
On Strong NP-Completeness of Rational Problems

Dominik Wojtczak

University of Liverpool, UK

Abstract. The computational complexity of the partition, 0-1 subset sum, un-
bounded subset sum, 0-1 knapsack and unbounded knapsack problems and their
multiple variants were studied in numerous papers in the past where all the weights
and profits were assumed to be integers. We re-examine here the computational
complexity of all these problems in the setting where the weights and profits are
allowed to be any rational numbers. We show that all of these problems in this
setting become strongly NP-complete and, as a result, no pseudo-polynomial al-
gorithm can exist for solving them unless P=NP. Despite this result we show that
they all still admit a fully polynomial-time approximation scheme.

1 Introduction
The problem of partitioning a given set of items into two parts with equal total weights
(that we will refer to as PARTITION) goes back at least to 1897 [14]. A well-known
generalisation is the problem of finding a subset with a given total weight (0-1 SUB-
SET SUM) and the same problem where each item can be picked more than once (UN-
BOUNDED SUBSET SUM). Finally, these are commonly generalised to the setting where
each item also has a profit and the aim is to pick a subset of items with the total profit
higher than a given threshold, but at the same time their total weight smaller than a
given capacity (0-1 KNAPSACK), and again its variant where each item can be picked
more than once (UNBOUNDED KNAPSACK).

The SUBSET SUM problem has numerous applications: its solutions can be used for
designing better lower bounds for scheduling problems (see, e.g., [8] and [7]) and it ap-
pears as a subproblem in numerous combinatorial problems (see, e.g., [17]). At the same
time, many industrial problems can be formulated as knapsack problems: cargo load-
ing, cutting stock, capital budgeting, portfolio selection, interbank clearing systems,
knapsack cryptosystems, and combinatorial auctions to name a couple of examples (see
Chapter 15 in [12] for more details regarding these problems and their solutions).

The decision problems studied in this paper were among the first ones to be shown to
be NP-complete [11]. At the same they are considered to be the easiest problems in this
class, because they are polynomial time solvable if items’ weights and profits are rep-
resented using the unary notation (in other words, they are only weakly NP-complete).
In particular, they can be solved in polynomial time when these numbers are bounded
by a fixed constant (and the number of items is unbounded). Furthermore, the optimisa-
tion version of all these decision problems admit fully polynomial-time approximation
schemes (FPTAS), i.e., we can find a solution with a value at least equal to (1− ε) times
the optimal in time polynomial in the size of the input and 1/ε for any ε > 0.

To the best of our knowledge, the computational complexity analysis of all these
problems was only studied so far under the simplifying assumption that all the input

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/157858518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

values are integers. However, in most settings where these problems are used, these
numbers are quite likely to be in fact some rational numbers instead. We were surprised
to discover that the computational complexity in such a rational setting was not properly
studied before. Indeed, as pointed out in [12]:

A rather subtle point is the question of rational coefficients. Indeed, most text-
books get rid of this case, where some or all input values are non-integer, by the
trivial statement that multiplying with a suitable factor, e.g. with the smallest
common multiple of the denominators, if the values are given as fractions or
by a suitable power of 10, transforms the data into integers. Clearly, this may
transform even a problem of moderate size into a rather unpleasant problem
with huge coefficients.

This clearly looks like a fundamental gap in the understanding of the complexity of
these computational problems. Allowing the input values to be rational makes a lot
of sense in many settings. For example, we encountered this problem when studying
an optimal control in multi-mode systems with discrete costs [15] and looking at the
weighted voting games (see, e.g., [4] where the weights are defined to be rational). An-
other interesting problem is checking whether we have the exact amount when paying
for something. While we take decimal monetary systems for granted these days, there
were plenty of non-decimal monetary systems in use not so long ago. For example, in
the UK between 1717 and 1816 one pound sterling was worth twenty shillings, one
shilling was worth twelve pence, and one guinea was worth twenty one shillings.

