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Abstract. A fast algorithm (linear in the degrees of freedom) for the solution of linear variable-coefficient rational-order4

fractional integral and differential equations is described. The approach is related to the ultraspherical method for ordinary5

differential equations [27], and involves constructing two different bases, one for the domain of the operator and one for the6

range of the operator. The bases are constructed from direct sums of suitably weighted ultraspherical or Jacobi polynomial7

expansions, for which explicit representations of fractional integrals and derivatives are known, and are carefully chosen so that8

the resulting operators are banded or almost-banded. Geometric convergence is demonstrated for numerous model problems9

when the variable coefficients and right-hand side are sufficiently smooth.10
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1. Introduction. Fractional derivatives and fractional differential equations (FDEs) are becoming in-14

creasingly prevalent in the mathematical modelling of biological and physical processes [10,17,21,22,24,29,15

32–34]. Numerical techniques for computing solutions are typically based on finite differences [9, 23, 42] or16

finite elements [11,14,20], but these usually provide only low accuracy solutions due to the global nature of17

fractional derivatives. There have been some recent developments in spectral methods for FDEs [7, 19, 43],18

but these are only observed to achieve spectral accuracy for special solutions.19

This paper concerns the numerical solution of linear equations involving rational-order fractional integrals20

and derivatives on the interval [−1,1].1 For p, q ∈ N with 0 < p < q, the left-sided p/q-integral is defined as [31]221

−1Q
p/q
x f(x) =

1

Γ(p/q)
∫

x

−1

f(t)

(x − t)1−p/q
dt, (1.1)

and for m ∈ N, (m + p/q)-order derivatives of Riemann–Liouville (RL) and Caputo types are given by22

RL
−1D

m+p/q
x f(x) =

dm+1

dxm+1
(
−1Q

1−p/q
x f(x)) and C

−1D
m+p/q
x f(x) =

−1Q
1−p/q
x (

dm+1

dxm+1
f(x)) , (1.2)

respectively. We propose an approach which achieves spectral convergence in linear complexity for a broad23

class of linear fractional integral equations (FIEs) and FDEs composed of such rational-order operators. We24

demonstrate the accuracy and flexibility of the method on numerous examples, such as in Figure 5.2 where25

we solve the generalised second-kind Abel integral equation26

u(x) + λ∫
x

−1

u(t)

(x − t)1/3
= f(x), x ∈ [−1,1], (1.3)

and in Figure 8.1, where we solve a highly-oscillatory fractional Airy equation27

i3/2
RL

−1D
3/2
x u(x) − 104xu(x) = 0, x ∈ [−1,1], u(−1) = 0, u(1) = 1. (1.4)

The approach is related to the ultraspherical spectral (US) method for ordinary differential equations [27]28

and singular integral equations [35], where the key idea is that the underlying operators are banded when29

represented by their action on appropriately chosen bases, built out of ultraspherical polynomials. Here, for30

integral equations, the idea is similar: we exploit the fact that fractional integration is a banded operator31

∗Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa. (nickhale@sun.ac.za)
†Department of Mathematics, Imperial College, London, SW7 2AZ, United Kingdom (s.olver@imperial.ac.uk)
1Problems defined on any other bounded interval may be mapped to [−1,1] by a suitable affine transformation.
2The right-sided rational-integral,

x
Q

p/q
1 , is similar, but with the limits on the integral changed from [−1, x] to [x,1] and

the bracketed term in the denominator of the integrand negated. Without loss of generality, we focus on the left-sided case.
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between a suitable direct sum space formed of q weighted Jacobi polynomial bases (which can be related to32

the “generalised Jacobi functions” of [7] and “polyfractinomials” of [43]), for which an explicit representation33

of the fractional derivative is available. However, a critical difficulty arises for differential equations: the34

bases are not compatible, in the sense that the weights in the range of the operators differ from those of the35

domain. To overcome this difficulty we expand the solution as a direct sum of weighted Jacobi polynomials36

as before, but then consider another basis formed as a direct sum of q different weighted Jacobi polynomial37

bases to represent the range of the operator (for a total of 2q bases).3 If these two direct sum spaces are38

chosen appropriately, then the resulting operators are banded.39

There have been two recent additions to the literature which also provide spectral accuracy for FDEs,40

namely the works of Zayernouri and Karniadakis [43] and Chen, Shen, and Wang [7].4 The foundation41

of both is the same formula for the fractional integral of weighted Jacobi polynomials (i.e., [2, Theorem42

6.72(b)]) which also forms the basis of our own approach (see Theorems 2.1 and 7.2 below). Whereas in43

this paper we limit our attention to rational-order derivatives, both [7] and [43] deal with arbitrary orders,44

and so are in a sense more general. However, the algorithm proposed by Zayernouri and Karniadakis is45

collocation based, leading to dense matrices and O(N3) complexity. Spectral accuracy is demonstrated for a46

few select problems, but it is typically sub-geometric. Furthermore, the discussion is limited to zero Dirichlet47

boundary conditions. The algorithm of Chen, Shen, and Wang has linear complexity, but applies only to48

FDEs of the form −1D
ν
xu(x) = f(x) and xD

ν
1u(x) = f(x) (for both RL and Caputo definitions). In this work49

we shall consider FDEs which are linear combinations of rational-integer order derivatives with more general50

boundary conditions and demonstrate geometric convergence with linear complexity.51

The bulk of this paper is dedicated to introducing the proposed algorithm specifically for the case52

of half-integral order integrals and derivatives (i.e., p = 1 and q = 2 in (1.1) and (1.2)), for which the53

approach and derivation are more intuitive to follow. However, the extension to more general rational-order54

derivatives and integrals follows readily once the approach is understood for the half-integer order case,55

and in the penultimate section we describe in some detail how this is achieved and give further examples.56

As such, the outline of this paper is as follows. In Section 2 we introduce some necessary preliminaries57

regarding ultraspherical polynomials, in particular an explicit formula for their half-integrals and various58

transformations between different weighted ultraspherical polynomial expansions. In Sections 3–5 we use59

these to derive a fast and geometrically convergent algorithm for a certain class of half-integer order FIEs60

and FDEs of Riemann–Liouville and Caputo type, respectively. Section 6 discusses some computational61

issues relating to these algorithms, such as the efficient computation of the required polynomial coefficients62

and solution of the linear systems describing the FIEs/FDEs. In Section 7 we describe how the ideas of63

the previous sections may be adapted to consider more general rational-order FIEs, before concluding in64

Section 8 with one final example and some suggestions for future work.65

Remark: The experiments in this paper were conducted in MATLAB (code to reproduce all figures is66

available online at [15]), and a Julia implementation of the algorithm is available in ApproxFun.jl [26].67

2. Preliminaries. In this section we consider the required preliminaries needed for working with half-68

integrals69

−1Q
1/2
x f(x) =

1
√
π
∫

x

−1

f(t)

(x − t)1/2
dt, (2.1)

and half-integer order derivatives70

RL
−1D

m+1/2
x f(x) =

dm+1

dxm+1
(
−1Q

1/2
x f(x)) and C

−1D
m+1/2
x f(x) =

−1Q
1/2
x (

dm+1

dxm+1
f(x)) , m ∈ N. (2.2)

Our primary tools here are ultraspherical polynomials, specifically Legendre and Chebyshev polynomials, as71

described below.72

3When q = 2 the integral in (1.1) is called the left-sided half-integral, and we shall see below that more elegant formulae can
be obtained in this instance using ultraspherical rather than Jacobi polynomials.

4There has also been recent work in spectral methods for tempered fractional differential equations (see, for example, [44]),
but it is not clear that these approaches provide spectral accuracy in the limit α→ 0, i.e., the non-tempered case.
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Remark: We shall see in Section 7 that in the case of general rational-order integrals and derivatives73

one must instead work with Jacobi polynomials. Whilst it is possible to unify these approaches and use74

Jacobi polynomials in the half-order case, we find that using the ultraspherical polynomials here leads to75

cleaner and more elegant formulae, and so choose to formulate our algorithm with these instead.76

2.1. Ultraspherical polynomials. The ultraspherical (or Gegenbauer) polynomials, C(λ)
n (x), are or-77

thogonal with respect to the weight function (1 − x2)λ−1/2 on the interval [−1,1], where λ > − 1
2
and λ ≠ 0.78

For any λ > 0 the degree n ultraspherical polynomial may be defined via the recurrence [12, 18.9.1]79

C
(λ)
−1 (x) = 0, C

(λ)
0 (x) = 1, (n + 1)C

(λ)
n+1(x) = 2(n + λ)xC(λ)

n (x) − (n + 2λ − 1)C
(λ)
n−1(x). (2.3)

The Legendre polynomials, Pn(x), and the second-kind Chebyshev polynomials, Un(x), are special cases of80

the ultraspherical polynomials with λ = 1
2
and λ = 1, respectively. These two will be of particular importance81

in our algorithms described in Sections 3–5 for half-integer order FIEs and FDEs.82

For any x ∈ C, λ > 0, and γ ∈ R, we define C
(λ)
γ (x) as the quasimatrix — a ‘matrix’ whose ‘columns’ are83

functions defined on an interval [36] — whose jth column is the degree (j − 1)th ultraspherical polynomial84

with parameter λ weighted by (1 + x)γ , i.e.,85

C(λ)
γ (x) ∶= [(1 + x)γC

(λ)
0 (x), (1 + x)γC

(λ)
1 (x), . . . ]. (2.4)

We refer to these as weighted ultraspherical bases and note that the columns of C(λ)
γ (x) are related to the86

“generalised Jacobi functions” of [7] and “polyfractinomials” of [43]. With each such basis (2.4) we may87

associate a space of coefficients, C(λ)
γ ≅ C∞, and if u = (u0, u1, . . .)

⊺

∈C
(λ)
γ such that88

∞

∑
k=0

∣uk ∣ sup
−1≤x≤1

∣C
(λ)
k (x)∣ =

∞

∑
k=0

∣uk ∣
Γ(2λ + k)

Γ(2λ)k!
<∞, (2.5)

then u(x) = C
(λ)
γ (x)u defines a continuous function away from x = −1. For convenience, we denote Pγ ∶=89

C
(1/2)
γ , Uγ ∶=C

(1)
γ , and C(λ) ∶=C

(λ)
0 .90

Linear operators which can be applied to one such weighted ultraspherical basis and expanded in another91

induce infinite-dimensional matrices that can be viewed as acting between differentC(λ)
γ spaces. For example,92

given a continuous linear operator L ∶ X → Y so that (1 + x)λC
(λ)
k (x) ∈ X and (1 + x)cC

(`)
j (x) ∈ Y with the93

property94

L[(1 + ◇)γC
(λ)
k ](x) =

k+m

∑
j=k−m

Ljk(1 + x)
cC

(`)
j (x), (2.6)

we can associate it with an m-banded (i.e., banded with bandwidth m) infinite-dimensional matrix95

L ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

L00 ⋯ L0m

⋮ ⋱ L1m L1,m+1

Lm0 Lm1 ⋱ Lmm ⋱

Lm+1,1 ⋱ ⋱ ⋱

⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (2.7)

Since L is banded, multiplication is a well-defined operation on C∞ and (2.7) can be viewed as an operator96

L ∶C
(λ)
γ →C

(`)
c . To relate the operator L and the operator L we note that, by construction, we have597

L[(1 + ◇)γC
(λ)
k ](x) = LC(λ)

γ (x)ek =C(`)
c (x)Lek. (2.8)

If u(x) ∈X, then, assuming that the C(λ)
γ (x)ek are dense in X, there exists u ∈C(λ)

