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Abstract

We consider a multi-stage facility reallocation prob-
lems on the real line, where a facility is being moved
between stages based on the locations reported by n
agents. The aim of the reallocation mechanism is to
minimize the social cost, i.e., the sum over the total
distance between the facility and all agents at all
stages, plus the cost incurred for moving the facility.
We study this problem both in the offline setting and
online setting. In the offline case the mechanism has
full knowledge of the agent locations in all future
stages, and in the online setting the mechanism does
not know these future locations and must decide the
location of the facility on a stage-per-stage basis.
We derive the optimal mechanism in both cases. For
the online setting we show that its competitive ratio
is (n+ 2)/(n+ 1). As neither of these mechanisms
turns out to be strategyproof, we propose another
strategyproof mechanism which has a competitive
ratio of (n + 3)/(n + 1) for odd n and (n + 4)/n
for even n, which we conjecture to be the best possi-
ble. We also consider a generalization with multiple
facilities and weighted agents, for which we show
that the optimum can be computed in polynomial
time for a fixed number of facilities.

1 Introduction
Facility location is one of the most well-studied problems in
the literature due to its multitude of practical applications, e.g.,
to clustering of images [Song et al., 2017] and document and
image summarization [Lin and Bilmes, 2012; Tschiatschek et
al., 2014]. In its simplest form, also referred to as the Weber
problem [Weber, 1909], the aim is to locate a single point from
which the sum of the transportation costs to n agents’ locations
is minimal. The generalization of this problem to placing
k facilities in a way that the sum of the distances of each
agent to its nearest facility is minimized is NP-hard already
in two-dimensions [Megiddo and Supowit, 1984]. However,
it is polynomial time solvable in the one-dimensional setting
[Megiddo et al., 1983], i.e., when the agents’ and facilities’
locations are all placed along a single real line. Such scenarios
were studied, e.g., in the context of an optimal placement of

public facilities along a street [Miyagawa, 2001] or to analyse
voting scenarios [Feldman et al., 2016].

We generalise this classic facility location problem to the
situation where the interaction between agents and facilities
lasts over multiple rounds, the agents’ locations may not be
known in advance and the facilities can be moved if needed.
In particular, let us consider the following motivating example.
Assume there is a political party with k members that would
like to win the next T consecutive parliamentary elections.
In order to achieve this, the party would like its members to
represent the political opinions of as many voters as possible
to get their votes. A voter feels well-represented if at least
one party member has a similar political stance as her. As a
result, a party that would like to succeed should try to gather
members with a diverse range of political opinions. (In reality
these cannot be too diverse, as the party would not be taken
seriously. This issue will be considered in our future work.)
During each term, the political opinion of the voters may
change and the party may need to refocus to better reflect the
current political sentiments. At the same time, each time a
politician changes his opinion, he loses a bit of credibility. To
estimate such a difference in opinions, Downs [1957] proposed
to model the political views from extreme-left to extreme-right
as points along as a single real line. The ultimate aim for the
party is then to minimize the sum of the distances from its
voters and the credibility that is lost when readjusting the party
members’ stance before each election.

In an alternative formulation, one can imagine a long and
narrow beach where k ice-cream vendors (owned by the same
company) are to be located. For the next T hours, the beach is
visited by n customers and their location may change through-
out the day. As each client will typically simply pick the
closest vendor, it is best for the vendors to change their loca-
tion throughout the day to adjust to the demand. The aim in
this case is the minimization of the social cost, i.e., the total
distance that the customers as well as the ice-cream vendors
have to travel.

The models we described so far assumed the agents to report
their location truthfully. However, since each agent would like
to be as close as possible to one of the facilities, he may have an
incentive to lie. As such a behaviour is highly undesirable, one
typically strives to devise a strategyproof mechanism, where
a mechanism is simply any algorithm that outputs facility
assignment based on the locations reported by the agents, for
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which no agent can gain by misreporting his location. For
instance, if the preferences are quasi-linear then the celebrated
VCG mechanism is optimal and strategyproof and it achieves
this by collecting a payment from each agent. However, in
several domains such payments are impossible or undesirable,
e.g., in kidney exchanges, public projects, politics and voting,
due to ethical, legal or privacy issues. In such settings, the
mechanism proposed needs to be strategyproof without using
any monetary transfers.