We show here that this makes a significant difference and in fact all these decision
problems in this setting become strongly NP-complete [6], i.e., they are NP-complete
even when all their numerical values are bounded by a polynomial in the size of the
rest of the input or, equivalently, if all the numerical values are represented in unary.
To prove this we will show an NP-completness of a new variant of the SATISFIABLITY
problem and use results regarding distribution of prime numbers. As a direct conse-
quence of our result, there does not exist any pseudo-polynomial algorithms for solving
these decision problems unless P=NP. At the same time, we will show that they still all
admit a fully polynomial-time approximation scheme (see, e.g., [12]). This may sound
incorrect, because the paper that introduced strong NP-completness [6] also showed
that no strongly NP-hard problem can admit an FPTAS unless P=NP. However, the
crucial assumption made there is that the objective function is integer valued, which
does not hold in our case.

Related work. The decision problems studied in this paper are so commonly used
that they have already been thousands of papers published about them and and many
of their variants, including multiple algorithms and heuristic for solving them precisely
and approximately. There are also two full-length books, [20] and [12], solely dedicated
to these problems.

Several extensions of the classic knapsack problem were shown to be strongly NP-
complete. These include partially ordered knapsack[10] (where we need to pick a set of
items closed under predecessor), graph partitioning[10] (where we need to partition a
graph intom disjoint subgraphs under cost constraints), multiple knapsack problem [2],
knapsack problem with conflict graphs[16] (where we restrict which pairs of items can

2

be picked together), and quadratic knapsack problem[5,12] (where the profit of packing
an item depends on how well it fits together with the other selected items).

The first FPTAS for the optimisation version of the KNAPSACK problem was es-
tablished in 1975 by Ibarra and Kim[9] and independently by Babat[1]. Multiple other,
more efficient, FPTAS for these problems followed (see, e.g., [12]).

Plan of the paper. In the next section, we introduce all the used notation as well as
formally define all the decision problems that we study in this paper. In Section 3,
we analyse the amount of space one needs to write down the first n primes in unary
as well as a unique representation theorem concerning sums of rational numbers. In
Section 4, we define a couple of new variants of the well-known satisfiability problem
for Boolean formulae in 3-CNF form and show them to be NP-complete. Our main
result, concerning the strong NP-hardness of all the decision problems studied in this
paper with rational inputs, can be found in Section 5 and it builds on the results from
Sections 3 and 4. We briefly discuss the existence of FPTAS for the optimisation version
of our decision problems in Section 6. Finally, we conclude in Section 7.

2 Background
Let Q≥0 be the set of non-negative rational numbers. We assume that a non-negative
rational number is represented as usual as a pair of its numerator and denumerator,
both of which are natural numbers that do not have a common divisor > 1. A rational
number is written in the unary notation, if both of these two numbers are represented
in unary. For two natural numbers a and n, let a mod n ∈ {0, . . . , n − 1} denote the
remainder of dividing a by n. For any two numbers a, b ∈ {1, . . . , n}, we define their
addition modulo n, written as ⊕n, as follows: a ⊕n b = ((a + b − 1) mod n) + 1.
Note that we subtract and add 1 in this expression so that the result of this operation
belongs to {1, . . . , n}. Similarly we define the subtraction modulo n, written as 	n, as
a 	n b = ((n + a − b − 1) mod n) + 1. We assume that ⊕n and 	n operators have
higher precedence than the usual + and − operators.

We now formally define all the decision problems that we study in this paper.

Definition 1 (SUBSET SUM problems). Assume we are given a list of n items with
rational non-negative weights A = {a1, . . . , an} and a target total weight W ∈ Q≥0.

0-1 SUBSET SUM: Does there exists a subset B of A such that the total weight of
B is equal to W?

UNBOUNDED SUBSET SUM: Does there exist a list of non-negative integer quanti-
ties (q1, . . . , qn) such that

n∑
i=1

qi · ai =W?

(Intuitively, qi denotes the number of times the i-th item in A is chosen.)

A natural generalisation of this problem where each item gives us a profit when
picked is the well-known knapsack problem.

