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Article

Median bias reduction in random-effects
meta-analysis and meta-regression

Sophia Kyriakou,1 Ioannis Kosmidis2,3 and Nicola Sartori4

Abstract

The reduction of the mean or median bias of the maximum likelihood estimator in regular parametric models can be

achieved through the additive adjustment of the score equations. In this paper, we derive the adjusted score equations

for median bias reduction in random-effects meta-analysis and meta-regression models and derive efficient estimation

algorithms. The median bias-reducing adjusted score functions are found to be the derivatives of a penalised likelihood.

The penalised likelihood is used to form a penalised likelihood ratio statistic which has known limiting distribution and

can be used for carrying out hypothesis tests or for constructing confidence intervals for either the fixed-effect

parameters or the variance component. Simulation studies and real data applications are used to assess the

performance of estimation and inference based on the median bias-reducing penalised likelihood and compare it to

recently proposed alternatives. The results provide evidence on the effectiveness of median bias reduction in improving

estimation and likelihood-based inference.
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Adjusted score equations, heterogeneity, mean bias reduction, penalised likelihood, random effects

1 Introduction

Meta-analysis is a core tool for synthesising the results from independent studies investigating a common effect of
interest. One of the main challenges when combining results from multiple studies is the variability or
heterogeneity in the design and the methods employed in each study. Accounting for and quantifying that
heterogeneity is critical when drawing inferences about the common effect. In this direction, DerSimonian and
Laird1 introduced the random-effects meta-analysis model, which expresses the heterogeneity between studies in
terms of a variance component that can be estimated through standard estimation techniques.

Nevertheless, there is ample evidence that frequentist inference based on random-effects meta-analysis can be
problematic in the usual meta-analytic scenario where the number of studies is small or moderate. Specifically, the
estimation of the heterogeneity parameter can be highly imprecise, which in turn results in misleading
conclusions.2–4 Examples of recently proposed methods that attempt to improve inference are the resampling5

and double resampling approaches,6 and the mean bias-reducing penalised likelihood (BRPL) approach in
Kosmidis et al.3 Specifically, Kosmidis et al.3 show that maximisation of the BRPL results in an estimator of
the heterogeneity parameter that has notably smaller bias than maximum likelihood (ML) with small loss in
efficiency, and illustrate that BRPL-based inference outperforms its competitors in terms of inferential
performance.

Kenne Pagui et al.7 show that under suitable conditions, third-order median unbiased estimators can be
obtained by the solution of a suitably adjusted score equation. The components of such median bias-reduced
estimators have, to third-order, the same probability of over- and under-estimating the true parameter. A key
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property of these estimators, not shared with the mean bias-reduced ones, is that any monotone component-wise
transformation of the estimators results automatically in median bias-reduced estimators of the transformed
parameters.7 Such equivariance property can be useful in the context of random-effects meta-analysis where the
Fisher information and, hence, the asymptotic variances of various likelihood-based estimators depend only on the
heterogeneity parameter.

In this paper, we derive the median bias-reducing adjusted score functions for random-effects meta-analysis
and meta-regression. The adjusted score functions are found to correspond to a median BRPL, whose logarithm
differs from the logarithm of the mean BRPL in Kosmidis et al.3 by a simple additive term that depends on the
heterogeneity parameter. Since the adjustments to the score function for mean and median bias reduction
are both of order O(1), the same arguments as in Kosmidis et al.3 are used to obtain a median BRPL ratio
statistic with known asymptotic null distribution that can be used for carrying out hypothesis tests and
constructing confidence regions or intervals for either the fixed-effect or the heterogeneity parameter.
Simulation studies and real data applications are used to assess the performance of estimation and inference
based on the median BRPL, and compare it to recently proposed alternatives, including the mean BRPL. The
results provide evidence on the effectiveness of median bias reduction in improving estimation and likelihood-
based inference.

The rest of the paper is organised as follows. Section 2 considers the cocoa intake dataset8 and a random-effects
meta-analysis model as a motivational example that demonstrates how conclusions in frequentist inference may
vary using different methods when the number of studies is small. Section 3 defines the random-effects meta-
analysis and meta-regression model and establishes notation. Section 4 gives a formal statement of the proposed
median bias-reducing adjusted score function and penalised likelihood for these models, gives the algorithm used
for computing the median BRPL estimates, and briefly discusses the median BRPL ratio statistic used for
inference. Section 5 revisits the example in Section 2 and gives some simulations comparing the median BRPL
method to alternative approaches. Section 6 gives more extensive simulations under the random-effects meta-
analysis model that evaluate the performance of median BRPL and compare it with that of ML and mean BRPL
methods. An application to meat consumption data9 and a random-effects meta-regression model is given in
Section 7. Section 8 concludes with a brief discussion, and Appendix 1 contains some technical details on the
derivation of the median bias-reducing adjusted score functions.

