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Summary

Estimating telomere length from whole genome sequencing data

J. H. R. Farmery

This thesis details the development of two computational tools, Telomerecat and Parabam, as
well as their applications to whole genome sequencing (WGS) data.

Telomerecat is a tool for estimating telomere length from WGS data. The strength of
Telomerecat lies in its applicability. This applicability is due to a number of advantages over
previous attempts to estimate telomere length from WGS. Chief amongst these advantages is
that it makes no assumption about the underlying chromosome count or size of the genome
within input samples. This means that Telomerecat lends itself well to analysing cancer
samples where such assumptions are unfounded. This also means it is applicable to non-
human samples, a first for tools of its kind. Furthermore, a novel method for filtering reads
derived from interstitial telomere sequences means that it does not rely on previously applied
analyses, a source of bias.

The other tool described in this thesis is Parabam. Parabam is the first tool of its kind
to allow users to apply a function to all of the reads in sequence alignment files, in parallel.
Furthermore, Parabam includes a novel method for iterating over index sorted sequence files
as if they were name sorted. We provide evidence that Parabam is a quicker way to create
complex subsets and statistics from sequence alignment files.

In the latter half of the thesis we detail two applications of Telomerecat to large scale WGS
projects. The first application, to the Prostate ICGC UK cohort, unveils hitherto uncovered
associations between telomere length and previously identified molecular subtypes as well as
cancer stage. In the second application, to the NIHR BioResource - Rare Disease cohort, we
discover a previously unidentified variant in DKC1 that we propose is directly linked to short
telomeres and an immunodeficient phenotype.
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Chapter 1

Introduction

By now it is a cliché to use the opening sentence of a thesis to proclaim how whole genome
sequencing has transformed biology. It is abundantly clear that biology has been transformed.
The challenge to computational biologists is now to tame this brave new data and to devise
ever more precise and efficient methods to improve our science.

Since the inception of whole genome sequencing (WGS), perhaps best embodied by
assembly of the human genome in 2001, a great many computational methods have been
developed to interrogate the genome and provided ever more insight into the workings of
the cell and the origins of disease. Relatively few of these methods have focused on the
extremely repetitive regions of the genome.

This thesis presents two new tools in the form of computer programs. The first is Parabam.
Parabam allows the user to apply functions to all reads in a WGS file in parallel, useful
when dealing with repetitive sequences which are otherwise hard to summon from the file.
The second tool is Telomerecat. Telomerecat provides estimates of the length of telomeres,
a highly repetitive region of the genome, from WGS data. Both tools work in synergy
throughout this thesis, as Telomerecat uses Parabam as an interface for processing WGS data.

As well as these tools, we present two applications of the Telomerecat method to cohorts
of WGS and associated genomic data. In both applications we use Telomerecat to uncover
novel associations between disease characteristics and telomere length. The first of these
applications is to a set of 192 prostate cancer and associated blood normal samples from
the UK wing of the International Cancer Genomics Consortium (ICGC) prostate study. The
second is an application to over five thousand samples from the NIHR BioResource - Rare
Disease cohort.

In the remainder of this chapter we will review the core concepts underlying the thesis.
Where better place to start in this endeavour than at the ends?



2 Introduction

1.1 Telomeres

Deoxyribonucleic acid (DNA) is the instruction manual of the cell. DNA is comprised of a
chain of base-pairs, individual molecules that can be thought of as letters in the code. These
base-pairs are Adenine, Thymine, Cytosine and Guanine but are more commonly referred to
by their initials: A, T, C and G. The beginning of a DNA molecule is referred to as the “5
prime end” and the end is referred to as the “3 prime end”.

The primary unit of hereditary information within DNA is the gene and these genes
are organised into stretches of DNA called chromosomes. In some species, particularly in
bacteria, chromosomes are circular structures. However, all eukaryotes (a branch of the
tree of life that includes all plants and animals) have linear chromosomes. Analogous to an
exceedingly tightly coiled loose piece of string, linear chromosomes are unattached at either
end.

Telomere is a highly repetitive stretch of DNA found at the ends of linear chromosomes.
Here we describe how telomeres were discovered, their function within the cell and their role
in cancer.

1.1.1 A brief history

The first person to use the word telomere1 in print was Herman Muller. His work in
bombarding the DNA of Drosophila with X-rays and observing the resultant damage led
him to the reason that the ends of chromosomes must possess some protective structure. In
his article in The Collecting Net he refers to this “terminal gene” as the telomere (MULLER,
1938).

Simultaneously to Muller’s work, Barbara McClintock observed that maize chromosomes
that had suffered damage would bind to one another to form a breakage-fusion-bridge
(MCCLINTOCK, 1941). From these observations she reasoned that linear chromosomes must
have some form of protective structure to ensure the ends of intact chromosomes did not
suffer the same fate. She drew upon her previous work to define these ends of chromosomes
as functionally and characteristically separate to that of the rest of the chromosome.

Over the succeeding decades, the idea that telomere may have some role beyond the
protection of chromosome ends, came into focus. In the 1960s Leonard Hayflick observed
that human cells in culture have limited replicative potential (HAYFLICK and MOORHEAD,
1961). A cell is said to have become senescent2 once it ceases to divide and replicate. Today,

1From the Greek words telo meaning end and mere meaning part
2Latin for “to grow old”
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the number of cell doublings that a population can endure before entering senescence is
referred to as the “Hayflick limit”.

It was some time before telomeres were directly implicated as part of this process. In
the early 1970s Alexy Olovnikov drew a link between the shortening of telomeres (or as he
called them: “telogenes”) as a result of replication (a process he refers to as “marginotomy”)
and the signalling of senescence. Olovnikov even goes as far as to speculate that this process
was a cause in disorders of ageing (OLOVNIKOV, 1973).

In 2009 the Nobel prize was awarded jointly to Elizabeth Blackburn, Carol Grieder and
Jack Szostak for their contributions to the understanding of telomere. From the late 1980s,
individually and in collaboration with one another, they shed considerable light on the role
and function of telomere. Perhaps most notably they uncovered the sequence of telomere
(SHAMPAY et al., 1984) and telomerase, a protein that appends telomere to the ends of
chromosomes encoded by the gene TERT (GREIDER and BLACKBURN, 1985).

Telomeres are still an area of active research. Since the discovery of telomerase, other
structures have been identified as interacting directly with telomere. This includes shelterin,
a complex of proteins that sheath mammalian telomeres and are thought to assist in their
maintenance (LIU et al., 2004). Furthermore, a transcriptional role for the telomere has been
described with the discovery of TERRA, an RNA derived from within the telomere itself that
can inhibit the function of telomerase (AZZALIN et al., 2007). Similarly the G-quadraplex, a
secondary structure within DNA, has been shown to preferentially inhabit the telomeres and
act to down regulate telomeric lengthening by telomerase (PARKINSON et al., 2002).

1.1.2 The structure of telomeres

Human telomeres (the focus of this thesis) are comprised of the nucleotide sequence
TTAGGG repeated for a stretch within the region of thousands of bases (kilobases or KB
for short). Their exact length can vary between chromosomes, individuals and populations,
but typically telomere length in humans is thought to be within the region of 2 KB to 12 KB
with an average of approximately 6 KB (although different methods for estimating length
tend to attain different distributions). At the very end of the telomere the DNA becomes
single stranded and forms a looped structure referred to as a T-loop. This T-loop is thought
to protect telomere from recognition by DNA damage response proteins (O’SULLIVAN and
KARLSEDER, 2010).

When a cell divides, all of the DNA within the cell is replicated and the telomeres are
no exception. The cellular machinery that enacts this process is known as a polymerase.
Because of the way that the polymerase functions, a 100-200 base pair fragment at the end
of each chromosome is not copied. If it were not for telomeres then this failure to copy could
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mean the loss of vital gene coding DNA. By sacrificing a small section of the telomere gene
coding DNA is spared from loss.

Telomerase is a protein complex that is able to append new telomeric repeats onto the
ends of chromosomes. Telomerase possess a small RNA subcomponent (known as TERC)
that first identifies the telomere hexamer and then is used as a template for further repeats.
Once telomerase has finished adding telomere repeats to the 3 prime ends of a DNA molecule
a conventional polymerase completes the complement strand, leaving a small single strand
overhang on the three prime end. Telomerase is usually only active within stem cells and
gametes but cancerous cells may reactivate telomerase in order to forgo senescence.

Telomerase always appends telomeric repeats to the 3 prime end of a DNA strand.
Furthermore, we can be certain that the appended sequence will always be the G rich
configurations of the telomere hexamer (TTAGGG). We can be sure of this because the
complementary C rich configuration (CCCTAA) is both used as the identifier and scaffold
for new repeats and so the G rich configuration must be the one synthesised. This facet
of telomerase biology will become important later in the thesis as it is exploited by the
Telomerecat method to infer additional information regarding telomere sequencing reads.

1.1.3 The role of telomeres

As our knowledge surrounding telomeres has grown, it has become increasingly clear that
telomeres are a multi-functional part of the chromosome. At once protecting DNA and
providing a “molecular clock” by which the life span of a cell is determined.

In its protective capacity, the presence of telomeres serves to shield the ends of chro-
mosomes from cellular machinery dedicated to repairing DNA damage. Without telomeres,
the ends of chromosomes would be liable to treatment as a double strand breakage. Indeed,
when DNA suffers damage or when a chromosome has critically short telomeres, the ends of
individual chromatids can become fused by this repair machinery. This fusion is ripped apart
when the cell comes to replicate, causing what is known as a breakage fusion bridge. Just as
McClintock observed almost 75 years ago in her maize experiments.

This shortening ties in to the molecular clock like activity of telomeres. Exactly how
telomeres contribute to the enforcement of the Hayflick limit, at least in humans, is uncertain.
The most recent studies suggest that numerous factors may play a part, including chromatin
changes and accumulated damage to the DNA itself (O’SULLIVAN and KARLSEDER, 2010).
However, it is clear that telomere shortening plays a substantial role in this process (BODNAR

et al., 1998).
Cancer is a disease characterised by proliferative cell replication (HANAHAN and WEIN-

BERG, 2000). To allow for this proliferation cancerous tumours must forgo the Hayflick
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limit by moderating their telomeres. The majority of cancers (perhaps as many as 90%) do
this by reactivating telomerase, often via mutations to the TERT gene (SHAY and WRIGHT,
2011). Another way that telomeres lengthen in cancer cells is via the enigmatic alternative
lengthening of telomeres (ALT) pathway. The precise details surrounding ALT are still
unclear. It has been hypothesised that ALT is a process of homologous recombination within
and amongst telomeres in order to lengthen the sequence at terminal ends of chromosomes.
ALT is thought to occur in around 10-15%, however, this rate varies according to the specific
cancer type. Prostate cancer, the focus of Chapter 4 is thought to display very little ALT
lengthening (HEAPHY et al., 2011b).

Subtelomere and interstitial telomere The subtelomere is the region of the genome
situated directly adjacent to the telomere. Historically, there has been little consensus as to
where exactly the subtelomere begins and ends. Adding to the complexity is the subtelomere’s
seeming plasticity and proclivity for recombination (RIETHMAN et al., 2005). What is clear
is that at least some portion of the subtelomere bears strong resemblance to telomere, being
comprised of a mixture between telomere and psuedo-telomeric repeats. To an extent the
subtelomere has been mapped, however, the region most proximal to the telomere proper
remain mostly uncharacterised (RIETHMAN et al., 2004). As we shall see, this is the area of
greatest interest to Telomerecat. Identifying the difference between subtelomere and telomere
plays a central part in Chapter 3.

Interstitial telomere sequences (ITSs) are tracts of the telomere repeat found dispersed
throughout the genome. They are thought to occur as a result of historic breakage and repair
throughout the evolutionary process (LIN and YAN, 2008). They are of particular interest
to methods estimating telomere length from WGS because of their capacity to generate
information that looks a great deal like telomere. However, a precise method should filter out
these regions as they cannot contribute to the actual telomere length. In Chapter 3 we detail a
novel method for dealing with these regions.

1.1.4 Methods for estimating the length of telomeres

The first method used to estimate the length of telomeres was terminal restriction fragment
Southern blot (ALLSHIRE et al., 1989). This method is referred to as mTRF throughout the
thesis. mTRF uses a set of restriction enzymes to cleave DNA at the subtelomere and then
uses Southern blotting to ascertain the average molecular weight of the cleaved molecules.
Once the average weight of the molecules is known, a length can be derived. mTRF has
received wide application and is still used today. One drawback of the method is that the
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restriction used to shear the telomere from the chromosome can often include substantial
tracts of subtelomere.

Quantitative Polymerase Chain Reaction (qPCR) is another method used to query telom-
ere. However, rather than report telomere length, qPCR reports the ratio of observed telomere
copy number, to the copy number of a single reference gene (CAWTHON, 2002). The advan-
tage of qPCR is that it lends itself well to high throughput analysis, indeed the two largest
GWAS of telomere use this approach (POOLEY et al., 2013; CODD et al., 2013). However,
qPCR is regarded as a less accurate measurement than mTRF (ELBERS et al., 2014).

A method called qFISH has also been used to estimate telomere length. qFISH is an
florescence imaging based technique that can provide a high degree of accuracy and can be
used to measure the length of telomeres on individual chromosomes. However, qFISH is
not well suited to high throughput analysis and requires relatively large quantities of DNA
(LANSDORP et al., 1996).

In the last chapter of this thesis we make use of telomere length estimates produced by
flowFISH. FlowFISH leverages flow cytometry (a method of cell sorting) and fluorescence to
estimate telomere length. FlowFISH has the key advantage of being a more high throughput
method than either qFISH or TRF (BAERLOCHER and LANSDORP, 2003).

Not covered in this section are methods for estimating telomere length from whole
genome sequencing. Section 1.3 is dedicated to this topic, which is found directly after the
following introduction to WGS technology.

1.2 Whole Genome Sequencing

The aim of WGS is to determine the sequence of DNA for a given organism and then to
output this in a comprehensible format, this output takes the form of a computer file. The
collective name for all of the DNA in a cell is the genome. It is the aim of WGS to sequence
all of the DNA, rather than other methods that only aim to sequence gene coding sections of
DNA. Thus the name, whole genome sequencing.

Several methods for sequencing the genome are available. Amongst these methods the
Illumina sequencing method is the most widely used. Indeed, Illumina has become the
sequencing platform of choice for many large scale cohort studies (HUDSON et al., 2010;
MARX, 2015). The investigations detailed in the later chapters of this thesis are undertaken
using various versions of the Illumina sequencing platform.

The resultant output of the Illumina sequencing platform is a computer file containing
a multitude of sequencing reads. Each read within the experiment represents the sequence
of one small fragment of DNA. Altogether, the human genome is three billion base pairs
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long, however the current generation of hi-throughput sequencing technologies are capable
of only producing sequences of around 100 to 150 base pairs long. In order to sequence the
entire genome with enough redundancy to account for error within the reads it is necessary
to create a great many of these reads. Accordingly, modern sequencing routinely produces
on the order of billions of reads in one experiment. In Section 1.2.2 we will see how we can
derive meaning from all these small fragments.

1.2.1 The Illumina sequencing method

The Illumina sequencing process can be broadly divided into four separate steps: library
preparation, cluster generation, sequencing and data analysis. In particular, two processes
are fundamental to the Illumina sequencing method, bridge-amplification and synthesis-by-
sequencing. Bridge-amplification is applied during the cluster generation stage whereas
synthesis-by-sequencing takes place in the sequencing stage. In the following section we
shall give an overview of the first three steps before reviewing data analysis in Section
1.2.2. Further details regarding the method can be found in the online resources provided by
Illumina (see ILLUMINA INC. 2017 & 2010).

Library preparation Illumina sequencing starts with the library preparation stage. The
DNA is fragmented and platform specific adapters are ligated to each end of each fragment
(the purpose of the adapters is made clear in the following steps). After the ligation stage
the DNA can be exposed to PCR, a technique for increasing the volume of DNA by making
copies of each strand. PCR is a source of considerable sequencing bias and some more
recent library preparation techniques forgo the PCR step and as such are referred to as
“PCR free sequencing”. Perhaps the most widely used library preparation, Illumina’s own
TruSeq platform is available in PCR free variants. The last step in library preparation is gel
purification where fragments between a particular size are selected for sequencing. The ideal
size of selected fragments varies by platform.

When conducting paired sequencing, for each fragment we will eventually receive two
separate sequences each describing opposite ends of the same fragment. This paired-end
approach is useful in resolving ambiguous alignments and also allows for greater sequencing
depth at the same cost. The fragment size is usually aimed for such that the fragment size is
longer than the two read lengths combined. This prevents read pairs from overlapping and
sequencing the same portion of DNA. If the goal is to sequence as much of the genome as
possible, then avoiding overlap is ideal.
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Cluster generation Once a library has been generated from a sample, fragments are loaded
on to a device called a flow cell. The flow cell contains millions of “oligos” (a short DNA
sequence) that are complementary to the adapters ligated to the fragments in the previous
step. The library is washed over the flow cell in an attempt to bind fragments to the oligos.
After this binding stage, bridge-amplification takes place in order to generate a dense cluster
of poly-nucleotides derived from each fragment.

Sequencing The next step is to read the DNA sequence contained within the multitude of
clusters on the flow cell. Illumina uses a process called sequencing-by-synthesis to achieve
this goal. At each iteration (the number of iterations is defined by the read length) nucleotides
are washed across the flow cell and preferentially bind to the next available nucleotide in
each cluster. Once bound, the nucleotides are excited and flash a colour according to their
bound base. This flash is recorded and interpreted by the sequencer.

It is at this step that each of the bases are associated with a quality score. The sequencing
machine assigns a “Phred score” to each base in the read that represents the likelihood the
base has been accurately sequenced.

1.2.2 Post-sequencing

Once sequencing has finished, the individual reads are stored to a computer file in FASTQ
format. Each entry in the FASTQ file contains the name of the read, a sequence of base-pairs
and an associated Phred quality score. In paired-end sequencing two complementary FASTQ
files are produced. The first file contains the first read in the pair and the second file all of the
second reads in the pair.

The next crucial step in processing these reads is alignment. Sequence alignment takes
each of the read-pairs and attempts to detect where the sequence originated from on the
genome. Due to the size of the human genome and the number of reads involved, this is a
computationally complex task. Programs dedicated to this task are some of the most widely
used and discussed in the entire field of computational biology.

The amount of reads over a specific locus within the genome is referred to as the
“coverage”. Greater coverage confers greater redundancy amongst the reads, making errors
and genuine polymorphisms easier to detect. The draw back of higher coverage is the expense
of materials required to generate higher amounts of sequencing reads. Within sequencing
experiments coverage is not uniform across the genome. Factors such as the relative amount
of G and C in the target sequence are known to have an effect, although progress has been
made in recent years to mitigate these biases (SIMS et al., 2014).
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The SAM and BAM format The output of these alignment algorithms is called a sequence
alignment map or SAM file. Each entry in a SAM file represents a single read from the
sequencing experiment. As well as recording the sequence base-pairs and associated quality
scores, if a read is mapped the entry will contain information regarding its location on the
genome and the quality with which it was mapped. Often reads in SAM files are sorted by
the location of alignments.

When the aligner cannot find the location of a read within the genome it marks the read
as unmapped and the chromosome and position fields are filled with place holder values.
The causes of unmapped reads are numerous. It may be that a read has suffered from errors
and so the location of origin on the genome cannot be found. Often repetitive reads do not
map to the genome because the corresponding region has been expunged from the reference
genome3. Alternatively it might be that the read of origin stems from a location that is not
within the reference genome. This may occur because of some specific variation to the
organism being sequenced or because of a DNA rearrangement in a cancer cell. When the
SAM file is sorted by location, the unmapped reads are stored at the end of the SAM file.

SAM files are a plain text format and, as such, are not an efficient way of storing the vast
amounts of data produced by modern sequencing technologies. As a result, SAM has a sister
format called BAM (binary alignment maps). A BAM is a compressed and binary translated
version of a SAM file. Despite the compression, BAM files produced from WGS data can
often exceed 100 giga-bytes (GB). In the prostate cancer cohort examined later, the larget
BAM file exceeded 250GB.

BAM file compression is handled by the BGZF algorithm. Crucially, the BGZF algorithm
allows sequential, random access to the BAM files with the help of specially generated
index files. This means that regions of the BAM file can be retrieved without the need to
iterate through all of the preceding reads. This random access is facilitated by the fact that
the BGZF compression algorithm segments the BAM file into blocks. Blocks are simple
binary structures that have a header, detailing the size of the following compressed payload,
followed by the compressed data. We will see later in this thesis how this block structure is
exploited by parts of the Parabam methods to enable the fast merging of BAM files.

More description of the SAM and BAM file formats, as well as information regarding
samtools, the software interface for manipulation the files, is given in LI et al. (2009).

3This can be the case for telomeric reads, however, due to the presence of ITS in the genome we find that
many true telomere reads are mapped erroneously to these locations
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1.3 Estimating telomere length from WGS data

As part of this thesis we detail Telomerecat, a tool for estimating telomere length from
WGS data. On the outset of the investigation that led to this thesis there were no programs
dedicated to this process. However, the field has experienced considerable growth and there
are by now at least three fully fledged methods in the form of computer programs, other
than Telomerecat. In this section we will detail the work preceding the development of these
methods and the methods themselves.

1.3.1 Beginnings

The first study to indicate that sequencing reads could be used to shed light on the length of
telomeres was CASTLE et al. (2010). CASTLE et al. observed the number of sequencing reads
containing at least four copies of the telomere hexamer and then adjusted this observation
according to the amount of reads within the sequencing experiment. They applied this method
to three samples, two of the samples were from healthy adult whole blood donors and one
was derived from a lung cancer cell line. CASTLE et al. that their measurement showed
differential amounts of telomere lengths between the blood and cancer samples. Thus a new
field was born.

PARKER et al. were the first study to use the Castle method. In PARKER et al. (2012)
they apply the method to 235 WGS samples from paediatric cancers and observe differential
gain and loss of telomere across the different cancer types. These findings were confirmed
separately by qPCR, mTRF and qFISH.

1.3.2 Tools

The first dedicated tool to estimate telomere length from WGS, TelSeq, was introduced in
DING et al. (2012). TelSeq introduced GC correction to the telomere length estimate and
performed the first analysis into the optimum threshold for observations of the telomere
hexamer with a read. They also provided the first large scale validation of a WGS estimation
method by comparing TelSeq estimates to those of mTRF.

TelSeq is an iteration of the Castle method in that it works by counting reads that display
a number of telomere hexamer and normalising this by the coverage of the sample as a whole.
However, the TelSeq method attempts to implement a system that can account for the GC
bias inherent in modern day sequencing.

TelSeq works by observing the amount of sequencing reads that contain the telomere
hexamer above a threshold (their analysis suggested a default of 7 for 100bp reads). They
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then observe the amount of reads that contain 48-52% G or C nucleotides (we refer to this
concept as GC content throughout this thesis). Given an estimate of the human genome
within the range of 48-52% GC content and given they know the amount of reads that this
amount of the genome provided to the experiment, they infer the length of telomere that
produced these reads as

length =
t
g
· C

E ·1000

Where length is the telomere expressed in KB, t is the number of reads over the telomere
hexamer threshold, g is the number of reads within the GC threshold, C is a constant that
represents the amount of the human genome at the GC threshold, and E is the number of
telomeres thought to inhabit the sample (unless modified by the user this defaults to 46).

TelomereHunter is another tool designed to analyse telomere in WGS data (FEUERBACH

et al. (2016), preprint). Unlike TelSeq, TelomereHunter does not produce an estimate of
length, rather it reports an estimate of relative telomere content. In other ways Telomere-
Hunter approaches the estimation process similarly to TelSeq in that it considers telomere
reads by the amount of telomere hexamers contained with the sequence. However, it also
refines the threshold for inclusion of telomere reads and filters for reads which are already
mapped to non-telomeric regions of the genome; an attempt to filter for ITS reads. Further-
more, TelomereHunter makes considerations for alterations to telomere by the process of
ALT and has demonstrated an ability to report the presence of an ALT phenotype amongst
input samples.

CompuTel takes a different approach to identifying telomere reads. They align each of
the relevant reads in a sequencing file to a hypothetical telomere reference (NERSISYAN and
ARAKELYAN, 2015). Reads that align to the reference are assumed to be telomere reads. This
addresses some of the frailty of using a hexamer threshold as the sole criterion of whether
or not a read is from the telomere. Using an aligner can more accurately detect sequencing
errors. However, during our investigation surrounding the development of Telomerecat we
uncovered drawbacks to using an aligner that we discuss in Section 3.4.3 of this thesis.

1.3.3 Summary

The methods detailed above were the subject of a review publication which found them each
to be comparable in performance (LEE et al., 2017) on a validation data set. In their review,
LEE et al. also make mention of the cumbersome nature of CompuTel in requiring unaligned
FASTQ files as input.



12 Introduction

Amongst the tools mentioned above, TelSeq has perhaps received the widest usage.
Notable applications of TelSeq include an application to samples from 31 different cancer
types (BARTHEL et al., 2017) and a study detailing how loss of function of POT1 can impact
risk of melanoma (ROBLES-ESPINOZA et al., 2014). TelomereHunter has also been applied
to cancer samples in the form of an application to the PCAWG data set (SIEVERLING et al.
(2017), preprint).

The tools mentioned above have been shown to correlate with existing experimental
approaches to measuring telomere length. However, there are considerable shortcomings.

TelSeq and Computel make a direct assumption regarding the amount of chromosomes
in the input sample. These assumptions are unfounded when applying the method to cancer
samples due to the prevalence of extreme chromosomal aberrations that may increase or
decrease the amount of DNA content within a cell.

To avoid making an inference of chromosome count TelomereHunter does not directly
report telomere length, rather it reports the telomere content of a sample. This is not
unreasonable and there is value in this metric alongside telomere length. However, telomere
length itself is an important metric and there is a need for a method that can estimate telomere
length agnostic to the amount of chromosomes in the sample.

