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Abstract

We introduce an analytical study of the links between macroscopic strength and the grain-to-grain

interactions in two-dimensional frictional granular packings. This study consists of two main parts

that are developed and connected progressively. First, we obtain explicit expressions that enable

us to relate micro-scale parameters such as contact forces and fabric to macroscopic stress and

strength. Second, physical connections and interpretations between the aforementioned micro-

parameters, micro-mechanisms, fabric anisotropy and macroscopic strength are derived. Further-

more, throughout this theoretical study, some fundamental physics related to a packing’s strength

as well as contact buckling is extracted, providing a better understanding of the micro-mechanics

that furnishes and builds up the macroscopic strength of this kind of materials.
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1 Introduction

Inhomogeneity and anisotropy are two fundamental properties of granular materials (Rothenburg

and Bathurst, 1989) that make them very difficult to model and understand. Hence, granular mod-

eling has been approached from three different perspectives, i.e., experiments, continuum mechan-

ics, and grain-to-grain mechanics, making sometimes difficult to have a well connected framework

that includes the three approaches under a unique and comprehensive general theory. Fortunately,

nowadays, the increasing computational power, and new experimental techniques, such as, in situ

3D X-ray Computed Tomography (3DXRCT) (Hall et al., 2010), have given rise to new poten-

tial bridges that can contribute to connect micro (grain) and macro (continuum) scales by means

of experimental, theoretical, and numerical tools that can be applied to the two physical scales

(Andrade et al., 2011, 2012).

On the other hand, one of the main challenges in connecting experimental, discrete, and contin-

uum modeling is, precisely, translating micro-scale physical features into their continuum counter-

parts. Hence, kinetics and topology at the grain scale have, somehow, to be related to continuum

typical quantities such as strain and stress, or, in the constitutive sense, to mechanical parame-

ters like internal friction and dilatancy. Thus, a fundamental question rises: what is the micro-

mechanical origin of macro-mechanical behavior?, or, in other words: what is the fundamental

information that is transmitted from scale to scale?

This work attempts to answer a specify question regarding the micro-macro connections in

granular materials, i.e., how the granular fabric, contacts distribution and boundary conditions affect

the failure mode of the particulate assembly? Thus, for instance, it is well known that a granular

packing fails at different values of the deviatoric stress q for different combinations of the principal

stresses. This dependence on the stress path is a recognized phenomenon which has been described

before with anisotropic empirical formulas on the octahedral plane such as the Lade Duncan (Lade

and Duncan, 1975) and Matsuoka Nakai (Matsuoka and Nakai, 1982) failure criteria. However, these

criteria fail to represent the failure surface of granular packings with highly deformed shapes and

contact networks (Galindo-Torres et al., 2013) and provide little insight into the internal physical

process since they are fitting forms. To answer our research question, we use concepts such as Mohr-

Coulomb’s failure criterion (Coulomb, 1776; Chaves, 2009; Borja, 2013), Mohr’s circle (Mohr, 1900;
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Pytel and Singer, 1987; Oliver and de Saraćıbar, 2000), and Coulomb’s friction law (Coulomb,

1776; Dowson, 1997), as well as purely mechanical derivations. All these elements will be wrought

together to derive general formulae, based on first principles, for two-dimensional assemblies to

determine constitutive parameters such as the so-called maximum internal friction angle Φlim in

terms of the stress direction, grains positions and contact network. Figure 1, shows schematically

the different components of the theoretical formulation herein proposed to directly connect the

macroscopic peak strength of a granular material to its granular counterparts. Furthermore, note

that three-dimensional granular packings have not been considered in the present work due to a

significant increase in the rotational degrees of freedom of the grains. This adds more difficulty

in the mathematical modeling process and the subsequent interpretation of results. Thus, our

first goal is to begin by unraveling the grain-to-grain mechanisms behind macroscopic strength in

two-dimensional granular materials that, in contrast to their three-dimensional counterparts, lend

themselves to a simpler and more minimalistic analysis.
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Figure 1: Pictorial sketch of the subjects tackled by the present work and its corresponding con-
tributions. The mathematical relations derived in this study will be based on microscopic features
such as the grain positions and the contacts network to obtain the peak internal friction angle Φlim.
The formalism developed in this study can be extended to 3D to obtain the failure surface for all
the possible stress paths which show an inherit anisotropy as seen in micro-mechanics simulations
extracted from (Galindo-Torres et al., 2013) and depicted at the bottom of the figure.