2 Cocoa intake and blood pressure reduction data

Consider the setting in Bellio and Guolo10 who carry out a meta-analysis of five randomised controlled trials from
Taubert et al.8 on the efficacy of two weeks of cocoa consumption on lowering diastolic blood pressure. Figure 1 is
a forest plot with the estimated mean difference in diastolic blood pressure before and after cocoa intake from each
study, and the associated 95% Wald-type confidence intervals. Four out of the five studies reported a reduction of
diastolic blood pressure from cocoa intake.

The random-effects meta-analysis model is used to synthesise the evidence from the five studies. In particular,
let Yi be the random variable representing the mean difference in the diastolic blood pressure after two weeks of
cocoa intake in the ith study. We assume that Y1, . . . ,Y5 are independent random variables, where Yi has a
Normal distribution with mean the overall effect � and variance �̂2i þ  , with �̂

2
i the estimated standard error

of the effect from the ith study and  the heterogeneity parameter.
The forest plot in Figure 1 has been enriched with several nominally 95% confidence intervals for � using

various alternative methods. As is apparent, the conclusions when testing the hypothesis �¼ 0 can vary depending
on the method used. More specifically, the Wald test using the ML estimates, the DerSimonian and Laird
method,1 double resampling,6 and the likelihood ratio (LR) test give evidence that there is a relationship
between cocoa consumption and diastolic blood pressure, with p-values 0.005, 0.006, 0.016, 0.030, respectively.
On the other hand, Knapp and Hartung’s method,11 the mean BRPL ratio,3 the Bartlett-corrected LR,12 and
Skovgaard’s test suggest that the evidence that cocoa consumption affects diastolic blood pressure is weaker, with
p-values of 0.050, 0.053, 0.058, and 0.067, respectively.

3 Random-effects meta-regression model

Let yi and �̂
2
i denote the estimate of the effect from the ith study ði ¼ 1, . . . ,KÞ and the associated within-study

variance, respectively, and xi ¼ ðxi1, . . . , xipÞ
T denote a p-vector of study-specific covariates that can be used to

account for the heterogeneity across studies.
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The within-study variances �̂2i are usually assumed to be estimated well enough to be considered as known and
equal to the values reported in each study. Then the observations y1, . . . , yK are assumed to be realisations of the
random variables Y1, . . . ,YK, which are independent conditionally on independent random effects U1, . . . ,UK. The
conditional distribution of Yi given Ui¼ ui is Nðui þ xTi �, �̂

2
i Þ, where � is an unknown p-dimensional vector of fixed

effects. The random effects U1, . . . ,UK are typically assumed to be independent with Ui having a Nð0, Þ
distribution, where  is a parameter that attempts to capture the unexplained between-study heterogeneity. In
matrix notation, the random-effects meta-regression model has

Y ¼ X�þUþ � ð1Þ

where Y ¼ ðY1, . . . ,YKÞ
T, X is the K� p model matrix with xTi in its ith row, and � ¼ ð�1, . . . , �KÞ

T is a vector of
independent errors each with a Nð0, �̂2i Þ distribution and independent of U ¼ ðU1, . . . ,UKÞ

T. Under this
specification, the marginal distribution of Y is multivariate normal with mean X� and variance–covariance
matrix �̂þ  IK, where IK is the K� K identity matrix and �̂ ¼ diagð�̂21 , . . . , �̂2KÞ. The random-effects meta-
analysis results as a special case of meta-regression, by setting X to be a column of ones.

The log-likelihood function for � ¼ ð�T, ÞT is l ð�Þ ¼ flog jWð Þj � Rð�ÞTWð ÞRð�Þg=2, where jWð Þj denotes
the determinant of Wð Þ ¼ ð�̂þ  IKÞ

�1 and Rð�Þ ¼ y� X�. The gradient of the log-likelihood (score function) is

sð�Þ ¼
XTWð ÞRð�Þ

1

2
Rð�ÞTWð Þ2Rð�Þ � tr½Wð Þ�
� �

0
@

1
A ð2Þ

and the ML estimator �̂ ¼ ð�̂T,  ̂ÞT is obtained as the solution of sð�Þ ¼ 0pþ1, where 0p denotes a p-dimensional
vector of zeros.

