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Abstract: In this article we propose novel Bayesian nonparametric meth-
ods using Dirichlet Process Mixture (DPM) models for detecting pairwise
dependence between random variables while accounting for uncertainty in
the form of the underlying distributions. A key criteria is that the proce-
dures should scale to large data sets. In this regard we find that the formal
calculation of the Bayes factor for a dependent-vs.-independent DPM joint
probability measure is not feasible computationally. To address this we
present Bayesian diagnostic measures for characterising evidence against a
“null model” of pairwise independence. In simulation studies, as well as for
a real data analysis, we show that our approach provides a useful tool for
the exploratory nonparametric Bayesian analysis of large multivariate data
sets.
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1. Introduction

Identifying dependences among pairs of random variables measured on the same
sample, producing datasets of the form D = {(xi, yi), i = 1, . . . , n}, is an im-
portant task in modern exploratory data analysis where historically the Pear-
son correlation coefficient and the Spearman’s rank correlation have been used.
More recently there has been a move to the use of non-linear or distribution free
methods such as those based on Mutual Information (MI) (Cover and Thomas,

3338

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/16-EJS1171
mailto:sarah.filippi@stats.ox.ac.uk
mailto:cholmes@stats.ox.ac.uk
mailto:lnieto@itam.mx


Scalable Bayesian nonparameteric dependence measures 3339

2012; Kinney and Atwal, 2014). In this paper we present Bayesian nonpara-
metric methods for screening large data sets for possible pairwise associations
(dependencies). Having an explicit probability measure of dependences has nu-
merous advantages both in terms of interpretability and for integration across
different experimental conditions and/or within a formal decision theoretic anal-
ysis. As data sets become ever larger and more complex we increasingly require
Bayesian procedures that can scale to modern applications and this will be a
key design criteria here. The main building block of our procedures will be the
Dirichlet Process Mixture (DPM) model, which is the most popular Bayesian
nonparametric model.

We frame the problem of screening for evidence of pairwise dependence as a
nonparametric model choice problem with alternatives:

M0 : X and Y are independent random variables

M1 : X and Y are dependent random variables . (1)

Given a set of measurement pairs D, for n exchangeable observations one could
then evaluate the posterior probability for competing models P(M1|D) = 1 −
P(M0|D) or consider the Bayes factor P(D | M0)/P(D | M1) which is a mea-
sure of the strength of evidence for independence between the two samples
against dependence. However with p measurement variables under study there
are ≈ 1

2p
2 such pairwise Bayes factors to compute, where even just one such

evaluation might be problematic to compute. This motivates us to explore scal-
able alternatives to a formal Bayesian testing approach, by deriving summary
statistics and functionals of the posterior that can provide strong indication in
favour or against independence.

Bayesian nonparametric hypotheses testing via Polya tree priors has been
the focus of a couple of recent research papers (Holmes et al., 2015; Filippi
and Holmes, 2015). Here, however, we specify model uncertainty in the distri-
bution of X and Y via DPMs of Gaussians. This provides flexibility while also
encompassing smoothness assumptions on the underlying joint distributions.
Another advantage is that DPMs have been widely studied in the Bayesian
nonparametric literature with excellent open source implementation packages
available (e.g. Jara et al., 2011). Moreover, although not explored here, the use
of DPMs makes our approach readily extendable to situations whenX and Y are
themselves collections of multivariate measurements. Here we consider pairwise
dependence between univariate measurements where for M0, the independence
model, the joint distribution factorises into a product of two univariate DPMs
on X and Y , while for M1 we can define a joint DPM model on the bivariate
measurement space (X,Y ).

In theory, given a DPM prior on the unknown densities, the Bayes factor
can be calculated via the marginal likelihood. However this requires integrating
over an infinite dimensional parameter space that does not have a tractable
form. Moreover, using computational approaches to approximate the marginal
likelihood is highly non-trivial, particularly when considering the need to scale to
many thousands of comparisons with large p. To overcome this issue we present
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two new approaches to deriving scalable diagnostic measures corresponding to
probabilistic measures of dependence, bypassing the need to calculate Bayes
Factors that might not be feasible or desirable. Our methods are motivated by
two recent proposals in the literature (Lock and Dunson, 2013; Kamary et al.,
2014), although neither of these papers consider the problem we address here
as outlined below.

