in more than two distinct families but we now show that this
coarse classification into two families allows us to qualitatively differentiate food
webs based on species preying patterns, specifically the extent of omnivory. To this
end, we look closer at the bulk behaviour of the TSPs for the two families. Figure
shows the normalized profiles of Family 1 (top) and Family 2 (bottom).
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Figure 3.7: Triad significance profiles (T'SP) as measured by the normalized z-
score of the two groups of food webs. (a) Food webs in the first family (ID 1-
22,25,28,29,31,36,41,44,46) with low incoherence parameter g characterized by an
over-representation of triads S1, S4 and S5 and an under-representation of triad S2.
(b) Food webs in the second family (ID 23,24,26,27,30,32-35,37-40,42,43,45) with
high incoherence parameter characterized by an over-representation of triad S2.

We first consider Family 1. The bulk behaviour of food webs in this family
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is characterized by an over-representation of triads S1, S4 and S5, as well as an
under-representation of triad S2 (with the exception of ID 22 Michigan Lake, ID 29
Florida Bay and ID 46 Everglades Graminoid Marshes). We should find the pattern
of under-representation of triad S2 (which represents omnivory) unsurprising, since
the majority of food webs belonging to this family have a low incoherence parameter
g, which limits the ability of species to feed on multiple different trophic levels.
Equally, the over-representation of triads S1, S4 and S5 is to be expected as these
are the only three triads out of 13 that can arise in a hypothetical food web with
g = 0, which is a value close to the empirical values of ¢ for food webs in this family.
The double link triads D1-D8 are all under-represented or close to even, in agreement
with our expectations.

We now turn to Family 2. Here the triads S1, S4 and S5 no longer follow
a strong pattern of over-representation and the double link triads D1-D8 are not
always under-represented. The most distinguishing feature, however, is the bulk
over-representation of triad S2 (with the exception of ID 40 Weddell Sea), in stark
contrast to Family 1. We will argue that this is the main feature that separates the
two food web families.

This pattern of food webs based on the under- or over-representation of triad
S2 was alluded to in previous work [229], however it is in disagreement with the
predictions of the generalized cascade [228] and niche [250] models which can only
produce food webs where S2 is over-represented [229]. Subsequently, we present
results from our model which show that it is possible to change the pattern of
under-representation to over-representation of triad S2 by increasing the incoher-
ence parameter ¢, thus providing evidence that trophic coherence can naturally give
rise to two food web families characterized by low or high prevalence of omnivory,

respectively.

3.5.2 Comparison between empirical and model networks

We have also investigated the similarities of triad significance profiles between the
empirical food webs and model generated food webs. To this end we study the
similarity of the T'SPs between each empirical food web and an ensemble of model
food webs fitted to the data of the empirical one. The results are summarized in
fig. [3:8] Averaging over an ensemble of 1000 model generated food webs fitted to
each empirical food web, we measured the Pearson correlation coefficient between
the TSP of the empirical food web and the TSP of the ensemble average. The results
show that the model is able to reproduce empirically observed TSPs for the majority

of food webs in both families with high accuracy. The model fails to produce accurate
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TSPs for a number of food webs and sometimes even produces anti-correlated TSPs
(r < 0). If we require that » > 0.5, eight food webs are not able to be reproduced
accurately by our model, five in Family 1 (ID 31 Lough Hyne, ID 36 Carpinteria
Salt Marsh Reserve, ID 41 Caribbean Reef, ID 44 El Verde Rainforest and ID 46
Everglades Graminoid Marshes) and three in Family 2 (ID 23 Bridge Broom Lake,
ID 24 Grassland (U.K.) and ID 40 Weddell Sea). Recall that IDs are assigned in
the order of increasing ¢ so these particular food webs are unusual members of their
respective families in that they tend to have extreme values of ¢ with respect to
the majority of networks in either family (higher than average in Family 1 and lower
than average in Family 2). Because of the imperfect agreement between ¢ and family
membership, our model cannot replicate the structure of these sporadic webs. This
suggests that for some food webs information about trophic coherence ¢ may not be
enough to reproduce realistic looking T'SPs and there may be further mechanisms of

prey selection at play [229].
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Figure 3.8: Pearson’s correlation coefficient of the triad significance profiles (TSP).
The coefficient is measured between the empirical TSP and the average TSP in the
model ensemble over 1000 simulated networks. Food webs are arranged by increasing
incoherence parameter ¢g. The grey shading indicates membership to the first family.

3.5.3 The role of omnivory and basal species

We now focus on the claim that the main difference between the two families of
food webs is the relative under- and over-representation of triad S2, or the degree
of omnivory in a food web. A prevalence of triad S2 indicates that the species
in a food web often feed on different trophic levels, contributing to an increased

incoherence parameter ¢ as discussed at the start of this section. A scarcity of triad
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S2, on the other hand, indicates that species only tend to feed on prey with similar
trophic levels, which in turn signals a low incoherence parameter. This suggests a
relationship between the z-score of triad S2 and network incoherence as measured
by q.

Furthermore, model results (fig. |3.4) suggest that a high proportion of basal
species to all species, B/N, produces more coherent food webs (i.e. with a low
incoherence parameter ¢). We take this as an additional predictive food web statistic
for family membership.

Our findings are summarized in fig. [3:9) This is a scatter plot of all 46
food webs where we have plotted the fitted model temperature 1" and the measured
incoherence parameter ¢ against the ratio of basal species to all species B/N. We
observe a clear anti-correlation between ¢ and B/N (linear model ¢ = a% + b
a=—1.06,b=0.77, R? = 0.53,p = 8.47-107?) that indicates a positive relationship

between how coherent a network is (low ¢) and how many of its species are basal.
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Figure 3.9: Scatter plots of the temperature T (left) and the incoherence parameter
q (right) versus the basal species ratio B/N for all food webs. The gradient indi-
cates the degree of over-representation (red circles) or under-representation (blue di-
amonds) of the feed-forward triad S2 as measured by the normalized z-score Zga. The
line shows the transition from over-representation (above) to under-representation
(below) as observed in the model with N = 100, (k) = L/(N — B) = 10 averaged

over 100 runs. Error bars are approximate 95% confidence intervals.

We have also coloured the markers of each food web to indicate the level
of over- or under-representation of triad S2 as measured by the normalized z-score
Zga. Red circles indicate an over-representation while blue diamonds indicate an
under-representation of S2 in the respective food web. Remarkably, based on this
measure, we uncover two clusters of food webs corresponding roughly to the two
families based on TSP similarities. The first cluster is once again characterized by

a high incoherence parameter ¢ as well as a low ratio of basal species to all species
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B/N. The second cluster is characterized by a low incoherence parameter and a
high ratio of basal species to all species. The only exceptions are six food webs
in the first family (ID 20 Coweeta (1), ID 21 Martins Stream, ID 31 Lough Hyne,
ID 36 Carpinteria Salt Marsh Reserve, ID 41 Caribbean Reef and ID 44 El Verde
Rainforest), four of which correspond to food webs poorly matched by our model
(fig. . We conclude that, indeed, the main difference between the two families is
the relative role of triad S2 as already observed in the bulk behaviour of the TSPs
in fig. 3.7

Finally, we study whether our model exhibits a similar transition from a rela-
tively S2-poor to an S2-rich state which would explain the relatively good agreement
between empirical and model generated TSPs for the two families (fig. [.8)). We find
that for a given basal species ratio B/N there exists a critical temperature T, and
thus a critical incoherence parameter q., which signifies such a transition. For T
(and ¢) below these critical values, the model generates networks where S2 is under-
represented, while for values above critical, the networks generated have either an
even or an over-represented number of S2 triads. We include the transition line of
the two regimes in fig. for an ensemble of 100 model networks with N = 100
species and an average (non-basal) degree (k) = L/(N — B) = 10. Networks with
q below the line show an under-representation of S2 triads, while networks with ¢
above the line show an over-representation as measured by Zgo.

Remarkably, the model results are in very good agreement with the empirical
data despite the fact that both the network size N and the average degree (k) vary
considerably between the empirical food webs. Almost all food webs with an under-
represented number of S2 triads fall below the transition line of the model while
those with an over-represented number reside above the line.

These findings suggest that the two families of food webs differ in the degree of
omnivory present as measured by the prevalence of triad S2 which is itself intimately
related to the incoherence parameter q. Interestingly, based on the strong anti-
correlation between ¢ and B/N, either parameter is a strong determinant of family
membership. To our knowledge, the GPPM is the first food-web model able to
reproduce triad significance profiles consistent with empirical observations. The
ability to produce model networks belonging to either of the two families suggests
that the parameters ¢ and B/N are both important in the mathematical modelling of
food webs and may, in fact, be fundamental for understanding local preying patterns

in food webs.
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3.6 Discussion

Our investigation of trophic interaction patterns in food webs has revealed significant
correlations between the degree of omnivory, hierarchical organization of trophic
species and the density of basal species.

