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Abstract—Translational research is quickly becoming a sci-
ence driven by big data. Improving patient care, developing
personalized therapies and new drugs depend increasingly on
an organization’s ability to rapidly and intelligently leverage
complex molecular and clinical data from a variety of large-
scale partner and public sources. As analysing these large-
scale datasets becomes computationally increasingly expensive,
traditional analytical engines are struggling to provide a timely
answer to the questions that biomedical scientists are asking.
Designing such a framework is developing for a moving target as
the very nature of biomedical research based on big data requires
an environment capable of adapting quickly and efficiently
in response to evolving questions. The resulting framework
consequently must be scalable in face of large amounts of
data, flexible, efficient and resilient to failure. In this paper we
design the eTRIKS Analytical Environment (eAE), a scalable and
modular framework for the efficient management and analysis
of large scale medical data, in particular the massive amounts of
data produced by high-throughput technologies. We particularly
discuss how we design the eAE as a modular and efficient
framework enabling us to add new components or replace old
ones easily. We further elaborate on its use for a set of challenging
big data use cases in medicine and drug discovery.
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I. INTRODUCTION - MEDICAL BIG DATA

The analysis of massive, multiscale, multimodal datasets
has become a major challenge to address to convert data
into knowledge and achieve innovation. This is particularly
true in biomedical research, where scientists are increasingly
facing a data deluge resulting from the rapid advances of high-
throughput technologies. The complexity, diversity, context
richness and size of biomedical data, such as Next Generation
Sequencing (NGS) data, ’Omics, and imaging data, demon-
strate the limitations of current systems.

The data collected by the UK Biobank [1] and the UBIO-
PRED project [2] are an illustration of the variety of data
researchers are leveraging. The Biobank dataset currently
contains imaging data (NIfTI and DICOM), genetic data
(genotypes, SNP + sample QC information and imputed
genotypes, etc.), clinical data (questionnaires, quantitative and
qualitative phenotypic traits, etc.), assays (saliva, blood and
urine), and many others. As for UBIOPRED, the project has
collected clincal data and a large spectrum of ’Omics data
including transcriptomics, genomics, lipidomics, drugomics,
proteomics, breathomics and microbiome data. These datasets
are characterized by extensive diversity in size and complexity,
ranging from the measurement of the abundance of a few
dozen analytes in drugomics, urine samples, to over 50,000

probes in transcriptomics analysis, to millions of reads of short
sequences in microbiome data, consisting of terabytes of data.

Each data type represents its own set of challenges and
requirements, either because it is a high dimensional format
(transcriptomics or microbiome data), highly interrelated —
e.g., imaging data (brain MRI) where each point in the matrix
has a correlation with its neighbours — or extremely large
in size (the genetic data in UK Biobank is currently 5 TB
large and growing). Historically, these datasets have been
studied relatively independently on separate platforms and in
a specific context of a project or a disease. The interdependent
nature of those different types of data, however, requires
their combined analysis in order to discover more complex
biological mechanisms. Analysis of the combined datasets
thus requires new sets of tools. Thus, collection, management,
storage and analysis of biomedical big data consequently
make the development of new methodologies necessary. The
challenges of developing systems for analysing multi-modal
medical data consequently are:

1) the massive amounts of data needed for analysis.

2) the associated need of a scalable infrastructure.

3) the quickly evolving needs of analytics, i.e., the need
for new and different algorithms and tools for data
processing, integration and analytics.

In the context of the European Translational Information
& Knowledge Management Services (e€TRIKS), we developed
the eTRIKS Analytical Environment (eAE) in answer to the
needs of analysing and exploring massive amounts of medical
data. The eAE is a modular framework which enables the
analysis of medical data at scale. Its modular architecture
allows for the quick addition or replacement of analytics tools
and modules with little overhead, thereby ensuring support
of users as the data analytics needs and tools evolve. As we
discuss further, the eAE is flexible enough to support a variety
of use cases across the biomedical domain.

II. MEDICAL ANALYTICS BACKGROUND

In order to understand or discover biological processes,
and thanks to advances in other fields such as physics and
chemistry, medical research has increased the size and variety
of data collected as we described in the previous section. That
abundance of data has driven medical research to leverage an
extreme wealth of analytics to explore and analyse the data.