Definition 2 (KNAPSACK problems). Assume there are n items whose non-negative
rational weights and profits are given as as a list L = {(w1, v1), . . . , (wn, vn)}. Let the
capacity be W ∈ Q≥0 and the profit threshold be V ∈ Q≥0.

3

0-1 KNAPSACK: Is there a subset of L whose total weight does not exceed W and
total profit is at least V ?

UNBOUNDED KNAPSACK: Is there a list of non-negative integers (q1, . . . , qn) such
that

n∑
i=1

qi · wi ≤W and
n∑

i=1

qi · vi ≥ V ?

(Intuitively, qi denotes the number of times the i-th item in A is chosen.)

Finally, a special case of the SUBSET SUM problem is the PARTITION problem.

Definition 3 (PARTITION problem). Assume we are given a list of n items with non-
negative rational weights A = {a1, . . . , an}.

Can the set A be partitioned into two sets with equal total weights?

3 Prime Suspects
In this section we first show that writing down all the first n prime numbers in the unary
notation can be done using space polynomial in n. Let πi denote the i-th prime number.
The following upper bound is known for πi.

Theorem 1 (inequality (3.13) in [18]).

πi < i(log i+ log log i) for i ≥ 6

This estimate gives us the following corollary that will be used in the main result of
this paper.

Corollary 1. The total size of the first n prime numbers, when written down in unary,
is O(n2 log n). Furthermore, they can be computed in polynomial time.

Proof. Let n ≥ 6, because otherwise the problem is trivial. Thanks to Theorem 1, it
suffices to list all natural numbers smaller than 2n log n (because 2n log n ≤ n(log n+
log log n)) and use the sieve of Eratosthenes to remove all nonprime numbers from this
list. It follows that writing down the first n prime numbers requires O(n2 log n) space.
The sieve can easily be implemented in polynomial time and, to be precise, in this case
O(n2 log2 n) additions and O(n log n) bits of memory would suffice. ut

Now we prove a result regarding a unique representation of rational numbers ex-
pressed as sums of fractions with prime denominators, which in a way is quite similar
to the Chinese remainder theorem.

Lemma 1. Let (p1, . . . , pn) be a list of n different prime numbers. Let (a0, a1, . . . , an)
and (a0, b1, . . . , bn) be two lists of integers such that |ai| < pi and |bi| < pi hold for
all i = 1, . . . , n. We then have

a0 +
a1
p1

+ . . .+
an
pn

= b0 +
b1
p1

+ . . .+
bn
pn

if and only if

ai = bi for all i = 0, . . . , n.

4

Proof. (⇐) If ai = bi for all i = 0, . . . , n holds then obviously

a0 +
a1
p1

+ . . .+
an
pn

= b0 +
b1
p1

+ . . .+
bn
pn
.

(⇒) We need to consider two cases: a0 = b0 and a0 6= b0. In the first case, suppose
that aj 6= bj for some j ∈ {1, . . . , n}. If we multiply

a1 − b1
p1

+ . . .+
an − bn
pn

by
n∏

i=1

pi

then we would get an integer, which is not divisible by pj (because 0 < |aj − bj | < pj)
and so this expression cannot be equal to 0. Therefore, in this case,

a0 +
a1
p1

+ . . .+
an
pn
6= b0 +

b1
p1

+ . . .+
bn
pn
.

In the second case, if ai = bi for all i = 1, . . . , n holds then clearly

a0 +
a1
p1

+ . . .+
an
pn
6= b0 +

b1
p1

+ . . .+
bn
pn
.