Our first approach utilises the well known latent allocation, or clustering,
structure of the DPM model to induce a partition of the two-dimensional data
space. By running a Gibbs sampler under the independence model the cluster
allocation of observations to specific mixture components at each iteration can
then be used to define a latent contingency table given by the mixture com-
ponent memberships. For each of these contingency tables we perform a para-
metric Bayesian independence-vs.-dependence test using conjugate multinomial-
Dirichlet priors that lead to explicit analytic forms for the conditional marginal
likelihoods. This proposal follows a similar idea considered in Lock and Dunson
(2013) who studied the two-sample testing problem. A key difference in what
we present here, in addition to that we consider the problem of pairwise depen-
dence, is that Lock and Dunson (2013) use a finite mixture model to induce a
partition instead of an infinite nonparametric mixture model used here.

In our second approach, we adapt a recent procedure of (Kamary et al.,
2014), turning the model choice problem into an estimation problem by writing
the competing models under a hierarchy that incorporates both models, M∗ =
πM1 + (1− π)M0. We investigate the specification of M∗ either as a mixture
model with mixing component 0 ≤ π ≤ 1, or as a predictive linear ensemble of
the two sub-models with constraints on the weights. We then estimate π which
becomes a measure of the evidence for dependence. DPMs are used to obtain
the likelihood associated to each of the competing models in M∗, requiring a
separate MCMC run for each potential pair of random variables.

We compare and contrast the two procedures with particular regard to their
scalability to large data sets. This latter feature naturally includes the amenity
of the methods to simulation with modern parallel computation. We demon-
strate that our association measures are scalable and successfully detect some
highly non-linear dependences with equivalent performance to the current best
conventional methods using mutual information, with the added advantages
that fully probabilistic Bayesian methods enjoy. As mentioned above, some of
these key advantages includes the ability to integrate results within a formal
decision analysis framework, or within optimal experimental design, and the
combination of results with other sources of information, or across studies such
as arise in meta-analysis.

The rest of the paper is as follows. In Section 2 we review the Dirichlet
Process and the DPM of Gaussians. In Section 3 we describe the two approaches
to quantify the evidence for dependence using Dirichlet Process Mixtures. In
Section 4 we illustrate our approach on the exploratory analysis of a real-world
example from the World Health Organisation data set of country statistics and
also on simulated data generated from simple models. We conclude the paper
with a short discussion in Section 5.
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2. Dirichlet Process Mixtures

The Dirichlet process (Ferguson, 1973) is the most important process prior in
Bayesian nonparametric statistics. It is flexible enough to approximate (in the
sense of weak convergence) any probability law, although the paths of the pro-
cess are almost surely discrete (Blackwell and MacQueen, 1973). Many years
ago this discreteness was considered a drawback but nowadays it is simply a
feature that characterises the Dirichlet process. This feature has recently been
highly exploited in clustering applications (e.g. (Dahl, 2006)).

The Dirichlet process is defined as follows. Let G be a probability measure
defined on (X ,B), where X ⊂ IRp and B the corresponding Borel’s σ-algebra.
Let G be a stochastic process indexed by the elements of B. G is a Dirichlet
process with parameters c and G0 if for every measurable partition (B1, . . . , Bk)
of X ,

(G(B1), . . . , G(Bk)) ∼ Dir(cG0(B1), . . . , cG0(Bk)).

From here we can see that, for every B ∈ B, E{G(B)}=G0(B) and Var{G(B)}=
G0(B){1 − G0(B)}/(c + 1). Therefore the parameter c is known as precision
parameter and G0 as the centering measure.

The Dirichlet process when used as a prior induces exchangeability in the
data. In notation, let X1, . . . , Xn be a sample of random variables such that

conditional on G, Xi | G iid∼ G. If we further take G ∼ DP(c,G0) then the
marginal distribution of the data (X1, . . . , Xn) once the process G has been
integrated out, is characterised by what is known as the Pólya urn (Blackwell
and MacQueen, 1973). We start with X1 ∼ G0 then

Xn | X1, . . . , Xn−1 ∼
cG0 +

∑n−1
j=1 δXj

c+ n− 1
. (2)

Instead of placing the Dirichlet process prior directly on the observable data,
it can be used as the law of the parameters of another model (kernel) that
generated the data. In notation, let us assume that for each i = 1, . . . , n,

Xi | θi ind∼ f(xi | θi),

with f a parametric density function. We can further take

θi | G iid∼ G

with
G ∼ DP(c,G0).

This hierarchical specification can be seen as a mixture of density kernels f(x | θ)
with mixing distribution coming from a Dirichlet process, i.e.,

∫
f(x | θ)G(dθ).

