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Summary 

Chapter One gives a broad introduction to the research described herein, initially 

discussing the reasons for morphology control, polymerisation techniques and self-

assembly methods. A general introduction to solution crystallisation of polymers is 

given, with a focus on block copolymers with a crystalline core-forming block. 

Chapter Two discusses the use of various poly(L-lactide) based amphiphiles to 

propose a unimer solubility-based shape selectivity mechanism for the formation of 

1D and 2D nanostructures, leading to a single component solution phase protocol for 

the preparation of uniform diamond-shaped platelets. 

Chapter Three considers the use of three different morphologies, namely spheres, 

cylinders and platelets, as nanocomposites in calcium alginate hydrogels, where a 

greater shear strength is measured for platelet-composite hydrogels. 

Chapter Four utilises the proposed unimer solubility approach to create 2D 

diamond-shaped platelets of controlled size and shape. The use of different size 

platelets as water-in-water Pickering emulsifiers is explored, where larger plates are 

shown to give more stable emulsions. 

Chapter Five employs the use of a poly(ɛ-caprolactone) crystallisable core-forming 

block for the preparation of 1D cylindrical structures of controlled length and 

dispersity. Direct epitaxial growth in water is shown, leading to the preparation of 

strong hydrogel materials. 

Chapter Six summarises the research presented, giving general conclusions as well 

as discussing the scope for future investigations in this area of research. 
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1.1 Morphology in nature 

In natural nanomaterials, shape is a key factor in enabling a range of highly complex 

functionalities with an exquisite degree of selectivity, precision and efficiency. 

Perhaps most notably is the three-dimensional structure of a folded protein, which is 

vital in creating highly specific active sites which allow particular functions to take 

place. On a larger scale, unique morphologies are often displayed by natural 

pathogens, from icosahedral Hepatitis A virions, to micron-sized, worm-shaped Ebola 

virions and the unique head-tail structure of bacteriophages. Such geometries can 

dictate their ability to infect specific cell types and may alter their residence time inside 

the cell. Nature has designed these nanostructures with the utmost complexity, where 

the combination of shape, size and composition is crucial in mediating their specific 

interactions and functions. 

Soft nanomaterials offer great potential in the desire to emulate such properties through 

synthetic tailoring of nanoparticle constructs.1 Achieving the same degree of control 

over a combination of both composition and morphology is an interesting challenge 

that has been of particular interest over recent years.2-4 In order to engineer these highly 

complex materials with the desired functionality, each hierarchical level of synthetic 

modification can be considered, from the synthetic preparation and modification of 

macromolecular species to the design of new and innovative assembly methods.5 

These macromolecules can encompass natural building blocks, such as nucleic acids, 

where the high specificity of Watson-Crick base pairing interactions can be exploited 

for the formation of nanoscale assemblies, or synthetic building blocks, such as 

polymers, which use a wide array of interactions and functionalities to fabricate 

assemblies from the nano- to macro-scale and beyond.  
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1.2 Synthetic polymer building blocks 

Synthetic polymers offer an ever-expanding range of functional materials with many 

variables that must be considered in order to produce reliable constructs. In addition 

to monomer type, the way the monomers are connected and the overall topology of the 

polymer are important attributes of the resultant material. Overall, the functionality, 

architecture and composition, comprising sequence, tacticity and molecular weight, 

form the main components which can be modulated to impart a wide range of desired 

properties to the fabricated construct (Figure 1.1).6 

 

 

Figure 1.1 The main components of a polymer which can be used to change the 

resultant properties of the material, where blue and red indicate different monomers. 
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Polymer architecture can be controlled by careful choice of the method of 

polymerisation, however, precise control over polymer composition is principally 

targeted using living polymerisation and reversible-deactivation radical 

polymerisation mechanisms. 

1.2.1 Free radical polymerisation 

Currently, one of the most predominant methods in the industrial synthesis of polymers 

is free radical polymerisation. Largely, this is due to the ability of free radical 

polymerisation to incorporate a wide range of unprotected functional groups using 

comparatively mild reaction conditions, leading to a relatively simple and inexpensive 

technique.7 The mechanism of free radical polymerisation can be described by four 

principal steps; initiation, propagation, chain transfer and termination. Initiation 

describes the formation of free radicals by decomposition of an initiator molecule by, 

for example, thermal or radiative processes. The initiator fragment reacts with the 

monomer to begin the conversion to a polymer, followed by successive monomer 

additions in the propagation step. Chain transfer denotes a process where the radical 

species can be transferred from one polymer chain to, for example, another polymer 

chain, often leading to the formation of branched architectures. The radical species 

may also transfer to a monomer, the solvent or an added chain transfer agent, such as 

a thiol. Termination describes the removal of a radical species through an irreversible 

reaction. This can occur through recombination, where two active radicals couple 

together to deactivate polymer growth; or disproportionation, where, for example, a 

hydrogen atom is abstracted from one polymer chain, resulting in terminal unsaturation 

in the second polymer chain. In both instances, so-called dead polymer chains (Pn+m, 

Pn, Pm) are produced, however, an unsaturated chain end of a polymer may undergo 

further reaction as a macromonomer (Scheme 1.1). 
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Scheme 1.1 Schematic of the key mechanistic steps in free radical polymerisation. 

 

This conventional free radical polymerisation process has several considerations 

which must be taken into account. Firstly, due to the highly reactive nature of the 

radical species, the rate of termination is high. As a consequence, many chains 

terminate before complete conversion to a polymer strand, leading to a short lifetime 

of propagating radicals. Secondly, the propagation step is faster than initiation, which 

results in significant growth for some polymer chains whilst others are still initiating. 

Finally, control over the polymerisation process is hindered further by chain transfer 

events, where the radical species can transfer to the monomer, the solvent and other 

polymer chains. This may alter the site of the growing polymer, thereby resulting in 

irregular or branched architectures. These limitations lead to uncontrolled polymer 

chain growth, resulting in unpredictable molecular weights and broad molecular 

weight distributions, and a lack of control over the composition in the preparation of 

more complex structures, including block copolymers. Evidently, the degree of control 
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over the polymerisation can therefore be vastly improved by minimising chain transfer 

and termination processes.8 

1.2.2 Living polymerisation 

A living polymerisation is a chain-growth polymerisation in which chain transfer and 

chain termination processes are absent, the former promoting the formation of linear 

polymers.9 The polymerisation proceeds until all of the monomer has been consumed, 

and further addition of the monomer results in continued polymerisation. During a 

living polymerisation, the number average degree of polymerisation (DP) is a linear 

function of conversion, where the DP can be controlled by the ratio of monomer to 

initiator. A fast initiation step results in polymers with narrow molecular weight 

distributions, where the sequence can be controlled by the order in which different 

monomers are added to the growing polymer. This allows for the preparation of well-

defined polymer chains with blocks of different monomers, so called block copolymers 

(Figure 1.1). 