Once the described theoretical expressions have been found, we attempt to answer another

fundamental question: can these relations be used to draw physical conclusions about the maximum

strength Φlim inherent to a given granular packing? Thus, in order to answer this question and

to validate the aforementioned theoretical expressions a simple and intuitive example is then used.

Hence, some important features about strength, anisotropy, and contact buckling are extracted

providing a deeper insight into the mechanical behavior of frictional non-cohesive granular media

under confinement.

Finally, a numerical experiment is carried out in order to validate the theoretical framework

introduced in the present work. In addition, it is worth mentioning that, even though more complex

and tedious, the obtention of a similar type of expressions, relations, analysis, and conclusions for

three-dimensional packings of arbitrary shape/size non-cohesive particles can be done by following

the same methodology.
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2 Peak friction angle

In many important cases, there is no need to know more information about the strength of a given

granular material, but only the value of the peak friction angle Φlim shown in Figure 2. This single

parameter usually provides enough information to make decisions in terms of engineering design

or prevention. Hence, it is important to have ways and expressions that allow us to compute the

value (or a good enough approximation) of the maximum friction angle corresponding to a given

granular media.
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Figure 2: Limit friction angle, Φlim, defined as the maximum strength reached by a given packing
of granular materials as its second principal stress Λ2 is kept constant while its first principal stress
Λ1 (the most compressive) increases. Here, σ is used in a general way for any volumetric/normal
stress.

We now aim to answer a fundamental question that rises at the heart of theoretical granular me-

chanics: Does the peak strength, Φlim, (see Figure 2) inherent to a granular media under confinement

depend only on the topology (fabric) of the packing, or this mechanical property is also a function

of contact forces and their evolution as a response of the media to a given macro-loading process?

A few theoretical answers (with experimental validation) to such a relevant question have been

found for very specific cases, as for instance, regular packings (Rowe, 1962; Horne, 1965; Bishop,

1954) where it is geometrically shown, for this particular type of assemblies, that the maximum

strength (and corresponding maximum stress ratio) depends only on the fabric and inter-particle

friction coefficient. Hence, in the present work, we look for more general analytical-theoretical ways

of unraveling the micro-mechanical origin of the maximum macro-strength of a broader variety of

granular assemblies such as those made of polydisperse non-cohesive two-dimensional discs, and
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special cases falling into this group.

2.1 Basic assumptions (coordination number)

Every physical theory or mathematical model needs some basic assumptions to define its scope and

the ways in which reality is approached. Here, we look at arrays which are packed enough, so its

initial topology (at hydrostatic pressure) undergoes a negligible change until the peak (maximum)

friction angle Φlim is reached in a given loading process.

Thus, results from (Kruyt, 2012; Rothenburg and Kruyt, 2004) suggest that, in general, dense

(dilative) granular packings undergo a change of less than 10% in their mean coordination number

from the initial configuration (hydrostatic confinement) until reaching peak strength. Here, we define

the mean coordination number z as in (Hinrichsen and Wolf, 2004). Finally, we also assume that

conditions such as quasi-static loading and small deformations also hold for the present work.

2.2 Mechanical approach

Let us begin the discussion by decomposing the contact force fα, at the α-th contact point between

two grains in a packing, into its corresponding components in the normal r̂α and tangent t̂α

directions as shown by Figure 3.
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Figure 3: Inter-particle contact force represented in its normal and tangent (to the contact point)
components.

Hence, we write fα = fαr r̂
α + fαt t̂

α, where r̂α = sin(φα)ê1 − cos(φα)ê2, and t̂α = cos(φα)ê1 +

sin(φα)ê2, and where, φα is the angle between the unit vector tangent to the α-th contact point

t̂α, and the x-axis (global frame of reference). Here, ê1 and ê2 are the basis vectors corresponding

to the global (cartesian) frame of reference. In the same way, the branch vector, dα, at the α-th

contact point (vector connecting the centroids of two particles in contact at the α-thcontact point)
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is expressed in components as dα = dα1 ê1 + dα2 ê2 = |dα| cos (δα) ê1 + |dα| sin (δα) ê2, where δα is

the angle between dα and the x-axis (see Figure 3).

Now, from Figure 4, and taking into account that for the case of packings of discs: φα = δα+π/2,

let us write as well the values of the normal and tangent components of a contact force in the

following way: fαr = λα1 sin (δα) + λα2 cos (δα) and fαt = λα2 cos (δα) − λα1 sin (δα), where λα1 and λα2

are the resultant vertical and horizontal forces acting on two particles in contact at the α-th contact

point and undergoing quasi-static equilibrium (here we assume compression to be always positive).