A. Causality

Epidemiological research usually seeks to identify if any
causal relationship exists between the risk factor and the
disease. A traditional example that illustrates the association



between risk factor and disease is the impact of smoking
on lung cancer [3]. However, the story of that person who
smoked throughout their lives and never suffered from cancer
shows that epidemiological problems are not straightforward.
There is an association at work but exposure is a necessary
but not sufficient condition for disease. Another problem of
establishing causality in epidemiology is the necessity to
reject other possible explanations for the observed association.
Confounding factors may arise as well, causing a spurious
association between dependent variables and independent vari-
ables. For example, many people who smoke heavily have low
intakes of vitamins [4]. The Bradford Hill criteria [5] have
been used to strengthen the evidence of causality in these types
of studies [6] statistical methods as well as sophisticated and
specialized methods have been developed in R, Stata or SAS
to conduct research and uncover new causing factors.

B. Testing

A statistical hypothesis is a hypothesis that is testable on
the basis of observing a process that is modelled via a set
of random variables [7]. Statistical analysis aims at providing
statistical insights about the datasets for further research, with-
out any prior statistical knowledge, by performing multiple
statistical tests on a given data set. Statistical hypothesis testing
is a key technique of both frequentist and Bayesian inference,
although the two types of inference have notable differences.
Statistical hypothesis tests define a procedure that controls
(fixes) the probability of incorrectly deciding that a default
position (null hypothesis) is incorrect. The procedure is based
on how likely it would be for a set of observations to occur
if the null hypothesis were true.

Testing has been of crucial importance early on in biomed-
ical research. Poor and complex signals, curse of dimension-
ality, computational needs of Bayesian to name only a few
of the problems that researchers have faced. Many techniques
have been successfully applied to overcome these problems.
Principal component analysis (PCA) is a frequently used signal
separation technique to discover potential subgroups of the
dataset [8]. It uses an orthogonal transformation to convert
observations of correlated variables into linearly uncorrelated
ones (i.e. principal components), the number of principal
components is less than or equal to the smaller of the number
of original variables or the number of observations thus
effectively reducing the dimensionality.

C. Clustering

Cluster analysis or clustering is the task of grouping a set
of objects in such a way that objects in the same group (called
a cluster) are more similar (in some sense or another) to each
other than to those in other groups.

Clustering analysis can fall into two types taking different
kinds of input: feature-based clustering and similarity-based
clustering. Feature-based clustering takes a feature matrix as
the input and is applicable to raw noisy datasets. Commonly,
finite mixture models, such as Mixture of Gaussians Model
and infinite mixture models, such as Dirichlet process mixture
model are used [9]. The basic idea of using mixture model is
first fitting the mixture model with data and then computing
the posterior probability of the data point whether it belongs to

a cluster. The similarity-based clustering method, on the other
hand, requires a distance matrix as the input and facilitates the
domain-specific similarity.

In Bioinformatics, the clustering methods can be used to
group similar samples and also similar features. For example,
a gene expression dataset collected from multiple patients
can be represented by a matrix, in which rows can represent
genes and columns represent patients. The resulting matrix can
well exceed terabytes in the context of a proteomics analysis.
Clustering by columns (patients) can find groups of patients
resulting in a possible patient stratification or discovering a
correlation between genes and conditions [10][11].

D. Time series

A time series is a series of data points indexed (or listed
or graphed) ordered by time. Most commonly, a time series
is a sequence taken at successive equally spaced points in
time and is thus a sequence of discrete-time data. Biological
processes are often dynamic, thus researchers must monitor
their activity at multiple time points. The most abundant source
of information regarding such dynamic activity is time-series
gene expression data[12]. Not surprisingly, generating time-
series expression data has become one of the most fundamental
methods for querying biological processes that range from
various responses during development to cyclic biological
systems. Recent improvements in methods for measuring gene
expression such as high-throughput RNA sequencing (RNA-
seq) and the increased focus on clinical applications of
genomics make expression studies more feasible and relevant.

E. Prediction

In statistics, prediction is a part of statistical inference. One
particular approach to such inference is known as predictive
inference, but the prediction can be undertaken within any of
the several approaches to statistical inference [13]. Indeed, one
possible description of statistics is that it provides a means
of transferring knowledge about a sample of a population
to the whole population, and to other related populations,
which is not necessarily the same as prediction over time.
When information is transferred across time, often to specific
points in time, the process is known as forecasting. Forecasting
usually requires time series methods, while prediction is often
performed on cross-sectional data.