However, the absence of chain transfer and termination processes demands extremely 

stringent reaction conditions.10 For instance, living ionic polymerisation of vinyl 

monomers requires complete exclusion of oxygen and water from the reaction system 

in order for the polymerisation to be successful.11 This has limited the accessibility of 

such methods, leading to the development of alternative polymerisation techniques. 

1.2.3 Reversible-deactivation radical polymerisation 

Reversible-deactivation radical polymerisation (RDRP) establishes a mechanism 

whereby chain transfer and termination processes proceed at an undetectable level. As 

such, this is often denoted as a “quasi-living” or “pseudo-living” process. This is 

achieved through a dynamic equilibrium between propagating radicals and a dormant 
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species, which results in a reduction in the concentration of radicals, thereby reducing 

the rate of termination and chain transfer, whilst significantly increasing the lifetime 

of propagating radicals. This dynamic equilibrium can be achieved either through 

systems exploiting a persistent radical effect or a degenerative transfer process.12-15 

1.2.3.1 Persistent radical effect 

Persistent radicals cannot self-terminate, i.e. react with one another, and so they only 

participate in cross-coupling reactions with the polymeric propagating radicals. 

Termination reactions are, therefore, significantly reduced alongside a build-up of 

persistent radicals and a reduced concentration of propagating radicals. 

Both atom-transfer radical polymerisation (ATRP) and nitroxide-mediated 

polymerisation (NMP) rely on a persistent radical effect to achieve controlled 

polymerisation. In ATRP, the persistent radical takes the form of a transition metal 

complex in a higher oxidation state, formed by a reversible redox reaction with an 

organic halide. This produces a radical species which can initiate a radical 

polymerisation with a vinyl monomer, allowing propagation until the growing polymer 

chain is deactivated again by the halide from the transition metal complex, re-gaining 

its lower oxidation state (Scheme 1.2). The dynamic equilibrium is such that a low 

concentration of radicals is maintained, with the majority of polymer chains remaining 

dormant. 16-18 

In NMP, historically the first developed RDRP technique, the persistent radical is a 

stable nitroxide which can be used to thermally activate and deactivate the growing 

polymer chains (Scheme 1.3). Similarly, the majority of polymer chains are dormant 

when capped by the mediating nitroxide, leading to a low concentration of radicals and 

minimisation of termination events.14, 19 
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Scheme 1.2 Schematic of the key activation/deactivation step by a transition metal 

complex in ATRP, where M represents a transition metal complex, X represents a 

halide and M represents a monomer species. 

 

A further advantage of both ATRP and NMP lies in the retention of the radical 

mediating group, where the halide and nitroxide group, respectively, can be exploited 

in further polymerisation reactions to prepare block copolymers. 

 

 

Scheme 1.3 Schematic of the key activation/deactivation step by a nitroxide in NMP. 

 

1.2.3.2 Degenerative transfer 

Controlled radical polymerisation can also be achieved using a degenerative transfer 

mechanism, which differs from the persistent radical effect in that the active polymer 

radical is in equilibrium with a second dormant polymer chain, again with the aim of 

minimising radical-radical termination events. Notably, this mechanism is employed 

by the reversible addition-fragmentation chain transfer (RAFT) polymerisation 

process, the most recent of the radical methodologies.20 In this process, the mechanism 

proceeds through the use of a thiocarbonyl chain transfer agent (CTA) containing a 

carefully selected R group and Z group (Figure 1.2). 
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Figure 1.2 Example of a RAFT polymer using a generic RAFT CTA, indicating the Z 

group at the ω-end and the R group at the α-end. 

 

The thiocarbonyl CTA is used to form a radical intermediate from a reaction with an 

initiated polymer chain, which can subsequently fragment to produce a polymeric 

thiocarbonyl compound (macro-CTA) and a reinitiating group. Reinitiating groups can 

react with another monomer to generate a new polymer chain which can then undergo 

the same process, leading to eventual chain equilibrium when all of the CTA has 

reacted (Scheme 1.4).20-22 This equilibrium process results in a majority of dormant 

chains, leaving few of the actively growing polymer chains and therefore a 

minimisation of termination events. Similar to ATRP and NMP, the mediating group 

is retained at the end of the polymer chain, in this case, the chain transfer agent. As 

such, RAFT polymerisation can also be used for the preparation of block copolymers. 

Optimal choice of CTA is crucial to the success of a RAFT polymerisation, where a 

measured choice can yield polymers of predictable molecular weights and narrow 

dispersity whilst maintaining end group functionality. Both the R and Z groups of the 

CTA are important in determining the addition and fragmentations rates, which means 

that each must be tailored to the monomer used. The Z group needs to be stabilising 

enough to form the radical intermediate, but it must not be too stabilising such that the 

fragmentation will not occur. Its influence on the stability of the thiocarbonylthio 

intermediate depends strongly on its electron withdrawing or electron donating ability. 

In the equilibrium process, an electron withdrawing group will favour the formation 

of the intermediate, as this is more stabilised than the propagating radical.  
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Scheme 1.4 Mechanism of RAFT polymerisation. 

 

Equally, electron donating groups have the opposite effect, where the formation of the 

radical intermediate is not favoured. In varying the Z group, four main classes of CTA 

have been reported; dithioesters, dithiocarbamates, trithiocarbonates, and xanthates 

(Figure 1.3). 

 

 

Figure 1.3 Classes of chain transfer agent used in RAFT polymerisation; (a) 

dithioester, (b) dithiocarbamate, (c) trithiocarbonate and (d) xanthate. 
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In the design of chain transfer agents, general guidelines established by Moad and co-

workers can be used to select the most appropriate Z group. In these guidelines, 

monomers can be classified into two groups; less activated monomers and more-

activated monomers. Less activated monomers, for example, vinyl acetate (VAc), N-

vinyl carbazole (NVC) and N-vinyl pyrrolidone (NVP), are poor homolytic leaving 

groups from the thiocarbonyl intermediate radical.23 As such, a less active CTA, with 

a strongly electron donating Z group, is required to prevent inhibition of the 

polymerisation due to a build-up of the thiocarbonyl intermediate radical (Figure 1.4).  

 

 

Figure 1.4 General guidelines for RAFT agent Z group selection. Addition rates 

decrease from left to right (fragmentation rates increase). Dashed lines indicate partial 

control.22 

 

More activated monomers, for example, methyl methacrylate (MMA), styrene (St), 

methyl acrylate (MA), acrylamide (AM) and acrylonitrile (AN), require a more active 

CTA with an electron withdrawing, or weakly electron donating, Z group. The 

resultant stabilised thiocarbonyl intermediate radical ensures sufficient propagation for 

this type of monomers. Similarly, the R group must act as an efficient homolytic 

leaving group from the intermediate radical, but it should also remain an effective 

initiating species for the monomer (Figure 1.5). Less activated monomers also benefit 
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further from the use of an R group which is a good homolytic leaving group to promote 

efficient re-initiation. 

