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Abstract—Recent work demonstrated the value of multi
clusters of spiking Random Neural Networks (RNN) with dense
soma-to-soma interactions in deep learning. In this paper we
go back to the original simpler structure and we investigate
the power of single RNN cells for deep learning. First, we
consider three approaches with the single cells, twin cells and
multi-cell clusters. This first part shows that RNNs with only
positive parameter can conduct convolution operations similar
to those of the convolutional neural network. We then develop
a multi-layer architecture of single cell RNNs (MLSRNN),
and show that this architecture achieves comparable or better
classification at lower computation cost than conventional deep-
learning methods.

I. INTRODUCTION

The Random Neural Network (RNN) was developed to
mimic the behaviour of biological neurons in the brain [1],
[2] and its generalisations [3]. Applications of the RNN have
focused on its recurrent structure and learning capabilities [4]
especially in image processing [5], [6], as well as in recent
work [7]–[12].

While early work [13] investigated the links between
conventional optimisation and the RNN, much more recently
[14] the RNN was connected to deep learning [15]–[18] and
the extreme learning machine (ELM) concept [19], [20].

In particular, we proposed a multi-layer architecture com-
posed of multiple clusters of recurrent RNNs with dense
soma-to-soma interactions to implement autoencoders with a
training procedure [14], [21] that is significantly faster than
existing deep-learning tools.

This paper investigates the value of single RNN cells for
deep learning. Specifically we show that, with only positive
parameters, the RNN implements convolution operations
similar to convolutional neural networks [16], [22], [23].

Our work examines single-cell, twin-cell and cluster ap-
proaches that model the positive and negative parts of a con-
volution kernel as the arrival rates of excitatory and inhibitory
spikes to receptive cells. We also investigate the relationship
between the RNN and ReLU activation [24] and suggest an
approximate ReLU-activated convolution operation.

Also, we build a multi-layer architecture composed of
single-cell RNNs (MLSRNN), different from the dense-
cluster based architecture in [14], [21], in which the final
layer is an ELM rather than RNN cells and clusters. The
computational complexity of the MLSRNN is much lower
than the dense model [14], [21], and it can be generalized to
handle multi-channel datasets.

Numerical results regarding multi-channel classification
datasets, with an image and two time-series, show that the
single-cell based RNN is effective and that it is arguably the
most efficient among five different deep-learning approaches.

II. RECURRENT RANDOM NEURAL NETWORK

An arbitrary cell in the Random Neural Networks (RNN)
can receive excitatory or inhibitory spikes from external
sources, in which case they arrive according to independent
Poisson processes. Excitatory or inhibitory spikes can also
arrive from other cells to a given cell, in which case they
arrive when the sending cell fires, which happens only if that
cell’s input state is positive (i.e. the neuron is excited) and
inter-firing intervals from the same neuron v are exponential-
ly distributed random variables with rate rv ≥ 0. Since the
firing times depend on the internal state of the sending cell,
the arrival process of cells from other cells is not in general
Poisson. From the preceding assumptions it was proved in
[1], [2], [25] that for an arbitrary N cell RNN, which may
or may not be recurrent (i.e. containing feedback loops), the
probability in steady-state that any cell h, located anywhere
in the network, is excited is given by the expression:

qh = min(
λ+h +

∑N
v=1 qvrvp

+
vh

rh + λ−h +
∑N
v=1 qvrvp

−
vh

, 1), (1)

for h = 1, ... , N , where p+vh, p
−
vh are the probabilities that

cell v may send excitatory or inhibitory spikes to cell h,
and λ+h , λ

−
h are the external arrival rates of excitatory and

inhibitory spikes to cell h. For notation ease, we also use
w+
vh = rvp

+
vh and w−vh = rvp

−
vh as excitatory and inhibitory

connecting weights. Note that min(a, b) is a element-wise
operation whose output is the smaller one between a and
b. In [25], it was shown that the system of N non-linear
equations (1) have a solution which is unique.

III. CONVOLUTION OPERATION WITH RNN: TWO
APPROACHES

In this and the next sections, we show that, though with
only positive parameters, the RNN is capable of conducting
convolution operators that produce similar effects to those in
conventional convolutional neural networks [16], [23],
by three approaches, which is denoted as O = conv(I,W )
with O, I and W being the output, input and convolution
kernel.