Statistical techniques used for prediction include regression
analysis and its various sub-categories such as linear regres-
sion, generalized linear models (logistic regression, Poisson
regression, Probit regression, etc.). In case of forecasting, au-
toregressive moving average models and vector autoregression
models can be utilized.

Deep learning algorithms, in particular convolutional net-
works, have rapidly become a methodology of choice for
analyzing medical images and predicting patient trajecto-
ries [14][15].

III. THE ETRIKS ANALYTICAL ENVIRONMENT

Our goal in developing the eAE is to enable the scalable
exploration of multi-modal medical data using a flexible and
modular architecture. In the following we discuss its architec-
ture and the components we used.



A. Architecture - Design Principles

We design the eTRIKS Analytical Environment to provide
users with an analytics environment which (a) has a user-
friendly frontend, (b) has endpoints which can be easily
integrated into tools, (c) is modular and finally (d) is also
scalable in support of analysing large amounts of data.

We accomplish this by designing a multi-layer architecture
of loosely coupled components to provide as much flexibility
as possible. The modularity of this framework enables adding
new components (public or private) or replacing outdated ones
with better performing or proprietary ones. The eAE can also
scale to user needs: small computations are executed locally
while bigger ones are executed on scale-out infrastructure
(e.g., cloud) and on specialized hardware (e.g., GPUs).

At the top, interacting with users, is the endpoints layer
which hosts the containers which either provide the UI to
users or the interface to integrate it into third party tools. The
endpoints layer also contains the infrastructure to run smaller
computations locally. Interacting with the endpoints layer is
the caching layer which caches analytics results to avoid
recomputation of frequent analysis, thereby making analysis
more efficient. If a computation still needs to be computed,
the scheduling layer will take care of it and schedule in on
the computation layer. The computation layer provides the
capability for the distributed computation of analyses and thus
enables the scalability of the environment. The computation
layer executes the computation on scale-out infrastructure like
a cluster or the cloud and on specialised hardware.

B. Components and Tools

In the following we discuss the components used as well
as the implementation of each layer of the architecture and
discuss how the layers of the architecture interact.

1) General Environment: The operating system used on
both the physical machines, virtual machines and containers
within this architecture is Ubuntu 16.04 LTS. This version
provides both, the stability required throughout the life of the
machines and the necessary support for a large spectrum of
libraries and drivers. Other Linux distributions, e.g., Centos or
Debian, can also be used.

2) Endpoints Layer: For data exploration, the eAE relies
on two sets of tools: tranSMART and a modified version
of Jupyter. Both support a large spectrum of researchers
ranging from biologists with limited computing and techno-
logical knowledge to more advanced users who worry which
parameter optimisation will yield the best results. On the
one hand, tranSMART will focus more on the hypothesis
generation through a set of available workflows with their
associated custom made visualizations. Jupyter, on the other
hand, offers more possibilities as users can write their own
scripts and visualizations to harness the power of libraries such
as Matplotlib [16] or Lightning [17].

3) Caching Layer: eAE relies on two different tools for
the caching layer: the NoSQL database MongoDB 3.2.5 in
the eAE backend and SQL database Postgresql 9.3 [18] in
tranSMART. MongoDB — which does not require a schema
— is an excellent solution for adapting to any kind of data
and acting as a cache. Another advantage is MongoDB’s
native support for high throughput read operations, scaling

and resilience through sharding. PostgreSQL suffers from
a number of limitations with respect to high availability
and scaling. While solutions exist to tackle these limitations
(pgpool [19] or pgclusterIl), they are difficult to configure,
set up and are not natively supported by PostgreSQL. Using
MongoDB in place of PostgreSQL, on the other hand, results
in a considerable speedup for the analyses as operations on
the cache are substantially faster.

4) Scheduling Layer: For scheduling and monitoring of
the clusters and jobs in the eAE, InterfaceEAE builds on
OpenLava. OpenLava is an open-source, Platform Load Shar-
ing Facility (LSF) compatible workload scheduler. Inter-
faceEAE identifies the requesting client to ensure the legit-
imacy of the request to perform access control. It also defines
and implements the scheduling policies.