The analysis of local trophic interactions via triad significance profiles in
empirical food webs reveals two distinct families of food webs characterized by a
relatively low or high incoherence parameter respectively. While certain differences
across families of food webs based on their T'SPs have been observed before [229],
these are not predicted by any existing food web models, calling into question their
use as null models given the academic significance attached to food web motifs
[25, 0], 56l 196] 229]. Trophic coherence provides a network theoretic metric that
enables us to classify and predict the relative prevalence of such motifs.

We have shown qualitatively that the the main difference between the two
food web families is the extent of omnivory, as measured by the over- or under-
representation of triad S2 (the “feed-forward loop”). This classification of food webs
into two families according to the extent of omnivory is at odds with previous claims
that omnivory occurs more often than one would expect to happen by chance across
most food webs [229]. On the other hand, the existence of these families may be
related to different ways omnivory emerges in food webs and influences their stability
[10, 131, [177]. We have tested our prediction for the onset of omnivory using a new
model for generating synthetic food webs with a given trophic coherence. We find
that the model exhibits a transition from an under-representation of omnivory to
an over-representation of omnivory as a function of trophic coherence. Our model
results fit the food web data very well, providing evidence of the importance of
trophic coherence as well as the basal species density in modelling realistic trophic
interactions. We would like to emphasize that these findings are remarkably robust
between food webs originating from vastly different habitats.

This work has expanded on the importance of trophic coherence in predicting
structural features in food webs [I31], but the biological origin of trophic coherence
remains elusive. Basal species density and its effect of suppressing highly incoherent
structures in both empirical and model food webs may provide some clues. All other
things being equal, a higher proportion of autotrophs in a food web will necessarily
mean that a higher proportion of consumers will feed on these basal species. In
turn, this would have a dampening effect on the formation of long food chains in
the trophic hierarchy and hence fewer possibilities for a varied diet of species at the

top. Figure [I.1] exemplifies how this hypothesis could lead to very different food
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web structures. Established food web models do not treat basal species density as
a predictor for emergent structure but rather as an emergent property itself. On
the other hand, most food webs have been found to be significantly more trophically
coherent than a random graph with the same density of basal species, so there must
be other coherence-inducing mechanisms at play [128]. Further work is needed to

elucidate the reasons behind this property of ecosystem structure.



CHAPTER 4

SPREADING PROCESSES ON TROPHIC NETWORKS

In the previous chapter we saw how analysing network structure can lead to new
insights about complex food webs. It is perhaps surprising that just by looking at
connection patterns between interacting agents, in this case feeding relations be-
tween species, we can draw conclusions about qualitative differences between the
networks. However, network structure is only half the story. When we study dy-
namical processes on top of networked systems, we uncover a whole new world of
interesting phenomena by incorporating a set of states that nodes in a network can
take which are evolved according to some simple rules. Of course, the emergence and
nature of these phenomena are also mediated by the underlying network structure.
A major area of network science is to understand how different network structures
affect dynamics.

In this chapter we study two simple dynamical processes on the trophic net-
work model introduced in the previous chapter. Our aim is to investigate how the

dynamics differ as we change the underlying structure of networks.

4.1 Background and related work

The spreading of activity through a network has been extensively studied in a wide
variety of settings [23, 205]. Perhaps the most notable example is the study of
infectious disease on human contact networks in epidemiology [71], 141, 195]. Math-
ematical modelling of infectious disease has a rich history because of its importance
in informing public health interventions for the control of disease [16] 137, 139]. In
the next section we briefly review basic models and concepts of epidemic models,

their extensions on contact networks as well as some spreading processes which do

o4
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not originate from the study of epidemiology.

4.1.1 Compartmental epidemic models

Most of the classical models of epidemic diseases use compartmentalization of the
population in which individuals are grouped into compartments according to their
disease state (e.g. susceptible, infected or recovered) with transition rates for chang-
ing from state to state as the disease progresses [16, 137]. Without any underlying
contact network structure such models are very simplistic and assume that all indi-
viduals in a given state are statistically indistinguishable from each other so it makes
sense to only study the evolution of proportions of individuals in each compartment.
This is the so called “well-mixed” population case because the absence of a contact
network implicitly assumes that individuals constantly interact with each other in
exactly the same Way.E|

The modern mathematical modelling of epidemics was initiated by Kermack
and McKendrick [I39] who define and study a compartmental SIR model (sometimes
also called the Kermack-McKendrick model) with three disease states—susceptible,
infected and recovered. They study the model in the deterministic setting using a

set of coupled nonlinear ODEs:

as

2 — _ B8]

dt g5

dl

= = BSI =T (4.1)
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dt 7 )

where 3 is the infection rate and ~ is the recovery rate. Infection is supported via
the law of mass action—the assumption that rate of encounters between susceptible
and infected individuals is proportional to the product of their numbers in society as
indicated by the 8ST termsﬂ This is just another way of saying that the population is
well-mixed (homogeneous mixing assumption). The key quantity which determines
whether the infection can spread is the so called epidemic threshold Ry = 5S/7.

If Ry < 1, each infected person will in turn infect fewer than one person before

In fact, the absence of an underlying contact network is equivalent to the case of individuals
living on a complete network.

’It is important to note that this formulation of the SIR model has density dependent
transmission—the number of infectious contacts is dependent on the population size. An alter-
native way to model SIR dynamics is via frequency dependent transmission where the number of
infectious contacts is rescaled by the inverse population size N ~!. Both modelling assumptions can
be justified depending on the disease dynamics under study, but frequency dependent transmission
is usually more natural for infectious disease modelling even though it is different from the original
Kermack-McKendrick model.
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recovering and the disease will die out. On the other hand, if Ry > 1, the opposite is
true and the epidemic will spread. The epidemic threshold Ry is perhaps the single
most important quantity in epidemiology.

The SIR model can be made more realistic by making it stochastic using
reaction diffusion equations [242]. In this case, the SIR model is governed by the

reactions

s+125 91

(4.2)
IL R,

and the evolution of the disease is modelled as a continuous time Markov chain [216].
It is worth noting that although the Markov Chain formulation is exact, its use for
acquiring analytic results is limited because of the sheer number of interdependent
equations—an SIR model of 3 compartments and N individuals gives rise to a total
of 3N possible states of the epidemic which limits exact results to small systems
and very simple dynamics. Because of this, a popular approach is to simulate the
epidemic directly using Monte Carlo methods, typically using Gillespie’s algorithm
(also known as the stochastic simulation algorithm or kinetic Monte Carlo) [107].

One can show that the deterministic ODE model is an approximation of
the full Markov Chain model in which all individuals in the same compartment are
assumed to be statistically indistinguishable from each other and the interactions
they experience can be described by the average interactions due to the full system
[23]. This approach of reducing a stochastic model to its deterministic limit is
sometimes called mean-field (MF) theory.

It is much more realistic to model epidemics on explicit contact network
structures [19, 23], [71], [72], 195]. In this scenario, instead of implicitly assuming that
individuals all interact with each other, they are identified as nodes of some predeter-
mined network structure which prescribes the exact interactions between individuals
via the link structure. As in the case of homogeneous mixing, exact results from
a Markov Chain formulation are sparse, so practitioners rely on stochastic simu-
lations and various mean-field approximation schemes (see [I41 [195] for thorough
reviews). Analogously to the homogeneous mixing case, there is a critical epidemi-
ological threshold which separates diseases that die out quickly from diseases that
spread to infect a considerable part of the network. In this case the threshold is
dependent both on the effective infection rate and the network topology.

There are many different kinds of compartmental models studied in epidemi-
ology and beyond [195]. The SI model only has two compartments and models

diseases in which infected individuals remain infected indefinitely. The SIS model
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(also known as the contact process in the statistical physics literature [112, [116])
allows for recovery, but does not grant immunity from the disease. The SEIR model
incorporates a latent state (E for exposed) to deal with individuals exposed to the
disease but not yet infectious while the SIRS model incorporates waning immunity.
More complicated compartmental models may also include age structure, popula-
tion demographics via birth and death rates and even attempt to move beyond the
Markovian assumption to include memory effects and model more realistic infectious
periods [44], [159] 160].

4.1.2 Complex contagion

Classical epidemic models are sometimes called “simple contagions” to reflect the
fact that individuals have a constant probability of acquiring infection from infec-
tious peers for every such exposure and interactions are generally assumed to be
independent. Recently, however, there has been an interest in studying “complex
contagions” in which various other assumptions are made to make transmission dy-
namics more realistic [I88] and applicable to phenomena outside epidemiology such
as in modelling rumour spreading or the diffusion of innovation. A subset of models
that try to capture complex contagion are threshold models.