I

O

Excitatory and 

Inhibitory Spikes

Fig. 1. An RNN convolution operation with single-cell approach.

A. Single-Cell Approach

We construct a type of RNN cells and present the proce-
dure for conducting convolution operations using these cells.

An RNN cell receives excitatory and inhibitory spikes from
external cells denoted by x+ and x−, and it also receives
excitatory spikes from outside world denoted by λ+. The
firing rate of the cell is r. Then, based on (1), the probability
in the steady state that this cell is activated is

q = min(
λ+ + x+

r + x−
, 1), (2)

For notation ease, we define φ(x+, x−) =
min((λ+ x+)/(r + x−), 1) and use φ(·) as a term-by-
term function for vectors and matrices.

First, we normalize the convolution kernel to satisfy the
RNN probability constraint via W ← W/(sum(|W |)/r).
Second, we spilt it as W+ = max(W, 0) ≥ 0 and
W− = max(−W, 0) ≥ 0 to avoid negativity (another
RNN probability constraint). Operation sum(a) produces the
summations of all elements in a and max(a, b) produces the
larger element between a and b. Then, the RNN convolution
operation can be conducted using RNN cells (2)

O = φ(conv(I,W+), conv(I,W−)) (3)

or
O = φ(conv(I,W−), conv(I,W+)), (4)

where λ+ and r are usually set as the same value for
simplicity. The convolution operation with single cells is
shown schematically in Figure 1.

B. Twin-Cell Approach

This approach is also based on RNN cells (2). From (2),
we have φ(0, I)|λ+=1,r=1 = 1− φ(I, I)|λ+=0,r=1.

To satisfy the RNN probability constraints, we first normal-
ize the convolution kernel via W ← W/sum(|W |) and split
it into W+ = max(W, 0) ≥ 0 and W− = max(−W, 0) ≥ 0.
As seen from Figure 2, input I passes through a twin-
cell array and produces I1 = φ(0, I)|λ+=1,r=1 and I2 =
φ(I, I)|λ+=0,r=1. The receptive cell are quasi-linear cell-
s [26] (called the LRNN-E cell) that receive excitatory
spikes from outside world with rate λ+ = 1 − sum(W−).
We can also normalize the input to receptive cells via
W+ ← W+/max(O′) and W− ← W−/max(O′) to reduce
the number of cells that are saturated [26], where O′ =

I
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Fig. 2. An RNN convolution operation with twin-cell approach.

conv(I1,W
+) + conv(I2,W

−) + 1 − sum(W−). Then, the
RNN convolution operation can be conducted as

O = min(conv(I1,W
+)+conv(I2,W

−)+1−sum(W−), 1).
(5)

IV. CONVOLUTION OPERATION WITH RNN: A CLUSTER
APPROACH

This approach is based on a type of multi-cell cluster
that approximates the rectified linear unit (ReLU) that has
been widely-used in the deep-learning area [16], [24]. The
cluster is constituted by the LRNN-E cell [26] and another
different quasi-linear RNN cell that is deduced from a first-
order approximation of the RNN (1).

A. First-Order Approximation of the RNN

The formula (1) lends itself to various approximations such
as the first order approximation:

qh ≈
λ+h +

∑N
v=1 qvrvp

+
vh

rh
[1−

λ−h +
∑N
v=1 qvrvp

−
vh

rh
], (6)

provided that rh >> λ−h +
∑N
v=1 qvrvp

−
vh. The proof of (6)

is given in the Appendix.
Let w+

vh = rvp
+
vh = 0, w−vh = rvp

−
vh, λ+h = 1, λ−h = 0,

rh = 1 and rv = 1. Note that these settings do not offend the
condition rh >> λ−h +

∑N
v=1 qvrvp

−
vh, which becomes 1 >>∑N

v=1 w
−
vhqv . Since rv = 1, then

∑N
h=1 w

−
vh =

∑N
h=1 p

−
vh ≤

1. The first-order approximation (6) can be rewritten as:

qh =
1

1 +
∑N
v=1 w

−
vhqv

≈ min(1−
N∑
v=1

w−vhqv, 1),(7)

subjecting to
∑N
h=1 w

−
vh ≤ 1 and 1 >>

∑N
v=1 w

−
vhqv .

Since qv ≤ 1, we have
∑N
v=1 w

−
vhqv ≤

∑N
v=1 w

−
vh, and

we then could loose the condition 1 >>
∑N
v=1 w

−
vhqv to

1 >>
∑N
v=1 w

−
vh, which is independent of the cell states.