This model is known as Dirichlet process mixture (DPM) model and was first
introduced by Lo et al. (1984) in the context of density estimation and written
in hierarchical form by Ferguson (1983).
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The most typical choice of kernel f is the (multivariate) normal, in which case
θi = (μi, σ

2
i ), with scalars mean and variance, in the univariate case, and θi =

(μi,Σi), with mean vector and variance-covariance matrix, in the multivariate
case. We will work with this specific kernel throughout this paper.

As can be seen by construction, in the mixture case, the Dirichlet process
induces a joint distribution on the set (θ1, . . . , θn) that allows for ties in the
θi’s. This in turn induces a clustering structure in the θi’s (and Xi’s). Posterior
inference of the DPM model usually relies on a Gibbs sampler (Smith and
Roberts, 1993). At each iteration of the Gibbs sampler the model produces a
different clustering structure. The number of clusters is a function of the sample
size n and the precision parameter c of the underlying Dirichlet process. The
larger the value of c, the larger the number of clusters induced. This clustering
structure and parameter c will play a central role in one of the independence
test procedures that will be described later.

3. Two approaches for measuring dependence

As noted in Section 1, the calculation or approximation of the formal Bayes
factor under M0 and M1 is not feasible when considering a large number of
model comparisons. Indeed it may not even be desirable given that our objective
is to highlight potential departures from independence rather than answer a
formal model choice question. In this section we describe two distinct approaches
for comparing models M0 and M1 defined in (1) based on DPM models that
are computable and scalable to large data.

3.1. Contingency tables approach

The first approach is motivated by the paper from Lock and Dunson (2013)
who turned a two-sample testing problem into a discrete test on the clus-
tered data. Recall that the two-sample testing problem considers the same
measurement variable recorded on separate subjects under two different con-
ditions; whereas we are considering different measurement variables recorded
on the same subject. Similar to Lock and Dunson (2013), our procedure con-
sists in marginally discretising the data into ordered categories and performing a
Dirichlet-multinomial independence test on the induced contingency table. This
amounts to first clustering the data under M0 and then exploring for evidence
of departure from M0, toward M1, by testing for statistical association between
the cluster memberships in X and Y . Uncertainty in the cluster memberships
is accounted for by the DPM defined under M0, as outlined below.

To begin assume that the data are marginally clustered in KX and KY clus-
ters and denote by ξX,i ∈ {1 . . . ,KX} and ξY,i ∈ {1, . . . ,KY } the cluster indi-
cators for the data points xi and yi respectively, for i = 1, . . . , n. Using these
cluster indicators, we can construct a contingency table MξX ,ξY = {mkl} of size
KX × KY , such that mkl =

∑n
i=1 I(ξX,i = k, ξY,i = l), for k = 1, . . .KX and

l = 1, . . . ,KY . The contingency table MξX ,ξY represents a discretised version
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of the (unnormalised) marginals and joint distribution of the continuous vector
(X,Y ). We can then apply Bayesian independence tests for discrete / categor-
ical variables following Gunel and Dickey (1974) and Good and Crook (1987)
who proposed a conjugate multinomial-Dirichlet independence test which is de-
scribed as follows. Let MξX ,ξY ∼ Mult(n,p) with p = {pkl} the matrix of cell
probabilities of dimension KX × KY . Consider a conjugate prior distribution
p ∼ Dir(α), with α = {αkl} such that

∑
kl αkl = a. In practice we suggest to

use αkl = a(KXKY )
−1 or αkl = 1/2 for all 1 ≤ k ≤ KX and 1 ≤ l ≤ KY . Under

model M1 the probability of having observed the counts in MξX ,ξY is

P(MξX ,ξY | M1, ξX , ξY ) =

∫
P(MξX ,ξY | p)f(p) dp

=
Γ(a)

Γ(a+ n)

∏
k,l

Γ(αkl +mkl)

Γ(αkl)
. (3)

Under the independent model M0 the observed counts MξX ,ξY can be expressed
in terms of the marginal counts mX = {mk·} and mY = {m·l} whose implied
distributions are again multinomial with probability vectors pX = {pk·} and
pY = {p·l}, respectively, with mk· =

∑
l mkl, m·l =

∑
k mkl, pk· =

∑
l pkl and

p·l =
∑

k pkl. The induced prior distributions are also Dirichlet with parameters
αX = {αk·} and αY = {α·l}. Then, the probability of MξX ,ξY under M0

becomes

P(MξX ,ξY | M0, ξX , ξY ) =

∫
P(mX | pX)f(pX) dpX

∫
P(mY | pY )f(pY ) dpY

=
Γ2(a)