 

 

Figure 1.5 General guidelines for RAFT agent R group selection. Fragmentation rate 

decreases from left to right. Dashed lines indicate partial control.22 

 

Arguably, RAFT polymerisation can be considered one of the most versatile and 

robust methods of polymerisation. Due to its high tolerance of functional groups, 

RAFT polymerisation has been successfully utilised with a wide range of functional 

monomers whilst maintaining good control.24-27 However, end-functionalised 

polymers can easily be achieved not only by RAFT, using functional CTAs, but also 

by ATRP and NMP processes. Notably, RAFT can be carried out in a range of 

conditions, including aqueous media, and can be used to create a range of architectures 

including linear block copolymers,28 star-shaped polymers,29 hyperbranched 

polymers30 and various higher order supramolecular structures.31-33 

1.2.3.3 End group modification of RAFT polymers 

Commercially, one significant concern of RAFT polymers is that the presence of the 

labile C–S bond, that facilitates the polymerisation mechanism, results in an inherent 

reactivity of the polymer and the possibility of decomposition into malodourous sulfur-
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containing materials. However, one novel feature of this technique is the ease with 

which the thiocarbonate at the ω-end of the polymer may be modified post-

polymerisation.34 Indeed, there is interest in not only introducing extra functional 

groups at the ω-end of the polymer chain, but also in conjugating biomolecules to, for 

example, introduce a stimulus in the form of a responsive RAFT polymer.35 

One of the most common methods of end group modification is the use of a primary 

or secondary amine acting as a nucleophile to convert a thiocarbonylthio group into a 

thiol which can undergo a thiol-ene click reaction with a Michael acceptor (Scheme 

1.5). Recently, the reduction of a trithiocarbonate and subsequent reaction with an 

acrylate has been developed as a one-pot procedure, where > 90% functionalisation 

was shown for a range of acrylates.36 The exclusion of oxygen from this modification 

process is vital, as thiols can easily form disulfides, resulting in unwanted higher 

molecular weight species. As such, a reducing agent, such as tris(2-

carboxyethyl)phosphine hydrochloride (TCEP.HCl), is often used to help prevent 

disulfide bridging.37 

 

 

Scheme 1.5 Schematic of a typical end group modification process of a 

trithiocarbonate with an acrylate. 

 

One method for complete desulfurisation of a RAFT polymer is via radical-induced 

end group removal, where an initiating radical species can react with the thiocarbonyl 

group of a CTA to produce an intermediate radical. The polymeric radical can then 
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react with a hydrogen donor, for example, a hypophosphite salt, to leave the polymer 

with a terminal hydrogen, or the initiating radical species if it is used in excess.38 

1.2.4 Ring-opening polymerisation 

Ring-opening polymerisation (ROP) is a form of chain-growth polymerisation, where 

the active chain end reacts with a cyclic monomer by opening its ring system and 

reforms the active chain end at the terminal end of the opened monomer. ROP has been 

denoted as one of the most versatile methods for the production of biopolymers as well 

as playing an important role in the industrial synthesis of polymers on a large scale. 

1.2.4.1 Poly(L-lactide) 

Poly(lactide) (PLA) is an aliphatic polyester derived from renewable resources, such 

as corn starch, cassava roots and sugarcane, which can be synthesised using ROP.39, 40 

Due to its outstanding biodegradability, biocompatibility and low toxicity, it has 

become one of the most widely used bioplastics in the world.41 As such, PLA has 

attracted significant interest in biomedical and pharmaceutical research as a potential 

candidate for tissue engineering and drug delivery treatments.42 

The composition of PLA can take several forms depending on the tacticity of the cyclic 

monomer used. The four stereoisomers of lactide include; enantiopure L-lactide with 

two S-stereocentres, enantiopure D-lactide with two R-stereocentres, racemic 

D,L-lactide and meso-lactide with one S-stereocentre and one R-stereocentre. The two 

enantiopure isomers can form semi-crystalline polymers and can, therefore, be utilised 

in crystallisation-driven assembly processes.43 

PLA can be prepared by two main methods; first developed was the polycondensation 

reaction from lactic acid.44 However, this method does not provide high degrees of 
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control, and high molecular weights can only be obtained with elevated temperatures, 

low pressures and long reaction times.45 

In comparison, the ROP of lactide offers high conversions and narrow dispersities 

(ca. < 1.2).46 Various catalysts have been studied for the ROP of lactide, including 

metal-based systems such as the widely used tin (II) octanoate catalyst.47, 48 However, 

such catalysts have been shown to undergo undesirable transesterification processes, 

leading to broad molecular weight distributions. In 2005, Dove and co-workers 

reported the ROP of L-lactide using a metal-free thiourea/(-)-sparteine-based 

organocatalytic system (Figure 1.6) which gave very low dispersities (< 1.1) and 

minimal transesterification of the polymer backbone.49, 50 In this process, the cyclic 

ester monomer and alcohol initiator are activated by hydrogen bonding interactions, 

which increases the electrophilicity of the lactide carbonyl and the nucleophilicity of 

the alcohol initiator. Furthermore, it was found that the thiourea molecule has 

increased recognition for the ester of the cyclic lactide monomer over the ester of the 

linear polymer, thus reducing the probability of attack of the propagating alcohol on 

the already formed PLA chain and rendering a lower dispersity. 

 

 

Figure 1.6 Ring-opening polymerisation of L-lactide using a thiourea/(-)-sparteine 

organocatalytic system. 
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1.2.4.2 Poly(ɛ-caprolactone) 

Poly(ɛ-caprolactone) (PCL) is another example of a biodegradable polyester which has 

attracted significant interest in a range of fields including tissue engineering51-53 and 

drug delivery.54, 55 The ROP of ɛ-caprolactone can proceed using a range of different 

catalysts, including metal-based, organic or enzymatic systems.56 Of particular interest 

is an organocatalytic approach, as described by Kakuchi and co-workers,57 using 

diphenyl phosphate (DPP) due to its commercial availability, low toxicity and 

chemical stability.58 An activated monomer mechanism was assumed, where DPP 

induces electrophilicity of the ɛ-caprolactone carbonyl to promote attack by an alcohol 

initiator (Figure 1.7). The reaction proceeded at room temperature, showing negligible 

transesterification of the polymer and very low dispersities (< 1.1).57 

 

 

Figure 1.7 Ring-opening polymerisation of ɛ-caprolactone using DPP as a catalyst. 
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1.3 Solution self-assembly of amphiphilic block copolymers 

Amphiphilic block copolymers, composed of a solvophilic block and a solvophobic 

block, can spontaneously self-assemble in selective solvents, where the solvent is 

selective for one of the blocks in the copolymer. For example, in a hydrophilic solvent, 

block copolymer chains can autonomously self-assemble to form a core-corona 

micellar structure, where the core is composed of the hydrophobic block, and the 

corona is composed of the hydrophilic block. Such an assembly is driven by the 

solvophobic effect in order to minimise energetically unfavourable interactions 

between the solvophobic core-forming block and the solvophilic solvent as well as 

entropically unfavourable ordering of the solvent.59, 60 

1.3.1 Particle morphology 

The morphology of the micellar structure depends on several factors: the interfacial 

tension between the core-forming block and the solvent; the stretching of the core-

forming block; and the repulsive interactions of the corona-forming block. Any 

modifications to polymer composition and self-assembly conditions, including 

temperature, solvent and salt concentration, can affect these factors and thus the 

resultant morphology of the self-assembled structure. 