This simplified RNN cell receiving inhibitory spikes is quasi
linear, and thus we could call it a LRNN-I cell.

B. Relationship between RNN and ReLU

Based on the LRNN-E cell [26] and LRNN-I cell (7),
we investigate the relationship between the RNN and the
ReLU activation function [16], [24] and show that a cluster
of the LRNN-I and LRNN-E cells produces approximately
the ReLU activation.



1) ReLU Activation: We consider a single unit with ReLU
activation. Suppose the input to the unit is a nonnegative 1×V
vector X = [x1,v] in the range [0, 1], and the connecting
weights is a V × 1 vector W = [wv,1] whose elements can
be both positive and negative. Then, the output of this unit
is described by ReLU(XW ) = max(0, XW ). Let W+ =
[w+
v,1] = max(0,W ) and W− = [w−v,1] = −min(0,W ). It

is clearly that W+ ≥ 0, W− ≥ 0, W = W+ −W− and
ReLU(XW ) = max(0, XW+ −XW−).

2) A Cluster of the LRNN-I and LRNN-E Cells: First, we
import X into a LRNN-E cell with connecting weights W−:

q1 = min(XW−, 1).

Let us suppose XW− ≤ 1. Then, q1 = XW−.
In the meantime, we import X into a LRNN-I cell with

W+:
q2 =

1

1 +XW+
≈ min(1−XW+, 1).

Based on (7), the condition of this approximation is that∑V
v=1 w

+
v,1 << 1. Suppose this condition holds, we also

have q2 ≈ 1−XW+.
Second, we connect q1 and q2 to a LRNN-E cell with

connecting weight being 1:

q3 = min(q2 + q1, 1) = min(
1

1 +XW+
+XW−, 1)

≈ min(1−XW+ +XW−, 1).

In q3, the information where 1−XW++XW− = 1−XW >
1 (i.e., XW < 0) is removed by the LRNN-E cell. We have

q3 = ϕ(XW+, XW−) ≈ 1− ReLU(XW ), (8)

where, for notation ease, we define the activation of this
cluster as ϕ(x+, x−) = min(1/(1 + x+) + x−, 1) and use
ϕ(·) as a term-by-term function for vectors and matrices. The
conditions for the approximation in (8) are XW− ≤ 1 (that
can be loosed as

∑V
v=1 w

−
v,1 = sum(W−) ≤ 1 if X ≤ 1)

and
∑V
v=1 w

+
v,1 = sum(W+) << 1.

C. Convolution with RNN Cluster

First, we normalized the convolution kernel via W ←
W/sum(|W |)/10. Second, let us split the kernel as W+ =
max(W, 0) ≥ 0 and W− = max(−W, 0) ≥ 0. It is evident
that sum(W+) ≤ 0.1 << 1 and sum(W−) ≤ 0.1 << 1.
(Here we assume that 0.1 << 1.) Then, the convolution
operation with the RNN cluster (8) can be conducted as

O = ϕ(conv(I,W+), conv(I,W−)), (9)

or
O = ϕ(conv(I,W−), conv(I,W+)). (10)

The convolution operation with clusters is shown schemati-
cally in Figure 3.

V. NUMERICAL VERIFICATION OF RNN CONVOLUTION

This section conducts numerical experiments on images
(implemented in Theano [27]) to verify the three approaches
in Sections III and IV for adapting the convolution structure
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Fig. 3. An RNN convolution operation with cluster approach.

Fig. 4. The original image.

into the RNN. The convolution kernels used in the experi-
ments are obtained from the first convolution layer of the pre-
trained GoogLeNet [28] provided by [29], while the image
is obtained from [30], shown in Figure 4. The gray-inverted
output of a standard convolution operation with the ReLU
activation is given in Figure 5.

Single-cell approach: The output of the convolution is
given in Figure 6, from which we can see that it is similar
to that in Figure 5.

Twin-cell approach: The output of the convolution is
given in Figure 7. This approach also produces similar edge-
detection effect to the standard convolution.

Cluster approach: The output of the convolution is given
in Figure 8, which is more similar to those in Figure 5 than
that in Figure 6.

These results demonstrate well the feasibility of the RNN
for convolution operations via these approaches.

