
A review of uncertainty analysis in building energy assessment 

Wei Tian 
a,b

*, Yeonsook Heo 
c
, Pieter de Wilde 

d
, Zhanyong Li 

a,b
, Da Yan 

e
, Cheol Soo Park 

f
, Xiaohang 

Feng 
e
, and Godfried Augenbroe

 g
 

 
a
 Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food 

Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and 

Technology, Tianjin 300222, China 
b
 Tianjin International Joint Research and Development Center of Low-Carbon Green Process 

Equipment, Tianjin 300222, China 
c
 Department of Architecture, University of Cambridge, Cambridge, UK 

d
 Chair of Building Performance Analysis, Environmental Building Group, University of Plymouth, 

Plymouth, Devon PL4 8AA, UK 
e
 School of Architecture, Tsinghua University, Beijing 100084, China 

f
 Department of Architecture and Architectural Engineering, College of Engineering, Seoul National 

University, Seoul, 08826, South Korea 
g
 College of Architecture, Georgia Institute of Technology, Atlanta, USA 

 

*Corresponding author: Wei Tian, Tel: +86 (022) 60600705 , Email: tjtianjin@gmail.com 
 

Abstract: Uncertainty analysis in building energy assessment has become an active research 

field because a number of factors influencing energy use in buildings are inherently uncertain. 

This paper provides a systematic review on the latest research progress of uncertainty analysis in 

building energy assessment from four perspectives: uncertainty data sources, forward and 

inverse methods, application of uncertainty analysis, and available software. First, this paper 

describes the data sources of uncertainty in building performance analysis to provide a firm 

foundation for specifying variations of uncertainty factors affecting building energy. The next 

two sections focus on the forward and inverse methods. Forward uncertainty analysis propagates 

input uncertainty through building energy models to obtain variations of energy use, whereas 

inverse uncertainty analysis infers unknown input factors through building energy models based 

on energy data and prior information. For forward analysis, three types of approaches (Monte 

Carlo, non-sampling, and non-probabilistic) are discussed to provide sufficient choices of 

uncertainty methods depending on the purpose and specific application of a building project. For 

inverse analysis, recent research has concentrated more on Bayesian computation because 

Bayesian inverse methods can make full use of prior information on unknown variables. Fourth, 

several applications of uncertainty analysis in building energy assessment are discussed, 

including building stock analysis, HVAC system sizing, variations of sensitivity indicators, and 

optimization under uncertainty. Moreover, the software for uncertainty analysis is described to 

provide flexible computational environments for implementing uncertainty methods described 

in this review. This paper concludes with the trends and recommendations for further research to 

provide more convenient and robust uncertainty analysis of building energy. Uncertainty 

analysis has been ready to become the mainstream approach in building energy assessment 

although a number of issues still need to be addressed.  
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Highlights 

 
 A comprehensive review on uncertainty analysis in building energy assessment is 

presented. 

 A reliable dataset for uncertain factors in buildings needs to be constructed.  

 Further research on quantifying stochastic occupant behaviours in buildings is needed.  

 The Monte Carlo method is the most widely used uncertainty method in building energy 

analysis.  

 Bayesian computation receives more attention in calibrating building energy models.  
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1  Introduction  

Uncertainty analysis has received increasing attention in the field of building energy 

analysis [1-4] because a number of variables that influence building thermal performance are 

inherently uncertain, such as occupant behaviour, thermal properties of building envelope, and 

weather conditions [5, 6]. Moreover, the development of modern uncertainty quantification 

techniques provides more advanced methods and tools to facilitate the research on uncertainty 

analysis for a better understanding of the nature of building energy and associated energy 

models [7, 8]. Therefore, uncertainty analysis has been widely implemented in various areas of 

building energy analysis, including model calibration [1, 9], life cycle analysis [10-12], building 

stock analysis [13, 14], impact & adaptation to climate change [15, 16], sensitivity analysis [17, 

18], spatial analysis [19, 20], and optimization [21, 22].  

Uncertainty analysis in building energy assessment can be divided into two categories as 

shown in Figure 1: forward and inverse uncertainty quantification [23-25]. Forward uncertainty 

analysis (also called uncertainty propagation) focuses on quantifying the uncertainty in the 

system outputs propagated from uncertain input variables through mathematical models, while 

the purpose of inverse uncertainty analysis (also called model calibration) determines unknown 

variables through mathematical models from measurement data. From the perspective of 

building energy analysis, forward uncertainty quantification can predict energy use or carbon 

emissions using building energy models with input variations, whereas inverse uncertainty 

quantification can quantify unknown input variations through building energy models after 

collecting energy data from buildings. To date, considerably more research has been carried out 

on forward uncertainty propagation than on inverse uncertainty quantification in the field of 

building energy analysis. This is not surprising, as inverse uncertainty quantification is 

significantly more difficult than forward uncertainty propagation. Nevertheless, forward and 

inverse uncertainty analyses are closely linked [8]. Efficient forward uncertainty propagation is 

necessary for inverse uncertainty analysis because sampling-based inverse uncertainty analysis 

usually involves a large number of simulation runs [1]. The results from inverse uncertainty 

analysis are often used for forward uncertainty propagation to predict building energy use from 

various energy saving strategies [9, 26].  

A distinction is often made between two types of uncertainty: aleatory uncertainty and 

epistemic uncertainty [27, 28]. Aleatory uncertainty (also called variability, stochastic, 

irreducible, and type A uncertainty) is due to inherent or natural variation of the system under 

investigation. In contrast, epistemic uncertainty (also called state of knowledge, subjective, 

reducible, and type B uncertainty) arises from a lack of knowledge. In building energy analysis, 

an example of aleatory uncertainty is occupancy presence, which can be better characterized 

from additional experiments or observation, but not be reduced as it is fundamentally impossible 

to predict variations of occupancy patterns for the future. Examples of epistemic uncertainty 

include lighting and appliance power densities, which can be better quantified by collecting 

more information to reduce its uncertainty, such as by installing measurement equipment for 

lighting and appliances. Note that not all of these uncertainties can be represented as specific 

probability functions (such as normal distribution, Gamma distribution, and uniform 

distribution). Aleatory uncertainty is naturally treated in a probabilistic framework, whereas 

epistemic uncertainty may be specified in a probabilistic or non-probabilistic way, including 

second order probability, interval, evidence theory, and fuzzy sets [28].  

Researchers in the field of building energy simulation have proposed several 

classifications of uncertainty to represent the different characteristics of uncertainty in building 

energy analysis [3, 22, 29, 30]. Uncertainty can be divided into model form uncertainty and 

parameter uncertainty [31, 32]. Model form uncertainty (also called model discrepancy) refers to 

underlying the missing physics, numerical approximation, and other issues of computer 



programs [7, 29], whereas parameter uncertainty refers to uncertainty associated with the values 

of parameter that appear in building energy simulation models. Uncertain parameters in building 

energy analysis can be further divided into three categories: design parameters, inherent 

uncertain parameters, and scenario parameters [3, 22, 30, 33-35]. Uncertainty in design 

parameters exists in the design process where design parameters are determined through a series 

of design stages. For example, while the exact insulation materials or window types are not 

known in the early design stage, they will become known during the detailed design stage. 

Inherent uncertain parameters are usually uncontrollable, such as occupant behaviour, or the 

deviations between rated and actual plant system efficiencies. Scenario parameters refer to 

potentially varying economic or climatic conditions. Inherent uncertain parameters are usually 

denoted by normal distributions, whereas design uncertainty can be expressed by continuous or 

discrete uniform distributions [36]. Ramallo-González et al. [22] subdivided inherent uncertain 

parameters into workmanship & quality of building elements and occupant behaviour. Note that 

fewer studies have been carried out on model form uncertainty than on parameter uncertainty in 

the area of building energy analysis [37].  

Although a large number of studies have been conducted on uncertainty analysis of 

building energy analysis, a comprehensive up-to-date review on uncertainty analysis in the area 

of building energy assessment is still unavailable. Therefore, this paper aims to provide a 

detailed systematic overview of uncertainty analysis in building energy assessment from four 

aspects: uncertainty data sources, both forward and inverse uncertainty methods, application of 

uncertainty analysis, and available software for uncertainty analysis. Because reliable 

uncertainty data are the foundation for uncertainty analysis in building energy analysis, it is 

necessary to gain a good understanding of the latest research development of data sources 

relevant to building performance as will be described in section 3. Forward and inverse analysis 

(as will be described in section 4 and section 5, respectively) are the two main methods applied 

in the field of building performance assessment. The forward uncertainty analysis will discuss 

the Monte Carlo sampling-based, non-sampling, and non-probabilistic approaches to help an 

analyst choose the appropriate method. Inverse uncertainty analysis will be described from the 

perspectives of both the frequentist and Bayesian methods to provide a full picture of modern 

statistics to deal with the calibration problems of building energy models. Four applications on 

uncertainty analysis in building energy performance will be described in section 6, including 

building stock analysis, HVAC system sizing, variations of indicators of sensitivity analysis, 

and optimization under uncertainty. The software available for uncertainty analysis will be 

presented in section 7 to provide the computation environment for implementing the uncertainty 

methods described in this paper. Moreover, the trends and recommendations for further research 

will be summarized in the final section to provide more convenient and robust uncertainty 

analysis in assessing building energy performance. It should be emphasized that uncertainty 

analysis is not yet regarded as standard practise in assessing building performance in industry 

although the traditional deterministic approach is considered to be unacceptable due to the lack 

of sufficient information obtained from one single simulation run [38, 39]. This review will also 

help to promote uncertainty analysis as a mainstream method in the area of building 

performance assessment.  