Furthermore, Computel and TelomereHunter attempt to reduce noise caused by reads
from ITSs. To do this they each rely on the mapping locations of these reads. This is
another potential source of bias as commonly used aligners are not optimised to handle these
repetitive structures and repetitive reads are not reliably mapped to the genome. By relying
on the mapping location of these reads, the methods are exposing themselves to bias as a
result of the variation of alignment or even reference genome used to pre-process the sample.

In Chapter 3 we detail our method, Telomerecat, which attempts to address the shortcom-
ings of previous approaches.

1.4 Fundamental concepts in computer science

Parts of this thesis, particularly Chapter 2, are focused on the development of software and
algorithms. In this section we give an overview of these topics.

Classes and objects In computer science, classes are a set of definitions for mutable
structures within programs, known as objects. As an example, if we were writing a program
that needed to record information about cars we could define a class called Car. When we
needed to add information about a certain car, we could create a new Car object using the
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Car class. The resultant object would store the brand name, miles per gallon and the year of
manufacture as variables.

Objects can also have functions assigned to them that we define in the class. For instance,
using the Car object defined above as an example, we could write a function that returned
the age of a car. We might call this function getAge. We we call the getAge function on a
given Car object it would simply subtract the year of manufacture from the current day and
return the result.

Big O notation Big O notation is a way of discussing the running time of algorithms by
comparing how the run time changes as a result of the size of input. While benchmarking is
useful for comparing entire pieces of software in controlled settings, it is often not useful
or practical to benchmark individual pieces of code. Indeed, what use is it to talk of an
algorithm taking taking five seconds to run, when this number is so heavily influenced by
external factors? Amongst these external factors is the hardware the program is running on
or even the computational load that the hardware is experiencing at any one moment in time.

To provide comparison between different algorithms, big O notation contemplates the
number of operations carried out by an algorithm. For instance, imagine we have a list of
numbers that contains n entries. We wish to write an algorithm that iterates through this list
and records the cumulative sum of the numbers. To do this our algorithm must visit each of
the entries of the list in turn. Thus the running time of an algorithm is constrained by the size
of the input, in this case the longer the list, the more operations we will need to carry out.
We say that this algorithm performs in “linear time”. Linear time is expressed as “O(n)” in
big O notation.

Aside from algorithms which display O(n) time we will also discuss constant time
algorithms, expressed as “O(1)”. A constant time algorithm is an algorithm where the run
time is not constrained by the number of elements in the input. For instance, using the list
from the previous example, if we wished to check whether the first two elements in the list
were greater than zero we would write an O(1) algorithm. The amount of operations carried
out by the algorithm does not depend on the size of the input list because we always only
check the first two elements.

There are many other run time complexities, however, we will not refer to these as part
of this thesis. Additionally, big O notation can also be used to discuss the space an algorithm
takes up, but again we shall not use big O notation as such in this thesis.
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Data structures Data structures enable computer programs to store efficiently and sort
through data. Parabam and Telomerecat make use of numerous data structures as part of their
operation.

One of these structures is an array list or list for short. A list is a linear collection of
objects stored in order. Lists are convenient in that they allow objects to be accessed in O(1)
time as long as the index of the object within the list is known beforehand.

In Chapter 2 we will make several references to hash maps. Hash maps are an unsorted
data structure that allow objects to be stored via association with a key. In other words,
when we make a call to a hash map to retrieve an object, we first provide a key and the
hash map will return the object associated to that key. The hash map gets its name from the
“hash” function used to create an index from the provided key. A well designed hash map
implementation should have a average case retrieval of O(1) making them a highly efficient
way of managing unsorted data.

First-in-first-out (FIFO) queues are used extensively for inter process communication
within Parabam. A great clue as to how the queue data structure functions is in the name.
The FIFO queue object functions just like a queue of people waiting for a service. Once an
object is added to the back of the queue (via a “put” command) it will remain in the queue
until all the objects that were in placed in the queue before it have been accessed (via a “get”)
command.

1.5 Chapter Overview

In Chapter 2 we describe in detail Parabam, our new tool for interrogating WGS sequencing
files in parallel. We demonstrate that Parabam is able to iterate more quickly over sequencing
files than non-parallel approaches.

In Chapter 3 we set out the Telomerecat method and describe the validation experiments
and comparisons we have made to existing experimental and computational methods. To-
wards the end of the chapter we will discuss the complexities surrounding telomere length
estimation and how we have attempted to solve these issues.

In Chapter 4 we apply Telomerecat to a cohort of 192 prostate cancer samples. In this
chapter we describe associations between cancer stage, the number of somatic mutations and
previously identified molecular subtypes.

In Chapter 5 we apply the Telomerecat method to a cohort of 8950 rare blood disease
samples. We analyse the results of a telomere length GWAS conducted on these samples and
describe how Telomerecat assisted in identifying a new phenotype associated with a rare
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germline mutation in the DCK1 gene. The size of this cohort also allows us to add value to
the existing knowledge about the relationship between age and gender on telomere length.

In Chapter 6 we conclude by summarising the salient results contained with the thesis
as well as reflecting on the current state of the methods and where they perhaps might
be improved. We also discuss future work including the potential for estimating telomere
length in samples generated by the TENX and minION, which are relatively new sequencing
technologies.

1.6 Original Contribution

In this thesis we present several original contributions:

• A new tool for applying functions to reads in a BAM file, Parabam. Included within
this tool is a method for applying the functions to pairs of reads in parallel, even when
the file is sorted by mapping location.

• A new tool, Telomerecat, that estimates telomere length from whole genome sequenc-
ing files without making an assumption of chromosome or telomere count.

• An application of Telomerecat to a cohort of Prostate cancer samples. The largest and
most comprehensive study of telomere length within Prostate cancer. This study is the
first to suggest a link to the SPOP and TMPRSS2-ERG fusion subtypes and telomere
length, amongst other significant trends in Prostate cancer.

• An application of Telomerecat to a cohort of rare blood diseases. Telomerecat helps to
identify an extremely rare, hitherto unidentified, point mutation in the DCK1 gene that
causes a late onset immunodeficiency caused by short telomeres.





Chapter 2

Parabam: processing BAM files in
parallel

As we saw in the introduction to this thesis, the output of WGS experiments is often large, in
excess of 100GB per file. Furthermore, the proliferation of WGS data means that there is a
rich vein of information waiting to be tapped. In this chapter we detail our method Parabam
that aims to analyse these data quickly and efficiently.

Parabam1 is a program that allows users to apply a function to each read in a BAM file.
Users may use this function to create subsets of BAM files or extract statistics from the
individual reads. Parabam also allows users to interact with location sorted BAM files as if
they were pair sorted.

Furthermore, Parabam conducts these operations in parallel by way of its multiprocessing
architecture. The advantage of parallel processing is that operations can be carried out
simultaneously on separate processing cores within a computer. This makes the analysis
quicker. Parabam also has a strong focus on usability, with a minimal amount of programming
knowledge allowing users to create complex subsets and extract statistics from BAM files.

In this chapter we set forth our method for the parallel processing of BAM files.

2.1 Motivations

Processing increasingly large datasets is one of the many challenges faced by contemporary
computational biologists. From our vantage point on the precipice of the so called “Big
Data” era this problem is a greater challenge than ever. To these ends we propose a method

1The name Parabam is a fusion of the words BAM and parallel. Parabam is also the first-person singular
imperfect active form of the Latin verb “paro” which means “to present or bring forward”.
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of processing BAM files in parallel. Parabam aims to provide an easy to use interface for
creating complex subsets and statistics from the BAM and SAM format2.

Parabam provides two modes of operation: subset and stat. The subset mode allows the
user to specify a rule in order to select only a subset of reads. Whereas stat allows the user
to record various statistics regarding reads or read-pairs. The user specifies a rule using the
Python programming language, either by a command line interface or programmatically.
This rule takes the form of a Python function.

Parabam is the framework around which many of the methods and processes for the
development of Telomerecat (detailed in Chapter 3) were built. Indeed, the initial motivation
for the creation of Parabam stemmed from the need to search through the entire BAM file
for reads containing the specific telomere hexamer: “TTAGGG”. The following paragraphs
illustrate the motivating example for iterating through the BAM file in a pairwise manner
searching for telomere reads. But Parabam is an adaptable program and the user could just as
well make a desired subset based on any characteristic of either read in the pair.

One challenge we faced early on in the development of the Telomerecat method is
illustrative of the need to process BAM files in some pair-centric way. Reads containing the
telomere hexamer were often unmapped and so could not be summoned from the file using a
known mapping location on the genome. Instead we needed to inspect the entire file; every
single read had to be interrogated for the sequence.

Early attempts to select these read-pairs, by processing each read individually, revealed
that the subset would be missing reads important to the analysis. To illustrate, consider
a read-pair where both reads in the pair are unmapped. Read one contains the telomere
hexamer and the read two does not. For the purposes of our analysis we require both reads.
When iterating over each read individually we would capture read one as it contains the
desired sequence. However, read two would not be included in the subset. Furthermore due
to read two being unmapped, any attempts to retrieve the read would be impossible.

To solve this problem, in pair processing mode, Parabam provides an interface where
both reads in the pair are presented to the user simultaneously. In this way, if a read’s pair is
relevant to the subset the user can decide to include the both of the reads in the pair.

Although initial motivation for Parabam was as a framework for the processing of
sequencing files in search of telomere read-pairs, we realised quickly the broader applicability
of such a method. We wished to design a program that took as input simple instructions for
inclusions of reads within different subsets. Parabam would take these instructions, collect
the reads or read-pairs that met the specification and return a BAM with the desired reads.

2Parabam works on both SAM and BAM format, however for convenience we will only refer to BAM files
throughout this chapter
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Later, we would add functionality to Parabam that would allow the user to simply record
information about each read or read-pair and have the information presented as a simple CSV
file.

Pre-existing tools There is no tool quite like Parabam; this makes direct comparison
difficult. Parabam defines a new way for users to interact with sequencing reads by presenting
reads to a function written in Python. While no one tool has the complete feature set of
Parabam, other tools implement some similar functionality.

For instance, Biobambam (TISCHLER and LEONARD, 2014) allows users to iterate
through an index-sorted BAM file as if it were named sorted. However, this process is
done using a single processing thread and Biobambam does not provide an interface for
querying each of these reads or making subsets or deriving statistics from them. Any analysis
conducted on the reads once they have been returned by the tool must be piped into a further
script, should the user wish to interrogate the reads further.

Another tool, Sambamba (TARASOV et al., 2015), attempts to replace the core architecture
of the original samtools with a parallelised implementation. The result is a tool that iterates
through a BAM file faster than any other. What is more, Sambamba provides a command line
interface for creating subsets based on the criteria specified by regular expression. Unlike
Parabam however, more complex subsets are not possible (for instance those using higher
order language statements like “if statements”). Furthermore, Sambamba is not capable of
iterating through an index sorted BAM file as if it were name sorted.

2.2 Program Architecture

Parabam comprises approximately 4000 lines of code across 50 classes. Great care has been
taken to conform to the principles of object orientated design and of Clean Code (MARTIN,
2008). Whilst the code base is relatively large, these principles ensure that code re-usage is
kept to a minimum. In this Section we detail the algorithms and systems that constitute the
Parabam program.

2.2.1 An overview

Parabam is built with a modular structure as depicted in Figure 2.1. The FileReader, Tasks
and Handlers all run concurrently and pass information to one another using a “First in First
Out” (FIFO) queue system.
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Fig. 2.1 An overview of Parabam at runtime

Applying the user defined rule Parabam’s primary goal is to apply a user defined rule to
each read in any BAM file. This rule is defined by the user as a python function and supplied
to the program at runtime. The core components involved in this process are the FileReader,
Task and Handler. In the following paragraphs we will briefly define the main functions of
each component. The technical details of how these components function is described later
in Section 2.2.3.

Each grey block in Figure 2.1 is defined within the Parabam program as a separate Class.
At runtime, each class is initialised and assigned pointers to the various queues that serve
as input and output to the object. After initialisation is complete each class runs in its own
process for the lifetime of the program and processes data as it appears on the relevant FIFO
queues.

The processing of BAM files starts with the FileReader. The FileReader is initialised
and then iterates over the input BAM and outputs file indices to Task files via the relevant
FIFO queue. Once the Task receives the file index it begins processing the BAM file from
the specified file index and stops once it processes a pre-specified amount of reads. Within
the Task, the user specified rule is applied to each read. The exact output of the user-rule
is highly dependent on the operation mode. This output is stored and the result of the rule
is sent to the Handler via FIFO queue. The Handler collates and stores the output of the
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user-rule. The Handler is also responsible for the triggering of various AuxiliaryHandlers.
AuxiliaryHandlers represent flexible classes that can be used to conduct downstream oper-
ations in parallel. For example, the pair matching process (Section 2.3) and file merging
operations detailed later (Section 2.4.2) are implemented as AuxiliaryHandlers. Not shown
in 2.1 is the fact that there can be multiple instances of the FileReader process.

Operating modes Parabam functions in two operating modes: subset and stat. The subset
mode allows users to create subsets of reads according to characteristics (i.e. duplicate status,
sequence content or flag). The stat mode allows the user to record statistics about different
characteristics of reads in the read file. For instance, the user may iterate through the BAM
file recording the amount of reads that contain an "N" base-pair. The exact content of the
rule is dependent on the user’s creativity and objectives. In creating their rule the user may
refer to any aspect or characteristic of the read, including its sequence, Phred quality score
and mapping characteristics. The read object is of type AlignedSegment provided by pysam
(the python implementation of samtools).

Once Parabam has iterated over the entire BAM file and the user-rule has been applied to
each read or read-pair, results of the analysis are presented to the user. The format of these
results is predicated on the mode of operation. In the case of the subset mode a path to a
BAM file containing the relevant subset is produced. In the case of the stat mode one or
more comma separated value (CSV) files are produced.

Programmatic structure While Figure 2.1 shows a representation of Parabam at runtime,
Figure 2.2 shows the class structure of Parabam. Parabam uses multiple inheritance, a core
concept of object orientated programming. For instance, we see that the Task class is first
defined in parabam.core and receives a final implementation in both parabam.command.stat
and parabam.command.subset. This object orientated design ensures that code recycling is
minimised and also enables the dynamic initialisation described in Section 2.4.1.

Parabam is written in Python 2.7 and then optimised using the Cython framework.
Parabam is enabled by extending the multiprocessing package distributed as part of the
standard Python distribution. Each of the classes mentioned in the previous few paragraphs
functions by extending the Process class defined in the multiprocessing package. Additionally,
Parabam makes heavy usage of the FIFO queue as provided by the multiprocessing package.
In order to interface with BAM files, Parabam uses the python implementation of the samtools
library, pysam.
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2.2.2 Interacting with Parabam

The command-line There are two ways of interacting with Parabam. The first way is via
the command-line. Once installed, Parabam is accessible directly from the command line and
can be invoked like any other UNIX compatible program. Care has been taken to ensure that
a minimal amount of parameters are needed to use Parabam. As such the user needs only to
specify the mode of operation, an instruction file and input files. Should the user wish, they
may also adjust the amount of Task objects Parabam uses (analogous to increasing processing
power) or other more low level parametrisations. The style of command-line interface used
by Parabam is influenced by the interface employed by samtools (LI et al., 2009), an almost
ubiquitous tool in modern bioinformatics. A typical command line invocation of Parabam is
as follows:

parabam subset --rule instructions.py /path/to/file.bam

The command above is understood as follows:

• parabam The name of the program

• subset The mode of operation. This can be either subset (as shown) or stat. The
operating modes are covered in Section 2.2.4

• –-rule instructions.py This part of the command specifies the location of the
instruction file. The contents of the instruction file are dependent on the operating
mode and the nature of the user defined rule. Examples of an instruction file can be
seen in Appendix A

• /path/to/file.bam The path to files that the user wishes to analyse. In the event
that more than one file is parsed, each file will be analysed in alphabetical order.

The python API The second way in which a user can interface with Parabam is via the
API (Application Programming Interface). This functionality is achieved by interfacing with
Parabam within Python programs. Parabam is distributed as a Python library and so, once
installed is directly accessible within the python environment with the simple command:

import parabam

Once imported, the user can make use of the interface classes parabam.Subset or parabam.Stat
to run analyses. The user-rule, constants and input files are passed to these classes as standard
python objects: the user-rule is a function, constants a python dict and the input files as a list
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of strings. Interacting with Parabam in this way makes it easy for the user to use Parabam
as a framework for further analysis. Telomerecat, the subject of Chapter 3, interfaces with
Parabam in this way.

The user-rule It is the goal of Parabam to apply a user defined rule to each read in the read
file. As we have seen in this section there are multiple ways to interface with the program. In
each of these ways the actual content of the rule is identical.

The user must define a rule that takes three arguments: read, constants and parent. The
read is an instance of AlignedSegment from the pysam package. The constants variable is a
Python dict object loaded with constants specified by the user, and the parent is an object of
type ParentAlignmentFile.

Any variables or functions defined in the same scope as the user-rule are accessible
from within the user-rule. This is especially useful should the user wish to describe helper
functions to assist in the analysis. The functions and variable in the same scope as the
user-rule vary slightly based on the way Parabam is used, however when using the command
line interface, any variable or function defined in the instruction file is in the same scope as
the user-rule.

This rule based paradigm grants a large amount of freedom to the user. The user may
access any variable stored in the read, constants or parent. This allows the user to form
subsets or record statistics based on a wide range of read characteristics. The user may also
pass the read object to other functions as long as they are defined in the same scope as the
user-rule.

The exact content of the rule will differ according to the aims of the user. Additionally, the
operating mode and whether the program is running in pair processing rule require slightly
different syntax. These intricacies are covered in detail in Section 2.2.4.

2.2.3 A description of each component

This section describes each of the components shown in Figure 2.1 and how the component
contributes to the overall function of Parabam. All of the objects described here exist as a
separate process on the users computer. At initialisation, the process is started and the main
loop of the class activated. This loop is run for the duration of the program’s execution. The
loop is only stopped once the entire BAM file has been read, all reads have been analysed by
the user-rule and the results of the rule collated into the final output of the program. This
section will look at the main function of each of these components. We detail the exact
method of how Parabam is initialised in Section 2.4.1 and ended in Section 2.4.3.
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core
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Fig. 2.2 A class diagram for the main packages and class in the Parabam software
package. The arrows represent inheritance relationships amongst the classes
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FileReader The processing of reads begins in the FileReader. The principal job of the
FileReader is to apportion the reads into batches which in turn are then processed by parallel
Task processes.

The main loop of the FileReader class is detailed in Algorithm 2.1. A file index is passed
via FIFO queue to the child tasks for further processing. The FileReader then spools to the
start of the next batch.

In the event that more than one FileReader is in operation a check is made via a modulus
operation. If a match is not made, the index is not passed. This enables Parabam to function
with more than one FileReader. We have found that when using traditional spinning hard
disks Parabam is most efficient using one FileReader, however, more modern solid state hard
disks have been observed to perform better with multiple FileReader processes. In the event
that Parabam is run with more than one FileReader, the total amount of Tasks is split evenly
between the instances. For example, if the user specifies eight Tasks then each FileReader
will be able to delegate batches to four Tasks.

Rather than pass reads as objects in memory, the FileReader passes a numerical pointer
to a specific location in the file. This passing of file indices cuts memory burden and side
steps potential problems with passing potentially large objects in the FIFO queue. Processing
speed is maintained by the fact that this process ensures a high rate of disk cache calls when
the reads are subsequently retrieved by the Task class.

An early prototype version of the Parabam program spawned a separate FileReader for
each chromosome in the file. We found that this put too great a strain on the physical read
head of the hard drive and processing would fail. It seemed that the size of BAM files meant
that the actual physical distance between reads stored on the disk was too great to allow
efficient reading. The current version of the BAM file ensures that the read head is kept to
roughly the same location on the disk. This further increases the likelihood of disk cache
calls.

Unless computational complexity within the user-rule is sufficiently high, the bottleneck
in an instance of Parabam is in reading from the hard disk. The way in which this operation
is carried out has large implications for the speed and efficiency with which Parabam runs.

During the development of Parabam the way in which we implemented the FileReader
changed several times. For instance, early versions of Parabam would simply hold a copy of
each batch of reads in memory. An instance of the Task process would then be created with
these reads as an input variable 3. However, this comes with a substantial memory overhead,
especially since when a new process is created in Python it receives a copy of its parent’s
processes memory. Thus, for each Task we would temporarily need to store a copy of each

3It is not possible to pass objects of type AlignedSegment via the FIFO queue.
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read in a batch in memory twice. We have found the current method of passing file indices to
be the most efficient in terms of memory usage and speed.

Algorithm 2.1 Apportion reads into batches and sends a file index for processing by Tasks.
Z is the total number of FileReaders in the current initialisation. z is the unique identifier
of the FileReader (an integer). c is the batch size as specified by the user. n is the required
number of parallel Tasks

function FILEREADERMAINLOOP(Z, z, x, n)
q← A FIFO queue
STARTTASKS(q, n)

B← BAM File Iterator
i← 0
for all a in B do

if i % Z == z then
index← B.getFileIndex()
q.send(index)

i← i+1
READALIGNMENTS(B, x)

q.send(DestroySignal)

Task The Task class is responsible for applying the user-rule to each read and capturing the
output of the rule. The number of distributed Tasks is decided at runtime by the user. As the
part of Parabam which applies the user-rule, the Task is often the component with the largest
computational burden. The operations carried out within the Task will hitherto be referred to
as In-Task. For example, the portion of pair sorting carried out within the Task is referred to
as In-Task pair processing (detailed in Section 2.3).

Pseudo-code for the Task class is given in Algorithm 2.2 (for single processing) and
Algorithm 2.3 (for pair processing). In both single and pair processing modes the Task
receives a file index on a FIFO queue, sets the file pointer to the index and begins processing
an allotted amount of reads. In Algorithm 2.3 we see that additional steps are required to
handle pair sorting. The complexities of conducting pair processing are covered separately
in Section 2.3.

Once the Task has applied the user-rule to each read or read-pair in the assigned batch it
must handle the output and pass this output on the the main Handler via the output FIFO
queue. The exact nature of this output depends on the operating mode, as we shall explore in
Section 2.2.4. To realise the different procedures carried out in stat and subset modes, two
separate versions of the Task class are included in Parabam. These different implementations
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can be found in parabam.command.stat.Task and parabam.command.subset.Task as
shown in Figure 2.2.

Algorithm 2.2 The main loop of the Task process, where p is a file index and b is the task
size, or number of reads to be processed in this batch. p is received via a FIFO queue from
the FileReader instance

function TASKMAINLOOP

H← HashMap
A← FILEITERATOR(p,b)
for all a in A do

R← USERRULE(a)
return TaskResults(R)

function FILEITERATOR(p,b)
i← 0
F ← a connection to the input BAM file
F.seek(p)
while i < b do

return F.nextAlignment()
i← i+1

Handler It is the job of the Handler process to collate all of the data output by the con-
current Task objects. All operations that take place downstream from the user-rule are
implemented as Handlers. Thus, the system wide architecture and arrangement of handlers
varies a great deal depending on the operating mode Parabam is run in. In any instance of
Parabam there may only be one MainHandler (as defined in the parabam.command.subset
and parabam.command.stat packages) however, there is no limit on the amount of Auxil-
iaryHandlers.

The MainHandler, depicted in Figure 2.1 in the bottom left hand corner of the diagram,
is the first stop for all data output by Task instances. Algorithm 2.4 gives a pseudo-code
representation of the MainHandler processes operation. Throughout the duration of the
program the MainHandler receives results packages on its incoming FIFO queue. The
succeeding processing is highly dependent on the operating mode and whether pair processing
is enabled. However, broadly speaking, the MainHandler may either dispatch jobs to outgoing
FIFO queues for further processing by AuxiliaryHandlers or may choose to process the new
results package immediately. Results packages being processed immediately are dealt with by
the NewPackageAction whereas packages being stored for further processing are processed
via the PeriodicAction.



28 Parabam: processing BAM files in parallel

Algorithm 2.3 The main loop of the Task process in pair process mode, where p is a file
index and b is the task size, or number of reads to be processed in this batch. p is received
via a FIFO queue from the FileReader instance. Due to pair sorting additional steps are taken
to sort and store unpaired reads

function TASKMAINLOOP(p,b)
H← HashMap
A← FILEITERATOR(p,b)
for all a in A do

n← read name of a
if a in H then

m← H.get(n)
R← USERRULE(a,m)
H.remove(n)

else
H.insert(n,a)

T ← STASHUNPAIREDREADS(H)
return TaskResults(R,T)

function STASHUNPAIREDREADS(H)
T ← An empty BAM file
▷ Write the leftover reads into a temporary file
for all n in H do

a← H.get(n)
T.write(a)

return T
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The main loop of the AuxiliaryHandler bears close resemblance to that of the Main-
Handler. As such, the primary method for interacting with incoming packages is via the
NewPackageAction and PeriodicAction functions. However, the actual implementation
of AuxiliaryHandlers varies based on the intended function of the process. Implementations
of AuxiliaryHandlers are discussed in Section 2.3 and Section 2.4.2.

Algorithm 2.4 The main loop of the MainHandler process. Where inqu is a FIFO queue the
other end of which is held by the concurrent Task processes. Also where Q is a HashMap
with process IDs are mapped to FIFO queues. The other end of each FIFO queue in Q is held
by an AuxiliaryHandler.

function HANDLERMAINLOOP(inqu,Q)
destroy← FALSE
f inish← FALSE
i← 0
while not finish do

resultPackage← inqu.get()
NEWPACKAGEACTION(resultsPackage)
i = i+1
if i % 10 == 0 then

PERIODICACTION(Q)
if resultPacakge == DestorySignal then

destroy = T RUE

if destroy then
if some set of finishing conditions then

f inish = T RUE

▷ The contents of the following functions’ are
▷ dependent upon the operating mode
function PERIODICACTION(Q)

...
function NEWPACKAGEACTION(resultsPackage)

...