VI. SINGLE-CELL BASED MULTI-LAYER RNN

Recent work in [14], [21] presented a mathematical model
of multi RNN clusters with dense soma-to-soma interactions,
based on which a multi-layer architecture of the RNN is built
up that was shown to be more efficient than convolutional
deep-learning tools on both image and time-series datasets.
Striving into efficiency, this section presents a multi-layer
architecture of single RNN cells described in (2) (called
MLSRNN). Based on [14], [21], the MLSRNN is then
adapted to handle multi-channel datasets (MCSRNN).

A. The Mathematical Model of MLSRNN

The MLSRNN, shown schematically in Figure 9, has L+2
layers, where the lth layer has Nl cells. The first layer is the
external-source layer, where sn1

denotes the n1th source. The
successive L layers are hidden layers composed of single



Fig. 5. Gray-inverted output of a standard convolution operation with ReLU
activation.

Fig. 6. Output of an RNN convolution operation with the single-cell
approach.

RNN cells (2) that receive both excitatory and inhibitory
spike trains (x+ and x−) from cells in the previous layer, with
a resultant activation function q(x+, x−) = φ(x+, x−). The
last layer is made up of cells that receives excitatory spike
trains from the previous layer and outside world, resulting
in a linear cell activation q(x) = x. For these layers, let qnl

(nl ≤ Nl) denotes the excitation probability for the l-layer
(2 ≤ l ≤ L) cell nl. In addition, let two Nl ×Nl+1 matrices
W+
l = [w+

nlnl+1
] and W−l = [w−nlnl+1

] denote excitatory and
inhibitory connecting weight matrices between the lth and
(l+ 1)th layers for l = 1, · · · , L+ 1. Let a 1×NL+2 vector
Λ+ = [λ+nL+2

] denote the external arrival rates of excitatory
spikes for the (L+ 2)th layer (i.e., the output layer).

Suppose there is a dataset represented by a nonnegative

Fig. 7. Output of an RNN convolution operation with the twin-cell
approach.

Fig. 8. Output of an RNN convolution operation with the cluster approach.

D × N1 matrix X = [xdn1 ], where D is the number of
instances, each instance has N1 attributes and xdn1 is the
n1th attribute of the dth instance. Let sdn1

and qdnl
denote

the values of sn1
and qnl

for the dth instance. Let a D×N1

matrix Q1 = [sdn1
] and a D ×Nl matrix Ql = [qdnl

] (2 ≤
l ≤ L+ 2). Then, the MLSRNN can be described as:

Q1 = X,

Ql = φ(Ql−1W
+
l−1, Ql−1W

−
l−1),

for l = 2, · · · , L+ 1,

QL+2 = min(QL+1W
+
L+1 + Λ, 1),

where Λ is a D×NL+2 matrix denoting the external arrival
rates of excitatory spikes and each row of Λ is Λ+, subject
to the RNN probability constraints W+

l ≥ 0, W−l ≥ 0,
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Fig. 9. Schematic representation of the MLSRNN.

∑Nl+1

nl+1=1(w+
nlnl+1

+ w−nlnl+1
) ≤ rl. Note that the number

of hidden cell (NL+1) in the (L + 1)th layer needs to be
a multiple of 2, which will be explained in the training-
procedure part (Subsection VI-B).

B. Training Procedures of MLSRNN

Here we move to the training procedures of the MLSRNN.
1) Determine W+

l , W−l with l = 1, · · · , L − 1: First,
W+
l ← 0. Then, we solve an reconstruction problem for

W−l using the modified FISTA [31] with the modification
of setting negative elements in the solution to zero in each
iteration [21]:

min
W+

l

||X − adj(φ(0, XW̄−))W−l ||
2 + ||W−l ||`1 ,

s.t. W−l ≥ 0,
(11)

where X is either the data or its layer encodings, W̄− ≥
0 is randomly generated that satisfies the RNN constraints
and operation adj(·) first maps its input into [0 1] linearly,
then uses the “zcore” MATLAB operation and finally adds a
positive constant to remove negativity.

After solving (11), we normalize W−l to satisfy the RNN
constraints. Then, we adjust the external arrival rate λ+ and
firing rate r of hidden cells in the lth hidden layer via λ+l+1 ←
max(XW−l )/5 and rl+1 ← λ+l+1.