Γ2(a+ n)

∏
k

Γ(αk· +mk·)

Γ(αk·)

∏
l

Γ(α·l +m·l)

Γ(α·l)
, (4)

where αk· =
∑

l αkl and α·l =
∑

k αkl.
To compare evidence in favour of each model, we use expressions (3) and

(4) to compute the Bayes factor BFξ = P(MξX ,ξY | M0, ξX , ξY )/P(MξX ,ξY |
M1, ξX , ξY ). Using equal prior probabilities for both models, i.e. P(M0) =
P(M1) = 0.5, we obtain that the posterior probabilities for the independence
and dependence models are P(M1 | MξX ,ξY ) = 1/(1 +BFξX ,ξY ) = 1− P(M0 |
MξX ,ξY ) where

BFξX ,ξY =
Γ(a)

Γ(a+ n)

∏
k

Γ(αk· +mk·)

Γ(αk·)

∏
l

Γ(α·l +m·l)

Γ(α·l)

∏
k,l

Γ(αkl)

Γ(αkl +mkl)
. (5)

It should also be noted that this contingency table approach would also afford a
conditional frequentist test. For example, consider Pearson’s chi-squared test of
independence (Pearson, 1922). Under the null hypothesis M0 of independence,
the well known test statistic

T =

KX∑
k=1

KY∑
l=1

(mkl −mk·m·l/n)
2

mk·m·l/n
(6)
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follows a χ2 distribution with (KX − 1)(KY − 1) degrees of freedom. If the test
statistic is improbably large according to that chi-square distribution, then one
rejects the null hypothesis M0 in favour of the dependence hypothesis M1.

The hypothesis testing approach described in this section assumes that the
data are marginally clustered. However, these clusters are not known a priori.
A Bayesian approach for data clustering is to define a prior distribution over
the clustering and then update the posterior based on the evidence provided by
the data. Here we make use of the DPM model structure to create an empirical
partition of the two-dimensional data space, taking into account the uncertainty
on the allocation process. More precisely, we consider two independent DPM
prior models for each of the marginal densities with the following specifications:

f0,X(x) ∼
∫

N(x | θX)GX(dθX) and f0,Y (y) ∼
∫

N(y | θY )GY (dθY ), (7)

where θX = (μX , σ2
X) and θY = (μY , σ

2
Y ), with

GX ∼ DP(c0, G0) and GY ∼ DP(c0, G0) (8)

andG0 = N(μ | μ0, σ
2/k0) IGa(σ2 | ν/2−1, ψ/2). The latent clustering structure

induced by the DPMmodels defined by (7) and (8) can then be used to construct
a contingency table as described above. Note that in an ideal world one would
carefully specify subjective beliefs on the prior marginals for X and Y . However,
when the number of variables is large this is not feasible and we require some
default specification as done here, by assuming a common prior after suitable
transformation of the data.

Although it is clear from the properties of the Dirichlet Process that it induces
a partition, in practice it is not easy to determine an optimal one. Fitting a
DPM model via a Gibbs sampler provides a partition at each iteration. We
can proceed in two different ways. One is to use all potential partitions coming
from the MCMC, and for each of them perform the Bayesian independence test
and report the expected posterior probability. More precisely, the functional we
consider is

pdep =

∫
1

(1 +BFξX ,ξY )
p(ξX , ξY )dξXdξY . (9)

This is the procedure we recommend and develop below. An alternative ap-
proach would be to consider the selection of one of the partitions using an ap-
propriate optimization criterion, for example using the criterion of Dahl (2006)
who proposes to choose the partition that minimises the squared deviations with
respect to the average pairwise clustering matrix, and use that single partition
to perform the test, ignoring the uncertainty in the partition structure as in
Lock and Dunson (2013) for the two-sample test. In Supplementary Material
we provide an empirical comparison between both procedures.