2.2.4 The operating modes

Parabam functions in two separate modes of operation: subset and stat. The operating mode
informs several aspects of the program’s operation. First, the mode of operation defines the
way in which the user interacts with the program. The format of the user-rule will differ
according to the operating mode. Secondly, the mode of operation alters the way in which
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classes are instantiated at runtime. Depending on whether the user specifies the subset or
stat modes, Parabam will load different versions of the Task class to handle the output of the
user-rule.

The subset operating mode The subset mode allows the user to create subsets of BAM
files. In order to define which reads are included in the subset the user passes Parabam a rule,
written in Python code. An example of this rule, formatted for the subset operating mode, is
shown as pseudo-code in Algorithm 2.5. Actual examples of the user-rules, written in Python
code, for the subset mode can be found in Appendix A.

The structure of Parabam at runtime must be prepared to handle the output of the user-
rule. When Parabam is running in subset mode, the output of the user-rule is always of type
AlignedSegment; essentially a representation of a sequencing read in memory. Parabam must
then correctly allocate the read into the relevant subset. To do this Parabam uses the version
of the Task class described in the parabam.command.subset package in combination with
an AuxiliaryHandler called the Merger.

When Parabam is running in subset mode, the Task process applies the user-rule to each
read. If a read is found to belong to a subset, the Task writes the corresponding read to a
temporary file. Once the Task has finished processing through the entire batch, a path to
this temporary file is written to the FIFO output queue as part of a results package. The
results package is received by the MainHandler, at which point it is added to a staging area
(implemented as a python dict) by the NewPackageAction function. At regular intervals
the MainHandler polls the staging area using the PeriodicFunction. Once a certain limit
of temporary files are accrued within the staging area, the MainHandler sends these files to
the Merger (an AuxiliaryHandler) where they are written into a file to be presented to the
user when execution has finished.

Algorithm 2.5 An example of a rule passed to Parabam in subset when the program is not in
pair processing mode. In this example the read is added if the flag is set to 4. However the
user may specify any characteristic of the read for inclusion in the subset

function RULE(read, constants, par)
results = new List
if read.flag == 4 then

results.add(read)
return results

The stat operating mode The stat operating mode allows the user to record data and
statistics concerning the reads in a read file and to return these data as a CSV file. While
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the subset mode is useful for creating small subsets of reads for which repeated analysis is
expected, the stat mode can be used to record information about a very large number of reads
quickly and efficiently. The two modes are useful when combined sequentially. Often in the
analyses detailed later in this thesis, a subset of relevant reads is found first and then the stat
operation used to glean information regarding these reads.

In order to effectively store and manage the data types, the stat operation uses the User-
Structures class. UserStructures are compact classes defined in the parabam.core.stat
package that allow the MainHandler of the stat interface to store incoming data from the
user-rule. The UserStructures are defined by the user at runtime. All the user needs to do in
order to define a UserStructure is to define the type of data and the store-method associated
with the UserStructure. The data types expected by Parabam are as follows:

• int An integer. A primitive type within the Python.

• numpy.array An N dimensional array defined as part of the numpy Python package

• Counter A hashmap data structure for storing integers. Part of the collections
Python package.

The user may choose from four store methods: max, min, cumu and vstack. Table
2.1 shows how each store method is implemented in each of the UserStructures. User-
Structures are defined as part of the instruction file in a function called getBlueprints.
getBlueprints is run at initialisation and the output of getBlueprints is transformed
into a set of UserStructures. These UserStructures are passed to the Task and Handler so
that they are prepared to handle the output of the user-rule.

In stat mode the user-rule outputs a hash-map where each key is the name of a user
structure and the corresponding value is the data that we wish to store in the relevant user
structure.

In stat mode, once the user-rule has been applied to all of the reads in the batch, the
Task now holds local copies of all the user-structures. These local user structures are simply
bundled into a result package and sent via FIFO queue to the Handler where the local copies
are incorporated into global user structures. Once processing of the file has finished these
global structures are written to CSV files and a path is returned to the user.

An example of an instruction file for the stat operation mode can be found in Appendix
A. Pseudo-code for a user-rule and blueprint definition for the stat operation mode can be
found in Algorithm 2.6.
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Table 2.1 User structures and how the store method is interpreted for each type

Store Methods

User Structure max min cumu vstack

int Store the
maximum
of all values

Store the
minimum
of all values

Cumulative
sum of all
values

NA

Counter Store the
maximum
of all values
for each
key

Store the
minimum
of all values
for each
key

Cumulative
sum of all
values for
each key

NA

numpy.array Store the
maximum
observed
value at
each index
in the array

Store the
minimum
observed
value at
each index
in the array

Cumulative
sum of all
values in
the array

Row bind
each ar-
ray to all
previous
arrays

Algorithm 2.6 An example of a rule passed to Parabam in stat mode when the program is
not in pair processing mode

function RULE(read, constants, par)
results← new HashMap
results[“cCount”]← read.seq.count(“C”)
results[“minQual”]← min(read.qual)
return results

function GETBLUEPRINTS(blueprints)
blueprints[“cCount”]← new HashMap{data=int, storeMethod="sum"}
blueprints[“minQual”]← new HashMap{data=int, storeMethod="min"}
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2.3 Pair processing in parallel

As we have seen, the aim of Parabam is to apply a user defined function to each read in a
BAM file. BAM files are often sorted by the location of individual reads on the genome rather
than by fragment name (i.e pair sorted). However, due to the mechanics of pair sequencing
and subsequent sequence alignment, a majority of read-pairs fall closely on the genome. The
pair processing algorithm exploits general proximity of pairs to allow Parabam to process
index sorted BAM files in a pairwise manner. No user intervention is required other than
to specify the –pair flag at runtime. The user must then provide user-rules that expect to
handle pairs of reads.

The implementation of the pair processing algorithm is distributed across several modules
of the Parabam processing architecture. The design of Parabam necessitates that reads are
processed in batches. Accordingly, pair processing starts In-Task where reads that happen to
be in the same batch are paired automatically. Reads that do not fall in the same batch are
processed after the fact by a process implemented in the PairFinder package.

2.3.1 In-task pair sorting

Pair sorting within the Task Pair sorting starts within the distributed Task itself. As we
saw previously, instances of the Task class are provided with file pointers denoting batches
of the BAM file to process. In pair processing mode reads are still passed to the user-rule
and data is collected as a result of applying the user-rule. However, in pair processing mode,
reads are passed to the user-rule in pairs. To achieve this the Task conducts pair sorting prior
to passing reads to the user-rule. This process is detailed in Algorithm 2.3. The design of this
algorithm, based around a series of HashMap searches, ensures that this process performs in
O(n) runtimes with O(n) space complexity.

The result of this sorting by the Task class means that reads that happen to occur in the
same batch are paired and processed by the user defined function within the Task itself.

Reads that are not paired are saved to a temporary file for downstream processing. There
are two scenarios that may lead to a read-pair not occurring within the same Task batch.
The first reason is that, by chance, reads are separated into different Task batches and are
therefore processed by separate multiprocessing Tasks. Parabam divides reads in the order
which they appear in the BAM file so by chance we can expect a proportion of reads to be
separated between batches as a result of this process. Read-pairs of this type are described as
a “batch separated read” (BSR).

The other reason for reads occurring in separate Task batches is that two ends of a
fragment have been aligned to two disparate parts of the genome. This may be the result of a
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mistake by the aligner or genuine genome corruption (this type of structural rearrangement
of the genome is a common feature of many cancers). Read-pairs of this type are described
as a “split read” (SR).

Preparing unmatched pairs for further sorting Once a distributed Task has processed a
batch (as demonstrated in Algorithm 2.3) some quantity of the reads have been processed by
the user specified rule. In a normal BAM file we observe that approximately 90% of reads
are paired within the task (this figure is heavily dependent on factors such as the quality of
the mapping, species, insert-size, coverage and ploidy). We see in Algorithm 2.3 that reads
that are not paired within the task are stored in a temporary file (shown in the algorithm as
T ). This temporary file is then passed to the PairFinder process described in the next section.

2.3.2 The PairFinder: An Auxiliary Handler

The PairFinder is tasked with pairing reads that were not paired during the in-task sorting
described above. The PairFinder class is implemented as an “AuxiliaryHandler” and as such
runs continuously throughout the life time of the Parabam instance as it simultaneously sorts
and stores the results of Algorithm 2.3. To enable faster searching, PairFinder also maintains
its own set of child processes to which it distributes the task of searching for pairs amongst
its collection of unpaired reads.

In any given input BAM file a proportion of the reads will arrive at the PairFinder.
Parabam uses several techniques to reduce the search space of paired reads. The first of these
techniques is by conducting searches within chromosome categories.

Searching for reads within “chromosome relationships” The PairFinder uses known
characteristics of the reads to minimise the number of comparisons necessary to locate pairs.
Each entry in a BAM file details both the mapping location of the read itself and the mapping
location of the read’s mate (pairs of reads are referred to as mates). The mapped chromosome
of the read and its pair form a category in which all further comparisons take place. This
category is referred to as c.

The first stage of the PairFinder algorithm is sorting reads that were not matched with
the Task, into the relevant c. When an instance of T (reads that were not paired in-task)
is received on the input FIFO queue, the PairFinder needs to sort each read within the
temporary file into the relevant category, c. The categorisation process takes place in its own
parallel process (see pseudo-code in Algorithm 2.7).

The grouping within c is used to minimise the amount of read to read comparisons.
From now on, all attempts to find a read’s pair will be conducted amongst reads of the same
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c. Indeed, comparing two reads which we know do not conform to the correct mapping
relationship is a wasted operation. For instance, reads that map to Chromosome 1 with a
mate mapping to Chromosome 2 are only compared to reads fitting that description.

Algorithm 2.7 Where L is a list of T . H is a hash map where the keys are of type c and the
value is a BAM file, represented as tc.

procedure CATEGORISE(L)
H← a HashMap
for all T in L do

for all r in T do
c← concatenate(a.chromosome,a.mate_chromosome)
tc← H.get(c)
tc.write(r)

return H

Algorithm 2.8 Choosing instances of tc to submit to the MatchMaker distributed process,
where P is the data structure detailed in Figure 2.3

procedure STARTMATCHMAKERTASK(P)
for all c in P do

L← 0
while task not started do

j← GETTASKSIZE(L)
if length of P[c][level]>= j then

p← subset of P[c][level] of length taskSize
MATHMAKERTASK(p)

L← L+1

procedure GETTASKSIZE(L)
if L%2 == 0 then ▷ If level is even

return 2
else ▷ If level is odd

return 3

The “Pyramid” storage structure Once the reads have been categorised as per Algorithm
2.7, they are ready for further pair sorting. The result of Algorithm 2.7 is a set of BAM files
containing reads of only a single c. We shall refer to these files as tc. Once returned to the
PairFinder process, the unpaired reads will remain within the PairFinder until the mate has
been found.
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...
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Fig. 2.3 The data structure used to store temporary files containing unpaired
reads.

To enable the search of pairs within the relevant subcategories, c, the PairFinder makes
use of the data structure depicted in Figure 2.3. This structure is referred to throughout
the text as the “Pyramid”. This name is meant to illustrate the pyramid like nature of the
structure in that bottom levels have many files whereas upper levels have few. This level
based structure is crucial to the way in which Parabam minimises read comparisons as will
be made clear in the following sections.

The Pyramid is a nested data structure containing three layers. The outermost layer is a
HashMap. Each key in this HashMap is a string representing a category of c. The value of
this outermost HashMap is a list of lists. The first element of this list of lists can be thought
of as the first level of the pyramid. All of the newly created incoming instances of tc, created
by the categorisation process, are inserted at this point of the data structure.

Using “levels” to reduce redundant comparisons So far we have seen that reads which
were unpaired in the distributed Tasks are transferred to the PairFinder where they are sorted
into different files (tc) where all the reads in this file are from the same chromosome category,
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c. Once these reads have been categorised into the correct tc they are stored at the bottom
layer of the Pyramid file structure.

From here, the PairFinder must coordinate the search for pairs amongst these files whilst
continually adding new instances of tc to the pyramid as they are received. To do this the
PairFinder chooses a set of files from a single level within the Pyramid and sends them for
comparison to one another in a distributed process. This distributed process is referred to as
the MatchMaker task and is detailed once this search has completed, the reads that remain
unpaired are then re-entered into the Pyramid at the next level. In this manner read-pairs
make their way up the Pyramid.

Level based searching is another way in which Parabam reduces unnecessary comparisons.
This method is a convenient way to compare instances of tc which were generated from
regions of the genome in close proximity, thus accounting for BSRs. For BSRs the missing
pair will be located in a batch that was generated from an adjacent region of the genome.
Therefore, we wish to concentrate our search on instances of tc which were generated in
close proximity to one another. In this level based system, instances of tc that were created
from proximal regions of the genome will naturally find themselves at the same level of the
pyramid and so are more likely to be compared sooner.

There is another benefit to level based searching. Comparisons are only made once new
instances of tc arrive at a relevant level. This is an automated way of avoiding comparing the
same reads over and over again, without having to keep track of which reads have already
been compared. To enable this functionality the Pyramid chooses a different number of tc for
searching depending on whether the level number is odd or even.

For instance, consider a situation where the Pyramid currently contains three files at
Level 3. As this level number is odd, three files are all selected for processing and a search
for paired reads is conducted by the MatchMaker task. Three files containing reads that were
not paired during the analysis are reinserted into the pyramid at Level 4. Level 4 is an even
numbered level and so it requires that two files are present to conduct searching. Two of
these files are chosen and sent for analysis. After this process two files with unpaired reads
are inserted into the pyramid at Level 5. To recap, we now have 1 file at Level 4 and 2 files
stored at Level 5. As things stand the PairFinder will not make any new comparisons until a
new instance of tc arrives at Level 4. Pseudo-code for this process is given in Algorithm 2.8.

The distributed MatchMaker task We have already made mention of comparisons being
made by a distributed task. The workings of this distributed task, referred to by the name
“MatchMaker”, are detailed in this section.
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The “MatchMaker” process searches for pairs within instances of tc. MatchMaker runs
as a constant child process of PairFinder. This relationship is similar to the child parent
relationship of Task and FileReader.

As with all of the other processes detailed in this chapter, the MatchMaker waits for input
on an incoming FIFO queue and then processes these inputs accordingly. In this case the
MatchMaker process receives paths to specific instances of tc. Once received, the process
iterates through the provided tc files and identifies read-pairs, as shown in Algorithm 2.9.
By the end of the MatchMaker process all newly discovered read-pairs are processed by the
user-rule and all unpaired reads are returned to the PairFinder. Crucially, as the last line of
Algorithm 2.9 shows, the level is iterated. The resulting subset of unpaired reads tc is stored
at the next level of the pyramid.

Algorithm 2.9 Comparing the contents for N instances of tc to find paired reads therein. X
is a list of instances of tc. L corresponds to the level from which the relevant tc originate.
Passing over each file twice ensures that burden on system memory is reduced.

function MATCHMAKERTASK(L,X)

▷ H is a record of whether a pairs occurs within all instances of tc
H← HashMap
for all tc in X do

for all a in tc do
H[a.readName] = H[a.readName]+1

▷ R is a hash map containing tuples of newly paired reads
R← HashMap
tS
c ← New instance of tc

for all tc in X do
for all a in tc do

if H[a.readName] == 2 then
R[a.readName].insert(a)

elseH[a.readName]< 2
▷ a remains unpaired. Store to send back to PairFinder
tS
c .write(a)

USERRULE(R)
return tS

c , L+1
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2.3.3 Ending the PairFinder process

In an ideal case, all of the reads in the BAM file are paired (meaning that no reads remain in
the pyramid) and the PairFinder can simply terminate once it has received a signal from the
MainHandler that processing of the BAM file has stopped.

However, in some cases BAM files contain reads where no pair is present in the BAM
file. This causes a problem as these reads will never be removed from the PairFinder and the
process cannot terminate. In order to account for this behaviour we introduced several key
pieces of functionality to the method. Both of these methods occur once the PairFinder has
received the signal that guarantees no more reads will enter the PairFinder.

If the amount of unpaired reads is small enough that all of the remaining tc can be loaded
into a single MatchMaker process, then we can simply send all of these files to a single
instance of the MatchMaker. If any reads are remaining then we know that reads lack a pair
in the BAM file and can be discarded from the analysis.

Where a great many reads are left, across many different groups of c, then it is not
possible to simply compare all of them in a single MatchMaker task. In this case we used an
approximate method such that the PairFinder begins to keep a record of how many times
it has made a comparison between a set of files with the result that no pairs were found
(this counter is referred to in the code as a “stale counter”). Once a certain amount of
these comparisons are conducted we end the analysis with a warning that some reads were
unpaired.

This method is only used in extreme cases and so far we have not observed a case where
a BAM file in which all reads are paired has had to terminate in this manner. Given that
Parabam has been run widely this is a good indication of the robustness of this approach.

2.4 Runtime

In this chapter we have described the core components of Parabam and how they interact
with one another. Now we will detail the life-cycle of the program at runtime, focusing
on several parts of the implementation which required specialised solutions to overcome
implementation challenges.

2.4.1 Starting the analysis: flexible initialisation

The flexible nature of the Parabam architecture presents several challenges at initialisation.
How can the system be initialised to cater for the user’s specifications (i.e. in the correct op-
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erating mode), allocated the correct resources (i.e. number of Task processes) and connected
such that all of the individual processes are correctly connected by FIFO queues?

The Leviathan To meet these challenges we developed the Leviathan class, implemented
as part of the parabam.core package. The Leviathan is completely agnostic to the desired
architecture of the program. It exploits a feature of the Python programming language,
dynamic class loading, to build Parabam from a set of variables which inform the Leviathan
the way in which to initialise Parabam.

The primary benefits of this approach are that it reduces code duplication; separate code
is not required for initialising the program in different modes with different combinations of
Handlers or Tasks. This approach lends itself to the expansion of the program. For instance if
we wished to add a new operating mode to the program we could simply hand the Leviathan
the relevant variables, rather than having to separately define the initialisation sequence.
Furthermore, this method decouples the initialisation sequence of the program from internal
changes to the code of the various processes.

Instructing the Leviathan The Leviathan is called by an implementation of the Interface
class, defined in the parabam.command.core package. In turn, the stat and subset class each
have their own inherited implementations of this class. This allows the separate operating
modes to define their own class to the Leviathan.

The Leviathan expects the following variables in order to initialise the analysis:

• fileReaderClass A class that inherits parabam.core.FileReader. Both the
subset and stat interfaces pass the default class implemented in parabam.core.FileReader.

• queueNames A list of strings that represent different FIFO queues to be used in this
analysis.

• handlerBundles A doubly nested hash-map where each key is a class of type
hash-map and the value is a hash-map with values “inqu” and “outqus”. The value of
inqu is a name of a queue to which this handler will listen for incomming packages.
The value of “outqus” is a dict containing queues that this Handler will output to.

• handlerOrder A list of type Class. The list should be in the order that the Handlers
will be destroyed in.

From these four variables the Leviathan may then construct the desired program archi-
tecture. First, the fileReaderClass is initialised and the process is started. As part of the
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initialisation, the FileReader is passed the desired number of child Task processes and is
responsible for their initialisation.

Next, each Handler listed in the handlerOrder variable is initialised using the relevant
variables described in the handlerBundles hash-map. Queues are constructed and assigned
by the Leviathan according the the queueNames list. The resultant queues are supplied to the
relevant handlers (as specified by the inqu and outqus variables in the handlerBundles).

After this process is complete the Leviathan starts each of the handler processes and the
analysis begins.

2.4.2 During the analysis

Once the analysis has begun the FileReader starts to process reads from the specified BAM
file stored at a location on the user’s disk. This process will continue until all of the reads in
the file have been read and processed.

We have already seen how Tasks apply the user-rule to each read and this constitutes
the main computational workload for Parabam during the analysis. In this section we detail
processes, carried out during the analysis, that required non-trivial solutions.

Merging subset output As part of the subset operation mode it is vital to merge BAM
files in an efficient manner. When Parabam is operating in subset mode the Task processes
output temporary files containing all of the reads that met the criteria for inclusion in the
output subsets. These files must be merged into a single unified output file to be returned
to the user. This merging process is implemented as an AuxiliaryHandler referred to in the
code as the Merger.

To accomplish the task of merging all of the temporary files into a single output file the
Merger implements the algorithm shown in Algorithm 2.10. The Merger maintains an open
connection to the output file for the duration of the analysis. As temporary files are received
from the input FIFO queue they are gradually incorporated into the main output file.

One crucial optimisation of the Merger process is that it does not decompress the tempo-
rary files. Instead, we read the file in its compressed binary format straight into the output
file as shown in the dumpToFile function in Algorithm 2.10. This means that there is no
need to decompress and interpret each read in the file. This confers a substantial saving. This
method allows Parabam to subset a file as quickly as the disk will accept write requests.

We see in Algorithm 2.10 that files with less than 1000 reads are combined into a
holder BAM file first before being dumped into the main output. Here we simply extract
reads from the BAM file in the usual way and write them directly into the holder file. As
we saw in the introduction, BAM files are comprised of many constituent BGZF blocks.
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Incoming temporary files with few reads naturally contain small blocks, far from capacity.
By combining these small files we can write full BGZF blocks to the output file.

Algorithm 2.10 An overview of the Merger process. Where S is a BAM file containing reads
to be merged into the subset.

function MAINLOOP

O← new empty BAM file
T ← new empty BAM file ▷ File to be output to the user
while processing do

▷ Get new package from input queue
S← inqu.get()
if S.count > 1000 then

DUMPTOFILE(O, S)
else

MERGESMALLFILE(T, S)
if T.count > 1000 then

DUMPTOFILE(O, T)
T ← empty BAM file

▷ BAM file to merge into output
function DUMPTOFILE(O, S)

h← location of first byte after header
S.seek(h)
f ← True
while f do

b← 1MB of uncompressed binary from S
▷ eofByteSignature is a 28Byte sequence that all valid BAM files must end with
if b.endsWith(eo f ByteSignature) then

▷ End of file found
f ← False
S.write(b)−28 ▷ Do not write the EOF to output file

else
S.write(b)

Pause signalling in Parabam In the process of developing Parabam we encountered a
problem where early prototypes of Parabam would hang unexpectedly and then fail to
complete when in pair processing mode. We noticed that the problem occurred when the
PairFinder process became particularly busy and began to receive pairs for matching faster
than it could process them. We diagnosed the problem as a deadlock occurring when two or
more of the FIFO queues used for communication between processes become full. Such a
scenario can easily occur when many requests are being made of the PairFinder
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Fig. 2.4 A diagram showing the structure of the pause queue system

To overcome these problems we developed a method for the PairFinder to communi-
cate to the FileReaders that processing should pause temporarily. This pausing system is
implemented as a series of FIFO queues. At one end of each FIFO queue is a FileReader
object. Attached to the other end of the FIFO queue is the PairFinder. Figure 2.4 shows
this arrangement. When the PairFinder requires that processing should pause, it sends a
pause request to each pause queue, before continuing processing it waits until it has received
confirmation that each FileReader has received the pause instruction.

2.4.3 Ending the analysis: controlled destruction

Once all reads have been processed and allocated to Tasks by the FileReader, each instance
of the FileReader sends a destroy signal to all of it’s assigned Tasks. This signal proliferates
through the system, signalling to downstream Tasks and Handlers that all reads have been
processed and that the procedures to end processing may begin.

These procedures differ depending on the process and the operating mode of the analysis.
For instance, in subset mode the MainHandler must ensure that all temporary files have been
sent to the Merger before ending processing.
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2.5 Benchmarking

In this section we test Parabam under a varied set of operating circumstances and, where
possible, compare its performance to other tools. All of the benchmarking tests in this section
were run on a conventional desktop computer with 2.5Ghz Intel Xeon Processor (providing 8
separate cores), 32GBs of 667Mhz DDR2 RAM, running a standard distribution of Ubuntu
Linux version 14.04.

The tests in this section were run on a subset of reads from a Prostate ICGC BAM file.
We used a subset in order to make the benchmarking process more timely. We randomly
selected one quater of the read-pairs from within the original file. As a result the BAM file
that benchmarking was run on contained 635,805,818 reads. 4

2.5.1 Single end processing

First, we compared Parabam and Sambamba when creating a simple subset using single
processing. In this test a read was included in the subset if the first 8 bases were equal to “A”
(representing the Adenine nucleobase). This check can be conducted in constant time and as
such is not computationally burdensome. Figure 2.5 shows when using Sambamba’s inbuilt
filtering system, it is much faster to create simple subsets than with Parabam.

These observations indicate that when the computation in the user rule is minimal, file
IO (i.e. the reading of information from the BAM file) is the bottleneck in analysis. Thus, for
cases where the user rule conducts computation where complexity is constant adding Tasks
to the analysis has little affect on the duration of the analysis (Figure 2.5 A). What’s more,
most of these use cases are better served by Sambamba as it is capable of reading files from
BAM files faster than Parabam and has an interface which allows a user to generate simple
subsets.

However, when we consider a case where the computation required to create the subset
is more complex, the parallel design of Parabam starts to confer benefits in reducing the
duration of the analysis.

To test this we devised an analysis whereby a read was included in the subset only if the
GC ratio of the read’s sequence was exactly 50% and the first letter in the read’s quality score
was C. This subset requires inspecting the nucleotide at each locus in the read’s sequence
and so is of O(n) complexity. We included the check on the first base so that the resultant

4Parabam was actually used in the creation of this subset BAM file. We applied a user-rule that used
a random number generator to only include reads in the subset 25% of the time. This code is included in
Appendix A
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Fig. 2.5 Benchmark results for single processing mode with O(1) read operation
complexity (A): Duration of analysis (B): Peak CPU usage (C): Peak RAM usage

subsets were smaller. This meant that we could run many benchmarking tests sequentially
without the risk of the hard disk becoming full.

