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Abstract—Adequate ac power is required for decay heat removal4
in nuclear power plants. Station blackout (SBO) accidents, there-5
fore, are a very critical phenomenon to their safety. Though de-6
signed to cope with these incidents, nuclear power plants can only7
do so for a limited time, without risking core damage and possi-8
ble catastrophe. Their impact on a plant’s safety are determined9
by their frequency and duration, which quantities, currently, are10
computed via a static fault tree analysis that deteriorates in ap-11
plicability with increasing system size and complexity. This paper12
proposes a novel alternative framework based on a hybrid of Monte13
Carlo methods, multistate modeling, and network theory. The intu-14
itive framework, which is applicable to a variety of SBOs problems,15
can provide a complete insight into their risks. Most importantly,16
its underlying modeling principles are generic, and, therefore, ap-17
plicable to non-nuclear system reliability problems, as well. When18
applied to the Maanshan nuclear power plant in Taiwan, the re-19
sults validate the framework as a rational decision-support tool in20
the mitigation and prevention of SBOs.21

Index Terms—Accident recovery, Monte Carlo simulation22
(MCS), nuclear power plant, risk assessment, station blackout23
(SBO).24

NOTATIONS25

min (B) Least element of set/vector B.26

min{B,Q} Least element of B ∪ Q.27

(B, i) ith element of set/vector B.28

ABBREVIATIONS29

AC Alternating Current.30

DC Direct Current.31

C Node capacity.32

CCF Common-cause failure.33

CCG Common-cause group.34

CS Cold standby state.35

F Failed state.36

LOOP Loss of offsite power.37

MCS Monte Carlo simulation.38
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S Shutdown state. 39

SBO Station blackout. 40

SU Start-up state. 41

TM Test/preventive maintenance state. 42

W Working state. 43

NOMENCLATURE 44

A System adjacency matrix. 45

C Component capacity vector. 46

c
{i}
x Capacity of component i in state x. 47

{c{i}x }M×1 Set of current capacities of all components. 48

Ei Set of attributes of component i. 49

e System edge matrix. 50

fl LOOP frequency. 51

fs SBO frequency. 52

fxy (t) Probability density function for transition from 53

state x to y. 54

G System graph object. 55

k Number of edges/links in system graph. 56

lb Set of minimum flow through edges/links. 57

M Number of system nodes. 58

m Number of safety buses/trains. 59

N Number of Monte-Carlo samples. 60

n1 Number of trains a generator can supply. 61

pn SBO probability given the (n− 1)th SBO. 62

ub Set of maximum flow through edges/links. 63

r Number of components affected by a CCF. 64

rn (t) Non-recovery probability from the nth SBO. 65

S Register indicating SBO occurrence. 66

s Set of source nodes. 67

sj SBO indicator for the jth simulation sample. 68

T Component transition matrix. 69

t ID of virtual output node. 70

Utm Unavailability due to test or maintenance. 71

u Proportion of train demand generator satisfies. 72

V Set of nodes in the system graph. 73

x0 Initial component state. 74

Xij Flow from node i to j. 75

Xout Flow into the virtual output node. 76

Y Set containing flows through all the nodes. 77

Θ System inequality constraint matrix. 78

Γ System incidence matrix. 79

Φ System equality constraint matrix. 80

Ωij Maximum flow from node i to j. 81

ð Number of intermediate nodes. 82

Ψ System flow objective function. 83
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ρ Set of components making up CCG.84

δ Number of components in CCG.85

θ Set of CCF probabilities.86

β1 Common failure mode for CCG.87

β2 State rendering CCG vulnerable to CCF.88

τ Vector of next node transition times.89

μold Vector of node capacities at last system jump.90

I. INTRODUCTION91

NUCLEAR power is produced by harnessing the heat gen-92

erated from a fission reaction chain in a reactor vessel.93

The reactor vessel is placed in a concrete containment to shield94

the environment from the potential release of radioactive mate-95

rials. Core damage ensues when the core temperature exceeds a96

certain threshold or the nuclear fuel elements in the vessel are97

uncovered. This event may trigger containment breach, inflict-98

ing huge environmental and economic catastrophe.99

Severe accident mitigation is achieved in part by ensuring100

a reliable cooling water circulation in the reactor vessel. This101

objective, during normal plant operation, is achieved through102

heat exchange between the primary and secondary loops of the103

plant’s main cooling system. The process, however, ceases on104

plant shut down and backup cooling systems are required to105

sustain decay heat removal. Like the main cooling system, the106

backup cooling systems rely on ac power provided by sources107

outside the plant (offsite power). When these sources fail (loss108

of offsite power—LOOP), emergency sources onsite are started,109

to drive the plant’s safety systems. If the emergency sources are110

also unavailable or unable to function as required, the plant111

is said to be in a station blackout (SBO). The backup cool-112

ing systems, however, are equipped with alternative turbine or113

diesel-driven pumps to help the plant cope with this incident.114

These systems, on the downside, require for monitoring and115

control, dc power from dc power banks. Their sustainability,116

therefore, regardless of their inherent reliability, is limited by117

the dc battery depletion time. This time, and the boil-off rate118

of reactor coolant, define the maximum acceptable ac power119

recovery duration [1].120

SBO accidents are the largest contributor to nuclear power121

plant risk, accounting for over 70% of the core damage fre-122

quency at some plants [1], [2]. LOOP events, which initiate123

these accidents, are classified on the basis of their origin. A grid-124

centred LOOP is due to the failure of the transmission network125

outside the plant, switchyard-centred LOOP arises from failures126

in the switchyard on the plant premises, plant-centered LOOP is127

triggered by the operational dynamics of the plant itself, while128

weather-related LOOP is attributed to failures induced by severe129

and extreme weather, excluding lightning [1], [2]. The effective130

SBO risk is the sum of the core damage frequencies induced by131

the various LOOP types.132

A. Review of Existing Models133

SBO risk quantification starts with a LOOP event tree analysis134

[3], where the emergency power system availability is checked135

in the first heading. This event failure, frequency of which de-136

fines the SBO frequency, transfers the analysis to the SBO event137

tree [1]. In the latter, the successes of the various mitigating ac- 138

tions, including offsite power and the recovery of the emergency 139

diesel generators (EDGs) at specific times are also checked. 140

These times, however, vary across plants and depend on the 141

status of a plant’s mitigating systems. At the Maanshan nuclear 142

power plant, for instance, power recovery is checked at 1, 2, 143

4, and 10 h into SBO. Each top event probability in the SBO 144

event tree requires one or more static fault trees [4]–[6] for its 145

quantification. 146

Static fault tree analysis employs an analytical approach, as 147

such, it carries the important advantage of being computation- 148

ally efficient. For this reason, its sensitivity, importance, and un- 149

certainty analysis capabilities are outstanding. These attributes 150

explain its wide use for risk analysis in the nuclear, aviation [7], 151

and chemical process industries [8]. Unfortunately, fault trees 152

become intractable with large systems or moderate systems with 153

complex interactions [8]. They often require a detailed knowl- 154

edge of the system being modeled, making them both difficult 155

to apply and error-prone. Their static nature also limits their 156

applicability in many ways. For instance: 157

1) Implementing certain types of interdependencies is either 158

tedious or completely impossible. 159

2) The analyst has to assume that SBO is coincident with 160

LOOP and that all power recovery efforts start simultane- 161

ously after SBO sets in. As a consequence: 162

a) The SBO frequency and nonrecovery probability 163

are overestimated in most cases, since the repair of 164

a failed element is normally initiated immediately. 165

b) For plants with multiple emergency power systems, 166

it is impossible to determine which sequence of re- 167

sponse minimizes the SBO frequency and maxi- 168

mizes the recovery probability simultaneously. 169

c) It is also difficult to investigate the effects of external 170

factors like logistic problems, extreme environmen- 171

tal events, and human resource constraints on the 172

recovery process. 173

3) The analyst is forced to assume the nonoccurrence of 174

a second SBO after power recovery. This assumption, 175

however, loses its validity if the emergency sources are 176

recovered first. In this case, a second failure could initiate 177

another SBO sequence before offsite power recovery. 178

4) Finally, there is the problem of inconvenience due to repet- 179

itive modeling. Since the nonrecovery probability is nor- 180

mally required for multiple instances, each would require 181

a dedicated fault tree. 182

There are numerous instances of remarkable attempts at ex- 183

tending the applicability of fault trees to systems with interde- 184

pendencies and various forms of dynamic interactions [6], [9]. 185

Kaiser et al. [10], for instance, introduced a state/event fault tree 186

approach that translates fault-trees to deterministic and stochas- 187

tic petri nets. Similarly, Zhou and Zhang [11], quite recently, 188

proposed an approach that converts static fault trees to dynamic 189

uncertain causality graphs in order to tackle the dynamic and un- 190

certainty attributes of practical engineering systems. However, 191

like Kaiser’s approach [10], Zhou’s [11] is restricted to binary- 192

state components and systems. Even though the performance 193

of most components could be partitioned into two levels, the 194
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existence of multiple failure modes makes binary-state models195