Manipulating the ratio of the core and corona blocks has led to the formation of a range 

of structures including spherical,61 vesicular62 and cylindrical63 morphologies. A 

dimensionless packing parameter, p, can be used to predict the most likely morphology 

of block copolymers using the influence of molecular curvature. As a general guide, 

spherical micelles are formed when p ≤ ⅓, cylindrical micelles are formed when 

⅓ < p ≤ ½, and vesicles or bilayers are formed when ½ < p ≤ 1 (Figure 1.8).59 As such, 

spherical micelles, occupying the smallest packing parameter range, as stated above, 
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represent the most commonly used assembly morphology and, therefore, the most 

widely studied. 

 

 

Figure 1.8 Different morphologies obtained by targeting different packing parameters 

in a hydrophilic solvent, where 𝑣 is the volume of the hydrophobic block, 𝑙𝑐 is the 

length of the hydrophobic block and 𝑎0 is the optimal area of the interface. Structures 

in red represent hydrophobic blocks and structures in blue represent hydrophilic 

blocks. 64 

 

Vesicular morphologies, occupying the largest packing parameter range exhibit a 

bilayer structure, where the hydrophobic block resides between hydrophilic chains to 

produce a hydrophilic core and a hydrophilic corona in a hydrophilic solvent. In terms 

of application, this type of structure allows for the encapsulation of water-soluble guest 

molecules in hydrophilic media.59 
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Access to cylindrical morphologies through altering block composition is clearly more 

difficult due to the narrow window theorised by packing parameter calculations. The 

self-assemblies often result in mixed morphologies with spherical or vesicular 

contaminants, rendering this pure cylindrical phase much more difficult to access. This 

represents a significant challenge, particularly due to the fact that cylindrical 

morphologies exhibit great potential in many biomedical applications. Attributed to 

their anisotropic nature, cylindrical nanoparticles have been shown to not only exhibit 

better cell uptake rates in comparison to their spherical counterparts, but undergo much 

longer in vivo circulation times on increasing cylinder length.64-71 

1.3.2 Particle self-assembly methods 

Polymer assemblies following packing parameter rules can generally be obtained by 

direct dissolution or solvent-switch methodologies. Direct dissolution describes a 

simple approach of adding a selective solvent for the corona block directly to the 

polymer, causing assembly of a micellar structure. However, in a solvent-switch 

process, the selective solvent is slowly added to a solution of the polymer dissolved in 

a good solvent for both blocks. The resultant micelle assembly is then retained after 

removal of the good solvent. Although the assembly of cylindrical particles has been 

achieved through these methods, they can often result in the formation of multiple 

morphologies.60  

However, a number of alternative approaches have been successfully utilised to target 

pure cylindrical phases. Polymerisation-induced self-assembly (PISA) presents one 

approach where, for example, a water-soluble monomer such as 2-hydroxypropyl 

methacrylate (HPMA) can be polymerised, using a water-soluble macro-CTA, to form 

a water-insoluble block and thus assemble during the polymerisation process. Several 
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morphologies, including spheres, cylinders, vesicles and multi-lamellar vesicles have 

been reported during this process.72-75 For example, Armes and co-workers showed the 

formation of pure phase spheres, worms and vesicles using poly(glycerol 

monomethacrylate) (PGMA)-b-PHPMA diblock copolymers using different block 

copolymer compositions and solid contents (Figure 1.9).72 However, despite the 

formation of pure cylindrical phases, PISA tends to show a lack of control over the 

dimensions of the cylinders formed, limiting access to nanoparticles of controlled 

aspect ratio. Given the biological importance of elongated particles, the ability to target 

such high aspect ratio particles is key. 

 

 

Figure 1.9 TEM micrographs of PGMA-b-PHPMA pure phase spheres, worms and 

vesicles prepared using PISA, where the phases are obtained using different block 

ratios or solids contents as stated.72 

 

Arguably, the most successful method in accessing cylindrical morphologies of 

controlled length to date is the exploitation of polymer crystallisation. Such a process 

requires the use of semi-crystalline polymers for one or more of the blocks. 
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1.4 Crystallisation-driven self-assembly 

1.4.1 Polymer crystallisation 

When polymers crystallise, they often form two-dimensional lamella which are much 

thinner than the length of the extended polymer chain. Keller first accounted for this 

by proposing a model for the formation of polymer single crystals, where long polymer 

chains exhibit a regular folding pattern oriented perpendicular to the lamella plane.76 

The model describes how the inherent long chain structure of polymers, even those 

which are monodisperse, can never fully crystallise due to the connectivity of the chain 

at the edges of the folds, rendering a semi-crystalline nature (Figure 1.10).  

 

 

Figure 1.10 Comparison of a random amorphous polymer chain with a regularly 

folded semi-crystalline polymer chain. 

 

It is important to first note the effects of dispersity of the polymer chain, which hinders 

the study of crystallisation. The excess length of a polymer chain after completing 

chain folds may be left uncrystallised.77 Therefore, ideally, polymers of very low 

dispersity should be used to study crystallisation.78 
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1.4.2 Chain-folding of crystalline-core micelles 

Vilgis and Halperin used a chain-folding model to propose the assembly of diblock 

copolymers into crystalline-core micelles.79 In this model, the insoluble crystalline 

block undergoes chain-folding with a sharp interface excluding the other block from 

the crystal, forming the soluble amorphous upper and lower layers (Figure 1.11). The 

number of chain folds is associated with the distribution of the corona polymer chains 

on the crystal surface, as described by the tethering density (number of chains per unit 

area of surface). 80, 81 

 

 

Figure 1.11 High and low tethering density of diblock copolymers with a semi-

crystalline core block given by low and high chain folding numbers, respectively. 

Corona chains are only shown on one side for clarity. 