The most famous threshold model is the Watts Global Cascades Model or
Watts Threshold Model (WTM) [247]. It is a binary state model with individuals
adopting either of two states: .S for susceptible and I for infected analogously to
epidemic models. Each individual ¢ also has a threshold R; drawn from some distri-
bution and fixed in time. The states of the nodes change in time according to an
update rule in which a susceptible individual ¢ becomes infected if at least a thresh-
old fraction R; of its neighbours are infected, else it remains susceptible. An infected
individual remains infected indefinitely. The model exhibits a phase transition from
local cascades in which only a finite number of individuals get infected to global
cascades which involve infecting a finite fraction of the population.

Another example of a complex contagion is the so called Generalized Epidemic
Process (GEP) introduced independently by Janssen et al. [125] and Dodds and
Watts [75]. This model incorporates memory of past exposures to a contagious
influence and can interpolate between the WTM and a simple SIR model. Recently,
it has been shown to be, in fact, a special case of the WTM [170].
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4.1.3 Other spreading processes

The literature on spreading processes on networks extends far beyond epidemic and
contagion models typically considered in epidemiology. It is beyond the scope of
this thesis to discuss the many different kinds of processes studied on networks, so
we provide some examples together with selected reviews for the interested reader.
Examples include random walks and diffusion on networks [8, [161], [166], spin models
such as the Ising model, XY model or the Potts model [77], synchronization models
[17], firing neural network models [13] [120], and models of social dynamics, including
opinion and voter dynamics [58]. A recommended textbook that touches upon many

of these types of processes has been published by Barrat et al. [23].

4.1.4 Generalized network structures

While most of the preceding discussion on spreading processes on networks has
historically been focused on simple, undirected networks, the study of spreading
processes on more general network structures such as directed or weighted networks
as well as multi-layer networks [43], [142] and temporal networks [119] has become
more prominent in recent years. There is good reason for considering more general
network structures as they can confer an even higher degree of realism. For example,
weighted networks are the natural framework for considering contagion which is not
equally facilitated across all links [85] [102] E]while directed networks become relevant
in studying contagion with an intrinsic asymmetry in the propagation such as in some
sexually transmitted diseases [I169] or on some social media platforms such as Twitter
[30].

In this chapter we continue the tradition of studying the effect of network
structure on spreading dynamics by considering two different spreading processes on

top of directed networks with a given trophic coherence.

4.1.5 A note on discrete vs continuous time dynamics

In the preceding discussion on spreading processes, we have implicitly assumed con-
tinuous time dynamics. Working in continuous time is equivalent to asynchronous
updating of individual states as exemplified by Gillespie’s algorithm [107]. Alter-
natively, one can choose to work in discrete time steps which naturally corresponds
to parallel or synchronous updating of individual states. Synchronous updating of

states has the advantage of allowing fast simulations, but care must be taken if

3This scenario is similar to studying contagion in which the rate of infection is individual de-
pendent [138] [181].
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discrete time simulations are used as approximations to genuinely continuous time
dynamics [94]. For us, we have chosen the spreading processes defined in the fol-
lowing section to be naturally discrete so we do not face these approximation issues.

For a more comprehensive discussion on these two approaches see [205], Sec. 3.5].

4.2 Two spreading processes

With a view of exploring the influence of trophic structure on how activity of some
kind spreads through a directed network, we consider two different paradigmatic
spreading processes: a model of complex contagion and a firing neural network
model. In both models we take time to be discrete and update nodes in parallel

(synchronously).

4.2.1 Complex contagion model

Our first model is an adaptation of the classical Susceptible-Infected-Susceptible
(SIS) epidemic model [195] which bears resemblance to the global cascades model
[247] in that spreading dynamics is governed by the proportion of a node’s infected
neighbours.

In this model each node 7 in a network at time ¢ is characterized by a binary
state variable s;(t) which can take two values: s;(t) = S if node 7 is susceptible or
si(t) = I if node 1 is infected. Next, we need to specify spreading dynamics. First, a
node which was infected at time ¢ automatically becomes susceptible again at time
t+ 1:

P[Si(t—i- 1) = S‘Sz(t) = I] =1. (4.3)

In defining transmission dynamics, we incorporate the phenomenon of “complex con-
tagion” whereby an “infection” event can be a non-linear function of the proportion
of neighbours of the node in question who are already infected [12, [188]. Specifically,
at each time step £ 4+ 1 a susceptible node 7 becomes infected with probability given

by

Plsi(t +1) = I|si(t) = §] = (Z)a (4.4)

where n; is the number of infected in-neighbours (i.e. nodes j such that a;; = 1)
at time t and k; is the in-degree of node 7. The parameter « introduces a non-
linearity in the dynamics leading to different complex contagion scenarios. When «

is between 0 and 1, the probability is a concave function of the proportion of infected
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neighbours which means that the probability to be infected grows rapidly with the
first few infected contacts of a susceptible node and slowly thereafter. On the other
hand, if @ > 1 the probability is convex meaning that a large proportion of infected
neighbours is required to trigger an infection event. Finally, if « = 1, the probability
of infection is linearly proportional to the fraction of infected neighbours. This is
equivalent to the global cascades model [247] with uniformly distributed threshold

values with the difference that nodes in our model recover immediately.

4.2.2 Neural network model

The second model we consider is a version of the Amari-Hopfield neural network
[13,120]. As in the contagion model, each node has a binary state variable v;(¢) = £1
representing that at time t a neuron can either fire an action potential or not. The
probability of node ¢ updating its state at time ¢ + 1 is given by a sigmoid

Plui(t +1) = £1] = = (& tanh[Bhi(t)] + 1), (4.5)

DO | =

where

hi(t) = 3 ajivs (1) (4.6)

is a “field” experienced by node i whose strength is determined by the aggregate
state of its in-neighbours. The parameter 8 allows for a degree of stochasticity, i.e.
for low 8 the updates become increasingly random as nodes switch between states
spontaneously and the field h; plays no role while for high S the dynamics become
more deterministic. The field h; classically takes the adjacency matrix a;; to be
weighted to account for the effect of different synaptic weights, but for our purposes

we consider all weights to be equal to unity.

4.3 Coherent networks

For completeness, we briefly recall the construction of the trophic network ensemble
described in the previous chapter (see Section for a full discussion) that serves
as the network backbone that we study the spreading processes on. We start with
B basal nodes (i.e. nodes with zero in-degree) and proceed to introduce N — B non-
basal nodes sequentially at each step choosing one random in-neighbour for each new
node. At the end of this procedure the network has N nodes, each with a preliminary

trophic level §;, and N — B links. Finally, to introduce the remaining L — N + B
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links, we place a link between each pair of nodes (i, 7) with probability proportional

to

Plai; = 1] « exp (-W) : (4.7)

where T is a temperature parameter modulating the degree of order or trophic co-
herence in the network. The completed networks are then characterized by the
distribution of trophic levels s; of nodes and the distribution of trophic distances
x;j = s; — s; of links. We denote by ¢ the standard deviation of the distribution of
trophic distances so that ¢ = \/@:2>7—1 q is called the trophic incoherence parame-
ter and measures the disorder of the generated networks—a temperature parameter
of T'= 0 leads to ¢ = 0 and perfectly coherent or “layered” networks while higher val-
ues of T' lead to more disorder. Figure[£.I]shows two examples of networks generated
using this model with identical parameters N, B and L but different temperatures T’
and different resulting trophic coherence ¢. Figure shows the monotonic depen-
dence of ¢ on T as well as the effect of the number of basal species B. Our goal is
to study the dynamics of spreading processes on networks that range from ordered
(low T) to disordered (high T) networks.

Figure 4.1: (a) An example of a maximally coherent network (¢ = 0). (b) A network
with the same parameters N, B and L as the one on the left, but less trophically
coherent (¢ = 0.49). In both cases, the hight of the nodes on the vertical axis
represents their trophic level. The networks were generated with the preferential
preying model as described in the main text, with 7' = 0.001 for the one on the left,
and T = 1 for the one on the right.

4.4 Results

In order to numerically investigate the effects of trophic structure on spreading phe-
nomena, we generate networks with a specified number of nodes N, basal nodes B
and edges L, but varying temperature parameter 1" as described in Section [£.3] and

perform Monte Carlo simulations of each of our dynamical systems on top of these
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Figure 4.2: Trophic coherence, as given by ¢, against the temperature parameter T
for networks generated with the preferential preying model described in the main
text, for different numbers of basal nodes: B = 10, 50 and 200, as shown. In all
cases, the number of nodes is N = 1000 and the mean degree is (k) = 5. Averages
are over 1000 runs.

networks. The initial condition for both the contagion and neural network model
is to set all nodes to susceptible/inactive except for the basal nodes which are all
infected/active, i.e. s;(t) = S or v;(t) = —1if ki* > 0 and s;(t) = I or v;(t) = 1 if
k:;n = 0. For each simulation run we measure the duration of the infection, that is,
the number of time steps until no nodes are infected, as well as the incidence, the
proportion of nodes which have at any time been in the infected state.

