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David Crevillén-Garćıa1, Puiki Leung2 and Akeel Abbas Shah1,3

1School of Engineering, University of Warwick, Coventry CV4 7AL, UK
2Department of Materials, University of Oxford, Oxford, OX1 3PH, UK

3Email: Akeel.Shah@warwick.ac.uk

Abstract. In recent years there has been an increasing interest in developing models
for atomistic-scale simulations of electrochemical metal deposition processes.One the most
interesting and challenging features of such models is their capability to reproduce the physical
evolution of the final deposition shape in a practical time scale.To date, most of the available
models are limited to the simulation of a few nanoseconds of the physical phenomenon, for
instance molecular dynamics, and there are very few methods, including kinetic Monte Carlo,
that can reach to reproduce some seconds due to the requirement of an enormous computational
cost.In this paper we present a surrogate-assisted kinetic Monte Carlo method based on Gaussian
process emulation as a tool for predicting the final electrodeposition shape in a kinetically
controlled copper electrodeposition on a gold substrate. The main advantage of this method is
its ability to dramatically reduce the computational cost of the kinetic Monte Carlo simulation
while yielding accurate results.

1. Introduction
Atomistic scale modelling, e.g., molecular dynamics and kinetic Monte Carlo (KMC), is
frequently used to gain fundamental understanding of an enormous variety of physical process
[1] that may be difficult or even impossible to visualise or study experimentally, e.g., there have
been very few experimental characterisation studies of copper deposition on a gold substrate
(e.g., [2, 3]). Such methods can be combined with ab-initio [4] and macroscopic approaches to
develop multi-scale models. KMC [5] is a popular method for studying the dynamical evolution
of systems of atoms or molecules undergoing various processes, such as adsorption/desorption,
reactions and surface diffusion, by approximate solution of a Master equation. In order to achieve
this, a hierarchy or transition probabilities is required and detailed balance must be satisfied,
which is possible using different approaches [1].

In recent decades there have been several attempts at atomistic-scale simulations of
electrochemical metal deposition processes [6, 7, 8, 9, 10, 11], particularly for studying the
evolution of the deposition profile. The computational cost increases with the number of
deposition sites and deposition thickness required. More generally, for multiple processes,
computational cost can be very large for cases in which certain of the processes occur on much
faster time scales than the others. In this paper, therefore, we present a surrogate-assisted kinetic
Monte Carlo method based on Gaussian process (GP) emulation as a tool for predicting the final
electrodeposition shape in a kinetically controlled copper electrodeposition on a gold substrate.

http://creativecommons.org/licenses/by/3.0
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The method is able to dramatically reduce the computational cost of the KMC simulation while
yielding accurate results.

The outline of this paper is as follows. In Section 2 we describe the mathematical model,
the KMC simulator and data used for the simulations of copper electrodeposition onto a gold
substrate. We then describe how to build a GP emulator for the KMC simulator. In Section 3
we show and discuss the numerical results. Concluding remarks are provided in Section 4.

2. Description of the model
The idealized electrodeposition system consists of metal ions M2+ present in a given electrolyte
solution and metal atoms (M) already deposited on a given substrate (S). The metal atoms
are restricted to be on a spatial lattice of a face-centred cubic (fcc) crystal system of (111)
orientation (see, e.g., [11, 12, 13]). The substrate is assumed to have the same lattice spacing
as the deposit, and any M2+ ion is first reduced at the electrode surface, and then deposited
or diffused either on the substrate or on a pre-deposited M atom. The deposition process is
assumed to be kinetically limited, and thus mass transfer effects can be neglected. In this paper
we are considering a simplified 2D cross-sectional KMC model and thus the use of either solid-
on-solid approximations [13] or the embedded atom method [12] for computing the activation
energies is not considered. The surface diffusion rates are updated from the initial values during
the deposition process according to the coordinate number of the diffusing atom and the nature
of its neighbour atoms. The details of the substrate and deposited metal were purposely kept
simple in order to simulate the range of deposit morphologies that arise from different rates of
deposition and surface diffusion.