inadequate. Also, from a modeling perspective, there are oc-196

casions when the analyst would need to model a binary-state197

element as a multistate one in order to fully define its behav-198

ior. Such flexibility requires a framework supporting multistate199

modeling. Bobbio et al.’s fault tree to Bayesian Network map-200

ping procedure [12] effectively solve this problem. However,201

like Kaiser’s and Zhou’s approaches, Bobbio’s mapping pro-202

cedure is also susceptible to deficiencies (3) and (4) outlined203

above.204

Dynamic fault trees [13]–[16] are perhaps the closest re-205

searchers have come to solving the limitations of static fault206

trees. Various approaches have been proposed for their solution207

but Markov analysis [14], [15], [17] remains the most popu-208

lar. Markov modeling, however, like static fault tree analysis,209

becomes intractable with large systems and is only applicable210

to exponentially distributed transitions. Nevertheless, state ex-211

plosion is no longer an issue, with the introduction of intuitive212

dynamic fault tree software [18], [19]. Even with these devel-213

opments, most of the dynamic fault tree solution approaches214

are susceptible to deficiencies (3) and (4) outlined above. These215

deficiencies can only be addressed by approaches offering the216

flexibility to replicate the exact behavior of the system. Such an217

approach, however, was put forward by Rao et al. [16], which218

they used to model the power supply system of a nuclear power219

plant. The approach simulates a system’s dynamic fault tree and220

addresses most of the limitations of static fault trees. However,221

like the majority of system reliability models, Rao’s work is222

only applicable to binary-state components. The development of223

a more universal simulation framework, therefore, is desirable.224

B. Proposed Approach and Scope225

As evidenced in Rao et al.’s [16], Rocha et al.’s [20], and Lei226

et al.’s [21] works, Monte Carlo simulation (MCS) is flexible227

enough to model any system attribute. Its problem, however, is228

that most of the existing MCS algorithms are system-specific229

and require either the structure function, cut sets, or path sets of230

the system. An intuitive event-driven MCS procedure, offering231

multistate component modeling opportunities has recently been232

proposed [22]. This procedure is general and does not require the233

definition of the system’s path and cut sets or structure function,234

thanks to its embedded graph model.235

In this work, the graph and multistate models proposed in236

[22] are adopted. The graph model is used to model the topol-237

ogy of the system and allow the performance of the system to238

be directly computed from the performance of the components.239

This attribute eliminates the need for an explicit association of240

component failure combinations to the state of the system. The241

multistate model, on the other hand, is used to model the behav-242

ior of the components, overcoming the assumption of a perfectly243

binary behavior of components. It is particularly useful to the244

multiple failure mode and dynamic attribute representation of245

the emergency power systems. This model, for instance, could246

be exploited to investigate the effects of limited maintenance247

teams or the unavailability of spares on the emergency power248

systems recovery [23]. We extend the original model to incorpo-249

rate interdependencies by means of a dependency matrix and an250

efficient recursive algorithm to propagate the effects of failures 251

across the system. Completing the framework, we propose a 252

simple MCS algorithm that induces LOOP in the system, repli- 253

cate the ensuing sequence of events, and monitor the availability 254

of power at the various safety buses. The number of available 255

safety buses, as a function of time, is computed after each sys- 256

tem event. From the simulation history, any SBO index can be 257

computed, thereby providing an opportunity for more insights 258

into SBO risks. The multistate component model, together with 259

the dependency matrix, adequately captures and represents the 260

redundancies in the emergency power system of the plant. Con- 261

sequently, the explicit modeling of these redundancies, which 262

poses a significant challenge, is eliminated. 263

1) Merits and Novelty of the Proposed Approach: The 264

framework, for now, is limited to grid and switchyard induced 265

LOOP, given their dominance [2]. Its preliminary results were 266

first presented at the 13th Probabilistic Safety Assessment and 267

Management conference [24]. However, this paper proposes 268

several improvements. First, an extensive review of the suitabil- 269

ity of fault trees and their derivatives, to SBO analysis has been 270

included. We have also considered the effects of common-cause 271

failures (CCF), unavailability due to test or maintenance, and 272

human error on the SBO frequency and recovery probability. We 273

also show how the results obtained from the framework can be 274

absorbed in the existing model. Finally, we extend the number 275

of computable SBO indices and consider the effects of system 276

configuration and the sequence of operator response on system 277

recovery. 278

This paper is the first documented application of load-flow 279

simulation to a complete SBO risk assessment. With respect 280

to the existing models discussed in Section I-A, the proposed 281

framework exhibits the following advantages: 282
� Adequacy and Flexibility: It models realistic attributes of 283

the plant’s power recovery and provides more insights into 284

SBO risks. For instance, it enhances the investigation of 285

the possibility of a second SBO after the first. 286
� Convenience and Generality: It is convenient in the sense 287

that the modeler does not need to deduce the combination 288

of component failure leading to system failure. They also 289

do not need to explicitly model component redundancies, 290

as these are implicitly captured by the modeling frame- 291

work. The modeling framework, in addition, is applicable 292

to many system reliability problems. 293

2) Solution Sequence: The proposed approach is applied as 294

summarized by the following chronological steps: 295
� Identify the key elements of the system, define its topology, 296

and derive its flow equation parameters. 297
� Develop the multistate model for each system element. 298
� Model the interdependencies between the elements. 299
� Force a LOOP event and simulate the behavior of the 300

standby power systems. 301
� Compute the SBO indices from the simulation history. 302

II. SBO MODELING 303

A nuclear power plant’s power system consists of the grid, 304

the switchyard, the emergency power systems, alternative emer- 305

gency power system, and the safety buses. The alternative 306
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emergency power systems are additional emergency sources307

[such as gas turbine generators (GTGs)] available at some plants308

to boost their LOOP/SBO recovery capability. In this section,309

we show how the plant’s power system is accurately modeled310

and analyzed, in line with the solution sequence outlined in311

Section I-B2.312

A. System Topology313

We represent the topology of the plant’s power system by314

a graph nodes of which depict the components of the system.315

Connecting the nodes are perfectly reliable links portraying316

the direction of power flow. Flows from all the safety buses317

are terminated on a virtual node, introduced to represent the318

total available power. This virtual node would later be used to319

compute the nonrecovery probability of ac power.320

Let the nodes of the system be numbered from 1 to M and321

represented by the set V = {1, 2, . . . ,M}. Since the links are322

perfectly reliable, the adjacency matrix, A, of the system is323

defined as324

A = {aij}M×M | aij =
{

1 If flow is i→ j
0 Otherwise.

(1)

The topology of the system, therefore, can be defined by G |325

G = (V,A). Using the parameters ofG only, the flow equations326

of the system can be derived [22]. These equations can then be327

used in synergy with the current state properties of the system328

nodes to deduce the performance of the system. For this, a linear329

programing algorithm is employed, given the possibility of flow330

redirection and the need to satisfy the capacity constraints of331

the nodes and their links. The objective is to find the flow across332

each link of the system that maximizes the flow into the virtual333

node. If Xij is the flow across the link between nodes i and334

j and given there are k such links for all (i, j) ∈ e, where e335

is the edge matrix of the system as defined in [22], the linear336

programing problem is formulated by (2), (5), (7), and (8)337

Θ{Xij}k×1 ≤ {c{i}x }M×1 | (i, j) ∈ e ∀i ∈ V. (2)

Equation (2) expresses the inequality constraints to be satisfied,338

where c{i}x denotes the capacity of node i when residing in state339

x. {c{i}x }M×1 , therefore, is the vector of current capacities of all340

the nodes of the system. The inequality matrix, Θ, is related to341

the incidence matrix, Γ, as follows:342

Θ = {θiq}M×k | θiq =
{

1, γiq �= 0
0, otherwise

(3)

Γ = {γpq}M×k | γpq =

⎧⎨
⎩

1, p = i
−1, p = j
0, otherwise.