A direct comparison to any other program is difficult in this scenario. No other program
allows users to conduct computation on individual reads in parallel in the same way as
Parabam. Indeed, the results that follow make reference to subsets created by Sambamba,
but in order to achieve this functionality we had to pipe the output of Sambamba into a short
Python script which we devised, thus negating a direct comparison between the programs.
However, this does represent a viable alternative to using Parabam for this analysis and is
perhaps the next best way of generating this subset. In this way it is a useful comparison,
even if it uses Sambamba in a way that was not intended by Sambamba’s authors.
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Fig. 2.6 Benchmark results for single processing mode with O(n) read operation
complexity (A): Duration of analysis (B): Peak CPU usage (C): Peak RAM usage

Figure 2.6 shows the results for generating subsets of reads where GC content is actually
50% in single end analysis mode. We see that as we increase the number of Tasks available
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to Parabam the duration of the analysis decreases. The same cannot be said for our attempt
to construct the subset using Sambamba. Whilst Sambamba is able to more quickly process
reads from the BAM file when provided with more processes, the bottleneck is now located
in the secondary step conducted on the output of the program and so analysis duration is
not decreased. There is no way to internalise this process with Sambamba and so piping
the output of Sambamba to a secondary process is the only way of generating this subset
with the program. We also see that, as shown in Figure 2.6C, these analyses do not consume
large amounts of RAM and what’s more, increasing computational power does not increase
memory usage.

2.5.2 Pair processing
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Fig. 2.7 Benchmark results for pair processing mode with O(1) read operation
complexity (A): Duration of analysis (B): Peak CPU usage (C): Peak RAM usage

No other tool allows the user to process an index sorted BAM file as if it were pair sorted
in parallel. However, the Biobambam program implements similar functionality without
parallel processing. Even though there is some overlap in the pair processing functionality it
is still not possible to make a direct comparison between Biobambam and Parabam. As with
Sambamba in the previous section, to compare Biobambam to Parabam we wrote our own
intermediary Python script that interpreted the output of Biobambam.

To compare the runtimes of Biobambam and Parabam in pair processing mode we ran two
separate tests. In the first test, we generated a subset that required computation of constant
complexity on each read by checking whether the first 8 bases of the read’s sequence are
comprised only of A. If either read in the pair displays this sequence, then both reads are
included in the subset.
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In contrast to single end processing, we observe that for most analyses conducted in pair
processing mode, the bottleneck is no longer file IO and rests instead in the pair matching
procedure. This is demonstrated by the fact that even for cases where the user-rule complexity
is O(1), the duration of the analysis is slightly decreased when we provide additional tasks.
This is shown in Figure 2.7A where the time taken to assemble a subset requiring O(1)
complexity is reduced by providing more distributed Tasks to the analysis. We also see in
Figure 2.7 that Parabam is substantially faster than Biobambam in this scenario.

Next we compared the performance of Biobambam and Parabam when linear complexity
was required to determine inclusion in the subset for each read. We applied an adapted
version of the rule used in the single processing benchmark. Reads were included in the
subset if their sequence content was exactly 50% GC. If either read in the pair displayed this
feature, both reads were included in the subset.

As with single end processing, when more complex computation is required to create the
subset Parabam comes into its own against other methods. We see in Figure 2.8A that the
duration of the analysis is decreased substantially as parallel tasks are added to the analysis.
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Fig. 2.8 Benchmark results for pair processing mode with O(n) read operation
complexity (A): Duration of analysis (B): Peak CPU usage (C): Peak RAM usage

2.6 Summary

In this chapter we have described in detail the inner workings of Parabam and benchmarked
its performance. Parabam is a flexible program which lends itself to use by people who are
not experienced programmers and whom do not wish to write multiprocessing code.

Contrasting functionality Where possible we have made comparisons to other programs
which provide functionality for subsetting BAM files. However as we saw in the bench-



48 Parabam: processing BAM files in parallel

marking carried out in Section 2.5 these comparisons are limited because for any subsetting
functionality more complicated than simple logical operators, we need to pipe output of these
programs into a separate single process thus negating any inherited speed advantage, most
noticeably for Sambamba.

This incomparability speaks to the unique nature of the Parabam platform. There are
clearly non-overlapping use cases between Sambamba, Biobambam and Parabam. While we
have shown benchmarking for the subset operating mode in this chapter, we have not given
an application of the stat operating mode. It would be harder still to draw a comparison for
this operating mode as it is a novel way of processing BAM files, however the stat mode has
come into its own when processing data for Telomerecat. While the stat mode has not been
fully explored in this chapter the Appendix A does list user-rules for the stat mode which
might give some flavour of its usefulness.

Perhaps an area for future work is to combine the speed with which Sambamba can read
BAM files with Parabam’s interface for creating complex subsets and pair processing in
parallel. Such a tool would make for a terrific blend of usability, efficiency and speed.

Use of Parabam in further analysis Parabam has been used extensivly throughout this
thesis as the framework around which Telomerecat was developed. Parabam is used at several
points in the Telomerecat analysis. Firstly, for the main computational overhead of the
program, the collecting of telomere reads from the input BAM files. Additionally, Parabam
is also used to conveniently process these resultant subsets. As we shall see, Telomerecat
exploits the paired-end nature of modern sequencing data, so Parabam is in its element in
processing these files.

This use of Parabam, as the framework for other dedicated tools, demonstrates the benefit
of providing the Python API. Code duplication has been greatly reduced, to the extent that
the “bam2telbam” command in the Telomerecat program is essentially just a wrapper for a
call to Parabam.

The way in which Parabam is implemented encourages the user to create smaller subsets
of relevant reads and conduct more complex analysis on these narrowed subsets. We have
found this methodology for program development as highly beneficial. Inevitably throughout
the development of Telomerecat the length estimation portion of the tool has undergone
changes that required us to run the tool on the same sample multiple times. This task of
refinement would have been made substantially more difficult had we not separated the
analysis into subsetting and downstream analysis steps.

Furthermore, this design pattern of using Parabam to create specialised subsets has
implications on reproducibility. In the case of Telomerecat the subset BAM files containing
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telomere reads are substantially smaller than the original BAM files. We envisage that
these subsets could be made available in place of the larger BAM files making it easier for
researchers to test and verify each others results using the tool.

Using Python as the primary development language At several points in the develop-
ment of Parabam we considered moving away from the Python programming language.
Python has many advantages as a language, however, it lacks the processing speeds of
compiled languages like C or Java.

Despite not being the fastest language Python remained as the primary language for the
development of Parabam. The excellent multiprocessing framework coupled with quick
development time due to the uncluttered syntax made a good choice for development.
Furthermore we were able to increase the processing speeds of Python but optimising the
code with the Cython package. Cython converts Python to C and compiles the language.
This removes reliance on the Python interpreter for execution and thus provide a substantial
processing speed increase.

Improving pause signalling Currently, Parabam implements pause signalling as detailed
in Section 2.4.2. This system must be improved upon in future iterations of the program.
The current implementation of the pause signalling system means that despite each auxiliary
handler having access to the pause queues, in practise only one of them, the PairFinder, may
use the system. As it is currently implemented if two AuxiliaryHandlers were to submit
pause requests simultaneously, the system would crash.

One solution to this problem is to introduce another component to the Parabam architec-
ture who’s sole function was to coordinate the pause logic. In this scenario, all of the pause
logic would be contained in a single process and Handlers could make a single request, via
the FIFO queue to this object which would then handle the pausing of the FileReaders.





Chapter 3

Telomerecat: a novel method for
estimating telomere length

The original concept for a telomere length estimation algorithm that could account for aneu-
ploidy using boundary reads was conceived by Dr A. G. Lynch. The method for interstitial
telomere filtering was developed in collaboration with Dr M. L. Smith. All other method
creation, development and analysis was undertaken by the author.

This chapter incorporates material that was published previously in FARMERY et al. (2018).
Particularly, Sections 3.2 and 3.3 that make use of figures, formulae and text from the afore-
mentioned paper.

In the introduction to this thesis we described the ontology of the telomere, its role in
cell and its role in cancer. We also saw how previous methods have attempted to estimate TL
from WGS data. In this chapter we outline our de novo computational method for estimating
mean telomere length from WGS paired end data: Telomerecat.

First, we outline the motivations behind the creation of Telomerecat. We then explain
the method in its current form, and detail the validation we carried out to test and confirm
the method’s accuracy. Later, in the discussion section of this chapter we will reflect on the
novel aspects of the Telomerecat algorithm and consider the advantages and disadvantages
of Telomerecat over other methods.
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3.1 Motivations

The motivation for the development of Telomerecat stems from the need to account for
disrupted genomes commonly found in cancer sequencing experiments. Existing attempts to
profile telomere content from WGS experiments rely on an assumption regarding the number
chromosomes in a sample. These assumptions would not hold for samples from cancerous
tissue.

In cancer, assumptions of chromosome count are unfounded. Many cancers display an
atypical amount of chromosomes. Atypical chromosome counts can manifest as aneuploidy
(an abnormal number of complete chromosomes in the cell) or euploidy (an atypical amount
of copies of a single chromosome). It follows that if a cancer cell displays aneuploidy
or euploidy then it can not be assumed that the number of telomeres in the cell remains
normal. Indeed, a sequencing experiment from a cancer sample may have more telomere
reads because it has more instances of telomere, not because it has longer telomere.

All methods for estimating TL must find a way of adjusting the observed counts of
telomere read by the depth of sequencing coverage. To illustrate, consider a case where
a method identifies two samples as having 10,000 telomere reads each. However Sample
A is a 30× coverage experiment and Sample B is a 15× coverage experiment. In this
straightforward example we would expect the method to report that Sample A has shorter
telomeres than Sample B because they have the same observed reads despite Sample A
having double the coverage.

Now let us consider that Sample A has 33 chromosome pairs whereas Sample B has the
conventional 23 pairs. In Sample A there is now more genomic content than in Sample B. In
Sample A, the direct relationships between estimates of sequencing coverage, ploidy and TL
are broken. This affects TL estimation in two ways.

Firstly, any estimate of coverage for Sample A must take into account the increased
genomic content; previous methods do not.

Secondly, the aneuploidy in Sample A means we are no longer certain that each chromo-
some will still possess two telomeres; previous methods assume all samples have the normal
92 individual telomeres1. Clearly, the observed 10,000 telomere reads in Sample A and
Sample B are no longer directly comparable even when we adjust for sequencing coverage.

We hypothesised that telomere coverage could be determined vicariously by observing
the ratio of telomere reads to reads on the boundary between telomere and subtelomere.

By considering this count of boundary reads we can indirectly observe the amount of
telomeres in the sample. Put simply, if there are more telomeres in the sample then there

1One telomere appended to each end of each chromosome (23×2×2)
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should be more reads at the boundary. The boundary count also captures information about
the sequencing coverage in the sample. If sequencing coverage is higher then there will be
more reads at the boundary. Observing boundary counts negates the need to quantify the
exact number of telomeres and also allows Telomerecat to estimate coverage in a way that
considers the challenges imposed by aneuploidy.

Further, we also noted that reads stemming from interstitial telomere repeats (ITS) could
obscure estimates, as ITSs produce reads that appear telomeric, but are not telomeric, and so
should not be counted when attempting to estimate telomere length. Pre-existing methods
failed to consider noise caused by sequencing reads from ITSs.

With these considerations in mind we aimed to produce a tool that could be applied easily
to a wide variety of paired end sequencing data. We wished the tool to account for aneuploidy
and filter interstitial reads from the analysis. While we hoped the tool would have special
relevance to cancer we also wished to create a tool that was versatile, quick to run, easy to
install and easy to use.

3.2 A description of the method

3.2.1 An overview

Telomerecat 2 comprises three main steps, as outlined in Figure 3.1.
In the first step we iterate through all of the read-pairs in a given BAM file and collect all

the read-pairs that have at least two occurrences of the telomere hexamer. This collection
of read-pairs is referred to as a TELBAM throughout this thesis. Further detail about the
generation of the TELBAM is given in Section 3.2.2

Once we have collected these candidate telomere reads in a TELBAM, we proceed to the
second step of sorting each read in categories defined by whether or not they are telomeric.
Before we can categorise a read we conduct several procedures on the read to determine
its characteristics. Firstly, we check whether any of the loci in the read’s sequence do not
match the expected telomere sequence. Secondly, we interrogate these loci to determine their
sequencing quality. We use this information to determine whether the read is suffering from
sequencing error. This process of ascribing error in telomere reads is described in Section
3.2.4.

2Short for Telomere Computational Analysis Tool
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For each BAM For each TELBAM

Apply cohort wide

F2a correction (optional)

Use F1, F2a and Insert length 

distribution to estimate telomere length 

Output TL estimates 

in CSV format

Extract reads with at least

two occurences of

TTAGGG or CCCTAA

Output as TELBAM

Find mismatching loci in each read

using segment based alignment

Define an error profile of reads

with the TELBAM 

Categorise reads into telomere read types: 

 F1, F2a, F2b, F3, F4

For each F1 / F2a measurement

Fig. 3.1 An overview of the Telomerecat method

Once we have determined which reads are suffering from sequencing error we categorise
the read-pairs according to the corresponding characteristics:

• Both reads in the pair are fully telomeric
• One of the reads in a pair is fully telomeric, the other is not
• Neither read in the pair is telomeric

Using these categories we determine two vital statistics for the sample: the number
of reads stemming from the telomere and the number of reads on the boundary between
telomere and subtelomere. Read categorisation is covered extensively in Section 3.2.6.

As we shall see in the following sections, the process of differentiating telomere and
subtelomere reads is complicated by the similarity of telomere and subtelomere repeats, as
well as the rate of sequencing error in telomere reads. Herein we detail the computational
and statistical methods that we have developed in order to differentiate these read types.

Finally, we conduct the third step by using a simulation based approach to convert our
counts of complete and boundary reads to generate an estimate of telomere length. This
process is detailed in Section 3.2.8.
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3.2.2 Collecting reads for analysis

Before we can estimate TL from a WGS experiment we must extract all of the reads that
contain two occurrences of the telomere hexamer and their pairs. We refer to this subset of
sequencing reads as a TELBAM.

This is a non-trivial problem. The output from sequencing experiments can often be on
the order of a billions of reads. As we saw in the Introduction, reads are usually stored in
compressed files called BAM files. Usually reads are stored in BAM files according to where
they mapped on the genome. However, the telomere is not included in the reference genome
and accordingly many telomere reads are unmapped. For the TELBAM to be generated
swiftly, we wished for the processing to be undertaken in parallel.

Generating the TELBAM was the main motivation for the creation of Parabam (see
Chapter 2). Parabam started as the processing framework for Telomerecat and became its
own software once the code became increasingly complex. Accordingly, the generation of
the TELBAM is simply invocation of Parabam’s subset operation using the rule shown in
Algorithm 3.1

Algorithm 3.1 The rule passed to the Parabam subset operation to create the TELBAM,
where read1 and read2 are paired reads

function TELBAMRULE(read1, read2)
read1Status← CONTAINSTELOMERE(read1.sequence)
read2Status← CONTAINSTELOMERE(read2.sequence)
if read1Status or read2Status then

return read1 and read2
else

return None
function CONTAINSTELOMERE(sequence)

return sequence.count(TTAGGG) >= 2 or sequence.count(CCCTAA) >= 2

By orientating Telomerecat around the TELBAM, the algorithm is made more adaptable
and reproducible. Telomerecat can be invoked from the command line in such a way that
TELBAM generation is a separate process from length estimation. This enables the user
to conduct the computationally expensive process of TELBAM generation on a separate
computer to length estimation. Then, once a TELBAM is generated, the user can run multiple
length estimation procedures without having to iterate through the entire BAM file again.
Furthermore, should other researchers wish to reproduce an analysis, they may do so with
access only to the TELBAM rather than the much larger BAM files.

This design paradigm has proven to be extremely useful throughout the development of
Telomerecat and our investigations. While developing the method, we were able to generate
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TELBAMS from a set of validation data only once. Once we had generated TELBAMS
for each sample, we could then run multiple versions of the algorithm and compare results.
This would simply not have been possible without the TELBAM as each run of Telomerecat
would have taken a prohibitively long time to run.

A TELBAM will usually contain approximately one ten thousandth of all the reads from
a WGS BAM file. This reduction in size ensures that the files are more easily stored and
exchanged.

3.2.3 Identifying telomere sequencing reads

When we generate the TELBAM we use the requirement of two occurrences of the telomere
hexamer within the sequence of either read in a pair. This specification is broad enough that
it includes many reads which are not telomere. We can divide each read-pair in the TELBAM
between the following categories:

• Read pairs originating from the telomere
• Read pairs from boundary between the telomere and subtelomere
• Subtelomeric and ITS read-pairs
• Read pairs that contain two occurrences of the hexamer by chance

Telomerecat uses only the first two categories to estimate telomere length: complete
telomere read-pairs and read-pairs on the boundary between telomere and subtelomere.

In this section we detail how telomere reads are identified and categorised. Further, we
explain how this classification inherently filters interstitial reads.

Before we can categorise read-pairs we first must determine what constitutes a telomere
read. Sections 3.2.4 & 3.2.5 detail a method for determining whether individual reads are
comprised of complete telomere. We then detail how we categorise each read-pair in Section
3.2.6.

3.2.4 Mismatching loci

Pre-existing methods use the count of telomere hexamers in a read to differentiate nontelom-
ere and telomere reads. In contrast, Telomerecat considers whether a read is telomere by the
amount of loci in the read’s sequence that differ from the expected telomere sequence.

We developed an alignment method that allows us to interrogate reads for loci where the
observed sequence is mismatched to an idealised telomere sequence. We refer to these as
“mismatching loci” and later in the mathematic formulation as g.
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The alignment method is described in Figure 3.2. This method allows for insertion and
deletions in the read’s sequence that would otherwise obscure the true extent to which the
read’s sequence matches the telomere sequence.

Justification for this method, as well as its various advantages in opposition to existing
methods, is discussed later in the chapter in Section 3.4.1.

3.2.5 Capturing sample-wide error with the error profile

Once we have collected the mismatching loci for all reads in a TELBAM we use this
information to build a profile of the error within the TELBAM. We then use this error profile
to define a subset of reads that are full telomere reads suffering from sequencing error.

We define Pmax and Pmin as the global maximum and minimum observed Phred score
across all reads, and (L) as the read length used.

We let N represent the total number of reads in the TELBAM such that {0,1,n, ...,N−1}
are indices representing each read. Values associated with the nth read are denoted with
a superscript (n). For example, the vector of Phred scores associated with the L locations
in read n is denoted p(n) = {p(n)0 , p(n)1 , ..., p(n)L−1}. For the nth read, let m(n) be a random
vector in the space {0,1}L such that a 1 is found at each loci in the read that does not
agree with the telomere sequence. In the case that the sequence is comprised of perfect
telomere sequence then the vector should sum to zero. The method for obtaining m(n) via a
fragmentary alignment method is shown in Figure 3.2.

Then define zn (the number of mismatches for read n), and λ n (the average Phred score
at mismatches in read n) as:

zn =
L−1

∑
i=0

m(n)
i

λ
n =

⌊
∑

L−1
i=0 m(n)

i p(n)
i

z(n)

⌋
−Pmin

We then define an indicator function

1(λ ,z, i, j) :=

1 if λ = i∧ z = j,

0 if λ ̸= i∨ z ̸= j.



58 Telomerecat: a novel method for estimating telomere length

Algorithm 3.2 Algorithms to reduce noise on the error profile mask matrix E. Where
Po = Pmax−Pmin

function MASKCORRECTION(E)

N← NEIGHBOURCOUNT(E)
C← CONTINUOUSCOUNT(E)
CT ← CONTINUOUSCOUNT(T (E))
E ′← An L× (Po) matrix where E ′i j = 0
for i in{0,1, ...,Po} do

for j in{0,1, ...,L} do
if Ni j ≥ 4 or Ci j ≥ 4 or CT

i j ≥ 4 then
E ′i j = 1

else
E ′i j = 0

return E ′

function NEIGHBOURCOUNT(E)
N← An L× (Pmax−Pmin) matrix where Ni j = 0
for i in{0,1, ...,Po} do

for j in{0,1, ...,L} do
Ni j← ∑

1
x=−1 ∑

1
y=−1 Ei+x, j+y

Ni j← Ni j−Ei j

return N

function CONTINUOUSCOUNT(E)
C← An L× (Po) matrix where Ci j = 0
for i in{0,1, ...,Po} do

start← 0; count← 0;
for j in{0,1, ...,L} do

if Ei j == 1 then
count← count +1

else if Ei j == 0 then
Ci,start: j← count
start← j+1;count← 0

return C
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Fig. 3.2 The algorithm that determines the indices of divergence from the telomere
sequence. 0: We observe a sequencing read 1: We split the read into ‘segments’
(11 in total in our example) such that each segment is a substring of the original
sequence and that every other segment consists of unbroken telomere sequence.
In our example we see that segments 1,3,5,7,9,11 contain unbroken telomere
sequence. 2: Each segment containing a telomere hexamer is “expanded” to
capture the full extent of the surrounding telomere sequence. The number of
segments is reduced by 2. 3: When two segments both containing the telomere
hexamer are adjacent after step 2 this indicates a frame shift. We take the loci
with the lowest corresponding Phred score. For any segment that does not contain
a telomere hexamer and where the length of the segment is greater or equal to
4 apply we conduct a basic alignment of all possible telomere offset telomere
sequences. The telomere sequence with the lowest Hamming distance is taken as
a local alignment for that segment. Where two alignments are equal the one with
the lowest average Phred score is preferred. 4: Sequence loci that are not in a
complete hexamer or were mismatched in the Hamming alignment step are taken
as mismatching loci. m for this example is given in the final line of the diagram
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So that a matrix X takes the form,

xi j =
N−1

∑
n=0

1(λ (n),z(n), i, j)

Where i ∈ {0, ...,Pmax−Pmin} and j ∈ {0, ...,L−1}. Thus each xi j in X records the number
of reads with the relevant λ and z contained within the TELBAM and is depicted in Figure
3.3A.

Where X captures information about the average Phred score (λ (n)) at z(n) mismatching
loci, we seek to create an equivalent matrix Y about the average Phred score at z(n) random
loci in the nth read.

For the nth read, let r(n) be a random vector in the space {0,1}L such that ∑
L
k=1 r(n)k = z(n).

That is, a vector for which the non-zero entries identify z(n) random loci within the read.
So that,

µ
(n) =

⌊
∑

L
i=1 r(n)i pi

z(n)

⌋
−Pmin

Thus,

1(µ,z, i, j) :=

1 if µ = i∧ z = j,

0 if µ ̸= i∨ z ̸= j.

yi j =
N−1

∑
n=0

1(µ(n),z(n), i, j)

As before, i ∈ {0, ...,Pmax−Pmin} and j ∈ {0, ...,L−1}.
When we plot the matrices X (Figure 3.3A) and Y (Figure 3.3B) as heat maps we

typically see that there is a striking difference in their composition. The heatmap for X
shows an intensity in the upper left hand corner pertaining to reads with low Phred scores
at mismatching loci. This hotspot is missing from the Y heatmap. We interpret this region
as representing telomere reads affected by sequencing error that we wish to capture in our
length estimation process.

We find the difference between the two matrices:

D = X−Y
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Fig. 3.3 (A): A heatmap of the joint distribution of Phred scores a mismatching
loci and the number of mismatching loci (X). The intensities in the top left
corner of the heatmap indicate an association between fewer mismatches and
lower Phred scores. We observe that the maximum mismatching loci is commonly
∼75% of the read length. This effect is caused by non-telomere reads match a
the telomere sequence simply by chance (B): A heatmap of the joint distribution
of random loci in reads and the associated Phred score (Y). We note that the
joint distribution of reads in the upper half of the matrix is different from that
in X while the lower portion is identical. (C): The difference between X and
Y. Referred to as D in the text. (D): A binary heatmap showing all cells in D
that are greater than the threshold k. We note the preponderance of cells in the
upper right hand corner of the figure (E): We remove noise from the figure using
the methods detailed in Algorithm 3.2 (F): We apply a final rule to ensure cells
associated with low Phred scores are captured in the error profile, see Algorithm
3.3
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We plot values of D > 0 as a heatmap in Figure 3.3C. To capture cells that contain more
reads than we would expect at random we define a mask E. E is defined such that:

ei j =

1 if di j > k,

0 if di j ≤ k.

Where k is max{Di j} for all values where 1
2 p< i≤ p and 1

2L < j≤ L. This matrix is depicted
as a heatmap in Figure 3.3D.

We note that the mask depicted in Figure 3.3D has gaps that appear as a result of using k
as a threshold. We apply the procedure detailed in Algorithm 3.2 in order to remove noise
from the error profile. The results of applying this procedure are shown in Figure 3.3E. We
conclude by applying the operation described in Algorithm 3.3 and shown in Figure 3.3F.
This is the final matrix and is provided to the read-pair classification procedure shown in
Algorithm 3.4 as E. All read-pairs falling within the area by the error profile are counted as
fully telomeric suffering from sequencing error.

Algorithm 3.3 Final step in producing the error profile
function INCLUSIVEMASK(E)

maxIndicies← an empty list
for j in{0,1, ...,L} do

rowMaxima← 0
for i in{0,1, ...,Po} do

if Ei j == 1 then
rowMaxima← j

maxIndicies append rowMaxima
E ′← An L×Po matrix where E ′i j = 0
for j in{0,1, ...,L} do

for i in{0,1, ...,Po} do
if i≤ maxIndicies[ j] then

E ′i j← 1

return E ′

3.2.6 Categorising telomere read-pairs

Our definitive definition of a fully telomeric read is a read where 90% of the sequence is
telomere or the read falls into the error profile (see Algorithm 3.4). In practice we observe
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that using a threshold above 90% leads to decreased accuracy (see Section 3.4.2). It is
possible that this is indicative of genuine telomere heterogeneity.

The next stage in the Telomerecat estimation process is the categorisation of read-pairs.
Now that we have defined what constitutes a telomere read, we can categorise read-pairs into
four distinct types as shown in Figure 3.4. Pseudo-code for read categorisation is given in
Algorithm 3.4.

Read-pairs are categorised according to how many reads in the pair are deemed complete.
Additionally, in the case of the boundary, the read-pair’s directionality is also considered. In
other words, we assess whether the complete read was identified in the 5′ or 3′ section of the
read. The consideration of directionality and categorisation is crucial to Telomerecat’s ability
to filter for interstitial reads and account for aneuploidy.