2 Methodology 

This literature review follows the concept-centric principle proposed by Webster and 

Watson [40] and also incorporates the strengths of reviews published in the field of building 

energy analysis [41-43]. The research methodology is composed of three steps as follows.  

(1) Search and Screen relevant research papers. A keyword search was conducted using 

Google Scholar and Scopus database since these databases can cover broad publications in the 



field of building energy analysis. All the journal or conference papers should meet the following 

criteria: papers written in English; peer-reviewed publications; relevant to the topics as 

described in the last paragraph of “Introduction” section; more focused on recent research 

findings. The online publications from the IBPSA (International Building Performance 

Simulation Association) with a larger number of international and regional conference papers 

are also used to select papers relevant to this overview since this online database includes the 

latest and important findings in the field of building energy analysis.  

(2) Review all relevant publications. All the papers selected in the first step will be 

reviewed carefully by the authors from four aspects: uncertainty data sources, forward & inverse 

uncertainty approaches, application of uncertainty analysis, and available software in this field.  

(3) Identify gaps and future research directions. After carefully analysing relevant 

papers, research trends and gaps are identified in uncertainty analysis of building energy 

performance. Moreover, future research directions are also determined to make uncertainty 

analysis become a main-stream method in building energy assessment.  

3 Sources of uncertainty in building performance analysis 

In this section, four types of uncertainty are summarized, as listed in Table 1: weather 

data, building envelope, HVAC system, and occupant behaviour. In the area of uncertainty 

analysis of building energy, two initial studies on quantifying uncertainty parameters are 

performed by Macdonald [44] and de Wit [45]. Macdonald [44] quantified three types of input 

parameters based on an extensive literature review: thermo-physical properties, casual gains, 

and infiltration rates. In addition to these parameters, de Wit [45] quantified uncertain 

parameters with little measurement data available, including wind pressure coefficients and 

indoor air temperature distributions. Recently, Sun [32] provided more information on 

uncertainty of ground albedo, convective heat transfer coefficients, and lighting/plug loads. In 

Wang’s thesis [31], more attention is concentrated on infiltration, workmanship issues related to 

thermal bridges, occupancy variables, and HVAC system uncertainty. These recent works are 

included in a full repository of quantified sources of uncertainty as part of the Georgia Tech 

Uncertainty and Risk Analysis-Workbench (GURA-W) developed by the Georgia Institute of 

Technology [37], which will be described in section 4.1.3. De Wit [45], Heo [46], and Struck 

[47] provide more general descriptions of uncertain parameters.  

3.1 Weather data 

Due to changeable nature of weather, weather data is highly uncertain, causing variation 

of energy use in buildings. In building energy simulation, a typical meteorological year chosen 

from actual weather data over several decades is usually applied using the Finkelstein–Schafer 

method [16, 48]. Currently, increasing concern is being shown that a single weather data file 

(typically containing 8760 hourly values) cannot contain reliable and sufficient information on 

plausible weather conditions and their likelihoods in assessing building energy performance [49, 

50]. Simulated energy consumption using typical weather data does not necessarily represent the 

average energy use based on the weather data of actual historical meteorological years. 

Moreover, building performance is affected by future climate, not by historical weather 

conditions. Most weather data derived from historical data do not represent the likely long-term 

weather conditions to which buildings will be exposed in the future. These two aspects 

(historical and future weather data) are discussed in the following subsections. 



3.1.1 Historical weather data 

Two methods are used to determine variations of historical weather data in building 

energy analysis (as an alternative to using only one typical weather data file). In the first 

method, several weather files are used, such as the typical year file, cold weather data, and hot 

weather data, to sufficiently include the possible variations in the weather conditions with the 

minimal weather dataset. Rodríguez et al. [51] used three weather files to represent the 

uncertainty of weather data for the extreme cold, medium, and extreme hot years. Breesch and 

Janssens [52] applied two weather files to consider the effects of warming summer conditions, 

including normal and warm temperatures.  

In the second method, all the recent weather data are used to represent long-term weather 

uncertainty according to the frequency of occurrence [53, 54]. Hong et al. [49] assessed the 

weather impact on building energy performance using 30-year (1980-2009) historical weather 

data. They implemented a total of 3162 simulation runs by considering three types of office 

buildings with two design efficiency levels in all 17 ASHRAE climate zones. They found that 

the typical meteorological year (TMY3) weather file was not able to represent the average 

energy performance predicted by an actual 30-year weather dataset. Wang et al. [55] used the 

weather files of 10-15 years to assess the variations of energy use in an office building, and 

found that the energy variations ranged from -4.0% to 6.1% according to the weather file, 

compared with the energy prediction using the TMY data. Four USA cities were used as 

locations to represent variations of climate types: Washington DC, Chicago, Atlanta, and San 

Francisco. Sun et al. [56] used 32 weather datasets (1982-2013) to investigate the effect of 

weather uncertainties on sizing HVAC system under different climate zones. As an alternative 

to directly using the historical weather data, Lee et al. [57] developed a stochastic model based 

on a Vector Auto-Regressive process in which a number of varying weather conditions are 

generated based on a historical weather dataset.  

Most weather data are measured at a nearby meteorological station, which cannot 

represent actual microclimate conditions around a building. Hence, meteorological weather data 

need to be modified to reflect the impact of nearby vegetation, neighbouring buildings, and 

mesoscale flow characteristics. Sun et al. [58] built statistical models to quantify the uncertainty 

of four microclimate variables: local wind speed, local temperature, wind pressure and solar 

irradiation.  

Uncertainty in the weather data has been handled in different ways depending on the 

types of design applications and modelling methods. For designing mechanical systems, Huang 

et al. [35] implemented normal distribution to quantify uncertainty in both ambient temperature 

and relative humidity values selected as the design weather conditions for calculating peak 

cooling loads. By using a quasi-steady-state calculation method for building energy rating, 

Corrado and Mechri [59] used a bivariate normal distribution to quantify uncertainty in both 

monthly average temperatures and global horizontal solar radiations, since these two weather 

variables are highly correlated.  

3.1.2 Future weather data 

A large number of studies have been conducted on assessing the impact and adaptation 

to climate change in buildings [15, 16, 60-62]. Climate projections from global circulation 

models usually have larger spatial and temporal resolutions (typical 300 km X 300 km and 24 h) 

than the local hourly data required for dynamic building energy simulation [63]. Therefore, 

these weather projections need to be downscaled using suitable methods, including dynamical 

downscaling, stochastic weather generation, interpolation, and morphing approach. The 

morphing approach widely used in building energy analysis is to shift and stretch weather 



variables from the current weather time series in order to create new future weather data by 

encapsulating information about the future climate [16, 64]. The advantages of this method are 

that the future weather sequences are meteorologically consistent with the best climate 

projection.  

A major step towards quantifying the uncertainty of future climate is the UK Climate 

Projections (UKCP09) released in 2009 [65]. UKCP09 deals with three types of uncertainty: 

complexity of climate system, natural climate variability, variations of future pathway of 

greenhouse gas and aerosol emissions. For the uncertainty of greenhouse gas emissions, the 

UKCP09 applies three scenarios: low, medium, and high [65]. For each scenario, the UKCP09 

provides weather projections in a probabilistic manner by accounting for the complexity and 

natural variability of the climate system for a range of possible outcomes, which makes risk-

based analysis easier in decision making process. Since a large number of hourly weather files 

can be generated from UKCP09, further developments have concentrated on finding ways to 

efficiently implement the UKCP09 in building energy analysis [61, 62].  

3.2 Building envelope 

The parameters related to building envelope have been categorized into three types: 

thermal properties, surface properties, and other parameters. Compared to occupant behaviour 

and HVAC systems in buildings, there has been more data available on the uncertainty of 

building envelope.  

