
Multi-Layer Neural Networks for Quality of
Service oriented Server-State Classification in

Cloud Servers
Yonghua Yin, Lan Wang and Erol Gelenbe FIEEE

Intelligent Systems and Networks Group
Electrical & Electronic Engineering Department

Imperial College, London SW7 2AZ, UK

Abstract—Task allocation systems in the Cloud have been
recently proposed so that their performance is optimised in
real-time based on reinforcement learning with spiking Random
Neural Networks (RNN). In this paper, rather than rein-
forcement learning, we suggest the use of multi-layer neural
network architectures to infer the state of servers in a dynamic
networked Cloud environment, and propose to select the most
adequate server based on the task that optimises Quality of
Service. First, a procedure is presented to construct datasets for
state classification by collecting time-varying data from Cloud
servers that have different resource configurations, so that the
identification of server states is carried out with supervised
classification. We test four distinct multi-layer neural network
architectures to this effect: multi-layer dense clusters of RNNs
(MLRNN), the hierarchical extreme learning machine (H-ELM),
the multi-layer perceptron, and convolutional neural networks.
Our experimental results indicate that server-state identification
can be carried out efficiently and with the best accuracy using
the MLRNN and H-ELM.

I. INTRODUCTION

The performance of a set of specific servers in large
computing infrastructures such as the Cloud [?], [?], can
be difficult to predict, since it is affected by the servers’
configuration (number and speed of the processors, memory
size, etc.), as well as by workload characteristics (such as
compute or I/O bound, execution times, IO transfer sizes and
times), and the dynamic and statistical behaviour of the set
of tasks being run, including variations in memory usage,
disk usage, etc., caused by random numbers of users with
varying demands on computing resources. On the other hand,
end users expect that Cloud services will respect Service
Level Agreements (SLA) so that an accurate prediction of
server performance and Quality of Service (QoS) is of great
importance.

Thus, machine learning techniques have been used in
several contexts [?], and the work in [?] has conducted feature
selection from data collected in servers and then applied
support vector machines (SVM) to detecting anomalies.

It was also shown [?] that machine learning can be used to
predict the occurrence of unexpected events based on system-
feature measurements.

On the other hand, previous work [?], [?], [?] exploited
reinforcement learning with the Random Neural Network
(RNN) [?], [?] for dynamic workload allocation in the Cloud

and in networked systems. Initially developed to represent
biological neurons [?], the RNN has also been used for
handling various tasks through its learning capability [?], [?],
[?], [?], [?], [?], [?], [?].

While conventional deep-learning tools such as the multi-
layer perceptron (MLP) and the convolutional neural network
(CNN) have achieved great successes in machine learning in
recent years [?], [?], [?], [?], the extreme learning machine
(ELM) which is a one-hidden-layer neural network has also
been generalized into multi-layer architectures, and hierar-
chical extreme learning machine (H-ELM) has been shown
to be an efficient tool [?], [?].

Recent work [?], [?] has connected the RNN to deep
learning [?], [?], [?], [?] and to the ELM concept [?], [?].
Also, a new RNN training procedure with a multi-layer
architecture of dense clusters of RNN (MLRNN) with soma-
to-soma interactions was proposed [?], [?], [?], providing fast
and very good generalisation performance [?].

In this paper, we investigate the feasibility of these tools
to infer the states of servers in Cloud system. Specifically,
we investigate the MLRNN, H-ELM, MLP and CNN.

First, we present a procedure to construct classification
datasets by collecting time-varying system information in
servers with different configurations in the Cloud. The col-
lected datasets are labelled with the execution time of a
baseline task in a given server to represents the different
server states. These datasets are then used to transform the
problem of detecting the servers’ states in the Cloud into a
supervised classification problem which neural networks are
good at handling.

Then, we apply the above mentioned four types of multi-
layer neural networks to solve these classification problems.
Numerical results seem to indicate that these specific classifi-
cation problems related to server-state detection can be solved
with a high degree of accuracy using all of these neural-
network tools, but that the MLRNN and H-ELM show more
promise because they result in significantly greater efficiency.