γ so that u(x) =C
(λ)
γ (x)u.98

Because L is continuous, we have99

Lu = LC(λ)
γ (x)u =C(`)

c (x)Lu, (2.9)

5Here and throughout we use ◇ to represent the dummy variable in an operator.
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and therefore applying L to u(x) is equivalent to applying L to u.100

The US method [27] for differential equations requires three such banded operators which act on ul-101

traspherical polynomials: conversion, multiplication, and differentiation. We now revisit these operators102

in the case of weighted ultraspherical polynomials and introduce new operators corresponding to fractional103

integration and fractional differentiation of half-integer order.104

Remark: In Sections 3–5 we will seek solutions to FIEs and FDEs formed as linear combinations105

of Legendre polynomials, Pn(x), and weighted Chebyshev polynomials of the second kind,
√

1 + xUn(x).106

Another possibility is to choose a direct sum of Legendre polynomials and weighted Chebyshev polynomials107

of the first kind, Tn(x)/
√

1 + x (for which one can also find explicit and compact formulae for half-integer108

order integrals and derivatives). We make the decision to use second-kind polynomials for the following109

reasons: Firstly, Tn(x) is not an ultraspherical polynomial. In particular, this means that the formulae110

involving Tn(x) in the next few sections must be treated separately from C
(λ)
n (x), which greatly clutters the111

exposition. Secondly, in most applications of interest the solution remains finite, so a basis which remains112

bounded in the computational interval is preferred. (See also the remark in Section 4.1.)113

2.2. Conversion operators. We consider two representations of the identity operator, I, which map114

between different C(λ)
γ spaces. First, the relationship [12, 18.9.7]115

C(λ)
n (x) =

λ

n + λ
(C(λ+1)

n (x) −C
(λ+1)
n−2 (x)), (2.10)

induces operators Sλ ∶C
(λ)
γ →C

(λ+1)
γ defined by116

Sλ ∶=

⎛
⎜
⎜
⎜
⎝

1 0 −λ
λ+2

λ
λ+1

0 −λ
λ+3

λ
λ+2

0 −λ
λ+4

⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎠

, (2.11)

so that if u ∈ C
(λ)
γ then u(x) = C

(λ)
γ (x)u = C

(λ+1)
γ Sλu. These are precisely the conversion operators Sλ as117

described in [27]. Here, and in the other operators that follow, when S is acting on either P or U, we shall118

subscript with these, rather than the corresponding value of λ. That is,119

SP ∶= S1/2 =

⎛
⎜
⎜
⎜
⎝

1 0 − 1
5

1
3

0 − 1
7

1
5

0 ⋱

⋱ ⋱

⎞
⎟
⎟
⎟
⎠

and SU ∶= S1 =

⎛
⎜
⎜
⎜
⎝

1 0 − 1
3

1
2

0 − 1
4

1
3

0 ⋱

⋱ ⋱

⎞
⎟
⎟
⎟
⎠

. (2.12)

A second relationship120

(1 + x)C(λ)
n (x) =

n + 1

2(n + λ)
C

(λ)
n+1(x) +C

(λ)
n (x) +

n + 2λ − 1

2(n + λ)
C

(λ)
n−1(x), λ > 0, (2.13)

which can be readily derived from the recurrence relations (2.3), induces operators Rλ ∶C
(λ)
γ →C

(λ)
γ−1, where121

Rλ ∶=
1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 2λ
1+λ

1
λ

2 1+2λ
2+λ

2
1+λ

2 2+2λ
3+λ

3
2+λ

2 ⋱

⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.14)

So that if u ∈C(λ)
γ then u(x) =C

(λ)
γ (x)u =C

(λ)
γ−1Rλu. Note in particular that RU has the simple form122

RU ∶= R1 =
1

2

⎛
⎜
⎝

2 1
1 2 ⋱

⋱ ⋱

⎞
⎟
⎠
. (2.15)
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2.3. Multiplication operators. As outlined in [35] and [40], polynomial multiplication can be viewed123

as a banded operator acting on C(λ) spaces. In particular, the basic building block is the Jacobi operator,124

built out of the three-term recurrence (2.3):125

xC(λ)
n (x) =

n + 1

2(n + λ)
C

(λ)
n+1(x) +

n + 2λ − 1

2(n + λ)
C

(λ)
n−1(x). (2.16)

In the language of Section 2.1, this amounts to choosing L = x, inducing the operator Jλ ∶ C
(λ)
γ → C

(λ)
γ126

defined as127

Jλ ∶=
1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2λ
1+λ

1
λ

0 1+2λ
2+λ

2
1+λ

0 2+2λ
3+λ

3
2+λ

0 ⋱

⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.17)

so that if u ∈ C(λ)
γ then xu(x) = xC(λ)

γ (x)u = C
(λ)
γ Jλu. If C

(`)
n (x) is another ultraspherical polynomial then128

its corresponding three-term recurrence applied to Jλ gives129

C
(`)
n+1(Jλ) = 2

n + `

n + 1
JλC

(`)
n (Jλ) −

n + 2` − 1

n + 1
C

(`)
n−1(Jλ), n ≥ 1 (2.18)

with C
(`)
−1 (Jλ) = 0, C(`)

0 (Jλ) = 1, and the multiplication operator Πλ[C
(`)
n ] ∶ C

(λ)
γ → C

(λ)
γ may be defined130

recursively as131

Πλ[C
(`)
n+1] = 2

n + `

n + 1
JλΠλ[C

(`)
n ] −

n + 2` − 1

n + 1
Πλ[C

(`)
n−1], n ≥ 1 (2.19)

where Πλ[C
(`)
−1 ] = 0 and Πλ[C

(`)
0 ] = I. Each term in the recursion will increase by the bandwidth by 1132

(since Jλ has bandwidth 1), so Πλ[C
(`)
d ] is banded with bandwidth d. Then, by linearity of Πλ and the133

orthogonality of ultraspherical polynomials, given any degree d polynomial p we may construct134

Πλ[p(x) =
d

∑
n=0

pnC
(`)
n (x)] =

d

∑
n=0

pnΠλ[C
(`)
n ], (2.20)

which also has bandwidth d and satisfies p(x)u(x) = p(x)C(λ)
γ (x)u =C

(λ)
γ (x)Πλ[p(x)]u when u ∈C(λ)

γ .135

One may take ` = λ, in which case the columns of Πλ[C
(λ)
d ] give rise to linearisation formulae for products136

of the form C
(λ)
d (x)C

(λ)
n (x) [12, 18.18.22]. Alternatively, one can construct a similar recurrence relationship137

based on Chebyshev polynomials of the first kind, in which case138

Πλ[Tn+1] = 2JλΠλ[C
(`)
n ] −Πλ[Tn−1], n > 1, (2.21)

with Πλ[T0] = 1, Πλ[T1] = x, and139

Πλ[p(x) =
d

∑
n=0

pnTn(x)] =
d

∑
n=0

pnΠλ[Tn]. (2.22)

Since Chebyshev coefficients of a polynomial are readily computed by a discrete cosine transform, this can140

often be more convenient than (2.19). When p is not a polynomial but a sufficiently differentiable function,141

we can approximate it to high accuracy by a polynomial. In particular, if p is analytic in some neighbourhood142

of [−1,1], then the polynomial approximation will converge geometrically, and the degree of the approximant143

(and hence bandwith of Πλ) will typically be small [39].144
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2.4. Integral operators. The foundation of our approach is the following formula, which shows how145

the half-integral of certain weighted ultraspherical polynomials may be computed in closed form:146

Theorem 2.1. For any λ > 0, n ≥ 0,147

−1Q
1/2
x [(1 + ◇)λ−1/2C(λ)

n ](x) =
Γ(λ + 1/2)

Γ(λ)(n + λ)
(1 + x)λ(C(λ+1/2)

n (x) −C
(λ+1/2)
n−1 (x)), (2.23)

Proof. Follows from relating C(λ)
n (x) to the Jacobi polynomial P (λ−1/2,λ−1/2)

n (x) and using the closed148

form expression for fractional integrals of weighted Jacobi polynomials [2, Theorem 6.72(b)]. Applying the149

symmetric version of [12, 18.9.5] to the right-hand side and converting P (λ,λ)
n (x) back to C(λ+1/2)

n (x) yields150

the required result.151

Corollary 2.2.152

−1Q
1/2
x Pn(x) =

2
√

1 + x
√
π(2n + 1)

(Un(x) −Un−1(x)) (2.24)

and153

−1Q
1/2
x [

√
1 + ◇Un](x) =

√
π

2
(Pn+1(x) + Pn(x)) (2.25)

Proof. The first follows immediately from setting λ = 1/2 in (2.23). For the second, take λ = 1 in (2.23)154

and make the observation (see Appendix A) that n(Pn(x) + Pn−1(x)) = (1 + x)(C
(3/2)
n−1 (x) − C

(3/2)
n−2 (x)).155

We may therefore, in the language of Section 2.1, consider half-integration as a banded operator between156

the spaces of Legendre polynomials and weighted Chebyshev polynomials, and define the associated banded157

half-integer order integral operators Q1/2
P ∶ P→U1/2 and Q1/2

U1/2
∶U1/2 → P as158

Q
1/2
P ∶=

2
√
π

⎛
⎜
⎜
⎜
⎝

1 − 1
3
1
3

− 1
5
1
5

⋱

⋱

⎞
⎟
⎟
⎟
⎠

and Q
1/2
U1/2

∶=

√
π

2

⎛
⎜
⎜
⎜
⎝

1
1 1

1 1
⋱ ⋱

⎞
⎟
⎟
⎟
⎠

, (2.26)

respectively. Therefore, letting uP ∈ P and uU1/2
∈U1/2 then we have that −1Q

1/2
x P(x)uP =U1/2(x)Q

1/2
P uP159

and −1Q
1/2
x U1/2(x)uU1/2

= P(x)Q
1/2
U1/2

uU1/2
.6160

If we define QP ∶= Q
1/2
U1/2

Q
1/2
P so QP ∶ P→ P is given by161

QP =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 − 1
3

1 0 − 1
5

1
3

0 − 1
7

1
5

0 ⋱

⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.27)

we see that this is consistent with the relation162

−1Q
1
xPn(x) = ∫

x

−1
Pn(t)dt =

⎧⎪⎪
⎨
⎪⎪⎩

1
2n+1

(Pn(x) − Pn−2(x)), n ≥ 1,

P1(x) + P0(x), n = 0,
(2.28)

for the integral of Legendre polynomials (which can be obtained from [12, 18.16.1] and [12, 18.9.6]). We163

may go farther and repeatedly combine the QP and QU1/2
operators to define banded operators between164

6Henceforth, we cease (with a few exceptions) to explicitly state such equalities for each operator we introduce. It should
be clear from the context which continuous operator is in question, and the range and domain of the discrete operator from the
notation introduced in (2.9).
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the spaces P and U1/2 representing integral operators of half-integer order, by repeatedly applying the165

matrices (2.26), i.e., −1Qmx and −1Q
m+1/2
x . In particular, we have166

Q
m+1/2
P ∶= Q

1/2
P (Q

1/2
U1/2

Q
1/2
P )

m
∶ P→U1/2 (2.29)

167

Q
m+1/2
U1/2

∶= Q
1/2
U1/2

(Q
1/2
P Q

1/2
U1/2

)
m
∶U1/2 → P. (2.30)

Integral operators of integer order, Qm, acting on these same spaces give rise to m-order banded operators168