Figure [£.38) shows the mean incidence against 7" for various value of a. On
highly coherent networks (7" ~ 0), the infection spreads to the whole system for
any value of a. On leas coherent topologies, however, whether contagion is sub- or
super-linear has a strong influence on spreading: for a > 1 the infection only reaches
a fraction of the network, while for o < 1 the effect of coherence on incidence is non-
monotonic. In fig. where the mean incidence is plotted against « for various
values of T', we can see how the effect of @ on spreading is modulated by topology,
becoming less severe the more coherent the networks. Hence, it is the interplay of
both the trophic coherence of the underlying network and the form of the infection
probability which determines whether the infection can reach a large proportion of
nodes.

We also performed a similar investigation of the Amari-Hopfield neural model
on networks generated in the same way. The duration is now the number of time
steps taken before all nodes are in the inactive (not firing) state and the incidence is
the proportion of nodes which at any moment during this period adopted the active
(firing) state. As with the infection, whether this pulse will propagate throughout

the whole network is determined by both the neural dynamics, as parametrised by
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Figure 4.3: Average Incidence values from Monte Carlo simulations of the two spread-
ing models on networks with varying trophic coherence, as described in the main text.
(a) Incidence against T' (smaller 7' means more coherent networks) in the complex
contagion model for several values of the contagion parameter «, as shown. (b)
Incidence against « in the complex contagion model for several values of T'. (¢) In-
cidence against 7" in the Amari-Hopfield neural network model for several values of
the stochasticity parameter 8. (d) Incidence against 5 in the Amari-Hopfield neural
network model for several values of T. All networks have N = 1000, B = 100, and
(k) = 5. Averages are over 1000 runs.
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Figure 4.4: Heat-maps showing average values of incidence and of the common
logarithm of duration on a colour scale; results are from Monte Carlo simulations of
the two spreading models on networks with varying trophic coherence, as set by T.
(a) and (b) Complex contagion model, where « is the contagion parameter. (c) and
(d) Amari-Hopfield neural network model, where [ is the stochasticity parameter.
All networks have N = 1000, B = 100, and (k) = 5. Averages are over 100 runs.

B, and the trophic coherence of the underlying network. Figure shows the
mean incidence against T for several values of 3, while fig. has 8 on the x-
axis for various values of T'. Despite the different dynamics, the curves bear a
resemblance to the infection dynamics in panels (a) and (b). In both cases, a high
trophic coherence (T' ~ 0) can ensure that the pulse of activity will reach most of
the network irrespectively of other parameters, whereas if the network is incoherent
(T > 0), propagation resulting in a large incidence requires low « (for the complex
contagion model) or low § (in the neural network) respectively.

Figure [4.4] displays heatmaps of incidence and duration for both the com-
plex contagion model (figs. and and the neural network model (figs.
and . Figures and show the mean incidence against T" and the relevant
model parameter (a for the complex contagion and (3 for the neural network), while
figs. [£-4b] and [£.4d) show the logarithm of the duration against the same parameters.
We performed simulations for a maximum of 10® Monte Carlo steps, so any dura-

tion above this can mean either a long but eventually finite (transient) period of
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activation or an endemic state in which a degree of activity survives indefinitely.

By comparing incidence and duration, we can discern that both models ex-
hibit three qualitatively different regimes of behaviour: at high 7" and high « or S,
activity dies out quickly without reaching most of the system; at high 7" and low
« or [, activity spreads to the whole system and remains indefinitely; finally, at
low T, activity spreads to the whole system but dies out quickly. We can refer to
these regimes as inactive, endemic and pulsing respectively. The main qualitative
difference between the behaviour of the two models regards the endemic regime. In
the complex contagion case, the endemic regime is confined to sufficiently incoherent
networks and its range increases monotonically with 7. On the other hand, in the
neural network endemicity occurs for any 7" if § < 2, and the range is non-monotonic
with T, peaking at intermediate values of T.

Why does trophic coherence affect the spreading processes as described and
in such similar ways for both kinds of dynamics? Consider first the case of complex
contagion on a perfectly coherent network (low T'), like the one in fig. . If the
basal nodes are all initially infected, then we have from eq. that in the next
time step the probability of infection for nodes at level s = 2 is P = 1 for any value
of o and thus the infections moves up a level. By the same process, one time step
later the infections spreads to level s = 3 and continues to spread in this way until
it has reached the whole system—at which point the infection dies out because the
nodes at the top have no outgoing connections. On an incoherent network (high 7°),
like the one in fig. as the infection moves up the trophic levels, the fraction
of infected in-neighbours affecting a given node i, f; becomes lower with increasing
s;. This is because with increasing 7', the connections between nodes span a wider
range of trophic levels and since infected nodes recover immediately, it is likely that
at any given time a smaller proportion of a node’s in-neighbours will bee infected
than in the low T scenario. Hence, if the network is sufficiently incoherent, a pulse
of activity will die out as it progresses up the levels and only reach a finite fraction
of the nodes. This explains why the pulsing regime occurs at low 7. According to
eq. , the above considerations apply also to the neural network model at low T
when  is sufficiently high that the probability of a node being activated when all
its in-neighbours are active is P ~ 1.

For the complex contagion to become endemic, given that nodes recover im-
mediately after infection, there must be some degree of feedback, i.e. the network
must contain cycles. As Johnson and Jones [I128] have shown, the expected number
of cycles in a network is a function of its trophic coherence ¢, and for ¢ below a

particular value (which depends on other topological properties), networks are al-
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Figure 4.5: Average incidence values from Monte Carlo simulations of the two spread-
ing models on networks with varying trophic coherence, as described in the main text.
(a) Incidence against T' (smaller 7" means more coherent networks) in the complex
contagion model for a = 1. (b) Incidence against 7" in the Amari-Hopfield neural-
network model for § = 3. Symbols indicate different network sizes (N = 1000, 5000
and 10000) and proportions of basal nodes B (N/B = 10 and 20). In all cases, the
mean degree is (k) = 5. Averages are over 1000 runs.

most always acyclic. This explains the endemic phase which grows in range with T
However, the extent of node reinfection will depend on both the density of cycles
and the infection probability as determined by eq. ; reinfection is therefore more
likely at lower . Again, this argument extends to the neural-network model with
a caveat. In the complex contagion model a node must have at least one infected
in-neighbour to have non-zero probability of becoming infected, so for the endemic
regime to arise, cycles in the network are a necessity. By contrast, the neural net-
work model admits spontaneous node activation for any finite value of 8. If 5 is low
enough, the system enters the standard paramagnetic (or memoryless) phase of the
model with continuous, random activation of nodes. This explains why the endemic
regime for the neural model extends to the full range of T' for low S.

Finally, the non-monotonic dependence of the endemic regime with 7' in
the neural model seems to be cause by a balance between the two mechanisms we
have described for activity propagation: a rapid pulse which can travel of coherent
networks and the reverberation allowed for by the cycles present in incoherent ones.
It is perhaps noteworthy that this effect of feedback in the neural model is similar to
the mechanism of “cluster reverberation” put forward to explain short-term memory
[130].

To conclude, we look into the effects of network size and the proportion of
basal nodes on incidence. Figure [£.5a] shows how incidence depends on 7' when we
fix @« = 1 for the complex contagion model and fig. shows the same for the

neural network model with § = 3. Results are presented for three network sizes
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(N = 1000, 5000 and 10000), and two ratios of basal nodes, N/B = 10 and 20. In
the complex contagion model, the lines for different N but fixed basal ratio collapse
and there is only a small effect of the basal ratio on the incidence at high 7T'. In the
neural network model, however, there is a much more pronounced influence of the
basal ratio on the incidence at high 7. At high 7', a ratio of N/B = 10 allows for
the activity to reach the whole system while this is not possible if N/B = 20. This
may be a consequence of the dependence of the mean trophic level on this ratio [128]
which for random graphs has an expected value (s) = N/B (see eq. (3.16))). When
N/B = 20, the non-monotonicity of incidence with 7" is also exacerbated slightly by
N.