−10 −8 −6 −4 −2 0 2 4
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Figure 1. Forest plot of cocoa data.8,10 The outcomes from the five studies are reported in terms of the diastolic blood pressure

(DBP) difference after two weeks of cocoa consumption. A negative change in DBP indicates favorable hypotensive cocoa actions.

Squares represent the mean effect estimate for each study; the size of the square reflects the weight that the corresponding study

exerts in the meta-analysis calculated as the within-study’s inverse variance. Horizontal line segments represent 95% Wald-type

confidence intervals (CI) of the effect estimate of individual studies. In the bottom panel of the plot, horizontal line segments represent

the corresponding 95% confidence interval as computed based on the Wald statistic using the ML estimates (ML Wald), the

DerSimonian and Laird approach,1 double resampling,6 the LR statistic, the Knapp and Hartung11 method, the mean BRPL ratio

statistic,3 the Bartlett-corrected LR statistic (Bartlett LR),12 the Skovgaard’s statistic, and the median BRPL ratio statistic. The

confidence intervals n are ordered according to their length. The estimate of � has not been reported, as is commonly done in forest

plots, because some of the methods considered (e.g. Skovgaard, Bartlett-corrected LR, and double resampling) are designed to

produce directly p-values and/or confidence intervals and do not directly correspond to an estimation method.
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4 Median bias reduction

4.1 The method

A popular method for reducing the mean bias of ML estimates in regular statistical models is through the
adjustment of the score equation.13,14 Kenne Pagui et al.7 propose an extension of the adjusted score equation
approach which can be used to obtain median bias-reduced estimators. Specifically, under the model, the new
estimator has a distribution with median closer to the ‘‘true’’ parameter value than the ML estimator. Kenne Pagui
et al.7 consider the median as a centering index for the score, and the adjusted score function for median bias
reduction then results by subtracting from the score its approximate median, obtained using a Cornish-Fisher
asymptotic expansion.

Let j ð�Þ ¼ �@2l ð�Þ=@�@�T be the observed information matrix (see Appendix 1 for its expression), and ið�Þ be the
expected information matrix

ið�Þ ¼ E�ð j ð�ÞÞ ¼
XTWð ÞX 0p

0Tp
1

2
tr½Wð Þ2�

0
@

1
A ð3Þ

with tth column itð�Þ. Let also itð�Þ and ittð�Þ be the tth column and the tth diagonal element of fið�Þg�1, with

t 2 f1, . . . , pþ 1g. Kenne Pagui et al.7 show that a median bias-reduced estimator �̂y can be obtained by solving an

adjusted score equation of the form syð�Þ ¼ sð�Þ þ Ayð�Þ ¼ 0, where the additive adjustment to Ayð�Þ is O(1), in

the sense that Ayð�Þ is bounded in absolute value by a fixed constant after a sufficiently large value of K. The

median bias-reducing adjustment Ayð�Þ has tth element

A
y
t ð�Þ ¼

1

2
tr fið�Þg�1ðPtð�Þ þQtð�ÞÞ
� �

� fitð�Þg
TKyð�Þ: ð4Þ

The quantities Ptð�Þ ¼ E�½sð�Þs
Tð�Þstð�Þ� and Qtð�Þ ¼ E�½�j ð�Þstð�Þ� in equation (4) are those introduced by

Kosmidis and Firth14 for mean bias-reduction, and Kyð�Þ is a ð pþ 1Þ-vector with tth element

K
y
t ð�Þ ¼ fi

tð�ÞgTKtð�Þ, where Ktð�Þ is another ð pþ 1Þ-vector with uth element

Ktuð�Þ ¼ tr
itð�Þfitð�ÞgT

ittð�Þ

1

3
Puð�Þ þ

1

2
Quð�Þ

� �� 	

In the context of meta-regression values of t and u in f1, . . . , pg correspond to the elements of parameter �, and

t, u ¼ pþ 1 correspond to parameter  . Given that Ayð�Þ is of order O(1), �̂y has the same asymptotic distribution

as �̂,7 i.e. multivariate normal with mean � and variance-covariance matrix fið�Þg�1, which can be consistently

estimated with fið�̂yÞg�1.

After some algebra (see Appendix 1 for details), the median bias-reducing adjustment for the random-effects
meta-analysis and meta-regression models has the form

Ayð�Þ ¼

0p

1

2
tr½Wð ÞHð Þ� þ

1

3

tr½Wð Þ3�

tr½Wð Þ2�

0
B@

1
CA ð5Þ

where Hð Þ ¼ XðXTWð ÞXÞ�1XTWð Þ. Substituting equation (5) in the expression for syð�Þ gives that the median

bias-reducing adjusted score functions for � and  are s
y
� ð�Þ ¼ s�ð�Þ and

s
y
 ð�Þ ¼ s ð�Þ þ

1

2
tr½Wð ÞHð Þ� þ

1

3

tr½Wð Þ3�

tr½Wð Þ2�

respectively.
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4.2 Computation of median bias-reduced estimator

A direct approach for computing the estimator �̂y ¼ ð�̂yT,  ̂yÞT is through a modification of the two-step iterative
process in Kosmidis et al.3 At the jth iteration (j ¼ 1, 2, . . .)