3.2.1 Thermal properties 

An early extensive document on the thermal properties of building materials was 

compiled by Clarke et al. [66]. Their report reviewed the available data and described the 

variations of thermal property values in these data. Based on these data, Macdonald [44] derived 

more detailed uncertainty data of thermal properties, which can be easily applied to uncertainty 

analysis. Detailed information on the uncertainty ranges of the thermal properties of building 

materials was presented in Macdonald’s studies [44], including conductivity, density, and 

specific heat capacity. These data have been widely used in the uncertainty analysis of building 

energy use [35, 52, 59]. Note that the uncertainty ranges of thermal properties are due to both 

measurement errors and environmental conditions, such as moisture, temperature, and age. For 

example, moisture conditions have simultaneous effects on density, thermal conductivity, and 

heat capacity. Dominguez-Munoz et al. [67] provided more specific information on the thermal 

conductivity of insulation materials using several hundred measurements of conductivity from 

seven European national laboratories.  

3.2.2 Surface properties 

The surface properties of building envelope affect building energy performance by 

absorbing or reflecting solar energy and emitting thermal energy. Macdonald [44] summarized 

the mean and standard deviation of emissivity and absorptivity values for different building 

materials based on the work by Clarke et al. [66]. The emissivity of materials often used in 

building construction is around 0.9-0.95 [68] and the corresponding standard deviation is 0.02 

[44]. A typical emissivity value for highly polished materials (such as aluminium foil) is 0.05 

[68] and its standard deviation is 0.01 [44]. For the solar absorptivity of bricks, the average 

values are 0.49 and 0.76 for light and dark bricks, respectively, and their standard deviation is 

0.04 [44].  

Ground reflectance (also called ground reflectivity or albedo) is an often overlooked 



parameter in building energy analysis [69], and can differ depending on surface properties, 

cloud cover, snow conditions, and other factors. Based on Thevenard et al. [69], Silva and Ghisi 

[33] used a triangular distribution with a range from 0.13 to 0.26 for the reflectance of ground 

surface. Sun et al. [58] obtained a non-normal distribution of ground reflectance derived from 

various available data sources using the Monte Carlo method. In their research, the distribution 

of ground reflectance from their research is clustered at about 0.25 and ranges from 0.05 to 0.45 

in the case of no snow for city terrain. In the presence of snow, the ground reflectance increases 

significantly, ranging from approximately 0.75 to 0.95 for fresh snow cover [58, 69].  

3.2.3 Other parameters 

This section focuses on infiltration rate, thermal bridges, convective heat transfer 

coefficient, and thickness of building materials.  

Infiltration rate (closely related to air tightness) is a function of age, construction quality, 

building use, and weather conditions [9, 44]. Infiltration rate is one of the most uncertain 

parameters since it is difficult to measure in buildings. Moreover, in previous studies, the 

infiltration rate has been ranked as one of the key variables influencing building energy use 

based on sensitivity analyses [9, 70]. Most papers have quantified uncertainty in the infiltration 

rate on the basis of a collection of measurement data available from existing buildings [9, 66, 

71, 72]. Emmerich et al. [73] summarised an extensive dataset of existing fan pressurized tests, 

most of which were sourced from the work by Persily [74]. Li et al. [75] studied the natural 

ventilation and infiltration rate in the dormitory and analysed the uncertainty.  

Unwanted heat transfer occurs through thermal bridges in a building at connections 

between envelope components such as wall/window and wall/floor connections. The severity of 

this thermal bridge effects depends on construction details and the quality of construction 

workmanship [76]. Moon [76] quantified the effect of construction details on the temperature 

factor based on simulation results of three case studies. He also quantified the effect of poor 

workmanship on the temperature factor by comparing simulation results with measurements. 

This approach was adopted in the Moon’s paper [71] to investigate the effect of varying quality 

of thermal bridge workmanship and infiltration rates on the building energy demand.  

Internal and external convective heat transfer coefficients have been studied extensively 

in the field of building energy assessment [26, 32]. In these studies, external convective heat 

transfer coefficients are often expressed as a function of local wind speed and surface properties 

(e.g., roughness). However, a few studies have been carried out on quantifying the uncertainty 

of convective heat transfer coefficients in buildings. Sun [32] summaries correlation 

relationships between two empirical coefficients derived in the previous studies for the 

calculation of external heat transfer coefficients, using a bivariate normal distribution, since 

these two coefficients are found to be correlated. Huang et al. [35] used a normal distribution 

and a triangular distribution for an internal and external convection heat transfer rate, 

respectively.  

Uncertainty in the thickness of building materials is caused by the differences between 

design specifications and construction outcomes. Silva and Ghisi [33] assumed that the material 

thickness parameter follows a normal distribution with a standard deviation of 10 percent of its 

mean value. The same uncertainty range is also used for material thickness parameters in the 

research by Hopfe and Hensen [3].  

3.3 HVAC system 

Compared to other types of uncertainty in buildings, few studies have been conducted on 

the uncertainty related to HVAC systems [55, 77]. Building energy analysis usually assumes 



that HVAC systems operate in ideal conditions. In reality, however, the performance of HVAC 

systems is affected by a number of factors, such as oversizing, ageing, maintenance, usual wear 

and tear.  

Typically simulation studies have considered only uncertainty in mechanical system 

efficiencies, quantified as the form of a probability distribution [9, 51]. Beyond the system 

efficiencies, Wang et al. [55] explored the uncertainty of energy use as the result of different 

levels of building operation strategies that include lighting control, plug-in equipment control, 

HVAC operation schedule, variable-air-volume box minimum-flow, economizer setting, night 

setback, supply air temperature control, and temperature setting for non-occupied hours. The 

results suggest the uncertainty in the annual energy use ranges from -28.7% to 79.2% due to the 

parametric variations associated with building operation strategies. Yan et al [78] quantified 

uncertainty associated with actual system operation, specifically the outdoor airflow control 

parameter, with the application of HVACSIM+ simulations and measured flow rates.   

Another relevant topic is the longitudinal performance of HVAC systems as the result of 

system deterioration over time. The National Renewable Energy Laboratory (NREL) report [79] 

provides typical degradation rates depending on the maintenance level and system type; the 

degradation rate for boilers and constant/variable volume fans is 0.2% per year with good 

maintenance and 0.5% per year without maintenance. For central chillers and heat pumps, the 

degradation rate is 0.1% with maintenance and 1% per year without maintenance. In order to 

account for uncertainty associated with the degradation rate, de Wilde et al. [80] proposed a 

stochastic process model with a gamma distribution in order to model system deterioration over 

time. Huang et al. [81] proposed a method using a Bayesian Markov Chain Monte Carlo 

(MCMC) method to estimate the degradation effect of chiller systems. They demonstrated 

through a case study that the proposed method provides accurate predictions with associated 

uncertainty levels to evaluate the reliability of chillers in future years.  

3.4 Occupant behaviour 

The relationship between the occupant behaviour and thermal performance of buildings has 

recently become a very active research area [82-87]. Occupant behaviour is regarded as a major 

uncertainty source that can account for up to 30% of variation in building energy performance 

[88]. Studies have shown that occupant behaviour leads to the uncertainty in energy 

consumption even within the same building [89, 90]. Previous researchers have studied various 

aspects of occupant behaviour in building, including occupant monitoring, ontology of occupant 

behaviour, behaviour model development & evaluation, and model implementation [83, 91, 92].  

Most current building energy simulation programs treat the variables associated with 

occupant behaviour as deterministic by allowing users to specify fixed temporal schedules for 

occupancy-related variables, such as occupants, lighting use, plug loads, and cooling/heating 

set-points. Such schedules are easy to implement, but do not represent the complex stochastic 

nature of human behaviour or its interaction with the indoor environment in buildings. New 

approaches have been developed to adequately present the variations of occupant behaviour, and 

these methods can be categorized into two types: implicit and explicit [82, 93]. The implicit 

models focus on predicting occupant control actions associated with building systems (e.g. 

windows, lights, equipment) rather than understanding underlying logics behind occupant 

behaviour. In contrast, the explicit models directly represent behavioural logics to determine the 

state of the occupant and his/her control actions accordingly. 

Implicit occupant models are widely used in the field of building energy analysis 

because they are a natural extension of the schedule-based approach currently used in building 

simulation programs [44, 70]. Moreover, occupant presence may not be the best proxy for 

predicting internal loads (e.g., lighting and plug-in equipment) [94]. Corrado and Mechri [59] 



used a triangular distribution for the total number of occupants and a normal distribution for 

occupant metabolic rates. Ward et al. [94] compared the different models of internal loads, 

including Menezes [95], DEmand LOad REconStructor (DELORES) [96], Sun [32], and Auto-

Regressive Integrated Moving Average (ARIMA). Breesch and Janssens [52] implemented 

three scenarios (low, medium, and high) to represent the variations of internal heat gains.  