Otherwise, again suppose that aj 6= bj for some j ∈ {1, . . . , n}. If we multiply

a0 − b0 +
a1 − b1
p1

+ . . .+
an − bn
pn

by
n∏

i=1

pi

then we would get an integer, which is not divisible by pj (because 0 < |aj − bj | < pj)
and so this expression cannot be equal to 0. Therefore, again, in this case,

a0 +
a1
p1

+ . . .+
an
pn
6= b0 +

b1
p1

+ . . .+
bn
pn
.

ut

4 In the Pursuit of Satisfaction
The Boolean satisfiability (SATISFIABILITY) problem for formulae was the first prob-
lem to be shown NP-complete by Cook [3] and Levin [13]. Tovey showed in [21] that
SATISFIABILITY is also NP-complete for 3-CNF formulae in which each variable oc-
curs at most 4 times. We will denote the set of such formulae by 3-CNF≤4. Schaefer
defined in [19] the ONE-IN-THREE-SAT problem for 3-CNF formulae in which one
asks for an truth assignment that makes exactly one literal in each clause true, and
showed it to be NP-complete. We define here a new ALL-THE-SAME-SAT problem
for 3-CNF formulae, which asks for a valuation that makes exactly the same number of
literals true in every clause (this may be zero, i.e., such a valuation may not make the
formula true). This problem will be a crucial ingredient in the proof of the main result
of this paper.

The first step is to show that ONE-IN-THREE-SAT problem is NP-complete even
when restricted to 3-CNF≤4 formulae.

5

Theorem 2. The ONE-IN-THREE-SAT problem for 3-CNF≤4 is NP-complete.

Proof. Obviously the problem is in NP, because we can simply guess a valuation and
check how many literals are true in each clause in linear time.

To prove NP-hardness, we are going to reduce from the SATISFIABILITY problem
for 3-CNF≤4, which is NP-complete [21]. Assume we are given a 3-CNF≤4 formula

φ = C1 ∧ C2 ∧ . . . ∧ Cm

with m clauses C1, . . . , Cm and n propositional variables v1, . . . , vn, where Cj = xj ∨
yj ∨ zj for j = 1, . . . ,m and each xj , yj , zj is a literal equal to vi or ¬vi for some i.
We will construct a 3-CNF≤4 formula φ′ with 3m clauses and n + 4m propositional
variables such that φ is satisfiable iff φ′ is an instance of the ONE-IN-THREE-SAT
problem. This will be based on the construction already given in [19].

The formula φ′ is constructed by replacing each clause in φ with three new clauses.
Specifically, the j-th clauseCj = xj∨yj∨zj is replaced byC ′j := (¬xj∨aj∨bj)∧(bj∨
yj ∨ cj)∧ (cj ∨dj ∨¬zj) where aj , bj , cj , dj are four fresh propositional variables. It is
quite straightforward to check that only a valuation that makes Cj true can be extended
to a valuation that makes exactly one literal true in each of the clauses in C ′j . Notice
that such a constructed φ′ is a 3-CNF≤4 formula, because this transformation does not
increase the number of occurrences of any of the original variables in φ and each of the
new variables is used at most twice.

Now, if there exists a valuation that makes every clause in φ true, then as argued
above it can be extended to a valuation that makes exactly one literal true in every
clause in φ′.

To show the other direction, let ν be a valuation that makes exactly one literal true
in every clause in φ′. Consider for every j = 1, . . . ,m the projection of ν on the set of
variables occurring in the clause Cj . Suppose that such a valuation makes Cj false. It
follows that it would not be possible to extend this valuation to a valuation that makes
exactly one literal true in every clause in C ′j . However, we already know that ν is such
a valuation, so this leads to a contradiction. ut

Although Theorem 2 is of independent interest, all that we need it for is to prove
our next theorem.

Theorem 3. The ALL-THE-SAME-SAT problem for 3-CNF≤4 formulae is NP-complete.

Proof. The ALL-THE-SAME-SAT problem is clearly in NP, because we can simply
guess a valuation and check whether it makes exactly the same number of literals in
every clause true.

To proof NP-hardness, we reduce from the ONE-IN-THREE-SAT problem for 3-
CNF≤4 formulae (Theorem 2). Let φ be any 3-CNF≤4 formula and let us consider a
new formula φ′ = φ ∨ (x ∧ x ∧ ¬x), where x is a fresh variable that does not occur in
φ. Notice that φ′ is also a 3-CNF≤4 formula. We claim that φ is an instance of ONE-
IN-THREE-SAT iff φ′ is an instance of ALL-THE-SAME-SAT.
(⇒) If ν is a valuation that makes exactly one literal in every clause in φ true, then
extending it by setting ν′(x) = ⊥ would make exactly one literal in every clause in φ′

true.