II. CLASSIFICATION DATASET CONSTRUCTION

A dataset for supervised learning is generally composed
of two parts, the input-attribute matrix X and the label Y
that can be a vector or a matrix depending on the types of



Fig. 1. CPU utilization percentage and execution time collected in Server 1 using Task 1 under stochastic background loads.

Fig. 2. CPU utilization percentage and execution time collected in Server 2 using Task 2 under stochastic background loads.

the learning problem. In this section, we construct X by
collecting the time-varying system information in a server,
while, for the label information Y , we introduce baseline
tasks and measure the execution time required for the server
to finish the task.

A. Input-attribute data collection

Time-varying information from the server concerning its
CPU, memory, swap memory and disk usage are collected,
with the number of dimension denoted as n that can be
different for different servers. During the collection, we
can periodically change the background load via simulating
dynamic stochastic occupation of computing resources by
stochastic number of users.

B. Label information collection

We conduct baseline tasks on the server with the execution
time recorded, where the baseline task includes operations of
matrix multiplication and pseudoinverse and is used to test
the server state (i.e., how fast the server can handle the task).
Two baseline tasks are used for label information collection,
where Task 1 is simpler that requires less computational time
than Task 2.

The execution time (s) required to finish a baseline task
is denoted by texe. Rather than solving a regression problem
with continuous execution-time labels, we assign discontin-
uous class labels y to the instances according to texe using
a pre-setting interval vector α and therefore transform the
problem into a classification problem, e.g., α = [a, b, c]
means: y = 1 if 0 ≤ texe < a; y = 2 if a ≤ texe < b;
y = 3 if b ≤ texe < c; y = 4 if texe ≥ c.

C. Dataset construction and visualization

After the data collection, a classification dataset is con-
structed in the following manner. Three collections of the
time-varying information right before conducting a baseline
task is used as input attributes for an instance. Then, the
dimension of input attributes is 3n. The labels are the values
of y described in Subsection II-B.

Three servers with different configurations are created in
Google Cloud Platform: Server 1 has 4 CPUs and 3.6 GB
memory; Server 2 has 2 CPUs and 7.5 GB memory; Server
3 has 1 CPU and 0.6 GB memory. For better illustration, we
visualize several attributes in the datasets (i.e., CPU utiliza-
tion percentages) and the corresponding labelling information
(i.e., the execution time). Figure 1 visualizes the dataset
collected in Server 1 using Task 1, while Figures 2 and 3
are for Server 2 using Task 2 and Server 3 using Task 2,
respectively. From these figures, we can see the dynamic
changes of background loads in the servers. In addition, the
attribute, instance and class numbers of these classification
datasets are listed in Table I.

TABLE I
ATTRIBUTE, INSTANCE AND CLASS NUMBERS OF CLASSIFICATION

DATASETS COLLECTED FROM DIFFERENT SERVERS

Dataset Attribute No Instance No. Class No.
Server1-T1 72 10196 5
Server2-T2 63 2358 3
Server3-T2 63 927 3

III. CLASSIFICATION ACCURACIES COMPARISON

In this section, we compare classification performances
of four types of multi-layer neural networks to handle the
classification problems related to the classification datasets
collected in servers illustrates in Subsection II-C. Each
classification dataset is randomly and equally separated into
a training dataset and a testing dataset. Note that we do
not conduct any preprocessing to the input attributes of the
dataset.

Let us first consider the Server1-T1 dataset for Server 1
shown in Table I. In these numerical experiments, we use
the MLRNN [?], [?], [?], and the MLP [?] with the dropout
technique [?], the CNN also with dropout [?], [?] and H-
ELM [?]. The structures of the MLRNN, MLP and H-ELM
are 72-500-1000-5. For the CNN, there are two convolution
layer with 10 convolution filters, a pooling layer, a fully
connected layer and an output layer. For the MLP and CNN,
we use the ReLU [?] and Tanh activation functions. The
corresponding classification results are given in Table II.
The results of the MLRNN and H-ELM are obtained by
conducing 100 trials, where the testing accuracies of all 100
trials are given in Figure 4 for further comparison. As seen
from the table, the MLP and CNN with ReLU activation
barely converge and using Tanh activation is much better than
using ReLU activation in this case, where the reason may be
that the nonlinearity of ReLU is not sufficient for learning
the complex mapping of the Server1-T1 dataset while Tanh
is. The MLRNN achieves the highest testing accuracy for
state detection of Server 1 among the compared deep-learning
tools. Moreover, the training time of the MLRNN and H-
ELM is significantly less than that of the conventional MLP
and CNN. From Figure 4, we can see that, most trials of the
MLRNN achieves higher testing accuracies than the highest
one of the H-ELM among all trials.