In the rest of the paper we will focus on the first alternative that considers all
potential partitions; we will refer to this procedure as CT-BF – see Algotithm 1.
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Algorithm 1 Independence measure based on Contingency table (CT-BF)

Require: Data D = {xi, yi}ni=1
Require: Prior parameters a
Require: Prior parameters for the DPM and number of iterations Nit

Ensure: Probability of dependence pdep

DPM inference:
Infer a DPM model for the distribution f0,X(x) using a Gibbs Sampler with nit iterations

→ for each iteration 1 ≤ j ≤ Nit, record a vector of cluster indicator ξ
(j)
X

Infer a DPM model for the distribution f0,Y (y) using a Gibbs Sampler with Nit iterations

→ for each iteration 1 ≤ j ≤ Nit, record a vector of cluster indicator ξ
(j)
Y

Tests based on contingency tables:
for 1 ≤ j ≤ Nit do

Construct a contingency table M(j) of size K
(j)
X ×K

(j)
Y based on ξ

(j)
X and ξ

(j)
Y

Let p(j) ← 1/(1 +BF ) where BF is defined in (5)
end for

Let pdep ← 1
nit

∑nit
j=1 p

(j)

3.2. Mixture model predictive approach

In this section we consider an alternative approach for testing between hypoth-
esis (1). Motivated by Kamary et al. (2014) we replace the testing problem with
an estimation one by defining a predictive ensemble model M∗ whose compo-
nents are the competing models M0 and M1. To be precise, let f0 and f1 denote
the densities of (X,Y ) defined by models M0 and M1, respectively. Then we
define a predictive mixture model as a linear combination of sub-models of the
form

f∗(x, y) = πf1(x, y) + (1− π)f0(x, y), (10)

where π is a free regression parameter with constraint 0 ≤ π ≤ 1 and f0(x, y) =
f0,X(x)f0,Y (y). This model embeds both M0 and M1 for values of π equal to
0 or 1. The main idea of this method is to estimate from the data the mixture
parameter π, which indicates the preference of the data for dependence model
M1. In contrast to the latent contingency table procedure this approach requires
the explicit construction of a joint model under hypothesis M1.

Since f0 and f1 are unknown densities, we assume Bayesian nonparametric
prior distributions. For f0,X(x) and f0,Y (y) we consider the DPM model defined
by equations (7) and (8). For f1 we take a bivariate DPM model defined as

f1(x, y) ∼
∫

N(x, y | θX,Y )GX,Y (dθX,Y ), (11)

where θX,Y = (μ,Σ), with

GX,Y ∼ DP(c1, G1) (12)

and G1 = N(μ | μ0, (1/k0)Σ) IW(Σ | ν,Ψ). The parameter π has also to be
estimated so we take a prior of the form π ∼ Be(a0, b0). We ensure that the
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centring measures G0 and G1 are comparable by setting their hyper-parameters
as follows: we have Gd−1 = N(μ | μ0, (1/k0)Σ) IW(Σ | ν,Ψ) for d = 1 and 2
with ν = d + 2, the d-dimensional vector μ0 ∼ N(0d, cμ Id), the d × d-matrix
Ψ ∼ IW(ν, cΨ Id) where Id is the identity matrix of dimension d. The hyper-
parameters cμ, cΨ and k0 are set to be equal for G0 and G1.

Our objective is to highlight pairwise dependence across many pairs of vari-
ables, and order the pairs into those showing evidence from strongest to weakest
association. This motivates us to consider a simplified method by assessing the
relative posterior predictive evidence under M0 to that of M1, by calculating
an ensemble model using the posterior predictive probability of the observed
data f1(xnew, ynew|D) and f0(xnew, ynew|D) separately. In the following we will

use the notations f̂j(xnew, ynew) = fj(xnew, ynew|D), j = 0, 1 to denote the pos-
terior predictive distribution. It is important to note that for all [p× (p− 1)/2]
X,Y pairs we use the same prior, and hence same model complexity across all
pairs, so ranking by the improvement in posterior predictive likelihood under
M1 relative to M0 should not a priori favour certain pairs over others. This
procedure significantly simplifies the inference as we can infer the posterior
models by first fitting the three DPM models separately each using the entire
sample data, and then updating the ensemble parameter π from its posterior
conditional distribution

f(π | D) ∝ f(π)
∏
i

(
πf̂1(xi, yi) + (1− π)f̂0(xi, yi)

)
,

which is a simple line search on [0, 1]. We will refer to this inference procedure
as MixMod-ensemble – see Algorithm 2.