 

1.4.3 Mechanisms for solution crystallisation of diblock copolymers 

The process through which diblock copolymers with a crystallisable core block can 

undergo crystallisation to form nanostructures, termed crystallisation-driven self-

assembly (CDSA), can proceed through a number of key mechanisms; self-nucleation 
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or thermal crystallisation, living crystallisation, self-seeding and processes involving 

morphological transitions.82, 83 

1.4.3.1 Self-nucleation/thermal crystallisation 

Generally, in a self-nucleation process, the polymer is dissolved in a selective solvent 

at relatively high temperatures, often above the melting temperature of the crystalline 

core block. The solution is then cooled down to different crystallisation temperatures, 

where lowering the temperature reduces the solvent quality for the crystallisable core-

forming block. This self-assembly method is reversible, i.e. heating above the melting 

temperature again destroys the crystal structure and reverts the polymer to an 

amorphous state (Scheme 1.6). 

 

 

Scheme 1.6 A typical self-nucleation process, where a polymer is heated to form 

molecularly dissolved unimers and cooled to form assembled structures. 

 

Previously, the O’Reilly group have studied the assembly of poly(L-lactide) (PLLA)-

containing block copolymers by heating above the glass transition temperature of 

PLLA, to soften the polymer, to yield well-defined cylindrical micelles of controlled 

dimensions using various corona blocks.43, 84 The length and width of the cylinders 

could be tuned by altering block composition, where the least hydrophilic corona led 

to the longest cylinders.85 Various other biorelevant crystalline blocks have also been 
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studied and used to show that block copolymer composition,86-88  temperature89-91 and 

solvent quality92 can effect morphology. 

1.4.3.2 Living crystallisation 

Living crystallisation describes the growth of crystalline micelles achieved via an 

epitaxial growth mechanism on addition of molecularly dissolved polymer unimers to 

pre-formed crystalline seeds. The ends of the crystalline seeds remain active to the 

addition of these unimers to produce well-defined lengths and morphologies of the 

structures formed (Scheme 1.7). 

 

 

Scheme 1.7 A typical epitaxial growth process, where molecularly dissolved unimers 

are added to pre-formed crystalline seeds to grow the assembled structures. 

 

Although few reports of biodegradable polymers have been reported,93 this technique 

has been studied extensively by Winnik, Manners and co-workers with 

poly(ferrocenyldimethylsilane) (PFS) block copolymers for the preparation of a wide 

range of nanostructures including cylinder94-97 and platelet morphologies.98-101 For 

example, PFS-b-poly(dimethylsiloxane) (PDMS) diblock copolymers have been 

shown to undergo CDSA to form cylindrical nanoparticles in n-hexane, a selective 

solvent for PFS.102, 103 Cylinders of controlled length were achieved by addition of a 

controlled amount of unimer, which added to both ends of the structure via epitaxial 
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growth. As such, the length of the cylinder formed could be targeted by consideration 

of the pre-formed cylinder seed-to-unimer ratio. 

By addition of alternative unimers containing a PFS core-forming block, it was also 

shown that further functionality could be added to the coronal block to form cylindrical 

multi-block micelles (Figure 1.12a).96, 104 Indeed, more complex morphologies have 

also been demonstrated using this concept, including branched micelles,105 multi-

armed micelles and scarf-shaped architectures consisting of plate-like structures with 

attached cylindrical tassels of controlled length (Figure 1.12b).106, 107 

 

 

Figure 1.12 TEM micrographs of crystalline PFS (a) cylindrical multi-blocks and 

(b) scarf-like structures. Scale bar = 500 nm. 

 

1.4.3.3 Self-seeding 

A self-seeding process circumvents nucleation, a process which is often problematic 

for polymers due to slow kinetics. This technique originates from the fundamental 

properties of polymer crystals in that they consist of regions of different chain folds. 

On heating, the different folded sections melt at different temperatures, simultaneously 

giving regions that are molten and regions that are crystalline. Melting such samples 
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results in the initial melting of the least ordered parts, followed by melting of the most 

ordered parts on increasing temperature, independent of the heating time. 

In self-seeding experiments, crystals regrow from a melt state, where melting takes 

place until only a few remnants of pre-existing crystals remain. These then act as seeds 

on subsequent cooling for further crystallisation. These particular seeds are all derived 

from a previously formed single crystal and thus will produce replicas of the same 

crystalline structure (Scheme 1.8).108  

 

 

Scheme 1.8 A typical self-seeding process, where a polymer is heated until few 

crystalline regions remain and cooled to form assembled structures. 

 

This self-seeding technique has also been used successfully with diblock copolymers 

containing a PFS core-forming block,109 as well as other polymers including 

poly(3-hexylthiophene)110 and poly(ethylene oxide).108 A solvent-induced self-

seeding approach has also been demonstrated by Manners and co-workers, who 

showed that a good solvent can be exploited to perform self-seeding as opposed to 

temperature. For example, the addition of a small amount of THF to a solution of PFS-

containing diblock copolymer seed micelles caused largely unimer formation, where 

only a few crystalline seeds remained. Upon evaporation of the THF, cylindrical 

micelles of controlled length were formed.109 

 



Chapter One – Introduction to polymers, nanoparticles and morphology control 

27 

 

1.4.3.4 Morphological transitions 

Though crystallisation of the core drives the micellar structure, factors affecting the 

solubility of the corona block, such as a change in solvent or temperature, can cause 

reorganisation, leading to morphological transitions (Scheme 1.9). 

 

 

Scheme 1.9 An example of a morphological transition, where a change in conditions 

allows a change from spherical to cylindrical assembled structures. 

 

Previously, the O’Reilly group showed a sphere-to-cylinder transition using PLLA-b-

PAA block copolymers. Spherical micelles were shown to slowly crystallise into seeds 

that further nucleated cylinder growth, however a large dispersity in cylinder length 

was observed.111 

He and co-workers showed that sphere-to-cylinder and sphere-to-lamellae 

transformations of PCL-b-PEO block copolymer micelles could be induced by the 

addition of an inorganic salt to a solution of preformed crystalline spherical 

micelles.112, 113 It was also shown that the conformation of the PEO block could be 

altered by pH in aqueous solution, where the soluble PEO corona could form hydrogen 

bonds with water molecules.114 At high pH, the hydrogen bonds were partially 

destroyed, leading to reduced PEO chain solubility and aggregation of the corona. 

Thus, the tethering density was reduced and the PCL core was more exposed, leading 
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to a transition from spherical micelles to higher order structures with less interfacial 

curvature. 