Then, we consider the Server2-T2 and Server3-T2 datasets
for Servers 2 and 3 shown in Table I. In these experiments, we
also use the same neural-network tools with slightly different
structures. For the MLRNN and HELM, the structures are 63-
50-10-1000-3. For the MLP and CNN, the same structures as
those for the Server1-T1 dataset are used here. The results are
given in Tables III and IV and Figures 5 and 6. We can see



Fig. 3. CPU utilization percentage and execution time collected in Server 3 using Task 2 under stochastic background loads.

TABLE II
TESTING ACCURACIES (%) AND TRAINING TIME (S) OF DIFFERENT

METHODS FOR STATE DETECTION OF SERVER 1 WITH TASK 1.

Method Testing accuracy Training time
MLP (ReLU) [?] 6.79 938.14
MLP (Tanh) [?] 73.64 527.88
CNN (ReLU) [?] 1.18 220.28
CNN (Tanh) [?] 77.17 586.36
H-ELM [?] 79.80 0.28
MLRNN 80.35 1.59

TABLE III
TESTING ACCURACIES (%) AND TRAINING TIME (S) OF DIFFERENT

METHODS FOR STATE DETECTION OF SERVER 2 WITH TASK 2.

Method Testing accuracy Training time
MLP (ReLU) [?] 33.33 229.17
MLP (Tanh) [?] 81.09 129.93
CNN (ReLU) [?] 33.16 39.65
CNN (Tanh) [?] 81.51 142.78
H-ELM [?] 87.36 0.05
MLRNN 86.60 0.31

that for these two datasets, the H-ELM is the most efficient
among the four tools.

These results verify the feasibility of the multi-layer neural
networks for server-state detection in the Cloud, and the
MLRNN and H-ELM achieve higher accuracies and are more
efficient than the MLP and CNN in handling the related tasks.

IV. CONCLUSION

In this paper, a procedure has been presented to construct
classification datasets related to state detection of servers in
the Cloud. The purpose is to transform the inference problem
into a supervised classification problem.

Four different types of deep neural networks have been
applied to solving these classification problems, including the
MLRNN that is recently proposed based on the ideas of dense
clusters, the H-ELM and the conventional deep-learning tools
of MLP and CNN.

These neural-network tools have then been compared by
using experimental data from three different servers.

The results demonstrate that the classification problems
related to server-state detection can be solved in high accu-
racies using these neural-network tools and the MLRNN and
H-ELM show very high efficiency compared with the other
two deep-learning tools.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the EC 7th
Framework Program PANACEA Project, Grant Agreement
No. 610764, to Imperial College London.

TABLE IV
TESTING ACCURACIES (%) AND TRAINING TIME (S) OF DIFFERENT

METHODS FOR STATE DETECTION OF SERVER 3 WITH TASK 2.

Method Testing accuracy Training time
MLP (ReLU) [?] 33.05 103.65
MLP (Tanh) [?] 69.76 66.98
CNN (ReLU) [?] 32.18 16.79
CNN (Tanh) [?] 85.10 47.81
H-ELM [?] 88.55 0.03
MLRNN 83.80 0.11

Fig. 4. Testing accuracies of all 100 trials of H-ELM and MLRNN for state
detection of Server 1 with Task 1.

Fig. 5. Testing accuracies of all 100 trials of H-ELM and MLRNN for state
detection of Server 2 with Task 2.

Fig. 6. Testing accuracies of all 100 trials of H-ELM and MLRNN for state
detection of Server 3 with Task 2.