Our analysis starts in Section 3 with finding an optimal
mechanism in the case the true locations of all the agents are
known. We show that there is a mechanism that runs in linear
time for one facility (k = 1) and another one that is polynomial
for any fixed k. The mechanism for k = 1 is quite intricate
and we then adapt it to the online setting in Section 4. In such
a setting, we need to make decisions before we see the whole
input, so we cannot hope to find an optimal solution but try to
minimize the competitive ratio instead, which is the worst-case
ratio of the cost returned by the online mechanism and the
optimal one. We show a mechanism of which the competitive
ratio is (n+2)/(n+1) and prove that no other mechanism can
do better. Finally, in Section 5, we show that neither of these
one facility location mechanisms is strategyproof, and devise
a new strategyproof mechanism without monetary transfers.
We show that its competitive ratio is (n+ 4)/n for odd n and
(n+ 3)/(n+ 1) for even n, and that these values are tight.

Related work.
Our work fits tightly into the literature of time-evolving

optimization problems, where an instance of a computational
problem changes over time and there is a cost incurred by
implementing a change in the solution at each time step. See,
for example, [An et al., 2017; Gupta et al., 2014; Eisenstat
et al., 2014], where the latter two works consider two other
variants of time-evolving facility reallocation problems.

A mobile facility location problem, which can be seen as
one stage version of our problem with k facilities, was intro-
duced in [Friggstad and Salavatipour, 2011] and the prob-
lems was shown to be NP-hard in general. A polynomial
(3 + ε)-approximation algorithm was shown in [Ahmadian
et al., 2013].

The study of the k-facility location problem in an online
setting, typically called the k-median problem in such a con-
text, has been extensively studied (see, e.g., [Fotakis, 2011]
for a survey). In particular, Divéki and Imreh [2011] studied
an online model where the location of the facilities can be
moved, but with a zero cost.

The field of approximate mechanism design without money
was initiated by Procaccia and Tennenholtz [2009] where the
facility location problem was considered. This research has
attracted much attention in recent AI conferences. For exam-
ple, Todo et al. [2011] study false-name strategyproof mech-
anisms on a real line, i.e., such mechanisms cannot be ma-
nipulated to their advantage by agents who replicate them-
selves. Sui et al. [2013] study strategyproof facility location
in multi-dimensional space for different metrics and devises
the percentile mechanisms for them. Zou and Li [2015] study
stratetgyproof mechanisms for agents with dual preferences,
i.e., some agents would like to be as close as possible to a

facility, while others would prefer to be as far as possible. Ser-
afino and Ventre [2015] study the two facility problem where
the cost function may differ between agents. Filos-Ratsikas et
al. [2017] study strategyproof mechanisms for double-peaked
preferences, e.g., each agent would like to be close to a facility
but not too close. Procaccia et al. [2017] study the trade-off
between variance and approximation factor for strategyproof
mechanisms. Feldman et al. [2016] study the one-stage facility
location problem in the context of voting under the constraint
that the facilities can only be placed on agents’ locations.
[D. Fotakis and Tzamos, 2014] characterized completely the
deterministic strategyproof mechanisms for the placement of
two facilities on the line and showed that the best approxi-
mation ratio of such a mechanism is n − 2. Lu et al. [2010]
showed there exists a 4-approximation randomized mecha-
nism for the same problem, while a 1.045 lower bound is also
known [Lu et al., 2009].

2 Preliminaries
For a ∈ N, we will write [a] to denote the set {1, . . . , a}.
In this paper we will treat all sets as multisets, and all the
operations are thus multiset operators. Due to space limitations,
proofs are either replaced by proof sketches or omitted.

An instance of the facility reallocation problem is a quadru-
ple (n, T, y0, x), where n ∈ N is the number of agents, T is
the number of stages, y0 is the starting location of facility, and
x = (x1, . . . , xT ) are the vectors of agent locations in each
stage, where xt = (xt1 . . . , x

t
n) ∈ Rn are the locations of the

agents at Stage t ∈ [T ]. A solution of a given instance is a
placement of the facility at each of the stages, i.e., a sequence
y = (y1, . . . yT ) ∈ RT . A mechanism is a mapping from
instances to solutions. The cost of a solution y is given by

C(y) =

T∑
t=1

(
|yt−1j − ytj |+

n∑
i=1

|xti − ytj |

)
,

which is, in words, the sum of distances from each agent to
the facility at each stage t, plus the total distance the facility
moves across all stages. An optimal solution is a solution that
minimizes C.