2) Determine W+
L , W−L and W+

L+1: We first construct a
one-hidden-layer RNN-based ELM [19], [20] (with NL+1/2
hidden units and NL+2 output units) and then map its weights
to W+

L , W−L and W+
L+1. For this ELM whose activation

function is ρ(x) = a/(a + x) with parameter a > 0 to be
determined, the input and output weights are W̄1 and W̄2.

Suppose X is the Lth-layer output of the MLSRNN and
Y is the desired output (or say, labels corresponding to the
training dataset). We randomly generate W̄1 in range [0 1]
and then normalize 2 � W̄1 to satisfy the RNN constraint,
where � denotes element-wise multiplication. Then, a ←
max(XW̄1)/5. Then, we determine W̄2 using the Moore-
Penrose pseudo-inverse [14], [19], [20], [32]–[34] (denoted
by “pinv”) as:

W̄2 ← pinv(ρ(XW̄1))Y. (12)

Then, W̄2 ← W̄2/sum(|W̄2|) to guarantee the summation
of all elements in |W̄2| is no larger than 1. Let us define
%(x) = x/(a + x). It is evident that ρ(x) = 1 − %(x). Let
W̄+

2 = max(W̄2, 0) ≥ 0 and W̄−2 = max(−W̄2, 0) ≥ 0.
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Fig. 10. Schematic representation of the MCSRNN.

The ith (i = 1, · · · , NL+2) output of this ELM for the dth
instance is

odi =

NL+1/2∑
j=1

(ρ(XW̄1))dj(W̄2)ji

=

NL+1/2∑
j=1

(ρ(XW̄1))dj(W̄
+
2 )ji −

NL+1/2∑
j=1

(ρ(XW̄1))dj(W̄
−
2 )ji

=

NL+1/2∑
j=1

(ρ(XW̄1))dj(W̄
+
2 )ji +

NL+1/2∑
j=1

(%(XW̄1))dj(W̄
−
2 )ji

−
NL+1/2∑
j=1

(W̄−2 )ji

In addition, we have ρ(XW̄1) = φ(0, XW̄1)|λ+=a,r=a

and %(XW̄1) = φ(XW̄1, XW̄1)|λ+=0,r=a. Let m =
max(sum(W̄−2 , 1)), where operation sum(X, 1) produces the
summation vector of each column in matrix X . Let λ+i ←
m−

∑NL+1/2
j=1 (W̄−2 )ji Then, it is evident that

odi +m =

NL+1/2∑
j=1

(φ(0, XW̄1)|λ+=a,r=a)dj(W̄
+
2 )ji

+

NL+1/2∑
j=1

(φ(XW̄1, XW̄1)|λ+=0,r=a)dj(W̄
−
2 )ji

+ λ+i .

(13)

Now let us map weights in the RNN-based ELM illustrated
in (13) to W+

L , W−L and W+
L+1 in the MLSRNN. From the

1st to (NL+1/2)th hidden cells in the (L+1)th layer, we use
λ = a and r = a; while for the (NL+1/2 + 1)th to NL+1th
hidden cells, we use λ = 0 and r = a. Then, W+

L ← [0; W̄1],
W−L ← [W̄1; W̄1] and W+

L+1 ← [W̄+
2 ; W̄−2 ].

The procedure to train the MLSRNN is also briefly sum-



Algorithm 1 Training procedure for the MLSRNN
Get data matrix X and label matrix Y
r1 ← 1
for l = 1, · · · , L− 1 do

W+
l ← 0

solve Problem (11) for W−l with input X
e← max(sum(W−l , 2))
if e > rl

W−l ←W−l /(e/rl)
λ+l+1 ← max(XW−l )/5
rl+1 ← λ+l+1

X ← φ(XW+
l , XW

−
l )|λ+

l+1,rl+1

determine W̄1, W̄2 of an ELM with input X , label Y
map W̄1, W̄2 to W+

L ,W
−
L ,W

+
L+1,Λ

+

Algorithm 2 Training procedure for the MCSRNN
Get data matrices Xc (c = 1, · · · , C) and label matrix Y
for l = 1, · · · , L− 1 do

for c = 1, · · · , C do
W+
l ← 0

solve Problem (11) for W−c,l with input Xc

e← max(sum(W−c,l, 2))
if e > rc,l

W−c,l ←W−c,l/(e/rl)

λ+c,l+1 ← max(XcW
−
c,l)/5

rc,l+1 ← λ+c,l+1

Xc ← φ(XW+
c,l, XW

−
c,l)|λ+

c,l+1,rc,l+1

X ← [X1 · · · XC ]
determine W̄1, W̄2 of an ELM with input X , label Y
map W̄1, W̄2 to W+

L ,W
−
L ,W

+
L+1,Λ

+

marized in Algorithm 1, where operation sum(X, 2) produces
the summation vector of each row in matrix X .