2.1. Kinetic Monte Carlo Simulator
The two possible events that will be considered in this study are deposition and surface diffusion.
The depositions are considered to occur only on the lattice sites having two neighbouring atoms
underneath, i.e., a deposited atom has a minimum coordination number of 3. The deposition
rates on M and S are taken from the literature [6, 11] and are given by:

rdepM−M
= kM−MCM2 + e−nFηM−M/(2RT ), rdepM−S

= kM−SCM2 + e−nFηM−S/(2RT ) (1)

where: F , R and T are Faraday’s constant (s A mol−1), the ideal gas constant (J K−1 mol−1) and
temperature (K), respectively; kM−M and kM−Sthe deposition rate constants for M on M and M
on S, respectively; CM2+ is the concentration of M2+ ions at the electrode interface; andn = 2is
the number of electrons transferred. The overpotentials ηM−M and ηM−S are respectively the
difference between the applied potential and the equilibrium potential for the M2+/M couple
and between the applied potential and the nucleation potential. The charge-transfer coefficients
are assumed to be equal to 1/2.

The surface diffusion rates on M and S for deposited atoms to nearest neighbouring sites are
respectively [11]:

rdifM−M
= vM−Me

−EactM−M/(RT ), rdifM−S
= vM−Se

−EactM−S/(RT ) (2)

where the Eact denote the activation energies, i.e., the energy barriers that a given atom must
overcome to be diffused either on the metal or the substrate. In this study we will assume
that those energy barriers depend only on the coordinate number Ncord and the energy barriers
EM−M and EM−M for the M-M and M-S bonds respectively, and are given by [11]:

EactM−M = NcordEM−M, EactM−S = 2EM−S +NcordEM−M. (3)

As we wish to build a surrogate model for the KMC method, we need experimentally validated
parameter values which allow us to guarantee that the GP emulator is trained properly. For
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Table 1. Parameter values used in the KMC simulations. Values obtained from [11].
Symbol Meaning Parameter value
νM−M Jump frequency for surface diffusion of M on M 3.9 × 105 s−1

νM−S Jump frequency for surface diffusion of M on S 3.9 × 105 s−1

ηM−M Overpotential for deposition on M -0.13 V
ηM−S Overpotential for deposition on S -0.03 V
kM−M Rate constant for deposition on M 0.204 m3 mol s−1

kM−S Rate constant for deposition on S 0.143 m3 mol s−1

CM2+ Concentration of M2+ ions at electrode surface 0.32 mol
EM−M Energy barrier for a M-M bond 0.13 eV
EM−S Energy barrier for a M-S bond 0.35 eV

that purpose, in this paper we will use the parameter values used in [11], with M = Cu and
S = Au. The values are reproduced in Table 1. Macroscopic dimensions for the parallel and
normal directions to the surface of the substrate based on the fcc lattice can be calculated
as [11] lwa

√
2/2 and lya

√
3/8, respectively, where lw denotes the lattice width, ly the number

of the layers of lattice sites, and a the lattice constant (m) for M. In this paper we will set
a = 3.61× 10−10.

The KMC algorithm used follows the approach of Liu et at. [11] for the simulating metal
electrodeposition by monitoring the whole process, i.e., starting when the first atom is deposited
and finishing when the simulation time has been reached. The KMC algorithm works by
establishing a dynamical hierarchy for the transition probabilities of the events (e.g., adsorption
and desorption), with time increments for successful (independent) events given by a Poisson
process. It can be implemented as follows:

(i) Find initial values for the constants in the expressions introduced in Section 2.1
(experimental or ab − initio simulations). Define the type of lattice configuration for the
metal atoms that will be considered.

(ii) Store the initial rates (normalized) for the possible events in three different matrices (for
deposition and surface diffusion to the left/right), with each entry denoting a spatial
location. Set the simulation time. Build an array r1, · · · , rn of the non-zero elements
of the rate matrices and normalize this array to form an array with elements Ri =∑i

k=1 rk/
∑n

k=1 rk.

(iii) Sample a random number ζ from the Uniform distribution U(0, 1). Decide on the event
to occur and position by using the first index p from the normalized array that satisfies
Rp ≥ ζ. Periodic boundary conditions are assumed in the horizontal direction.

(iv) Update the rates of the deposited atom and its neighbours. Increase the time step with
∆ = −ln(ζ)/

∑
i ri. Repeat (iii)-(v) until the simulation time has been reached.