We define Xt as the multiset {xt1, . . . , xtn}. Let t ∈ [T ] be
a stage, and let yt−1 be any location. We define Mt(y

t−1) as
the median at Stage t with respect to yt−1. That is, M t(yt−1)
is the set of points z such that

∑n
i=1 |xti − z|+ |yt−1 − z| is

minimized. It is straighforward to verify that M t(yt−1) is the
middle point of {yt−1} ∪Xt if n is even, and is the interval
between (and including) the two middle points of {yt} ∪Xt

if n is odd.
In Section 5, we study the strategyproofness property of our

mechanisms. There, we assume that the input to the mecha-
nism is provided by the agents, who are interested in minimiz-
ing their total distance to the facility. They may thus misreport
their true locations, in case this results in facility placements
closer to their true locations.

Let A be a mechanism. We define the cost of Agent i ∈ [n]

for a solution y as ci(y) =
∑T

t=1 |yi − xti|. Let (x̃S , x−S) be
a solution obtained from x by replacing the location vectors
{xi : i ∈ S} where xi = (x1i , . . . , x

T
i ), by different vectors



x̃S = {x̃i : i ∈ S}, where x̃i = (x̃1i , . . . , x̃
T
i ) are the alter-

native locations corresponding to Agent i ∈ S. Mechanism
A is group-strategyproof if for all S ⊆ [n], for all x̃S , there
exists an i ∈ S such that ci(A(x)) ≤ ci(A(x̃S , x−S)). Mech-
anism A is strategyproof if for all i and for all x̃i it holds that
ci(A(x)) ≤ ci(A(x̃i, x−i)).

3 Optimal Mechanisms
First, we consider the basic problem of computing an optimal
solution to the facility reallocation problem when the complete
instance is given to the mechanism in advance.

Let I = (n, T, y0, x) be a facility reallocation instance. The
following lemmas show that in every Stage t ∈ [T ], putting the
facility on a point in the interval M t(yt−1) is less expensive
than putting the facility outside of M t(yt−1), regardless of
the choice of facility locations in all the other stages.
Lemma 1. Let y = (y1, . . . , yT ) be a solution to I and let
t ∈ [T ]. The distance d between yt and the nearest point
z ∈M t(yt−1) is at least
n∑

i=1

|xti − yt|+ |yt−1 − yt| −

(
n∑

i=1

|xti − z|+ |yt−1 − z|

)
.

The following lemma is proved using the former.
Lemma 2. Let y = (y1, . . . , yT ) be a solution to I . Suppose
that there is a Stage t such that yt is not inM t(yt−1). Then, re-
placing yt with the nearest point ỹt to yt that lies inM t(yt−1)
results in a solution with a cost that is at most C(y).

This yields an easy and efficiently computable optimal
mechanism when n is even: An optimal facility reallocation
mechanism for k = 1 always places the facility at Stage
t ∈ [T ] in the median interval M t(yt−1). Hence, when the
number of agents is even, the optimal allocation vector is
unique and can be computed in O(nT ) (i.e., linear) time.

For n odd, the above does not yet characterize the optimal
mechanism, and it turns out that in that case the facility cannot
be placed at just any point in the median without sacrificing
optimality. This is due to the fact that the median M t(yt−1) of
Stage t is dependent on the location yt−1 of the facility of the
previous stage, and is therefore by recursion also dependent on
the location the facility and all the agents at all previous stages.
Because M t(yt−1) is generally an interval of points instead
of a single point, there is a choice to be made that influences
the medians of all the subsequent stages.

The following two example instances show that the optimal
choice of facility at a given stage may depend on the locations
of the agents in the next stage.
Example 3. Consider first the following example with T = 3
stages and n = 3 agents, depicted in Figure 1. Let y0 = 3
be the initial facility location. The locations of the agents at
each of the 3 stages are x1 = (3, 7, 7), x2 = (4, 5, 6), x3 =
(1, 1, 2). The median in the first stage is the interval [3, 7].
The point in this median that we choose for y1 influences
the median in the second stage: When we set y1 ∈ [3, 4], the
median in the second stage will be [4, 5]; when y1 ∈ (4, 5], the
median in the second stage will be [y1, 5]; when y1 ∈ [5, 6)
the median in the second stage will be [5, y1); and when y1 ∈
[6, 7], the median in the second stage will be [5, 6].