Furthermore, note that in order to satisfy static equilibrium of torques at the q-th particle, and

provided that Coulomb’s friction law (|fαt | ≤ µfαr , ∀fαr ≥ 0) holds, then M q
act ≤M q

react, where M q
act

and M q
react are the total moments acting and reacting on the centroid of the q-th particle, and µ is

the inter-particle friction coefficient.

λα
1

λα
1

λα
2

λα
2

δαMαMα

dα

Figure 4: Total resultant forces, λα1 and λα2 , and moment, Mα, acting on two discs in contact at
the α-th contact point.

Thus, combining the expressions for fαr and fαt with the inequality of static equilibrium of

torques, we arrive to the following expression

λ1

λ2

∣∣∣∣α ≤ cot (αα − φµ) (1)

where, αα = π/2 − δα, and φµ = arctan (µ). Moreover, it can be geometrically shown that, for

regular packings λ1 = Λ1L1/N1 and λ2 = Λ2L2/N2, where Λi, Li, and Ni (i = 1,2) are the principal

stresses, length of the boundary on which Λi is applied, and number of boundary contacts on the

boundary of length Li. Hence, note that using inequality (1), these last expressions, and re-writing
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Li in terms of α, φµ, and Ni, we arrive to

Λ1

Λ2

∣∣∣∣
lim

= cot (α− φµ)
2 cos (α) + 1/N2

2 sin (α) + 1/N1

as in (Tu and Andrade, 2008). Furthermore, note that as the number of particles in a regular array

goes to infinity, N1 and N2 also go to infinity and the last expression tends to

Λ1

Λ2

∣∣∣∣α
lim

= cot(α− φµ) cot(α) (2)

which corresponds to Rowe’s theory (Rowe, 1962) for mono disperse packings. Thus, bearing

this procedure in mind, and as a natural “next step” we now try to obtain a generalization for

polydisperse packings as the one illustrated by Figure 5.

1 0.5 1
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−0.5

0

0.5

1

MM

Figure 5: Mismatch in the position/simmetry of the boundary contacts produces a moment M that
is distributed “uniformly” along the internal contact points.

Then, for such type of packings, the following expression for λi is obtained

λαi '
ΛiLi
Nbci︸ ︷︷ ︸

i-th axial

Load

+
MM

dαi Nc︸ ︷︷ ︸
Boundary

Mismatch

(3)

where, Nc is the total number of internal contact points (not boundary contact points included)
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in the packing of particles, and Nbci is the number of boundary contacts corresponding to one

of the boundaries (any of the two boundaries) perpendicular to the direction of Λi. Note that

the the mismatch moment, MM , can be split into the sum of two moments, MM = MM1 + MM2 ,

corresponding to the mismatch moments of the boundaries perpendicular to Λ1 and Λ2. Now,

expressing the moment at the α-th contact point in terms of MM , and applying a similar procedure

as for the mechanical derivation of expression (2) we obtain the following approximation for the

peak ratio Λ1/Λ2|lim with respect to the α-th contact point (see, Appendix):

Λ1

Λ2

∣∣∣∣α
lim

' L2

L1

Nbc1

Nbc2

∆dλ1
2

Nc|dα| cos(δα)
−
[

1 +
∆dλ2

2

Nc|dα| sin(δα)

]
tan(δα + φαµ)

∆dλ2
1

Nc|dα| sin(δα)
tan(δα + φαµ)−

[
1 +

∆dλ1
1

Nc|dα| cos(δα)

] (4)

where, ∆dλ1
1 , ∆dλ2

1 , ∆dλ1
2 , and ∆dλ2

2 are “measurements” of the average “misalignment” between

the contact points of two parallel boundaries of the packing, and ∆dλ2
1 ' ∆dλ1

2 (see, Appendix).