C. MCSRNN: Mathematical Model and Training Procedure

Based on the work of dense cluster [21], the MLSRNN is
adapted to handle multi-channel datasets (MCSRNN), shown
in Figure 10, where the connecting weights between layers
for only Channel-c (c = 1, · · · , C) are W+

c,l,W
−
c,l ≥ 0 (l =

1, · · · , L− 1), those between the (L− 1)th and Lth hidden
layers are W+

L ,W
−
L ≥ 0 and output weights are W+

L+1 ≥ 0.
Besides, a vector Λ+ denotes the external arrival rates of
excitatory spikes for the cells in the (L+2)th layer (output).

We can generalize the training procedure of the MLSRNN
for the MCSRNN, which is given in Algorithm 2.

VII. NUMERICAL RESULTS

In this section, we conduct numerical tests for the ML-
SRNN and MCSRNN that use three multi-channel classifica-
tion datasets: an image dataset and two real-world time-series
datasets.

NORB Dataset: The small NORB dataset [36] is intended
for 3D object recognition from shape. The sizes of training
and testing sets are both 24300. Each instance contains two
96 × 96 images, which are downsampled into 32 × 32. All

images are whitened using the code provided by [20]. The
number of classes and channels are 5 and 2.

Daily and Sports Activities (DSA) Dataset: The DSA
dataset [37]–[39] comprises time-series data of 19 daily and
sports activities performed by 8 subjects recorded by 45
motion sensors (25 Hz sampling frequency). The attribute
number is 5,625 (45x5x25) since 5-second segments are used.
Two thirds of 9120 instances are for training while the rest
for testing. The dataset has 19 classes and 45 channels.

Twin Gas Sensor Arrays (TGSA) Dataset: The TGSA
dataset includes 640 recordings of 5 twin 8-sensor detection
units exposing to 4 different gases [40]. The duration of
each recording is 600 seconds (100Hz sampling frequency)
producing 480,000 (8x600x100) features. We use 30-second
segments, and then each instance has 24,000 (8x3000) at-
tributes. The objective is to classify gas types using recording
features. The number of classes and channels are 4 and 8.
Two tasks are conducted, in both of which two thirds of
instances are used for training while the rest for testing:
• Task 1: (3,029 instances): build a specific classifier for

Unit 1 to fulfill the objective.
• Task 2: (12,089 instances): build one classifier for all

units to fulfill the objective.
In the numerical experiments, we compare the proposed

MCSRNN in this paper with the dense-cluster based multi-
layer RNNs presented in [14], [21], the multi-layer perception
(MLP) [35], the convolutional neural network (CNN) [35],
[41] and hierarchical ELM (H-ELM) [20]. All numerical
experiments are conducted in the same personal computer.

The results based on the above three datasets are giving Ta-
bles I and II, including the testing accuracy, training time and
testing time. The proposed MCSRNN achieves the highest
testing accuracies in all four classification tasks. Compared
with the conventional CNN and MLP, the MCSRNN is
more than one hundred times faster in training and achieves
better accuracies. For the DAS dataset, the accuracies of the
MCSRNN in this paper and MCRNN-MLA in the previous
work [21] are the same, however, the MCSRNN is more
than two times faster in training and more than five times
faster in testing, where they are in the same structures of
45x125-45x200-45x100-2000-19. The MCSRNN costs the
least testing time among all tools in three of the four tasks.
For the DAS dataset, where the MCSRNN achieved the
highest accuracy, its testing time is also less than 1 second,
the same as that the lowest one (the CNN). These numerical
results well demonstrate that the MCSRNN is effective and
the most efficient among the compared deep-learning tools,
as well as the value of single RNN cells for deep learning.

VIII. CONCLUSION

This paper has demonstrated the power of single RNN
cells in multi-layer architectures for deep learning. First, this
paper has presented three approaches, including a single-
RNN-cell approach, a twin-RNN-cell approach and a RNN-
cluster approach, that allow the RNN to conduct approximate
ReLU-activated convolution operations, producing similar
edge-detection effects. Then, a multi-layer architecture based



TABLE I
TESTING ACCURACIES (%), TRAINING AND TESTING TIME (S) OF DIFFERENT METHODS FOR NORB AND DAS DATASETS.