1 2 3 4 5 6 7 8 9 100
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Stage 2
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Figure 1: Depiction of the two facility reallocation instances of Exam-
ple 3, one consisting of stages 1,2,3, and the other consisting of stages
1,2,3′. The dots indicate the locations of the agents at each stage. The
squares indicate an optimal choice of facility locations, where the
square at a given stage is the facility location at the previous stage.
(At the first stage it is the starting location.) The square below the
final stage is the facility location at the last stage. The blue part of
the line at Stage t represents the median M t(yt−1).

The optimal solution is to set y1 ∈ [4, 5], and to not move
the facility to a different location in the second stage.

However, if in Stage 3 the facilities of the three agents
would be x̄3 = (8, 9, 9), then the optimal choice of facility
location for the first stage would be to set y1 ∈ [5, 6].

The above examples show that there may be infinitely many
optimal solutions when n is odd. The analysis also suggest
that it may always be optimal to put the facility at any given
stage at the location of the central agent of the subsequent
stage, whenever that is possible. We can prove this, and in fact
we can refine this statement further, as follows.

Theorem 4. Suppose that in instance I it holds that n is odd.
There exists an optimal solution y for this instance such that
at any Stage t ∈ [T − 1], the facility is placed at the point in
M t(yt−1) that lies closest to the location of the median agent
at the next Stage t+ 1, i.e., the median of {xt+1

1 , . . . , xt+1
n }.

At Stage T , the facility is placed anywhere in M t(yt−1).

Proof sketch. We can show this through proving the following
technical lemma:

Lemma 5. Let I and Ĩ be two instances that differ only in the
starting positions. Let y0 and ỹ0 be these respective starting
positions, let d be the distance between them, and assume that
they lie on the same side of the middle agent location at Stage
1. Assume furthermore that I is the instance with the starting
position that is closest to x1dn/2e. Then, the optimal cost of I

is less than the optimal cost of Ĩ , and is at most d lower.

This is sufficient to prove the theorem, because Lemma 2
implies that the facility should always be placed in the median
interval at every stage: Let p be the point in M1(y0) at Stage
1 of instance I that is closest to the middle agent location.
Consider any other point p̃ inM1(y0). Points p and p̃ generate
the same cost in the first stage, and Lemma 5 implies that
the subinstance obtained by restricting I to Stages 2, . . . , T
has a better optimal cost when p is the starting location rather
than p̃, as p and p̃ lie on the same side of the middle agent



location. Choosing point p is optimal in the first stage when in
subsequent stages an optimal point is also chosen, hence by
induction it is optimal to choose at any Stage t ∈ [T − 1] the
point in M t(yt−1) closest to the middle agent location.

The proof of Lemma 5 also proceeds by induction on T and
requires a case distinction based on the location of the middle
agent at Stage 2 relative to the median interval M1(y0).

The following corollary summarizes all of the above.

Corollary 6. It is an optimal facility reallocation mechanism
for k = 1 to place the facility at each stage t ∈ [T − 1] at
the point in the median interval M t(yt−1) that lies closest
to the median agent of Stage t + 1, and to place the facility
at Stage T at any point in the median interval. Hence, when
the number of agents is even, the optimal allocation vector is
unique and can be computed by an online mechanism. When
the number of agents is odd, the optimal mechanism needs to
look at each stage at the agent locations in Stage t and t+ 1
only. The mechanism runs in both cases in O(Tn) time.

Thus, for n odd, we can compute the optimum efficiently,
but we do need a one stage “look-ahead”. Thus, this result does
not imply an optimal online mechanism. We give in Section 4
an online mechanism with an optimal competitive ratio.

We consider next a generalized variant of the problem where
there are k ≥ 1 facilities and the agents have weights. The
cost of an agent i ∈ [n] is her distance to the nearest facility at
each stage, and her weight wi is the factor by which her cost
contributes to the objective function.

The problem of computing the optimal facility locations
for such a generalized instance is considerably more complex.
We prove that nonetheless, when the number of facilities k is
fixed, this can be done in polynomial time.

Theorem 7. There exists a mechanism that computes the opti-
mal solution to a generalized facility reallocation problem in
time O(T 2(2 max{Tn, k})k+1).