OpenLava is a workload management software designed to
support the scheduling of high performance computing (HPC).
We chose OpenLava as scheduling engine because it is an
open source software application which makes it easier to
optimise the implementation. OpenLava is capable of policy-
based scheduling which can ensure fair allocation of resources.
It supports Docker containers, cloud and VM resources alike.

The eAE uses a REST API that enables to: 1) remotely
submit Spark, Python, GPU as well as R jobs; 2) monitor the
health of the clusters; 3) monitor the jobs running. To achieve
this, we developed a web application allowing us to create
HTTP endpoints to the OpenLava CLI clients. This gives the
capability to distribute jobs and subsequently activate them on
the OpenLava cluster by communicating with the master node.

5) Computation Layer: The cloud platform chosen to sup-
port the on demand resources — to support scaling out
when more compute-heavy or multiple computations need
to be executed — is Openstack Liberty [20]. Openstack
offers two particularly useful components to address this on
demand requirement: the Heat! and Glance projects®. They
enable creation of predefined templates or disk images to
launch multiple composite cloud applications. Setting up the
development environment therefore is seamless for the user
and enforcing a version control of the software and libraries
ensure the integrity of the environment. The eAE uses a
private instance of OpenStack, however, there is no technical
limitation to deploy it in public clouds such as Amazon AWS
or Microsoft Azure. To further improve the architecture, we
have replaced Heat and Glance by Docker containers which
contain separate services to tailor a custom environment for the
user and vastly improves performances for Jupyter. One user
might, for example, require a specific set of languages (e.g.,
Python and R), while another user may need Spark support or
GPU resources. Besides, we can support different versions of
the software at the same time but hosted in different containers.

The eAE currently uses Cloudera CDH 5.9.0 for the deploy-
ment of the Hadoop [21] stack (including Spark [22]). We also
considered MapR and Horton Works deployment tools. Each
presents its own set of advantages and drawbacks. The reason
for choosing Cloudera’s is because it is arguably the best in
terms of management interface and the availability of sup-

Uhttps://wiki.openstack.org/wiki/Heat
Zhttps://wiki.openstack.org/wiki/Glance



ported software in their stack. If the user’s requirements were
different, however, e.g., if the user prefers to use Amazon’s
AWS or own in-house components, some components would
have to be adapted to adjust the interfaces of the eAE.

Endpoints

Caching Scheduling

InterfaceEAE Layer
‘-..

//~

Computation Layer

Fig. 1: A schematic representation of the architecture of
the eTRIKS Analytical Environment.

6) Interaction between Layers: Figure 1 illustrates the
architecture of the eTRIKS Analytical Environment. Each user
owns a container hosting a modified version of the Jupyter
server, a set of kernels (R, Python [23], Spark, etc.) and
a set of standard libraries (Numpy, Scipy, scikit-learn [24],
Bioconductor [25], etc.) supporting them. This server is one
of the point of access of the eTRIKS Analytical Environment.
Users can upload their data sets to the server and write their
own scripts for analysis. Jupyter, through the selected kernel,
sends the requested computations to the local engines which in
turn sends it back to Jupyter. If the user requires more compute
power, they can remotely submit their script to be scheduled
on a larger centralized cluster to OpenLava. When the required
resources become available, OpenLava triggers the computa-
tion. The Spark clusters are Hadoop stack production clusters
installed on bare metals servers for performance reasons. Each
one runs CDH 5.9.0 with the full Hadoop stack. The GPU
clusters rely on TensorFlow 0.12 for Deep Learning and
Nvidia CUDA 83 otherwise. The R servers rely on Microsoft
R [26] Open [26], formerly known as Revolution R Open
(RRO), which is Microsoft’s enhanced distribution of R. The
results are sent back to Jupyter or MongoDB (depending on the
user’s choice). The user can explore the results using advanced
visualizations. The second entry point to the eAE is through a
tranSMART plugin specifically developed for this integration.
The plugin manages and interfaces with the MongoDB cache.
The plugin can submit a job to OpenLava using data stored

3https://developer.nvidia.com/cuda-zone

either in MongoDB or in tranSMART. The results are sent
to the MongoDB cache. The user can explore the results in
tranSMART and compare with previously run computations
kept in their personal caches.