(4)

Γ is related to A by (4), where q = 1, 2, . . . , k (the edge number)343

is the index of the edge between nodes i and j in e and p =344

1, 2, . . . ,M345

Φ{Xij}k×1 = {0}ð×1 ∀(i, j) ∈ e. (5)

Equation (5) expresses the equality constraint to be satisfied, 346

where Φ and Γ are related, thus 347

Φ = {φλq}ð×k | φλq = γpq

λ = 1, 2, . . . ,ð | ð < M f : λ → p ∀p ∈ (s ∪ t)′. (6)

ð is the number of intermediate nodes, s is the set of source 348

nodes, which comprises the grid and standby power systems, 349

while t is the virtual node representing the total output of the 350

system. If the intermediate nodes of the system (i.e., nodes not in 351

s and t) are arranged in ascending order of their ID, (6) suggests 352

the λth row of Φ is identical to the pth row of Γ, where p is the 353

λth element of the ordered set of intermediate nodes. In other 354

words, Φ is a submatrix of Γ, containing all the rows of the 355

latter corresponding to intermediate nodes 356

lb = {0}k×1 , ub = {Ωij}k×1

Ωij = min{c{i}max, c
{j}
max} ∀(i, j) ∈ e. (7)

Equation (7) defines the lower and upper bound vectors, lb and 357

ub, of the flow through the links, where c{i}max is the maximum 358

capacity of node i. Finally, the objective function of the linear 359

programing problem is expressed as 360

Ψ = −{ψq}1×k{Xij}k×1 | ψq =
∑
i∈s

γiq . (8)

Following the termination of the linear programing algorithm, 361

the vector of flow, Y, through the nodes of the system is given 362

by ΘM×k{Xij}k×1 . The total output, therefore, is given by the 363

tth element, (Y, t), of Y. Interestingly, all the parameters, but 364

{c{i}x }M×1 , required to compute Y remain static during system 365

simulation. The main task, therefore, is to update {c{i}x }M×1 af- 366

ter each system event. The derivation of (2) to (8) is outside the 367

scope of this paper, interested readers are referred to [22]. How- 368

ever, an illustrative example of the linear programing problem 369

formulation is provided in the Appendix of this paper. 370

B. System Components 371

Each component is defined by a multistate model that takes 372

into account the various parameters that characterize its opera- 373

tion. Let Ei denote component i, then 374

Ei = (T,C, x0) (9)

T = {Txy}n×n | x �= y (x, y) ∈ {1, 2, . . . , n},

Txy =

⎧⎨
⎩

∞, If x→ y is a forced transition
0, If no transition between states x and y
fxy (t), Otherwise

(10)

where T is the transition matrix of the component; C | C = 375

{cx}1×n is the capacity vector; x0 is the initial state; cx is the 376

capacity in state x; n is the number of states; and fxy (t) is the 377

probability density function characterizing the transition from 378

state x to y. T contains the density function objects for all the 379

transitions depicted in the multistate model of the component 380

and C defines the capacity of the component in each state. 381
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Each state capacity is expressed as a nondimensional num-382

ber defining the proportion of total system output the node can383

supply or transmit while residing in that state. If m is the total384

number of power trains at the plant, n1 , the number of power385

trains the node simultaneously supplies, u, the proportion of386

power train demand it can satisfy, then, its capacity when work-387

ing perfectly is, n1um
−1 . It expresses the total system output as388

a fraction of the number of power trains/safety buses present at389

the plant. On this note, the grid and switchyard nodes are each390

assigned unity capacity when available and 0, otherwise. The391

virtual output node has a fixed capacity of 1 and each safety bus,392

a fixed capacity of m−1 .393

1) Modeling the Grid and Switchyard: The grid is modeled394

as a two-state node: “Working,” when available and “Failed,”395

otherwise. Though grid failures are mostly random, we model396

them as forced transitions [23], since they already are incorpo-397

rated in the LOOP frequency. Most often, plants tap their ac398

power from multiple offsite sources, and grid failure is defined399

as the failure of all of these sources. The repair of at least one of400

the failed sources, however, is sufficient to achieve grid recov-401

ery. For this reason, the transition from “Failed” to “Working”402

is defined by the upper bound of the envelope around the cu-403

mulative density functions (cdf) of the individual source repair404

distributions. Given this, sampling the grid recovery time entails405

generating a uniform random number and reading off its corre-406

sponding time from the envelope cdf, interpolating where nec-407

essary. An important point to note is that this approach slightly408

underestimates the grid recovery probability, as it assumes the409

individual source repair actions are initiated concurrently. In410

practice, the sources do not necessarily fail simultaneously and411

their recovery actions may commence at different times. This412

implies, by the time the last source fails, the restoration of413

already failed sources would have begun. The actual grid re-414

covery time, therefore, is less than that given by the envelope415

cdf. This, however, is acceptable, as the goal in risk manage-416

ment is to ensure risk levels are acceptable, even in worst case417

scenarios.418

Similarly, normal switchyard operation is defined by a two-419

state node. In cases where the plant is enhanced with multiple420

switchyards, switchyard recovery is treated as in the case of421

multiple grid sources. Fig. 1 shows the multistate model for the422

grid and switchyard.423

2) Modeling the Standby Power Systems: The emergency424

power system is constituted by the EDGs, and in this work,425

GTGs constitute the alternative emergency power system. In this426

section, we model only the multistate behavior of the standby427

power systems, and the effects of redundancies on their oper-428

ation is considered in a latter section. We make the following429

assumptions in developing these models.430

1) The initiation of test/maintenance is coincident with431

LOOP, and at any instance, there is not more than one432

source in test or maintenance.433

2) Sources in test or maintenance remain unavailable through434

the sequence.435

3) Repairs are commenced immediately.436

4) A generator just from maintenance cannot fail to start.437

This implies a perfect maintenance scenario.438

Fig. 1. Multistate model for grid and switchyard nodes.

The alternative emergency power system recovery is assumed 439

offsite power recovery in [24]. This assumption is on the premise 440

that their failure is included in the LOOP frequency. However, 441

the assumption is impractical, given they are mostly a standby 442

source. We, therefore, modify their multistate model to include 443

running failures, rendering them an onsite source. 444

We consider failure-to-start and failure-to-run as the only fail- 445

ure modes an EDG is susceptible to. Failure-to-start refers to 446

the EDG failure to start from cold-standby and failure-to-run 447

denotes its failure to function for the duration of the LOOP. 448

While the former is defined by a crisp probability, the latter is 449

characterized by a time-to-failure probability density function. 450

However, the standardized plant analysis risk model [1] consid- 451

ers a third EDG failure mode, failure-to-load, defining the case 452

when the EDG starts but cannot power the load. This failure 453

mode is considered failure-to-start, in the proposed framework. 454

We introduce two additional states, “Working” and “TM,” as 455

shown in Fig. 2, to account for the perfect operation of the EDG 456

and its unavailability due to test or maintenance, respectively. 457

Except otherwise, the transition from cold standby to working is 458

instantaneous, while the transition from cold standby to failure 459

or TM is also instantaneous but conditional. Conditional tran- 460

sitions are a special type of forced transition depending on a 461

probabilistic event that is external to the component and with a 462

known likelihood [23]. Conditional and forced transitions have 463

the same representation in the transition matrix of the compo- 464

nent [see (10)]. 465

The GTGs behave in almost the same way as the EDGs, save 466

for the difference in their start-up and manual alignment times. 467

For this, a start-up state is inserted between their cold-standby 468

and working states, as shown in Fig. 2. While in start-up, they 469

could fail, explaining the transition from start-up to failure. 470

3) Accounting for Human Error: Human error is very im- 471

portant in the risk assessment of engineering systems. In SBO 472

recovery, human errors mostly manifest themselves as delayed 473

response to certain SBO mitigation action. For instance, the 474

switchyard is forced into a temporary shutdown state during grid 475
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Fig. 2. Multistate models for emergency diesel and GTGs without human error consideration.