Proof sketch. The main insight that we need (and the most
challenging part of this proof) is that it suffices to consider only
solutions where at each stage t ∈ [T ] each facility is placed on
a location corresponding to one of the agent locations (at any
stage) or to one of the starting facility locations y01 , . . . , y

0
k.

Lemma 8. Let y = (y1, . . . , yT ) be a solution to a general-
ized facility location instance (where yt are k-dimensional
vectors) with T stages. Then there exists a solution ỹ such that
C(ỹ) ≤ C(y) and for all t ∈ [T ] and j ∈ [k], it holds that
ytj ∈ {y01 , . . . y0k} ∪X1 ∪ · · · ∪XT .

We prove this lemma by studying the derivative of the cost
function of any solution where a facility is not placed at one
of the appropriate points. We show that the cost must increase
when moving such a facility either to the left or right.

Using this lemma, a polynomial time algorithm with the
claimed runtime can be constructed through standard dynamic
programming techniques: For each possible vector ȳ of start-
ing facility locations (there are at most k + (Tn)k of them
by the above lemma), we can efficiently find a solution to a
subinstance I on stages t, . . . , T with facility starting positions
ȳ, by considering the optimal solutions to the subinstaces on

stages t + 1, . . . , T with all possible starting positions, and
using the one that minimizes the cost for I .

4 The Online Setting
In this section we study again the basic facility realloca-
tion problem, and we focus on the online variant of the
problem, where for each stage t ∈ [T ] the agent locations
xt+1
1 , . . . , xt+1

n of the next stage may only be read by the
mechanism after the mechanism outputs the facility locations
yt1, . . . , y

t
k for the current stage.

Example 3 implies that for an odd number of agents, the
optimal mechanism necessarily needs to look one stage ahead.
The following example shows that due to the lack of ability to
look one stage ahead, no online mechanism has a competitive
ratio better than (n+ 2)/(n+ 1) when n is odd.
Example 9. Consider the following two instances I` = I ′`,
each with 2`+ 1 agents, for any ` ∈ N. Both instances have
T = 2 stages. The agent locations of Stage 1 are 0 for the first
` agents and 1 for the remaining `+ 1 agents. At Stage 2, all
agents are located at 0 in instance I`, and at 1 in instance I ′`.
The initial facility location is 0.

The median M1(y0) of the first stage is [0, 1], so by Corol-
lary 6 the optimal solution is to place the facility at 0 in In-
stance I` and at 1 in Instance I`. In Stage 2, the facility then
does not need to move.

However, as the instances differ only in the second stage, an
online mechanism is restricted to place the facility at the same
position in Stage 1, in both instances. Placing the facility at 1/2
is the best that any online mechanism can choose, to minimize
the maximum cost among those two instances. Therefore the
cost of the optimal solution is `+1 for both instances, while the
cost of the solution generated by the optimal online mechanism
is `+3/2. The ratio of these two quantities is (n+2)/(n+1),
which is a lower bound on the competitive ratio achievable by
an online mechanism.

We now provide an online mechanism of which the compet-
itive ratio matches the lower bound on the competitive ratio of
Example 9. The key idea behind this online mechanism is to
try to place the facility at each stage as close as possbile to the
location where the optimum facility may be placed. While it is
impossible to know the exact location of the optimum facility
at the current stage t, an optimal mechanism can nonetheless
derive at each stage the precise interval in which the optimum
location may lie: The online mechanism can compute the pre-
cise optimum location ỹt−1 at Stage t − 1 (as it has access
to the agent locations of Stage t), and by Corollary 6 the op-
timal location at Stage 2 can lie at any point in M t(ỹt−1),
depending on the next stage. Our online mechanism will there-
fore place the facility yt at the point M t(yt−1) that lies as
close as possible to the middle point ofM t(ỹt−1). Denote this
mechanism as Mechanism A.
Theorem 10. Mechanism A runs in time O(Tn) and has
competitive ratio (n + 2)/(n + 1) on instances with an odd
number of n agents.