1.4.4 Observable features of polymer crystals 

1.4.4.1 Polymer crystal habit 

Polymer single crystals possess very different external shapes, also known as the 

polymer crystal habit.115 The habit of a single crystal is generally a good indicator of 

the symmetry of the underlying crystal structure. In general, tetragonal unit cells give 

rise to square crystals, hexagonal unit cells give rise to hexagonal crystals, and 

orthorhombic unit cells give rise to lozenge-shaped crystals. Unusually shaped crystals 

can be achieved for more complex structures, for example, triangular crystals have 

been reported for racemic stereocomplexes of poly(L-lactide) (PLLA) and poly(D-

lactide) (PDLA) which crystallises in a trigonal unit cell structure.116-118  

The formation of anisotropic crystals implies that the growth rate along one direction 

is faster than the others. Therefore, the nucleation barrier for crystallisation is different 

on different crystallographic planes. As such, a change in crystallisation conditions, 

such as solvent or temperature, to overcome the nucleation barrier may lead to different 

crystal habits. 

1.4.4.2 Multilayer crystals 

In some instances, remaining segments on the top and bottom of the crystal can act as 

nuclei for the growth of a second lamella layer from polymers diffusing on top of the 

first layer. As such, a single polymer chain can easily co-crystallise into two separate 

neighbouring crystals when its chain length is long enough, with the secondary lamella 

exhibiting the same orientation as the first layer.115 These so-called molecular ties are 
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thus considered to connect lamellae to form multilayer crystals (Figure 1.13).119 In 

dilute solution, polymer chains are generally less entangled, and, therefore, the 

probability that the chain could be incorporated in more than one crystal is much lower 

when compared to concentrated solutions. 

 

 

Figure 1.13 (a) Amorphous molecular ties connecting lamellae to form multilayer 

crystals. (b) TEM micrograph of a PLLA crystal prepared by Chen and co-workers 

showing multi-layers.120 

 

1.4.4.3 Edge and screw dislocations 

Defects in the growth of polymer single crystals can give rise to the spreading of 

crystallinity to form multiple crystal layers, where crystal growth in one layer can 

initiate growth in an adjacent layer. The most common reported defects include edge 

dislocation and screw dislocation mechanisms. An edge dislocation can occur at the 

boundary or adjacent to a hole in the crystal, allowing alignment in adjacent layers. A 

screw dislocation leads to staggered crystal growth which can be observed as many 

layered spiral overgrowths, where all of the layers are one single crystal connected by 

the defect (Figure 1.14).121 
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Figure 1.14 (a) Multi-layer crystal showing a screw dislocation defect, where the 

crystal continues to spiral upward. (b) TEM micrograph of a PLLA crystal prepared 

by Chen and co-workers showing the screw dislocation defect.120 
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1.5 Analysis of nanoparticles 

Self-assembly of nanostructures can form a wide array of morphologies and 

dimensions, which can range from simple spherical micelles to extremely complex 

structures with multiple levels of hierarchical structure. Thus, it is important to 

accurately characterise the structures formed using multiple techniques to confirm size 

and morphology, as well as to recognise the limitations of such techniques when 

unconventional morphologies are studied. 

Although standard polymer analysis techniques, for example, nuclear magnetic 

resonance (NMR) spectroscopy and size exclusion chromatography (SEC), are used 

to analyse the prepared polymers, much of the work discussed herein focusses on 

analysing the morphology of the particles prepared from the same polymer. As such, 

techniques used to analyse particle assemblies are key to this work.  

The most common methods of particle analysis are scattering techniques and 

microscopy. Typically, the solution analysis of a scattering experiment fundamentally 

has greater statistical relevance when measuring particle properties. However, 

considering the array of unconventional morphologies studied herein, a focus has been 

placed particularly on microscopy methods due to the ability to directly visualise the 

particles formed and thus allow for ease of analysis. As such, care should be taken in 

microscopy to ensure that a representative population of particles are analysed. 

A further concept considered throughout this work is the measure of a particle’s 

surface charge in solution. As such, the relevance of zeta potential measurements is 

also discussed. 
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1.5.1 Transmission electron microscopy 

Transmission electron microscopy (TEM) can be used to image individual particles at 

the nanoscale level. As conventional light microscopes are limited by the wavelength 

of light, a TEM microscope uses the much lower wavelength of electrons to access 

high resolution images. In TEM, a beam of electrons is focussed using electromagnetic 

lenses and transmitted through a specimen under vacuum to form an image. 

The need for a vacuum environment can be problematic when imaging any particles 

suspended in liquid. As such, the most common methods of imaging require particles 

to be dried to a substrate or imaged at cryogenic temperatures (cryo-TEM). 

Dry state TEM involves depositing a particle solution onto a thin substrate, followed 

by removal of the solvent. It is important to note that all particles are likely to be 

affected during this drying process, which can cause changes in stability, size and 

morphology.122 In particular, the solvated corona of block copolymers nanostructures 

collapses in the dry state, often leading to substantially smaller particles sizes in 

comparison to those observed by analysis using solution methodologies. Furthermore, 

drying of suspended structures exposes particles to the surface tension of the solvent, 

and so the retracting liquid may sweep the particles into clusters which can 

misleadingly appear as aggregates or stacking patterns in a dry state TEM image.123 

These drawbacks can be avoided with the use of cryo-TEM, which involves rapid 

vitrification of the deposited particle solution on a thin substrate. Although extremely 

useful in imaging frozen particles in solution, there are a number of practical 

disadvantages of cryo-TEM, including cost and the extensive time needed to analyse 

samples. Furthermore, due to the frozen nature of the samples, a build-up of ice 

crystals can often prevent clear image collection.123, 124 
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Image contrast in TEM arises from the mass-thickness contrast, where thicker or more 

electron dense materials scatter more electrons and thus appear darker. Ideally, the 

particles must scatter to a much greater extent than the substrate to achieve an 

appropriate contrast for imaging. This is often difficult to achieve, where the typical 

size of a block copolymer nanostructure often approaches the ca. 40 nm thickness of 

a typical TEM substrate. Recently, thin graphene oxide substrates have been 

successfully used to image block copolymer nanostructures due to their nearly electron 

transparent nature.125 However, a more cost-effective approach in enhancing contrast 

is the use of negative staining, where a heavy metal stain is applied to bind selectively 

to the substrate.126 The heavy metal scatters more electrons than the particles, and thus 

appears much darker in comparison. Occasionally, the affinity of the stain for the 

particle in comparison to the substrate can result in positive staining, where the 

particles appear darker than the substrate (Figure 1.15).126 Positive staining, or 

staining with low contrast, can also be observed on different regions of the same TEM 

substrate. In general, this can be attributed to the inherent poor stain coverage in some 

regions as a result of the stain drying process. 