Below is the list from Section 3.2.1, annotated by the read types from Figure 3.4.

• F1: Read pairs originating from the telomere
• F2a: Read pairs from boundary between the telomere and subtelomere
• F2b+F4: Subtelomeric and ITS read-pairs
• F3: Read pairs that contain occurrences of the hexamer by chance

We observe that read-pairs where one read in the pair is completely telomeric and the
other is not, can come in two configurations. In F2 read-pairs, the complete read is comprised
of the “CCCTAA”. In F4 read-pairs the complete read is comprised of “TTAGGG”.

This information is vitally important as the F4 configuration is only possible on the
boundary of an interstitial or subtelomeric repeat stretch. As we saw in the Introduction,
telomeres are appended to the chromosome in such a way that the CCCTAA sequence is
always to the 5′ of the DNA strand. Thus all reads from the genuine boundary between
telomere and subtelomere should be in the F2 configuration.

We now see that within our classification of F2 reads we must distinguish between F2
reads that fall on the genuine telomere boundary and reads that fall on the boundary of ITSs.
Accordingly, we specify that read-pairs on the genuine telomere boundary are F2a reads and
read-pairs from ITS are referred to as F2b.

F2a and F2b read-pairs are identical. However, by observing the amount of F4 reads in
a sample we are able to infer the amount of F2b. We assume that, on average, each ITS or
subtelomere region that contributed an F4 would also contribute an F2b. Thus we are able to
estimate F2a.
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Fig. 3.4 (A): The read-pair types at the boundary between telomere and subtelom-
ere. F2a reads stem from the boundary whereas F1 reads stem from anywhere
within the telomere proper. F3 are reads where neither read in the pair is complete
telomere (B): Detail of the F1 and F2a read types. F1 read-pairs are comprised
of two complete telomere reads. F2a read-pairs are comprised of a read-pair
where one read is complete telomere and the other is not. Crucially, the complete
telomere read is comprised of CCCTAA (C): The read-pair types at an ITS. (D)
Detail of the F2b and F4 read types. Note that the F2b is physically indistinguish-
able from an F2a read. An F4 read is a read-pair where one read is complete
telomere and the other is not. The complete end is comprised of TTAGGG

F2b≡ F4
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In this way, we are able to observe an estimate of reads over the actual telomere boundary.
Therefore, we see that this process filters for interstitial reads and estimates coverage at the
boundary of the telomere and subtelomere. The distorting effects of aneuploidy are removed,
as at no point do we assume a fixed number of boundaries. We simply observe the amount of
reads.

Along with F2a reads, telomere length is influenced by the amount of F1 reads in a
sample. F1 reads come from the telomere proper and are defined as any read-pair where both
reads in the pair are telomeric.

Once the reads have been categorised we can proceed to length estimation.

Algorithm 3.4 Sort read-pairs into the read types shown in Figure 3.4. We assume that the
variables z,λ and L were calculated previously for each of the reads.

function GETREADTYPE(read1, read2)
if ISTELOMERE(read1) and ISTELOMERE(read2) then

▷ Both reads in the pair are telomere
return F1

else if ISTELOMERE(read1) or ISTELOMERE(read2) then
▷ Exactly one of the reads in the pair is complete
teloRead← read1 if ISTELOMERE(read1) else read2
if CCCTAA in teloRead.seq then

return F2
else

return F4
else

▷ Neither read is complete
return F3

function ISTELOMERE(read)
z← zread
λ ← λread
L← Lread
if z < 1

10 ·L then
return TRUE

else if Eλ ,z == 1 then
return TRUE

else
return FALSE
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3.2.7 Correcting for cohort-wide error

We observe that in some cases it is useful to normalise a cohort’s F2a count based on
information from other samples in the batch. What follows is a method for adjusting F2a
using a weighted average.

Let C be the total number of TELBAMs in a batch provided to Telomerecat. Such that
subscript c represents a value relevant to any individual TELBAM. Let θ = F2a

F2+F4 such that
θ exp is the average θ observed across all TELBAMs in a cohort and θ obs

c is the observed
value of θ with in a particular TELBAM.

θ
exp =

∑
C
c=1 θ obs

c

C

θ
cor
c =

θ obs
c ·ψc +θ exp ·w

ψc ·w

Where w is a predetermined weight of 3. ψ for any given TELBAM is obtained as follows:

µc =
∑

2
5 p
i=1 ∑

L
j=1 Xi j

L · (2
5 p)

σc =
∑

2
5 p
i=1 ∑

L
j=1 (Xi j−µc)

2

L · (2
5 p)

ψc =
σc

µc

So it follows that the adjusted value of F2a is given as θ cor · (F2+F4)

3.2.8 From telomere read counts to an estimation of length

The final step of the telomere length estimation process involves converting a ratio of F1 : F2a
read counts into an estimation of length. We achieve this by simulating telomere length under
the observation of counts for F1, F2a and the fragment size. Pseudocode for the simulation is
given in Algorithm 3.5

The fragment size distribution is acquired by observing the average fragment for all
properly mapped pairs in the TELBAM where mapping quality is high. We observe that
fragment size is normally distributed around a mean and varies considerably according to
sequencing chemistry and platform. Figure 3.5 shows the distribution of fragment sizes in a
single sample and also fragment sizes across the entire TwinsUK cohort (a validation cohort
used later in this chapter).
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Algorithm 3.5 Telomerecat length estimation simulation algorithm
function LENGTHESTIMATION(F1,F2a)

τ ← Arbitrary starting TL
µ,σ ← Sample fragment mean and standard deviation
while (F1′ ̸= F1)&(F2a′ ̸= F2a) do

F1′,F2a′← simulate(τ,F1+F2a,µ,σ)
if F1′ < F1 then

τ ← τ + i
else if F1′ > F1 then

τ ← τ− i
return τ
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Fig. 3.5 Fragment sizes in the TwinsUK10K cohort. (A): Fragment size distri-
bution within a sample from the TwinsUK10K cohort. (B): The distribution of
fragment sizes across the TwinsUK10K cohort

3.3 Validation

In this section we detail a set of experiments made to assess Telomerecat’s ability to estimate
telomere length. We have applied the tool widely in order to compare it with existing methods,
to examine whether it can identify expected telomere dynamics and to what extent it agrees
across duplicated samples.

3.3.1 Testing Telomerecat on simulated data

To test the underlying principles of our method we applied Telomerecat to a set of simulated
data. The simulation approach that we developed allowed us to generate reads from a sample
with known telomere length. We could then compare the length estimates provided by
Telomerecat with the underlying true telomere length. The simulation approach also allowed
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us to test whether Telomerecat was influenced by the number of chromosomes in the sample
and whether our method of interstitial filtering was well founded.

Pseudocode for the validation simulation is given in Algorithm 3.6. In essence, we use the
ART simulator (HUANG et al., 2012) to simulate a set of reads from a hypothetical reference
genome comprised of telomere, subtelomere and random DNA sequence. A diagram and
explanation for the method used to create the hypothetical sequence is shown in Figure
3.6. The set of parameters used for this investigation is shown in 3.1. For the purposes of
this investigation we generated estimations for 5,000 samples with varying telomere length,
subtelomere length, coverage and ploidy.

Algorithm 3.6 Estimate telomere length from an artificial DNA sequence. The parameters
used for the investigation described in the text are given in Table 3.1. A diagram of the
genome as generated by the GetGenome function is given in Figure 3.6
.

function VALIDATIONSIM(µ t , σ t , µs, σ s, µc, σ c, µd , σd)
▷ Draw from the normal distribution to decide the
▷ length of telomere (t), length of subtelomere (s),
▷ number of chromosomes (c) and depth of sequencing (d)
t←N (µ t ,σ t)
s←N (µs,σ s)
c← round(N (µc,σ c))
d← round(N (µd,σd))

▷ Use number of t, s, and c to generate a random
▷ DNA sequence with interstitial telomere sequence
seq← GETGENOME(t,s,c)

▷ Simulate reads from the hypothetical reference
▷ sequence using the ART simulator
bam← SIMULATEREADS(seq,d)

▷ Estimate telomere length using Telomerecat
e← ESTIMATETELOMERE(bam)

▷ Return the estimated and actual telomere length
return e, t

The results of this investigation show strong agreement between estimated telomere length
and the true underlying telomere length (Figure 3.7A). We also confirmed that estimated
telomere length did not appear to be biased by the amount of chromosomes present in the
simulated sequence (Figure 3.7B).
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We were also reassured to find that extreme outliers were only seen in samples with low
depth of sequencing and few chromosomes (Figure 3.7C).

The simulation approach detailed in this section is extremely limited in the extent to
which it can demonstrate Telomerecat’s ability to estimate telomere length accurately. It
is not clear that our hypothetical genome model is a good likeness of a real chromosome.
Particularly the interface between telomere and subtelomere. Furthermore, we suspect that
the sequencing reads produced by the ART simulator contain less sequencing error in the
telomere reads than actual sequencing experiments. As such, this does not represent a
validation of Telomerecat’s ability to differentiate telomere reads suffering sequencing error
and subtelomere reads.

RandomsequenceTelomere comprised ofCCCTAA repeats

Subtelomere comprised of CCCTAA repeats
ITR comprised of eitherCCCTAA or TTAGGGrepeats

Randomsequence

Subtelomere comprised of  TTAGGG repeats

Telomere comprised ofTTAGGG repeats

T1 S1 R1 I R2 S2 T2

Fig. 3.6 A structural overview of the hypothetical sequence used for the validation
simulation. T1 & T2:representation of telomere. These sections are comprised of
the canonic telomere sequence repeated. S1 & S2: representation of subtelomere.
This is simply the telomere sequence where 1̃0% of bases were mutated at random.
Accordingly it bears a strong resemblance to telomere. R1 & R2: random DNA
sequence in which the letters T,A,C,G appear uniformly throughout. ITS: A
stretch of telomere repeats. A coin is flipped to decide whether the sequence will
appear as CCCTAA or TTAGGG in the reference. The lengths of the subtelomere
and telomere sections of the reference are sampled from the normal distribution
as per Algorithm 3.6. The R1 and R2 sections are always 1.5KB long and the ITS
always constitutes 17 instances of the relevant canonic sequence (102bp)

Despite the drawbacks of this approach, it is still a useful investigation. The results lead
us to believe that our method for inferring telomere coverage by observing the boundary
between telomere and subtelomere is sound and yields estimates unbiased by ploidy. We also
see that the method identifies interstitial reads as per our expectation. It is clear that there is
routinely a surplus of F2 reads in comparison to F4. The only reasonable explanation for this
observation is that F2 and F4 reads are produced evenly at the site of the ITS, however, only
F2 reads exist at the boundary between telomere and subtelomere.

This investigation shows us that our interpretation of telomere biology and how it is
represented in WGS samples is sound. Using this high quality simulation data, Telomerecat
is able to estimate telomere length to a high degree of accuracy.
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Name Value

µ t 5
σ t 2.5
µs 1.5
σ s 1
µc 23
σ c 10
µd 25
σd 20

Read length 100
Insert size 350

Table 3.1 Parameters used in the validation simulation investigation

3.3.2 Comparison to existing computational and experimental meth-
ods

To verify that Telomerecat is able to identify telomere length within WGS samples, we
compared the algorithm to an established experimental method (mean terminal restriction
fragment Southern blot experiment (mTRF)) and the existing computational method (TelSeq).
Blood samples were taken from 260 adult females as part of the TwinsUK10K study, WGS
and mTRF were conducted on each sample (described previously (VALDES et al., 2005;
MOAYYERI et al., 2013)). The donor’s age at sample collection is also recorded for each
sample. Since absolute agreement is not expected, we consider correlations between the
methods. The results of the comparisons are shown in Table 3.2 and in Figure 3.8.

We observe that the best correlation is between the two computational methods at
r = 0.631. The next best correlation was between mTRF and Telomerecat. These results
suggest both Telomerecat and TelSeq correlate well with mTRF indicating that both tools are
providing realistic estimates of telomere length. Telomerecat fares slightly better but it is not
clear that this is a significant difference or random chance. The extent that Telomerecat corre-
lates with mTRF is in line with correlations previously observed between other experimental
methods and mTRF (GUTIERREZ-RODRIGUES et al., 2014).

qPCR measurements were also made for each of the samples in this cohort, however
these data are not shown in Table 3.2 or Figure 3.8. We found that qPCR measurements to
display a correlation with age that was significantly worse than other methods (r = 0.09).
Furthermore qPCR showed only weak agreement with TelSeq, Telomerecat and mTRF. In all
cases correlation was r < 0.4. This result concurs with other literature which indicates qPCR
to have a lower fidelity than other commonly used telomere length estimation techniques
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Fig. 3.7 Results of the validation simulation (A): A plot of estimated vs actual
telomere length. Light grey line is line of agreement. It appears that estimated
and actual telomere length strongly agree (B): Difference between estimated
and actual telomere length plotted by number of chromosomes in the sample.
We see that the difference between estimates is centred around 0 regardless of
chromosome count. Extreme outliers have been cropped from this plot. (C):
Number of chromosomes multiplied by depth of sequencing (a proxy for reads
in the sample) plotted against absolute difference between estimated and actual
telomere length. We see that samples with the poorest estimation were produced
by samples with low sequencing coverage and chromosome count (D): F4 vs
Number of chromosomes multiplied by depth of sequencing

(AUBERT et al., 2012). Other studies have produced far better correlations between qPCR
and mTRF (AVIV et al., 2011), which could call into question the validity of both of the
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Fig. 3.8 Scatter plots describing the relationship between Telomerecat, mTRF,
and TelSeq estimates of telomere length (TL)

measurements used in this analysis. Given that qPCR demonstrates a lower correlation with
age in comparison to mTRF, we are more inclined to trust the mTRF estimates.

The results of this analysis show that Telomerecat correlates well with establish experi-
mental methods, even in samples with relatively low coverage. Furthermore, we are reassured
to see Telomerecat produced a correlation with age only slightly weaker than that of mTRF;
a strong indicator that we are capturing genuine information about telomere lengths.

It is worth remarking that the sequencing depth of these samples is amongst the lowest of
all the samples analysed as part of this thesis. Our simulation data, as well as those carried
out by TelSeq’s authors, shows that the accuracy of both methods improve as sequencing
coverage is increased. It would be interesting to see to what extent the correlation between
the Telomerecat, TelSeq and mTRF improved as the sequencing coverage was increased.
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Telomerecat TelSeq mTRF

TelSeq r = 0.631 - -
mTRF r = 0.618 r = 0.583 -

Donor Age r =−0.306 r =−0.239 r =−0.321
Table 3.2 Results for the comparisons between Telomerecat, TelSeq, mTRF and
Donor Age. Pearson correlation was used for each comparison.

Telomerecat estimates telomere length that is shorter, on average, than TelSeq. At
least part of this disparity may be due to Telomerecat’s active filtering of reads from ITSs.
Telomerecat finds that, on average, 7% of telomeric read-pairs identified are from ITSs.

3.3.3 Application to a longitudinal MSC data set
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Fig. 3.9 Estimates for the MSC samples produced by Telomerecat (left) and TelSeq
(right). We expect to see a decrease in telomere length with additional passaging
(P1 to P13), but consistently high telomere lengths in the two iPSC samples
(iPSC1 and iPSC2)

We applied Telomerecat to a set of WGS samples from a mesenchymal stem cell (MSC)
experiment described previously (CAI et al., 2014). Mesenchymal stem cells are multipotent
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stromal cells commonly located in bone marrow (MINGUELL et al., 2001). The experiment
constituted six WGS samples: an in vivo MSC sample from a healthy 31 year old male,
three passaged MSC samples (P1,P8 and P13) and two induced pluripotent stem cell (iPSC)
samples.

MSCs are unusual amongst mature human stem cells as they do not express any mea-
surable amount of telomerase (ZIMMERMANN et al., 2003). Accordingly, telomere length
attrition has been described in MSC passage experiments (SAMSONRAJ et al., 2013). Con-
versely, iPSC cells have been shown to exhibit heightened telomerase expression (MARION

et al., 2009). We hypothesised that telomere length would shorten across the passaged MSC
samples and lengthen within the iPSC samples.

We applied Telomerecat and TelSeq to the aforementioned MSC WGS data. The results
are shown in Figure 3.9. Telomerecat identifies telomere shortening across the passaged
samples, as expected. We see that Telomerecat estimates that between P1 and P13 the average
telomere length was shortened by 2.5KB, at a rate of approximately 0.2KB per passage.
Furthermore, we see that Telomerecat identifies long telomere length in the the two iPSC
samples. We also note that TelSeq fails to identify the expected telomere dynamics.
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Fig. 3.10 (A): The amount of reads with 7 or more telomere hexamers for each
sample. (B): The amount of reads falling within the specified GC boundaries for
each sample as defined by TelSeq
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The reason for TelSeq’s failure to identify the correct dynamics seems to lie in a dis-
connect between the telomere content and coverage at GC locations. As we saw in the
Introduction, TelSeq relies on estimating coverage at regions of the genome that display GC
content of 48% to 52%. We see in Figure 3.10A that if one considers only the amount of
telomere reads (as chosen by TelSeq) the correct dynamics are identified. However, in Figure
3.10B we see that the corresponding amount of reads at the same GC content differs greatly
between samples. This disconnect between telomere reads and coverage of the telomeres
seems to scupper TelSeq’s ability to define the correct telomere dynamics.

3.3.4 Application to a set of mouse samples
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Fig. 3.11 Telomere length estimates by Telomerecat for 10 mouse samples from
the Mouse Genomes Project

In general, mouse telomeres are known to be longer than human telomeres (KIPLING and
COOKE, 1990), however, telomere length is known to vary across different mouse strains.
We applied Telomerecat to 10 samples from the Mouse Genomes Project (KEANE et al.,
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2011). Telomerecat identifies a range of telomere lengths, most of which are substantially
greater than estimates from human samples. The estimates for the mouse samples, as well as
two human samples for comparison, are shown in Figure 3.11. TelSeq was not applied as the
tool is specifically tailored to the human genome.

Telomerecat identifies a range of telomere lengths for the mice, almost all of the lengths
are substantially longer than the longest human telomeres in the TwinsUK10K cohort.
Additionally, we note that two of the samples with the shortest estimates - CAST Eij and
SPRET Eij - have been identified as having comparatively short telomeres (CALLICOTT

and WOMACK, 2006; HEMANN and GREIDER, 2000; ZHU et al., 1998). We also note that
previous studies have identified the BALB cJ mouse strain as having long telomeres (ZHU

et al., 1998).

3.3.5 Application to a set of repeated measurements

We have also tested Telomerecat on pairs of WGS repeated measurements from the NIHR
BioResource - Rare Diseases study. Telomerecat was applied to 93 samples of DNA extracted
from whole blood. For each participant two samples were taken. Each sample was sequenced
on either the HiSeq2000 or HiSeqX platform. We observe cases in this cohort where samples
from the same participant were sequenced on the same technology and where samples were
sequenced on different technologies. These blood samples from donor pairs were taken on
separate occasions up to 3 years apart.

A sound approach to telomere length estimation will be reproducible across duplicate
samples. After accounting for batch effects relating to choice of platform, Telomerecat
achieves good agreement between the repeat measurements, as shown in Figure 3.12.

We observe that estimates from the two measurements show a Pearson correlation of
r = 0.8. We see that in 80% of the duplicate pairs the difference in estimation is less than
1KB. Previous work suggests that the mTRF has a resolution of 1KB (although other methods
have higher resolution) (AUBERT et al., 2012). The fact that Telomerecat displays a similar
accuracy on a set of repeat measurements is a reassuring sign, especially given that we expect
a certain amount of technical noise and true biological difference between the telomere length
of these biological duplicates.

In analysing this data set we noticed that samples sequenced on the Illumina HiSeqX
platform display noticeably shorter telomere lengths. However, when comparing within
duplicate pairs that were both sequenced on the XTEN platform the estimation correlates
strongly. Furthermore we notice that HiSeqX samples routinely display lower values of the
error measurement, Ψ. Figure 3.13 shows the difference in uncorrected mean telomere length
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Fig. 3.12 A plot of telomere length (TL) estimates for repeated measurement pairs.
Colours correspond to the sequencing platform of each sample in the pair

and Ψ. To account for the shorter estimates we mean corrected samples on the HiSeqX
samples.

3.4 Discussion

In this chapter we have set forth our method for the estimation of telomere length from
WGS data. We have carried out a number of validation experiments that seek to demonstrate
Telomerecat’s ability to accurately estimate telomere length in WGS data. In this section we
shall discuss elements of the Telomerecat algorithm and their justifications.
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Fig. 3.13 Metrics from the blood technical replicate analysis

3.4.1 Comparing approaches for identifying telomere reads

Fig. 3.14 The frequency of various hexamers (coloured lines) and TelSeq’s cor-
relation with mTRF at various thresholds. Figure reproduced from (DING et al.,
2014) 2014

As we saw in the introductory chapter of this thesis, numerous WGS telomere estimation
approaches preceded Telomerecat. The first to attempt the estimation of telomeres from
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WGS data was by CASTLE et al. (2010). CASTLE et al. took a sensible approach to defining
telomere reads. Any read with four occurrences of the telomere hexamer was considered
telomere. This approach was further refined by TelSeq; the first fully fledged WGS telomere
length estimation tool.

Two of the methods, TelSeq and TelomereHunter, define telomere reads by the amount of
occurrences of the telomere hexamers within a given read. In the case of TelSeq (DING et al.,
2014), the default threshold is seven occurrences. The reasoning for this cut-off was sound.
DING et al. demonstrated that reads containing seven occurrences of other non-telomeric
hexamers decreased in frequency. Conversely, the prevalence of reads containing the telomere
hexamer increased after seven occurrences. This demonstrated that some other factor beyond
random sequence arrangement was responsible for the amount of reads. This other factor is
surely a measurable signal of telomere. The relationship between hexamer count and mTRF
is shown in Figure 3.14 reproduced from the 2014 publication by DING et al..

However, this threshold poses a contradiction. Telomere in humans is known to be an
extremely homogeneous region of the genome. However, a threshold of seven hexamers
allows reads where 58% of the sequence does not conform to telomere, if the read is 100
basepairs long. Furthermore, according to the study by DING et al., concurrence with mTRF
decreases as the threshold is made more stringent. How can we reconcile these observations?

We hypothesise that this relatively low threshold is a method of accounting for sequencing
error, albeit an inaccurate one. By using the low threshold of (T TAGGG)7, TelSeq ensures
that reads suffering from sequencing error are included in the analysis. However, a price
is paid: a substantial amount of false positives are introduced into the analysis. The extent
of this problem is realised when we consider the nature of subtelomere. As we saw in the
introduction, subtelomere is comprised of microsatellite repeats that bear striking resemblance
to the canonic telomere repeat. It follows that the reason TelSeq fails to correlate well with
mTRF when the threshold is too high is because genuine telomere reads are being excluded
due to sequencing error.

Telomerecat’s mismatching loci are associated with poorer Phred scores Telomerecat
uses a more principled way to define Telomere reads. In Section 3.2.6 and 3.2.4 of this
chapter we outlined our method for identifying a subset of reads that we believe to be true
telomere reads suffering from error. This method assumes that sequencing error occurs in
the telomere in such a way that the error is reflected in the associated Phred score for the
mismatching base pair. We have several key pieces of evidence to back up this assertion.

Figure 3.15A shows a histogram of Phred scores for bases which do not match the
sequence at their alignment position on the genome. This plot was created using every read
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aligned to Chromosome 14 from a sample in the Prostate cancer cohort analysed in Chapter
4. In Figure 3.15B we see the distribution of Phred scores associated with mismatching loci
in telomere reads as identified by Telomerecat. We see that the peak to the right of Figure
3.15B is drastically reduced, indicating that sequencing error accounts for a great deal of
variation from expected sequence in telomere reads.

The plots shown in Figure 3.15 lead us to believe that deviation from the canonic Telomere
sequence is rare and that where reads have few mismatches, they are caused by sequencing
error.
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Fig. 3.15 Histograms recording the number of mismatching loci with the relevant
Phred score. (A): Mismatching loci determined by MD tag for every read mapped
to Chromosome 14 that had fewer than 4 mismatches. We see two peaks in the
distribution. One representing sequencing error and the other genuine biological
polymorphisms (B): The same plot but for all reads in the corresponding TELBAM
and where the mismatching loci were identified by Telomerecat. We see that
mismatching loci are predominately associated with low Phred scores. There is
no equivalent peak for genuine variation

Evidence that our method identifies genuine sequencing error is from observation of
Phred scores at mismatching loci, contrasted to Phred scores at random loci within the same
read. We see in Figure 3.17 the difference in the Phred distribution at relevant loci. We see
that the loci which our alignment method captures are associated with significantly poorer
Phred scores.
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Ambiguity in alignment of repetitive sequences

Early in the development of Telomerecat it became apparent that insertions and deletions pose
a non trivial impediment to the understanding of Telomere sequence. The most natural way
to quantify the difference between two character strings is by Hamming distance. Hamming
distance is defined as the sum of mismatches between a string and some reference.

However, consider the example sequence shown in Figure 3.16 which uses the same
sequence depicted in Figure 3.2. In Figure 3.16 we see that when we use a simple Hamming
comparison, the number is skewed at the occurrence of the first “frameshift” (position 34).

0123456789012345678901234567890123456789012345678901234567890123456789011 2 3 4 5 6
Sequence Indicies

Mismatching Loci
000000000001000000000100000000000010000000100001000110000000000010000000
AGGGTTAGGGTTGGGTTAGGGCTTAGGGTTAGGGGTTAGGGTCAGGGCTAGCCTTAGGGTTAGGCTTAGGGT

7

A

Telomerecat Method

Hamming Distance
0123456789012345678901234567890123456789012345678901234567890123456789011 2 3 4 5 6

000000000000100101100100000000000010110010110011110110110010110010110010
AGGGTTAGGGTTGGGTTAGGGCTTAGGGTTAGGGGTTAGGGTCAGGGCTAGCCTTAGGGTTAGGCTTAGGGT

7

B

Fig. 3.16 (A): A diagram showing a set of mismatching loci according to Telom-
erecat. Telomerecat identifies 8 mismatching loci (B): A plot showing a simple
Hamming distance comparison on the same basepair sequence. The simple Ham-
ming distance method finds 24 mismatching loci. A considerable difference. This
difference is largely caused by the frameshift events starting at the 36th basepair

TelSeq and TelomereHunter’s comprehension of telomere reads on a hexamer counting
basis is a simple way of avoiding this problem. The number of occurrences of the telomere
hexamer is independent of the sequence in which they occur. However, as previously
discussed, the hexamer counting comes with its own disadvantage.