Fig. 3. Multistate model for switchyard with human error consideration.

failures. On grid recovery, the plant personnel manually initiate476

its restoration, which process is susceptible to human-induced477

delays. Accounting for these delays, two additional states are478

introduced in the two-state model discussed in Section II-B1,479

as shown in Fig. 3. The transitions from “Working” to “Shut-480

down” and from “Shutdown” to “Delay” (D), are influenced481

by grid failure and recovery respectively. “Shutdown” denotes482

grid recovery-in-progress, while “Delay” represents switching-483

in-progress. The latter determines the difference between the484

potential and actual bus recovery times. If this difference is neg-485

ligible or the potential, instead of the actual bus recovery time486

is required, the model in Fig. 1 is retained.487

Similarly, the GTG and some EDGs require manual start-up488

and alignment, this is the case for shared diesel generators. A489

generator is said to be shared if it can substitute several units but,490

however, can only replace one unit at a given instance. There-491

fore, in the case of sequential multiple unit failures, only the492

first unit is replaced. For simultaneous failures, any of the units493

can be replaced, since they normally are identical. Since these494

replacements are manually executed, they are susceptible to de-495

lays, contrary to what most models suggest. Fig. 2, for instance,496

assumes the transition from cold standby to the fully functional497

or failure state to be instantaneous. This, by extension, implies,498

any maintenance action (if the generator fails to start) is initi- 499

ated at once. However, with human error, the start-up procedure 500

may be initiated later than scheduled. We, therefore, introduce 501

two states, one each, between cold standby and working and 502

failure and cold standby, as shown in Fig. 4, to account for these 503

delays. We have assumed the plant personnel to be well trained, 504

experienced, and fit to perform their assigned tasks as expected. 505

Consequently, the possibility of inappropriately executed ac- 506

tions is ignored. 507

Transitions 6 → 1 with 4 → 7 and transition 7 → 4 with 5 → 508

8, of Fig. 4, account for human error in the recovery of manually 509

operated emergency diesel and GTGs, respectively. In practical 510

applications, human error is expressed in terms of the probability 511

of not completing a given action within a specified time. If 512

this probability is known for multiple times, a cdf could be 513

fitted through the points. For this, we recommend the Weibull 514

distribution, since it can yield a wide range of distributions. 515

Recall the cdf of a Weibull distribution is 1 − e−(t/a)b , where 516

a and b are its scale and shape parameters, respectively. Given 517

the human error probabilities are the likelihoods of inaction, 518

they define the complement of the human reaction time cdf. 519

Therefore, the Weibull parameters, a and b, are obtained by 520

fitting the set of probability values to the function e−(t/a)b . 521

C. Modeling Component Interdependencies 522

To ensure resilience, system designers often employ multi- 523

ple layers of defense, either in the form of redundancies or 524

shared components. This proactive strategy inadvertently intro- 525

duces interdependencies in the system, resulting in modeling 526

accuracy issues. We define interdependency in a more gen- 527

eral sense as the potential for a state change in one element 528

to trigger a state change in another. We propose two models, 529

the CCF and the cascading failure models, to implement these 530

interdependencies. 531

1) CCF Model: This model is used when the random failure 532

of any member of a group of similar components, performing 533

the same task could cause the failure of one or more of the 534

remaining components [25]. Such a group of components is 535
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Fig. 4. Multistate models for emergency diesel and GTGs with human error consideration.

called a common-cause group (CCG), and its key attributes are536

as follows:537

1) There is a set of probabilities associated with the num-538

ber of components involved in any random failure event.539

Let this set of probabilities be defined by θ | θ = {θr}δ ,540

where r is the number of components affected by the fail-541

ure event, δ, the total number of components in the group,542

and
∑δ

r=1 θr = 1.543

2) All the components in the CCG fail in the same mode.544

Implying, the CCG for start-up failures cannot influence545

the CCG for running failures, for instance.546

Each CCG, therefore, is defined by the quadruple,547

(ρ, β1 , β2 ,θ), where ρ is the set of components in the CCG,548

β1 , the common failure mode, and β2 , the state the components549

have to be in to be susceptible to this failure mode. The algorithm550

for propagating CCF is summarized thus.551

1) When a component fails, check if its new state matches552

β1 for its CCG.553

2) Go to step (v) if there is no match. Else, determine the554

number of components, r, that will fail.555

3) Go to step (v) if r = 1. Else, remove from ρ, the com-556

ponent initiating the failure event. From the remainder,557

randomly select r − 1 components.558

4) For each component selected in step (iii), check if its559

current state matches β2 and set this to β1 .560

5) End procedure.561

The procedure above requires θ to be in conformity with562

the α-Factor model [25]. CCF probabilities expressed in the563

multiple Greek letter model would need to be converted as564

in [25].565

2) Cascading Failure Model: This model is used for inter-566

dependencies not satisfying the CCF criteria. For instance, the567

redundancies among the standby power systems and the de-568

pendence of the latter on the grid and switchyard. An important569

assumption invoked in this model, however, is that on occurrence 570

of the trigger event, the dependent event occurs immediately. 571

Initially proposed in [26], the model defines interdependen- 572

cies by a dependency matrix. The dependency matrix, Di , for 573

node i, defines the effects of the node’s state transition on 574

other nodes. It takes the form, Di = {dj1 , dj2 , dj3 , dj4}v×4 | 575

j = 1, 2, . . . , v − 1, v, where dj1 is the state of i triggering the 576

event, dj2 , the affected node, dj3 , the state the node has to be in 577

to be vulnerable, and dj4 , its target state after the event. Each row 578

of Di defines the behavior of an affected node, and v, the num- 579

ber of relationships. For example, consider a two-component 580

system, with each component existing in three possible distinct 581

states. When component 1 makes a transition to state 3, compo- 582

nent 2 is forced to make a transition to state 2 as well, if and only 583

if the latter is currently residing in state 1. Since component 1 584

is the trigger component in this case, the interdependency is 585

defined by D1 as 586

D1 =
(
3 2 1 2

)
. (11)

Let a third three-state component be added to the system. In 587

addition to its effect on component 2, let the transition of 588

component 1 also affect component 3, such that the latter is 589

forced to state 1 if it is in state 3 at the time of the trigger event. 590

To represent the overall behavior of component 1, D1 is updated 591

as shown in (12), to reflect the new information: 592

D1 =
(

3 2 1 2
3 3 3 1

)
. (12)

(12) shows that each row of the dependency matrix represents a 593

possible outcome. 594

Occasionally, a state change in a node can only affect another 595

node if a third node is in a certain state. This type of dependency 596

is known as a joint dependency, and it is outside the scope of the 597

initial model in [26]. We introduce the joint dependency matrix, 598
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D′ = {d′j1 , d′j2 , d′j3 , d′j4}v×4 , to resolve this problem. Element599

d′j1 defines the state the third node must be in to satisfy the joint600

dependency, while d′j2 , d′j3 , and d′j4 have the same meaning as601

dj2 , dj3 , and dj4 , respectively. Assuming a certain state change602

in node i only affects, say node x, if node ω is in state σ,603

Di defines the relationship between nodes i and ω, while D′
ω604

defines the relationship between ω and x. Nodes i, ω, and x are605

the trigger, intermediate, and target nodes, respectively. The606

intermediate node does not undergo a state change, meaning607

its target state is the same as its vulnerable state. Therefore, in608

Di , the third and fourth elements of the row corresponding to609

the intermediate node are equal. Given j = 1, for Di , d12 = ω,610

d13 = d14 = σ and for D′
ω , d′11 = σ, d′12 = x. The remaining611

elements retain their meaning, as defined earlier. Let, for illus-612

trative purposes, the dependency between components 1 and 3613

(second row of D1 in (12)) only hold if component 2 is in state 2:614

D1 =
(

3 2 1 2
3 2 2 2

)
D′

2 =
(
2 3 3 1

)
. (13)

To represent this attribute, the second row of D1 is modified615

to reflect the relationship between components 1 and 2, and the616

relationship between components 2 and 3, defined by D′
2 as617

shown in (13). Notice D′
2 , instead of D2 , has been used, since618

the relationship between components 2 and 3 is due to a joint619

dependency with another component.620

The dependency and joint dependency matrices, indeed, can621

be used to represent a wide range of dependencies. However,622

there are a few instances that may result in large matrices. Such623

cases require an intuitive manipulation, to keep the matrix size624

moderate and prevent modeling error. We introduce a negative625

sign in front of the trigger or vulnerable state to signify that626

the dependency is satisfied only if the component is not in that627

state. This notation is analogous to the NOT-gate in fault trees.628

For instance, if component 1, in the scenario above, can affect629

component 3 only if component 2 is in states 2 or 1, it is efficient630

to exploit the NOT notation, instead of inserting an additional631

row in each of D1 and D′
2 . Recalling that component 2 has 3632

states, state 2 OR state 1 is logically equivalent to NOT state 3.633

Hence, the dependency matrices, D1 and D′
2 , become634

D1 =
(

3 2 1 2
3 2 −3 −3

)
D′

2 =
(−3 3 3 1

)
.