4.5 Discussion

We have shown that the trophic coherence of directed networks can have a significant
impact on spreading processes taking place on top of the networks. In particular,
our numerical investigation of two very different dynamics—one a model inspired by
epidemics and the other a neural network model originally put forward to explain
associative memory—indicates that this topological feature is relevant for any sys-
tem in which some kind of signal is transmitted between agents in such a way that
these signals interact. While there is not yet an analytical theory able to describe the
precise spreading dynamics as a function of trophic coherence, it is clear that such a
theory should take into account two effect: the transmission of pulses of synchronous
activities which can occur on highly coherent topologies, and the maintenance of en-
demic states enabled by feedback loops on incoherent networks. Trophic coherence
has already been shown to play an important role in determining various features
of directed networks such as linear stability [I31], feedback loops [I128] and interval-
ity [76]. We add here to such work by showing that spreading processes are also
strongly influenced by this recently identified topological feature and submit that
more research is required to determine its relationship to other network properties,
to build a generalised understanding of its bearing on dynamical processes, and to

discover by what mechanisms non-trivial trophic coherence comes about in nature.
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CLUSTERING AND ROBUSTNESS IN NETWORKS

Network robustness or resilience to random or targeted breakdown is a widely stud-
ied phenomenon in network science due to its crucial role for designing artificial
networks such as power grids and the Internet as well as understanding connectivity
patterns and stability of natural networks [7, 64, 65]. The tool of choice for studying
robustness is percolation—the random (or targeted) removal of nodes or links on a
network, which is among the most widely studied processes in statistical physics [2].
The robustness of the network is then measured as the fraction of of nodes remaining
in the giant connected component.

The emergence of robustness in random networks is typically studied in equi-
librium ensembles such as the ER and the CM ensembles. Much less is known about
the emergence of robustness in systems far from equilibrium. While the equilibrium
case only considers the emergence of robustness on average, in this chapter we ex-
plore how robustness arises starting from atypical, minimum entropy states of the

ensemble and relaxing towards more typical equilibrium states.

5.1 Background and related work

Robustness of networks is generally studied in the context of percolation theory
[2]. In its simplest form, percolation theory studies the robustness of interconnected
systems such as networks by randomly removing a fraction of nodes or links (cor-
responding to site percolation and bond percolation respectively) and examining the
structure of the remaining system. Conventionally, percolation is parametrized by
the node or link occupation probability p so that each node or edge is deleted with

probability 1 — p. A robust or a resilient network is one which requires a large frac-
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tion of node/link deletions to lose its giant connected component (GCC) while a
non-robust network is one which does not require much damage to disintegrate into
a union of many small components. This leads naturally to the concept of percola-
tion threshold p. which is simply the smallest value of the occupation probability for
which a GCC exists with high probability in the N — oo limit. It is worth noting
that the study of percolation is intimately linked to the study of the SIR disease
model on networks as discussed in Chapter [4] [I38, [181].

Many other types of percolation processes beyond simple site and bond per-
colations have been proposed, examples include k-core percolation, in which nodes
of degree less than k are progressively removed [79], bootstrap percolation, in which
a collection of initially “activated” nodes activate their neighbours successively [28]
and a generalized epidemic process which studies percolation via a contagion pro-
cess |75} 125]. Recently these have all been shown to be special cases of the Watts
Threshold Model discussed in Chapter [4] [I70] .Other percolation processes include
choice so as to maximise the damage mimicking targeted attacks [7, [65], 223] or to
delay the percolation threshold such as in explosive percolation [84].

Network robustness via percolation can be studied in two ways—on single
networks, usually of empirical origin, or on whole random network ensembles. In the
first instance, there is only one underlying network structure, for example an empir-
ical network such as a snapshot of the Internet [64] or a power grid [215]. Because of
the stochastic nature of percolation, the percolation process is repeated many times
for the same network structure and averages of the size of the GCC are computed for
each value of p to determine the robustness and percolation threshold of the empiri-
cal network. By contrast, for studying percolation in random network ensembles the
underlying network structure is also different from realization to realization, but the
procedure for studying robustness is the same—generate many realization of random
networks from some predefined ensemble (e.g. the configuration model with a fixed
degree sequence), damage them via percolation and average the resulting sizes of the
GCCs [55].

Studying percolation via simulations is time and resource consuming. In
many cases analytical results can be derived to predict the percolation threshold,
size of the GCC if it exists and even the size distribution of small components.
In some cases these results are exact (in the N — oo limit) but in others only
approximate results have been obtained due to intrinsic correlations in the network
structure (such as the existence of triangles). In the next two sections we briefly
review approaches to studying network robustness via percolation for ensembles of

random tree-like as well as triangle rich networks.
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5.1.1 Robustness of tree-like networks

The study of network robustness started with the study of random network models
itself by Erdgs and Reényi [89] who studied the emergence of the giant connected
component (GCC) in the Erdés and Rényi (ER) random graph model (see Sec-
tion . In the G(N,p) model the link occupation probability p is exactly the
same as the bond occupation probability as studied in percolation theory [2]. The dif-
ference between traditional percolation theory and percolation on random graphs is
the underlying structure—rather than considering rigid lattice models, more general
structures such as the ER model are considered (see fig. [2.3). Erdds and Rényi [89]
showed that there exists a critical link occupation probability (percolation threshold)
pe = 1/N over which the G(N, p) model almost surely has a unique GCC containing
a positive fraction of nodes. Equivalently, in the large network limit (N — o), there
is a critical average degree (k). = 1 over which a GCC emerges.

With the advance of generalized random networks such as the configuration
model (CM), robustness results in terms of the existence of a GCC were extended
[174] leading to the celebrated Molloy-Reed criterion which states that in infinite
CM networks a GCC exists almost surely provided (k?) — 2(k) > 0. The size of the
GCC when it exists was also derived by Molloy and Reed [I75]. Cohen et al. [64]
derive the same expression using a different approach and apply it to studying the
resilience of the Internet. Schwartz et al. [2I8] generalizes this method for directed
networks.

Slightly later in two seminal papers Callaway et al. [55] and Newman et al.
[183] introduced the generating function (GF) formalism [249] which allows for an-
alytical calculation of the critical point, the size of the GCC if it is present and nu-
merical calculation of the size distribution of small components. The GF approach
was later extended to directed networks which have a more complicated component
structure [47, [78, [147]. Only very recently the GF formalism has yielded an analyt-
ical expression for the size distribution of small components in undirected networks
[149] as well as directed and multiplex networks [14§].

More recently, an alternative approach to assess network robustness has
emerged—the so called message passing algorithm—first introduced in the context
of general epidemic models [132] but later leading to a range of new results about
the location of the phase transition for the emergence of the GCC as well as a new,
fast algorithm for the numerical calculation of the component size distribution [I35].
The message passing algorithm has also been extended to directed networks leading
to new insights about the component structure [233]. It has also been extended to

characterizing robustness of finite networks which highlights some limitations of the
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approach when compared to direct numerical simulation [234].

The huge success of both the GF and the message passing approach has
crucially hinged on the “locally tree-like assumption”. Simply put, both approaches
for calculating component sizes and the emergence of the GCC only yield exact
results in the case of networks with no short loops such as triangles. As we saw in
Section large CM networks have exactly this property which have enabled the
application of these two approaches to accurately describe the robustness properties
of CM networks. However, real networks are rarely triangle-free which makes these
methods inadequate for networks with high clustering. In the next section we briefly

review approaches to studying robustness of clustered networks.

5.1.2 Robustness of clustered networks

Studying percolation in networks with a non-negligible number of short, closed loops
is fundamentally non-trivial because of the structural correlations that do not ex-
ist in in tree-like networks. To illustrate this simple fact, consider that in tree-like
networks one can safely assume that the second neighbours of a random node are
always exactly two links away from the initial node. In networks with short loops
such as triangles this is no longer true as the second neighbour of a node can also be
a first neighbour via a transitive link, see fig. Ignoring these correlations leads
to overestimating the number of second neighbours and consequently the extent of
the giant component [I82]. Nevertheless, several attempts to extend the methods
developed for tree-like networks to networks with non-negligible clustering coeffi-
cients have been made [33], 207, 220}, 256], although exact results are limited to some

special cases [73].

Figure 5.1: (a) A tree-like network in which no short loops are present. Both second
neighbours of the central node are exactly two links away. (b) A network with a
triangle. One of the second neighbours of the central node is also a first neighbour
because of the transitive link.

Attempts to extend the GF method to networks with considerable clustering



CHAPTER 5. CLUSTERING AND ROBUSTNESS IN NETWORKS 72

have either yielded results for a limited set of networks, (e.g. networks in which
triangles can have no overlapping edges [220]) or in contradictory results due to
the violation of edge independence in clustered random networks [33]. Recently the
message passing algorithm has also been extended to clustered networks [207], but
it is inadequate in dealing with whole random network ensembles with clustering.
Treating the full ensemble of random networks with a given degree sequence k =
{k1, ko, ...} and a fixed clustering coefficient C' > 0 still proves to be intractable in
the general case [250]. Instead, Del Genio and House [73] study the special case of
k—regular networks, where every node has degree k, and a fixed clustering coefficient
C. They show that regardless of the level of clustering, a GCC is always present
except in the degenerate C = 1 case in which the network consists of a union of
disconnected cliques of size k + 1.