Telomerecat attempts to identify these “frameshift” events so that a truer representation of
a reads telomere sequence is ascertained. However, there is a certain ambiguity in interpreting
these results. For instance, in Figure 3.16 at locus 34 in the sequence read, it is unclear
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whether the resulting frameshift is at the behest of a deletion of “TTAG” or the insertion of
an extra “G”.
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Fig. 3.17 Boxplots comparing Phred scores associated with mismatching,
frameshift and random loci for every read in a TELBAM that had fewer than 20
mismatching and frameshift loci combined

Telomerecat attempts to resolve this ambiguity by taking a sample of basepairs directly
adjacent to the site of a frameshift. This process is shown and described on the left hand side
of Figure 3.2(3). In Figure 3.17 we compare the observed Phred scores at these frameshift
loci with random loci in the read.

Figure 3.17 shows that frameshifts share the same distribution of associated Phred scores
as random loci in the read. This observation could mean one of two things: either telomere
frameshifts as a result of sequencing error are not represented by Phred scores or frameshifts
are genuine biological features. In either case, it is important to account for frameshifts in
the alignment method due to the distorting nature that their presence has on understanding
the telomere read.

3.4.2 Genuine telomere heterogeneity and cohort-wide correction

During the development of Telomerecat, assumptions that underlied the method were discov-
ered to be unfounded. In order to provide the accurate estimates of telomere length presented
in the Section 3.3 we had to adapt the algorithm.
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The first assumption that proved unfounded was that telomeres are entirely homogeneous.
Early investigations into the content of telomere reads identified a preponderance of reads
that were comprised of a pristine telomere sequence (i.e every basepair matched the expected
telomere sequence). An area plot of all the reads within a TELBAM and relevant numbers
of mismatching loci for a TwinsUK10k sample is plotted in Figure 3.18. On observing
the association of poor Phred scores at mismatching loci, as explored in Figure 3.15, we
proceeded under the assumption that the reads in the highlighted area in Figure 3.18 were
actually complete telomere reads suffering from telomere error. However, when we came to
apply Telomerecat to the TwinsUK10K sequencing data, it was clear that a conception of
completely canonic telomere was too stringent.
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Fig. 3.18 An area plot of the distribution of the number mismatching loci within
a single TELBAM from the Prostate cancer cohort explored in Chapter 4. The
reads within the segment highlighted by the red rectangle were originally believed
to display increased mismatching loci counts purely because of sequencing error

When we run Telomerecat on the TwinsUK10K cohort without allowing for any genuine
mismatches in the telomere sequence (i.e a threshold of 100% in Algorithm 3.4) 61% of the
samples fail due to a failure to identify telomere length. The failure is caused by extremely
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unstable F2a counts, presumably because regions of the telomere proper are now strewn with
boundaries as a result of the stringency.

The second assumption was that sequencing depth in relatively low coverage or poor
quality data would be sufficient for us to measure F2a accurately.

We are certain of the validity of our logic in using the directionality of reads to filter for
interstitial boundaries. Accordingly, the vast majority of samples present counts where F2 is
greater than F4. This is no more apparent than in the Rare Blood Disease cohort (explored in
Chapter 5) where more than 9,000 samples all report positive F2a counts. We believe that
this is on account of the good quality and high depth nature of this data set. Furthermore, our
tests with simulated data in Section 3.3.1 assure us that our logic surrounding the orientation
of reads in sound.

To overcome this issue we designed the cohort correction method detailed in 3.2.7. This
method uses the mean observed F2a count for the whole population to correct outlying values.
As values of θ seem to vary across sequencing platforms it makes sense to only use the
cohort correction “within batch”.
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Fig. 3.19 The relationship between Telomerecat and mTRF without cohort correc-
tion. Notice that the Y-axis is scaled to log10
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Figure 3.19 shows what happens when Telomerecat is run on the TwinsUK10K cohort
without cohort correction. Extreme outliers (driven by very small F2a counts) cause the
Pearson’s correlation between Telomerecat and mTRF to fall to r = 0.19. On higher coverage
data sets cohort correction is not needed. This is demonstrated by Telomerecat’s good
performance on HiSeq2000 repeated measurements samples where no cohort-wide correction
is required and good agreement between duplicates is still observed.

3.4.3 Advantages of the error profile

The error profile method discussed in Section 3.2.5 is the way in which Telomerecat selects
reads which are deemed to be suffering from sequencing error. This method has proven
to be superior to all others in that it is extremely adaptable to different Phred and error
distributions.

Figure 3.20 shows the distributions of different Phred scores to mismatching loci count
from various samples. Clearly the shape of each of the 2D distribution differs greatly. The
advantage to the error profile method is that it can fit the requisite shape to all of these
distributions without the need for parametrisation. This increases the applicability of the
Telomerecat method.

Early versions of Telomerecat used bowtie2 (a popular read aligner) to identify sequencing
error in telomere reads. We found that when aligning telomere reads with bowtie2 different
samples, with differing Phred score distributions, were treated differently. Furthermore we
found it difficult to optimise the parameters of bowtie2 to work on different sequencing
chemistries. The error profile method detailed here was found to be more adaptable. This is
demonstrated by the way the error profile handles the different 2D distributions shown in
Figure 3.20.

One way in which we experimented with the error profile method was in the use of more
traditional noise reduction techniques such as those defined by mathematical morphology.
However, we find that the methods shown in Algorithm 3.2 have the advantage of not
requiring a “structuring element” as is the case for mathematical morphology methods.
Choosing a structuring element for the three different distributions shown in Figure 3.20
would be a non-trivial problem that is avoided by using our error-profile method.

3.4.4 Other applications of Telomerecat

Aside from the investigations detailed in the subsequent chapters of this thesis, Telomerecat
has been applied as part of the following studies:

• Genomic Evolution of Breast Cancer Metastasis and Relapse (YATES et al., 2017)
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Fig. 3.20 Plots highlighting the different 2D distribution across samples from
different sequencing experiments and their resultant error profile Top Row:
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• Copy-number signatures and mutational processes in ovarian carcinoma (MACINTYRE

et al., 2017)

Not included above is a study linking a previously undiscovered variant in the 5 prime
UTR region upstream of the TERT gene to telomere length in kidney cancer. This study is in
currently under passing through the final round of peer review.

3.5 Summary

Here we have presented our method, Telomerecat, and provided evidence that it can correctly
estimate telomere length in WGS samples.

We believe that Telomerecat is an adaptable method. Firstly, because it is not constrained
by the number of chromosomes in a sample and secondly, because it has been shown to
work on a variety of different sequencing platforms and chemistries. This ability to work on
numerous platforms comes from the flexibility of the novel error profile method to morph to
differing distributions and the accuracy that using boundary coverage as a proxy for telomere
provides.

The ITS filtering method developed as part of Telomerecat is also a breakthrough. Current
attempts to filter for ITS simply subtract reads that map to gene-rich or non-telomere genomic
regions. But mapping of repetitive reads is notoriously biased. We feel that our method for
filtering that draws on knowledge of how telomerase appends telomere repeats, is superior in
not relying on the mapping coordinates of reads. This further enhances the applicability of
the method.





Chapter 4

Applying Telomerecat to a cohort of
Prostate cancer samples

All the WGS samples analysed as part of this chapter were collected, sequenced and pre-
processed by the ICGC Prostate working group. SNV data and associated clinical data
were also collected, processed and normalised by the ICGC Prostate working group. RNA
microarray expression data were collected and pre-processed by the CamCaP Study Group.

In the previous chapter we detailed our method for the estimation of telomere length from
WGS, Telomerecat. With the method validated and capable of producing accurate estimates
of telomere length our attention turned to an application to a set of cancer WGS samples.

In this chapter we detail the results of our application of Telomerecat to the ICGC
UK Prostate Adenocarcinoma WGS cohort, funded by Cancer Research UK. We applied
Telomerecat to 192 primary tumour samples all from separate patients. For each tumour
sample we also estimated telomere length for a matched blood normal sample. Here we
investigate the relationship of telomere length to various clinical and biological factors
prevalent in Prostate cancer (PCa).

We also conduct an analysis on a separate set of samples from three donors expressing
multi-focal disease, described previously by COOPER et al. (2015). Collectively these donors
are referred to as the “Complex Men”. Our analysis highlights the heterogeneity of telomere
length across separate cancerous tumours from the same prostate.
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4.1 Background

PCa is a disease predominantly found in older men; 77% of new diagnoses are in men over
60 and only one tenth of a percent are in men under forty (LI et al., 2012). Exact age of onset
is difficult to determine due to the symptomless nature of early disease. However, prospective
studies on men who died from non-PCa related causes suggest that 44% of men between
71-80 have some measurable form of PCa (ZLOTTA et al., 2013). The same study identified
that of men over the age of 81, 66% displayed PCa. This speaks of the prevalence of the
disease and also the role of age as a risk factor.

Ethnicity has also been proposed as a risk factor, with black men experiencing an
increased risk in developing prostate cancer at some point in their lives, with some studies
suggesting as much as a three-fold increase in risk (CHINEGWUNDOH et al., 2006). However,
it is not a settled matter as to the extent to which socio-economic factors influence underlying
differences in biology between ethnicities (KHEIRANDISH and CHINEGWUNDOH, 2011).

Despite being described as “a disease of very rare occurrence” in the 1853 edition of
the Lancet (ADAMS, 1853) PCa is now the second most common cancer amongst men
worldwide and the single most prevalent cancer in developed countries (JEMAL et al., 2011).
The introduction of the Prostate Specific Antigen test (PSA) led to an increase of diagnoses
from the mid 1980s which have led to controversies surrounding over-diagnosis of the disease
(GREENLEE et al., 2000; CENTER et al., 2012). Recent estimates suggest that 50% of cases
will be described as “low-risk” (KLOTZ and EMBERTON, 2014). However, this is not to
say that prostate cancer is a harmless condition. It is the fifth leading cause of all cancer
mortality worldwide (JEMAL et al., 2011) and is listed as the cause of death for 258,000 men
worldwide, each year (CENTER et al., 2012).

Classifying prostate cancer PCas are typically classified by two separate clinical mea-
sures, Gleason scores and tumour-metastasis-node (TMN) grading. Gleason scoring was
developed specifically for PCa in the 1960s and focuses on the histological progress of the
disease (HUMPHREY, 2004). Low Gleason scores indicate a carcinoma with compact and
well differentiated glands while higher scores indicate poorly differentiated cells with little
coherent glandular architecture. Gleason scores are comprised of two measurements which
detail the two most prevalent areas of the prostate. For instance, if a majority of the prostate
is graded as 3 and a smaller portion as 4, then the resultant Gleason score is given as: “3+4”.
A lower score denotes more differentiated and thus less severe PCa.

TMN is a combined metric separately detailing the status of the tumour, node and
metastasis (SCHRODER et al., 1992; CHENG et al., 2012). In contrast to Gleason scoring,
TNM is used to classify a multitude of cancers. The tumour is graded from 1-3 based on its
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size and the extent to the tumours invasion into surrounding structures (precise staging for
the Prostate is given in Table 4.3). The metastasis and node sections of the metric define
whether the disease has spread to the relevant structures.

While histological categorisations have existed for decades, more recent studies have
attempted to stratify prostate cancers by molecular subtypes using genomic data. The first of
these investigations by TOMLINS et al. (2005) identified a fusion event between the genes
TMPRSS2 and ERG (referred to as TMPRSS2-ERG). A further study went on to identify
this marker as present in roughly 40-50% of all PCas (TOMLINS et al., 2009). According to
YU et al. (2010) TMPRSS2-ERG fusions are thought to have a complex relationship with
one of the key proteins in prostate cancer, the androgen receptor (AR).

In healthy prostate tissue, AR’s primary function is to serve as a transcription factor
activated by a collection of hormones known as androgens of which testosterone is perhaps
the most well known example (HEEMERS and TINDALL, 2007). However, AR malfunction
is thought to be a root cause in many cases of PCa. Indeed most PCa cases respond to
androgen ablation therapy, demonstrating the dependence of the cancers on AR (FELDMAN

and FELDMAN, 2001). Furthermore, PCa is rare amongst eunuchs, who display almost non-
existent AR activity on account of their exceedingly low testosterone production (STOCKING

et al., 2016).
TMPRSS2-ERG fusions have been shown to allow androgens to bring ERG under AR

regulation by fusion with the androgen regulated TMPRSS2 (TOMLINS et al., 2005). Recent
work has uncovered more complexity in the relationship between TMPRSS2-ERG fusions
and the AR genes. Notably YU et al. (2010) who suggest that TMPRSS2-ERG fusion
may have a role in disrupting AR’s normal function in prostate tissue differentiation, thus
providing a platform for oncogenesis.

Other subtypes defined by somatic mutations in the SPOP and FOXA1 genes have also
been identified in PCa. In their 2012 study BARBIERI et al. identified SPOP and FOXA1 as
frequently occurring mutations in PCa. BARBIERI et al. (2012) suggested that tumours with
an SPOP mutation might herald a new prostate cancer subtype due to SPOP mutations being
mutually exclusive with TMPRSS2-ERG fusions.

Recently, ABESHOUSE et al. (2015) conducted a comprehensive multi-omic analysis in
order to more fully define the extent of these molecular subtypes. Their analysis revealed 7
differentiated subtypes, including subtypes characterised by previously identified TMPRSS2-
ERG fusion, SPOP and FOXA1 mutations. ABESHOUSE et al. (2015) analysed a cohort of
333 PCa samples, 46% of which were classified owing to an occurrence of the TMPRSS2-
ERG fusion, making this the largest subset. Samples with SPOP mutations made up 11%
of the samples, samples with FOXA1 mutations contributed 3% whilst 1% of samples
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were categorised according to an IDH1 mutation. The remaining samples were either not
categorised or were defined by fusions or over-expression in the ETV1, ETV4 or FL1 genes.

Telomeres in prostate cancer There are currently no large scale multi-omic cohort stud-
ies pertaining to the variation of telomere length in PCa. However, telomere length has
been touted as a possible prognostic marker in PCa (HEAPHY et al., 2013) and reduced
telomere content in PCa samples has been associated with increased likelihood of recurrence
after radical prostatectomy (FORDYCE et al., 2005). Further to the finding that shortened
telomeres were predictive of poorer prognosis, a study showed that "comprehensive lifestyle
interventions" could be used to elongate telomere in PCa (ORNISH et al., 2013). Interestingly,
although telomere length has been identified as a risk factor for other cancers, it seems there
is no association between telomere length variation and increased PCa risk (MIRABELLO

et al., 2009; WENTZENSEN et al., 2011; HURWITZ et al., 2014).
Telomerase expression has received considerable attention with PCa. As with many

cancers, PCa has been shown to display elevated telomerase expression in comparison to ad-
jacent normal tissue (SOMMERFELD et al., 1996; PFITZENMAIER et al., 2006). Furthermore,
at least two studies show an association between heightened telomerase expression and more
advanced forms of PCa (LIN et al., 1997; DE KOK et al., 2002). In contrast LATIL et al.
(2000) did not observe an association between telomerase expression and tumour stage or
Gleason grade. Although LATIL et al. do report an association between elevated telomerase
and MYC (a known oncogene) within prostate cancer. DING et al. (2012) identified the
expression of telomerase as leading to the formation of more aggressive and invasive PCa
tumours in a mouse model missing Pten and p53 and thus predisposed to PCa.

ICGC project and the data The data used in the study detailed in this chapter was col-
lected and preprocessed by the International Cancer Genome Consortium (ICGC, 2017). The
following investigation was undertaken on WGS data taken from 192 primary PCa tumours
each with a matched blood sample. The tumours were extracted via radical prostatectomy
between November 2010 and January 2011 as described previously in (WARREN et al.,
2013). Once extracted the samples were processed and sequenced using the HiSeq Illumina
2000 platform. Three different chemistries were used for sequencing (HiSeq4; TruSeqv3;
TruSeqv3 Q-bin) across 6 sequencing batches. The mean age of donor at tumour collection
was 61, the youngest donor was 41 and the oldest was 88.
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4.2 Data Normalisation

Before investigating telomere length in PCa we wished to ensure that the data was unbiased
and yielding reasonable estimates of telomere length.
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Fig. 4.1 Box-plots of prostate sample estimates pre-normalisation (A): All samples
(B): Blood samples only (C): Donor age by batch

We observed a noticeable difference in the telomere lengths across the 6 batches of
sequencing. Figure 4.1A shows the difference in telomere across batches for tumour and
blood samples combined. Figure 4.1B shows the difference when only blood samples are
plotted. We sought to remove this batch effect before proceeding.

As part of our normalisation we also considered the differing distributions of age amongst
the sequencing batches (Figure 4.1C). At least some of the variation of length estimates
across batches is due to this genuine discrepancy in the distribution of age. We resolved that
our method for assessing the effect of different batches would need to be independent of this
age effect.

To these ends, we used a linear model to account for the difference caused by batch effects
whilst not introducing more bias by removing genuine disparity caused by the differing age
distribution.

The following approach uses only the blood normal samples to estimate the effect on
telomere length bestowed by batch effects. Using only blood samples to detect batch effects
means that changes on telomere length due to the effects of cancer are excluded from the
normalisation.
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Table 4.1 The coefficient as output by the normalisation linear model

Coefficient

batch2 -838.07
batch3 -1409.87
batch4 -1576.59
batch5 -932.55
batch6 -880.95
age -41.34

We defined the linear model as

length∼ β0 +β1batch2

+β2batch3

+β3batch4

+β4batch5

+β5batch6 +β6age+ ε

(4.1)

Where, β are regression coefficients, batchn represents a dummy variable denoting the batch
a sample was sequenced in and age is the age of the donor at tumour collection. For each
batch the relevant coefficient was subtracted from all of the observed telomere length within
the batch. Batch coefficients are given in Table 4.1.

Some indication that this approach increases the accuracy of the estimation is that
correlation with telomere length and age in blood samples increases after normalisation.
This correlation with age is also a good indication that Telomerecat is identifying telomere
length in the cohort. Before normalisation for batch effects, blood samples were Pearson’s
correlated ρ = 0.18 with age. After normalisation the correlation increased to ρ = 0.26
(Figure 4.3A). We also confirm that a correlation with age and blood telomere length was
present within batches when measured separately (Figure 4.2).

Figure 4.4 shows telomere length by batch once normalisation has been applied.
All further investigations in this Chapter were conducted using telomere lengths corrected

with the aforementioned normalisation technique. We proceeded with estimates for 192
matched tumour and blood normal pairs.
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Fig. 4.2 A plot showing telomere against age for each sequencing batch. We
see that each batch displays a negative correlation with age. All lines of best fit
produced using a linear model.

4.3 Results

Once we had normalised the data so as to minimise bias owing to batch effects, we proceeded
to analyse the data for associations with telomere length.

4.3.1 Sample type

Prostate cancer tumours have been shown to display shorter telomere length than matched
normal samples (SOMMERFELD et al., 1996; BARTHEL et al., 2017). We observe this trend
in our cohort. A two-sided Student T Test finds matched blood sample telomere lengths are
significantly longer than tumour sample telomere lengths (p < 0.001, Figure 4.5A).
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Fig. 4.3 Telomere plotted against length for in the prostate cohort (A): Normal
samples, line of best fit according to a linear model (B): Tumour samples, line of
best fit according to a linear model

We observe that while telomere length in blood samples is correlated with age, the same
correlation is weaker in prostate tumour samples. A Pearson’s correlation of ρ =−0.09 is
observed (see Figure 4.3B). When we fit a linear model to the relationship with age and
tumour telomere length, we find that the relationship is not deemed significant (p = 0.2).

Furthermore, we see that matched blood and tumour sample telomere length do not
correlate with each other, a linear model does not find the relationship significant (Figure
4.5B). This is further evidence of tumour specific telomere shortening in prostate cancer.

Poor correlations indicative of tumour related telomere stress These observations are
indicative of the active stress to telomere length within the tumour environment. The fact
that tumour telomere length does not correlate with age indicates that tumour telomeres have
been affected by cancer. These pressures might take the form of either shortening as a result
of increased cell proliferation or lengthening in order to forgo senescence.

We have also seen how blood and tumour telomere lengths are not significantly correlated.
This could indicate further evidence of stressors acting upon tumour telomere length. A study
by DANIALI et al. (2013) suggests that we should expect telomere length of blood and other
tissues from the same donor to be well correlated, however, the study does not make a direct
comparison between prostate and blood.

Eighteen of the samples within this cohort do have associated tissue normal samples.
Using this data we can shed some light on the strength of assocation between blood and
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Fig. 4.4 Box-plots of prostate sample estimates post-normalisation (A): All sam-
ples (B): Blood samples only
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telomere length. Line of best fit given by a linear model
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Fig. 4.6 Plots showing the relationship between adjacent normal, blood and
tumour telomere lengths for 18 samples where adjacent normal samples exist.
(A): Adjacent normal versus tumour (B): Adjacent normal versus blood (C):
Blood versus tumour

normal prostate tissue. Figure 4.6 shows the relationship of normal, blood and tumour
telomere length across these eighteen samples.

None of these relationships is found to be significant under a linear model. However we
note that with so few samples we are possibly under powered in our search. However, blood
and adjacent normal show the strongest positive correlation (Pearson’s r = 0.23). Similarly
to the relationship between blood and tumour telomere length, there appears to be little
correlation between adjacent normal and tumour telomere length. The relationship to age is
maintained across the adjacent normal telomere lengths, with a comparatively high Pearson’s
correlation of r =−0.51.

The results from these 18 samples are not conclusive, but there is still the possibility that
we should expect an association between prostate and blood telomere length. This being so,
the fact that blood does not correlate with tumour could be further evidence for the effects of
cancer on the tumour telomere lengths. This hypothesis is given further credence by the lack
of positive correlation between adjacent normal and tumour telomere lengths seen in Figure
4.6A.

Together these results indicate that telomere length in PCa tumours are altered by the
effects and stressors associated with cancer.

4.3.2 Tumour stage and disease progression

Next we examined the relationship between Telomere length and the stage of the disease.
As we saw in the introduction to this thesis, prostate cancer can be graded by the TNM
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Table 4.2 Results for a Tukey’s range test applied to the ANOVA model described
in Section 4.3.2. Upper and lower estimates describe range of 95% confidence.
The p-value for the model as a whole is 4.5 ·10−5

p-value lower (KB) upper (KB)

T1 - T2 0.022 0.0745 1.211
T1 - T3 0.00005 0.712 2.373
T2 - T3 0.03 0.052 1.74

staging classification system. The “T” initial in the TNM initialism stands for tumour and
accordingly describes the stages of tumour progression. The various stages of the prostate
tumour progression are given in Table 4.3.

Table 4.3 Tumour staging as defined by AJCC (CHENG et al., 2012)

T1

Clinically inapparent tumour neither palpable nor visible by imaging

a Tumour incidental histological finding in ≤5% of tissue resected
b Tumour incidental histological finding in >5% of tissue resected
c Tumour identified by needle biopsy (e.g. because of elevated PSA)

T2

Tumour confined within prostate

a Tumour involves ≤one-half of one lobe
b Tumour involves >one-half of one lobe but not both lobes
c Tumour involves both lobes

T3
Tumour extends through the prostate capsule

a Extracapsular extension (unilateral or bilateral)
b Tumour invades seminal vesicle(s)

T4 Tumour is fixed or invades adjacent structures other than seminal
vesicles such as external sphincter, rectum, bladder, levator muscles,
and/or pelvic wall

We tested the relationship between the tumour grade and telomere length. When we
plot telomere length by the associated tumour stage there appears to be some relationship.
Figure 4.7A shows a boxplot of telomere length by category and Figure 4.7B shows a boxplot
using the more granular subcategory definitions. We also observed that donor age and blood
telomere length showed no association with tumour stage (see Figures 4.7C & 4.7D).

To test this relationship formally, we describe a linear model

length = β0 +β1stageT2 +β2stageT3 + ε (4.2)
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Fig. 4.7 Telomere lengths by tumour stage. (A): Tumour telomere length by
tumour stage (B): Tumour telomere length by the more granular definition of
cancer stage (C): Matched blood telomere length by stage (D): Donor age by
tumour stage
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Where “length” is tumour telomere length and “stage” is a dummy variable corresponding to
which T stage the tumour was graded as.

ANOVA testing finds significant difference between stages We then subjected this linear
model to an ANOVA test that was found to be highly significant (p < 1 ·10−4). The model
describes significantly more difference in telomere length across all the groups than we would
expect by chance. To test the difference between groups we used Tukey’s range test. The
results of this test are in Table 4.2. We see that telomere length is significantly differentiated
between all three stages. Given these results we can reject the null hypothesis that there is no
difference between telomere length when separated by cancer stage.

It is interesting to speculate that this result is an observation of overall telomere dynamics
within PCa. Perhaps short telomeres bestow a selective advantage in that genomic instability
is more frequent and therefore mutations and genomic aberration may occur in cells display-
ing shorter telomeres. Whereas long telomeres are preferential for later stage tumours where
proliferative potential is prioritised. Previous studies have shown that TERT expression is
greater within later stages of PCa (LIN et al., 1997), so perhaps this lengthening is the result
of a cumulative extension of telomere length over time.

The relationship between telomere length and stage is less clear when the samples are
separated by the more granular subcategory definitions. This effect may be because the
increase in categories forces a smaller amount of observations into each category. However,
it is not clear that the subcategories are chronological (a tumour may progress through Stages
T1c, T2b, T3a without passing through any of the other subcategories) so if this association
is driven by the progress of the tumour through time, then we would not necessarily expect
the relationship to hold for subcategories.