QmP ∶ P → P and QmU1/2
∶ U1/2 → U1/2, which can be constructed likewise by omitting the terms outside the169

parentheses in (2.29) and (2.30), respectively, or from (2.27).170

2.5. Differentiation operators. The final key ingredient for the US method for ordinary differential171

equations is the relationship172

d

dx
C(λ)
n (x) = 2λC

(λ+1)
n−1 (x). (2.31)

This induces banded derivative operators Dλ ∶C
λ →Cλ+1, and more generally Dm

λ ∶Cλ →Cλ+m, defined by173

Dλ ∶= 2λ
⎛
⎜
⎝

0 1
1

⋱

⎞
⎟
⎠

and Dm
λ ∶= 2mλ(m)

⎛
⎜
⎜
⎜
⎝

m times
³¹¹¹¹¹¹·¹¹¹¹¹µ
0 ⋯ 0 1

1
⋱

⎞
⎟
⎟
⎟
⎠

, (2.32)

respectively (where λ(m) = λ(λ + 1) . . . (λ +m − 1) is the Pochammer function or “rising factorial”).174

We now derive similar such operators for half-integer order derivatives of weighted ultraspherical poly-175

nomials. For now we consider only the Riemann–Liouville definition, for which we have that:176

Corollary 2.3.177

RL
−1 D

1/2
x Pn(x) =

1
√
π
√

1 + x
(Un(x) +Un−1(x)) (2.33)

and178

RL
−1 D

1/2
x

√
1 + xUn(x) =

√
π

2
(C(3/2)

n (x) +C
(3/2)
n−1 (x)) (2.34)

Proof. The second equation follows immediately from differentiating (2.25) in Corollary 2.2 using (2.31).179

For the first equation, differentiate the right-hand side of (2.25) via the product rule and make the observation180

(see Appendix A) that 2(1 + x)(C
(2)
n−1(x) −C

(2)
n−2(x)) = nUn(x) + (n + 1)Un−1(x).181

Therefore, similarly to the case of half-integrals above, we may consider half-differentiation as a banded182

operator acting on P and U1/2, but now mapping to U−1/2 and C(3/2), respectively. In particular, we183

have half-derivative operators D1/2
P ∶ P → U−1/2 and D

1/2
U1/2

∶ U1/2 → C(3/2), given by the banded infinite184

dimensional matrices185

D
1/2
P ∶=

1
√
π

⎛
⎜
⎝

1 1
1 1

⋱ ⋱

⎞
⎟
⎠

and D
1/2
U1/2

∶=

√
π

2

⎛
⎜
⎝

1 1
1 1

⋱ ⋱

⎞
⎟
⎠
. (2.35)

so that −1D
1/2
x P(x)uP =U−1/2(x)D

1/2
P uP and −1D

1/2
x U1/2(x)uU1/2

=C(3/2)(x)D
1/2
U1/2

uU1/2
.186

Since the composition of these operators is no longer a mapping between the same space, we cannot con-187

struct higher-order derivatives by repeated multiplication as we did higher-order integral operators, i.e., (2.29188

and (2.30). However, applying (2.31) m times to Pn(x) and (2.34), we may readily write189

dm

dxm
Pn(x) = 2m ( 1

2
)
(m)

C
(m+1/2)
n−m (x) =

2mΓ(m + 1/2)
√
π

C
(m+1/2)
n−m (x) (2.36)
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and190

RL
−1 D

m+1/2
x

√
1 + xUn(x) = 2mΓ(m + 3/2)(C

(m+3/2)
n−m (x) +C

(m+3/2)
n−m−1 (x)), (2.37)

and can consider derivative operators Dm
P ∶ P→C(m+1/2) and Dm+1/2

U1/2
∶U1/2 →C(m+3/2) defined by191

Dm
P ∶=

2mΓ(m + 1/2)
√
π

⎛
⎜
⎜
⎜
⎝

m times
³¹¹¹¹¹¹·¹¹¹¹¹µ
0 ⋯ 0 1

1
⋱

⎞
⎟
⎟
⎟
⎠

and D
m+1/2
U1/2

∶= 2mΓ(m + 3/2)

⎛
⎜
⎜
⎜
⎝

m times
³¹¹¹¹¹¹·¹¹¹¹¹µ
0 ⋯ 0 1 1

1 ⋱

⋱

⎞
⎟
⎟
⎟
⎠

, (2.38)

representing Dm and −1D
m+1/2
x , respectively.192

Remark: Observe that Dm
P and Dm+1/2

U1/2
are banded with bandwidths m and m + 1, respectively.193

The corresponding operators for dm

dxm

√
1 + xUn(x) and RL

−1 D
m+1/2
x Pn(x) are complicated by the

√
1 + x194

weights. Here we must appeal to the product rule for differentiation and derive recursive formulations for195

Dm
U1/2

and Dm+1/2
P . We first note that:196

Lemma 2.4. For any n ≥ 0, λ > 0, µ /= 0197

d

dx
(1 + x)µC(λ)

n (x) = λ(1 + x)µ−1 [(1 +
µ − λ

n + λ
)C(λ+1)

n (x) + 2C
(λ+1)
n−1 (x) + (1 −

µ − λ

n + λ
)C

(λ+1)
n−2 (x)] , (2.39)

(where C(λ+1)
−2 (x) ∶= 0).198

Proof. Apply the product rule to the left-hand side, then use (2.10), (2.13), and (2.31).199

If we define Dµ,λ ∶C
(λ)
µ →C

(λ+1)
µ−1 as the differentiation operator induced by this relationship, i.e.,200

Dµ,λ ∶= λ

⎛
⎜
⎜
⎜
⎝

1 2 1
1 2 1

1 2 ⋱

⋱ ⋱

⎞
⎟
⎟
⎟
⎠

+ λ(µ − λ)

⎛
⎜
⎜
⎜
⎝

1
λ

0 − 1
λ+2

1
λ+1

0 − 1
λ+3

1
λ+2

0 ⋱

⋱ ⋱

⎞
⎟
⎟
⎟
⎠

(2.40)

we may then define Dm
U1/2

∶U1/2 →C
(m+1)

−m+1/2
and Dm+1/2

P ∶ P→C
(m+1)

−m−1/2
as201

Dm
U1/2

∶=
m−1

∏
k=0

D
−k+ 1

2 ,k+1
and D

m+1/2
P ∶= (

m−1

∏
k=0

D
−k− 1

2 ,k+1
)D

1/2
P , (2.41)

respectively.202

Remark: Since the Dµ,λ operators each have bandwidth 2 (and recalling that D1/2
P has bandwidth 1),203

it is readily verified that Dm
U1/2

and Dm+1/2
P will have bandwidths 2m and 2m + 1, respectively.204

2.6. Block operators. As we shall see in the next section, our approach for solving FIEs and FDEs205

of half-integer order will be to seek solutions formed as a direct sum of two different weighted ultraspherical206

polynomials, namely P⊕U1/2. Here we introduce some notation to clarify the exposition in the description207

of the algorithm that follows.208

Firstly, suppose A and B are two different C
(λ)
γ spaces. We define [A ⊕B](x) ∶= [A(x),B(x)] and if209

u = [a⊺, b⊺]⊺ where a ∈ A and b ∈ B then we say u ∈A⊕B and may write210

u(x) = [A(x),B(x)](x)u =
∞

∑
n=0

anAn(x) +
∞

∑
n=0

bnBn(x). (2.42)

Then, for any m ∈ N we define211

Qm/2
∶=

⎛

⎝

0 Q
1/2
U1/2

Q
1/2
P 0

⎞

⎠

m

∶ P⊕U1/2 → P⊕U1/2, (2.43)
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212

Dm
∶= (

Dm
P 0
0 Dm

U1/2

) ∶ P⊕U1/2 →C(m+1/2)
⊕C

(m+1)

−m+1/2
, (2.44)

and213

Dm+1/2
∶= (

0 D
m+1/2
U

D
m+1/2
P 0

) ∶ P⊕U1/2 →C(m+3/2)
⊕C

(m+1)

−m−1/2
, (2.45)

corresponding to half-integer order integral and derivative operators, respectively. We then have, for example,214

that if u = [u⊺P, u
⊺

U1/2
]⊺, with uP ∈ P and uU1/2

∈U1/2, then215

Q
m/2u(x) = Qm/2

[P(x),U1/2(x)]u = [P(x),U1/2(x)]Q
m/2u. (2.46)

and216

D
mu(x) = Dm[P(x),U1/2(x)]u = [C(m+1/2)

(x),C
(m+1)

−m+1/2
(x)]Dmu. (2.47)

For convenience we also introduce the block conversion operators Em ∶C
(`)
γ1 ⊕C

(m)

γ2 →C
(`)
γ1 ⊕C

(m+1)
γ2 and217

Em+1/2 ∶C
(m+1/2)
γ1 ⊕C

(m+1)
γ2 →C

(m+3/2)
γ1 ⊕C

(m+1)
γ2−1

, m ∈ N+ defined by218

Em ∶= (
I 0
0 Sm

) and Em+1/2 ∶= (
Sm+1/2 0

0 Rm+1
) . (2.48)

Remark: Note that all of the operators in equations (2.43)–(2.48) are banded or block-banded. Block-219

banded matrices become banded when the coefficients are interleaved, which is expanded on below.220

As described in Section 2.3, polynomial multiplication also results in banded operators. In particular,221

multiplication by a polynomial r(x) ∈ Pd yields the following d-banded operator Π0[r] ∶ P⊕U1/2 → P⊕U1/2,222

Π0[r] ∶= (
ΠP[r]

ΠU[r]
) . (2.49)

More generally, for integer values m, we define multiplication operators223

Πm[r] ∶= (
Πm+1/2[r]

Πm+1[r]
) , Πm+1/2[r] ∶= (

Πm+3/2[r]
Πm+1[r]

) , (2.50)

which act on the appropriate direct sum spaces.224

Multiplication by square root-weighted polynomials,
√

1 + xs(x), s ∈ Pd, is complicated by the need to225

convert between C(λ) and C(λ+1/2) bases. For example, in the case of
√

1 + xs(x) multiplying a vector in226

P⊕U1/2 we require the upper triangular conversion or “connection” operators M̂ ∶ P→U and L̂ ∶U→ P [1,38]227

so that7228

Π0[0, s] ∶= (
L̂ΠU[(1 + ◇)s]

ΠU[s]M̂
) . (2.51)

More generally, multiplication by r(x) +
√

1 + xs(x) yields the operator Π0[r, s] ∶ P⊕U1/2 → P⊕U1/2,229

Π0[r, s] ∶= (
ΠP[r] L̂ΠU[(1 + ◇)s]

ΠU[s]M̂ ΠU[r]
) . (2.52)

Remark: Π0[0, s] and Π0[r, s] are neither banded or block-banded, however they are (upon re-ordering)230

lower-banded. We give an example with such a weighted non-constant coefficient below, but will otherwise231

limit our attention to the case when the non-constant coefficients are smooth (i.e., well-approximated by an232

unweighted polynomial).233

7We use L̂ and M̂ here as L and M are typically used to denote the conversion operators M ∶ P → T and L ∶ T → P,
respectively, where T is the quasimatrix whose columns are formed of Chebyshev polynomials of the first kind, Tn(x).
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3. Half-integer order integral equations. We now use the operators described above to derive an234

algorithm for integral equations of half-integer order.235

3.1. Half-integral Equations. We first consider Abel-like integral equations of the form236

σu(x) +−1 Q
1/2
x u(x) = e(x) +

√
1 + xf(x), x ∈ [−1,1], (3.1)

where e(x) and f(x) are smooth (typically analytic in some neighbourhood of [−1,1]) and σ > 0.237