Despite the large body of research surrounding the effect of clustering on the
robustness of networks, its implications are still not fully understood which points
to a need for more fundamental research of clustered networks. Here we take a step
back and explore simple relaxation dynamics of highly clustered networks to an un-
clustered (uncorrelated) equilibrium state. Specifically, we study the evolution of the
clustering coefficient under two edge rewiring schemes starting with fully clustered,
degree-regular networks in which all nodes have the same number of neighbours and
a maximal number of triangles. We find that under both dynamics whose equilib-
rium distributions correspond to the ER random graph and the CM respectively, a
GCC emerges via a continuous phase transition. We provide an analytical prediction
of the critical point for this transition as well as derive time evolution equations for

various network properties.

5.2 Methods

5.2.1 Network metrics

We consider undirected graphs with N nodes and L edges described by a sym-
metric N x N adjacency matrix A with binary edge variables a;; € {0,1} for
i,j € {1,...,N} with a;; = 1,7 # j indicating an edge between nodes i and j
so that L = ZZ j A;;. The degree distribution of a network is defined as p = N /N,
where N} is the number of nodes with degree k. We denote the nth moment of the
degree distribution by (k™).

We define the multiplicity m;; of an edge ij to be the number of triangles
it participates in [2I9]. Similarly to the degree distribution, we define the edge
multiplicity (or simply multiplicity) distribution as ¢,, = Ly,/L, where L,, is the
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number of edges with multiplicity m. We denote the nth moment of the multiplicity
distribution by (m').

The clustering coefficient of a network is defined as three times the number
of triangles divided by the number of connected triples, i.e. C' = 3Na /N, [185].
This measure of clustering is properly normalized so that C' € [0, 1]. It also admits a
probabilistic interpretation—it is the probability that a randomly chosen connected
triple of nodes is closed.

We can express the clustering coefficient in terms of the degree and multi-

plicity distributions. For any network we have

No=)" <§)Nk=NZ <§>pk:N<k2>2_<k> (5.1)
k

k

and
BNA =) Lm=L> mgm=L(m). (5.2)

Putting the above results together and noting that in any network L = N(k)/2, we

obtain the following general expression for the clustering coefficient:

(k) (m)
C= 0 (5.3)

5.2.2 Random network ensembles

We study relaxation dynamics of k-regular networks under edge rewiring in two
random network ensembles—the configuration model (CM) and the Erdgs—Reényi
random graph (ER).

The CM [48| [174] [I85] is defined by drawing a valid degree sequence k =
{k:l}ivzl from a degree distribution p; and producing a network realization uniformly
at random from all possible networks with that degree sequence [74, [185]. Provided
the second moment of the degree distribution remains finite, it can be shown that
the clustering coefficient scales as C' ~ 1/N so that in the thermodynamic limit
(N — o0) the resulting networks are tree-like [I85].

The ER random graph [88 [89] [105] is defined by placing L edges uniformly
at random between N nodeﬂ If we require that the mean degree (k) = 2L/N be
fixed, the degree distribution of the ER model in the thermodynamic limit is Poisson
with mean (k) [I85]. The ER model is thus a special case of the CM and has the

same scaling behaviour of the clustering coefficient.

! Another common definition leading to a slightly different model is to place each of the possible
(]2V ) edges with equal probability p, but this does not enforce a fixed number of edges.
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Given that both the CM and ER random graphs are asymptotically triangle-
free, it is natural to consider them as equilibrium ensembles for relaxation dynamics
of highly clustered networks into an unclustered state. To this end we describe
two edge rewiring mechanisms that have the CM and the ER random graphs as

equilibrium distributions (see fig. for a graphical demonstration).

(a) (b)

@ ® @ @
> >
© o—-=0 ©) ©) ®

Figure 5.2: (a) Double edge swap or degree-preserving randomization. (b) Edge
replacement or full randomization.

Double edge swap (CM). The double-edge swap [172,[208] is defined by choosing
two existing edges in the network at random and rewiring their ends to produce two
new edges while deleting the original two. This is also known as degree-preserving
randomization and so naturally produces network realizations in the CM ensemble
with a fixed degree sequence. The double-edge swap defines a Markov chain whose
equilibrium distribution is the CM [208].

Edge replacement (ER). Alternatively, one can fully randomize a network by
picking an edge at random and placing it anywhere in the network where there is
no edge already [158, [I78]. In this scheme the number of edges is preserved but
the degrees of the nodes are not. Edge replacement defines a Markov chain whose
equilibrium distribution is the ER ensemble.

A double-edge swap or an edge replacement constitutes an elementary rewiring

step.

5.3 Results

To assess the evolution of network measures over time, we take into account the
network size and the rewiring scheme (either CM or ER) to normalize the number
of elementary rewiring steps per number of edges. If rcyr and rgr are the number of

elementary rewiring steps in the CM and ER ensembles respectively, we define the
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Figure 5.3: Transition rates in the multiplicity distribution for a single clique of size

(k) +1.

corresponding time variables as

TER
=
arew (5.4)
CM = 7

These definitions have the useful interpretation that when tgcpeme = 1, the rewiring

scheme has, on average, modified each edge in the network.

5.3.1 Multiplicity distribution

The multiplicity distribution evolves over time as edges are rewired and triangles
are destroyed. The initial configuration of a k-regular network is a disjoint union of
N/({k)+ 1) cliques of size (k) + 1 which ensures maximal clustering C' = 1. In other

words, at time ¢ = 0, the multiplicity distribution is

{q“““ =1 (5.5)
Gn = 0ifm#£ (k) — 1.

Consider the smallest informative time step Atcy = 2/L or Atgr = 1/L
corresponding to exactly one elementary rewiring step. At ¢ = 0 a clique of size (k)+1
has exactly (<k>2+1) edges all of which have maximal multiplicity (k) — 1. Rewiring
any single edge will destroy (k) — 1 triangles leading to a decrease of 2((k) — 1) + 1
edges with maximal multiplicity, one for the rewired edge and an additional two
for each destroyed triangle. Assuming that no new triangles are created, the single
rewired edge will have multiplicity zero. Figure shows the transition rates in the
multiplicity distribution of a single clique.

We now make the ansatz that this is the main way the multiplicity distribu-
tion changes over time—multiplicity is predominantly decreased by rewiring single
edges from cliques and all such rewirings are independent. In this case, we can

write down the full transition rate diagram between multiplicity classes as shown in
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Figure 5.5: Evolution of the multiplicity distribution in an ER network with average
degree (k) = 4 and N = 10°. The solid lines are numerical solutions of eq.
while the markers are simulation results. The purple line with filled circles indicates
the average multiplicity (m).

fig. 5.4} This gives the following time evolution equations for g,:

dqm for m =

M (2m A4 g + 20m 4 1) gmat,

o (2m +1)q (m + 1)gm+1 B 1.1

B ot (5.6)
0

= =3 -

o ql+mz::2q

Figure [5.5] shows the numerical solution of these ODEs which is in excellent
agreement with simulation results. The calculations are valid both in the ER and
the CM case.

Average multiplicity. Using the time evolution equations for the multiplicity
distribution, we can derive exact expressions of its moments. Specifically we are

interested in the average multiplicity (m) as it features in the expression for the
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clustering coefficient. We have
(k)—1
d<m> dqm
= —Am. 7
dt mZ::l T (5.7)

Inserting eq. (5.6)) we obtain the simple expression

Using the initial condition (m)(0) = (k) — 1, this has solution
(m) = ((k) —1)e™™. (5.9)

Figure shows the analytic solution of the average multiplicity which is in perfect

agreement with simulation results.

5.3.2 Degree distribution

In the case of the ER model, the degree distribution is also changing over time.
Consider the degree distribution p(t) as a function of time and a time step Atgg.
We can calculate the rate at which pg(¢) changes.

An edge replacement event in the ER model consists of two steps. First, a
random edge is selected. Second, a random pair of nodes that are not linked by an
edge (let us call this pair a non-edge) is selected and the edge selected in the first
step is deleted while the non-edge becomes an edge.

When a random edge is selected, pi can decrease if at least one end of the
edge has degree k. Alternatively, pp can increase if at least one end of the edge has
degree k+ 1. The probability of reaching a node of degree k by following a randomly
chosen edge is given by the so called excess degree distribution [I85] which reads
sk = kpg/(k). Given this and the fact that a randomly chosen edge can have 0,1 or
2 nodes of degree k, we can calculate the expected number of nodes of degree k at

the ends of a random edge:

k
E(k—k—1) =252 + 25 (1 — sp) = 255 = 2°LF | (5.10)

(k)
This is the expected number of nodes whose degree would decrease from k to k — 1
during a single edge selection step. Note that at the beginning of the process the
degree distribution is regular so E (k — k — 1) = 2 as expected.