Method Testing accuracy Training time Testing time
NORB DAS NORB DAS NORB DAS

MCSRNN 92.44 99.21 13.38 12.38 1.74 0.96
MCRNN-MLA [21] 92.10 99.21 28.80 26.81 11.07 4.97
MCRNN-MLA1 [21] 91.21 98.98 1750.85 89.16 229.13 12.86
MCRNN-MLA2 [21] 91.72 94.67 1169.61 177.03 83.49 10.88
Improved RNN-MLA [21] 90.96 92.17 20.63 13.11 7.63 1.09
Original RNN-MLA [14] 88.51 92.83 18.80 6.02 7.43 0.74
MLP+dropout [35] 67.12 91.94 2563.27 3291.47 1.88 0.50
CNN [35] 90.80 98.52 1223.93 1289.76 17.39 0.47
CNN+dropout [35] 90.76 99.05 1282.99 1338.35 16.83 0.53
H-ELM [20] 87.56 96.58 125.86 9.60 23.86 0.82
H-ELM * [20] 91.28 – – – – –
*This data is obtained directly from [20].

TABLE II
TESTING ACCURACIES (%), TRAINING AND TESTING TIME (S) OF DIFFERENT METHODS FOR TGSA DATASET.

Method Testing accuracy Training time Testing time
Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

MCSRNN 99.31 96.08 16.52 40.06 0.27 0.43
MCRNN-MLA [21] 98.32 95.98 29.56 41.34 1.60 1.84
MCRNN-MLA1 [21] 98.61 92.48 55.08 68.03 3.00 3.39
MCRNN-MLA2 [21] 94.75 79.66 51.96 42.89 1.72 2.38
Improved RNN-MLA [21] 97.03 90.23 16.78 49.38 0.76 1.78
Original RNN-MLA [14] 85.64 83.60 29.94 48.23 0.89 1.67
MLP+dropout [35] 25.05 24.83 3327.52 4504.54 0.84 1.37
CNN [35] 61.78 25.03 1842.38 16296.69 0.83 5.43
CNN+dropout [35] 69.11 76.33 2484.18 16294.74 0.83 5.58
H-ELM [20] 61.98 60.03 14.21 36.57 0.71 2.72

on single RNN cells has been proposed for deep learning,
i.e., the MLSRNN and its generalized multi-channel version
(the MCSRNN). Numerical results based on multi-channel
classification datasets, an image and two time-series datasets,
have well demonstrated that the single-cell based RNN is
effective and that it is arguably the most efficient among the
compared deep-learning tools.
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APPENDIX: PROOF OF FIRST-ORDER APPROXIMATION (6)

According to (1),

qh =
λ+h +

∑N
v=1 qvrvp

+
vh

rh + λ−h +
∑N
v=1 qvrvp

−
vh

.

Let φ = λ−h +
∑N
v=1 qvrvp

−
vh. Then,

qh =
λ+h +

∑N
v=1 qvrvp

+
vh

rh + φ
.

Then,
∂qh
∂φ

= −
λ+h +

∑N
v=1 qvrvp

+
vh

(rh + φ)2
.

Suppose a is a real number satisfying rh >> a. Then, we
can approximate qh in a neighbourhood φ = r as:

qh ≈ qh |φ=a +
∂qh
∂φ
|φ=a (φ− a)

=
λ+h +

∑N
v=1 qvrvp

+
vh

rh + a
−
λ+h +

∑N
v=1 qvrvp

+
vh

(rh + φ)2
(φ− a)

≈
λ+h +

∑N
v=1 qvrvp

+
vh

rh
−
λ+h +

∑N
v=1 qvrvp

+
vh

r2h
(φ− a)

≈
λ+h +

∑N
v=1 qvrvp

+
vh

rh
(1− φ

rh
+

a

rh
)

≈
λ+h +

∑N
v=1 qvrvp

+
vh

rh
(1− φ

rh
).



Then,

qh ≈
λ+h +

∑N
v=1 qvrvp

+
vh

rh
(1−

λ−h +
∑N
v=1 qvrvp

−
vh

rh
).
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