Motivated by the block operators in Section 2.6, we make the ansatz that the solution u(x) may be238

expressed as a linear combination of Legendre polynomials and weighted Chebyshev polynomials:8239

u(x) =
∞

∑
n=0

anPn(x) +
√

1 + x
∞

∑
n=0

bnUn(x). (3.2)

Assuming the coefficients a0, a1, . . . and b0, b1, . . . satisfy the conditions (2.5), we may, in the language of240

Section 2, write241

u(x) = [P(x),U1/2(x)] (
a
b

) . (3.3)

Applying the block half-integral operator (2.43) with m = 0, we have that242

−1Q
1/2
x u(x) = [P(x),U1/2(x)]Q

1/2
(
a
b

) (3.4)

and hence243

σu(x) +−1 Q
1/2
x u(x) = [P(x),U1/2(x)] (σI +Q

1/2)(
a
b

) . (3.5)

Letting244

e(x) =
∞

∑
n=0

enPn(x) and f(x) =
∞

∑
n=0

fnUn(x), (3.6)

or equivalently245

e(x) +
√

1 + xf(x) = [P(x),U1/2(x)] (
e
f

) , (3.7)

and equating coefficients, we arrive at the (infinite dimensional) linear system of equations246

(σI +Q1/2)(
a

b
) =

⎛

⎝

σI Q
1/2
U1/2

Q
1/2
P σI

⎞

⎠
(
a

b
) =

⎛

⎝

e

f

⎞

⎠
. (3.8)

Note that both the diagonal and off-diagonal blocks of the operator in (3.8) are banded, and by interleav-247

ing the coefficients in a and b (i.e., (a⊺, b⊺)↦ (a0, b0, a1, b1, . . .)
⊺) we arrive at a banded operator (in this case,248

tridiagonal). Taking a finite section approximation (i.e., truncating each of the summations in (3.2) and (3.6)249

and hence the block operators in (3.8)) at a suitable length N , we arrive at a 2N × 2N tridiagonal matrix250

system, which can be solved directly in O(N) floating point operations for the approximate coefficients a251

and b of u(x) in (3.2). Alternatively, one can use the adaptive QR approach described in [27] and solve252

the infinite dimensional (3.8) system to a required accuracy without a priori truncation (see Section 6.2).253

Convergence and stability are discussed in more detail in Appendix B.254

8Formally this direct sum-space defines a frame [8]. We discuss the consequences of this in Section 6.1 and Appendix B.1.
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Fig. 3.1. (a) Approximate solution to (3.9). (b) MATLAB spy plot showing that truncated linear system (3.8) is
tridiagonal. (c) Two measures of the error in the approximation as N varies. Solid line: Infinity norm error of solution
approximated on a 100-point equally spaced grid. Dashed line: 2-norm difference between the coefficients of the approximated
solution when truncating at sizes N and ⌈1.1N⌉. In both cases, geometric convergence is observed.

Example 1: We consider the second-kind Abel integral equation255

u(x) +−1 Q
1/2
x u(x) = 1 (3.9)

with solution [30, Section 11.4-1]256

u(x) = e1+xerfc(
√

1 + x), (3.10)

where erfc is the complimentary error function. Note that the solution u(x) takes the form p(x)+
√

1 + xq(x),257

where p(x) and q(x) are functions analytic in some neighbourhood of [−1,1], and so any attempt to ap-258

proximate u(x) by a polynomial u(x) ≈ pN(x) or a weighted polynomial u(x) ≈
√

1 + xqN(x) will achieve259

only algebraic convergence as the degree of the polynomial is increased. However, using the direct sum basis260

P⊕U1/2 we are able to approximate such a function and hence solve the FDE (3.9) with spectral accuracy.261

To solve the FDE (3.9) we form the linear system (3.8) with σ = 1, e = (1,0, . . .)⊺, and f = (0,0, . . .)⊺,262

truncate at some length N , and solve with / in MATLAB. The results are shown in Figure 3.1. The first263

image shows a plot of the computed solution with N = 20. The spy plot in the second image verifies that,264

upon re-ordering, the associated linear system (3.8) is tridiagonal. The third image shows two measures265

of the error in the approximation as N is increased.9 The first (solid line) is computed by evaluating the266

approximate solution on a 100-point equally-spaced grid in the interval [−1,1] using Clenshaw’s algorithm267

and comparing to the true solution (3.10). Geometric convergence is observed until it plateaus at around268

15 digits of accuracy when N = 15. The second measure (dashed line) is the 2-norm difference between269

the coefficients of the approximated solution when truncating at sizes N and ⌈1.1N⌉. Here the convergence270

does not plateau, suggesting that the computed coefficients maintain good relative accuracy even when their271

magnitude is below machine precision.272

3.2. Half-order integral equations with non-constant coefficients. In much the same way as in273

the US method for ODEs [27], the approach outlined above is readily extended to FDEs with non-constant274

coefficients. In particular, to solve problems of the form275

u(x) + r(x) −1Q
1/2
x u(x) = e(x) +

√
1 + xf(x), (3.11)

we can appeal to the discussion in Section 2.3 and construct multiplication operators ΠP[r] and ΠU[r],276

which act on Legendre and second-kind Chebyshev series, respectively. If r(x) is a polynomial of degree d,277

then these two operators will have bandwidth d. If r(x) is not a polynomial but is sufficiently smooth (for278

example, analytic), then the coefficients in its ultraspherical polynomial expansion will decay rapidly, and279

we may consider ΠP[r] and ΠU[r] as banded for practical purposes. The resulting linear system then takes280

the form281

(I +Π0[r]Q
1/2)(

a
b

) = (
e
f

) , (3.12)

9We show both measures here to validate the use of the second, which we employ later when a closed-form expression of
the true solution is not readily available.
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where Π0[r] is defined in Section 2.6.282

We may also consider problems of the form283

u(x) + r1(x)−1Q
1/2
x [r2u] (x) = e(x) +

√
1 + xf(x), (3.13)

in which case the linear system becomes284

(I +Π0[r1]Q
1/2Π0[r2]) (

a
b

) = (
e
f

) . (3.14)

Similarly, problems of the form285

u(x) + (r(x) +
√

1 + xs(x)) −1Q
1/2
x u(x) = e(x) +

√
1 + xf(x). (3.15)

and286

u(x) + −1Q
1/2
x [(r +

√
1 + ◇s)u](x) = e(x) +

√
1 + xf(x). (3.16)

may also be solved with linear systems287

(I +Π0[r, s]Q
1/2)(

a
b

) = (
e
f

) , (3.17)

and288

(I +Q1/2Π0[r, s]) (
a
b

) = (
e
f

) , (3.18)

respectively. However, these systems are no longer banded, and we will lose the linear complexity of our289

algorithm. Upon reordering they are dense above the diagonal and banded below, so Gaussian elimination290

will have O(N2) complexity (see Example 3 below).291

Example 2: We adapt the example of Section 1 so that292

u(x) + e−(1+x)/2 −1Q
1/2
x [e(1+x)/2u](x) = e−(1+x)/2, (3.19)

with solution293

u(x) = e(1+x)/2erfc(
√

1 + x). (3.20)

Again taking u(x) as in (3.2), the resulting linear system defining the coefficients a and b is of the form294

(I +Π[e−(1+x)/2]Q1/2Π0[e
(1+x)/2

]) (
a
b

) = (
e
0

) , (3.21)

where e are the Legendre coefficients of the function e−(1+x)/2. (See Section 6.1 for discussion on how these295

are computed.) As in the previous example, we truncate each of the expansions at a suitable length N and296

solve the resulting finite dimensional banded matrix problem using / in MATLAB.297

The results are shown in Figure 3.2. The left panel shows the approximate solution computed with298

N = 20. The centre panel shows a spy plot of the discretised, truncated, and re-ordered operator (3.21).299

The non-constant coefficients in equation (3.19) mean the resulting matrix is no longer tridiagonal, however,300

it is banded independently of N and can be solved by / in linear time as N → ∞. The precise bandwidth301

depends on the number of Chebyshev coefficients required to approximate the non-constant coefficients, in302

this case e±(1+x)/2, to machine precision accuracy. Here the number of coefficients required is around 14,303

and the resulting matrix has a bandwidth of approximately 43. The final panel shows the accuracy of the304

computed solution as N increases, using the same two forms of the error estimate as described in Example 1.305
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Fig. 3.2. (a) Solution to (3.19). (b) MATLAB spy plot of (3.21) showing the banded structure. (c) Solid line: Infinity
norm error of solution approximated on a 100-point equally spaced grid. Dashed line: 2-norm difference between the coefficients
of the approximated solution when truncating at sizes N and ⌈1.1N⌉. Again, geometric convergence is observed.
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Geometric convergence is again observed, but here both measures of the error plateau due to rounding error306

in the computation of the Chebyshev coefficients of the functions e±(1+x)/2.307

Example 3: Here we solve308

u(x) − erfc
√

1 + x −1Q
1/2
x u(x) = 1. (3.22)

The linear system satisfied by the coefficients a and b is then of the form309

(I +Π0[−1,
erf(

√
1 + x)

√
1 + x

]Q1/2
)
⎛

⎝

a

b

⎞

⎠
=
⎛

⎝

1

0

⎞

⎠
. (3.23)

We may truncated and solve (3.23), and the results of such are shown in Figure 3.3. Here, in the spy plot310

in the centre panel we see that, as expected, the required change of bases P↔ U1/2 are no longer banded,311

and hence neither is the re-ordered version of (3.23). However, the re-ordered matrix is lower-banded, and312

MATLAB’s / will require O(N2) operations to solve such systems directly via Gaussian elimination.313

In this case we do not know an explicit form for the solution, and so in the right panel show only314

the accuracy estimate based upon comparison of successive approximations. We again observe geometric315

convergence in the number of degrees of freedom until convergence plateaus at around the level of machine316

precision.317

3.3. Higher-Order Integral equations. The approach outlined in the previous few examples extends318

readily to higher-order integral equations of half-integer order. The general form of the problem we consider319

is320

Lu(x) = e(x) +
√

1 + xf(x) (3.24)
13
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Fig. 3.4. (a) Approximate solution to (3.28). (b) MATLAB spy plot of (3.29) showing the banded structure of the linear
system. (c) 2-norm difference between the coefficients of the approximated solution when truncating at sizes N and ⌈1.1N⌉.
Even for higher-order problems, geometric convergence is obtained. As in Example 1, since there are no-constant coefficients
whose Chebyshev coefficients must be computed, this measure of the error continues to converge below machine precision.

where321

Lu(x) = α[0]
(x)u(x) +

2m

∑
k=1

α[k]
(x) −1Q

k/2
x [β[k]u](x), (3.25)

α[k]
(x) = p[k](x) +

√
1 + xq[k](x), β[k]

(x) = r[k](x) +
√

1 + xs[k](x), k = 0,1, . . . ,2m, (3.26)

and all the functions e(x), f(x), p[k](x), q[k](x), r[k](x), s[k](x), k = 0,1, . . . ,2m are assumed analytic in322

some neighbourhood of [−1,1]. If we continue to take (3.2) as our ansatz, then we arrive at the infinite323

dimensional linear system324

(Π0[p
[0], q[0]] +

2m

∑
k=1

Π0[p
[k], q[k]]Qk/2Π0[r

[k], s[k]])
⎛

⎝

a

b

⎞

⎠
=
⎛

⎝

e

f

⎞

⎠
, (3.27)

where e and f are as in (3.6).325

As before, the precise form of this operator will depend on both m and the number of Chebyshev326

coefficients required to represent the functions p[k](x), q[k](x), r[k](x), and s[k](x). However, if the q[k](x)327

and s[k](x) are all identically zero, then (after re-ordering) the operator will remain banded independently328

of N . Otherwise it will be lower-bounded, as in Example 3.329

Example 4: For simplicity, we choose a constant coefficient problem so that the banded structure of330

the resulting operator is readily observed. In particular, we solve331

u(x) − −1Q
1/2
x u(x) + −1Q

1
xu(x) − −1Q

3/2
x u(x) + −1Q

2
xu(x) = 1, (3.28)

which may be expressed as332

(I −Q1/2
+Q1

−Q3/2
+Q2)