Once again, note that in the case in which Nc→∞, then Nbc1 ≈ Nbc2 and equation (4) becomes

Λ1

Λ2

∣∣∣∣α
lim

' L2

L1
tan

(
δα + φαµ

)
(5)

Now, expressing L1 and L2 in terms of the α-th brach vector, we get L1 = kα1 d
α
1 = kα1 |dα| sin (αα),

and L2 = kα2 d
α
2 = kα2 |dα| cos (αα). Hence, from equation (5), we arrive to

Λ1

Λ2

∣∣∣∣α
lim

' kα cot
(
αα − φαµ

)
cot (αα) (6)

where, kα = kα2 /k
α
1 is a geometric correction parameter, and departing from the Mohr’s circle

interpretation of the friction angle Φ (see Figure 2), which gives us

sin(Φ) =
τmax

p̄
=

Λ1 − Λ2

Λ1 + Λ2
, 0 ≤ sin(Φ) < 1 (7)

expression (6) can be re-written in the following way

sin (Φα
lim) ' (kα − 1)− (kα + 1) [cos (2δα)− µα sin (2δα)]

(kα + 1)− (kα − 1) [cos (2δα)− µα sin (2δα)]
(8)
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Finally, comparing equation (6) to Rowe’s expression (2), note the local character (at each contact

point) of (6), whereas (2) is, in fact, a global result due to the nature of the packings (regular)

from which this was derived. In other words, for the case of regular packings, all the contact points

that contribute to the global strength will have the same value of local strength, and, therefore,

the entire packing will directly “inherit” the same amount of strength for itself.

Remark 1

Expression (8) computes the peak friction angle of a packing in terms of the “failure” of a given

contact point. As it is well known, a packing’s failure does not depend only on one contact point,

but rather it is given by a set of neighboring contacts “failing” at the same time in a similar fashion.

We will reconcile these two apparently different ideas (local and global visions) as well as connect

them latter on this work.

2.2.1 Sliding v.s. Rolling

From the mechanical analysis being carried out, note that expression (8) yields a Φα
lim for the case

in which a contact point “fails” (or buckles) by sliding. However, some contact points also may

fail due to rolling. Thus, when a contact point between two particles “fails” by rolling, note that

the constraint given by Coulomb’s friction law, i.e., |fαt | ≤ µαfαr , still holds. However, the tangent

component of the force, fαt , is not close enough to its upper limit, so the corresponding contact

will “prefer” to “fail” by rolling, meaning that fαt is still independent enough on its corresponding

normal contact force, fαr , and, therefore, the process of rolling is not dependent on the inter-particle

friction coefficient µα (see analytical proof of it on (Jerves and Andrade, 2015)). Thus, µα can be

neglected in expression (8), that becomes

sin∗ (Φα
lim) =

(kα − 1)− (kα + 1) cos (2δα)

(kα − 1)− (kα + 1) cos (2δα)
(9)

On the other hand, and for a general loading process, detecting which particles will fail by rolling

and which particles will fail by sliding becomes a whole new issue. However, in the particular case

of quasi-static loading this problem becomes a little simpler. Here, we discuss an even simpler

version that is valid only for the case of packings of arbitrary size discs.
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Inner contacts: In such case, note that the equation of equilibrium of torques for each disc, p,

can be expressed in terms of the normal (which vanishes) and tangent components of the contact

forces in the following form
Ncp∑
α=1

fα,pt = 0 (10)

where, Ncp is the number of internal contact points corresponding to the disc p. Furthermore, note

that an internal disc playing some role in the structural strength of a given packing where it belongs

to, necessarily will have to satisfy the constraint Ncp ≥ 2. Moreover, under quasi-static loading

the sum of torques on each internal disc, p, satisfying Ncp ≥ 2, will tend to reach equilibrium as

in equation (10), which, in other words, means that the disc will always tend to “fail” by sliding

rather than rolling (rotational forces that make the disc roll cancel out), which implies that if a

given contact point “fails”, it will “fail/yield” by sliding. Hence, when a polydisperse packing of

discs “fails”, the mechanism governing the micro-mechanical behavior of the packing is sliding (see

analytical proof of it on (Jerves and Andrade, 2015)). Moreover, it is worth mentioning that the

process just described has to be implemented as part of the algorithm, so the number of structurally

relevant contact points that may fail by sliding and rolling can be computed.

Boundary contacts: Now, in order to finish with this discussion, and having analyzed the case

of internal discs, let us also analyze what happens for boundary discs. Thus, a boundary disc that

only has one internal contact point, Ncp = 1, and shares the rest of its contact points with the

walls (which are assumed to be frictionless), will never satisfy equilibrium of torques, expressed for

each disc, p, by equation (10), and therefore, its internal contact point will always tend to fail by

rolling regardless the value of the inter-particle friction coefficient at that internal contact point.

Hence, since this case will not be likely to happen, then most contact points will fail due to sliding.

Thus, and for the case of arbitrary size discs, we use the algorithm described above to detect if

a contact point will fail either by sliding or rolling.