The table I summarizes the differences in the main fea-
tures provided by comparable existing systems (proprietary
or not): eAE, IBM Platform Conductor [27], Arvados [28]
and Berkeley Open Infrastructure for Network Computing
(BOINC) [29].

eTRIKS
Analytical
Environment
IBM Platform
Conductor
Arvados
Berkeley Open
Infrastructure
for Network
Computing

Platforms

Visualizations capabilities
Jupyter
Zeppelin

Analysis support
Spark
Python
R
C/C++
Fortran
Go/Ruby/Perl o

Computation types
CPU
GPU

Storage capabilities
SQL
NoSQL
Content-Addressable Storage

Monitoring & scheduling capabilities
Jobs Status
Clusters Status
Complex batch processing
Workflow capabilities

000
0000
o] )
000

Interoperability
REST APIL
Distributed Clients

o] )
( X )
[
[

Platform support
Installation procedures
Configuration documentation
Support available
Open Source project

o Fully supported
O Partially supported

TABLE I: Feature comparisons between eAE, IBM Platform
Conductor, Arvados and BOINC.

C. Data Exploration

Providing scalable data exploration in the eTRIKS Analyt-
ical Environment is accomplished using Jupyter notebooks.

The Jupyter notebook [30] is an open-source, interactive,
language-agnostic HTML notebook application run as a web-
based application. Jupyter offers more than 60 kernels, each



kernel providing a variable level of support for a specific
language (e.g., Python or R) or software (e.g., Spark).

Jupyter currently does not fully support multiple users on
the same instance. Jupyter Hub has partially solved the con-
currency for some kernels (e.g. Python) but if multiple users
run the same Spark kernel concurrently, their computation
will have an undefined result or may crash. To overcome this
limitation, we create pre-packaged images containing all the
necessary kernels, libraries and dependencies required. Other
than allowing for concurrent use of Jupyter, this strategy also
allows users to work in a controlled environment. The use of
standard images enables the transfer of the installation process
from the user to a specialist. For simple installations like
Python or R our strategy may introduce unnecessary overhead,
but when facing complex installations and configurations such
as Spark, it provides a substantial benefit. Regardless of the
operating system (Windows, Mac OS or Linux) or the version
the user’s machine is running, the compatibility is ensured
as the notebooks are running in a web browser. In addition,
it also provides both consistency and flexibility. The results
can be reproduced under the same conditions by sharing the
notebook associated with the data. It enables flexibility as it
relies on a virtual machine and can thus be scaled to any size
required by the user. Furthermore, each Jupyter instance can
support multiple kernels at the same time. Additional kernels
or libraries can thus be added to customize the environment
to address different needs.

Jupyter integrates code, markdown mark-up language and
visualisation of the results in the same environment. This
transforms scripts into story telling documents by incorpo-
rating comments, formulas and text to support the narration
of the story behind the code. Thus, any slide presentations
can be replaced by notebooks which can run simultaneously.
Jupyter enables demonstrating the code by presenting the core
of the code along with its outputs and also taking advantage of
visualization libraries such as Lightning, Plotly or Matplotlib.

We developed a custom version of Jupyter as well to enable
all users to remotely submit their workflows to the centralised
clusters. Indeed, the cloud environment is designed to speed
up the development process and provide data exploration and
visualization functionalities, not intensive computing. This is
why a scheduling and orchestration mechanism is required.

IV. CASE STUDIES WITH THE ETRIKS ANALYTICAL
ENVIRONMENT

To illustrate how the eAE can be used for managing and
analysing large scale translational research data, we imple-
ment several bioinformatics analysis pipelines, each primarily
focusing on a different aspect of the eAE, scalability, user-
friendliness, reproducibility and flexibility. The pipelines im-
plemented include (a) iterative model generation and cross-
validation pipeline for biomarker identification and (b) auto-
matic sleep stage scoring based on raw single-channel EEG.

Each one is implemented similarly: the code is prototyped
locally on a container for testing purposes while the compu-
tation on the full dataset is executed on clusters.

A. Iterative Model Generation and Cross-validation Pipeline

The iterative model generation and cross-validation pipeline
implementation impressively illustrates the seamless scalabil-
ity of the eAE. Using the eAE, the pipeline scales in the same
rate as the underlying hardware, a crucial aspect given the
massive amounts of data involved.