Algorithm 2 Independence test MixMod-ensemble
Require: Data D = {xi, yi}ni=1; Prior parameters a0 and b0; Prior parameters for the DPMs
Ensure: Estimate of mixture parameter π

DPMs inference:
f̂0,X ← posterior prediction of a DPM for distribution of {xi}i averaged over all Gibbs
sampler iteration
f̂0,Y ← posterior prediction of a DPM for distribution of {yi}i averaged over all Gibbs
sampler iteration
f̂1 ← posterior prediction of a DPM for distribution of {xi, yi}i averaged over all Gibbs
sampler iteration

Estimation of π̂:
Define a fine grid of [0, 1] with intervals of length η = 10−4

for j = 0, . . . , η−1 do
π(j) ← j × η
Lj ←

∑n
i=1 log(π

(j)f̂1(xi, yi) + (1− π(j))f̂0,X(xi)f̂0,Y (yi)) + log(Be(π(j) | a0, b0))
end for
π̂ ← 1∑

j exp(Lj)

∑
j π

(j) exp(Lj)

An alternative approach, more closely resembling Kamary et al. (2014), is
to consider M∗ as a mixture-model rather than an ensemble model where with
probability π the data arises from f0 and with probability 1−π from f1. Diebolt
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and Robert (1994) show that posterior sampling in a mixture model is simplified
if we introduce latent variable indicators ζi ∼ Ber(π) that determine whether
observation i comes from f1, when ζi = 1, or from f0, when ζi = 0. Conditional
on these latent indicators the mixture components f0 and f1 can be updated
using only the data points allocated to each model. As noted by Kamary et al.
(2014), the Gibbs sampler implemented in this way can become quite inefficient
if the parameter π approaches the boundaries {0, 1}, specially for large sam-
ple sizes. We refer to this method as MixMod. For our purposes this requires
specifying a Gibbs sampler for the mixture model utilising three DPM mod-
els {f1(x, y), f0,X(x), f0,Y (y)} and the mixture allocations for points across all
p× (p− 1)/2 pairs.

In the paper we will illustrate the performance using MixMod-ensemble, and
in the Supplementary Material we provide a comparison between MixMod and
MixMod-ensemble.

Regardless of the posterior inference procedure, different estimators of π could
be obtained from its posterior distribution. We chose to select the expected value
as a statistic of dependence, that is,

π̂ = E(π | D) =

∫ 1

0

π f(π | D)dπ . (13)

3.3. Computational tractability

Both of the Bayesian non-parametric approaches proposed here are motivated
by the increasing necessity of screening large data sets for possible pairwise
dependencies where calculation of the formal Bayes factor under M0 and M1

is unfeasible or undesirable. In this section, we discuss some computational
advantages of our two methods including their amenity to implementation on
modern computing architectures exploiting parallelisation on multi-core stan-
dalone machines, or clusters of multi-core and many-core machines, or cloud
based computing environments.

In relation to parallelisation we see that both methods are divided in two
steps: one starts by inferring DPMs using a Gibbs sampler and then perform
a dependence test using every iteration of the Gibbs sampler. This decoupling
of the inference step and the model comparison step allows to significantly re-
duce the computational cost of the procedure. In particular, only a couple of
thousands of Gibbs sampling iterations are necessary to estimate the predictive
posterior densities and posterior distributions over the latent allocation vari-
ables. In the environment for statistical computing R (R Core Team, 2014), the
parallelisation of both approaches is very simple and only consists in replac-
ing the command apply by the command parLapply from the package parallel
– which is included in versions of R following 2.14.0. The R code to run CT-
BF and MixMod-ensemble independence tests is available in the Supplementary
Material.

The CT-BF approach based on the construction of a contingency table is
particularly attractive as it is trivially parallelizable and does not involve an
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explicit DPM model for the joint f1(x, y) under M1. With p measurement vari-
ables under study, this approach only needs to infer p independent marginal
DPMs, recording information from Nit Gibbs sampling iterations for each of
them independently in parallel. The MCMC output from the p models is then
combined and we perform Nit× p× (p− 1)/2 independent tests where following
(5) only involves computing ratios of Gamma functions. As an illustration, in
the example described in more details in Section 4, for p = 562 measurement
variables, the first stage of inference on the DPMs take less than 3 minutes on a
48-core machine, and then the resulting 1.5× 108 pairwise tests of dependence
for all pairs of variables are performed in one hour.

In comparison the MixMod-ensemble approach incurs a greater computa-
tional overhead as we require bivariate DPMs, f1(x, y), to be fit for all pairs. In
the illustration below the MixMod-ensemble procedure for the 1.5 × 108 pairs
takes approximatively 36 hours on the same 48-core machine.