Investigations into the “M” and “N” portions of the TNM staging metric did not reveal
interesting relationships to tumour length. M is a metric that determines whether a disease has
metastasised and N is a metric for gauging the extent of spread to lymph nodes. There were
not sufficient samples presenting a positive call for either the “M” or “N” categories within
this cohort. As a result it was not possible to examine the relationship between telomere
length and the “M” and “N” classification categories.

Telomere length in progressed samples Next we observed whether telomere length dis-
played any difference depending on whether or not the patient had experienced biochemical
recurrence. Biochemical recurrence is a clinical measure defined as an increase in Prostate
Specific Antigen (PSA). PSA has been shown to increase in the presence of PCa and so is a
reliable estimator of disease progress (PALLER and ANTONARAKIS, 2013; STEPHENSON
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et al., 2006). We see that telomere length was shorter in samples where the donor has
progressed. We found this relationship significant in a two-sided T Student T test (p = 0.03,
Figure 4.8A). We also observed that telomere length was separated by progression status
across the tumour’s clinical stage (Figure 4.8B). The largest effect was in samples displaying
T1 clinical stage.

These observations may hint at a possible role for telomere length as a prognostic marker
for disease progression, especially in early stage PCa. There is a precedent in the literature
for telomere length serving as a prognostic marker in other cancers (VALLS et al., 2011).
Also, in PCa telomere length has been linked with cancer progression (HEAPHY et al., 2013).
However, in contrast to our observations, HEAPHY et al. do not see a link between short
telomere length and increased chance of progression, but rather increased variability in
telomere length.
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Fig. 4.8 Disease progression and tumour telomere length (A): Boxplot of tumour
telomere length separated by disease progression status (B): Tumour telomere
length separated by stage and grouped by progression status

No clear relationship with Gleason scoring or PSA In the course of this study we also
tested whether telomere length was associated with Gleason grade and PSA. In both cases
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we did not identify a clear relationship with either of the measures. Figure 4.9 shows plots
detailing the relationship between these measures.

In the case of the Gleason score, there is some indication of a trend; samples with more
severe scores seem to display longer telomeres. However, the lack of samples within the
more severe categories (5+5 is comprised of a single sample and 5+4 is comprised of 4
samples) make this result hard to verify.
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Fig. 4.9 Plots showing the relationship between Telomere and Prostate (A): PSA
versus Telomere Length (B): Gleason score vs Telomere Length

4.3.3 Molecular subtypes

As we saw in the introduction to this chapter, previous studies have made considerable
progress in the division of prostate cancer into molecular subtypes. The most recent and
most comprehensive of these attempts is ABESHOUSE et al. (2015). ABESHOUSE et al.
successfully characterised 74% of 333 PCa primary tumours between 7 separate molecular
subtypes. The data at our disposal allowed us to test whether a subset of these molecular
subtypes showed an association with telomere length.

TMPRSS2-ERG Of the original 192 tumour samples, 49 were profiled for a TMPRSS2-
ERG fusion. Of these 49 samples, 23 (46%) were found to be fusion positive. Previous
studies have found that 40-50% of prostate cancers display a TMPRSS2-ERG fusion so this
observation is in line with expectation.

A two-sided Student T Test showed that the mean estimate for fusion positive samples
was significantly higher than that of fusion negative samples (p = 0.01). We also observed
that matched blood telomere length displayed an association with TMPRSS2-ERG fusion
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verging on significant (p = 0.06). Figure 4.10 shows boxplots of telomere length plotted by
TMPRSS2-ERG fusion status.

It is interesting that the relationship seems to be present in blood and tumour tissues.
The situation is nuanced further by the fact that blood and tumour telomere length seem
not to be strongly correlated. This observation requires further study to assess whether the
relationship is genuine and whether causation can be attributed in either direction. However,
these results pose the hypothesis that long telomeres predispose the genome to TMPRSS2-
ERG fusions. TMPRSS2-ERG is known to occur early in PCa (PERNER et al., 2007) so it is
interesting to speculate that longer telomeres predispose the cell to TMPRSS2-ERG fusions
in pre-malignant tissue. Perhaps this would go some way to explaining why telomere length
seems to be associated with fusion status in both blood and tumour samples.

The literature poses another possible cause for this observation. Previous studies have
suggested that TMPRSS2-ERG fusion is more common in samples from younger donors
(STEURER et al., 2014). If younger patients were more likely to exhibit a TMPRSS2-ERG
fusion, then this might go some way to explain the association with long telomeres, as we
would expect younger donors to have longer telomeres. However, amongst patients in our
cohort, there seems to be no association with age and fusion status. This nullifies the chance
that our observations of difference in telomere length between fusion positive and negative
samples is simply a reflection of the age of patients. However, that is not to say that this
effect may not be observable on a cohort where younger patients were in abundance in
TMPRSS2-ERG fusion positive samples and should be addressed in such analyses.

SPOP Another common molecular subtype is characterised by mutations in the SPOP
gene. 13 of the tumour samples in our cohort carry an exonic somatic SNV in the SPOP
gene and so can be considered part of this subtype. Of these 13 samples eight are missense
mutations.

Using a Student T Test we see that the mean telomere length of samples with an SPOP
mutation are significantly shorter. This effect is not seen in associated blood samples. Figure
4.11A shows boxplots for telomere length plotted by presence of SPOP mutation.

We wished to ensure that short telomeres in SPOP samples were a separate phenomenon
to long telomeres in TMPRSS2-ERG samples, given that the two subtypes are known to
be mutually exclusive. To test this we split the cohort into three groups: SPOP, TMPRSS2-
ERG and Uncharacterised. An ANOVA test and Tukey’s range test finds all three of these
categories to be significantly differentiated (see Figure 4.11B). This approach has one major
caveat. Not all of the samples in the cohort were characterised for TMPRSS2-ERG fusion
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Fig. 4.10 TMPRSS2-ERG fusion and telomere length. (A): A boxplot showing
tumour telomere length vs fusion status. (B): A boxplot showing blood telomere
length vs fusion status (C): Boxplot of the difference between tumour and blood
telomere length, by fusion status. (D): A line and point plot showing the rela-
tionship between tumour and blood telomere length in both fusion negative and
positive samples



106 Applying Telomerecat to a cohort of Prostate cancer samples

A B

4

8

12

W
T

M
ut

an
t

T
u

m
o

u
r 

T
e

lo
m

e
re

 L
e

n
g

th
 (

K
B

) 

SPOP Status

4

8

12

S
P
O
P

r

r

Fig. 4.11 Plots showing the relationship between the SPOP subtype and telomere
length. (A): Samples with a somatic mutation in SPOP display significantly
shorter tumour telomere in comparison to samples without a mutation (B): When
we separate out samples with TMPRSS2-ERG fusions we continue to see good
separation between the categories. The separation between all three categories is
shown to be significant using Tukey’s range test

and so there are almost certainly still samples with a TMPRSS2-ERG fusion extant in the
Uncharacterised category.

Given this association between SPOP mutations and shortened telomere length, we had
cause to consider the underlying nature of the relationship.

It seems unlikely that telomere shortening is causing SPOP to accrue mutations. The
SPOP gene is located distally from either telomere, and so is unlikely to experience localised
damage as a direct result of telomere shortening.

It also seems unlikely that these mutations are causing an increased expression of the
SPOP gene leading to shortened telomere. We observe that across a set of ten separate cancer
studies, the mutations in SPOP does not lead to higher expression in SPOP (see Figure 4.12).

This leads us to consider a functional change in the nature of SPOP driven by mutation.
We note that SPOP is known to interact with DAXX (LA et al., 2004). DAXX has well
profiled associations with telomere, including as a known facilitator of alternative lengthening
of telomeres (commonly referred to as ALT) (HEAPHY et al., 2011a). Additionally, DAXX
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has been profiled as a key protein in an apoptotic pathway through its relationship to Fas
(YANG et al., 1997).

It may be the case that the presence of shortened telomere in samples with SPOP
mutations, is tied to some function of the DAXX protein as a result of an altered interaction
with SPOP. Perhaps, if apoptosis is accelerated then cells must proliferate in order to remain
viable as a tumour, resulting in shortened telomere. This narrative points to SPOP mutated
tumours as being encumbered by poorer replicative potential, in that they could potentially
surpass the Hayflick limit more quickly. In concordance with this narrative ABESHOUSE

et al. (2015) show that samples with SPOP mutations were under represented as a proportion
of metastatic samples.

FOXA1 and IDH1 Lastly, we observed whether samples with exonic mutations in FOXA1
and IDH1 showed a relationship to telomere.

In the case of FOXA1 we did not see any specific relationship to telomere in either
blood or tumour telomere length. In the case of IDH1, only a single sample in our cohort
displayed a mutation in IDH1 so we lacked the statistical power to check for an association
to telomere length. The lack of samples displaying the IDH1 subtype was to be expected. In
the ABESHOUSE et al. analysis it was observed in only 1% of cases.

ABESHOUSE et al. also postulate that IDH1 is a subtype involved with the early onset
of prostate cancer. If this is the case it would be interesting to see whether patients with
this subtype presented with shorter telomeres in adjacent normal tissue. The rarity of the
IDH1 subtype means that greater sample sizes will be required to gauge the nature of its
relationship to telomere. Indeed in this cohort there are not enough samples presenting the
IDH1 to conduct a meaningful analysis.

4.3.4 Somatic mutations and telomere length

After confirming a relationship between somatic mutations in the SPOP gene and telomere
length, we wished to investigate whether any other genes displayed a relationship to telomere
length. Somatic Single Nucleotide Variations (SNV) calls were made using the CaVEMan
tool (JONES et al., 2016) for each of the 192 tumour samples. Somatic SNVs are SNVs that
are identified in the tumour sample but not the corresponding normal sample. This narrows
our search to SNVs that have occurred within the tumour and therefore may be relevant to
the progression or development of the cancer.
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Fig. 4.12 A figure produced by cBioPortal (GAO et al., 2013) showing samples
from all the PCa studies hosted on cBioPortal. Each point is coloured by SPOP
mutation status and plotted on axis of RNA expression. Samples with SPOP
mutations (red coloured dots) are not associated with either high or low expression
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Comprehensive gene analysis We started by taking a genome wide approach to the analy-
sis. For each of our samples we recorded which genes displayed a missense SNV occurring
in an exonic location, across all known genes.

We then ran a two sided Student T Test, comparing the telomere length of those samples
with a mutation and those without for each gene where at least 3 samples displayed an
exonic mutation. Only genes where more than 3 samples displayed a SNV were considered
by this analysis. Only 37 genes in the analysis met these criteria. Of these 37, only two
returned p-values less than 0.05. These were SPOP (13 samples, p < 1 ·10−15) and PTPRD
(4 samples, p = 0.03). Once we adjusted for multiple hypothesis testing using FDR, only
SPOP remained significant.

The results of this analysis seem to suggest that, other than the previously identified
relationship with SPOP, there are no other clear relationships to somatic SNVs and telomere
length. According to the online gene information repository GeneCards (REBHAN et al.,
1998) PTPRD is known to be an exceptionally long gene at 2MB long. This probably explains
the reason for an enrichment of somatic SNVs within the gene. The length of the gene,
coupled with the fact that it did not survive multiple hypothesis correction, indicates that this
is probably not a genuine relationship to telomeres.

Somatic mutations within the telomere interactome The genome wide analysis investi-
gation was in part hampered by the fact that relatively few genes displayed SNVs in more
than a handful of cases. This was not unexpected as PCa is known to display relatively few
somatic SNVs in comparison with other cancers (MARTINCORENA and CAMPBELL, 2015).

We investigated whether somatic SNVs in specific genes, known to interact with telom-
eres, had a relationship with telomeres. Rather than focusing on single genes we used an
online tool to compile a list of genes that are reported to share an affiliation with a set of
“seed genes” which are known to interact directly with telomeres. We shall refer to network
of genes as the “interactome”. For this analysis we considered all types of somatic SNVs
rather than limiting the search to only missense mutations.

To construct the telomere interactome we identified a small set of genes known to interact
directly with telomere (see genes labelled “seed genes” in Table 4.4). We then used the
GeneMania (WARDE-FARLEY et al., 2010) gene network database to build a network from
the seed gene set. A depiction of the resultant network produced by GeneMania is shown in
Figure 4.13. All of the genes in the final interactome are listed in Table 4.4.

GeneMania considers multiple sources of evidence to link genes with one another. The
tool aggregates data from co-expression, known pathway affiliation and physical interactions
to form gene networks. Additionally, GeneMania allows the users to refine their search by
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Fig. 4.13 The telomere interactome network as determined by GeneMania

specifying a tissue of interest. For the purposes of this investigation we specified interactions
within prostate tissue.

We had hoped that by considering genes within the context of their interactions it would
increase the amount of effect mutations within the cohort. We hypothesised that telomere
length may be altered by a mutation at some point in the telomere interactome. As PCa
is a cancer known to show relatively few somatic mutations inspecting genes individually
might not give enough power to detect such an effect. Indeed, we see that of the genes in our
telomere interactome BLM is the single gene with the most affected samples, but only four
samples display an exonic mutation in BLM. However, by considering the interactome as a
whole we see that 23 of the samples have at least one exonic SNV in one of the identified
genes.

This analysis did not find any relationship between somatic SNVs in the telomere
interactome and telomere length (see Figure 4.14A). When we inspect the genes individually
only BLM seems to associate with differentiated telomere length, a boxplot is shown in
Figure 4.14B. However, with only four affected samples it is difficult to assess the validity of
this finding. Furthermore, of those four samples with a somatic SNV in BLM, only one of
them is a missense mutation.
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Fig. 4.14 Boxplots showing the relationship between somatic SNVs in the interac-
tome and telomere length (A): Telomere interactome somatic SNV status versus
telomere length (B): Samples separated by whether or not they had an exonic
BLM mutation versus telomere length



112 Applying Telomerecat to a cohort of Prostate cancer samples

Table 4.4 Genes in the telomere interactome analysis

Gene # of samples with SNV # missense Notes

1 TERT 1 1 Seed; telomerase
2 POT1 0 0 Seed; shelterin
3 TINF2 0 0 Seed; shelterin
4 TERF1 0 0 Seed; shelterin
5 TERF2 0 0 Seed; shelterin
6 RAP1A 0 0 Seed; shelterin
7 ACD 1 0 Seed; shelterin
8 MRE11A 0 0
9 PPP1R10 2 0

10 BLM 4 1
11 PARP2 1 0
12 ACADVL 1 0
13 TEP1 2 1
14 CHAMP1 2 0
15 PINX1 0 0
16 HIST3H3 0 0
17 TNKS 1 0
18 RAD50 1 0
19 NBN 0 0
20 XRCC6 2 2
21 CTC1 3 2
22 STN1 1 0
23 MCPH1 0 0
24 DCLRE1B 1 1
25 CCDC106 0 0
26 WRN 1 0
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Table 4.5 Variables from the total number of somatic mutations analysis

p-value Coefficient

Length 0.034 -0.002
Age 1.22 ·10−8 1.46

When this interactome analysis was constrained to only exonic missense mutations we
observed fewer samples with mutations. With only 8 samples displaying a missense SNV in
any of the interactome genes. We did not observe any relationship to telomere length using
this more constrained definition of inclusion. Furthermore the paucity of missense mutations
may also suggest that there is little selective pressure towards acquiring them within telomere
related genes.

4.3.5 The total number of somatic mutations

After failing to identify a significant relationship between any specific SNVs and telomere
length (other than SPOP) we decided to see whether there was a relationship to the number
of accrued somatic SNVs within the sample and telomere length.

Shorter telomeres are hypothesised to expose DNA to greater risk of DNA damage
(O’SULLIVAN and KARLSEDER, 2010). We reasoned that this predicts that tumour samples
in our cohort with shorter telomeres should display more evidence of DNA damage. To test
this we sought to define the relationship between telomere length and the number of somatic
SNVs within the cohort.

For each donor we observed the amount of SNVs that were in a sample. We restricted
our analysis to SNVs occurring within any part of all known genes. We then defined the
following linear model

snvs = β0 +β1length+β2age+ ε (4.3)

Where length is the telomere length estimated by Telomerecat and age is the age at
tumour collection for each donor. The model indicates that both the length of telomere and
the age contribute significantly to explaining the variance in the model (see Table 4.5).

Significant associations with age and telomere Age is strongly associated with the num-
ber of somatic mutations. As we saw in the Introduction to this thesis, prostate cancer is often
characterised as a disease with slow progression, especially in early stages (PARKER, 2004).
Tumours are also liable to have existed for a prolonged period of time before diagnosis due
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to the symptomless nature of early disease (ETZIONI et al., 1998). It follows that an older
patient is more likely to have an older tumour which in turn has had more time to gather
somatic mutations. This would explain the strong relationship between patient age and the
amount of somatic SNVs.

The linear model also showed a significant role for telomere length in explaining the
amount of somatic SNVs in a sample. In Section 4.3.1 we saw that tumour telomere length
had no relationship with the age of the patient. We conclude therefore that while age
is certainly a factor in SNV acquisition, it is a separate phenomenon to that of telomere
shortening.

An analysis of this nature cannot comment conclusively on the causative nature of shorter
telomere and an increased number of somatic SNVs. Indeed it may be that a sample with
more somatic SNVs is more likely to accrue damage to genes responsible for the elongation
of telomere. However, given the known protective role of telomere on the genome it is
plausible that the length of telomere has a direct effect on the number of somatic SNVs.

4.3.6 Telomere length and RNA expression

Next, we examined the relationship between RNA expression, as deduced by Illumina micro
array experiment and telomere length in a subset of the prostate cohort. We had expression
measurements for 47 of our original 192 tumour and blood sample pairs (one sample was
removed as an outlier see the discussion section of this chapter for details).

We observed that a substantial amount of the expression probes in the analysis were
not differentially expressed across the samples. Figure 4.15 shows the distribution of the
difference between maximum and minimum observed values for each probe. In order to
focus on the analysis that showed heightened differential expression across our samples, we
chose probes where the difference between the minimum and maximum observed value on
the probe was greater than 1.2. This threshold represents the 75th percentile of all probes
and is shown by the red line in Figure 4.15. As a result, we excluded 35929 probes leaving
12178 probes as the subject of the analysis.

In order to identify associations between telomere length and RNA expression, we fit a
linear model with the following variables for each of the expression probes in our dataset:

length = β0 +β1expression (4.4)

Where length are the tumour telomere length estimates for the cohort and expression is the
relevant expression probe.
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Fig. 4.15 A histogram showing the ranges of all probes in the expression data
set. The red line denotes the threshold at which probes were considered for the
analysis detailed in Section 4.3.6

The probes with the highest R2 are given in Table 4.6. This analysis did not identify any
probes that were significantly correlated with telomere length once we had corrected for
multiple hypothesis testing with FDR.

4.3.7 The Complex Men

Whereas the previous sections of this chapter have focused on the main PCa ICGC cohort,
this section describes the telomere lengths across a set of patients known as the “complex
men”. The complex men are a set of three donors each displaying multi-focal PCa. For
each man, samples were collected from several areas of the prostate thought to be cancerous.
These separate areas are referred to as “cores” throughout this section. Additionally, adjacent
tissue and circulating blood samples were also collected. Each of the samples was subjected
to WGS analysis, somatic SNV calling and TMPRSS2-ERG status profiling. The complex
men were the subject of an extensive study as detailed in COOPER et al. (2015). For historical
reasons the complex men are referred to individually as cases 6, 7 and 8.

We wished to explore the telomere dynamics across these models of multi-focal PCa. For
each of the complex men, COOPER et al. constructed phylogenies detailing the relatedness of
each of the tumour cores, based on the distribution of SNVs across each of the cores. Figure
4.16 shows the phylogeny for each man alongside the corresponding telomere lengths, as
estimated by Telomerecat, for each sample.
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Table 4.6 The 30 probes with the best correlation with tumour telomere length.
FDR N = 4376

Gene R2 p− value FDR Association

1 MPST 0.30374 0.00006 0.24470 -
2 SLC7A8 0.30209 0.00006 0.24470 -
3 SP8 0.29160 0.00009 0.24470 +
4 NSMCE4A 0.29106 0.00009 0.24470 +
5 CBX1 0.28386 0.00012 0.24470 +
6 AGBL5 0.27962 0.00013 0.24470 -
7 AGR3 0.27150 0.00017 0.24470 +
8 DMKN 0.27014 0.00018 0.24470 +
9 BANP 0.26556 0.00021 0.24470 -

10 FOXRED2 0.26077 0.00025 0.24470 -
11 FKBP4 0.25919 0.00026 0.24470 -
12 PIGX 0.25835 0.00026 0.24470 -
13 PRRG4 0.25294 0.00031 0.24470 -
14 ZNF614 0.25133 0.00033 0.24470 +
15 SWI5 0.25021 0.00034 0.24470 -
16 OAT 0.24926 0.00035 0.24470 +
17 PAPL 0.24782 0.00037 0.24470 -
18 ZNF615 0.24252 0.00044 0.25783 +
19 MBOAT2 0.24211 0.00044 0.25783 -
20 LOC100132057 0.24101 0.00046 0.25783 -
21 FAM65B 0.23624 0.00053 0.27229 +
22 NIFK 0.23623 0.00053 0.27229 +
23 SRGAP1 0.22851 0.00068 0.32185 -
24 RPS6 0.22807 0.00069 0.32185 +
25 TAP2 0.22281 0.00081 0.32855 +
26 PCYT2 0.22108 0.00085 0.32855 -
27 MKNK2 0.22030 0.00087 0.32855 -
28 ATP7B 0.21822 0.00093 0.32855 +
29 PON2 0.21782 0.00094 0.32855 +
30 GTF2F2 0.21607 0.00100 0.32855 +

COOPER et al. made a brief mention of the telomere length for these samples in their
study. Using TelSeq they estimated the lengths of the adjacent normal tissue to be 6.3KB
for case 6 and 6.2KB for case 7. Additionally, they state that they consider these samples
as having “not undergone attrition”. However, this claim seems unsubstantiated given that
this conclusion has been drawn using only a single measurement of the normal telomere
length. Furthermore, when we compare these telomere lengths to those generated by TelSeq
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on the TwinsUK data (see Figure 3.8) we see that a telomere length of 6KB is one standard
deviation below the mean of that cohort. COOPER et al. go on to describe telomeres in the
corresponding cancer to be “slightly longer” than the adjacent tissue normal telomere length
in both cases. When we applied TelSeq to the corresponding tumour length we could not
confirm these claims. In both cases we observed tumour telomere lengths both longer and
shorter than the adjacent tissue normal. No mention is made of case 8. Whilst COOPER et al.
represents an interesting first foray into these data we believe that a more comprehensive
analysis might shed more light on the extent of heterogeneity across the cores.

We applied Telomerecat to all samples within the complex men sub-cohort as shown in
Figure 4.16. Telomerecat produces estimations of telomere length which seem to complement
the story of overall heterogeneity amongst complex men. Cases 6 and 7 seem to display
pronounced intra-tumour heterogeneity. Whereas Case 8, although presenting the longest
adjacent telomere length, displays exceedingly little telomere heterogeneity across the
individual tumour cores. Both case 6 and 7 show a difference of approximately 2KB
between the longest and shortest telomere core.

These observations provide insight into the extent of intra-tumour heterogeneity of
telomere length. To our knowledge, this is the first analysis to show that telomere length
differs across an in-vivo set of tumour cores. Further work is required to assess whether
telomere length has any causative actions with the progressions of the individual cores,
or whether the difference in telomere length is a downstream effect of different pressures
experienced by different parts of the tumour.

4.4 Discussion

This study represents the largest (by sample number) investigation into telomere length
within PCa and as such has uncovered several hitherto unreported associations. The size
of this study speaks to the advantages of both Parabam and Telomerecat; minimal costs
were incurred in estimating telomere length for the 384 samples interrogated as part of this
analysis. What’s more, thanks to the parallel nature of Parabam the analysis was completed
in a timely fashion.

In this section we shall summarise the findings and suggest routes for further investigation.

Identifying associations in PCa Some of the most striking associations are those found
within the molecular subtypes. With SPOP known to associate with the DAXX protein, it
seems that there is a plausible explanation for telomere shortening with that subtype. Our
findings also indicate that there may be an association between TMPRSS2-ERG and blood
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telomere length, perhaps suggesting a role for longer telomeres in the aetiology of this
genotype.

This study represents the first time that SPOP has been linked to telomere length within
PCa and represents an exciting avenue for further exploration. Above, we detailed the
possibility of a causal effect on telomere length via an altered association to the DAXX
protein. A recent study by BLATTNER et al. (2017) introduced a murine model which posits
a narrative for SPOP mutations in driving tumourigenesis via deregulation of PI3K/mTOR
and AR pathways. Interestingly, other studies have shown a link between the PI3K/mTOR
pathway and telomerase expression (YAMADA et al., 2012; HEEG et al., 2011). Alongside
the previously proposed DAXX association, this represents another viable route of further
investigation.

Another interesting result from this study is the observation of a highly significant
relationship between telomere length and tumour stage. Previous studies studies have already
identified a link between telomerase expression (LIN et al., 1997), so this result certainly
has strong precedent. However, to our knowledge, this study represents the first time that
telomere length (as opposed to just telomerase expression) has been observed in PCa.

It is interesting to note the dynamics of telomere length across the stages. It is possible
that short telomeres in early stage cancers are preferable as a method for accruing crucial
SNVs (as we saw above, samples with shorter telomeres also had more SNVs). Perhaps,
longer telomeres in later stage cancers are selected for, to allow for greater proliferative
potential. It may be that tumour cells that fail to adequately elongate telomere length fail to
replicate and contribute to the cell population of later stage tumours.

Of the analyses detailed above, two stand out as having failed to identify significant rela-
tionship to telomere length. The first of these is the genome wide and telomere interactome
SNV analysis. No somatic SNVs were significantly associated to telomere length (other than
the SPOP association uncovered as part of the subtype analysis). As mentioned, this result
was not unexpected. PCa is known to display a below average amount of somatic SNVs.