6

(⇐) Let ν be a valuation that makes the same number of literals in every clause in φ′

true. It cannot be that this number is 0 or 3, because there is at least one true literal and
one false literal in the clause (x ∧ x ∧ ¬x).

If ν makes exactly one literal in every clause in φ′ true, then the same holds for φ.
If ν makes exactly two literals in every clause true, then consider the valuation ν′

such that ν′(y) = ¬ν(y) for every propositional variable y in φ′. Notice that ν′ makes
exactly one literal in every clause in φ′ true, so the same holds for φ. ut

5 Being Rational Makes You Stronger

In this section, we build on the results obtained in the previous two section and show
strong NP-hardness of all the decision problems defined in Section 2. As a direct con-
sequence, no pseudo-polynomial algorithm can exist for solving any of these prob-
lems unless P=NP. Instead of showing strong NP-hardness for each of these problems
separably, we will show one “master” reduction for the UNBOUNDED SUBSET SUM
problem instead. This reduction will then be reused to show strong NP-hardness of the
PARTITION problem, and from these two results the strong NP-hardness of all the other
problems will follow.

Theorem 4. The UNBOUNDED SUBSET SUM problem with rational weights is strongly
NP-complete.

Proof. For a given instance A = {w1, . . . , wn} and target weight W , we know that
the quantities qi, for all i = 1, . . . , n, have to satisfy qi ≤ W/wi. This in fact shows
that the problem is in NP, because all the quantities qi when represented in binary can
be written down in polynomial space and can be guessed at the beginning. We can
then simply verify whether

∑n
i=1 qi · ai = W holds in polynomial time by adding the

rational numbers inside this sum one by one (while representing all the numerators and
denominators in binary).

To prove strong NP-hardness, we provide a reduction from the ALL-THE-SAME-
SAT problem for 3-CNF≤4 formulae (which is NP-complete due to Theorem 3). As-
sume we are given a 3-CNF≤4 formula

φ = C1 ∧ C2 ∧ . . . ∧ Cm

with m clauses C1, . . . , Cm and n propositional variables x1, . . . , xn, where Cj =
aj ∨ bj ∨ cj for j = 1, . . . ,m and each aj , bj , cj is a literal equal to xi or ¬xi for some
i. For a literal l, we write that l ∈ Cj iff l is equal to aj , bj or cj . We will now construct
a set of items A of size polynomial in n +m and a polynomial weight W such that A
with the total weight W is a positive instance of UNBOUNDED SUBSET SUM iff φ is
satisfiable.

We first need to construct a list of n +m different prime numbers (p1, . . . , pn+m)
that are all larger than n + 5. It suffices to pick pi = πi+n+5 for all i, because clearly
πj > j for all j. Thanks to Corollary 1, we can list all these primes numbers in the
unary notation in time and space polynomial in n+m.

7

The set A will contain one item per each literal. We set the weight of the item
corresponding to the literal xi to

1 +
1

pi
− 1

pi⊕n1
+

∑
{j|xi∈Cj}

(
1

pn+j
− 1

pn+j⊕m1

)
and corresponding to the literal ¬xi to

1 +
1

pi
− 1

pi⊕n1
+

∑
{j|¬xi∈Cj}

(
1

pn+j
− 1

pn+j⊕m1

)
.