(1) Calculate �ð j Þ by weighted least squares as �ð j Þ ¼ ðXTWð ð j�1ÞÞXÞ�1XTWð ð j�1ÞÞ y
(2) Solve s

y
 ð�
ð j Þð ÞÞ ¼ 0 with respect to  , where �ð j Þð Þ ¼ ð�ð j ÞT, ÞT.

In the above steps, �ð j Þ is the candidate value for �̂y at the jth iteration and  ð j�1Þ is the candidate value for  ̂y at
the ð j� 1Þth iteration. The equation in step 2 is solved numerically, by searching for the root of the function

s
y
 ð�
ð j Þ, Þ in a predefined positive interval. For the computations in this manuscript, we use the DerSimonian and

Laird1 estimate of  as starting value  ð0Þ. The iterative process is then repeated until the components of the score

function syð�Þ are all less than � ¼ 1� 10�6 in absolute value at the current estimates.

4.3 Median bias-reducing penalised likelihood

Although it is not generally true that syð�Þ is the gradient of a suitable penalised log-likelihood, in this case syð�Þ is
the gradient of the median BRPL

lyð�Þ ¼ l ð�Þ �
1

2
log jXTWð ÞXj �

1

6
log½trðWð Þ2Þ� ð6Þ

Hence, �̂y is also the maximum median BRPL estimator. The median BRPL in equation (6) differs from the mean
BRPL derived in Kosmidis et al.3 by the term � log½trðWð Þ2Þ�=6.

An advantage of the median BRPL estimators over mean BRPL ones is that the former are equivariant under
monotone component-wise parameter transformations.7 In the context of random-effects meta-analysis and meta-
regression, this equivariance implies that not only we get a median bias-reduced estimator of  , but we also get
median bias-reduced estimates of the standard errors for � by calculating the square roots of the diagonal elements
of fið�Þg�1 in equation (3) at  y. This is because ið�Þ is a function of  only, and moreover the square roots of the
diagonal elements of fið�Þg�1 are monotone functions of  .

4.4 Penalised likelihood-based inference

For inference about either the components of the fixed-effect parameters � or the between-study heterogeneity  ,
we propose the use of the median BRPL ratio. If � ¼ ð�T, �TÞT and �̂

y
� is the maximiser of lyð�Þ for fixed �, then

the same arguments as in Kosmidis et al.3 can be used to show that the logarithm of the median BRPL
ratio statistic

2flyð�̂y, �̂yÞ � lyð�, �̂y� Þg ð7Þ

has a �2dimð�Þ asymptotic distribution, as K goes to infinity. Specifically, the adjustment to the score function is
additive and of order O(1). As a result, the extra terms in the asymptotic expansion of the logarithm of the median
BRPL that depend on the penalty and its derivatives disappear as information increases, and the expansion has the
same leading term as that of the log-likelihood (see, for example, Pace and Salvan15 Section 9.4).

5 Cocoa intake and blood pressure reduction data (revisited)

The ML estimate, the maximum mean BRPL estimate and the maximum median BRPL estimate of the
heterogeneity parameter in the meta-analysis model in Section 2 are  ̂ ¼ 4:199,  ̂� ¼ 5:546, and  ̂y ¼ 6:897,
respectively. The estimates of the common effect are �̂ ¼ �2:799, �̂� ¼ �2:811, and �̂y ¼ �2:818, with standard
errors 1.000, 1.128, and 1.242, respectively. The bias-reduced estimates of  and, as a consequence, the
corresponding estimated standard errors for � are larger than their ML counterparts, which is typical in
random-effects meta-analysis. The iterative process used for computing the ML, maximum mean BRPL, and
maximum median BRPL estimates converged in 4, 5, and 11 iterations, respectively. The computational run-
time for the two-step iterative process which computes the ML, maximum mean BRPL, and maximum median
BRPL estimates is 1:1� 10�2, 1:8� 10�2, and 1:1� 10�2 seconds, respectively.