4. Numerical analysis

4.1. World Health Organisation dataset

In this section, we apply the two approaches described in Section 3 to detect
dependencies in economic, social and health indicators from the World Health
Organisation (WHO). The WHO Statistical Information System (WHOSIS) has
recently been incorporated into the Global Health Observatory (GHO) that con-
tains a data repository (http://www.who.int/gho/database/en/) with mor-
tality and global health estimates, demographic and socioeconomic statistics as
well as information regarding health service coverage and risk factors for 194
countries. We combined these datasets to obtain a set of 562 statistics per coun-
try. We aim at highlighting potential dependencies between these indicators.
Scatterplots of some of these indicators are represented in Figure 1, where for
example we see, unsurprisingly, strong dependencies between indicators such as
life expectancy at birth and increased life expectancy at age 60 (Pair E).

We applied both the CT-BF and the MixMod-ensemble test to compute the
probability of dependence for all the 157,641 pairs of indicators. The two pro-
posed methods require the specification of several parameters of the prior dis-
tributions. The impact of these choices is discussed in Supplementary Material.
For the approach based on contingency tables the prior specifications for models
(7) and (8) are set as follows: c0 = 10, μ0 ∼ N(0, 1), k0 ∼ Ga(1/2, 100/2), ν = 3
and ψ ∼ IGa(1/2, 5). Note that c0 controls the number of clusters induced, so
in order to avoid having partitions with only one cluster we set this parameter
at a relative large value. To specify the Dirichlet prior for the cell probabili-
ties in the contingency table we took αkl = 1/2, which is the Jeffreys prior in
a multinomial model. In experimentation we found that the contingency table
can be sensitive to the choice of the parameter c0. This parameter influences the
number of clusters in the DPM model and therefore the size of the contingency
tables and it is important to specify a value that induces a reasonable number

http://www.who.int/gho/database/en/
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Fig 1. Examples of the relationship between economic, social and health indicators provided
by the WHO Statistical Information System. Each dot corresponds to one country.

of clusters. We would recommend exploring several values. Results seem fairly
insensitive to the choice of the parameters αkl in the Dirichlet priors.

For the approach considering an ensemble mixture model, the parameters c0
and c1 are not fixed but specified by c0, c1 ∼ Ga(1, 1) and μ0 ∼ N(0, 100). This
change was introduced to allow the model to determine the best fit without
constraining the number of clusters. In addition, the prior processes G0 and G1

are defined as follows: Gd−1 = N(μ | μ0, (1/k0)Σ) IW(Σ | ν,Ψ) for d = 1 and 2
with ν = d + 2, the d-dimensional vector μ0 ∼ N(0d, 100 Id), the d × d-matrix
Ψ ∼ IW(ν, 0.1 Id) and k0 ∼ Ga(1/2, 50), where Id is the identity matrix of
dimension d. The prior distribution of the mixing proportion π was specified by
taking a0 = b0 = 1/2. Our experience is that results are fairly robust to the
prior parameter settings (see Supplementary Material).

The procedures were implemented in the environment for statistical comput-
ing R (R Core Team, 2014) and make use of the package DPpackage (Jara et al.,
2011). Chains were run for 10,000 iterations with a burn in of 1,000 keeping one
of every 5th draws for computing estimates.

For both approaches the tests were performed only for pairs containing mea-
surements for at least 10 countries. For the CT-BF approach, the 562 DPMs
are inferred using all the available data; however, the contingency tables were
constructed taking into account only the countries for which both indicators (in
the pair) are available. For the MixMod-ensemble approach, in order to avoid
any bias towards one of the two models M0 or M1, both the DPMs on the
marginals and the DPM on the joint space are inferred only on the countries for
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Fig 2. Performance comparison between the CT-BF and the MixMod-ensemble approaches
(left) and the mutual information (right) for every pair of indicators in the WHO dataset. The
measures of dependences obtained following CT-BF and MixMod-ensemble are respectively
pdep and π̂, defined equations (9) and (13) and approximated following algorithms 1 and 2.
The letters A to F correspond to the 6 pairs of indicators illustrated in Figure 1.

which measurements are available for both indicators. Extending the method to
handle missing data is a future objective.