Notice that each of these weights is ≥ 1 − 5
p1

> 0, because each literal occurs
at most four times in φ, and p1 > 5 is the smallest prime number among pi-s. At the
same time, all of them are also ≤ 1 + 5

p1
< 2. Moreover, they can all be written in

unary using polynomial space, because each literal occurs in at most four clauses and
so this sum will have at most 11 terms in total. We can then combine all these terms
into a single rational number. Its denominator will be at most equal to p10n+m, because
pn+m is the largest prime number among pi-s and one of these terms is equal to 1. Its
numerator has to be smaller than 2p10n+m, because this rational number is < 2. So both
of them will have size O((2n + m)10 log10(2n + m)) when written down in unary,
because pn+m = π2n+m+5 < 2(2n+m+5) log(2n+m+5) due to Theorem 1. SetA
has 2n such items and so all its elements’ weights can be written down in unary using
O(n(2n+m)10 log10(2n+m)) space.

Notice that the total weight of A is equal to

2n+

n∑
i=1

(
2

pi
− 2

pi⊕n1

)
+

m∑
j=1

(
3

pn+j
− 3

pn+j⊕m1

)
because there are 2n literals, each variable corresponds to two literals, and each clause
contains exactly three literals. As both of the two sums in this expression are telescop-
ing, we get that the total weight is in fact equal to 2n. We claim that the target weight
W = n is achievable by picking items from A (each item possibly multiple times) iff φ
is a positive instance of ALL-THE-SAME-SAT.
(⇒) Let qi and q′i be the number of times an item corresponding to, respectively, literal
xi and ¬xi is chosen so that the total weight of all these items is n.

For i = 1, . . . , n, we define ti := qi + q′i. For j = 1, . . . ,m, we define tn+j to be
the number of times an item corresponding to a literal in Cj is chosen. For example, if
Cj = x1 ∨ ¬x2 ∨ x5 then tn+j = q1 + q′2 + q5. Finally, let T :=

∑n
i=1 qi + q′i be the

total number of items chosen. Notice that T ≤W/(1− 5
p1
) < W/(1− 5

n+5) = n+ 5.
Now the total weight of the selected items can be expressed using ti-s as follows:

n∑
i=1

ti +

n∑
i=1

ti − ti	n1

pi
+

m∑
j=1

tn+j − tn+j	m1

pn+j
(?)

Notice that |ti − ti	n1| < n + 5 and pi > n + 5 for all i = 1, . . . , n, and |tn+j −
tn+j	m1| < n+5 and pn+j > n+5 for all j = 1, . . . ,m. It now follows from Lemma

8

1 that (?) can be equal to n if and only if
∑n

i=1 ti = n, and t1 = t2 = . . . = tn, and
tn+1 = tn+2 = . . . = tn+m. The first two facts imply that for all i = 1, . . . , n, we have
ti = 1 and so exactly one item corresponding to either xi or ¬xi is chosen. The last fact
states that in each clause exactly the same number of items corresponding to its literals
is chosen. It is now easy to see that the ALL-THE-SAME-SAT condition is satisfied by
φ for the valuation ν such that, for all i ∈ {1, . . . , n}, we set ν(xi) = > iff qi = 1.

(⇐) Let ν be a valuation for which φ satisfies the ALL-THE-SAME-SAT condition. We
set the quantities qi and q′i, the number of times an item corresponding to the literal xi
and ¬xi is picked, as follows. If ν(xi) = > then we set qi = 1 and q′i = 0. If ν(xi) = ⊥
then we set qi = 0 and q′i = 1.

Let us define ti-s as before. Note that we now have ti = 1 for all i = 1, . . . , n and
tn+1 = tn+2 = . . . = tn+m, because the ALL-THE-SAME-SAT condition is satisfied
by ν. We can now easily see from the expression (?) that the total weight of the just
picked items is equal to n. ut

Although the strong NP-hardness complexity of the PARTITION problem does not
follow from the statement of Theorem 4, it follows from its proof as follows.

Theorem 5. The PARTITION problem with rational weights is strongly NP-complete.

Proof. Just repeat the proof of Theorem 4 without any change. In this case we know
that qi ∈ {0, 1}, which does not make any difference to the used reasoning. Notice that
the target weight W chosen in the reduction is exactly equal to half of the total weights
of all the items in A, so the UNBOUNDED SUBSET SUM problem instance constructed
can also be considered to be a PARTITION problem instance. ut

Now, as the SUBSET SUM problem is a generalisation of the PARTITION problem,
we instantly get the following result.