Cross-validation is a model validation technique for assess-
ing how a statistical or computational model will generalise
to an independent data set and it is thus used to estimate how
good a predictive model is in practice.

In clinical trials, collecting further samples may be haz-
ardous, costly or even impossible to do. In these cases, cross-
validation is a powerful approach to prevent from testing hy-
potheses suggested by the data (called “Type III errors” [31]).
To cross-validate, a model is first trained using a subset of
the data set (i.e., training set) and the remainder of the data
set is then used to test the model (i.e., testing set). To reduce
variability, the data set can be partitioned into different training
and testing sets and multiple rounds of cross-validation can be
performed using them. Different statistical and computational
approaches can be used for model generation including linear
or non linear Support Vector Machine (SVM), Logistic Re-
gression, Linear Regression, Alternating Least Squares, Lasso,
etc. Non-parallelizable algorithms can be used as well.

These methods have been widely used in translational
research, e.g., to identify the gene signature for stage II colon
cancer [32]. Our implementation on top of the eAE enables
us to scale up cross-validation by distributing the computation
to multiple clusters which work independently to generate
models. Each cluster randomly samples the training set and
generates models using the selected algorithm. Each model is
then tested against the test set to evaluate its fitness according
to the specified set of indicators. By increasing the number of
iterations, the model converges to the optimal solution.

Biomedical data always entails a large number of features,
i.e., individual measurable properties that describe the ob-
served phenomenon. To find the best fitting model, with the
least amount of bias, we generate a family of models using
the same dataset with different selections of features. Once the
model is built, a certain amount of features can be removed,
and a new model is generated using the remaining features. An
unbiased approach is to randomly remove a selected number
of features and then check whether it improves the fitness of
the model. If the metrics remain the same then we move to
the next iteration, if not then we select another set of features
to remove. Removing a constant, small number of features
at every recursion will avoid errors but is computationally
expensive. A relative step, e.g., a percentage of the total
number of features will speed up the process.

A more efficient approach is to introduce a very small
amount of bias by lowering the chances of a feature, which we
know beforehand is a factor, to be removed. By introducing
this, the generation of models will naturally tend toward the
optimal solution much faster. Another option, as suggested by
Vladimir Vapnik’s group [33] in the context of gene selection,
is to use the weight magnitude as ranking criterion: compute
the ranking criteria: ¢; = (w;)? for all 7 and find the feature
with smallest ranking criterion f = argmin(c).



The scoring used to assess the fitness of models can be
done through a wide variety of measures, such as Area
Under the Receiver Operating Characteristic (ROC) Curve -
AUC, Sensitivity or True Positive Rate (TPR), Specificity or
True Negative Rate (TNR), Negative predictive value (NPV),
Positive predictive value (PPV) and Fl-score. There is no
metric that can give a correct answer for every situation.
These metrics can only eliminate obvious “failures” due to
performance, complexity, similarity to other models developed
in similar ways or general stability. In the case of multiple
thresholds with largely identical performance, the Hazard
Ratio (HR) from Cox proportional hazards regression [34] can
be used as a tiebreaker to favour higher HR values.

Once that first selection is done by each individual cluster,
we gather them into a NoSQL cache where other services
take over. The role of this section is to further narrow down
the candidate models by comparing the models against one
another. We then enrich the results to give as much information
as possible to the scientist. It is thus important to implement
different types of metrics to enable data scientists to select
the right models for further extensive assessment or biological
validation. Pathway enrichment is a method to identify classes
of genes or proteins that are over-represented in a large set of
genes or proteins, and may have an association with disease
phenotype. Applying a pathway enrichment using the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) [35] and Gene
Ontology (GO) [36] with multiple test corrections (Bonferroni,
Holm-Bonferroni and/or FDR) on a sub selection of high
scoring models can provide another insight to the results and
an additional quality check for every model generated.