Explicit models for occupants can directly determine the state of occupant behaviour in a 

building. This type of models include Markov chain [97], agent approach [98], Bernoulli 

process [99], and random walk [100, 101]. The Markov chain method is based on conditional 

probabilities derived from measurement data that yield stochastic predictions [97]. In contrast, 

the agent approach focuses on modelling the underlying complicated rules such as the 

interactions of occupants’ perception, intention, etc. Bernoulli processes may be the most 

simplistic of stochastic models as it treats the probability of an event as being independent on 

the previous state. A random walk is a sequence of random variables obtained by adding a white 

noise to a time series data to simulate occupant behaviour in an unpredictable way [100]. 

According to [101], the occupancy pattern can significantly vary depending on the building type 

(process driven buildings such as offices, factories, residences vs. random walk buildings such 

as university labs, libraries), building environmental control (central autonomous HVAC vs. 

individual control), and many other unknowns. More research is needed in this area to better 

understand occupant behaviour and find appropriate ways to simulate these behaviour and 

associated uncertainty in building energy analysis.  

4 Forward uncertainty quantification in building performance analysis 

Uncertainty propagation can be divided into probabilistic and non-probabilistic methods [102]. 

Probabilistic uncertainty approaches are based on rigorous probability theory under the 

availability of sufficient data, whereas non-probabilistic approaches are developed to cope with 

a lack of information or data. Probabilistic uncertainty propagation can be further categorized 

into sampling-based and non-sampling approaches [103]. Sampling-based methods belong to 

external methods (also called non-intrusive), which treats an original deterministic model as a 

black-box model by running this deterministic model with different samples many times. In 

contrast, non-sampling methods include perturbation methods, moment equations, spectral 

representations (stochastic Galerkin and collocation) methods, and classical stochastic 

differential equations [103-105]. The advantage of internal (non-sampling) methods is their 

ability to provide high accuracy and high efficiency results, while this method requires 

extensively modifying the existing computational system code for uncertainty propagation 

[106]. The advantage of external uncertainty propagation is the ability to maintain a well-

validated model code at a high computation cost.  

Section 4.1 and 4.2 discuss the Monte Carlo simulation method and its variations, 

respectively. Section 4.3 and 4.4 presents non-sampling and non-probabilistic uncertainty 

propagation methods, respectively. The relevant references for both forward and inverse 

uncertainty analysis in building energy analysis are summarised in Table 2.  

4.1 Monte Carlo sampling-based simulation 

Monte Carlo-based simulation is the most widely used uncertainty propagation method in the 

area of building energy assessment [107-109]. This is because this method is very intuitive and 

easy to implement compared to other uncertainty propagation approaches (such as full factorial 

numerical integration, stochastic Galerkin, and discrete projection). Moreover, the sampling-

based method is usually regarded as the most reliable uncertainty technique since it can be 

applied to most simulation environments and deal with different types of probability functions 



of input variables, even for correlated variables [104, 110]. The main disadvantage of this 

method is the slow convergence rate with a large number of function evaluations, which incurs a 

high computational cost. The high computational cost because of using the Monte Carlo 

uncertainty simulation can be reduced in three ways. First, more efficient sampling methods can 

be used, such as Latin hypercube sampling or Sobol sequence, which is discussed in section 

4.1.2. Second, surrogate models can be applied instead of original expensive engineering 

mathematical models in propagating uncertainty as is described in section 4.2.3. Third, more 

recent uncertainty quantification methods can be employed, such as stochastic polynomial chaos 

expansion, stochastic collocation. These new numerical methods are briefly described in section 

4.3. For detailed description of these new methods, please refer to [8, 110]. 

The procedure for quantifying uncertainty in building performance using the typical 

Monte Carlo simulation method is illustrated in Figure 2. The first step involves specifying 

probability distributions of uncertain input variables. The second step is to generate samples for 

input variables using sampling methods. The third step involves running mathematical system 

models to obtain matrixes corresponding to input samples for output variables. The final step is 

to present uncertainty results of output variables. A further optional step can be used in which 

sensitivity analysis is conducted to determine the key factors for explaining the distributions of 

building thermal performance. These steps are described in detail in the following subsections.  

4.1.1 Specify distributions of input variables 

The first step in quantifying uncertainty in building performance using the typical Monte 

Carlo simulation method involves specifying the probabilistic distributions for all uncertain 

variables. This step is both the most important and the most difficult aspect of the uncertainty 

analysis of building energy performance. Section 3 provides a summary of the quantification of 

uncertainty distributions for input parameters. In the field of building energy analysis, the 

Gaussian distribution is the most widely used distribution for inherent parametric uncertainty [2, 

6, 35, 36, 45]. Gaussian distributions need to be truncated where necessary to avoid unfeasible 

values (for instance, a negative value or zero for thermal resistance). In contrast, uniform 

distribution is commonly used in presenting the possible change of various building design 

strategies [111-114].  

In the case of a large number of input variables, performing sensitivity analysis prior to 

implementing uncertainty analysis can significantly reduce computational cost by selecting key 

factors influencing building energy performance. Spitz et al [85] selected the ten most 

influential parameters from 139 parameters with respect to their effect on the air temperature. 

Kim [115] selected the first five important factors using the Standardized Rank Regression 

Coefficients (SRRC) method to construct regression models for forward uncertainty analysis. 

Dominguez-Munoz et al. [116] used the standardized regression coefficient (SRC) to determine 

the key factors affecting peak cooling loads. Tian and Choudhary [12] implemented SRC and 

multivariate adaptive regression splines (MARS) to identify four important variables for the 

energy performance of schools located in London.  

4.1.2 Sampling methods 

Several methods have been used in building energy analysis (including random sampling, 

Latin hypercube sampling, and Sobol sequence) to obtain the combinations of input variable 

values from probability density functions.  

The random sampling method (also called traditional Monte Carlo) selects random samples 

from user-specified probability distributions [117-119]. Compared to other sampling methods, 

this method requires a large number of samples for convergence although it yields unbiased 



estimates of the mean and variance of outputs [120]. Asadi et al [121] implemented the Monte 

Carlo sampling method to generate 70,000 energy models with different input samples in order 

to analyse the effects of building shape on energy performance. Lu et al. [122] applied the 

random sampling method to estimate variations of electricity and gas consumption in 

Ma’anshan city of China using the Crystal ball software.  

Latin hyper-cube sampling (LHS) is the most widely used sampling method in the field of 

building energy analysis as it can produce converged results with a considerably reduced 

number of samples [3, 51, 52, 58, 59, 107, 111, 116, 123]. LHS is a stratified sampling method 

that divides the range of every input variable into N segments (the specific sample size)  with 

equal probability. The recommended length of the segments is dependent on the specified 

probability distribution shapes of input variables. One value is then randomly selected from each 

segment until all segments have one sample. An important feature in the LHS method is that 

every hypercube partitioned by segments associated with input variables has the same number 

of samples. Consequently, the LHS method usually requires a smaller sample size than the 

random sampling method for the same statistical accuracy. Hence, the LHS method is more 

suitable for computationally expensive models that include many uncertain variables. The 

general recommendation for a LHS sample size is ten times the number of variables in computer 

experiments [124]. However, this sample size may be inadequate for uncertainty analysis when 

complicated non-linear relationships between inputs and outputs exist in the building energy 

model. Further research is needed to provide clear guidance on the sampling number suitable for 

building energy analysis.  

The quasi-Monte Carlo sampling method is an efficient space-filling technique to produce 

low discrepancy sequences by filling the unit hypercube with good uniformity of coverage. 

Several low-discrepancy sequences exist, including Halton, Sobol, and Faure [125]. Tian et al. 

[17] implemented the Sobol sequence for the identification of the key variables among ten input 

variables with respect to their effect on the energy use of an office building. Eisenhower et al. 

[126] applied the quasi-random sampling method for uncertainty and sensitivity analysis of 

building energy models. A comparison of Latin Hypercube and quasi Monte Carlo sampling 

methods was conducted by Kucherenko et al. [127].  

In the case of correlated variables, several methods are available to maintain the correlation 

structure among variables, including the Iman/Conover, dependence-tree copula, and Stein 

method [36]. The Stein method has been used to consider the correlations between solar heat 

gain coefficients and U-values in generating input samples [128].  

4.1.3 Create and run energy models 

A large number of simulation runs are usually required in uncertainty analysis. Hence, it is 

necessary to automate the generation of simulation models with different input values, the 

simulation of models, and the extraction of the relevant data from simulation results using 

computer programming languages or specialized tools.  

Several simulation programs have been used in uncertainty analysis of building energy use, 

including EnergyPlus [72, 111, 113, 117, 126, 127, 129, 130], ESP-r [6], TRNSYS [52, 118], 

SAP 2009 [131], DOE-2 [112, 121], and VA 114 [3]. EnergyPlus is the most widely used 

simulation software for the uncertainty analysis of building energy because the Input Data File 

(IDF) file required for EnergyPlus is an ASCII (i.e. text) file, which can be easily edited using 

computer languages [132]. The ISO 13790 monthly method is also used in forward uncertainty 

analysis of building energy [59] since it is able to rapidly compute many simulation runs using 

the simplified model. An additional module has been added in the ESP-r program to facilitate 

the application of Monte-Carlo based uncertainty analysis [44].  