Kyriakou et al. 5



Figure 2 shows the value of LR, mean BRPL and median BRPL ratio statistic in equation (7) for a range of
values of �, when � is either � or  . Here and in the following simulation studies, we compare median BRPL ratio
statistic with only LR and mean BRPL ratio statistics because the mean BRPL ratio statistic is a strong competitor
against other alternatives in terms of inferential performance.3 The horizontal line in Figure 2 is the 95% quantile
of the limiting �21 distribution, and its intersection with the values of the statistics results in the endpoints of the
corresponding 95% confidence intervals. For both � and  , the confidence intervals based on the LR statistic are
the narrowest and the confidence intervals based on the median BRPL ratio statistic are the widest. Specifically,
the 95% confidence intervals for � are ð�6:21, 0:52Þ, ð�5:73, 0:05Þ, and ð�5:26, � 0:40Þ for the median BRPL ratio
statistic, mean BRPL ratio statistic, and LR statistic, respectively. The corresponding 95% confidence intervals for
 are ð1:4, 58:0Þ, ð1:0, 38:5Þ, and ð1:1, 23:5Þ, respectively. Contrary to the LR test, the mean BRPL and median
BRPL ratio tests suggest that there is only weak evidence that cocoa consumption affects diastolic blood pressure
with p-values of 0.053 and 0.077.

In order to further investigate the performance of the three approaches to estimation and inference, we
performed a simulation study where we simulated 10,000 independent samples from the random-effects meta-
analysis model with parameter values set to the ML estimates reported earlier, i.e. �0 ¼ �2:799 and  0 ¼ 4:199.
Figure 3 shows boxplots of the estimates of � and  calculated from each of the 10,000 simulated samples. The
distributions of the three alternative estimators for � are similar. On the other hand, the ML estimator of  has a
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Figure 3. Boxplots for the ML, the maximum mean BRPL, and the maximum median BRPL estimates of � and  as calculated from

10,000 simulated samples under the ML fit using the cocoa data.8,10 The square point is the empirical mean of the estimates. The

dashed grey horizontal line is at the parameter value used to generate the data.
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6 Statistical Methods in Medical Research 0(0)



large negative mean bias, maximum median BRPL tends to over-correct for that bias, while maximum mean
BRPL almost fully corrects for the bias of ML estimator. The distribution of the median BRPL estimates has the
heaviest right tail. The simulation-based estimates of the probabilities of underestimation for  , P 0

ð ̂ �  0Þ,
P 0
ð ̂� �  0Þ and P 0

ð ̂y �  0Þ are 0.708, 0.591, and 0.493 for the ML, maximum mean BRPL, and maximum
median BRPL, respectively, illustrating how effective maximising the median BRPL in equation (6) is in reducing
the median bias of the maximum likelihood estimator of  .

The simulated samples were also used to calculate the empirical p-value distribution for the two-sided tests that
each parameter is equal to the true values based on the LR statistic, the mean BRPL ratio statistic, and the median
BRPL ratio statistic. Table 1 shows that the empirical p-value distribution for the mean and median BRPL ratio
statistics are closest to uniformity, with the latter being slightly more conservative than the former. The coverage
probability of the 95% confidence intervals of � based on the mean BRPL ratio and the median BRPL ratio are
notably closer to the nominal level than those based on the likelihood ratio. Specifically, the coverage probabilities
for � are 88%, 93%, and 96% for LR, mean BRPL ratio, and median BRPL ratio, respectively, and the
corresponding coverage probabilities for  are 88%, 94%, and 96%, respectively.

6 Simulation study

More extensive simulations under the random-effects meta-analysis model (1) are performed here using the design
in Brockwell and Gordon.16 Specifically, the data yi , i 2 f1, . . . ,Kg are simulated from model (1) with true fixed-
effect parameter � ¼ 0:5. The within-study variances �̂2i are independently generated from a �21 distribution and are
multiplied by 0.25 before restricted to the interval ð0:009, 0:6Þ. Eleven values of the between-study variance  
ranging from 0 to 0.1 are chosen, and the number of studies K ranges from 5 to 200. For each combination of  
and K considered, we simulated 10,000 data sets initialising the random number generator at a common state. The
within-study variances were generated only once and kept fixed while generating the samples.

Zeng and Lin6 compared the performance of their proposed double resampling method with the DerSimonian
and Laird1 method, the profile likelihood method in Hardy and Thompson,17 and the resampling method in
Jackson and Bowden5 and showed that the double resampling method improves the accuracy of statistical
inference. Based on these results, Kosmidis et al.3 compared the performance of their mean BRPL approach
with the double resampling method and illustrated that the former results in confidence intervals with coverage
probabilities closer to the nominal level than the alternative methods.