This type of unbiased approach to model generation is
not well supported on standard platforms. The reason is
that model generation is a long running computation and,
the longer a computation runs, the more likely is a crash
and loss of intermediate results. Indeed, the computations
could be running for days at a time thus putting a lot of
pressure on the hardware and software with no possibility to
create milestones, a mechanism which would help to prevent
full recomputation in the event of a crash. To address the
issue of long-running computations crashing, we leverage the
versioning mechanisms of Spark. The integration of Spark
with the additional eAE layers on top enables users to run these
large scale compute intensive experiments extremely easily
and seamlessly through the end point of their choice. The
stability, robustness and fault-tolerance of the platform enables
these computations in a high performance fashion thanks to
the fact that, even if a physical machine or a worker fails, the
tasks get automatically rescheduled, thereby avoiding having
to rerun the entire computation. The integration of Docker,
Jupyter, Toree and eAE parts have enabled users to implement
and prototype their algorithms efficiently without having to
deal with how to set it up or link all the pieces together. Finally
once the algorithm is ready, no modification is needed and the
submission to the centralized cluster is straightforward.

B. DeepSleepNet

The implementation of the DeepSleepNet pipeline is an
interesting illustration of the user-friendliness for highly par-
allelizable computation using the eAE. The eAE’s user-

friendliness allows users to quickly configure and launch the
complex training of multiple models concurrently.

Sleep plays an important role in human health and being
able to monitor how well people sleep has a significant impact
on medical research and medical practice [37]. Sleep experts
typically determine the quality of sleep using electrical activity
recorded from sensors attached to different parts of the body.
The entirety of the signals recorded with these sensors is
called a polysomnogram (PSG). The PSG is segmented into
30s epochs, which are classified into different sleep stages
according to standard manuals such as the Rechtschaffen and
Kales [38] and the American Academy of Sleep Medicine.
We develop a deep learning model (Python and GPU based),
named DeepSleepNet, for automatic sleep stage scoring based
on raw single-channel EEG. Our approach departs from the
state of the art as we do not use any hand-crafted features
such as time-frequency domain features [39].

One further constraint was that the two researchers were
located on two different sites and were not computer scientists.
To develop the new workflow, an eAE Jupyter container was
deployed on a specific box with two GPU resources available
to enable the two researchers to prototype their workflow
simultaneously, share their code with one another seamlessly
and access their data. To assess the quality of our model we
use a 31-fold cross-validation. In each fold, we use recordings
from 60 subjects to train the model and use the two remaining
subjects to test the model. This process is repeated 31 times so
that all recordings are tested. Finally we combine the predicted
sleep stages from all folds and compute the performance
metrics.

We run different iterations of the 31-fold cross-validation
tasks on the eAE. Each cross-validation task takes roughly
6-7h to execute and the total execution time consequently is
170.5 hours. The only alternative is to either schedule the tasks
on each machine of the cluster individually or sequentially on
one machine. The former is tedious and far from practical
as one needs to give the user access to all machines and
the latter simply takes too long. The eAE provides a user-
friendly web UI, which allows to train multiple models with
different configurations concurrently across a cluster of high-
performance machines. The scheduling of these tasks through
the eAE takes approximately 2-3 minutes compared to an
hour if done manually. Another benefit is the possibility to
queue jobs to be run once machines become available. For
this experiment, the GPU resources are only available at
night as they are used for other projects during the day. The
option to schedule two iterations at a time for 31-fold cross-
validation tasks to be run during the night, without any external
intervention, is a key feature for their timely delivery. In the
case of this workflow, the experiments span an entire year.

V. EXPERIMENTAL EVALUATION
A. Compute Scalability

We use benchmarks to evaluate the compute performance
and scalability of the platform in terms of data size, number of
executors and number of users. We execute the benchmarks
on a cluster of six machines: one driver and five executors.
All nodes are identical and each one has 200GB of disk



(Seagate, RAID 1 @ 7200RPM), 100GB of RAM (Micron, @
1600 MHz), 24 cores (Intel Xeon, E5-2620 v2 @ 2.10GHz)
and a network speed of 10GB/s. The cluster itself relies on
Cloudera CDH 5.9.0 which comes with Spark 1.6.0. The Spark
configurations used uses the yarn-client as master, 16 executor-
cores, 20GB driver-memory and 20GB executor-memory.

We set the number of executors to five for the first compute
scalability experiment but set it to different values in the
second experiment. The analysis executed in the executor scal-
ability experiment is a linear SVM which is readily available
in Spark’s machine learning library.