General-purpose programming languages can be used to edit building energy programs to 

automatically create many building energy models, including Matlab [3], Python [121], Excel 

VBA [2, 133], and R environment [134, 135]. Tian and de Wilde [2] used the Excel visual basic 

application (VBA) to create a large number of EnergyPlus models to investigate the impact of 

climate change on building thermal performance. Tian et al. [136] constructed approximately 

100,000 EnergyPlus models using the R program based on the shape files of geographical 

information (GIS) data to study the energy performance of London Westminster area.  

Researchers have developed special programing environments for the uncertainty analysis 

of building energy [37, 137]. The jEPlus program was developed by Zhang Yi [137] to support 

parametric analysis for EnergyPlus. This tool was used to draw samples from uncertainty 

ranges, create associated EnergyPlus models and simulate the models for uncertainty analysis of 

building energy models [51, 130]. Recently, the GURA-W was developed to provide an 

extensive list of uncertainty sources, standard uncertainty quantification (UQ) repository, and 

advanced statistical methods for uncertainty and sensitivity analysis [37]. A key feature of the 

GURA-W is the UQ repository that houses the pre-defined distributions of uncertainty sources, 

which can be used as prior density functions for the common modelling practice if no additional 

detailed data are available on a building under investigation [138]. The GURA-W environment 

has been used to perform uncertainty analyses for sizing HVAC systems [31] and supporting 

performance-based contracts [56].  

4.1.4 Present uncertainty results 

Uncertainty in probabilistic model predictions can be presented as numerical values or as 

visual graphs. Numerical indicators are descriptive statistical measures including mean, median, 

standard deviation, percentile, interquartile range, coefficient of variation, and quantile. Typical 

graphical methods include histogram [3, 35, 107, 116, 118] , density plot [13, 59, 107], 

cumulative distribution functions [56, 116, 122, 131], and box plots [16, 113]. Presently 

uncertainty analysis results is more complex if analysis results are multi-dimensional as a 

function of time or space. Time-series energy results are very common in assessing dynamic 

building energy behaviour. Box plots are a good method to show the variations of time series 

energy data. An example of this application is available in Tian et al. [2] to show the uncertainty 

of energy use in four time periods. 

4.1.5 Conduct sensitivity analysis 

Sensitivity analysis can be applied after presenting the results of output uncertainty 

analysis (Figure 2) in order to explain how input variables contribute to output variables [139]. 

While uncertainty and sensitivity analysis is closely related, they belong to two different 

disciplines. Uncertainty analysis is focused on either assessing output uncertainty derived from 

input uncertainty (i.e. forward uncertainty) or obtaining input uncertainty from measurement 

data (i.e. inverse uncertainty), whereas sensitivity analysis concentrates on assessing the 

contributions of input factors for variations of system outputs. Sensitivity analysis can be 

divided into local and global sensitivity analysis [36]. Detailed descriptions on the application of 

sensitivity analysis in building performance assessment can be found in [36, 134]. Dominguez-

Munoz et al. [116] used the SRC to determine the key factors affecting peak cooling loads. Tian 

and de Wilde [2] applied the SRC and Adaptive COmponent Selection and Smoothing Operator 

(ACOSSO) sensitivity methods to identify the important variables influencing energy 

performance of a campus building located in Plymouth, UK. Menberg et al. [140] developed an 

enhanced Morris method that uses the median value of analysis results instead of the average 



value for estimation of parameter importance, and demonstrated that the enhanced Morris 

method provides more robust results with a much reduced number of samples. 

4.2 Variations of Monte-Carlo methods 

This section describes three variations of Monte-Carlo uncertainty analysis that have been 

applied in building energy assessment. The first variation is two-dimensional Monte-Carlo 

method that allows aleatory and epistemic uncertainty to be treated differently in uncertainty 

propagation. The second variation is an incremental sampling method that generate several 

independent sets of Monte Carlo samples in order to obtain stable uncertainty results for 

building thermal performance. The third variation involves replacing time-consuming energy 

models with statistical surrogate models based on machine learning methods.  

4.2.1 Two dimensional Monte-Carlo methods 

Two-dimensional (2-D) Monte Carlo simulation is the most straightforward approach for 

propagating aleatory and epistemic uncertainty in a different manner. This method is also named 

the second-order probability, double loop, two-stage, 2-D Monte Carlo, or nested Monte Carlo 

method [70, 141, 142]. The outer loop simulates epistemic uncertainty, whereas the inner loop 

represents aleatory uncertainty. The advantage of using this method is that the uncertainty in 

model predictions arising from epistemic and aleatory uncertainty can be shown separately 

although its computational cost is usually very high due to the two-loop sampling. Figure 3 

shows the probabilistic energy predictions of two example cases using this method. A single 

cumulative distribution function (CDF) denotes uncertainty in the predictions due to the aleatory 

uncertainty of input variables, while the spread of CDFs represents uncertainty in the predictions 

due to the epistemic uncertainty of input factors. In the case shown in Figure 3a, the aleatory 

uncertainty has a more dominate role in model outputs than the epistemic uncertainty, and the 

opposite trend is shown in the case in Figure 3b.  

De Wilde and Tian [70] implemented the two-dimensional Monte Carlo approach to assess 

the impact of climate change on building thermal performance in a UK office building. In their 

study, the outer loop has 30 realizations using the random Monte Carlo sampling method and 

the inner loop generates 80 realizations per outer loop sample using the Latin Hypercube 

sampling method. Therefore, 2400 building energy models were run for one future climate 

scenario.  

4.2.2 Incremental sampling method 

The incremental sampling method is also called the replicate sampling method as it simply 

generates several independent samples in order to assess the stability of uncertainty results from 

the Monte Carlo sampling-based methods [110, 139]. First, an original sample is obtained using 

the random or LHS method. Then, the second sample is generated by the same method. The 

second sample is used to evaluate the adequacy of the original sample by comparing the 

probabilistic predictions from the original and second samples. If the results from the two 

samples are sufficiently similar, then the probabilistic predictions resulting from the samples 

represent the theoretical probability distribution. However, if the results from the two samples 

significantly differ, more samples are needed to ensure the convergence of probabilistic 

outcomes. The advantage of using the incremental LHS method is that it maintains the 

stratification of each LHS sample, which implies that several independent samples can be 

merged to provide more reliable uncertainty results. Note that the sizes of the samples can 

differ. This flexibility renders this method more useful by starting with a small sample size (to 



reduce computational cost) and then increasing the size of the next sample. Janssen [143] 

combined the incremental Latin hypercube sampling method with the sample-splitting approach 

to assess the accuracy of Monte Carlo simulations in the probabilistic design of a natural 

ventilating house.  

4.2.3 Surrogate model-based Monte Carlo method 

As discussed in section 4.1, forward uncertainty propagation requires many simulation 

runs to obtain reliable results. Hence, it may be infeasible or computationally challenging to use 

dynamic engineering-based models in uncertainty analysis. This has motivated the development 

of surrogate models that capture the main features of high-fidelity mathematical models while 

being efficient for both forward and inverse uncertainty quantification. Surrogate models can be 

categorized into two types: data-fit models and reduced-order models [144]. Data-fit models are 

based on regression methods to derive the relationships between inputs and outputs from a set of 

simulation results from high-fidelity models. Reduced-order models are generated by projecting 

high-dimensional states and parameters onto reduced-dimensional sub-spaces. Methods 

commonly used for the construction of reduced-order models are eigenfunctions, snapshot-

based methods, and high-dimensional model representation (HMDR) methods, all of which are 

used to construct reduced base functions. Detailed mathematical descriptions of the methods can 

be found in [8, 144].  

Data-fit models have been widely used in the building simulation domain, the most 

commonly used of which are linear regression models that have been considered as an effective 

surrogate model to capture building energy behaviour [1, 13, 121, 130]. In order to capture 

nonlinear behaviour, Chen et al. [111] constructed the MARS models to emulate daylighting 

simulation models and airflow network models for passively designed domestic buildings. 

Gelder et al. [145] provided an overview of five data-fit models (i.e., polynomial regression, 

MARS, kriging, radial basis function networks, and neural networks) and compared the 

performance of these methods through a case study. Recently, Gaussian Process models have 

been used as emulators for building simulation models due to their ability to flexibly capture 

complex behaviour including multivariable interactions and nonlinear relationships [9, 115, 

146].  