We propose a recursive algorithm to implement the depen-635

dency matrices. If xi denotes the new/current state of node i,636

the algorithm is summarized thus.637

i) Define a register, R, to hold the affected components,638

their vulnerable, and target states.639

ii) Using Di and xi , find all components affected by the640

state change and update R with elements 2 to 4 of the641

rows representing the components.642

iii) Select the last row of R and check if its last two elements643

are equal. This row defines the dependency induced in644

component ω by component i.645

iv) If the response to the query in step (iii) is in the affirma-646

tive, designate the equal elements, ε, delete the last row647

of R, and648

a) Using ω, D′
ω , and xω as inputs, call steps (i) to 649

(vii), noting that a row in D′
ω is affected by the 650

state change only if its first element is ε. 651

b) Continue from step (iii). 652

Else, proceed to step (v). 653

v) Force the designated transition as determined in step (iii) 654

and delete the last row of R. If the affected node is in 655

standby, and its target state, working, delay, or start-up, 656

initiate its start-up procedure. 657

vi) If Dω exists, repeat steps (ii) to (vi), replacing Di and 658

xi with Dω and xω , respectively. 659

vii) Repeat steps (iii) to (vi) until R is empty, and terminate 660

the procedure. 661

III. SYSTEM SIMULATION AND ANALYSIS 662

The system’s operation is imitated by generating random fail- 663

ure events of components and their corresponding repairs. For 664

every component transition, the capacity vector, {c{i}x }M×1 , of 665

the system is updated and used to deduce the flow, (Y, t), 666

through the output node. At time t = 0, the grid and switch- 667

yard nodes are in operation, while the emergency power systems 668

and alternative emergency power systems are in cold standby. 669

LOOP is initiated by setting the grid (for grid centred LOOP) 670

or the switchyard (for switchyard centred LOOP) to its failure 671

state. The next transition parameters of the standby systems are 672

sampled, and the simulation is moved to the earliest transition 673

time, t. Components with next transition time equal to t are 674

identified, the required transitions effected, their next transition 675

times sampled, the new system performance computed, and the 676

next simulation time determined. This cycle of events continues 677

until offsite power is recovered. 678

Let μold hold the node capacities at the previous system tran- 679

sition, τ , the vector of next node transition times,N , the number 680

of simulation samples, and S = {sj}N , the register indicating 681

the occurrence of an SBO. The indicator register, S, is such that, 682

sj = 1 if an SBO occurs in the jth sample, and 0, otherwise. 683

The simulation algorithm is summarized thus. 684

i) Initialize the register storing the flow through the out- 685

put node, set N = 1, S = {}, and define the simulation 686

stopping criterion. The stopping criterion could be the 687

number of LOOP, number of SBO, or convergence of 688

the SBO probability. 689

ii) Determine which component will be unavailable due to 690

test or maintenance. 691

iii) Set sN = 0 and τ = {∞}M , whereM is the number of 692

nodes in the system. 693

iv) Force LOOP as described earlier, accounting for in- 694

terdependencies according to the procedures described 695

in Sections II-C1 and II-C2. Remember to sample the 696

next transition parameters after every node transition 697

and update τ . See [22] for the procedure for sampling 698

the transition parameters of a multistate node. 699

v) Define μ using the current states of the nodes, that is, 700

μ = {c{i}x0 }M×1 and set t = 0, μold = μ. 701

vi) DetermineXout | Xout = (Y, t) and save as a function 702

of time. 703
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vii) Set sN = sN + 1 if Xout = 0 and determine the next704

simulation time, t = min (τ ).705

viii) Find nodes with next transition time equal to t. For706

each node, force the required transition, sample its next707

transition parameters (except for nodes returning to cold708

standby), and update μ and τ .709

ix) Restart nodes returning from repairs if Xout , as previ-710

ously determined, is less than 1.711

x) If μold �= μ;712

a) ComputeXout and set sN = sN + 1 ifXout = 0.713

b) Save Xout if different from the previous.714

c) Temporarily set the capacity of the switchyard715

node to 1 if it is in “Shutdown” and calculate the716

new system flow. If this flow is nonzero, set the717

switchyard to start-up, sample its next transition718

parameters, and update τ .719

xi) Set μold = μ, t = min (τ ), and check if offsite power720

is recovered.721

xii) Repeat steps (viii) to (xi) until offsite power is recovered.722

Discard history N if sN = 0 and set N = N + 1.723

xiii) Repeat steps (ii) to (xii) until the simulation stopping724

criterion is met, and terminate algorithm.725

xiv) Compute the relevant SBO indices726

A. SBO Indices: Computation and Relevance727

The SBO frequency, fs , makes the list of the most informative728

and desired SBO indices. It defines the expected number of729

times, per year, an SBO occurs at a plant. If p1 defines the730

conditional probability of an SBO given a LOOP occurring at731

frequency, fl , per year, then732

fs = p1fl

p1 =
∑

(S > 0)
N − 1

. (14)

The fraction of fs occurring at start-up is deduced from the733

number of SBO at time 0. This index could be used to assess the734

efficiency of the start-up procedure, as well as the vulnerability735

of the generators in cold standby.736

The nonrecovery probability, r1 (t), defines the likelihood of737

recovery duration from an SBO accident exceeding a given time.738

It is computed as detailed in [26], and like p1 , belongs to the set739

of inputs to the SBO event tree. Given it defines the unavailabil-740

ity of power at the plant, r1 (t) can be directly compared with741

the reliability of the SBO mitigating mechanism. The outcome742

of such a comparison would help ascertain the adequacy of the743

mitigating mechanism. In addition, fs × r1 (t) yields the fre-744

quency of exceedance, a measure of the overall SBO risk at the745

plant. The quantity also presents a means of assessing the rela-746

tive effectiveness of multiple recovery responses or operational747

constraints.748

Finally, the conditional probability of a second SBO, p2 , given749

an SBO has already occurred is given by750

p2 =
∑

(S > 1)∑
(S > 0)

. (15)

Knowledge of p2 may shape the recovery response on the oc- 751

currence of a second SBO. For instance, a plant with a large p2 752

would require the logistics used in the recovery of the first SBO 753

left in the field and the operations staff kept on high alert. This 754

reduces human error, ensuring a lower nonrecovery probability, 755

r2(t), of the second SBO. 756

Generally, the conditional probability, pn , of the nth SBO 757

given the (n− 1)th SBO is expressed as 758

pn =
∑

(S > n− 1)∑
(S > n− 2)

. (16)

If absolute probabilities are required instead, the denominator 759

in (16) is replaced with N − 1. 760

B. Incorporation Into the Existing Framework 761

Shown in Fig. 5 is an excerpt from the SBO event tree pre- 762

sented in [1]. Of its 12 headings, only four T(PG), EM, ER1, 763

and ER2 are of relevance to SBO recovery. The first depicts 764

LOOP, and requires the LOOP frequency. The second repre- 765

sents SBO occurrence, and requires the unavailability of the 766

standby power systems. Here, the chain of complicated fault 767

trees in the existing model can be replaced with the conditional 768

SBO probability, p1 . The last two headings represent offsite and 769

standby power recovery, respectively. These can be merged into 770

one heading, say ac power recovery, and the complicated fault 771

trees replaced with a crisp value read from r1 (t). With these, the 772

core damage frequency induced by the first SBO is computed by 773

solving the event tree, using standard procedure. For the second 774

SBO, the first is regarded the initiating event. The LOOP fre- 775

quency, therefore, is replaced with fs , p1 with p2 , and r1 (t) 776

with r2(t). 777

IV. CASE STUDY: AN APPLICATION TO THE MAANSHAN 778

NUCLEAR POWER PLANT IN TAIWAN 779

The Maanshan plant is a two-unit, 1902 MW, Westinghouse 780

PWR nuclear power plant operated by the Taiwan Power Com- 781

pany. Its offsite power is supplied by six independent sources, 782

four of which are connected to the 345-kV switchyard and the re- 783

mainder, through the 161-kV switchyard. It is powered through 784

two safety buses, AIE-PB-S01 and BIE-PB-S01, each with a 785

dedicated EDG: DG-A, and DG-B, respectively. A shared EDG, 786

DG-5, connected as shown in Fig. 6 is available as a backup in 787

case any of the dedicated generators is unavailable. In addition 788

to the shared EDGs, are two GTGs, GT1 and GT2, connected 789

via the 161-kV switchyard. These generators form the alterna- 790

tive emergency power system of the plant, each satisfying the 791

demand on both power trains. 792

During normal plant operation, the safety buses are fed by 793

the main plant generator, G1, via the red lines and the normally 794

closed breakers 19 and 01. On plant shut down, G1 becomes 795

unavailable, and the safety buses are forced to tap power from 796

the 345-kV switchyard (via the blue lines and the normally 797

open breakers 17 and 03) or the 161-kV switchyard (via the 798

green lines and the normally open breakers 15 and 05). When 799

these sources also become unavailable, DG-A and DG-B are 800

automatically started and aligned. DG-5 is manually started and 801
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Fig. 5. Excerpt from the SBO event tree showing headings (credit: [1]).