Similarly, the expected number of nodes whose degree would decrease from
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k + 1 to k leading to an increase in py is:

(k+ 1) prt1
(k)

Now consider the second step in the edge replacement event, the selection of

E(k+1—k)=2sp11 =2 (5.11)

a non-edge. When a random non-edge is selected, py can also change in two ways. It
can increase if at least one of the selected nodes has degree k — 1 and it can decrease
if at least one of the nodes has degree k. The calculation of the expected number of
nodes changed as a result of this is similar to the previous case, but we must consider
the distribution of non-degrees instead. To this end we study the graph complement
of the original network defined as a network in which two nodes are linked if and
only if they are not linked in the original network. From here on we denote by an
overbar quantities in the graph complement.

It is easy to see that the degrees of nodes in the complement are given by
k = N — 1 — k where k is the degree of a node in the original network and we have
P = Pr- Thus, the non-edges are selected proportionally to k not k as in the case
of edge selection so we must work with the excess non-degree distribution given by

sz = kpy./(k). Note that the mean non-degree is given by
(k) = kpy =N —1- (k). (5.12)
k

As in the case of edge selection, the expected number of nodes whose degree would

increase from k to k 4 1 thus reducing pi during a single non-edge selection step is

kp, 2(N—1-k)

Ek—-k+1)=2q=2—— = ——"pi. 5.13
When N is large we can approximate this by
E(k—k+1)~2p. (5.14)

Similarly, px can increase if we select a non-edge with at least one node with

degree k — 1. The expected number of such nodes in a single non-edge selection is
E(k—1—k)~2pp_. (5.15)

Figure describes pictorially the transition rates between degree classes as



CHAPTER 5. CLUSTERING AND ROBUSTNESS IN NETWORKS 79

2 2 2
6

2 4
(k) (k) (k)

Figure 5.6: Transition rates in the degree distribution under the ER model.

derived here. This allows us to write down the time evolution equations for py:

dpp. k k+1
— =21 — 214+ — 2—— 5.16
for k =0,1,.... This system of ODEs is not closed, so in order to solve it numerically,

we must truncate the system at some pg+ setting pr = 0 for all £ > k*. The value of
k* should be set high enough so the probability mass unaccounted for is minimal for
accurate predictions. We test our predictions by numerically solving the ODEs for
a network with average degree (k) = 2 and setting the cut-off k* = 8. The results
are shown in fig. The numerical solution of the ODE system is in excellent
agreement with simulation results. We also note that the cut-off is appropriate for
this level of approximation as the total probability mass does not diverge from unity

noticeably over the time period considered.
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Figure 5.7: Evolution of the degree distribution in an ER network with average
degree (k) =2 and N = 10° — 1. The solid lines are numerical solutions of eq.
while the markers are simulation results. The grey line indicates the equilibrium
value of po in an ER ensemble. The purple line indicates the total probability mass
in the system accounted for by truncating the ODE system at k* = 8.

Second moment of the degree distribution. Using the time evolution equa-

tions for the degree distribution, we can derive exact expressions of its moments.
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Specifically, we are interested in the second moment (k?). We have

d(k?) o dpk
yr —Zk:k — (5.17)

Inserting eq. (5.16)) we obtain the simple expression

Ay )

o @ + 4(k) + 4. (5.18)

Using the initial condition (k%)(0) = (k)? and recalling that the average degree (k)

is constant, this has solution
4t

(k2) = (k) ((k:> +1- e*m> . (5.19)

5.3.3 Clustering coefficient

Putting together the results for the multiplicity and degree distributions, and using
eq. (5.3]), we obtain exact expressions for the clustering coefficient as a function of
time in both the CM and ER ensembles:

CCM — e—3t
(0 o (520
(k) - T

We note that in the CM ensemble, the clustering coefficient has no dependence
on the average degree while this is not the case for the ER ensemble. This is because
the number of connected triples N, in the CM ensemble is constant by virtue of
having a fixed degree sequence while it is dependent on the evolving degree sequence
in the ER ensemble.

5.3.4 Giant connected component

We find that under both rewiring schemes there is an emergence of global connec-
tivity via the appearance of a giant connected component (GCC) at some critical
time t¢ (equivalently, critical clustering coefficient C). We confirm from simulation
results that a GCC emerges in a continuous phase transition (figs. and for the
CM and figs. and for the ER ensembles). Note that the large fluctuations
in the 2-regular case is due to the fact that 2-regular networks are exactly at the
point of criticality in the unclustered CM case (C' = 0). This phenomenon has been

studied in the context of reversible polymerization of rings [31].



CHAPTER 5. CLUSTERING AND ROBUSTNESS IN NETWORKS 81

1.00 1
0.75

@0 0.50

0.25 1

T

0.00

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.8: Proportion of nodes S in the giant connected component as a function
of time tcn for a few select k-regular networks. We observe a continuous phase
transition at a critical point ¢(; which depends on the average degree of the network
as explained in the main text. Vertical lines correspond to the analytically calculated
critical points.
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Figure 5.9: Proportion of nodes S in the giant connected component as a function of
clustering Co for a few select k-regular networks under the CM rewiring scheme.
We observe a continuous phase transition at a critical point C¢,; which depends
on the average degree of the network as explained in the main text. Vertical lines
correspond to the analytically calculated critical points.
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Figure 5.10: Proportion of nodes S in the giant connected component as a function

of time tgg for a few select mean degree (k) networks. We observe a continuous
phase transition at a critical point tfz which depends on the average degree of the

network as explained in the main text. Vertical lines correspond to the analytically

calculated critical points.
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Figure 5.11: Proportion of nodes S in the giant connected component as a function
of clustering Cgg for a few select mean degree (k) networks under the ER rewiring
scheme. We observe a continuous phase transition at a critical point Cgp which
depends on the average degree of the network as explained in the main text. Vertical
lines correspond to the analytically calculated critical points.
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We can calculate the critical point analytically by using the known result
that a GCC in an ER random graph emerges when (k) = 1 [I85]. We conjecture
that a GCC induced by edge rewiring emerges when the average number of external
edges between the original N/({k) 4+ 1) cliques of size (k) + 1 exceeds one. If this is

the case, the critical number of elementary rewiring steps is
r'= ————. (5.21)

Expressing this in terms of the time variable, we obtain the critical time for both
the CM and the ER rewiring schemes:

c 2
M = T (e + 1)
c 1
N

(5.22)

Note that these differ by a factor of two. This is because in the CM rewiring scheme,
even though every elementary rewiring step involves two edges, the two rewirings
are not independent—during one rewiring step it is possible to connect at most two
disconnected components.

Expressed in terms of the clustering coefficient, the critical thresholds read:

Céur —6/(k)((k)+1)

=e
co ((k) — 1)e=3/R(R)+1) (5.23)
ER (k) — e~ /B2 ((R)+1)

Figures [5.§ and confirm that these are in excellent agreement with simu-
lations in the CM case and figs. [5.10] and [5.17] confirm a good agreement in the ER
case which improves as the mean degree increases.

What is the cause of the discrepancy of the analytical result for the critical
point and the numerical simulations, particularly for low mean degree ER networks?
We conjecture that this is due to some edges being rewired multiple times while
others are not rewired at all. This would have the effect of increasing the critical
time because we have to wait slightly longer until the average number of rewired
edges discounting edges rewired multiple times reaches the point where long range
connectedness emerges. Figure [5.10] seems to confirm this to be the case. Let us
calculate this revised critical time in the ER case.

During an edge replacement step, the probability of any edge being chosen

for rewiring is 1/L. So after r rewiring events the probability that a specific edge
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has not been rewired is

1 T
P (not rewired) = <1 - L) : (5.24)
Substituting = Lt since we are in the ER case and taking the limit as L — oo, we
get

P (not rewired) = e, (5.25)

The new revised time for the emergence of the GC, call it t*, is then the time at which
point this probability drops below a certain threshold. What is this threshold? It
should be when the proportion of edges that have been rewired gives rise to a GCC

which is precisely given by t°. We can then write
et =1—1¢5 (5.26)

Note that by Taylor expansion we have t" ~ ¢ if this time is small as in the case
when the average degree (k) — oco. This explains why the ¢© value becomes a better
predictor for the critical threshold as the mean degree increases as seen in fig.