⎛

⎝

a

b

⎞

⎠
=
⎛

⎝

1

0

⎞

⎠
. (3.29)

As in the previous examples, we truncate this operator at a given size N and solve the resulting finite333

dimensional problem. The results are shown in Figure 3.4 with the first and second panels showing the334

approximated solution and spy plot of (3.29) when N = 20, respectively. The third panel shows the335

convergence of the solution. As in the Example 3 we do not know the true solution, so we estimate the336

error by the 2-norm difference between the coefficients of the approximated solution when truncating at337

sizes N and ⌈1.1N⌉. We again observe geometric convergence, and as in Example 1, the error continues to338

decrease even below the level of machine precision for this constant coefficient problem.339

4. FDEs: Riemann–Liouville definition. Our approach here for FDEs of Riemann–Liouville-type340

will be similar to the FIEs above. The main difference will stem from the fact that the operators Dm and341

Dm+1/2 defined in Section 2.6 no longer map to the same direct sum spaces and we must make use of the342

block-banded conversion operators Em and Em+1/2 (analogous to how the conversion operators Sλ are used343

in [27]).344
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4.1. Differential equation of order 1/2. Consider the FDE345

u(x) +
RL

−1D
1/2
x u(x) = e(x) +

1
√

1 + x
f(x), x ∈ [−1,1], u(−1) <∞, (4.1)

(sometimes called a “fractional relaxation equation”) and make the same ansatz as before that346

u(x) =
∞

∑
n=0

anPn(x) +
√

1 + x
∞

∑
n=0

bnUn(x) = [P(x),U1/2(x)] (
a
b

) . (4.2)

From Section 2.6 we have that347

RL
−1 D

1/2
x u(x) = [C(3/2)

(x),U−1/2(x)]D
1/2 ⎛

⎝

a

b

⎞

⎠
, (4.3)

where D1/2 is defined in (2.44). As mentioned above, and unlike in the case of the integral equations, the348

range of RL
−1D

1/2
x u(x) is not the same as that of u(x). However, we can find a banded transform from P⊕U1/2349

to C(3/2)(x)⊕U−1/2 using E1/2 so that350

u(x) = [C(3/2)
(x),U−1/2(x)]E1/2 (

a
b

) . (4.4)

This time letting351

e(x) +
1

√
1 + x

f(x) = [C(3/2)
(x),U−1/2(x)] (

e
f

) (4.5)

and equating coefficients leads to the linear system of equations352

( E1/2 +D
1/2 )

⎛

⎝

a

b

⎞

⎠
=
⎛

⎝

SP D
1/2
U1/2

D
1/2
P RU

⎞

⎠

⎛

⎝

a

b

⎞

⎠
=
⎛

⎝

e

f

⎞

⎠
. (4.6)

Again, each block of the operators in (4.6) are banded, and by interleaving the coefficients so that (a⊺, b⊺)353

↦ (a0, b0, a1, b1, . . .)
⊺ we can convert the above to a banded system.354

Remark: One can show that the null space of the operator on the left-hand side of (4.1) acting on355

functions in L1 is356

v(x) =
E1/2,1/2(−

√
1 + x)

√
1 + x

, (4.7)

(where E1/2,1/2 is the Mittag-Leffler function [12, 10.46.3]) [6, p. 13], which is unbounded at x = −1. Since357

our trial space (4.2) contains only bounded functions on [−1,1], we need not enforce a boundary condition358

explicitly in this case. We discuss boundary constraints in more detail momentarily. To allow solutions359

which are unbounded at the left end of the domain then one possibility is to use instead the ansatz u(x) =360

P(x)a + T−1/2(x)b, where T(x) is the quasimatrix whose columns are formed of Chebyshev polynomials361

of the first kind, Tn(x), n = 0,1, . . .. One can derive similar banded operators to all those introduced in362

Section 2, but we omit the details (which are complicated by the fact that Tn(x) is not an ultraspherical363

polynomial and therefore many of the formulae in Section 2 differ subtly).364

Example 5: We consider a modification of the second-kind Abel integral equation in Example 1,365

namely366

u(x) +−1 D
1/2
x u(x) =

1
√
π
√

1 + x
, u(−1) <∞, (4.8)
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Fig. 4.1. (a) Solution to (4.8). (b) MATLAB spy plot of (4.6) showing the banded structure (c) Solid line: Infinity norm
error of solution approximated on a 100-point equally spaced grid. Dashed line: 2-norm difference between the coefficients of
the approximated solution when truncating at sizes N and ⌈1.1N⌉. As in the case of FIEs from the previous section, geometric
convergence is observed here for this FDE.

with solution367

u(x) = e1+xerfc(
√

1 + x). (4.9)

To solve we choose an N and form the system (4.6) with e = 0 and f = [1/
√
π,0,0, . . .]⊺. Results are shown368

in Figure 4.1. As usual, the first two panels show a plot of the solution and a spy plot of the discretised369

operator when N = 20. The spy plot verifies that the matrix is banded (here with bandwidth four) and370

hence that the system (4.6) can be solved in linear time with MATLAB’s /. The final panel shows both the371

infinity norm error (approximated on a 100-point equally spaced grid) of computed solution compared to372

the exact solution (4.9) (solid line) and the 2-norm difference between the coefficients of the approximated373

solution when truncating at sizes N and ⌈1.1N⌉ (dashed line). Again we observe geometric convergence.374

4.2. Differential equation of order 1 and 1/2. Here we consider375

u(x) +
RL

−1D
1/2
x u(x) + u′(x) = e(x) +

1
√

1 + x
f(x), x ∈ [−1,1], (4.10)

along with a suitable initial or boundary condition, or some other functional constraint (see below). Now376

u′(x) = [C(3/2)
(x),C

(2)

−1/2
(x)]D (

a
b

) , (4.11)

where D is defined in (2.44). We must modify the spaces of both u and D1/2u accordingly, and so arrive at377

(E1E1/2 +E1D
1/2

+D)(
a

b
) =

⎛

⎝

e

f

⎞

⎠
, (4.12)

where378

e(x) =
∞

∑
n=0

enC
(3/2)
n (x), f(x) =

∞

∑
n=0

fnC
(2)
n (x). (4.13)

Again, by interleaving the coefficients, we can make the above operator banded.379

4.2.1. Boundary conditions. In this case, the kernel of the operator in (4.10) is smooth and we must380

enforce a boundary condition to ensure that the linear system (4.12) is invertible. The topic of boundary381

conditions in FDEs is complicated, and it is beyond the scope of this paper to give a full treatment here.382

Here we simply show how certain boundary conditions/side constraints can be applied to linear systems such383

as (4.12) and leave it to the reader to determine how many and what form of constraints are applicable to384

their FDE.385
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Fig. 4.2. (a) Approximate solution to (4.16). (b) MATLAB spy plot of (4.15) showing the almost-banded structure.
(c) 2-norm difference between the coefficients of the approximated solution when truncating at sizes N and ⌈1.1N⌉ showing
geometric convergence.

For example, consider the functional constraint Bxu ∶= u(x) = c. Given scalar x ∈ [−1,1] we can construct386

this functional acting on a basis in C
(λ)
γ as a row vector by defining Bxλ,γ ∶ C

(λ)
γ → C as Bxλ,γ ∶= C

(λ)
γ (x). In387

particular, x = −1 corresponds to a boundary/initial condition on the left and x = +1 to a boundary condition388

on the right. Some useful cases are389

B−1
P = [1,−1,1,−1, . . .], B−1

U1/2
= [0,0, . . .], B+1

P = [1,1, . . .], and B+1
U1/2

=
√

2[1,2,3,4, . . .]. (4.14)

Combining such operators to act on our direct sum expansion of the solution u(x), we have, for example,390

B−1 ∶ P ⊕ U1/2 → C given by B−1 = [B−1
P ,B−1

U1/2
] and our system (4.12) augmented with the boundary391

condition u(−1) = c becomes392

(
B−1

E1E1/2 +E1D
1/2 +D

)(
a
b

) =

⎛
⎜
⎜
⎝

c
⎡
⎢
⎢
⎢
⎣

e

f

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

, (4.15)

Upon the usual re-ordering of the coefficients, this becomes an almost-banded infinite matrix—that is, banded393

apart from a finite number of dense rows—and when truncated to a (2N+1)×(2N+1) finite matrix is solvable394

in O(N) operations using either a Schur complement factorisation about the (1,1) entry, the Woodbury395

matrix identity, or by using the adaptive QR method described in [27]. See Section 6.2 for more details.396

Example 6: Consider the case of (4.10) where the right-hand side is zero and u(−1) = 1:397

u(x) +
RL

−1D
1/2
x u(x) + u′(x) = 0, x ∈ [−1,1], (4.16)

which amounts to taking c = 1 and e = f = 0 in (4.15). The computed solution is depicted in the left panel of398

Figure 4.2. The middle panel verifies the almost banded nature of the operator (4.15), and the right panel399

demonstrates geometric convergence.400

4.3. Non-constant coefficients. Non-constant coefficients can be dealt with in a similar way as de-401

scribed for fractional integral equations in Section 3.2. We omit the details.402

4.4. Higher order. Similarly to the case of integral equations, the approach outlined above can be403

extended to higher-order derivatives. Consider the general mth half-integer order FDE:404

Lu(x) = α[0]
(x)u(x) +

2m

∑
k=1

α[k]
(x) −1D

k/2
x [β[k]u](x), (4.17)

where the nonconstant coefficients α[k](x) and β[k](x) are analytic in some neighbourhood of [−1,1]. If we405

continue to take as our anzatz solution the function406

u(x) = [P(x),U1/2(x)] (
a
b

) (4.18)
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Fig. 4.3. (a) Approximate solution to the Bagley–Torvik equation (4.20). (b) MATLAB spy plot of (4.22) demonstrating
the almost-banded structure of the linear system. (c) 2-norm difference between the coefficients of the approximated solution
when truncating at sizes N and ⌈1.1N⌉ showing geometric convergence.

then we have L ∶ P⊕U1/2 →C(m+1/2) ⊕C
(m+1)

−m+1/2
given by407

(
2m−1

∑
k=0

(EmEm−1/2 . . .E(k+1)/2)Πk/2[α
[k]

]Dk/2Π[β[k]
]) +Πm[α[2m]

]DmΠ[β[2m]
] (4.19)

(where we have defined β[0](x) = 1 for the sake of brevity).408

Example 7: Consider the classical Bagley–Torvik equation [4, 5]409

u′′(x) +
RL

−1D
1/2
x u(x) + u(x) = 0, x ∈ [−1,1] (4.20)

but here treated as a boundary value problem with410

u(−1) = 1, and u(1) = 0. (4.21)

Following the approach outlined above, we arrive at the infinite dimensional linear system411

⎛
⎜
⎝

B−1

B+1

D2 +E2E3/2E1(D
1/2 +E1/2)