4.3 Non-sampling uncertainty propagation 

Non-sampling methods include perturbation methods, most probable point-based methods, 

operator-based methods, generalized polynomial chaos (stochastic Galerkin and collocation) and 

classical stochastic differential equations [8, 103, 104]. Perturbation methods can tackle large 

and complex parameterized models by expanding the random field through Taylor series at the 

most second-order expansion. The disadvantage of the perturbation approach is its limitation in 

handling large uncertainty in both inputs and outputs [103]. Most probable point-based methods 

are suitable for efficient uncertainty analysis using the first-order and second-order reliability 

methods [104, 147]. Operator-based methods are used to manipulate stochastic operators, for 

instance, by expressing the inverse of the stochastic operator in Neumann expansion [103]. 

Classical stochastic differential equations usually deal with idealized processes, including 

Wiener processes and Poisson processes using stochastic calculus [148, 149]. In contrast, 

generalized polynomial chaos methods allow inputs to be treated as random variables [103]. 

Generalized polynomial chaos, which has become a very popular method in uncertainty 

quantification, is a classical polynomial chaos in which the stochastic solutions are expressed as 

orthogonal polynomials of input variables. This method shows rapid convergence if the 

expanded function is dependent on smooth random variables. A Galerkin projection is usually 



implemented to minimize the error of the finite-order expansion and existing computer codes 

must be changed accordingly. For complex applications, an alternative choice is stochastic 

collocation that combines the advantage of both sampling-based (e.g. nonintrusive) and 

Galerkin methods (e.g. fast convergence) [148].  

Non-sampling uncertainty propagation methods have been used only for a few of 

applications in the field of building energy analysis: stochastic different equations [150-153] and 

stochastic collocation [115, 154]. Brohus et al. [150] implemented stochastic differential 

equations to quantify the uncertainty of building energy consumption using two case studies. 

The first case is a mechanically ventilated building and the second case is a naturally ventilated 

atrium. The building loads are treated as stochastic processes with a time-varying mean value 

and a time-varying standard deviation using a white noise (e.g. stochastic part). The results 

indicate that the stochastic method can suitably describe the airflow and energy consumption 

although the computational time is high (several hours on an Athlon 1 GHz PC in this study). 

Kim [115] created a surrogate model using polynomial chaos expansion for a five-storey office 

building located in South Korea. The point-collocation polynomial chaos method is used in 

MATLAB due to its non-intrusive nature. The results suggest that the polynomial chaos 

surrogate model is excellent in stochastic model predictions. Note that the stochastic collocation 

method can be used not only as a surrogate model to replace computationally expensive models 

but also as a sampling method for uncertainty quantification, which is the focus in this section. 

The uncertainty propagation using stochastic collocation has the advantage of fast convergence 

compared to the Monte Carlo sampling-based method [8]. However, further research, especially 

on the newly developed polynomial chaos expansion, is required to assess the suitability of the 

non-sampling uncertainty quantification in building energy analysis. 

4.4 Non-probabilistic uncertainty propagation 

A number of non-probabilistic uncertainty analysis methods are emerging to quantify 

uncertainty given limited information, especially for epistemic uncertainty. Non-probabilistic 

methods include interval analysis, fuzzy theory, Dempster-Shafer evidence theory, and the 

affine arithmetic model [27, 102, 155].  

The simplest method in non-probabilistic uncertainty propagation is the interval analysis 

assuming that an interval scalar consists of a single continuous domain in the domain of real 

numbers bounded by a lower and an upper number [102]. Although the optimal solution (i.e. 

minimal and maximal values of output values due to input intervals) is difficult to find, this 

method is conceptually simple. Local and global optimization can be used to overcome this 

limitation, and an alternative method involves using a uniform distribution over the input 

intervals, which means that no values in this interval are equally likely. Note that the resulting 

outputs cannot be interpreted as a probabilistic distribution but should be treated as the output 

interval bounds. One of the problems with using the interval analysis is the dependency issue 

that leads to unreliable outputs for uncertainty analysis. The affine arithmetic model is a 

generalization of interval arithmetic by considering the correlation between variables [155]. The 

affine model is a linear transformation of uncertainty variables as a separate token [156]. Fuzzy 

set can be regarded as a direct extension from interval analysis. A fuzzy number is defined as a 

membership to describe the vagueness in the numeric value [44]. The most frequently used 

membership functions are the triangular and Gaussian probability densities [102]. The Dempter-

Shafer evidence theory is a generalization of classical probability theory to model input 

variables as the sets of intervals (e.g. one or more intervals). The computational cost of using 

this method can be very expensive and a surrogate model (as described in section 4.2.3) can be 

used to reduce the computational cost.  



Only a number of limited of studies have proposed non-probabilistic uncertainty methods in 

the area of building energy analysis [44, 156-158]. Macdonald and Clarke [156] implemented 

the affine arithmetic model in the energy conservation equations of the ESP-r simulation 

environment. The results indicate that this method not only reduces the computational efforts 

but also allows the flexibility of algorithm control in order to decrease output uncertainty. 

Chaney et al. [157] used the Dempster-Shafer evidence theory for the fusion of multiple-sensor 

data in a house simulation model. The advantage of Dempster-Shafer theory is that the data can 

be combined from multiple sources in which these data can be overlapping, contiguous, or even 

have gaps. They found that the evidence theory is a very reasonable approach for providing rich 

information about occupant interaction with systems in the house. Kim et al. [159] reported that 

the Demster-Shafer theory (DST) can be used to effectively combine five different experts’ 

epistemic uncertainty into single uncertainty. The DST is known as a generalization of the 

subjective probability theory based on two principles. In the first principle, the degrees of belief 

from subjective probabilities are obtained, and the second principle is the aggregation rule (e.g. 

Dempster’s rule, Yager’s rule) for combining multiple degrees of belief. As energy efficiency 

projects often suffer from the limited information, more studies are needed to focus on finding 

ways to apply these non-probabilistic methods in order to more effectively represent the limited 

uncertainty information of building parameters. 

5 Inverse uncertainty quantification in building performance analysis 

Inverse uncertainty quantification is used to infer unknown input parameters in a model through 

a mathematical formulation given measurement data. Observed system outputs can be 

formulated as [8, 160],  

E = f(x, θ) + δ + ε    (1) 

where E is the real observations (i.e. building energy data), x is the known parameters (such as 

monitored weather data), θ is the unknown parameters that need to be calibrated, f(x, θ) is the 

model outcomes predicted by the building energy model or the emulator, δ is the model 

discrepancy that capture the differences between predicted and actual building performances, 

and ε is the measurement errors. Statistical methods for inverse uncertainty quantification can be 

broadly categorized into frequentist and Bayesian approaches. Prior to inverse uncertainty 

analysis, sensitivity analysis is often used to select important variables because it is difficult and 

computationally inefficient to infer a large number of uncertain parameters in model calibration.  

5.1 Frequentist techniques 

The frequentist technique is a classical parameter estimation approach that solely relies 

on measured data to infer unknown parameters [161-165]. This approach assumes that unknown 

parameters have true, fixed values and, accordingly, produce a single estimate and associated 

deviation. For linear models, unknown parameter estimates and associated confidence intervals 

can be determined explicitly based on normality assumption [8]. However, for nonlinearly 

parameterized problems, numerical optimization techniques are required, such as stochastic 

optimization methods, gradient-based approaches, and hybrid methods [8].  

The most commonly used point estimation methods are maximum likelihood estimation 

(MLE) and least squares estimation (LSE). MLE computes a probability density function that 

compares measurements with model predictions using testing parameter values and yields 

parameter values that maximise the function. LSE is a special case of the MLE that calculates 

the weighted sum of the squares of the differences between measurements and model 

predictions. A key difference between the two methods is that LSE assumes that measurement 

errors are normally distributed whereas MLE handles a non-Gaussian error distribution. 



Andersen et al. [151] applied MLE for the estimation of building envelope-related parameters in 

the grey-box model of a building. Reddy and Andersen [167] compared different classical 

estimation methods, including MLE and LSE, through a case study in which parameter values in 

different chiller models are estimated based on hourly measurements from a chiller. The main 

issue of using these inverse methods is that the confidence intervals of parameters are not 

presented explicitly in detail. For linear models, confidence intervals of inferred parameters can 

be derived by most of the available statistical programs. Estimation of confidence intervals in 

non-linear models is more difficult, and please refer to [8] for detailed description.  

Another way to quantify the uncertainty in parameter estimation is the bootstrapping 

technique [17, 168]. Based on the research from Banks et al. [168], the bootstrapping method is 

a better choice for a complex system because the sensitivities required for asymptotic theory are 

too complicated to compute for constant variance data. For non-constant variance data, local 

variation in the data would determine the choice of bootstrapping or asymptotic theory.  