We take advantage of the results reported in Zeng and Lin6 and Kosmidis et al.3 and evaluate the performance
of estimation and inference based only on the median BRPL with that based on the likelihood and the mean
BRPL. The estimators of the fixed and random-effect parameters obtained from the three methods are calculated
using variants of the two-step algorithm described in Section 4.2. In the second step of the algorithm, the candidate
values for the ML, and maximum mean and median BRPL estimators of the between-study variance  are
calculated by searching for the root of the partial derivatives of l ð�Þ, l�ð�Þ, and lyð�Þ with respect to  , in the
interval (0, 3).

First, we compare the performance of the ML, maximum mean BRPL and maximum median BRPL estimators
in terms of percentage of underestimation. Figure 4 shows that the median bias-reducing adjustment is the most
effective in reducing median bias even for small values of K. As expected, the ML and maximum mean BRPL
estimators also approach the limit of 50% underestimation as K grows, with the latter being closer to 50% than the
former. Figure 5 shows that maximum median BRPL is also effective in reducing the mean bias of the ML
estimator of  but only for moderate to large values of K, while maximum mean BRPL results in estimators
with the smallest bias.

Figures 6 and 7 show the estimated coverage probability for the one-sided and two-sided confidence intervals
for � based on the LR, mean BRPL ratio and median BRPL ratio statistics at the 95% nominal level. Figure 8

Table 1. Empirical p-value distribution (%) for the tests based on the LR statistic, the mean BRPL ratio statistic, and the median BRPL

ratio statistic in the cocoa data8,10 setting.

	� 100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

LR 5.7 8.4 11.8 18.2 34.6 57.8 79.2 91.8 96.1 98.0 99.3

Mean BRPL ratio 1.6 3.7 6.7 12.2 28.4 52.8 76.6 90.9 95.5 97.9 99.1

Median BRPL ratio 0.6 1.8 4.1 8.6 23.1 48.5 74.2 90.0 95.0 97.5 99.1
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shows the estimated coverage probability for the two-sided confidence intervals for  based on the LR, mean
BRPL ratio and median BRPL ratio statistics at the 95% nominal level. For small values of  or small and
moderate number of studies K, the empirical coverage of the intervals is larger than the nominal 95% level. In
general, the confidence intervals based on mean and median BRPL ratio have empirical coverage that is closer to
the nominal level with the latter having generally better coverage. The differences between the three methods
diminish as the number of studies K increases.

Figures 9 and 10 give the power of the LR, the mean BRPL ratio, and the median BRPL ratio tests for testing
the null hypothesis � ¼ 0:5 against various alternatives. Specifically, we simulated 10,000 data sets under the
alternative hypothesis that parameter � is equal to b ¼ 0:5þ 
K�1=2, where 
 ranges from 0 to 2.25. In Figure 9
the power is calculated using critical values of the asymptotic null �21 distribution of the statistics. In Figure 10, the
power is calculated using critical values based on the exact null distribution of each statistic, obtained by
simulation under the null hypothesis. In this way, the three tests are calibrated to have size 5%.
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Figure 9 shows that the three tests have monotone power and for small values of K the LR test yields the largest
power. This is because the LR test is oversized, while the mean and median BRPL ratio tests are slightly more
conservative and this conservativeness comes at the cost of lower power. As the number of studies K increases, the
three tests approach the nominal size and provide similar power. The use of the exact critical values in Figure 10
allows us to compare the performance of the tests without letting the oversizing or the conservativeness of a test
skew the power results. Figure 10 shows that the power of the median BRPL ratio test is almost identical to that of
the mean BRPL ratio test, and both tests have larger power than the LR test. Again, inference based on either
of the two penalised likelihoods becomes indistinguishable from classical likelihood inference as the number of
studies increases.

Across all  and K values considered, the average number of iterations taken per fit for the two-step iterative
process to converge is 6.20, 5.75, and 5.86 iterations for ML, maximum mean BRPL, and maximum median
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Figure 6. Empirical coverage probabilities of one-sided (right) confidence intervals for � for random-effects meta-analysis. The

empirical coverage is calculated for increasing values of  in the interval ½0, 0:1� and for K 2 f5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
100, 200g. The curves correspond to nominally 95% internals based on the median BRPL ratio (solid), the mean BRPL ratio (dashed),

and the LR (dotted). The grey horizontal line is at the 95% nominal level.
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Figure 7. Empirical coverage probabilities of two-sided confidence intervals for � for random-effects meta-analysis. The empirical

coverage is calculated for increasing values of  in the interval ½0, 0:1� and for K 2 f5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200g. The

curves correspond to nominally 95% confidence intervals based on the median BRPL ratio (solid), the mean BRPL ratio (dashed), and

the LR (dotted). The grey horizontal line is at the 95% nominal level.
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BRPL, respectively. The average computational run-times for ML, maximum mean BRPL, and maximum median
BRPL are 0.005 s, 0.021 s, and 0.017 s, respectively. Figures 1 and 2 in the Supplementary material show the
average number of iterations and the average computational run-time taken per fit for the two-step iterative
process to converge for each value of K and  used in the simulation study. The results show that in all cases
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Figure 9. Empirical power of the likelihood-based tests of asymptotic level 0.05 for random-effects meta-analysis for testing � ¼ 0:5.