Note that the number of atomic layers in a simulation corresponds to the simulation time
specified in the KMC algorithm.

2.2. Gaussian process emulation of electrodeposition profiles
In this section we show how to build a surrogate model based on GP regression [14] for the
KMC simulator. This will keep the qualitative features of the original simulator and will reduce
considerably the overall computational cost. The GP emulator is provided with prior mean
and covariance functions, which are updated in light of observed data obtained from KMC
simulations. The updated (or posterior) functions are then used for inference [14].
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In this paper, the KMC simulator outputs (or observed values) correspond to the final
thickness of the deposit measured at carefully selected spatial locations (or design points) within
the lattice. These spatial locations are taken to be the inputs. The data set formed by the design
points and the observed values is called the training set. To generate the set of design points
we simply spread the points to cover the simulation domain of the input space [0,lw]⊂R. Then
for each spatial location x ∈ [0,lw], we can estimate the thickness of the deposit by setting
y = fkmc(x), where fkmc represents the KMC simulator which returns the thickness of the
deposit at a desired lattice site. Note that a design point x′ ∈ [0,lw] might not match any of the
lattice sites, and, in that case, we take as fkmc(x

′) the value (or noisy output) of fkmc(x
′′) at

the nearest neighbour x′′ on the lattice.
There are various methods available for sampling the design points [15]. In this paper, we

used a low discrepancy (Sobol) sequence [16]. The GP emulator inputs are denoted by ξ and are
distributed according to U(0,lw]. We choose the uniform distribution to be consistent with the
sampling procedure of the KMC algorithm (step (iii)). Other distributions for the GP inputs,
for instance N (0, 1), may be also considered. To distinguish the GP emulator inputs from the

training data, we will denote the design points by ξ̂. Thus, to form the set, we first generate d
Sobol points in [0, 1], and second, we compute the inverse cumulative distribution function of a
U(0, 1) random variable.

In this paper, we use a zero mean function and a square exponential (SE) covariance function
for the prior specification, which is given in terms of three hyperparameters as follows [14]:

k(ξ, ξ′) = σ2f exp

(
− 1

2`
||ξ − ξ′||2

)
+ σ2nδij , (4)

where σ2f is the process variance, ` is the length scale, σ2n is the noise variance, δij is the Kronecker

delta and || · || is the Euclidean norm. To find suitable values for the hyperparameters above, we
used a maximum likelihood estimate (MLE) by minimizing the negative log marginal likelihood
with respect to the hyperparameters (see, e.g., [17, 18]). Finally, we can make predictions for
new untested inputs ξ∗ ∈ [0,lw] by using the following equations [14]:

m∗(ξ
∗) = Σ(ξ∗,X)

[
Σ(X,X) + σ2nI

]−1
y, (5)

and
k∗(ξ

∗, ξ∗) = k(ξ∗, ξ∗)− Σ(ξ∗,X)T
[
Σ(X,X) + σ2nI

]−1
Σ(ξ∗,X) (6)

in which Σ(ξ∗,X) = (k(ξ∗, ξ̂1), · · · , k(ξ∗, ξ̂d))
T . The (i, j)-th entry of Σ(X,X) ∈ Rd×d is given

by k(ξ̂i, ξ̂j). Expression (5) for the GP posterior mean m∗ can be then used to emulate the
simulator output at any new input ξ∗, i.e., we can write m∗(ξ

∗) ≈ fkmc(ξ
∗). Expression (6)

provides the predictive variance (error bound) in this estimate of the output.

3. Results
In this section we report the results obtained for a set of six KMC simulations of copper
deposition onto a gold substrate. The simulations were obtained over continuous intensive
CPU computations on a 12-core Intel Xeon cluster processor. All the Cu atoms are restricted
to be on an fcc lattice of (111) orientation, as previously described. For this set of experiments
the lattice width was set to lw = 650. This means that we are considering a lattice with 650
sites in the x-axis (horizontal) direction for atom occupancy. The simulations were performed
for six different simulation times which correspond to the number of atomic layers deposited in
each simulation.