Proof sketch. The bound on the runtime is obvious. We sketch
our proof for the competitive ratio. Let I = (n, T, y0, x) be an
instance where n is odd, let y be the output solution of A and



Type 2 stage

Type 3 stage

y
t−1

y
t−1

y
t−1

~yt−1

~yt−1

~yt−1

x
t
dn=2e

x
t
dn=2e

x
t
dn=2e

Type 1 stage

Figure 2: Depiction of stages belonging to each of the three types. The
dot represents the middle agent location xt

dn/2e, the square represents
the optimal facility location ỹt, and the cross represents the facility
location yt−1 output by the online mechanism. The blue interval
represents the median M t(ỹt−1) associated to the optimal solution,
while the red interval represents the median M t(yt−1) associated to
the solution output by online mechanism A. Agents’ locations other
than the middle agent location are not depicted. Note that in a type
2 stage, it may either occur that yt−1 is to the left of ỹt−1 or to the
right of ỹt−1, although only the latter situation is displayed here.

let ỹ be the optimal solution. We assume w.l.o.g. that agent
locations are ordered non-decreasingly at each stage so that
xtdn/2e is the location of the middle agent at stage t.

Note first that by Lemma 2, for each stage t ∈ [T ], it holds
that ỹt ∈ M t(ỹt−1) and by definition of A it also holds that
y ∈ M t(yt−1). We define the non-median cost Ct

NM (z) of
solution z at stage t as the distance between all agents and
the facility at stage t, except for the middle agent. We define
the residual cost Ct

R(z) of z at stage t of z as the distance
between the middle agent and the facility and the movement
of the facility. That is, Ct

R(z) = |xtdn/2e − z
t|+ |zt−1 − zt|

It can be seen thatCt
NM (z) is minimized and constant when

zt is in the interval St = [xtdn/2e−1, x
t
dn/2e+1], which we refer

to as the supermedian at Stage t. We denote its length by `t.
The interval M t(zt−1) is always a subset of the supermedian
at Stage t, regardless of its argument zt−1. Hence, solutions
y and ỹ achieve the same non-median cost at every stage.
Also, it follows that the residual costs for both solutions at any
Stage t ∈ [T ] can be written as Ct

R(y) = |xtdn/2e − y
t−1| and

Ct
R(ỹ) = |xtdn/2e − ỹ

t−1|. Thus, we may derive that

C(y)−C(ỹ) =

T∑
t=1

(|xtdn/2e−y
t−1|−|xtdn/2e− ỹ

t−1|). (1)

Therefore, we focus on bouding the right hand side.
Our proof roughly works as follows. We classify for each

stage the behaviour of the mechanism into one of three types.
A type 1 stage is a stage t ∈ [T ] such that yt−1 differs from
ỹt−1 and lie on opposing sides of xtdn/2e. Stage t is a type 2
stage if yt−1 and ỹt−1 lie on the same side of xtdn/2e, and the
middle point of M t(ỹt−1) is in M t(yt−1). Lastly, t is a type
3 stage if yt−1 and ỹt−1 lie on the same side of xtdn/2e, and
the middle point of M t(ỹt−1) is not in M t(yt−1) (implying
that ỹt−1 is further away from xtdn/2e than yt−1). Note that
each stage is classified into exactly one of the three types. See
Figure 2 for a visualization of the three types.

For each stage type we provide in separate propositions
a meaningful bound. For stages t of type 2 we bound the
distance between the facilities in distances in terms of the

length of the supermedian of Stage t and the optimal residual
cost at Stage t.

Proposition 11. For a type 2 stage t ∈ [T ] it holds that
|yt − ỹt| ≤ n−1

2(n+1)`
t + 1

n+1C
t
R(ỹ).

For a type 3 stage t, Mechanism A yields a solution y with
a better cost at Stage t than the globally optimal solution ỹ.
We prove that the distance |yt − ỹt| between the facilities is at
most equal to this profit.

Proposition 12. For a type 3 stage t ∈ [T ], it holds that
|yt − ỹt| ≤ Ct

R(ỹ)− Ct
R(y).

For type 1, we define a block of stages B ⊆ T as a maximal
set of subsequent stages t, . . . , u such that Stages t to u − 1
are all type 1 stages. We prove that that for such a block
B = {t, . . . , u} the total residual cost difference of block
B is bounded by the distance between the facility locations
|yt−1 − ỹt−1| in the previous stage t− 1.

Proposition 13. Let B = {t, . . . , u} ⊆ [T ] be a block. Then,∑u
s=t max{0, Cs

R(y)− Cs
R(ỹ)} ≤ |yt−1 − ỹt−1|.