⎞
⎟
⎠
(
a

b
) =

⎛
⎜
⎜
⎜
⎜
⎝

0
1

⎡
⎢
⎢
⎢
⎣

e

f

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎠

, (4.22)

which can be solved in the same manner as before. The solution is depicted in Figure 4.3.412

Remark: If we instead consider the FDE: u′′(x) + RL
−1D

3/2
x u(x) + u(x) = 0, then we simply change the final413

block-row of the system (4.22) to D2 +E2(D
3/2 +E3/2E1E1/2). Similarly, we could incorporate a Neumann414

or fractional Neumann boundary condition at, say, the right boundary by changing the B+1 row to the415

appropriate functional row.416

5. FDEs: Caputo definition. FDEs with the Caputo definition of the fractional derivative can be417

readily solved by combining our approach for FIEs described in Section 3 with an integral reformulation of418

the problem. In particular, setting v(x) = u(⌈m⌉)(x) and therefore u(x) = Q⌈m⌉v(x) + p(x), p(x) ∈ P⌈m⌉−1,419

it follows from the definition of the Caputo derivative that an mth-order FDE in u(x) becomes an mth-420

order FIE in v(x) with ⌈m⌉ additional boundary constraints to determine the coefficients of the polynomial421

p(x) = c0 + c1P1(x) + . . . c⌈m⌉−1P
⌈m⌉−1(x). We proceed by example.422

Example 8: Consider the Caputo fractional relaxation equation423

u(x) + C
−1D

1/2
x u(x) = 0, u(−1) = 1, (5.1)

which has the solution424

u(x) = e1+xerfc(
√

1 + x). (5.2)
18
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Fig. 5.1. (a) Solution to the FDE (5.1). (b) MATLAB spy plot of (5.5) showing the almost-banded structure. (c) Solid
line: Infinity norm error of solution approximated on a 100-point equally spaced grid. Dashed line: 2-norm difference between
the coefficients of the approximated solution when truncating at sizes N and ⌈1.1N⌉. As in the case of FIEs and RL-type FDEs
of previous two sections, geometric convergence is observed.

Letting v = u′ we have u = Qv + c0 and (5.1) becomes425

Qv(x) +−1Q
1/2
x v(x) + c0 = 0, (5.3)
Qv(−1) + c0 = 1. (5.4)

In operator form, we may write this as the infinite dimensional system426

⎛
⎜
⎜
⎝

1 B−1Q

[
e1
0

] Q +Q1/2

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

c0

[
â

b̂
]

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

1

0

⎞
⎟
⎟
⎠

, (5.5)

where427

v(x) =
∞

∑
n=0

ânPn(x) +
√

1 + xb̂nUn(x) = [P(x),U1/2(x)] (
â

b̂
) (5.6)

and B−1 = [B−1
P ,B−1

U1/2
]. After truncating and solving this system for the approximate coefficients of v(x),428

we can recover those of u(x) via429

(
a
b

) = Q(
â

b̂
) + (

c0
0

) , (5.7)

so that, as usual, u(x) = [P(x),U1/2(x)][a
⊺, b⊺]⊺. Figure 5.1 shows the results. As in the case of RL430

FDEs we see that the resulting discretised system is almost banded and that the approximation converges431

geometrically in the number of degrees of freedom.432

Example 9: Consider the Bagley–Torvik equation from Example 7, but now using the Caputo defini-433

tion of the half-derivative:434

u′′(x) + C
−1D

1/2
x u(x) + u(x) = 0, x ∈ [−1,1], (5.8)

u(−1) = 1, u(1) = 0. (5.9)

This time letting v = u′′ we have u = Q2v + c0P0(x) + c1P1(x) and435

v(x) +−1Q
3/2
x v(x) + c1Q

1/2
x P ′

1(x) +Q
2v(x) + c0P0(x) + c1P1(x) = 0, (5.10)
Q

2v(−1) + c0 + c1P1(−1) = 1, (5.11)
Q

2v(1) + c0 + c1P1(1) = 0. (5.12)
19
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Fig. 5.2. (a) Approximate solution to the Bagley–Torvik equation (5.8). (b) MATLAB spy plot of (5.13) showing the
almost-banded structure. (c) 2-norm difference between the coefficients of the approximated solution when truncating at sizes
N and ⌈1.1N⌉. Compare with the solution on the RL Bagley–Torvik equation in Figure 4.3.

We may write this as436

⎛
⎜
⎜
⎜
⎝

1 −1 B−1Q2

1 1 B+1Q2

[
e1
0

] Q1/2 [
S−11/2D1/2e1

0
] + [

e1
0

] Q2 +Q3/2 + I

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

c0
c1

[
â

b̂
]

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

1
0

[
0

0
]

⎞
⎟
⎟
⎟
⎟
⎠

, (5.13)

where v(x) = ∑∞n=0 ânPn(x) +
√

1 + xb̂nUn(x) and we have used the fact that P1(±1) = ±1. Once we have437

solved this system for the approximate coefficients of v, we can recover those of u via438

(
a
b

) = Q(
â

b̂
) +

⎛
⎜
⎝

c0
c1
0

⎞
⎟
⎠
, (5.14)

where here 0 is a vector of zeros of length 2N − 2. Figure 5.2 shows the results. Compare with Riemann–439

Liouville version in Example 7.440

6. Computational issues. In this section we outline some practical considerations required to perform441

computations.442

6.1. Representing the right-hand side. An essential part of this approach is representing the right-443

hand side in the direct sum basis P⊕U1/2 and its higher-order cousins involving higher order ultraspherical444

polynomials. A substantial issue is that given a general right-hand side g(x) the decomposition as, for445

example,446

g(x) =
∞

∑
n=0

enPn(x) +
√

1 + x
∞

∑
n=0

fnUn(x), (6.1)

is not unique: P(x) and U1/2(x) form a frame [8]. In the context of this numerical approach, uniqueness is447

not critical as any expansion of this form is suitable provided we can approximate g(x) well by taking finite448

number of terms.449

We will assume we are given e(x) and f(x) that can be evaluated pointwise10 so that450

g(x) = e(x) +
√

1 + xf(x). (6.2)

In this case, we can calculate the number of Chebyshev coefficients of e and/or f to within a required tolerance451

using an adaptive algorithm [3, 13]. The algorithm is based on the discrete cosine transform (DCT) and452

10The case where we may only sample gx) is beyond the scope of this paper, though solving a least squares system with
more points than coefficients can perform well in practice. Another situation that arises in practical settings is where g(x)
is specified by a formula such as exp(x)

√
1 + x + cosx + exp((1 + x)/2) erfc(

√
1 + x). The approach taken by ApproxFun is to

overload each operation to automatically determine an appropriate decomposition.
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hence takes O(d log d) operations to compute d coefficients. Calculating coefficients in a basis C(λ), λ ∈ N+
453

proceeds in O(λd) operations by applying the conversion operators (2.11). Calculating d Legendre coefficients454

from d Chebyshev coefficients can be accomplished in O(d log2 d) operations using recently developed fast455

transforms [16, 38], and from these coefficients in a basis C(λ+1/2), λ ∈ N+ can again be calculated in O(λd)456

operations by the conversion operators (2.11). The coefficients in non-constant coefficient problems can be457

computed in an analogous manner.458

Remark: In typical applications d (the number of coefficients required to represent the right-hand side459

or non-constant terms) is much smaller than N (the discretisation size of the system) and the claim that the460

proposed method is linear in the degrees of freedom is justified. The exception is when the linear problem461

arises from the linearisation of a nonlinear problem. In this case the number of polynomial terms required462

to approximate the non-constant coefficients will be the same as the for the solution (i.e., d ≈ N). The linear463

systems resulting from discretisation are then dense and require O(N3) operations to solve via Gaussian464

elimination. A spectrally accurate algorithm with linear complexity is still an open problem even in the case465

of ODEs.466

6.2. Solving the linear systems. We have described an approach to reduce fractional differential467

and integral equations to banded or almost-banded infinite-dimensional linear systems. A natural approach468

to approximating the solutions to the resulting equations is the finite section method: truncate the infinite-469

dimensional systems to 2N ×2N finite-dimensional linear systems. This is an effective and easy to implement470

approach that achieves O(N) complexity using standard LAPack routines in the banded case, or using the471

Woodbury formula in the almost-banded case.472

Alternatively, one can solve using the adaptive QR method [27], which can be thought of as performing473

linear algebra directly on the infinite-dimensional linear system [28]. In this case, the number of coefficients474

needed to represent the solution within a specified tolerance of the error in residual are determined adaptively475

while preserving the linear complexity. A benefit of this approach, in addition to the adaptivity, is that it is476

not prone to the discretization introducing ill-posed equations. Left and right half-integral and half-derivative477

operators are implemented in the ApproxFun.jl package [26] for Julia which uses the adaptive QR method.478

6.3. Evaluating the result. The outputs of the algorithm we have described in the proceeding sections479

are coefficients of Legendre and weighted-Chebyshev expansion (3.2) of the solution. Typically one is more480

interested in function values of the solution, but precisely what values are required depends entirely on the481

application. If only a few functions values are required, then the simplest approach is to use Clenshaw’s482

algorithm. This is the approach we have taken in the results above. If the solution is required at many483

points, then the fast transforms mentioned in Section 6.1 can again be utilized to do this efficiently.484

7. Rational-order equations. Here we consider the extension to problems involving rational-order485

integrals and derivatives. The general principle is the same as that which we have seen previously for half-486

integer orders, but an immediate consequence of moving to the rational-order case is that ultraspherical487

discretisations are no longer sufficient. A rational-order derivative of an ultraspherical polynomial does488

not typically have a short-term expansion in terms of other ultraspherical polynomials, so instead we must489

consider weighted Jacobi polynomials,490

P(α,β)
γ (x) ∶= (1 + x)γ[Pα,β0 (x), Pα,β1 (x), . . .], (7.1)

and their associated space of coefficients, P(α,β)
γ . In the case of half-integer order FIEs and FDEs we required491

a direct sum space formed of two ultraspherical bases (i.e., Chebyshev and Legendre). Here, for a rational-492

order integral or derivative of order p/q, we require a direct sum space formed of q such weighted Jacobi493

polynomials:494

Definition 7.1. We denote by P[q] the direct sum space formed of weighted Jacobi bases of the form495

P
(1−k/q,k/q)

k/q
, for k = 0, . . . , q − 1, i.e.,496

P[q] ∶=
q−1

⊕
k=0

P
(1−k/q,k/q)

k/q
= P

(1,0)
0 ⊕P

(1−1/q,1/q)

1/q
⊕ . . .⊕P

(2/q,1−2/q)

1−2/q
(x)⊕P

(1/q,1−1/q)

1−1/q
(x), (7.2)
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and by P[q](x) the quasimatrix11497

P[q](x) ∶= [P
(1,0)
0 (x),P

(1−1/q,1/q)

1/q
(x), . . . ,P

(2/q,1−2/q)

1−2/q
(x),P

(1/q,1−1/q)

1−1/q
(x)]. (7.3)

If u[k] ∈ P(1−k/q,k/q)

k/q
for k = 0, . . . , q − 1, then we say u ∈ P[q] and may write498

u(x) = P[q](x)u =
q−1

∑
k=0

(1 + x)k/q
∞

∑
n=0

u[k]n P (1−k/q,k/q)
n (x) where u =

⎛
⎜
⎜
⎜
⎝

u[0]

u[1]

⋮

u[q−1]

⎞
⎟
⎟
⎟
⎠

. (7.4)