The goal of this experiment was to to use a GP emulator to replace the KMC simulator
and predict the final shape of the deposits much more rapidly. The GP emulator was trained
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Figure 1. Simulated KMC (top) and GP predicted (bottom) deposition shapes for a lattice
size of 650 atoms and 200 atomic layers.

using 128 design points and the estimation of the hyperparameters was done on-the-fly and
independently for each different KMC simulation time. Table 2 shows the CPU time spent in
each of the KMC simulations and the corresponding CPU time for the GP predictions. The
range of times were chosen in order to compare the performance between quick (computationally
cheap) and fast (computationally expensive) simulations. The corresponding final lattice sites
(ly) obtained from each simulation is also provided.

From Table 2 we can see that while for the quickest KMC simulation (simulation time = 200)
the CPU times between the KMC and GP methods are very similar, for higher simulation
times (e.g., 350, 400 and 450) the difference in CPU times is considerable. We remark that the
simulation times are dimensionless and refer to the number of atomic layers deposited in one
cycle of the KMC algorithm, i.e., simulation time = 1 means that the KMC algorithm will stop
after 1 atomic layer has been deposited. Note also that for augmenting the thickness of the
deposit by a factor of four, i.e., from 10.39 nm (simulation time 200) to 41.33 nm (simulation
time 450), the CPU KMC time resources are ten times higher, while the difference between the
CPU GP times for the same simulation times remain very close to each other. We can conclude
that for long simulation times, the use of GP emulators is of huge benefit.

A selection of three final shapes (simulation times = 200, 300 and 400) computed with
the KMC simulator and the GP emulator are shown in figures 1, 2 and 3. The reason why
successive KMC simulations show different morphologies is a consequence of the stochasticity of
the KMC simulator. In this paper our goal was to develop a benchmark GP emulation model
to reproduce KMC simulated electrodepositions. Thus, each of the GP results are based only
on a single KMC simulation, i.e., the one shown above in each of the figures. Thus each of
the simulations are computed independently from different random processes. These figures
show excellent agreement between the emulator and simulator. GP emulators have been shown
to perform well for relatively smooth response surfaces. In this case, the deposition profile is
discontinuous yet the GP emulator is successful in predicting the profile with great accuracy.
The case shown in figure 1, with fewest atoms being deposited and therefore with the highest
number of peaks (or local maxima), presents the most challenging scenario. Nevertheless, the
deposition shape predicted by the GP (figure 1 (bottom)) shows excellent agreement with the
KMC simulation. It is then expected that along with an increase in the number of atoms
deposited, and consequently a smoother target deposition surface, the GP emulator accuracy
increases (figures 2 and 3) and the computational cost reduces.

4. Conclusions
In this paper we use Gaussian processes regression to emulate the early stages of metal
electrodeposition. The GP emulator performs the simulations in a much shorter time than
the original KMC simulator and is able to reproduce the final morphology of the deposition
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Figure 2. Simulated KMC (top) and GP predicted (bottom) deposition shapes for a lattice
size of 650 atoms and 300 atomic layers.

Figure 3. Simulated KMC (top) and GP predicted (bottom) deposition shapes for a lattice
size of 650 atoms and 400 atomic layers.

Table 2. Sequence of the KMC simulation and GP emulation results for different deposition
times on a substrate of width 165.75 nm (lattice size of lw = 650 atoms).

CPU KMC CPU GP Simulation ly Deposit
time (s) time (s) time thickness (nm)

13.52 3.25 200 17 10.39
17.83 4.11 250 29 17.02
20.54 5.75 300 30 17.24
41.20 5.77 350 33 19.01
107.58 5.89 400 48 27.85
153.10 5.90 450 71 41.33

process for different simulation times with high accuracy. Furthermore, the GP emulator allows
us to extrapolate the micro-structure of the KMC simulations to a practical size of the problem.
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Several extensions are the focus of ongoing research. The first is the incorporation of
physical constants such as adsorption/desorption rates, as well as the consideration of the
simulation time as an input. This would permit a rapid extensive study of the deposition
profiles for (simultaneously) different physical systems, domain sizes, and simulation times.
Another possibility is to extend the existing model to a higher dimensional output spaces by
considering a 3D model. In both cases a dimension reduction method on this output space
becomes necessary either using a linear [19] or non-linear [20] approaches. Such an emulator
could form the basis for sensitivity and uncertainty analyses.
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