Let {B1, . . . , BK} be the unique partition of [T ] into blocks.
We refer to tk as the final stage of block k ∈ [K]. Let T2 be
the subset of stages {t1, . . . , tK−1} that are type 2 stages
(which are all type t stages in [T ]), and let T3 be the sub-
set of {t1, . . . , tK−1} that are type 3 stages. Propositions 12
combined with Proposition 13 states that, for a stage t ∈ T3,
the profit in residual cost at stage t exceeds the deficiency in
residual cost at the block that follows it. Propositions 11 and
13 imply that for a stage t ∈ T2 the deficiency in the residual
cost of the subsequent block is at most n−1

2(n+1)`
t + 1

n+1C
t
R(ỹ).

The claim follows by finally proving that the first of those
two terms is at most 1

n+1C
t
NM (ỹ) and taking the sum over all

stages in T2 to derive that C(y)− C(ỹ) ≤ 1
n+1C(ỹ).

5 Strategyproofness
We investigate in this section the strategyproofness property
of our mechanisms proposed in the previous sections. The
results of Moulin [1980] yield a characterization of the class
C of strategyproof and group-strategyproof mechanisms for
the classic (single-stage) facility allocation problem: They are
those mechanisms that always place the facility at the median
of the union of the set of agent locations and a set of points
that are independent of the agent locations.

Unfortunately, the following examples show that the optimal
mechanisms of Corollary 6 and Theorem 10 are not group-
strategyproof, despite the fact that they can be seen as repeated
applications of mechanisms in C. This can be attributed to the
interdependence of the facility locations among the stages.

Example 14. For even n, consider the following instance I
with T = 3 stages and n = 2 agents. The starting location of
the facility is y0 = 0. The agent locations are x1 = (0, 1) and
x2 = x3 = (1, 0). If Agent 1 does not misreport, his total cost
is 2 under the optimal solution, because the facility will not
relocate at all. If Agent 1 reports instead that she is at location
1 in in Stage 1, then the facility will be placed at location 1
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Figure 3: Depiction of the 3 agent instance of Example 14. The
notation is identical to that of previous figures. Additionally, the
locations of Agent 1 are labeled with her identity. The squares depict
the optimal facility locations under truthful reporting. Crosses depict
the optimal facility locations when Agent 1 misreports x1

1 as 2.

in Stage 1, and will remain there for the remaining stages,
reducing the cost of Agent 1 by 1.

For odd n, the example is slightly more complex, and is
depicted in Figure 3: Let T = 4 and n = 3. The starting
location is y0 = 4. The agent locations are x1 = (1, 2, 5),
x2 = (2, 1, 4), x3 = (0, 4, 5), x4 = (0, 0, 0). If Agent 1 does
not misreport, then the optimal mechanism of Corollary 6
outputs the solution (y1, y2, y3, y4) = (3, 3, 3, 0). This gives
agent 1 a cost 4. If Agent 1 instead reports in the first stage
that her location is 2, the vector of facility locations becomes
(2, 2, 2, 0), so the cost of Agent 1 reduces by 1. Moreover,
instance I ′ demonstrates that Mechanism A of Theorem 10
is not strategyproof: when no agent misreports, the output
solution is (3.5, 2.5, 3.5, 0), which yields a total cost of 4.5
for Agent 1. If instead, Agent 1 misreports her location in the
first stage as 2, the output solution becomes (3, 2, 3, 0) which
yields Agent 1 a cost of 3.

This establishes that there is a gap between the cost gen-
erated by the optimal mechanism and the cost generated by
the optimal strategyproof mechanism. The following simple
mechanism bounds this gap. It is an online mechanism per-
forming slightly worse than the optimal online mechanism of
Theorem 10, though its competitive ratio still tends to 1 as the
number of agents grows.

Theorem 15. The online mechanism that puts the facility in
every stage at the location of the middle agent (breaking ties
arbitrarily in case of even n, in a way that is independent of
the reported agent locations) is group-strategyproof and has a
competitive ratio of (n+4)/n for even n, and (n+3)/(n+1)
for odd n.

Proof sketch. Group-strategyproofness is straightforward to
show, and follows in essence from the fact that the mechanism
is a repetition of a mechanism from Moulin’s class C, which
reduces the induced game to a sum of T independent games
where truth-telling is a dominant strategy in each of them.