2.2.2 Strength Directionality

As part of the physical-geometrical interpretation of the equations that we have derived so far, we

also have to look at the directionality of the strength in a given packing of grains. In fact, intuition
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tells us that, in general, it is not the same loading a confined packing in one given direction as

in other different direction. Hence, in equations (8) and (9), we have marked sin (Φα
lim) with an

asterisk symbol (∗) so we identify sin∗ (Φα
lim) as a previous (raw) result before taking into account

directionality of loading. Thus, we have also derived closed analytical expressions that take into

account loading directionality for packings of two-dimensional non-cohesive frictional arbitrary size

discs, and where Λ1 ≥ Λ2, being these the principal stresses in the case of bi-axial loading. Finally,

the mentioned expressions are grouped in a simple general form, as shown by expression (11)

Λ1


‖ x− axis⇒ sin∗ (Φα

lim

)
=

(kα − 1) + (kα + 1) [cos (2δα) + µα sin (2δα)]

(kα + 1) + (kα − 1) [cos (2δα) + µα sin (2δα)]

‖ y − axis⇒ sin∗ (Φα
lim

)
=

(kα − 1)− (kα + 1) [cos (2δα)− µα sin (2δα)]

(kα + 1)− (kα − 1) [cos (2δα)− µα sin (2δα)]



0 < sin∗ (Φα
lim

)
< 1 → sin

(
Φα

lim

)
= sin∗ (Φα

lim

)
sin∗ (Φα

lim

)
≤ 0 → sin

(
Φα

lim

)
= 0

sin∗ (Φα
lim

)
≥ 1 → sin

(
Φα

lim

)
= 1

(11)

Note that expression (11) has two equations: the upper equation holds for the case in which

Λ1 (the first principal stress / most comrpessive) is parallel to the x-axis, and the lower equation

holds for the case in which Λ1 is parallel to the y-axis. Then, the three conditions to the right

of the two aforementioned equations have to be applied depending on the values of sin∗ (Φ) given

by them. Finally, a very simple example illustrated by Figure 6 is used to clarify the notions of

strength directionality so far analysed.
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Figure 6: Example of buckling and strength directionality in a regular packing.

This didactic example (see Figure 6) consists of a regular packing of four discs undergoing

bi-axial loading. Thus, the components of the force at packing’s central contact point at limit

(maximum) friction angle, are f cr = 0 and f ct = 0. Note that this result is very intuitive in the
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physical sense, and can be interpreted as the lost of contact at the central contact point, which

makes the entire packing lose stability, making it buckle (fail). As the packing itself can be thought

as a column made of a confined granular material (the confinement is provided by Λ2) carrying a

vertical load Λ1 that reaches its critical (limit or maximum) value at

Λ1

Λ2

∣∣∣∣α
lim

= cot(α− φµ) cot(α)

which corresponds to Rowe’s theory (Rowe, 1962) that was also substantiated by Horne (Horne,

1965), who assumed no rolling between groups of particles as a constraint. A similar result was

previously obtained by Bishop (Bishop, 1954) but expressed in terms of the residual strength. The

analysis above holds if Λ1 is parallel to the y-axis. However, note that if Λ1 is parallel to the x-axis,

then the central contact point yields sin (Φc
lim) = 1, which strengthen the granular packing and

gives a point where (in that case) the packing will never fail.

Furthermore, the same intuitive results can be rigorously obtained by a simple analysis of the

example given by Figure 6. Thus, using the expression for τmax and p̄ in terms of branch vectors

and contact forces derived in (Jerves and Andrade, 2015) for arbitrary size discs (see, Appendix),

we arrive to the following expression for the internal friction angle:

sin (Φ) =
2fr − f cr
4fr + f cr

where, f cr is the normal component of the central contact point as before, and fr is the normal

component of the contact forces of the rest of internal contact points (which are equal by symmetry).

Then, note that as f cr → 0, sin (Φ) → 0.5, and Φ → 30o corresponding to the case in which Λ1

is parallel to the y-axis (vertical axis). Moreover, it is worth mentioning that in this particular

case, Φlim does not depend on fr, and, therefore, it does not depend on ft either. Hence, Φlim is

not a function of µ as can also be concluded from DEM (Cundall and Strack, 1979) simulations.

Furthermore, note that in this particular example, the discs do not roll due to the symmetry of the

torques and, therefore, the procedure described in the subsection 2.2.1 does not have to be taken

into account.