We begin with rational-order integrals of order p/q, where p, q ∈ N+. For brevity we focus only on constant499

coefficient problems, but the ideas of Section 3.2 are readily applicable.500

7.1. Rational-order integral equations. The foundation of our approach is the following formula,501

similar to that of Theorem 2.1, but here showing how the fractional integral of weighted Jacobi polynomials502

may be computed in closed form:503

Theorem 7.2. [2, Theorem 6.72(b)] For any 0 ≤ µ < 1, α,β ≥ 0, −1 < x < 1, and n ≥ 0,504

−1Q
µ
x[(1 + x)

βP (α,β)
n (x)] =

Γ(β + n + 1)

Γ(β + µ + n + 1)
(1 + x)β+µP (α−µ,β+µ)

n (x). (7.5)

We define the infinite-dimensional matrix Qµβ ∶ P
(α,β)
β → P

(α−µ,β+µ)
β+µ induced by this relationship, so that505

if u ∈ P
(α,β)
β then −1Q

µ
xP

(α,β)
β (x)u = P

(α−µ,β+µ)
β+µ (x)Qµβu. We also consider two conversion operators, Sα,β ∶506

P
(α,β)
γ → P

(α+1,β)
γ and Rα,β ∶ P

(α,β+1)
γ+1 → P

(α,β)
γ (akin to (2.11) and (2.13)) induced by [12, 18.9.5]507

(2n + α + β + 1)P (α,β)
n (x) = (n + α + β + 1)P (α+1,β)

n (x) − (n + β)P
(α+1,β)
n−1 (x), (7.6)

and [12, 18.9.6]508

(n + 1
2
α + 1

2
β + 1)(1 + x)P (α,β+1)

n (x) = (n + 1)P
(α,β)
n+1 (x) + (n + β + 1)P (α,β)

n (x) , (7.7)

respectively, so that so that if u(x) = u ∈ P
(α,β)
γ then P

(α,β)
γ (x)u = P

(α+1,β)
γ (x)Sα,βu = P

(α,β−1)
γ−1 (x)Rα,β−1u.509

Combining Qµβ , Sα,β , and Rα,β , we construct a (1/q)th-order integral operator on P[q] as follows:510

Theorem 7.3. Consider any q ∈ N+. If u ∈ P[q] so that u(x) = P[q](x)u then the operator511

Q
1/q

[q]
∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S0,0R0,0Q
1/q

1− 1
q

Q
1/q
0

Q
1/q
1
q

⋱

Q
1/q

1− 2
q

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7.8)

satisfies512

−1Q
1/q
x P[q](x)u = P[q](x)Q

1/q

[q]
u. (7.9)

Proof. We have from Theorem 7.2 that for k = 0 . . . q − 2,513

−1Q
1/q
x P

(1−k/q,k/q)

k/q
(x)u[k] = P

(1−(k+1)/q,(k+1)/q)

(k+1)/q
(x)Q

1/q

k/q
u[k]

= P
(1−j/q,j/q)

j/q
(x)Q

1/q

k/q
u[k], j = k + 1,

(7.10)

11Observe that each ‘column’ in (7.3) is itself a quasimatrix!

22



and for the final block, from the definitions of R0,0 and S0,0, that514

−1Q
1/q
x P

(1/q,1−1/q)

1−1/q
(x)u[q−1] = P

(0,1)
1 (x)Q

1/q

1−k/q
u[q−1] = P

(1,0)
0 (x)S0,0R0,0Q

1/q

1−k/q
u[q−1]. (7.11)

515

Corollary 7.4. For any p, q ∈ N+ the operator516

Q
p/q

[q]
∶= [Q

1/q

[q]
]
p
. (7.12)

is block banded and satisfies517

−1Q
p/q

[q]
P[q](x)u = P[q](x)Q

p/q

[q]
u. (7.13)

Proof. Eqn.̃(7.13) follows from p applications of Q1/q

[q]
on P[q]. That Qp/q

[q]
is block banded follows from518

the fact that each of the blocks is formed by a product of banded matrices.519

Remark: It is possible to construct an equivalent representation of the operator Qp/q
[q]

directly (rather520

than by repeated applications/multiplication of Q1/q

[q]
) by using a block matrix similar to that of (7.8), but521

containing entries of the form Q
p/q

k/q
and other suitable R− and S-type conversion matrices. However, whilst522

this may have some performance benefits, for clarity of exposition and convenience implementation we give523

preference to the construction as given in Corollary 7.4.524

To solve an integral equation with terms of the form −1Q
p/q
x u(x), one then makes an ansatz that the525

solution u(x) may therefore be written as in (7.4), i.e., u(x) = P[q](x)u where u ∈ P[q], and the required526

rational-order integral operators can be constructed as in described (7.8) and (7.13) above. For problems527

with variable coefficients, block-multiplication operators can be constructed in a similar manner to those in528

Section 2.3. The resulting infinite dimensional q×q block operator has banded blocks, but by interlacing the529

coefficients, i.e.,530

[u
[0]
0 , u

[1]
0 , u

[2]
0 , . . . , u

[q−1]
0 , u

[0]
1 , u

[1]
1 , u

[2]
1 , . . . u

[q−1]
1 , u

[0]
2 , . . .], (7.14)

the operator becomes banded with bandwidth O(q). If each of the infinite sums in (7.4) are truncated at N531

terms, then the resulting linear system can be solved in O(qN) operations.532

Example 10: We demonstrate our method on the generalised second-kind Abel integral equation:533

u(x) + −1Q
p/q
x u(x) = 1. (7.15)

Unfortunately, except for the special case of p/q = 1/2 considered in Example 1, there is no closed form534

solution for (7.15) in general. However, if 0 < p/q < 1, there is a convergent series solution [30, 2.1–7]535

u(x) = 1 +
∞

∑
`=1

(−1)`
(1 + x)(lp/q)

Γ(lp/q + 1)
, x ∈ [−1,1]. (7.16)

In particular, we take p = 2 and q = 3, so that our basis consists of weighted Jacobi polynomials of the form536

P
(1,0)
n (x), (1 + x)1/3P (2/3,1/3)

n (x), and (1 + x)2/3P
(1/3,2/3)
n (x), and the infinite-dimensional linear system we537

must solve is538

(I +Q
2/3

[3]
)
⎛
⎜
⎝

u[0]

u[1]

u[2]

⎞
⎟
⎠
=
⎛
⎜
⎝

e0
0
0

⎞
⎟
⎠

(7.17)

where e0 = (1,0,0, . . .)⊺ and 0 = (0,0,0, . . .)⊺. Since I is diagonal and Q2/3

[3]
has banded blocks, re-ordering539

the coefficients as described above results in a banded linear system, as shown in the middle panel of540

Figure 7.1, which can be solved as described in Section 6.2. The resulting Jacobi polynomial coefficients of541

the approximate solution evaluated using Clenshaw’s scheme (or a more efficient approach, such as [38]),542

to obtain the solution in the left panel of Figure 7.1. The final panel of Figure 7.1 shows the error in the543

obtained solution as n is increased, and also the magnitude of the coefficients in the solution for the case544

N = 20.545
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Fig. 7.1. (a) Approximate solution to (7.15) when p/q = 2/3. (b) MATLAB spy plot of the re-ordered linear system. As
in the case of half-integer order FIEs, a banded operator is obtained. (c) (solid) Infinity norm error of solution (approximated
on a 100-point equally spaced grid) as compared to the series solution (7.16). (dashed) Magnitude of the coefficients in the
weighted Jacobi polynomial expansion of the solution, u[0], u[1], u[2]. As before, geometric convergence is observed.

7.2. Rational order fractional differential equations.546

7.2.1. Caputo-type derivatives. Similar to the way described in Section 5 for half-integer order547

FDES, Caputo FDEs of rational order can be reformulated as rational-order integral equations, which can548

be solved as described in the previous section. We omit the details.549

7.2.2. Riemann–Liouville-type derivatives. Here we may make use of the following:550

Theorem 7.5. For any 0 ≤ µ < 1, α,β ≥ 0, and n ≥ 0551

RL
−1 D

µ
x[(1 + x)

βP (α,β)
n (x)] =

Γ(β + n + 1)

Γ(β − µ + n + 1)
(1 + x)β−µP (α+µ,β−µ)

n (x). (7.18)

Proof. Follows from the fundamental theorem of calculus applied to (7.5).552

Similarly to before, we denote by Dµ
β the infinite dimensional operator induced by this relationship so that553

if u ∈ P (α,β)
β then554

RL
−1 D

µ
xP

(α,β)
β (x)u = P

(α+µ,β−µ)
β−µ (x)Dµ

βu. (7.19)

The difficulty here, as in the half-integer case of Section 4, is that one cannot construct a banded block555

operator from such operators which maps P[q] to itself. One must use conversion matrices similar to Em556

and Em+1/2 as described in Section 4. An additional problem is that when p ≥ q then (7.19) naively applied to557

P[q] will result in Jacobi polynomials with negative integer parameters, which are not classically defined12.558

These difficulties are not insurmountable, and one can extend the approach we consider in this paper to such559

problems, however, in the interest of brevity, we omit the details for a later publication.560

8. Conclusion. By writing the solution in an appropriately constructed basis (in particular a direct sum561

of Legendre, Pn(x), and weighted Chebyshev polynomials of the first kind,
√

1 + xUn(x)) we have successfully562

solved a broad class of half-integer order fractional integral and differential equations with spectral accuracy563

in linear complexity. Some analysis of the half-integral equation described in Section 3.1 can be found in564

Section B.1. We also described how the approach can be extended to arbitrary rational-order FIEs and FDEs565

by using appropriate weighted Jacobi polynomial bases. For the rational-order case we demonstrated that566

the linear complexity and geometric convergence were maintained, but the implied constant in the former is567

proportional to the denominator, q, in the rational degree of the problem.568

The main objective of this paper was to introduce the algorithm and demonstrate its applicability,569

and several examples of both constant and non-constant coefficient linear problems were presented. There570

are several opportunities for future extensions. Nonlinear problems (through linearisation and Newton’s571

12Li and Xu have recently constructed a definition of negative parameter Jacobi polynomials in terms of orthogonality with
respect to a Sobolev inner product, avoiding many of the pitfalls that arise from analytically continuing the classical Jacobi
polynomials to negative integers [18]. Using these polynomials may allow for reliable generalization of the results to negative
parameters.
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Fig. 8.1. (a) & (b) Approximate solution to the fractional Airy equation (8.1) with ε = 10−4. (c) Timings for building
and solving the linear system for increasing degrees of freedom. Note that these scale linearly with the truncation length N .

method), time-dependent problems (through method of lines), and partial fractional differential equations572

(FDPEs) on rectangular domains (using ideas related to [37]) should be relatively straightforward, and we573

hope to solve problems of this type in a future publication. The questions of stability raised in Section B also574

require further investigation. An open problem is adapting the approach to problems involving the two-sided575

fractional derivative, used to define the fractional Laplacian. The known formula for the fractional (or even576

half-) integral of Jacobi polynomials does not allow for weighting at both the left and right end of the domain577

simultaneously, which would be required to capture the singular behaviour of two-sided derivatives.578

Example 11: We close with one final example which demonstrates both the high accuracy and linear579

complexity of the approach described in this paper when applied to a more challenging problem than those580

shown in the previous few sections. In particular, let’s consider fractional Airy equations of the form581