For the bound on the competitive ratio, again we assume
that the agent locations are ordered non-decreasingly at each
stage. We also assume w.l.o.g. that ties are broken in favor
of the left agent, when n is even, so that yt = xdn/2e by this
assumption. For odd n, we define the supermedian St as in

the proof sketch of Theorem 10. For even n, we define the
supermedian St as the interval [xtn/2, x

t
n/2+1]. We denote by

`t the length of St. Note that M t(ỹt−1) is always contained in
St. Thus, the optimal movement of the facility |ỹt−1 − ỹt| at
stage t is at least d(St, St−1), i.e., the distance between St and
St−1 (where S0 = {y0}). On the other hand, the movement
|yt − yt−1| generated by our mechanism at stage t is at most
`t + `t−1 + d(St, St−1), where `t is the length of St.

Assume first that n is even. Then, the total distance between
yt and the agent locations is the minimum possible at each
stage, which also holds for ỹt. Thus, the difference C(y) −
C(ỹ) in cost is entirely attributed to the difference in total
facility movement, which is at most 2

∑T
t=1 `

t. At stage t
the distance between any two agents on opposite sides of the
facility is at least `t, so that the total cost generated by the
agents at stage t is at least (n/2)`t. The latter implies that
(C(y) − C(ỹ))/C(ỹ) ≤ 4

n , which yields the desired upper
bound for even n.

Lastly, suppose that n is odd. The total inefficiency in fa-
cility movement is at most 2

∑T
t=1 |ỹt − xtdn/2e|. For odd

n, the optimum does not always minimize the total distance
between the facility and the agents at every stage in this
case, though the facility is always placed in St, so the to-
tal distance from the agents to the facility at each stage t
is |ỹt − xtdn/2e| lower under yt. We subtract this from our
bound on the distance in facility movement, and we obtain that
C(y)−C(ỹ) ≤

∑T
t=1 |ỹt−xtdn/2e|. The quantity |ỹt−xtdn/2e|

is at most the length `t of the supermedian, which allows us
to bound C(y) − C(ỹ) as a convex combination between
|ỹt − xtdn/2e| and `t, so that

C(ỹ)− C(y) ≤ 1

bn/2c+ 1

T∑
t=1

(
|ỹt − xtdn/2e|+ bn/2c`

t
)
.

The upper bound on the competitive ratio then follows because
bn/2c = (n− 1)/2 and the latter summation can be shown to
be a lower bound on C(y).

Example 16. The following family of examples shows that
the analysis of the competitive ratio in Theorem 15 is tight for
all n. Let the starting facility location be y0 = 1 and let there
be two stages. In Stage 1, agents 1 to bn/2c are located at 1,
and the remaining agents are located at 0. In Stage 2, all of the
agents are located at 1. The optimal Mechanism (see Corollary
6) places the facility at location 1 in both stages, resulting in a
cost of n/2 if n is even, and a cost of (n+ 1)/2 if n is odd.

The mechanism of Theorem 15 places the facility at location
0 in the first stage, and at location 1 in the second stage. This
yields a total cost of n/2 + 2 if n is even, and a total cost
of (n − 1)/2 + 2 when n is odd. Thus, when n is even, the
competitive ratio on these instances is ((n/2) + 2)/(n/2) =
(n+ 4)/n, and when n is odd, the competitive ratio is ((n+
3)/2)/(n+ 1)/2 = (n+ 3)/(n+ 1).

6 Discussion
We studied a multi-stage variant of the classical facility loca-
tion problem, where we characterized the optimal mechanisms



both in the offline setting, and in the online setting, and con-
sidered this problem under the constraint of strategyproofness
as well. These mechanisms turn out to be elegant and simple
in their definition, but are surprisingly challenging to analyze.

Interesting future directions are to design online and strate-
gyproof mechanisms for the generalized variant of the prob-
lem that we briefly considered, and to characterize the class of
(group)-strategyproof mechanisms for the basic version of the
problem. We conjecture that the competitive ratio of Theorem
15 is the best achievable among the strategyproof mechanisms.
Additionally, randomized mechanisms can be studied in this
context as it is known that they outperform deterministic ones
in the single stage case [Lu et al., 2010].

An alternative generalization of the problem that would be
interesting (and undoubtedly more complex) to study is to
increase the dimension of the Euclidian space in which the
locations lie, e.g. to consider facility reallocation on the plane
instead of the line.
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