The experiments are designed based on an iterative model
generation and a cross-validation pipeline. Our implementation
on top of the eAE enables us to scale up cross-validation
by distributing the computation to multiple clusters which
work independently to generate models. Each cluster randomly
samples the training set and starts generating models using
the selected algorithm. Each model is then tested against
the test set to evaluate its fitness according to the specified
set of indicators. We use mRNA data from a GEO dataset
(GSE31773) [40] as a base to synthesize the required data.
The synthetic data is generated by first averaging the original
values and then adding randomly generated noise for every
new vector until the desired data size is reached. The label for
each vector is randomly chosen. Six randomised datasets are
generated independently, with sizes of 1IMB, 10MB, 100MB,
1GB, 10GB, 100GB. The 1MB dataset is used to determine
Spark’s initialisation time. The initialisation time is subtracted
from all other measurements in order to keep only the effective
computation time of the model. The data is placed in HDFS
for Spark to use. The results demonstrate the scalability of the
platform as the processing time grows linear with the size of
the data from 25.8s for 1GB to 290s for 100GB.

In the second experiment, we reuse the 100GB dataset
generated previously but increase the number of executors
to measure the impact on the execution time. The results in
Figure 2 show a considerable decrease in the computation
time when we increase the number of executors, thereby
again demonstrating the scalability of the platform. The dip
in execution time between 3 and 5 executors, however, shows
that adding too many nodes can be detrimental to efficiency.

B. Scheduling Scalability

To evaluate the orchestration scalability, we submit the same
job concurrently an increasing number of times.

The experiments are based on a python demo script avail-
able as part of the eAE demo scripts* (including the fully
dockerized version of the eAE). This example illustrates a
basic linear regression coupled with a cross validation. The
example only uses the first feature of the ‘diabetes* dataset to
illustrate a two-dimensional plot of this regression technique.

N independent clients (N=1,5,10,50,100 in this experiment)
concurrently submit to OpenLava a batch of 1k jobs which
are first scheduled, then computed and finally the results
are returned to the user. Thus, the total number of jobs are
submitted are 1k, 5k, 10k, 50k and 100k in this experiment.

“https://github.com/aoehmichen/eae-files/raw/master/jupyter-examples.zip
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Fig. 2: The compute scalability of the eAE for increasing
cluster size. Each point is the average running time of 30
experiments along with the standard deviation.
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Fig. 3: The scheduling scalability of the eAE with respect to
the submission size. Each point represents the average running
time of 10 experiments along with the standard deviation.

Figure 3 shows that submission and scheduling scales linear
with a very large number of requests and is efficient even in
a scenario of more than 10k which is rather unlikely in a
production environment using the eAE.

C. User Scalability

The user scalability is still ongoing as the numbers of client
applications is steadily growing. So far, there are ten Jupyters
users actively using the eTRIKS Analytical Environment and
one tranSMART demo server. There are no performance issues
so far and the compute layer is efficiently shared across all
users. Many of the users experience major speed-ups in their
research as they are able to easily schedule N number of jobs to
be computed during the night or running their cross validations
concurrently across different nodes.



VI. DISCUSSION AND CONCLUSION

In this paper we discuss designing and using the eAE, an
architecture for the efficient and scalable analysis of massive
amounts of medical data. As we report, the resulting system
provides an efficient and effective solution for data exploration
and high performance bioinformatics. The use cases show that
eAE’s architecture proves flexible, scalable and robust for large
scale data analysis in the context of translational research.

Although the proposed architecture is designed on open
source software, it is possible to replace components with
proprietary ones to improve performance. One of these com-
ponents is OpenLava, which can be replaced by any other pro-
prietary solution such as LSF. Another potential improvement
is the integration of IBM’s Spectrum Conductor with Spark
to remove the need for local spark instances and to improve
Jupyter’s user experience and overall performance.

However, the current architecture presents two challenges.
The eAE leverages different technologies and programming
languages requiring a steep entry cost for new programmer
to implement new clients or extensions. The second one is
the way data is transferred across the different components, in
the current form the interface manages the transfers through
bash commands and scp connections. This limits the ability of
the platform to accept data from remote clients and propagate
the same data to different workers. Thus a dedicated com-
ponent with HTTP based request for data transfer is being
implemented to improve the flow of data between the client
applications and the different components of the eAE. In order
to reduce the technological stack as well some components
will be written in NodeJS. One improvement we investigate
is the integration of Apache Kafka in the architecture coupled
with Spark to enable streaming processing.
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