Corollary 2. The SUBSET SUM problem with rational weights is strongly NP-complete.

Finally, we observe that the 0-1 KNAPSACK and UNBOUNDED KNAPSACK prob-
lems are generalisations of the SUBSET SUM and UNBOUNDED SUBSET SUM prob-
lems, respectively. To see this just restrict the weight and profit of each item to be equal
to each other as well as require V = W . Any such an instance is a positive instance of
0-1 KNAPSACK (UNBOUNDED KNAPSACK) if and only if it is a positive instance of
SUBSET SUM (respectively, UNBOUNDED SUBSET SUM).

Corollary 3. The 0-1 KNAPSACK and UNBOUNDED KNAPSACK problems with ratio-
nal weights are strongly NP-complete.

6 Approximability
In this section, we briefly discuss the counter-intuitive fact that the optimisation version
of all the decision problems defined in Section 2 admit a fully polynomial-time approxi-
mation scheme (FPTAS) even though we just showed them to be strongly NP-complete.
First, let us restate a well-known result concerning this.

9

Corollary 4 (Corollary 8.6 in [22]). Let Π be an NP-hard optimisation problem sat-
isfying the restrictions of Theorem 8.5 in [22] (first shown in [6]). If Π is strongly
NP-hard, then Π does not admit an FPTAS, assuming P 6= NP.

The crucial assumption made in Theorem 8.5 of [22] is that the objective function is
integer valued, which does not hold in our case, so there is no contradiction.

First, let us formally define the optimisation version of some of the decision prob-
lems studied. The optimisation version of the 0-1 KNAPSACK problem with capacity
W asks for a subset of items with the maximum possible total profit and whose weight
does not exceed W . As for the SUBSET SUM problem, its optimisation version asks for
a subset of items whose total weight is maximal, but ≤W . The optimisation version of
the other decision problems from Section 2 can also be defined (see, e.g., [12]).

Now, let us formally define what we mean by an approximation algorithm for these
problems. We say that an algorithm is a constant factor approximation algorithm with
a relative performance ρ iff, for any problem instance, I , the cost of the solution that it
computes, f(I), satisfies:

– for a maximisation problem: (1− ρ) ·OPT(I) ≤ f(I) ≤ OPT(I)
– for a minimisation problem: OPT(I) ≤ f(I) ≤ (1 + ρ)OPT(I)

where OPT(I) is the optimal cost for the problem instance I . We are particularly inter-
ested in polynomial-time approximation algorithms. A polynomial-time approximation
scheme (PTAS) is an algorithm that, for every ρ > 0, runs in polynomial-time and
has relative performance ρ. Note that the running time of a PTAS may depend in an
arbitrary way on ρ. Therefore, one typically strives to find a fully polynomial-time ap-
proximation scheme (FPTAS), which is an algorithm that runs in polynomial-time in
the size of the input and 1/ρ.

We will focus here on defining an FPTAS for 0-1 KNAPSACK problem with rational
coefficients. An FPTAS for the other optimisation problems considered in this paper
can be defined in an essentially the same way and thus their details are omitted.

Theorem 6. The 0-1 KNAPSACK problem with rational coefficients admits an FPTAS.

Proof. We claim that we can simply reuse any FPTAS for the 0-1 KNAPSACK prob-
lem with integer coefficients for this problem. Let I be a 0-1 KNAPSACK instance with
rational coefficients. We turn I into an instance with integer coefficients only, I ′, by
the usual trick of multiplying all the rational coefficients by the least common multiple
of the denominators of all the rational coefficients in I . Let us denote this least com-
mon multiple by α. Assuming that all the coefficients in I are represented in binary,
then when multiplying them by α (again in binary representation), their size will only
increase polynomially. Therefore, the size of I ′ is just polynomially larger than I .