The measure of dependences obtained following our two approaches, i.e. pdep
for CT-BF and π̂ for MixMod-ensemble, defined respectively equations (9) and
(13), are compared for each pair of variables in Figure 2 (left panel). Strong
dependences (defined as pdep > 0.8) are detected for 5% of pairs, and credible
independence (i.e. pdep < 0.2) between 30% of the indicators. We observe that
the two probabilistic measures of dependence generally agree for most of the
pairs, with the value obtained following the MixMod-ensemble method being
generally higher than the probability measure obtained following the CT-BF
approach. This elevation in the evidence in dependence is perhaps to be expected
as MixMod-ensemble uses the conditional posterior predictive likelihood which
will favour the more complex joint model of f1(x, y). However, the two methods
disagree (defined as the probability value obtained following one method is lower
than 0.2 while it is larger than 0.8 following the other method) for less than
0.36% of the pairs; and these differences mainly occur when one of the (X,Y )
variables is equal to 0 for more than 20% of the countries (see for example pair
D).

On balance we prefer to use the CT-BF approach due to its computational
scalability, 1 hour of run-time on a 48-core computer in comparison with 36
hours for MixMod-ensemble in this example. We compared the analysis from
the CT-BF to that using a mutual information approach computed using the 20-
nearest neighbours method, as in Kinney and Atwal (2014) (see Figure 2 right
panel where the labelled points correspond to plots in Figure 1). We remark
that some pairs of variables with strong dependences under CT-BF have a wide
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spread of mutual information, in particular we note pairs D and F that have a
probability of dependence close to 1 for CT-BF but relatively low MI values.
Visually at least one could argue that associations of the form seen in Figure 1
D and F may be of potential interest to follow up by the analyst.

4.2. Simulation Study for frequentist power analysis

In this section we perform a simulation study to examine the frequentist perfor-
mance of the two proposed tests on some controlled scenarios. The objective is
to verify that we are not losing much power against a popular non-probabilistic
method based on mutual information, which is optimised for frequentist power.
Simulated datasets are generated under the following four different scenarios:

1. A bivariate normal model: (X,Y ) ∼ N2(0,Σ) with Σ =

(
1 ρ
ρ 1

)
,

2. A sinusoidal model: Y = 2 sin(X) + η, with η ∼ N(0, φ2), and X ∼
Un[0, 5π]

3. A parabolic model: Y = 2X2/3 + η, with η ∼ N(0, φ2), and X ∼ N(0, 1)
4. A circular model: X = 10 cos(θ) + η and Y = 10 sin(θ) + η, with θ ∼

Un[0, 2π] and η ∼ N(0, φ2).

For the sinusoidal, parabolic and circular models, the parameter φ controls
the level of noise, whereas for the normal model the correlation ρ controls the
degree of dependence between the two samples. We generated fifty independent
datasets from each model with a sample size n = 250 with different correlations
ρ ∈ {0, 0.1, 0.3, 0.5, 0.9}, for model (a), and levels of noise φ ∈ {1, 2, 3, 4, 5} for
models (b)–(d). Figure 3 shows one of the fifty simulated dataset as illustration.

For all the simulated datasets we apply our different procedures for testing
hypothesis (1). We use the same priors specifications as described in Section 4.1.

Fig 3. Samples of size 250 generated from the four scenarios for two levels of correlation ρ in
the normal model and two levels of noise φ in the sinusoidal, parabolic and circular models.
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Fig 4. ROC curves for competing methods as a function of correlation and noise level for
models (a)–(d). CT-BF (blue line), MixMod-ensemble (red line) and Mutual Information
approximated using the 20 nearest neighbours (black dotted line).

To investigate the power of the two approaches, we create ROC curves that
compare the rate of true positives (percentage of times the procedure detects
dependence among the fifty datasets generated from a dependent model) and
false positives (percentage of times the procedure detects dependence among
fifty null datasets generated by randomly permuted the indexes of the two sam-
ples to destroy any dependences) for different threshold values. We also compare
the performance of the proposed methods to the current state of the art con-
ventional method, which is based on mutual information (using the 20 nearest
neighbours). The ROC curves are reported in Figure 4; see also Supplementary
Material that contains additional more extensive comparisons.

We observe that the proposed methods have similar performances to the
current leading conventional method for data coming from a sinusoidal or a
parabolic model. For data generated from the circular model however the mutual
information method outperforms our approaches.
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5. Conclusion

We presented two Bayesian nonparametric procedures for highlighting pairwise
dependencies between random variables that are scalable to large data sets. The
methods make use of standard software in R for implementing DPM of Gaussians
and are designed to exploit modern computer architectures. As such they are
readily amenable to applied statisticians interested in exploratory analysis of
large data sets. A power analysis shows that the procedures are comparable
with that of current non-Bayesian methods based on mutual information, while
having the advantage of being probabilistic in their measurement.
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