5.2 Bayesian techniques 

Bayesian techniques have been increasingly used in estimating unknown parameters in 

building energy models [169-173]. The key feature of Bayesian methods is that expert 

knowledge can be incorporated with measurements into the model calibration process. In the 

Bayesian approach, unknown parameters are assigned with prior distributions that quantify prior 

beliefs about true parameter values based on expert knowledge collectively derived from a pool 

of available data sources such as surveys, technical reports, and industry standards. Prior 

distributions are updated using measurements through a Bayes’ theorem in which the likelihood 

of matching observations with model prediction drives the updating process. This updating 

process combines prior knowledge with new observed information and leads to improved 

distributions of unknown parameters, also known as posterior distributions.  

Ideally, when a large number of find-resolution observations are available, Bayesian 

calibration methods will result in posterior distributions that are close to true values regardless 

of initial prior beliefs about true parameter values. In reality, however, available observed data 

are often aggregated to the whole building level and are insufficient to infer a set of uncertain 

parameters. The effects of prior estimates on calibration outcomes have been investigated by 

increasing the range of prior estimates and altering the distribution shape to a uniform 

distribution in comparison to the original triangular distributions with tighter uncertainty ranges 

[46]. This comparative study showed that, while the change in the distribution shape has a more 

substantial effect on calibration results than the change in the distribution range, all cases 

nevertheless showed the same trend of updates from given prior estimates. An urban data 

analysis study based on Bayesian inference that disaggregated total energy use data into energy 

use per building type also found that while posterior distributions were significantly influenced 

by the choice of the prior distributions, they shifted toward the same position when they were 

considerably updated from the prior distributions [174].  

Bayesian approaches have been formulated to calibrate a set of unknown parameters in 

the energy model with consideration of measurement errors [13, 35, 175] . In addition to 

measurement errors, the discrepancy between the model and the reality was recognised as 

another major uncertainty source. In order to account for the model discrepancy, Heo et al. [9] 

proposed a Bayesian approach that accounts for three types of uncertainties: (a) parameter 

uncertainty, (b) model discrepancy, and (c) observation errors. The approach (as shown in 

Figure 4) follows the mathematical formulation developed by Kennedy and O’Hagan [160] that 

uses the Gaussian process (GP) models to emulate a computer model and to capture differences 

between model predictions and observations due to the inability of the simulation model to 

represent the real behaviour. The Bayesian calibration method was demonstrated to substantially 



reduce uncertainty in posterior distributions that correspond well to true values under three 

levels of uncertainty consistent with different audit levels [4].  

Using GP models as part of the calibration process is recognised as computationally 

expensive when the dimension number of calibration parameters or the number of data points is 

large. In order to alleviate the computational burden, Li et al. [176] proposed the application of a 

linear regression emulator that includes the main parameter and parameter interaction effects for 

predicting monthly energy consumptions. Through a case study, the linear model emulator was 

demonstrated to correctly capture the behaviour of the simulation model and yields similar 

calibration results to those when using GP models, with a significantly reduced computational 

time. Tian and Choudhary [13] also showed the suitability of using a linear regression model for 

predicting annual energy consumptions and employed a linear regression model as an emulator 

to calibrate a typical school building model against a collection of annual energy data of 

schools. In another study [35], a cooling capacity degradation model was used in the calibration 

process to estimate the ageing effect on the chiller maximum cooling capacity with the use of 

measured water temperature and flowrate data. 

Since posterior distributions cannot be analytically derived for building energy models, 

Markov Chain Monte Carlo (MCMC) methods have been used to approximate theoretical 

posterior probability distributions by randomly drawing samples through the parameter space. 

Metropolis and Metropolis-Hastings algorithms are the most commonly used MCMC methods 

for computation of posterior distributions. These algorithms generate a random walk by 

sampling a proposed point from a jumping distribution based on the current point in an iterative 

manner and accepts the proposed point when it satisfies an acceptance criterion [177]. The 

choice of the jumping distribution substantially influences the number of points required to 

converge to the target distribution. Consequently, the algorithms often take a long time to move 

toward the high-probability density region by inefficiently exploring the entire parameter space. 

A Hamiltonian Monte Carlo method has been proposed and demonstrated to improve the 

inefficiency of the MCMC method by adding an auxiliary variable that enables faster movement 

through the parameter space [177]. It has been demonstrated by Menberg et al. [178] and Chong 

et al. [179] that this method substantially improved convergence speed in comparison to the 

random walk MCMC method for calibration of building energy models.  

6 Application of uncertainty analysis in building performance assessment 

This section discusses four applications in which the relevance of uncertainty analysis is 

demonstrated: building stock analysis, HVAC system sizing, variations of sensitivity index, and 

optimization under uncertainty. It should be noted that there are many types of applications 

where uncertainty analysis is useful in building energy analysis. The four applications are 

selected in this section to demonstrate the ways of implementing the uncertainty analysis 

techniques in building energy assessment. Table 3 shows the references for the four types of 

applications.  

6.1 Building stock analysis 

Significantly less research has been performed on building stock in comparison with 

individual buildings. One of the major reasons is high uncertainty/heterogeneity in input 

parameters for building stock analysis [180, 181]. In order to overcome lack of the available 

data, uncertainty analysis has been implemented in recent research to incorporate possible 

variations of parameter values in assessing the energy performance of building stock.  

Forward uncertainty analysis has been used in building stock usually to obtain the 

distributions of energy performance by varying unknown parameter values in the building stock 



model. Hughes et al. [131] used the forward Monte-Carlo uncertainty analysis method to 

generate the distribution of England’s domestic energy consumption in 2010 by propagating 

input uncertainty, including individual dwelling type, dwelling age, and indoor set-point 

temperature in the total stock model. They emphasized the importance of using global 

sensitivity analysis methods to correctly identify key influential parameters. Kavgic et al. [118] 

applied the Monte Carlo method to predict probabilistic energy consumptions for space heating 

of the housing stock in Belgrade. The results demonstrate that the uncertainty in influential 

variables should be considered for the energy analysis of the building stock as it leads to large 

uncertainty in energy predictions. Li et al. [182] introduced coupling thermal and airflows 

methods to simulate the potential of natural ventilation of building stock in northern China.  

Inverse analysis has been used to estimate the unknown parameters of energy models in 

a given building stock based on actual energy data [170, 183]. Tian and Choudhary [13] used 

the MCMC method in the OpenBUGS program to infer input distributions of the key variables 

influencing gas use in London secondary schools. They pointed out that the availability of 

building stock information is the key to selecting a suitable method for building stock energy 

models. The inverse method proposed in their study is suitable to make full use of the available 

energy data in order to improve the reliability of the building stock model. Tian et al. [19] used 

the R stan program, a new probabilistic language of full Bayesian statistical inference with 

Hamiltonian Monte Carlo, to estimate the locally varying energy use intensity in the domestic 

building stock of London. The results suggest this Bayesian hierarchical model can provide 

more reliable results compared to the geographically weighted regression method.  

6.2 HVAC system sizing 

Several studies have focused on sizing HVAC system using uncertainty quantification 

[35, 56, 116, 138]. Peak heating/cooling loads of HVAC systems are usually calculated based on 

standardized design day data using the deterministic method [26], which does not provide 

sufficient and transparent information about the possible range of building loads and their 

likelihoods. Dominguez-Munoz et al [116] proposed a probabilistic approach to consider the 

uncertainty of input factors influencing peak cooling loads. Twenty uncertain factors are 

considered to calculate peak cooling loads using a simple lumped heat-balance model. Sun et al. 

[56] further explored the HVAC sizing issues for both heating and cooling loads using 

uncertainty analysis, which can replace the safety factor commonly used in HVAC industry. 

This uncertainty analysis include five groups of uncertainty sources: meteorological weather, 

microclimate, building, system, and occupant. Their analysis framework uses multiple actual 

year data instead of the design day method, which provides rich probabilistic information on 

heating/cooling demands to support risk-based sizing. The framework includes sensitivity 

analysis to find important factors influencing heating/cooling loads. Huang et al. [35] also 

proposed a probabilistic method for HVAC system design using  multiple performance 

indicators (e.g., economic, energy, user satisfaction, and environmental criteria). Kim et el. al. 

[107] presented a multi-criterion stochastic decision making process for selecting the optimal 

HVAC system using the Bayesian Markov chain Monte Carlo method. In this study, Bayesian 

inference was used to obtain unknown quantities (expected utilities and weighting factors) in the 

formulation of a multi-attribute utility function. The Bayesian method provides a formal 

platform to quantify subjective preferences of diverse decision makers in a probabilistic manner 

and to mitigate the ambiguity of the multi-criterion decision making problem that involves 

multiple stakeholders.  



6.3 Indicator of sensitivity analysis 

Uncertainty analysis can be used to estimate the variations of a sensitivity index 

affecting building thermal performance in order to provide more reliable and robust sensitivity 

analysis [184]. Assessing uncertainty of sensitivity analysis in the field of building energy 

analysis is still uncommon [17]. Bootstrap can be used to compute the variations of sensitivity 

index for ranking factors influencing building energy by a random sampling with replacement 

from an original dataset. Tian et al. [17] described the implementation of the bootstrap technique 

in detail for building energy analysis. Chen et al. [111] applied the bootstrap approach to obtain 

the confidence intervals of SRRC in assessing the thermal performance of a high-rise residential 

building.  