Fig. 6. Layout of the Maanshan nuclear power plant ac distribution system (credit: Dr. S.-K. Chen, NTHU, Taiwan).

aligned by the plant operators on the failure of any of these. The802

manual start-up and alignment procedure of GT1 and GT2 is803

initiated when at least 2 out of the 3 EDGs become unavailable.804

Following their successful start-up, the GTGs take about 30 min805

to become fully functional.806

A probabilistic assessment of the SBO risk of the plant due807

to grid and switchyard initiated LOOP is required.808

A. Developing the System and Component Models809

Fig. 7 is the simplified schematic of the plant’s ac power810

system, showing all the elements relevant to an SBO. DG-5,811

though serving only one bus at a time, is assumed connected to812

both buses in the system’s adjacency matrix. This implies, its813

flow is divided between the buses, contrary to what is obtained814

in reality. However, since the flows from the two buses are815

emptied into the virtual output node, t, the total flow from the 816

shared generator is accounted for. As shown, the six grid sources 817

and the two switchyard sources have each been represented by 818

single nodes, as proposed in Section II-B1. 819

Nodes 1, 7, 8, and 9 are modeled as proposed in Sections II-B 820

and II-B1. The switchyard, on the other hand, is modeled ac- 821

cording to Fig. 3, to account for human error during its start-up 822

from shut down. Since DG-A (node 5) and DG-B (node 6) are 823

automatically started following a LOOP, they are not susceptible 824

to human error, and, therefore are modeled as shown in Fig. 8. 825

DG-5, GT1, and GT2, however, require human intervention for 826

their start-up and alignment. Node 10, therefore, is modeled 827

according to Fig. 9 and nodes 3 and 4, according to Fig. 10. 828

Justifying the values assigned to the state capacities of the 829

generators, recall the system consists of 2 safety buses (m = 2) 830

with each of DG-A and DG-B serving only one bus at a time 831
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Fig. 7. Simplified schematic of plant’s ac distribution system.

(n1 = 1). Since these generators can, however, fully meet the de-832

mand on the bus they serve (u = 1), they are assigned a capacity833

of 0.5 when working, as proposed in Section II-B. The GTGs,834

on the other hand, can fully serve both buses simultaneously835

(n1 = 2), and therefore, have a capacity of 1 when working.836

From the multistate models, the capacity vector for the main837

diesel generators, the shared diesel generator, and the GTGs are838

{0.5, 0, 0, 0, 0}, {0.5, 0, 0, 0, 0, 0, 0}, and {1, 0, 0, 0, 0, 0, 0, 0},839

respectively. Using these parameters in conjunction with Fig. 7,840

the adjacency matrix of the system is derived as841

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Given the adjacency matrix, the other parameters of the system842

flow equations are obtained as described in Section II-A, where843

s = {1, 3, 4, 5, 6, 10} and t = 9. Fig. 11 is the system’s graph844

model showing the maximum flow along each link, derived from845

the adjacency matrix and the maximum node capacities.846

Component Reliability Data: Though realistic, the data used847

do not represent the actual data for the Maanshan plant. They848

were, however, assumed with the view to reflecting the reliability849

Fig. 8. Multistate model for the main diesel generators (DG-A and DG-B).

Fig. 9. Multistate model for the shared diesel generator (DG-5).

data used in Volumes 1 and 2 of the NUREG/CR-6890 report 850

(see [1] and [2]). 851

The repair times for the six grid sources are lognor- 852

mally distributed with means and corresponding standard de- 853

viations defined by {8.99, 11.84, 8.24, 10.25, 9.61, 9.15} and 854

{6.71, 4.83, 4.05, 6.61, 1.92, 5}, respectively. Similarly, switch- 855

yard repair times are lognormally distributed, with {8, 10.41} 856

and {5.83, 2.5}, respectively, being the sets of means and cor- 857

responding standard deviations for the two switchyards. The 858

effective repair distributions for the grid and switchyard nodes 859

are modeled according to the proposal in Section II-B1, as shown 860

in Figs. 12 and 13, respectively. 861

All five standby generators are assumed to have a start-up 862

failure probability of 1.756 × 10−2 . Also, the human errors as- 863

sociated with the failure to complete the start-up procedures 864

for GT-5 and the switchyard are assumed equal but one-sixth 865

of those for GT1 and GT2. Table I defines the probability of 866
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Fig. 10. Multistate model for the GTGs (GT1 and GT2).

Fig. 11. Full system graph model showing maximum flow along links.

the operators not completing the start-up of the GTGs within867

selected times. Using the procedure proposed in Section II-B3,868

the parameters defining transitions 7 → 4 and 5 → 8 of the869

GTGs were obtained. The same procedure was used to obtain870

the parameters for transitions 6 → 1 and 4 → 7 of DG-5 and871

transition 4 → 1 of the switchyard. These and the parameters872

Fig. 12. Effective repair cdf for multiple grid sources.

Fig. 13. Effective repair cdf for multiple switchyard nodes.

for the remaining transitions are presented in Table II. The col- 873

umn, Utm, defines the unavailability due to test/maintenance of 874

the generators. The CCF parameters are defined by a set in 875

which each element represents the probability of a certain num- 876

ber of components being involved in any failure event initiated 877

by the component. The number of components is determined 878

by the index of the element in the set. For instance, from the 879

table, the probability that the start-up failure of any of the main 880

diesel generators leads to the failure of the other generator is 881

0.021. This implies a total of two component failures, explaining 882

why the probability value is the second element of the set (see 883

Section II-C1 for details). Transition 4 → 1 of the GTGs depicts 884

their start-up duration, which as we are told in Section IV, takes 885

30 min, explaining why it is assigned a deterministic 0.5 h. 886

B. Representing Component Interdependencies 887

The first and easily recognizable form of interdependency in 888

the system is CCF, where the failure of a generator could trigger 889
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TABLE I
HUMAN ERROR PROBABILITIES FOR GT1 AND GT2

TABLE II
COMPONENT RELIABILITY DATA

TABLE III
CCG DEFINITION

the almost instantaneous failure of another generator. This type890

of interdependency is modeled according to the CCF model891

presented in Section II-C1. DG-A and DG-B, as we know, are892

of the same design and model, different from the make of DG-893

5. Therefore, while the former are susceptible to CCF, DG-5894

is immune. Similarly, GT1 and GT2 are susceptible to CCF,895

giving rise to four CCGs, as defined in Table III. The table is896

developed from the CCF parameters in Table II in conjunction897

with the CCF model proposed in Section II-C1. CCG 1, for898

instance, represents the CCF due to the start-up failure of any of899

the main diesel generators. Since these generators are denoted900

as nodes 5 and 6 in the system, ρ, the set of components in the901

CCG is defined as {5, 6}. Now, as shown in Fig. 8, the start-up902

failure of DG-A or DG-B is denoted by state 4. Also, the other 903

generator could only be affected by this event if it is in cold 904

standby (state 3) at the time of occurrence. This explains why 905

β1 and β2 are assigned the values, 4 and 3, respectively. The 906

parameters for CCG 2 to 4 are derived in a similar fashion. 907

The other form of interdependency, like the grid failure ne- 908

cessitating the start-up of the standby generators or the failure 909

of GT-5 forcing the start-up of the GTGs, is a little more sub- 910

tle and difficult to deduce. It requires a good knowledge of the 911

operating principle of the system and cannot be modeled by 912

the CCF model. For this, the cascading failure model proposed 913

in Section II-C2 is invoked. To ensure the reproducibility of 914

the case study, the step-by-step procedure for developing the 915
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dependency matrices have been shown by recreating the se-916

quence of events following a LOOP.917

1) Let us assume the occurrence of the initiating event918

(LOOP), due to the failure of the grid (node 1). As al-919

ready stated at the beginning of Section IV, the main920

diesel generators, A (node 5) and B (node 6), are restarted921

from cold standby. This is accounted for by the first two922

rows of the dependency matrix, D1 . However, if the main923

generators are not in cold standby, maybe924

D1 = D2 =

⎛
⎜⎜⎝

2 5 3 1
2 6 3 1
2 5 −3 −3
2 6 −3 −3

⎞
⎟⎟⎠

D′
5 = D′

6 =
(−3 10 3 6
−3 10 −3 −3

)