Notice that α · OPT(I) = OPT(I ′). In fact, the profit of any subset of items A
in I ′, denoted by profit′(A), is α times bigger than the profit of this set of items in I ,
denoted by profit(A). Let us now run on I ′ any FPTAS for 0-1 KNAPSACK problem
with integer coefficients with relative performance ρ (e.g., [9]). This will return as a
solution a subset of items,B, such that profit′(B) ≥ (1−ρ)OPT(I ′). This implies that
profit(B) ≥ (1 − ρ)OPT(I) so the same subset of items B has also the same relative
performance ρ on the original instance I . ut

10

7 Conclusions
In this paper we studied how the computational complexity of the PARTITION, 0-1
SUBSET SUM, UNBOUNDED SUBSET SUM, 0-1 KNAPSACK, UNBOUNDED KNAP-
SACK problems changes when items’ weights and profits can be any rational numbers.
We showed here, as opposed to the setting where all these values are integers, that all
these problems are strongly NP-hard, which means that there does not exists a pseudo-
polynomial algorithm for solving them unless P=NP. Nevertheless, we also showed
that all these problem admit an FPTAS just like in the original setting. Finally, we just
want to point out that if we restrict ourselves to only rational weights and profits with
a finite representation as decimal numerals, then these problems are no longer strongly
NP-complete. This is because we can just multiply all the input numbers by sufficiently
high power of 10 and get an instance, with all integer coefficients, whose size is poly-
nomial in the size of the original instance.

References
1. LG Babat. Linear functions on n-dimensional unit cube. Doklady Akademii Nauk SSSR,

221(4):761–762, 1975.
2. Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the

multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.
3. Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.
4. Edith Elkind, Leslie Ann Goldberg, Paul W Goldberg, and Michael Wooldridge. On the

computational complexity of weighted voting games. Annals of Mathematics and Artificial
Intelligence, 56(2):109–131, 2009.

5. Giorgio Gallo, Peter L Hammer, and Bruno Simeone. Quadratic knapsack problems. In
Combinatorial optimization, pages 132–149. Springer, 1980.

6. Michael R Garey and David S Johnson. “Strong” NP-Completeness Results: Motivation,
Examples, and Implications. Journal of the ACM (JACM), 25(3):499–508, 1978.

7. Christelle Guéret and Christian Prins. A new lower bound for the open-shop problem. Annals
of Operations Research, 92:165–183, 1999.

8. JA Hoogeveen, Henk Oosterhout, and Steef L van de Velde. New lower and upper bounds
for scheduling around a small common due date. Operations research, 42(1):102–110, 1994.

9. Oscar H Ibarra and Chul E Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM (JACM), 22(4):463–468, 1975.

10. David S Johnson and KA Niemi. On knapsacks, partitions, and a new dynamic programming
technique for trees. Mathematics of Operations Research, 8(1):1–14, 1983.

11. Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

12. Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
13. Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi In-

formatsii, 9(3):115–116, 1973.
14. George B Mathews. On the partition of numbers. Proceedings of the London Mathematical

Society, 1(1):486–490, 1897.
15. Mahmoud A. A. Mousa, Sven Schewe, and Dominik Wojtczak. Optimal Control for Multi-

Mode Systems with Discrete Costs. In Proc. of FORMATS, pages 77–96. Springer, Septem-
ber 2017.

16. Ulrich Pferschy and Joachim Schauer. The knapsack problem with conflict graphs. J. Graph
Algorithms Appl., 13(2):233–249, 2009.

11

17. David Pisinger. An exact algorithm for large multiple knapsack problems. European Journal
of Operational Research, 114(3):528–541, 1999.

18. J Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois Journal of Mathematics, 6(1):64–94, 1962.

19. Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 216–226. ACM, 1978.

20. Martello Silvano and Toth Paolo. Knapsack problems: algorithms and computer implemen-
tations, 1990.

21. Craig A Tovey. A simplified np-complete satisfiability problem. Discrete applied mathemat-
ics, 8(1):85–89, 1984.

22. Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

12

	On Strong NP-Completeness of Rational Problems