The revised critical point in the ER case is thus

CILESIN

(5.27)

. o (
t “IOg(l‘t)‘log(<k><<k>+1>—1

Figure [5.12] confirms that ¢* is a better predictor of the location of the phase tran-
sition. The difference between ¢ and ¢* becomes negligible as the mean degree
increases.

Another aspect that could influence the position of the critical point is the
possibility of having rewired more edges that needed to connect previously discon-
nected components. We show in Section that this should have no bearing on the

critical point in large networks.

5.4 Discussion

In this chapter we studied the evolution of highly clustered networks under ran-
dom edge rewiring dynamics. Our main result is showing the existence of a phase
transition in which a giant connected component emerges. Del Genio and House
[73] showed that equilibrium ensembles of degree-regular networks with prescribed
clustering always admit a giant connected component. As a consequence, spreading

processes such as infectious diseases in contact networks could always become en-
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Figure 5.12: Proportion of nodes in the giant connected component S as a function
of time tgR for a few select mean degree (k) networks. Solid vertical lines correspond
to the critical time ¢f; while dashed vertical lines correspond to the revised critical
time tpp.

demic regardless of the level of clustering. By contrast, our work implies that this
need not be the case in non-equilibrium systems. Depending on the precise mech-
anisms of time evolution of real networks and the level of clustering maintained, a
giant connected component facilitating spreading processes may or may not exist.
We have studied a model in which highly clustered populations undergo fully ran-
dom connectivity changes and even in this simple scenario we observe two different
modes of global connectivity.

Another interesting aspect of our work is from the perspective of statisti-
cal mechanics. A maximally clustered network is essentially the lowest entropy
microstate in the context of the random network ensembles studied here. This is
because such a network, under relabelling of nodes, is unique and least likely to be
produced by chance at equilibrium. By using this configuration as a starting state for
network dynamics, we have shown that the emergence of global connectivity is effec-
tively delayed. This raises several other research questions, for example, is random
rewiring the most or least effective method of delaying the onset of global connectiv-
ity? It is probable that more sophisticated rewiring methods involving choice, such
as those studied in explosive percolation [84], would lead to different critical thresh-
olds. We have also limited ourselves to studying rewiring that consistently destroys
triangles, but what about rewiring with a view to increase the number of triangles?
A number of greedy as well as equilibrium algorithms exist and are widely applied to
model highly clustered networks [98] 210], but it is unclear how they cover the space
of all networks and can lead to interesting behaviour such as hysteresis loops [98)].

Indeed, clustering in networks still leaves much to be explored.
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5.A Extraneous edges

Another mechanism that could change the location of the critical point ¢¢ is the
number of extraneous edges between already connected components. A GCC is
formed when there are enough external edges between the initial cliques. Only one
external edge is needed to connect two cliques, but there are multiple ways to do it
and sometimes multiple edges end up linking together the same cliques. For example,
we need only one edge two join two disconnected triangles, but there are a total of 9
ways to do it, moreover there is no guarantee that we will not end up with multiple
edges between these triangles.

More generally, let the average degree (k) be fixed, then at ¢ = 0 there are
n = N/((k) + 1) cliques of size (k) + 1. Any two cliques can therefore be connected
in ((k) + 1)? ways.

Suppose we never want to make more than one external edge to connect
disconnected components. Then at ¢ = 0 the number of choices for placing an

external edge is given by

n)zN(N—<k>—1)' (5.28)

(CREN :

After each rewiring event, the number of choices decreases by ((k) + 1)2, so after

r — 1 rewires, the probability of placing an extraneous edge on the next rewire, 7, is

2 (k) +1)%r
N (N — (k) —1)

P (extra edge on step r) = (5.29)

Thus, the expected number of extraneous edges after r rewiring events is

E (extra edges by step r) = Z

r’'=0

2 (k) +1)*r
N (N —(k)—1)

(5.30)

In particular, setting r = ¢ = N/2((k) + 1) we get

E (extra edges by step r°)
2 ((k) +1)° N

‘Nw—%wn'uw+w<uw+m+>
N +2(k)+2
== (5.31)
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Taking the limit N — oo, we get

E (extra edges by step r.) ~ —, (5.32)

A

which is fixed and independent of network size. Therefore, the formation of extra-
neous edges does not affect the location of the critical point in the large network

limit.



CHAPTER 0

CONCLUSIONS AND OUTLOOK

The studies considered in this thesis provide us with insights about the structure,
organization and dynamics of complex networked systems. Some research questions
in network science are motivated by an ever increasing amount of data while others
consider fundamental properties of network models as their starting point of investi-
gation. Here we have presented a synthesis of both data driven research (Chapter 3)
and theoretical inquiry (Chapters |4 and |5)) into network science.

Studying the make-up of ecological interactions may prove to be the corner-
stone in understanding the relationship between human activity and nature, and is
especially relevant in the age of ever more prevalent markers of climate change. Food
webs have fascinated ecologists for decades due to their structural features resulting,
for example, in counter-intuitive stability properties in the face of ever increasing
complexity [I31} [167]. In Chapter [3] we investigated how local preying patterns, con-
ceptualized as network motifs, relate to large-scale organization described by trophic
coherence. We found that the motif corresponding to omnivory—the tendency to
prey on species from several trophic levels—is strongly correlated with trophic co-
herence and provides a basis of clustering food webs into two families—ones where
omnivory is widespread and the others where it is sparse. Our network model which
incorporates tunable trophic coherence can successfully generate artificial food webs
in either family, suggesting the importance of trophic coherence as well as basal
species density in modelling realistic food webs. However, the biological origin of
trophic coherence and the fragmentation of food webs into distinct families depend-
ing on the extent of ommnivory is still not understood. This is an important research

question both for network scientists and ecologists in order to understand how food

88



CHAPTER 6. CONCLUSIONS AND OUTLOOK 89

webs assemble in nature.

Network structures are not only interesting because of the complex structural
patterns often found in empirically observed networks, but also because of their
propensity to support dynamical processes on top of their topologies. In Chapter []
we studied two paradigmatic spreading processes—a complex contagion inspired by
epidemics and a neural network process—on directed networks with tunable trophic
coherence. Our results uncovered a rich interplay between network structure and the
fate of outbreaks ranging from short-lived but global infections to endemic infections
confined to a small subset of nodes. These results could help our understanding of a
variety of network processes taking place on directed networks—from epidemics and
rumour spreading to shocks to ecosystems.

The study of the relationships between local and global network properties
and how change in one influences another is a widely studied topic in network sci-
ence. However, many attempts in quantifying these effects end up with inconclusive
results due to the inherent difficulties in studying random networks that exhibit
strong link dependence. In Chapter [5] we laid the groundwork for studying how
clustering influences the formation of a giant connected component in ensembles
of random networks. Contrary to previous approaches that study the problem at
equilibrium, we use a non-equilibrium approach by selecting unlikely network states
(maximal clustering) and studying their relaxation to common network states (low
clustering) within the ensemble of interest. We show that by selecting highly unlikely
configurations with a maximal number of triangles, the onset of the giant connected
component can be delayed, unlike in the case of equilibrium networks. Our research
readily raises several other research questions about the organization of complex
systems. For example, is random rewiring the most effective method of delaying the
formation of a GCC or are there methods, possibly including choice in the rewiring
akin to explosive percolation [84], that would effect the position of the phase tran-
sition? When considering directed networks, an analogous research question would
be to study the emergence of a strongly connected component when starting from
highly coherent network configurations as considered in Chapters [3] and [

Our focus in this thesis has been on simple directed and undirected net-
works, however, in recent years several generalizations of network structures have
been proposed to better capture the interactions in real world systems. Multilayer
networks [43] [142] is a framework suited for studying complex systems which are
made up of of a number of interacting, but fundamentally distinct networks. Exam-
ples include transportation multilayer networks [9] in which nodes represent stops

or interchanges and links in each layer correspond to different transportation types.
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Another example is social media networks—people are represented by nodes but con-
nections between them will vary between different social media platforms and real life
connections [I55] [162]. Simplicial complexes, originally studied in the context of al-
gebraic topology [I113], have become an interesting tool of modelling complex systems
in which more than two nodes can have interactions between them thus generalizing
the inherent dyadic interactions represented by links in networks [68] [69] 253] 257].
The quintessential example is scientific collaboration networks. A transitive rela-
tionship between three authors in a classical network description cannot distinguish
between the case that all three authors have collaborated on the same paper and
the case that they have collaborated only pairwise on distinct papers. A simplicial
complex description, however, allows for both kinds of interactions to be present and
distinguishable from one another. Hypergraphs take the notion of simplicial com-
plexes and extends it even further allowing very general interactions between any set
of nodes [35), [104]. Generalized network structures is a flourishing field with many
recent results obtained as generalizations of simpler results on networks. This is sure

to become an exciting new paradigm for studying complex, interacting systems.
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