The empirical power is calculated for increasing values of �, for K 2 f5, 10, 15g and  2 f0, 0:025, 0:05g. The curves correspond to

median BRPL ratio (solid), mean BRPL ratio (dashed), and LR (dotted) tests. The grey horizontal line is at the 5% nominal size.
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Figure 8. Empirical coverage probabilities of two-sided confidence intervals for  for random-effects meta-analysis. The empirical

coverage is calculated with � ¼ 0:5 and for increasing values of  in the interval ½0, 0:1� and for K 2 f5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 100, 200g. The curves correspond to nominally 95% confidence intervals based on the median BRPL ratio (solid), the mean BRPL

ratio (dashed), and the LR (dotted). The grey horizontal line is at the 95% nominal level.
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estimation is achieved rapidly and after a small number of iterations for all three methods, with only negligible
overhead with the two bias reducing methods.

7 Meat consumption data

Larsson and Orsini9 investigate the association between meat consumption and relative risk of all-cause mortality.
The data consists of 16 prospective studies, eight of which are about unprocessed red meat consumption and eight
about processed meat consumption. Figure 11 displays the information provided by each study in the meta-
analysis. The results from the studies point towards the conclusion that high consumption of red meat, in
particular processed red meat, is associated with higher all-cause mortality.

We consider the random-effects meta-regression model, assuming that Yi has a Nð�0 þ �1xi, �̂
2
i þ  Þ, where Yi is

the random variable representing the logarithm of the relative risk reported in the ith study, and xi takes value 1 if
the consumption in the ith study is about processed red meat and 0 if it is about unprocessed meat ði ¼ 1, . . . , 16Þ.
Table 2 gives the ML estimates, the mean BRPL estimates, and the median BRPL estimates of �0, �1 and  , along
with the corresponding standard errors for �0 and �1. The median BRPL estimate of  and the standard errors of
the fixed-effect parameters are the largest. The iterative process for computing the ML, maximum mean BRPL,
and maximum median BRPL estimates converged in eight, nine, and twelve iterations, in 1:2� 10�2, 2:4� 10�2,
and 1:5� 10�2 seconds, respectively.

The LR test indicates some evidence for a higher risk associated to the consumption of red processed meat with
a p-value of 0.047. On the other hand, the mean and median BRPL ratio tests suggest that there is weaker evidence
for higher risk, with p-values of 0.066 and 0.074, respectively. Skovgaard’s test also gives weak evidence for higher
risk with p-value 0.073.

Similar to Section 5, we performed a simulation study in order to further investigate the performance of the
three methods in a meta-regression context. We simulated 10,000 independent samples from the meta-regression
model at the ML estimates reported in Table 2. Figure 12 shows boxplots of the estimates of �0, �1, and  .
Maximum likelihood underestimates the parameter  , while mean BRPL and median BRPL almost fully
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Figure 10. Empirical power of the likelihood-based tests of exact level 0.05 for random-effects meta-analysis for testing � ¼ 0:5.

The empirical power is calculated for increasing values of �, for K 2 f5, 10, 15g and  2 f0, 0:025, 0:05g. The curves correspond to

median BRPL ratio (solid), mean BRPL ratio (dashed), and LR (dotted) tests. The grey horizontal line is at the 5% nominal size.
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compensate for the negative bias of ML estimates, with the latter having a slightly heavier right tail. The
percentages of underestimation are 72.6%, 56.6%, and 49.9% for the ML, maximum mean BRPL, and
maximum median BRPL estimators, respectively.

The simulated samples were also used to calculate the empirical p-value distribution for the tests based on the
likelihood, mean BRPL and median BRPL ratio statistics. Table 3 shows that the empirical p-value distribution
for the median BRPL ratio statistic is the one closest to uniformity.