6.4 Optimization under uncertainty 

Optimization under uncertainty, which is also called robust design optimization (RDO) 

or reliability based design optimization (RBDO), is used to maximize the responses of a system 

(e.g. mean or median) while minimizing the system variability of responses (e.g. variance or 

standard deviation) [185]. In contrast, the deterministic optimization is only focused on 

maximizing the system responses. Building energy performance is affected by a number of 

uncertain factors, such as weather variations, occupant behaviour, and randomness of thermal 

properties. Hence, the optimal design solution derived by the deterministic approach may not be 

the optimal choice in reality when all uncertainty sources impact building performance. 

Optimization under uncertainty is not a new challenge in engineering problems. However, only 

very limited studies are available on optimization under uncertainty in building energy analysis 

[21, 22, 186-188].  

Gang et al. [189] developed an uncertainty-based optimization method for the design of 

district cooling systems. In their study, variables are classified into three groups: outdoor 

weather, building design/construction, and indoor conditions. Through sensitivity analyses, they 

show that indoor conditions are the most important factor influencing the performance of district 

cooling systems, while the variations in building design/construction have the least influence. 

Hopfe et al. [190] performed the S metric selection-evolutionary multi-objective optimisation 

algorithm (SMS-EMOA) for robust optimisation of building design. To reduce the 

computational burden, a Kriging meta-model was created to replace computationally expensive 

energy models. A case study building located in the Netherlands was used to demonstrate the 

suitability of this method of combining the meta-model and SMS-EMOA. Kim et al. [188] 

presented a multi-criterion stochastic optimal selection of a double glazing system for an office 

building. In their study, LHS samplings and stochastic objective function were used with the GP 

emulator, genetic algorithm and Pareto optimality for stochastic performance optimization.  

7 Software for uncertainty analysis 

The section firstly describes the software used in forward and inverse uncertainty 

analysis of building energy use as shown in Table 4. Then the software for construction of 

surrogate models and sensitivity analysis in building environment is discussed since these two 

methods are closely linked to uncertainty analysis as described in sections 4.1.5 and section 

4.2.3, respectively.  

Forward uncertainty analysis needs computer programming in three steps: obtain the 

sampling of input parameters, create and run building energy models, and present and 

summarise probabilistic results. The programming languages for creating and running building 

energy models were described in section 4.1.3. Simlab, a free development framework for 



sensitivity and uncertainty analysis [191], has been widely used in building energy analysis as it 

provides a number of sampling methods, including the random sample, Latin hyper-cube 

sampling, and Sobol method [3, 52, 59, 123, 128]. R environment provides many sampling 

methods, such as Latin hyper-cube [192], Sobol sequence [193], and Halton sequence [193]. 

Crystal ball, a spreadsheet-based environment for risk analysis [194], has been used in 

uncertainty analysis of building energy use [122]. Another excellent computing environment for 

uncertainty analysis is the Dakota developed by USA Sandia National Laboratories that has 

advanced abilities to handle mixed epistemic-aleatory uncertainty, optimization under 

uncertainty, and Bayesian calibration [195]. The R mc2d package can be easily used to run 2-D 

Monte Carlo simulations [196]. Analyst also offers their own computing procedure for 2-D 

Monte Carlo simulations based on 1-D Monte Carlo methods.  

Inverse uncertainty analysis requires more complicated computation, especially for 

Bayesian computation. The Bayesian inference Using Gibbs Sampling (BUGS) programs 

(WinBugs or OpenBugs) provide a flexible software environment for the Bayesian analysis 

using the MCMC method [197] to infer unknown parameters [13, 198]. The R computing 

environment also provides the interface for the BUGS programs [199] and the Gaussian-

process-based Bayesian method [200] (as described in section 5.2). The R stan package [201] 

supports full Bayesian statistical inference with the advanced computation method, Hamiltonian 

Monte Carlo, which was used to compute the distribution of energy use intensities in London in 

a more efficient way [19].  

Surrogate models have been used to expedite the computation of both forward and 

inverse uncertainty analysis in building energy assessment. R environment has many good 

packages for machine learning computation and an overview of these methods is available in R 

task view [202]. A meta package of Classification and Regression Training (caret) [203] is 

particularly useful because it combines a large number of machine learning methods to easily 

create several machine learning models and compare their predictive performance. Matlab also 

provides a number of machine learning methods and a helpful reference book has also been 

presented [204].  

Sensitivity analysis is often used together with uncertainty analysis as discussed in 

section 4.1. R sensitivity package [205] offers several global sensitivity analysis methods, 

including standardised regression coefficients, Morris screen method, Sobol indices, extended 

Fourier amplitude sensitivity test, and kriging-based sensitivity analysis. The Simlab program 

[191] mainly contains a set of global sensitivity analysis based on sampling-based methods, 

such as standardized (rank) regression coefficient, Morris method, and Sobol sensitivity 

indicators. The Simlab program has been used widely in building energy analysis [72, 113, 114, 

134]. The latest version of Simlab 4 provides a closer link to the R statistical environment [191].  

8 Conclusions and further work 

In this paper, the research progress of uncertainty analysis in building energy assessment 

was reviewed from the following four aspects. The state-of-art research development of data 

sources for uncertain parameters relevant to building energy performance were firstly described. 

The next two sections discussed the detailed methods of both forward and inverse uncertainty 

quantification in building energy analysis. The third aspect of this review involved the four 

types of applications in implementing uncertainty analysis when assessing building 

performance. For the final aspect, the software available that can be used in uncertainty analysis 

of building energy use were described. The research trends of uncertainty analysis when 

assessing thermal performance in buildings from this overview are summarized as follows.  

(1)  Previous research on data sources for uncertainty analysis relevant to building 

energy performance has provided a firm foundation for developing different types 



of uncertainty analysis. The construction of a database of uncertainty quantification, 

such as the GURA-W workbench, would be beneficial to provide transparent and 

robust uncertainty quantification for the whole community of building energy 

simulation.  

(2)  Occupant behaviour is a complicated factor that has a significant impact on building 

energy performance. Implicit models are likely to remain dominant in simulating the 

variations of occupant behaviour in the near future.  

(3)  Among the forward uncertainty quantification methods, the sampling-based Monte 

Carlo method is the most widely used forward uncertainty method in the field of 

building energy assessment because this method is intuitive and only requires 

running energy models a number of times.  

(4)  Recent research has focused on Bayesian inverse computation to infer unknown 

parameters in building energy models because this method can incorporate the prior 

information on unknown parameters from previous studies, site surveys, and 

industry standards.  

(5)  Specialized tools (such as Matlab, R, and jEPlus) have been developed to generate 

samples from specified uncertainty distributions and to create and run a large 

number of building energy models for uncertainty analysis. 

Uncertainty analysis has been ready to become a mainstream method in assessing 

building thermal performance from this overview because the relevant statistical methods are 

mature and the sufficient applications of these methods in building energy analysis are 

becoming available. More connection between the fundamentals of uncertainty quantification 

and the features of building energy analysis should be built to provide more flexible analysis for 

achieving sustainable high-performance buildings. The recommendations for further research on 

uncertainty analysis of building energy are presented as follows.  

 More effort still needs to be placed on rigorously quantifying the uncertainty of 

input parameters, which is regarded as the most difficult task in ensuring the quality 

of uncertainty analysis results. The databases for quantifying uncertainty input 

parameters need to be constructed in terms of various indicators, such as building 

types, climate characteristics, and new or existing buildings.  

 More attention should be paid to better simulate stochastic occupant behaviour and 

interactions with other systems in buildings by using both implicit and explicit 

occupant models.  

 For the sampling-based methods, further studies are required to provide clear 

guidance on the sampling size to provide converged probabilistic outcomes for 

building energy analysis.  

 Further research on the 2-D Monte Carlo method is required since this approach can 

be used to represent both aleatory and epistemic uncertainty in building energy 

assessment. New visualization methods should be explored to show the complicated 

uncertainty results.  

 Both non-sampling and non-probabilistic uncertainty methods are useful as 

alternative forward uncertainty quantification approaches when only very limited 

information is available. Further research is needed to suitably apply these methods 

in building energy assessment.  

 Many issues still need to be addressed in applying Bayesian inverse computation. It 

is important to clearly understand how the availability of energy use data in 

combination with prior beliefs specified as prior distributions affects the posterior 

distributions of input variables inferred from Bayesian computation. Many new 

methods (such as Hamiltonian Monte Carlo) have not been sufficiently explored to 

test the relevance in calibrating building energy models.  



 Considering a number of uncertain factors at the design stage, further research on 

optimization under uncertainty (robust design) is required for low-energy buildings.  
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