On the other hand, when f cr →∞, |sin (Φ)| → 1, and Φ→ 90o, which implies infinite strength,
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and corresponds to the case in which Λ1 is parallel to the x-axis (horizontal axis). Note as well

that the case in which fr → ∞ is equivalent to the case f cr → 0, so yields the same result and

corresponding interpretation. Moreover, the case fr → 0 implies that no external loading nor

confinement are being applied and yields a peak friction angle Φ = 90o that means infinite strength,

which is expected as well.

Finally, in order to wrap up this section, lets compare these results with a general “big enough”

polydisperse packing, where there is very little to none symmetry as opposed to the example above.

Then, for the polydisperse packing, most contacts will “fail” by sliding, as already concluded in

subsection 2.2.1. However, sets of neighboring discs with some symmetrical features will tend to

form clusters that, in turn, display the rolling-like type of mechanisms (crystalline type of structure)

found in this example. Thus, mesoscale-like clusters will appear whenever symmetrical features are

found, playing a key role in the overall packing’s strength and its variability as the main loading

direction changes.

2.3 Global Solution

As mentioned in Remark 1, expression (8) computes the peak friction angle of a packing in terms of

the “failure” of a given contact point, which does not actually corresponds to the “whole” packing’s

failure that is actually given by a set of neighboring contacts “failing” at the same time in a similar

fashion. Hence, we need to detect the aforementioned set by computing the value of Φα
lim for every

single inner contact point in the packing and then “assess” which are the ones that are actually in

their maximum local strength values as well as clustering at the same time. As this assessment can

get as sophisticated as wanted, we have found a simple and accurate enough way of approaching it.

Thus, a packing’s (global) maximum strength Φlim can be approximated in terms of the mean value

theorem for integrals, which, and for simplicity in the computational implementation, we combine

with the trapezoid rule for numerical integration, arriving to the following expression:

〈sin (Φlim)〉 =
1

2 (δmax − δmin)

Nc−1∑
α=1

[
sin (Φα

lim) + sin
(
Φα+1

lim

)] (
δα+1 − δα

)
(12)

Note that any other numerical scheme can also be used. However, we have chosen the trapezoid

rule since the nature of the problem does not require applying a more accurate numerical scheme
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due to the shape of the distribution of the values of Φα
lim in terms of de branch vector’s angles

δα as shown by Figure 7 for the packing shown in Figure 8, and for an inter-particle friction

coefficient µ = 0.5. Furthermore, note from Figure 7 that the distribution of values corresponding

to 〈sin (Φlim)〉 will be non-linearly scaled from the one given for Φα
lim, to values between 0 and 1 in

the y-axis, since one can be directly computed from the other. Thus, in either case the trapezoid

rule can be applied with the similar accuracy. Note as well that as the number of contact points

with different directions increases, the accuracy of the value obtained for 〈sin (Φlim)〉 by applying

the trapezoid rule (or any other method to perform the corresponding numerical integration) will

increase.
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Figure 7: Distribution of the local maximum friction angles Φα
lim v.s. their corresponding branch

vector’s angles δα for the granular packing given by Figure 8 and for an inter-particle friction
coefficient µ = 0.5.

Thus, the packing’s (global) maximum strength Φlim has been found here to be nothing but

the “mean” (understood under the umbrella of the mean value theorem for integrals) of all the

maximum (peak) values of the friction angle Φα
lim given for each α-th structurally relevant contact

point (local solution) as shown by Figure 7 for an inter-particle friction coefficient of µ = 0.5. In

other words, the packing’s maximum strength Φlim is the “mean” of all the structurally relevant

local frictional strengths Φα
lim.
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2.4 Implementation

It is worth mentioning that when it comes to the computational implementation of the theoretical

framework herein introduced, every step described has to be taken into account, i.e., mechanical

and geometrical interpretations, sliding v.s. rolling, and strength directionality as described in the

previous sections of the present work.

3 Example

In this example we have a two-dimensional polydisperse packing (see Figure 8) composed of 5752

discs with average diameter of 0.6 units, and standard deviation of 0.23 units. The walls of the

packing have a friction coefficient of µw = 1E−6. The packing departs from a hydrostatic state

of stress corresponding to 100 units of pressure, and then, undergoes quasi-static axial loading

along the vertical axis while keeping the horizontal stress constant. This numerical experiment

is carried out by using the contact dynamics model introduced in (Krabbenhoft et al., 2012a,b),

where: kr = kt = 7.5E4 (units of force per unit of length) are the effective normal and tangent

stiffness, u̇2 = 7.5E−6 (units of length per unit of time) is the vertical loading velocity at the upper

wall, and θ = 1 (backward Euler, i.e., implicit integration) is a numerical integration parameter,

which yields a coefficient of restitution of zero (perfectly inelastic collision).
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Figure 8: Polydisperse packing of 5752 discs. The discs are confined by a rectangular container
(∼ 49.8 × 44 square units) with quasi-frictionless walls (µw = 1E−6). The packing is subjected to
quasi-static axial loading along the vertical axis and departs from a state of hydrostatic loading of
100 units of pressure.