D′
10 =

(−3 3 3 7
−3 4 3 7

)
(17)

due to test/maintenance or failure, the shared standby gen-925

erator, DG-5 (node 10), is restarted. Recalling the concept926

of joint dependency discussed in Section II-C2, the joint927

dependency between the grid and DG-5 can be deduced.928

Here, the main generators are the intermediate nodes,929

since they dictate whether or not to start the shared gen-930

erator. This behavior is jointly represented by the last two931

rows of D1 and the first row of D′
5 in (17). Again, if the932

shared generator too is unavailable (i.e., it is not in cold933

standby), the GTGs, GT1 (node 3) and GT2 (node 4), are934

restarted (see Fig. 10). This attribute is jointly represented935

by D′
10 and the last row of D′

5 . If, however, the GTGs936

are not in cold standby on arrival of their start-up signal,937

no action is taken. This is due to the fact that the signal938

signifies the unavailability of all the standby sources at939

the plant. D′
5 and D′

6 are equal because nodes 5 and 6940

produce the same effect on the shared generator when un-941

available for start-up. Similarly, D1 and D2 are equal, as942

the response of the standby systems is the same for grid943

and switchyard failures944

D5 =

⎛
⎜⎜⎝

2 6 3 1
4 6 3 1
2 6 −3 −3
4 6 −3 −3

⎞
⎟⎟⎠ . (18)

2) DG-A (node 5) fails to start or starts but fails to run (see945

Fig. 2). The system will first check if DG-B (node 6) is946

available for start-up and initiate its start up, if available.947

This behavior is defined by the first two rows of D5 , as948

shown in (18). The effect of the unavailability of DG-B949

on arrival of its start-up signal has already been defined in950

scenario 1) (see the last row of D1). This representation is951

adapted to account for the case when DG-A fails to start952

or run and DG-B is unavailable for start-up, in the last two953

rows of D5 [see (18)] 954

D6 =

⎛
⎜⎜⎝

2 5 3 1
4 5 3 1
2 5 −3 −3
4 5 −3 −3

⎞
⎟⎟⎠ . (19)

3) Similarly, DG-B (node 6) fails to start or starts but fails 955

to run (see Fig. 8). The system will first check if DG-A 956

(node 5) is available, and initiate its start-up. The ensuing 957

sequence of events is similar to that in scenario 2). Hence, 958

the dependency matrix is as obtained in (19). 959

4) DG-5 in cold standby fails to start or starts but fails to run 960

(see Fig. 9). In this case, any repaired EDG is restarted 961

first, otherwise, the GTG are restarted. The ensuing pos- 962

sible sequence of events are already covered by scenarios 963

(1)–(3), and it is, therefore, recommended to not explicitly 964

redefine these in D10 , for simplicity. It is deducible that 965

the failure of DG-5 induces the same response sequence as 966

grid or switchyard failure. Therefore, recreating a LOOP 967

event accounts for the failure of DG-5. Hence 968

D10 =

⎛
⎜⎜⎝

2 1 2 2
2 2 2 2
4 1 2 2
4 2 2 2

⎞
⎟⎟⎠ D′

1 = D1 D′
2 = D2 .

5) GT1 (node 3) starts up successfully and enters the start-up 969

state (see Fig. 10). Recall, states 7 and 8 account for the 970

time taken by the operator to initiate the start-up of the 971

generator. However, since both GT1 and GT2 (node 4) 972

are in the same location, they are exposed to equal delays. 973

Hence, the transitions, 7 → 4 and 5 → 8, of GT1 and GT2 974

are equal. To ensure the satisfaction of this constraint, 975

when GT1 enters state 4, GT2 too is forced to state 4 if it 976

is in state 7 or state 8, if it is in state 5. Similarly, when 977

GT1 enters state 8, GT2 is forced to state 8 if it is in state 978

5 or state 4 if it is in state 7. This behavior is expressed by 979

the first four rows of D3 , as shown in (20). 980

6) GT2 (node 4) starts up successfully and enters the start-up 981

state (see Fig. 10). This scenario has the same effect on 982

GT1 (node 3) as scenario (v) has on GT2. Therefore, the 983

ensuing sequence of events is accounted for by the first 984

four rows of D4 , as shown in the following: 985

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 4 5 8
8 4 7 4
4 4 5 8
4 4 7 4
2 4 3 7
2 4 2 2
2 4 8 8
2 4 5 5
2 4 6 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 3 5 8
8 3 7 4
4 3 5 8
4 3 7 4
2 3 3 7
2 3 2 2
2 3 8 8
2 3 5 5
2 3 6 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D′
3 = D′

4 =

⎛
⎜⎜⎝

2 1 2 2
5 1 2 2
6 1 2 2
8 1 2 2

⎞
⎟⎟⎠ . (20)
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TABLE IV
SUMMARY OF THE STATIC SBO INDICES OBTAINED

Fig. 14. Probability of SBO duration exceedance.

7) GT1 fails to run. GT2 is restarted, if it is available for986

start-up, otherwise the system checks whether or not the987

failed diesel generators have been repaired. The first case988

is represented by the fifth row of D3 , as shown in (20). The989

sequence of events involved in the second case is similar to990

the events following a LOOP. Therefore, a LOOP scenario991

is recreated, as shown in the last four rows of D3 and D′
4 .992

States 1, 4, and 7 have been left out of the possible GT2993

states to necessitate the second case because, they mean994

either GT2 is already in operation (state 1), or on the verge995

of operation (states 4 and 7).996

8) Similarly, GT2 failure to run produces the same effect997

on GT1 and the diesel generators, as in scenario (7). The998

ensuing sequence of events is defined by D4 and D′
3 .999

We have not considered the sequence of events following1000

the failure of the GTGs to start because, being the last standby1001

sources to be called into operation, their start-up failure means1002

the unavailability of the other standby sources.1003

C. Results and Discussions1004

The proposed framework is implemented in the open source1005

uncertainty quantification toolbox, OpenCOSSAN [27], [28],1006

and used to quantify the SBO risk at the Maanshan nuclear1007

power plant. For a grid and switchyard LOOP frequency of1008

1.86 × 10−2 and 1.04 × 10−2 per/year respectively, the case1009

study was analyzed on a 2.5-GHz, E5-2670 v2 Intel Xeon CPU.1010

A 5% coefficient of variation was imposed on the conditional1011

probability of SBO as the simulation convergence criterion. The1012

analysis took about 3 h, and the results yielded are summarized1013

Fig. 15. Composite frequency of first SBO exceedance.

in Table IV, Fig. 14, and Fig. 15. The probability of exceedance 1014

gives a measure of the likelihood of nonrecovery from the SBO 1015

within a given time. The composite frequency of exceedance is 1016

the sum of the frequencies of exceedance yielded by the two 1017

LOOP categories. 1018

As shown in Table IV, the probability of an SBO given a 1019

LOOP is almost the same for both LOOP categories. The slight 1020

difference is due to the fact that the GTG are unusable during 1021

switchyard centred LOOP. Their effect, however, is prominent in 1022
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Fig. 16. Comparison of composite frequencies of exceedance. (a) Composite frequencies of exceedance when a minimum of two powertrains are required for
power recovery; (b) Composite frequencies of exceedance when one power train is sufficientfor power recovery.