 

 

Figure 1.15 TEM micrographs of poly(ɛ-caprolactone)-based nanostructures stained 

using uranyl actate (1 wt. % in 18.2 MΩ·cm water) showing (a) negative stain, (b) 

positive stain and (c) excess positive staining. 
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The most commonly used heavy metal stains include uranyl acetate, phosphotungstic 

acid, ruthenium tetroxide, osmium tetroxide and ammonium molybdate. For any given 

sample, it is often a good idea to screen several stains and preparation methods to 

obtain the best possible image. For example, an insufficient amount of stain will not 

produce an image with adequate contrast, whereas an excess of stain will result in a 

lack of penetration of the electron beam. Furthermore, the use of stains is well known 

to obscure information about the internal structure of particles as well as lead to the 

presence of misleading artefacts on a TEM substrate.122, 123 

1.5.2 Atomic force microscopy 

Atomic force microscopy (AFM) can be used to image the surface of sample. A 

cantilever with a very sharp tip is used to scan over a sample surface. As the tip 

approaches the surface, the attractive forces between the tip and the surface influences 

the deflection of the cantilever. An incident beam is reflected from the flat surface of 

the cantilever onto a position sensitive photodetector such that any deflection in the 

cantilever causes a change in the position of the reflected beam on the detector. The 

position of the beam is, therefore, proportional to the deflection of the cantilever and 

thus the topology of the sample.127 

In contact mode, the tip is dragged across the surface. Generally, a feedback loop is 

used to control the height of the tip above the surface, thus maintaining a constant laser 

position to generate an accurate topographical map of the surface features. Generally, 

the lateral force exerted on the sample can be high, leading to sample damage or 

movement of loose objects. Imaging is also heavily influenced by frictional and 

adhesive forces,128 for example, the adhesive meniscus force of a liquid droplet can 

influence deflection of the cantilever which can, in turn, distort images.129 
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In tapping mode, lateral forces are avoided by the cantilever oscillating on the surface 

such that the tip only touches the surface for short periods of time. The cantilever 

oscillates at its resonant frequency with a high amplitude when not in contact with the 

surface, where the amplitude of the oscillation is kept constant using a feedback loop. 

As the tip approaches the surface, a change in oscillation amplitude at each intermittent 

contact is used to generate a map of surface features. In general, tapping mode is 

expected to avoid adhesive forces as well as damage to the sample, and is, therefore, 

used solely throughout this work.127 

While very high resolution in the vertical direction can be achieved, it should be noted 

that all AFM measurements are limited in the lateral direction by the size of the tip 

used due to convolution effects (Figure 1.16).130 Similarly to TEM, dry state AFM 

also encounters difficulties in the particle drying process, which can lead to changes 

in size and morphology, as previously discussed. 

 

 

Figure 1.16 Diagram of AFM convolution effects, where the size of the tip causes 

particles to appear larger in size, but has no noted effect on particle height in the 

measured profile. 
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1.5.3 Scattering techniques 

Scattering techniques can be used to provide complementary information on particle 

analysis in a non-destructive manner. The most common techniques include dynamic 

light scattering (DLS),131 static light scattering (SLS),132 small-angle X-ray scattering 

(SAXS)133 and small-angle neutron scattering (SANS).134 Typically, a source of 

radiation is directed towards a sample, which interacts with the particles and causes a 

change in trajectory i.e. scattering, which is detected at a particular angle. The recorded 

data can provide information about the size and shape of the particles, as well as its 

molecular weight. Although statistically significant data is achieved, the presence of 

multiple populations or unconventional structures can be problematic in such averaged 

results.135 

Both X-rays and neutrons have much smaller wavelengths, and so SAXS and SANS 

are ideal for smaller particles on the nanometre scale. DLS and SLS can be effectively 

used to monitor particles up to ca. 1 µm, however, the scale of a few microns, as is 

typical for particles used in this work, approaches the limit of these techniques.136 As 

such, scattering is not the main analytical technique in this work, and is thus not 

discussed in further detail. 

1.5.4 Zeta potential 

Zeta potential, or 𝜁-potential, can describe both the surface charge and the stability of 

a particle in suspension.137 This parameter can be explained by the surface charge of a 

particle which can grant a high electrostatic potential at the surface, thus affecting the 

liquid medium surrounding the particle. Theoretically, this can be considered to 

occupy two layers which move with the particle in solution. For a cationic particle, the 

first inner layer, termed the Stern layer, is where oppositely charged anionic ions are 
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strongly bound to the surface. The second layer forms an outer, more diffuse region, 

where anionic ions are attracted by the cationic particle, but repelled by the Stern layer 

and are therefore less strongly associated to the particle. The edge of this diffuse layer 

describes a theoretical boundary where the cationic charge of the particle is screened 

by the surrounding anionic counter ions in equilibrium with the ions in solution. The 

electrostatic potential at this boundary is considered the 𝜁-potential.137 

As a theoretical boundary, 𝜁-potential cannot be measured directly. However, under 

an applied voltage, the electrophoretic mobility of a particle in solution can be 

calculated from its electrophoretic velocity and related to its 𝜁 -potential using 

theoretical models.138 Electrophoretic mobility, 𝜇𝑒, is given by: 

𝜇𝑒 =  
𝑣𝑒

𝐸
 

where 𝑣𝑒  is the electrophoretic velocity and 𝐸  is the electric field strength. 

Smoluchowski theory is the most commonly used method in reporting 𝜁-potential as 

its validity extends to dispersed particles of any shape and concentration.139 As such, 

𝜁-potential can be approximated by: 

𝜁 =  
𝜇𝑒𝜂

𝜀𝑟𝜀0
 

where 𝜀𝑟 is the dielectric constant of the solvent, 𝜀0 is the permittivity of free space 

and 𝜂 is the dynamic viscosity of the solvent. The model does not account for the Stern 

and diffuse layers, i.e. the distance over which the charge is shielded by ions in 

solution, and thus is only valid when the particle radius is much greater than this 

length.140  
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In aqueous media, the pH of the solution is one of the most important factors that 

affects its 𝜁-potential.138 For a cationic particle, the charge will be neutralised at high 

pH, and thus exhibit a near zero  𝜁 -potential, which may be interpreted as a low 

stability. Therefore, it is important to measure the 𝜁-potential of cationic particles at a 

low pH to indicate not only charge but a measure of stability, where a 𝜁-potential value 

of approximately + 30 mV or higher indicates a relatively stable particle. Similarly, a 

value of approximately – 30 mV or lower indicates a relatively stable anionic particle 

(Figure 1.17). 