8 Concluding remarks

In this paper we derive the adjusted score equations for the median bias reduction of the ML estimator for
random-effects meta-analysis and meta-regression models and describe the associated inferential procedures.
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Figure 11. The meat consumption data.9 Outcomes from 16 studies are reported in terms of the logarithm of the relative risk (Log

RR) of all-cause mortality for the highest versus lowest category of unprocessed red meat, and processed meat consumption. Squares

represent the mean effect estimate for each study; the size of the square reflects the weight that the corresponding study exerts in the

meta-analysis. Horizontal lines represent 95% Wald-type confidence intervals (CI) of the effect estimate of individual studies.

Table 2. ML, maximum mean BRPL, and maximum median BRPL estimates of the model parameters for the meat consumption

data.9

Method �0 �1  

ML 0.099 (0.044) 0.106 (0.061) 0.009

[�0.004,0.189] [�0.022,0.244] [0.003,0.030]

Maximum mean BRPL 0.095 (0.050) 0.110 (0.069) 0.012

[�0.020,0.199] [�0.040,0.264] [0.003,0.042]

Maximum median BRPL 0.093 (0.052) 0.111 (0.072) 0.013

[�0.027,0.203] [�0.048,0.271] [0.004,0.048]

Note: Standard errors are reported in parentheses. The 95% confidence intervals based on the LR, mean BRPL ratio and median BRPL ratio are

reported in squared brackets.
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We show that the solution of the median bias-reducing adjusted score equations is equivalent to maximising a
penalised log-likelihood. The logarithm of that penalised likelihood differs from the logarithm of the mean BRPL
in Kosmidis et al.3 by a simple additive term. The computation of the maximum median BRPL estimators can be
performed through a two-step iteration that involves a weighted least squares update and the solution of a
nonlinear equation with respect to a scalar parameter, and which converges rapidly, as illustrated by the
computational times and number of iterations reported in the paper. The reported times and number of
iterations were computed using a workstation with 24 cores at 2.90GHz and 80 GB memory running under the
CentOS 7 operating system, using one core per data set.

Using various settings we were able to retrieve enough information on the performance of the maximum
median BRPL estimators. All our simulation studies illustrate that use of the median BRPL succeeds in
achieving median centering in estimation, and results in confidence intervals with good coverage properties.
Furthermore, while tests based on the LR suffer from size distortions, the median BRPL ratio statistic results in
tests with size and power properties, sometimes better to those of the mean BRPL ratio statistic in Kosmidis
et al.3

The main advantage of the maximum median BRPL estimators from the maximum mean BRPL ones is their
equivariance under monotone component-wise parameter transformations, which, in the case of random-effects
meta-regression, leads to median bias-reduced standard errors.
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Figure 12. Boxplots for the ML, maximum mean BRPL, and maximum median BRPL estimates of �0, �1, and  as calculated from

10,000 simulated samples under the ML fit using the meat consumption data.9 The square point is the mean of the estimates obtained

from each method. The dashed grey horizontal line is at the parameter value used to generate the data.

Table 3. Empirical p-value distribution (%) for the tests based on the LR statistic, the mean BRPL ratio statistic, and the median BRPL

ratio statistic using the meat consumption data.9

	� 100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

LR 2.2 4.5 7.7 13.1 28.0 50.0 71.7 86.6 92.1 95.3 97.7

Mean BRPL ratio 1.3 3.0 5.6 11.1 25.9 49.8 73.8 89.0 94.2 96.9 98.6

Median BRPL ratio 1.0 2.5 4.9 9.9 25.1 49.7 74.7 89.8 94.8 97.5 98.9
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As random-effect models are widely used in practice, the median BRPL method is likely to be useful in models
with more complex random-effect structures, such as linear mixed models.
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Appendix 1

The observed information matrix for the random-effects meta-regression model (1) is

j ð�Þ ¼
XTWð ÞX XTWð Þ2Rð�Þ

XTWð Þ2Rð�Þ Rð�ÞTWð Þ3Rð�Þ �
1

2
tr½Wð Þ2�

0
@

1
A:

For this model

Ptð�Þ ¼ �Qtð�Þ ¼
0p�p XTWð Þ2Xt

XTWð Þ2Xt 0

 !
ðt ¼ 1, . . . , pÞ,

and

Ppþ1ð�Þ ¼
XTWð Þ2X 0p

0Tp trðWð Þ3Þ

 !
and Qpþ1ð�Þ ¼

0p�p 0p

0Tp �trðWð Þ3Þ

 !
,

where 0p�p is the p� p zero matrix and Xt is the tth column of X. The median bias-reducing adjustment for � is
obtained by plugging the above expressions into equation (4). The sum Ptð�Þ þQtð�Þ (t ¼ 1, . . . , pþ 1) is also given
in the Appendix of Kosmidis et al.3
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