mitigating the second SBO. The nonrecovery probability from1023

an SBO, as shown in Fig 14, is expressed as the nonrecovery1024

likelihood as a function of time and number of safety buses.1025

The overall SBO risk at the plant is defined by the composite1026

frequency of exceedance, as shown in Fig. 15.1027

As a way of verifying the convergence of the simulation,1028

the product of p1 and the fraction of SBO at start-up, should1029

match the probability, p0 , of the emergency power system be-1030

ing unavailable at time 0. Bear in mind that GT-5 and the GTG1031

have no influence on p0 , as a result of the delays characteriz-1032

ing their start-up. Therefore, the emergency power system is1033

unavailable at start-up only if DG-A (or DG-B) is unavailable1034

due to test/maintenance and DG-B (or DG-A) fails to start or1035

both are not in test/maintenance but fail to start. If Utm is the1036

unavailability due to test/maintenance of DG-A and DG-B and1037

ps , their start-up failure probability, p0 is obtained as1038

p0 = Utm (ps + ps) + (1 − Ua) p2
s

p0 = 2Utmps + (1 − Utm) p2
s . (21)

Substituting the required values in (21), an error of 3.17% is1039

realized for grid LOOP and 4.7%, for switchyard LOOP. Since1040

the error in each case is not in excess of 5%, the convergence of1041

the simulation is verified.1042

Ensuring an enhanced risk insight, the system was reanalyzed1043

for three additional scenarios as follows.1044

1) Case 2: No delays in the start-up of DG-5. This implies,1045

the effects of human error are removed.1046

2) Case 3: GTG start-up is simultaneous with DG-A and1047

DG-B. The generators, however, are kept in warm standby1048

after start-up.1049

3) Case 4: A combination of Case 2 and Case 3.1050

Case 1 represents the scenario already analyzed, and the1051

results for the four cases are summarized in Figs. 16 to 181052

(please note the composite frequencies in Figs. 16(a) and (b) are1053

Fig. 17. Comparison of SBO frequencies.

expressed on a log-scale). We have used absolute, instead of 1054

conditional probabilities in Fig. 18, to ensure uniformity. 1055

The following risk insights are inferred by the outcome of the 1056

case study. 1057

1) As shown in Fig. 14, SBOs induced by switchyard fail- 1058

ures are more difficult to recover from and, therefore, con- 1059

tribute more to the overall SBO risk at the plant. In this 1060

light, feasible reliability improvement programs should be 1061

designed to ensure the high reliability of the switchyard. 1062

Such a reliability program should be complemented by an 1063

efficient repair policy to keep the nonrecovery probability 1064

low. 1065

2) The GTGs are the only difference between the recovery 1066

durations of grid and switchyard LOOP. These generators, 1067

therefore, are very instrumental to mitigating SBO risks 1068

at the plant, and their availability should be kept high. 1069
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Fig. 18. Comparison of second SBO probabilities.

3) Automating the start-up of DG-5 and initiating the start-1070

up of the GTG just after LOOP guarantees an improved1071

resilience to SBO, as endorsed by Figs. 16 to 18. However,1072

starting the GTG simultaneously with the EDG brings1073

with it additional costs, borne from fuel consumption and1074

maintenance. This decision, therefore, should be preceded1075

by a robust cost-benefit analysis. In fact, under economic1076

constraints, it is prudent to automate the start-up of DG-51077

only, as the difference between the outcomes yielded by1078

Case 2 and Case 4 is only just slight.1079

In this case study, we have ignored the explicit sensitivity and1080

importance analyses of the individual components, since these1081

quantities can be achieved even with the existing techniques.1082

V. CONCLUSION1083

SBO accidents, though a rare occurrence, can have devastat-1084

ing consequences on a nuclear power plant’s ability to achieve1085

and maintain safe shut down. Consequently, the plant’s capa-1086

bility to cope and recover from such occurrences makes a key1087

input to its probabilistic risk assessment model.1088

In this paper, we have proposed an intuitive simulation frame-1089

work to model a nuclear power plant’s recovery from SBO acci-1090

dents. The framework provides a simple means of defining the1091

complex interdependencies that often characterize the opera-1092

tion of practical engineering systems, and therefore, applicable1093

without unrealistic assumptions. This attribute, coupled with1094

its ability to intuitively tolerate the multistate behavior of the1095

system’s building block, distinguishes it from the existing ap-1096

proaches. Its applicability has been demonstrated by modeling1097

the SBO recovery of a pressurized water reactor, providing an1098

informed insight into its SBO risks. The proposed approach was1099

able to fully model the dynamic behavior of the power system1100

and provide valuable insights on the SBO risk at the plant. The1101

nonrecovery probability curve obtained, for instance, can be ab-1102

sorbed into the existing probabilistic risk assessment models,1103

Fig. 19. Structure of a three-component pipe network.

getting rid of laborious fault trees. Since this curve also depicts 1104

the unavailability of ac power, it can be directly compared with 1105

the reliability of the plant’s SBO coping mechanism, providing 1106

an easier means of determining the need for their reliability im- 1107

provement. It also helps ascertain the adequacy of the plant’s 1108

SBO recovery capability, without revisiting the entire model. 1109

A key desirable feature of the proposed framework is its wide 1110

applicability, even to nonnuclear applications. 1111

In spite of their well-documented limitations relative to the 1112

proposed framework, the existing static fault tree-based mod- 1113

els still possess desirable attributes that give them an edge in 1114

importance, sensitivity, and uncertainty analyses. With this in 1115

mind, the proposed framework has been developed with the 1116

view to complementing their applicability, instead of serving 1117

as an explicit replacement. We have, therefore, included a clear 1118

description of how its output can be incorporated into these 1119

models. The framework, in addition, has been implemented in 1120

the open-source uncertainty quantification toolbox developed 1121

at the Institute for Risk and Uncertainty (see [27] and [28]), 1122

thereby rendering it readily available. 1123

The multistate model and dependency matrices proposed cre- 1124

ate the foundation for the incorporation of additional dynamic 1125

considerations. Such considerations as the optimal number of 1126

maintenance teams on-site, EDG failure during cold standby, 1127

optimal inspection interval, and the availability of spares are 1128

a possibility. Efforts are underway to extend the framework to 1129

these considerations, other LOOP categories, and incorporate 1130

epistemic uncertainties. 1131

APPENDIX 1132

This section is introduced with the view to providing a de- 1133

tailed example of how the linear programing problem is formu- 1134

lated, stating the exact values of the relevant parameters. The 1135

goal is to enable readers to grasp, fully, the concept proposed in 1136

this paper, as well as provide a benchmark for validating their 1137

implementation of this concept. 1138

Consider the three-component pipeline shown in Fig. 19, 1139

adapted from [22]. A maximum of four tons of oil could 1140

be pumped from the source, Xin, to the output, Xout , where 1141

the demand is fixed at 3.5 tons. The state-space of each of 1142

the other components is shown, with the number beside each 1143
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Fig. 20. Network model of pipe network.

state denoting the capacity of the component in that state. The1144

equivalent graph model of the system is shown in Fig. 20. Notice1145

the two extra nodes, 1 and 5, representing the source and output,1146

respectively. The available information is sufficient to formulate1147

the linear programing problem and derive its parameters. The1148

first step is to define the adjacency matrix, since all the other1149

parameters depend on it. From Fig. 20, the adjacency matrix,1150

A, is obtained as1151

A =

⎛
⎜⎜⎜⎜⎝

0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The next task is to deduce the edge and incidence matrices, e1152

and Γ, respectively. They are obtained thus1153

e =

⎛
⎜⎜⎜⎜⎝

1 2
1 3
2 4
3 4
4 5

⎞
⎟⎟⎟⎟⎠ Γ =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 −1 1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ .

With A, e, and Γ known, the linear programing problem is1154

formulated as follows.1155

1) At time 0, all the components are in their best performance1156

state. The inequality constraint, therefore, is expressed as1157

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

X12
X13
X24
X34
X45

⎞
⎟⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎜⎝

4.0
1.5
2
4

3.5

⎞
⎟⎟⎟⎟⎠ .

2) The equality constraint is expressed as1158

⎛
⎝−1 0 1 0 0

0 −1 0 1 0
0 0 −1 −1 1

⎞
⎠

⎛
⎜⎜⎜⎜⎝

X12
X13
X24
X34
X45

⎞
⎟⎟⎟⎟⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

3) The bounds on the flow through the edges are 1159

lb =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

ub =

⎛
⎜⎜⎜⎜⎜⎝

1.5
2

1.5
2

3.5

⎞
⎟⎟⎟⎟⎟⎠
.

4) The objective function is expressed as 1160

Ψ =
(−1 −1 0 0 0

)
⎛
⎜⎜⎜⎜⎜⎝

X12

X13

X24

X34

X45

⎞
⎟⎟⎟⎟⎟⎠
.
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