Then, after running a new simulation for each different value of the inter-particle friction co-

efficient (µ = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) while keeping all the other

parameters and conditions the same, the maximum strength Φlim for each µ was obtained. Figure

9 shows a comparison between the actual peak friction angle (blue line) of the packing shown by

Figure 8 (computed directly from the numerical DEM-simulation), and the theoretically predicted

peak friction angle (red line) for different values of the inter-particle friction coefficient µ (Procter

and Barton, 1974). As can be noticed from Figure 9, the two curves are very similar with an

average error of 6.14% and an average mismatch of 1.1◦. The same type of simulation has been

carried out for similar packings with 2876 and 1438 particles, giving an average error of 6.49% and

5.80%.
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Figure 9: Peak friction angle Φlim, corresponding to the granular packing introduced by Figure 8,
and in terms of the inter-particle friction coefficient µ (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1): numerical experimentation (blue line), and analytical approach (red line).

Finally, note that for high enough values of µ (µ ≥ 0.5) the error in the theoretical approximation

becomes negligible. On the other hand, note that there is some error for values of µ < 0.5. This

error increases as µ → 0, and it is due to the fact that, from a thermodynamical point of view

(Borja, 2013), a purely frictionless material is not feasible. This is translated into the numerical

model (DEM) results as a non-physical behavior for small enough values of µ (Jerves and Andrade,

2015), that can be clearly seen in Figure 9 by taking a look at the drastic change of slope given

for µ ≤ 0.2 in the results corresponding to the numerical experimentation (blue line). Moreover,

some error also comes from the numerical integration scheme (backward Euler) used for the DEM

simulation that yields a coefficient of restitution for the discs equal to zero, which, in the same way,

is non-physical due to the numerical dissipation added by it.

4 Conclusions and Remarks

We have developed an analytical-theoretical framework that helps us to further understand the

physics behind the microscopic origin of macroscopic strength of two-dimensional frictional gran-

ular materials. This framework rests on two fundamental theoretical models right at the heart

of granular mechanics, i.e., Mohr-Coulomb’s failure criterion for the macroscopic behavior, and

Coulomb’s friction law for the grain-to-grain frictional interactions. Hence, all the findings and
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analysis introduced in this work are valid only for the cases where the combination of these two

theoretical frameworks applies.

Thus, we have been able to establish explicit connections between micro-mechanical parameters

such as contact forces and branch vectors, which in essence describe fabric and contact kinetics, and

macro-mechanical quantities such as stress and the material’s strength. In the case of the maximum

strength of a packed enough (dilative) packing of non-cohesive polydisperse discs undergoing bi-

axial loading, the results suggest that it does not depend on the inter-particle contact forces and

their evolution, but on the packings’s initial shape, initial fabric, external loading directionality,

and on the inter-particle friction coefficient. The dependency on some of these micro-parameters

such as initial fabric and inter-particle friction coefficient has already been discussed by (Rowe,

1962), but for the more specific case of monodisperse regular packings. Furthermore, one of our

main findings is that for a given polydisperse packing, its (global) maximum strength Φlim can be

computed as the mean (in terms of the mean value theorem for integrals) of the local “maximum

strenghts” of all “failing” contact points within such packing. Further analysis on rolling and sliding

mechanisms of contact “failure” as well as strength directionality (anisotropy) have to be taken into

consideration in order to arrive to the aforementioned result and shed more light on the discussion.