 

 

Figure 1.17 Graph showing how zeta potential can vary with pH, indicating how the 

desired pH of more stable particles can be identified by the magnitude of zeta potential 

measurements. 
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1.6 Summary 

The theme of morphology is key to this work, and so several concepts used to achieve 

different morphologies of polymer nanoparticles have been introduced.  Initially, 

various methods of polymerisation were presented, with a particular focus on RAFT 

polymerisation as the method utilised in this work. The use of different chain transfer 

agents and methods of end-group modification were also highlighted. Following this, 

the conventional method for the solution self-assembly of block copolymers was 

briefly discussed, emphasising that a difference in block ratio is essential in achieving 

different morphologies using the same block copolymer. To overcome this limitation, 

the concept of polymer crystallisation has been described as a method of preparing 

different morphologies. The general theory of polymer crystallisation has also been 

briefly introduced with an overview of the main methods of crystallisation-driven self-

assembly of diblock copolymers with a crystallisable core block. Finally, a short 

analysis of the methods used to characterise particle morphology is given, 

demonstrating the key techniques used throughout this thesis. 
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6.1 Summary 

The main focus of this thesis has been the solution crystallisation of degradable 

amphiphilic diblock copolymers containing one crystallisable solvophobic block. In 

particular, interest has been placed on the range of morphologies and sizes that can be 

obtained with these polymers using a crystallisation-driven self-assembly (CDSA) 

methodology. Both the preparation of these crystalline nanostructures of controlled 

dimensions and their application within secondary materials has been investigated, 

showing the ease of use and versatility of the crystallisation process and the potential 

utility of such materials. 
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6.2 Principal conclusions 

6.2.1 Solubility-controlled crystallisation 

The theme of block copolymer solubility is prevalent throughout this work and is 

utilised repeatedly to control crystallisation processes. Largely, this is due to the 

discovery of the formation of diamond-shaped platelets from the single phase solution 

assembly of poly(L-lactide) (PLLA) diblock copolymers. This work has demonstrated 

not only the ease of preparing such materials, but the use of LogPoct analysis as a 

technique for solvent selection in the presented self-assemblies. With further study and 

optimisation, such a method has the potential to be developed as a universal ab initio 

screening process for a wide array of block copolymers, allowing ease of access to 

polymer nanostructures, due to the simplicity of the methods described, and a much 

greater efficiency in polymer solution self-assembly research. 

Indeed, consideration of this aspect has led to the highly controlled size of PLLA-b-

poly(N,N-dimethylaminoethyl methacrylate) platelets, which could be tuned by simple 

adjustments of the solvent used for self-assembly without any modifications to the 

chemistry of the copolymer or its block ratios. This process has, therefore, provided a 

platform to develop a range of materials, some of which have been considered in this 

work, including Pickering emulsifiers, gel adhesives and nanocomposites for hydrogel 

reinforcement. The potential for such versatile nanostructures extends beyond the 

scope of this thesis, where much interest has been placed on using elongated or 

platelet-like nanoparticles in nanomedical applications due to their altered interactions 

with cells. 

The efficiency of this process has also been demonstrated with the self-assembly of 

poly(ɛ-caprolactone) (PCL) amphiphilic block copolymers for the formation of 
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crystalline platelets and cylindrical nanostructures of highly controlled dimensions. In 

particular, consideration of solvent solubility in comparison to polymer solubility 

directed the preparation of a novel polymer to allow crystallisation in both alcoholic 

and aqueous media. Such epitaxial crystallisation in water represents a critical advance 

in the preparation of precision nanostructures and is crucial to their translation into 

biological fields, for example, within tissue engineering and drug delivery 

applications. 

6.2.2 The importance of nanoparticle shape 

Given the spherical, cylindrical and platelet morphologies at hand, several studies into 

particle shape of these nanoparticles have been considered in detail, including their 

influence in hydrogel nanocomposites and Pickering emulsifiers. 

The shape of nanoparticles has been shown to play a key role in the definition of the 

resultant properties of calcium-alginate hydrogels as well as in the strength of adhesion 

when the nanoparticles solutions are used as a glue. Hydrogels with platelet-shaped 

nanocomposites showed an enhanced resistance to breaking under strain in 

comparison to those with spherical nanocomposites, increasing the strength of the gels 

whilst maintaining self-healing behaviour. Platelet morphologies were also shown to 

provide improved adhesive properties over spherical constructs, suggesting the 

attractive possibility of improving calcium-alginate hydrogel performance both in vivo 

and also of adopting them as a method for self-repairing adhesive joints. 

Similar platelets were also considered as Pickering emulsifiers in comparison to 

conventionally used spherical particles. Indeed, it was shown that the high surface area 

of platelet morphologies, when using the same weight percentage of emulsifier, allows 

for much improved stabilisation of water-water interfaces. 
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6.2.3 The importance of nanoparticle size 

The greatest improvement over water-water interfacial stabilisation was achieved 

using platelet nanoparticles of a greater size, suggesting both shape and size as key 

attributes for such applications.  

Indeed, it was proposed that the improved stabilisation of water-in-water emulsions 

was due to the large surface area of the platelets which exhibits greater adsorption 

properties and a larger barrier towards rotation of such large particles. This emulsion 

stability trend was observed across a range of coronal chemistries, highlighting both 

size and shape for the design of effective interfacial stabilizers. 

Nanoparticle size was also considered extensively for PCL block copolymers in the 

preparation of cylindrical micelles of controlled length through an epitaxial growth 

mechanism. It was also shown that epitaxial growth to prepare cylinders of extended 

length resulted in the formation of biocompatible hydrogel materials. 
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6.3 Outlook 

As the most prominent theme of this work, crystallisation-driven self-assembly of 

amphiphilic block copolymers has been investigated for the formation of controlled 

1D cylindrical and 2D platelet morphologies. In particular, given the high interest in 

2D inorganic materials, the ability to readily access and control the assembly of 

polymers into 2D organic platelets through a simple assembly process provides a 

platform to develop a range of new materials. Further research, especially for 

poly(L-lactide) block copolymers, will investigate an epitaxial growth mechanism to 

allow for greater control over their dimensions. This approach should allow for the 

growth of polymer nanostructures without the increase in temperature required in the 

self-nucleation step. Further investigations into solvent composition and/or 

temperature to allow this epitaxial growth process to occur will be needed. 

It is also expected that future work in this area of research will target a third dimension, 

allowing for orthogonal growth of polymer nanostructures to create even more 

complex functional materials. Such an approach will allow not only the length and 

width of particles to be controlled, but also the height of the corona layer. Potential 

research in this area may seek to exploit the presence of the chain transfer agent at the 

terminus of the polymer corona chains which have the ability to polymerise further 

after formation of the crystalline nanostructures. It is predicted that mild conditions 

will be required so as to allow polymerisation without any adverse effects on the 

crystalline structure. The presence of the chain transfer agent may also be utilised as a 

handle to functionalise the nanoobjects for further application. 

Finally, an underlying theme of this work is the use of biocompatible materials, in 

particular, poly(L-lactide),  poly(ɛ-caprolactone) and alginate hydrogels, which have 
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been targeted due to their significant potential for use in a wide range of biorelevant 

applications including tissue engineering and drug delivery. Despite this, 

biocompatibility studies have not been considered to a great extent in this work, and 

so further studies with such polymers must monitor their compatibility for future use 

in biorelevant applications. 