εi3/2
RL

−1D
3/2
x u(x) − xu(x) = 0, x ∈ [−1,1], u(−1) = 0, u(1) = 1, (8.1)

with ε > 0. Although complex-valued, this non-constant coefficient FDE is of the form discussed in Section 4582

and we may solve accordingly using the algorithm described. The first and second panels of Figure 8.1583

show the real and imaginary parts of the solution for ε = 10−4, and we see behaviour qualitatively similar to584

that of the well-known classical Airy equation. Experimentally we find that an accuracy of 10−10 requires585

around 750 degrees of freedom (i.e., N ≈ 375), and forming and solving the almost-banded linear system586

representing the fractional differential operator and boundary conditions takes under a tenth of a second587

on a 2014 Desktop PC using the MATLAB implementation [15]. The third panel shows the computational588

times to form and solve the systems when the number degrees of freedom is artificially increased (as would589

be required for smaller values of ε). Using the Woodbury formula to solve the almost-banded linear system,590

we see that linear complexity is obtained. Finally, we note that this Riemann–Liouville FDE can be readily591

solved using ApproxFun [26] with just a few commands:

using ApproxFun
S = Legendre() ⊕ JacobiWeight(0.5, 0, Ultraspherical(1))
D1_5 = LeftDerivative(S, 1.5)
x = Fun()
u = [Dirichlet() ; 0.0001*im^1.5*D1_5 - x] \ [[0, 1], 0]

Table 8.1
ApproxFun code for solving the fractional Airy equation (8.1) with ε = 10−4.
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Appendix A. Miscellaneous proofs. The following results are required in the proofs of Corollaries 2.2596

and 2.3 in Sections 2.4 and 2.5, respectively.597

Lemma A.1. For any n > 0 and λ > 0, the ultraspherical polynomials C(λ)
n (x) satisfy the relationship:598

2λ(1 + x)(C(λ+1)
n (x) −C

(λ+1)
n−1 (x)) = ((n + 1)C

(λ)
n+1(x) + (n + 2λ)C(λ)

n (x)). (A.1)
25



Proof. Applying (2.13) to C(λ+1)
n (x) and C(λ+1)

n−1 (x) gives, upon rearrangement,599

(1 + x)(C
(λ+1)
n (x) −C

(λ+1)
n−1 (x)) =

1
2

n+1
n+λ+1

(C
(λ+1)
n+1 (x) − C

(λ+1)
n−1 (x)) + 1

2
n+2λ
n+λ

(C
(λ+1)
n (x) −C

(λ+1)
n−2 (x)).

(A.2)

Applying (2.10) to each of the bracketed terms on the right-hand side and cancelling common terms gives600

the required result.601

Corollary A.2. The Legendre polynomials, Pn(x), and the Chebyshev polynomials, Un(x), satisfy602

n(Pn(x) + Pn−1(x)) = (1 + x)(C
(3/2)
n−1 (x) −C

(3/2)
n−2 (x)) (A.3)

and603

Un(x) + (n + 1)Un−1(x) = 2(1 + x)(C
(2)
n−1(x) −C

(2)
n−2(x)). (A.4)

Proof. Take n↦ n − 1 with λ = 1
2
and λ = 1 in (A.1), respectively.604

Appendix B. Convergence and stability results.605

B.1. Convergence. Note that the decompositions of the right-hand side and solution of (3.1) in the606

forms (3.2) and (3.6) are not unique, so the well-posedness of (3.8) is not immediate. However, the Schur607

complement of the (1,1) block of (3.8) yields608

(QP − σ2I)a = Q
1/2
U f − σe, (B.1)

σb = f −Q
1/2
P a,

where QP = Q
1/2
U Q

1/2
P is the indefinite integral operator acting on the Legendre basis (recall (2.27)). The fact609

that QP is banded along with the decaying properties of its entries leads to a proof of convergence whenever610

the original equation (3.1) is solvable in L2[−1,1].611

Definition B.1. Define the Banach space `2λ with norm612

∥f∥2`2
λ
=

∞

∑
k=0

(k + 1)2λf2k . (B.2)

613

Lemma B.2. Let Ψ ∶= diag (
√

2,
√

2
3
,
√

2
5
,
√

2
7
, . . .) . If σ2 is an `2 eigenvalue of Q̃P ∶= ΨQPΨ−1, then σ614

(as well as −σ) is an L2[−1,1] eigenvalue of −1Q
1/2
x .615

Proof. Note that ∥Pn∥ =
√

2
2n+1

, hence conjugating by Ψ recasts the operator to acting on expansions616

in the orthonormalized Legendre polynomials P̃n(x) ∶= Pn(x)
√

2n+1
2

. The assumption on σ2 being an `2617

eigenvalue enforces that any eigenvector a of Q̃P corresponds to the normalized Legendre coefficients of a618

function a(x) in L2[−1,1], with norm ∥a∥`2 .619

The entries of Q̃P decay like 1/k, see (2.27), which implies that Q̃P ∶ `2λ → `2λ+1. It follows immediately620

that a ∈ `2λ for all λ: a ∈ `2λ implies that a = σ−2Q̃Pa ∈ `
2
λ+1. In particular, a ∈ `1. We can bound621

∥
√

1 + xUk∥
2
= ∫

1

−1
(1 + x)

sin2
(k + 1) cos−1 x

sin2 x
dx = ∫

π

0
(1 + cos θ)

sin2
(k + 1)θ

sin θ
dθ ≤ 2π(k + 1) (B.3)

since Lagrange’s trigonometric identities ensure that622

∣
sin(k + 1)θ

sin θ
∣ ≤ k + 1. (B.4)

Thus the O(1/
√
k) decay in Q1/2

P Ψ−1 cancels the O(
√
k) growth from ∥

√
1 + xUk∥, and we have623

∥ (
√

1 + xU0(x),
√

1 + xU1(x), . . .)Q
1/2
P Ψ−1a∥ ≤ C∥a∥`1 <∞. (B.5)

26



That is, the entries of b = σ−1Q1/2
P Ψ−1a correspond to the second-kind Chebyshev coefficients of a function

b(x) such that
√

1 + xb(x) is in L2[−1,1]. We therefore have an L2[−1,1] eigenvector a(x) +
√

1 + xb(x),
satisfying:

Q
1/2
x (a(x) +

√
1 + xb(x)) = Q1/2

x (P(x)Ψ−1a +U1/2(x)b)

=U1/2(x)Q
1/2
P Ψ−1a +P(x)Q

1/2
U b

= σU1/2(x)b + σP(x)Ψ−1a

= σ(a(x) +
√

1 + xb(x))

624

Lemma B.3. If σI +−1 Q
1/2
x is invertible in L2[−1,1] then σ2I + Q̃P is invertible in `2λ for all λ and in

`1. If e, f ∈ `1, and a = (σ2I + Q̃P)−1(Q
1/2
U f − σe), then u(x) = a(x) +

√
1 + xb(x) satisfies

(σI +−1 Q
1/2
x )u(x) = e(x) +

√
1 + xf(x)

for e(x) = P(x)e, f(x) =U1/2(x)f , a(x) = P(x)a and b(x) = σ−1(f(x) −U1/2(x)Q
1/2
P a).625

Proof. The decay in the entries of Q̃P and bandedness imply that ∥PN Q̃P − Q̃P∥`2
λ
→ 0: Q̃P is compact626

in `2λ (and by a similar argument, in `1). Compactness guarantees that the operator only has discrete627

eigenvalues. However, the previous lemma ensures that if σI+−1Q
1/2
x is invertible in L2[−1,1], then σ2 is not628

an `2 eigenvalue of Q̃P, and hence σ2I + Q̃P is invertible in `2. But any `2 eigenvector is an eigenvector in629

`2λ for all λ ≥ 0 (and in `1) as Q̃P induces additional decay, and trivially, any `2λ eigenvector is automatically630

an `2 eigenvector. Thus we know that σ2 is also not an `2λ (or `1) eigenvalue, and the operator is invertible.631

Therefore, if e, f ∈ `1 then a ∈ `1, hence (by the logic of the previous lemma) a(x)+
√

1 + xb(x) ∈ L2[−1,1].632

We have thus constructed the unique L2[−1,1] solution of (σI +−1 Q
1/2
x )u(x) = e(x) +

√
1 + xf(x)633

We now consider the finite section approximation of (3.8), i.e., we define the projection operator PN ∶634

`2 → RN and consider the 2N × 2N finite section approximation635

(
σIN PNQ

1/2
U P ⊺

N

PNQ
1/2
P P ⊺

N σIN
)(

aN
bN

) =
⎛

⎝

PNe

PNf

⎞

⎠
. (B.6)

This leads to an approximation636

a(x) ≈ aN(x) = P(x)aN
b(x) ≈ bN(x) = σ−1U(x)(PNf −Q

1/2
P aN)

u(x) ≈ uN(x) = aN(x) +
√

1 + xbN(x).

(B.7)

Theorem B.4. If σI +−1 Q
1/2
x is invertible in L2[−1,1] and e, f are in `1, then the finite section637

approximation to (B.1) uN converges to the true solution of (3.1) in L2[−1,1].638

Proof. Note that, because Q1/2
P is upper triangular and Q1/2

U is lower triangular, we have639

PNQ
1/2
U P ⊺

NPNQ
1/2
P P ⊺

N = PNQ
1/2
U Q

1/2
P P ⊺

N = PNQPP
⊺

N . (B.8)

It follows that aN is also a solution to the n × n finite section of (B.1):640

PN(QP − σ2I)P ⊺

NaN = PN(Q
1/2
U f − σe). (B.9)

If the condition of this theorem holds, then by the previous lemma, σ2 is not an eigenvalue of Q̃P . Q̃P is641

a compact operator on `1, therefore the finite-section approximation aN converges to a in an `1 sense (this642

follows from a Neumann series argument, see e.g., [27, Theorem 4.5]). This implies convergence of aN(x) to643

a(x) in L2[−1,1] and convergence of bN(x) to b(x) in L2[−1,1], thence uN(x) converges to u(x) in L2[−1,1].644
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Corollary B.5. If e, f ∈ `2λ then the finite section approximation converges in `2λ. If this condition645

holds for all λ, then uN converges in L2[−1,1] at a spectrally fast rate. Similarly, if e, f decay exponentially,646

then uN converges in L2[−1,1] exponentially fast.647

Proof. The first statement follows from the operator being a compact perturbation of the identity in all648

`2λ spaces, hence the same argument as Theorem B.4 applies. The second statement follows from relating649

convergence in `2λ to fast convergence in `1. The exponentially fast convergence follows similarly by adapting650

the results to the exponentially weighted norm
√
∑
∞

k=0 ∣R
kfk ∣2.651

B.2. Stability. Unfortunately, solvability of the resulting equation is not the only issue: we must also652

consider conditioning. Now, v(x) = ex/σ
2

is the solution to Qu(x) − σ2u(x) = e−1/σ
2

, hence, for σ ≪ 1, v(x)653

is approximately in the kernel of Qu(x)−σ2I. Therefore, we should expect the solution of the above system,654

and hence the system (3.8) to be ill-conditioned when σ ≪ 1. Indeed, the pseudo-spectral plot of the two655

(truncated) linear systems in Figure B.2 confirms this.656
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Fig. B.1. Left: Pseudospectra (computing using EigTool [41]) of the operator Q1/2 truncated to a 200×200 matrix. Right:
The same for (3.8) with σ = 0.

Decreasing σ in this way is equivalent to a change of variables from [−1,1] to a longer ‘time’ domain657

(if we consider the independent variable as time). In particular, let y = 1
σ2x + c and u(x) = v(y), then658

substituting to (2.1) we find659

−1Q
1/2
x u(x) = σ −αQ

1/2
y v(y). (B.10)

Investigating the singular values of the operator suggests that as σ → 0 it is only a single singular value that660

decays to zero and that it might be possible to regularise the problem. However, this is beyond the scope of661

the current paper and we avoid this limiting case for now.662
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