Finally, it is worth mentioning that the theoretical framework developed throughout the present

work can also be extended to three-dimensional packings of non-cohesive frictional arbitrary shape/size

grains. This can be done by parametrizing the stress path in the three dimensional principal

stresses space before applying an optimization process such as Karush-Kuhn-Tucker (KKT) condi-

tions (Karush, 1939; Kuhn and Tucker, 1951; Kuhn, 2007). This will provide failure surfaces based

on first principles, which will replace the empirical surfaces that are commonly used to describe

the strength of soils under triaxial conditions. We attempt to plant a first seed that may help to

start the conversation on the potential applications and generalizations of the introduced analytical

framework, not only for three-dimensional packings, but also to help us acquire a deeper under-

standing of related physical phenomena such us force chains and shear banding. In the future,

the process that was described herein can become practical if statistical information on the branch

vector and force distributions is included into the Moore-Love expression (Bagi, 1999; Saxce et al.,

2004; Love, 1927; Weber, 1966; Rothenburg and Selvadurai, 1981; Christoffersen et al., 1981; Oda
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and Iwashita, 1999) for the average Cauchy stress of a packing of grains as follows,

Nc∑
α=1

dα ⊗ fα =
∑
d,f

p (d,f)⊗ f

where the new summation is done over all the possible values of d and f instead of each contact,

and p (d,f) is the probability that a given contact has a branch vector with value d and contact

force with value f . Accurate approximations for such statistics already exist in the literature

(Radjai et al., 1996) and the combination of these features into the proposed framework should be

the subject of future research.

Appendix

Peak friction angle

Note that λα1 can be decomposed as follows:

λαi = λαi Λi
+ λαi x + λαi y

where i = 1, 2, and

λαi Λi
=

ΛiLi
Nbci

, λαi x =
MMi

dαi Nc
, λαi y =

MMj

dαi Nc

are the values of λi due to the applied boundary stress Λi, to the misalignment of the boundaries

parallel to the x-axis, and to the misalignment of the boundaries parallel to the y-axis, respectively.

On the other hand, by applying equivalent couples, MMi and MMj can be re-written as:

MMi '
ΛiLi
Nbci

∆dλii , MMj '
ΛjLj
Nbcj

∆dλij

where, ∆dλ1
1 , ∆dλ2

1 , ∆dλ1
2 , and ∆dλ2

2 are “measurements” of the average “misalignment” between

the contact points of two parallel boundaries of the packing, and ∆dλ2
1 ' ∆dλ1

2 . Hence, we have

λα1 '
Λ1L1

Nbc1
+

Λ1L1

Nbc1

∆dλ1
1

Nc |dα| cos (δα)
+

Λ2L2

Nbc2

∆dλ1
2

Nc |dα| cos (δα)
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and,

λα2 '
Λ2L2

Nbc2
+

Λ2L2

Nbc2

∆dλ2
2

Nc |dα| sin (δα)
+

Λ1L1

Nbc1

∆dλ2
1

Nc |dα| sin (δα)

Now, solving these equations for Λ1/Λ2, replacing inequality (1), and assuming that the α-th

contact point in this inequality is at “failure”, we arrive to equation (4).

Four discs regular monodisperse packing example

From (Jerves and Andrade, 2015), we have

p̄ =
1

2V

Nc∑
α=1

|dα|[fαr sin(φα − δα) + fαt cos(φα − δα)]

τmax =
1

2V

√√√√{
Nc∑
α=1

|dα|[fαr sin(φα + δα) + fαt cos(φα + δα)]

}2

+

{
Nc∑
α=1

|dα| [fαr cos(φα + δα)− fαt sin(φα + δα)]

}2

where, from Figure 3 we have that

r̂α = sin(φα)ê1 − cos(φα)ê2 , t̂α = cos(φα)ê1 + sin(φα)ê2

with, φα being the angle between the unit vector tangent to the α-th contact point, t̂α, and the

x-axis (global frame of reference); and ê1, ê2 being the basis corresponding to the global (cartesian)

frame of reference as shown in Figure 3.

Moreover, from the Mohr circles of Figure 2, note that for cohesionless materials

sin (Φ) =
τmax

p̄
=

Λ1 − Λ2

Λ1 + Λ2

and, for the case in which the particles are discs, note that φα = δα + 90o. Thus, for polydisperse

packings of cohesionless frictional discs undergoing axial loading, we arrive to

sin(Φ) = −

Nc∑
α=1

|dα|[fαr cos(2δα)− fαt sin(2δα)]

Nc∑
α=1

|dα|fαr
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which, for the four discs packing of the example in subsection 2.2.2 where δα takes the values of

60o, 120o, 240o, 300o, and 0o, it becomes

sin (Φ) =
2fr − f cr
4fr + f cr

where, f cr and f ct are the normal and tangent components of the central contact point as before, and

fr, ft are the normal and tangent components of the contact forces of the rest of internal contact

points (which are equal by simmetry, ft is also the same in absolute value).
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