The comparison to micro-array RNA expression data also failed to identify significant
relationships. Early attempts at the analysis found numerous associations with the KANK4
and the DMKN protein. However, on inspection of the individual probes it appeared that this
effect was driven by a single outlier sample. Figure 4.17 shows relationships for these probes
with the outlier included. In the case of the KANK4 probe, when the outlier was included we
observed R2 = 0.34, however this dropped to R2 = 0.12 with the outlier removed. In the case
of the DMKN probe we observed R2 = 0.42 drop to R2 = 0.27. In both of these cases, once
the outlier was removed both relationships were not found to be significant after adjusting
for multiple hypothesis testing.
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Fig. 4.17 Plots detailing significant RNA associations before removal of an outlier
sample. Note the outlier sample in the top right hand corner of both plots (A)
Tumour telomere length vs KANK4 expression. (B) Tumour telomere length vs
DMKN expression

Need for normalisation We had hoped that the design of Telomerecat would mean that
batch normalisation was not needed. However, from the earliest stages of the investigation
this appeared not to be the case as we observed significant batch effects.

Our initial optimism was based on the premise that fully telomeric reads (F1) would be
subject to the same sequencing biases as boundary reads (F2a). However, this is clearly not
the case and as demonstrated above (Section 4.2), normalisation was clearly required in order
to produce accurate results. This finding should inform further studies using WGS telomere
length estimation. It is our view that a normalisation step will be required in cases where
sequencing has been undertaken on multi-platforms or on multiple occasions.

Cellularity In the course of this study, no active attempt has been made to correct for the
effects of cellularity. The primary justification for this approach is that it is unclear how
“normal” directly adjacent cells are in terms of their telomeres. This is especially the case for
solid tumours where normal tissues are fixed in their position within the organ and therefore
exposed directly to prolonged effects from their proximity to the tumour.

It is beyond the abilities of any WGS telomere length estimation tool to separate normal
and tumour telomere lengths from the reads alone. However, there exist experimental
methods, such as qFish that lend themselves better to precise delineation of tumour and
normal telomere. This is a limitation of any study using telomere length estimated from WGS
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data and has implications for the applicability of the method and their role in identifying
underlying cancer telomere biology.

We see the utility of tools like Telomerecat in acting as a broad first sweep of the data that
can highlight areas of interest for further study. Indeed, a trade off of the increased specificity
of imaging techniques like qFish is the inherently lo-throughput nature of the methods. By
using Telomerecat first on available WGS data researchers can more quickly hone in on
specific areas of interest. We will expand upon this discussion for the role of Telomerecat in
large scale WGS studies in Chapter 6, the conclusion to this thesis.





Chapter 5

Applying Telomerecat to a cohort of rare
disease samples

All the WGS samples analysed as part of this chapter were collected, sequenced and prepro-
cessed by the NIHR BioResource consortium on behalf of the NIHR. All of the additional
phenotype (excluding Telomerecat estimates) and genotype data was processed and nor-
malised by the NIHR BioResource consortium. Similarly the GWAS was run by collaborators
at the NIHR on an established pipeline.

This chapter is the result of collaboration between Dr James Thaventhiran, Dr Hana Lango
Allen and the author. The text in this chapter was written by the author with clinical input
provided by Dr James Thaventhiran. All figures and tables in this chapter were produced by
the author.

In this chapter we detail the application of Telomerecat to WGS data from 5760 subjects
recruited into the National Institute for Health Research (NIHR) rare-disease from the BioRe-
source cohort, a study run by the National Institute for Health Research (NIHR). For quality
assurance we measured the ability of Telomerecat to identify known population variables that
correlate with telomere length. We confirmed defined age and sex correlations with telomere
length and extend this by identifying known single-nucleotide polymorphisms (SNP) that
correlate.

After validateing the method accuracy with WGS data from this cohort by observing
strong, previously identified trends in the data, we assessed an immunodeficient subcohort
for novel genetic variants associated with low telomere length. This analysis uncovered novel
variants in the genes DKC1 and TERT that cause monogenic telomerase deficiency, telomere
shortening and life threatening illness.
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Table 5.1 A set of sub-cohorts within the NIHR BioResource Study for which we
generated telomere length. The total number of samples analysed, across all
sub-cohorts, was 5760

Cohort Affected Unaffected Total Focus

1 BPD 431 117 548 Bleeding, Thrombotic and
Platelet Disorders

4 CSVD 103 92 195 Cerebral Small Vessel
Disease

5 EDS 17 0 17 Ehlers-Danlos syndrome

6 HCM 194 0 194 Hypertrophic
Cardiomyopathy

7 ICP 176 0 176 Intrahepatic Cholestasis of
Pregnancy

8 LHON 45 21 66 Leber Hereditary Optic
Neuropathy

9 MPMT 369 51 420 Multiple Primary Tumours

10 NPD 139 1 140 Neuropathic Pain Disorder

11 PAH 1043 54 1097 Pulmonary Arterial
Hypertension

12 PID 937 358 1295 Primary Immune Disorders

13 PMG 122 0 122 Primary
Membranoproliferative

Glomerulonephritis
14 SMD 94 98 192 Stem Cell & Myeloid

Disorder
15 SPEED 1032 17 1049 Paediatric neurology &

Inherited retinal disease
16 SRNS 238 11 249 Steroid Resistant Nephrotic

Syndrome

5.1 Background

The NIHR BioResource - Rare Disease cohort was established with the aim of producing a
database of high coverage WGS samples for patients suffering from rare disease. The cohort
spans a range of sub-cohorts focused on separate rare disease. Table 5.1 details the different
sub-cohorts and the diseases on which they focus.
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As Table 5.1 demonstrates, some of the subcohorts contain a number of samples from
donors recruited into the study as relatives of donors affected by the disease or syndrome of
interest. These patients are referred to as unaffected throughout the following text.

Later parts of this chapter focus on samples from the Primary Immune Disorders (PID)
subcohort. PID is a heterogeneous group of conditions that leads to an increased susceptibility
to infection, malignancies and auto-immunity. The genetic architecture of PID has been
progressively defined and now, disease causing genomic variants in over 300 genes have
been identified. This cohort was established to uncover novel genetic variants that cause
human immunodeficiency.

Within the PID cohort, 75% of patients suffer from the immunodeficiency termed Com-
mon Variable Immunodeficiency (CVID). CVID is characterised by deficient antibody
production, usually within the first three decades of a person’s life (IGLESIAS ALZUETA

and MATAMOROS FLORI, 2001). Despite ongoing research from the middle of the previous
century, the underlying genetic causes of CVID are unclear (ABOLHASSANI et al., 2013). In
addition to CVID, the PID cohort also includes patients suffering from autoinflammatory
syndromes (MASTERS et al., 2009) and haemophagocytosis (ISHII et al., 2005), amongst
others.

Telomere length for 9,850 samples from the cohort were estimated. Of this original 9,850
samples we had age and gender data for 5,760. Due to the possibly confounding nature of
these two variables it was decided to proceed only with samples for which we had age and
gender meta-data. Thus the following analyses are conducted on 5,760 WGS samples.

5.2 Preliminary Investigations

Before we could analyse the data for associations to telomere length, we undertook a process
to normalise and correct the data for confounding variables. In this section, we detail the
process of batch effect reduction and also observe associations between age and gender with
telomere length.

5.2.1 Removing batch effects

Investigations detailed previously in this thesis have already demonstrated the extent to
which the sequencing platform can alter estimated telomere length (see Sections 3.12 and
4.2). Accordingly, we were unsurprised by plot shown in Figure 5.1A that shows a clear
differentiation between samples from the Illumina HiSeq2000 and HiSeqX platforms.
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Fig. 5.1 Plots showing all of the samples in the NIHR BioResource WGS cohort
(A): Pre-normalisation (B): Post-normalisation
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To handle this batch effect we employed a method similar to the one detailed in Section
4.2. However, the larger cohort size in this study means that we can afford greater granularity
in our normalisation process. Rather than use sequencing batch as the dummy variable, we
used the sequencing plate ID. Here, plate ID refers to a unique ID assigned to the Illumina
TruSeq plate used as part of the sample preparation. All samples with the same plate ID were
prepared on the same plate.

Across the entire cohort there were 75 unique plate IDs. The mean number of samples
associated with each plate ID was 76, the plate ID with most associated samples had 96
samples whilst the plate ID with fewest samples had 19. Plate ID was provided to the
normalisation along with patient age so as not to bias the batch normalisation by age. Due to
the way samples were collected for the studies (some subcohorts are comprised primarily of
juvenile or geriatric donors), there was a high chance that samples would not be randomly
distributed in age.

The coefficient for each plate was subtracted from the relevant samples and we were
left with the distribution shown in Figure 5.1B. At this juncture we did not adjust the length
estimates for age as we wished to observe how age was associated with telomere length
across the cohort.

5.2.2 Associations with potential confounders of telomere length

Once we had minimised batch effects within the data we investigated the association between
telomere length and known confounders within the cohort.

Age We observe a strong correlation with age across the cohort. Figure 5.2A shows a scatter
plot of age against telomere length demonstrating the extent of the association. A linear
model with telomere length as a response variable and age as a predictor reported R2 = .31
(equivalent to a Pearson’s correlation of r =−0.56) and found that each year of additional
age was responsible for a deterioration of 33bp. This negative correlation between age and
telomere length is well established within the literature. However, we observe a particularly
high correlation in comparison to other studies using different methods (WEISCHER et al.,
2014; SONG et al., 2010; BENETOS et al., 2001). This speaks well of the accuracy of the
method and the quality of the sequencing data.

The high correlation may also be the result of non-linearity of the relationship across
age. Figure 5.2A also shows the line of best fit provided by a local regression. We noticed
that the slope of the fit shows a steeper decline (indicating increased association between
age and telomere length) in earlier ages. It is interesting to speculate that this increased
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Fig. 5.2 The relationship between age and telomere length in the NIHR BioRe-
source cohort (A): Age versus telomere length, line of best fit provided by loess
(local regression). (B): The data subdivided by age groupings. (C): Length by
age grouping when we used a linear model to adjust for age. Note that there is
still a bias towards younger samples having longer telomeres (D): Length by age
grouping after using a cubic model to adjust for age. There is no observable bias
across the age groupings

association in samples from younger donors is the result of fewer mitigating environmental
effects experienced by younger donors.

Gender We observed that telomere length was shorter in men across all but one age
category (see Figure 5.3A). We see in Figure 5.3B that when we controlled for age telomere
length was significantly differentiated according to gender. Our analysis indicates that being
male accounts for a -217bp deficit in telomere length. A difference roughly equivalent to six
and a half years of life.

A recent comprehensive meta analysis, detailed in GARDNER et al. (2014), found that
most studies identify females as having longer telomere than males and that this was the
case across age groups. However, GARDNER et al. found that the difference in telomere
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Fig. 5.3 Plots highlighting the difference in telomere length between genders (A):
Boxplots of telomere length by age group separated by donor gender. We observe
shorter male telomere length in almost all of the age groups (B): A boxplot
showing age adjusted telomere length by gender. Mean male telomere length is
significantly shorter (p < 4.8 ·10−15; Two sided T Test)

length between males and females was more often identified by mTRF than by either qPCR
and flowFISH. GARDNER et al. conclude that this difference is not attributable to random
sampling error but rather is likely due to inherent bias in the methodologies. The results
presented here indicate that, at least within this cohort, Telomerecat reliably identifies a
relationship between telomere length and gender. The strength of our observation seems to
lend weight to the hypothesis that there is a genuine and measurable difference between male
and female telomere lengths.

This study represents the largest application of a WGS telomere length estimation method
where age and gender meta-data was available. Accordingly it sheds considerable light on
the ability of these methods to detect these known relationships within the data. Conversely,
accepting that Telomerecat is a reliable method for estimating telomere length, these results
provide insight into the ongoing debate as to whether the difference in telomeres between
genders is a biological or technical effect.
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5.2.3 Adjusting for age and gender

The identification of the genetic basis of inherited disease is dependent on the correlation
of a defined phenotype with an inherited genotype. For our purposes this phenotype is the
telomere length as estimated by Telomerecat.

Once we had observed the extent to which Telomerecat identified an association between
gender and age in this cohort, we wished to normalise the telomere lengths so that we could
more easily compare samples from disparate age and gender groups. To do this we fit the
following linear model to the data using age as a continuous variable and gender as a dummy
variable. We refer to this as “the cubic model”:

length = β0 +β1age+β2age2 +β3age3 +β4gender+ ε (5.1)

Previous attempts to fit a more straightforward linear model to the data using single
variables for age and gender showed that the residual versus age was not linear. The effects of
this poor fit can be seen in Figure 5.2C where there is a clear bias when we plot the adjusted
length to the relevant age groups. When we added a squared and cubed age term to the model
we found that the residuals were randomly distributed and accordingly the adjusted lengths
showed less bias (see Figure 5.2D).

To finish, we subtracted the relevant residuals, as produced by the cubic model, from
the mean telomere length of the cohort. We used these as our adjusted telomere lengths in
further analyses. The resultant adjusted telomere lengths can be seen plotted against age and
gender in the Figure 5.4.

5.3 Results

After preparing the data to control for sequencing batch effects, age and gender we analysed
the samples in the hope of shedding light on telomere length in rare disease.

5.3.1 GWAS

We started our investigation by conducting a genome wide association study (GWAS) with
the data. The primary purpose of this analysis was to serve as further orthogonal validation of
the Telomerecat method. Previous studies, using larger cohort sizes, have already identified
numerous significantly associated regions with telomere length (CODD et al., 2013; POOLEY

et al., 2013).
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Fig. 5.4 Plots of telomere measurement after adjustment for age and gender

The purpose of a GWAS is to identify polygenic risk alleles that correlate with a defined
phenotype. Success in a GWAS is dependent on accuracy of the phenotype measured and the
size of the cohorts studied. The CODD et al. GWAS was carried out with a discovery cohort
of 37,684 individuals with the telomere phenotype defined by qPCR. Similarly, the study
conducted by POOLEY et al. used qPCR and was conducted on 26,089 donors, a mixture of
healthy controls and cancer cases.

Our telomere length GWAS, with approximately one seventh the cohort size, is sub-
stantially underpowered to detect the genetic associations identified in these prior studies.
However, identification of the same effect in terms of shortening or increasing telomere
length by the previously identified loci would provide additional validation that our measure
of phenotype was accurate

Table 5.2 compares our results to those of CODD et al. and Figure 5.5 shows the resultant
Manhattan plot.

Despite the comparatively diminutive sample size we managed to confirm the strongest
association highlighted by CODD et al. and POOLEY et al. in the form of a locus in the region
of the TERC gene. Furthermore, we observed that for the other significant hits obtained
by CODD et al. our estimated β coefficients show the same direction of effect in each case.
Whilst we could not observe genome wide significance amongst all of the variants in Table
5.2, it is reassuring that where CODD et al. observe a significant association we at least agree
with the direction of the effect.
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Fig. 5.5 A Manhattan plot showing the results of the GWAS on unrelated samples
within the NIHR BioResource cohort. The only result reaching genome wide
significance (p < 10−8) is the variant in TERC on chromosome 3

5.3.2 Telomere length across the sub-cohorts

After confirming known genotype associations within the wider cohort we wished to examine
whether any of the sub-cohorts demonstrated differential telomere lengths according to
affected status.

Figure 5.6 shows boxplots for each subcohort separated by affected status. To test
whether any of these relationships were statistically significant we applied a Student T test to
each of the subcohorts, with affected status separating each cohort. The only cohort with
significantly differentiated telomere lengths was the SMD subchort (p < 0.01, adjusted for
multiple hypothesis testing with FDR). The SMD cohort contains patients with primary and
secondary bone-marrow failure. This is associated with primary and secondary telomere
defects and the results provide additional supportive evidence that Telomerecat can identify
shorter telomeres in patient populations associated with reduced telomere length.

5.3.3 Rare variants in telomere genes within the PID sub-cohort

Deleterious mutations in the genes associated with telomere maintenance have been identified
as causing rare monogenic disease. This led us to question whether this diagnosis could
account for disease in any of the undiagnosed patients recruited into the NIHR-BioResource.

The initial clinical description of monogenic telomerase dysfunction, dyskeratosis con-
genita, is described as a condition characterised by the triad of nail dystrophy, lacy reticular
discolouration of the neck and oral leukoplakia. More in-depth phenotyping of these patients
identified that all patients were at risk of bone-marrow failure. Further study has also iden-
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Fig. 5.6 Telomere length by cohort affiliation, separated by affected status. Only
sub-cohorts for which unaffected telomere length estimates were available are
included in this plot

tified that a severe variant of dyskeratosis congenita, the Hoyeraal-Hreidarsson syndrome,
features immune deficiency (GLOUSKER et al., 2015).

The PID is of particular interest as many of the cases in the subchort display an immun-
odeficient phenotype with no known genetic cause. Furthermore, it is known that primary
and secondary telomerase dysfunction can lead to short telomeres in bone-marrow failure
patients

We wished to see whether any of the samples that display reduced telomere length had
evidence of known genetic diseases caused by telomerase deficiency. We prioritised the cases
within the PID cohort that had exceedingly short telomeres. In order to achieve this, we first
identified samples in the PID cohort with an adjusted telomere length that was below the
10th centile of estimates for the entire NIHR BioResource cohort. We identified 105 such
samples in the PID cohort.

Then, for each of these short telomere samples we extracted rare coding variants in a
number of genes previously identified as causing dyskeratosis congenita (TUMMALA et al.,
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Table 5.3 Genes linked to dyskeratosis congenita as identified in TUMMALA

et al. (2015). Reference locations according to the GRCh37 version of the human
genome

Name Chromsome Start End

1 TERC 3 169482397 169482847
2 TERT 5 1253287 1295162
3 NHP2 5 177576465 177580961
4 TINF2 14 24708851 24711880
5 NOP10 15 34633917 34635362
6 PARN 16 14529557 14724128
7 ACD 16 67691414 67694717
8 WRAP53 17 7589389 7606820
9 CTC1 17 8128139 8151413

10 RTEL1 20 62289163 62328544
11 DKC1 X 153991016 154005963

2015). The genes sampled and their genomic locations are given in Table 5.3. A genotype
was considered “rare” if it was estimated to occur in less than one in a thousand genomes.
Since synonymous mutations have not been reported to cause telomerase dysfunction, these
variants were excluded.

Of the original 105 short telomere samples we identified 18 with a rare coding variant in
one of the aforementioned target genes. These 18 variants are shown in Table 5.4. We see
that, of the identified variants, most are heterozygous.

Only one of the identified variants is homozygous, a missense mutation in the first exon
of the TERT gene (entry one in Table 5.4). The sample with this mutation displays critically
short telomeres (in the bottom 0.001 percentile) and displays a typical Hoyeraal-Hreidarsson
phenotype. Unfortunately, this donor died as a direct consequence of their condition and
associated immune system failure. The severity of this phenotype is highlighted in Figure 5.7
where we see that this sample (labelled F003462) is the shortest of all the measured telomere
lengths. These findings demonstrate the ability of Telomerecat to identify the extremely short
telomere lengths of patients with monogenic telomerase deficiency.

Before the outset of this study, F003462 was already known to exhibit a Hoyeraal-
Hreidarsson phenotype and a previous study identified the sample as having extremely short
telomeres. While it is reassuring that this sample was identified by this analysis, it cannot be
considered a novel finding.

Two of the entries in Table 5.4 were hemizygous (the variant existed upon the X chro-
mosome of which both male donors only have one copy). Interestingly, these samples were



136 Applying Telomerecat to a cohort of rare disease samples

Table 5.4 The variant identified by our search for rare variants across donors with
short telomere in the NIHR BioResource cohort. All of the variants are missense
mutations apart from the heterozygous TINF2 mutation which is a splice variant

Sample Gene Chromsome Position Zygosity

1 F003462 TERT 5 1293620 Homozygous
2 F005482 DKC1 X 154004469 Hemizygous
3 F005484 DKC1 X 154004469 Hemizygous
4 F005990 TERT 5 1293799 Heterozygous
5 F005989 TERT 5 1293799 Heterozygous
6 F008867 NHP2 5 177576825 Heterozygous
7 F006467 TINF2 14 24709624 Heterozygous
8 F010434 PARN 16 14540824 Heterozygous
9 F011418 ACD 16 67692018 Heterozygous

10 F009265 ACD 16 67693143 Heterozygous
11 F000954 CTC1 17 8133942 Heterozygous
12 F012660 CTC1 17 8135253 Heterozygous
13 F012560 RTEL1 20 62293790 Heterozygous
14 F004704 RTEL1 20 62293798 Heterozygous
15 F009265 RTEL1 20 62309633 Heterozygous
16 F007172 RTEL1 20 62321444 Heterozygous
17 F008048 RTEL1 20 62321559 Heterozygous
18 F009718 RTEL1 20 62326159 Heterozygous
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derived from two brothers, both of whom have experienced classic symptoms of compromised
immune systems at a relatively advanced age.

5.3.4 Examining the link between DKC1 variants and short telomeres

These brothers had suffered from the viral eye infection CMV retinitis, and the lung infection
Pneumocystis jirovecii. These infections are ultra rare in the normal population, the incidence
of both dramatically increased with the AIDS epidemic. Both infections are classified as
AIDS defining illness, as these infections denote when a patient with HIV infection becomes
sufficiently CD4+ T cell immunodeficient that they fulfil the diagnostic criteria for the
Aquired Immunodeficiency Syndrome. Both brothers had been tested for HIV infection
and had confirmed negative test results. This result suggested that the brothers had a severe
primary CD4+ T cell immunodeficiency. The X-linked nature of these variants as well as the
fraternal relationship of the two donors made the hemizygous missense mutation in DKC1
an interesting topic of further study.
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Fig. 5.7 A bar chart of samples subjected to flowFISH analysis. The samples
coloured blue were identified as displaying telomere length below the first per-
centile by flowFISH. Samples coloured red were shown by flowFISH to have
normal telomere lengths, (between the 25th and 75th percentile. The dotted lines
show the length corresponding to the annotated percentile. Percentile shown is of
adjusted length for the entire NIHR BioResource Cohort
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Since both brothers appear to have a fully penetrant genetic variant that is rare and shared,
we assessed the data so as to exclude other candidate variants. By filtering for rare genomic
variants that were shared in the brothers we identified 23 variants (Table 5.5). Of these only
the DKC1 variants and the MAP1B variant are private to the two brothers. We assessed
all of these genes for expression in the nucleated populations that make up blood by using
the BLUEPRINT expression atlas (CHEN et al., 2016) DKC1 is expressed in all blood
populations whilst MAP1B is restricted to mesenchymal stem cells and endothelial tissue.

Before proceeding we confirmed that Telomerecat had correctly identified shortened
telomeres in the samples with heterozygous and hemizygous variants in DKC1 and TERT.
As we see in Figure 5.7 separate orthogonal analysis by flowFISH indicates that these
samples do indeed exhibit shortened telomeres. FlowFISH identifies both brothers as having
telomere lengths in the bottom one percentile. Telomerecat estimates that both the samples
fall between the 10th and 1st percentile of all age adjusted telomere lengths. When we
consider the unadjusted telomere lengths we see that F005484 is below the first percentile
and F005482 is at around the 7th percentile. FlowFISH and Telomerecat both see that
the brothers possess short telomeres, however, flowFISH provides shorter estimates than
Telomerecat.

DCK1 is a highly conserved gene that serves as a regulator of telomerase through
interaction with ribonucleic portion of the protein (VULLIAMY et al., 2001; COLLINS, 2000).
DCK1 was proposed as a causative gene for dyskeratosis congenita before DCK1 was known
to associate with telomere and even before dyskeratosis congenita was linked to shortened
telomeres (HEISS et al., 1998).

The missense variant we have identified in donors F005482 and F005484 is located in the
penultimate exon of the DCK1 gene. The G-to-A variant causes an Argenine to Glutamine
transformation. This variant is private to this pedigree, by assessment of all available publicly
accessible databases of human genetic variation and has not been observed in any of the large
scale sequencing cohorts commonly used to ascertain rarity. We have also confirmed that
this variant is private to this pedigree within the rest of the NIHR BioResource cohort.

The brothers present with an a-typical dyskeratosis congenita phenotype, most noticeable
because of their advanced age, as detailed at the beginning of this section. The brothers’
dyskerin1 levels are now being measured. We expect these results will confirm a-typical
dyskerin activity across the affected brothers and prove conclusively the penetrance of this
variant.

We think it is likely that this variant in DKC1 is driving the immunodeficient phenotype
as CD4+ T-cells are failing to forgo replicate as a result of severely shortened telomeres. It

1the protein encoded by DKC1
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Table 5.5 A table showing variants shared by the DCK1 variant brothers

Inheritance Gene Position Type Observed Frequency

XL DKC1 X:154004469 missense .
AD MAP1B 5:71491412 missense .
XL ZNF75D X:134421668 nonsense 0.00106
CH ABCA13 7:48232580 missense 0.00452
CH ABCA13 7:48284168 intron substitution 0.00752
CH EXOC3L1 16:67221737 missense 0.001
CH EXOC3L1 16:67218391 missense 0.00644
AD IPP 1:46206577 missense 0.00019
AD PDE8B 5:76627270 missense 0.00003
AD DMBX1 1:46978039 missense 0.00028
AD MYCBP 1:39338760 synonymous 0.00049
AD CLIP3 19:36510207 missense 0.00022
AD PI4KA 22:21066785 missense 0.00005
AD LIMK1 7:73535337 missense 0.00027
AD FOXJ3 1:42657223 missense 0.00045
AD SUOX 12:56396504 missense 0.00076
AD CALCOCO1 12:54110127 missense 0.0007
AD DNAH11 7:21658833 missense 0.00013
AD GPI 19:34890208 missense 0.00094
AD FGL2 7:76828923 missense 0.00008
AD MAP3K10 19:40720883 missense 0.00321
AD LRRC8D 1:90400863 missense 0.00002
AD HECW1 7:43483897 missense 0.00052

stands to reason that the highly proliferative nature of the T-cells would mean that the effects
of short telomere would strike there preferentially.

5.4 Discussion

This analysis is a prime example of using Telomerecat as a diagnostic first sweep. The inex-
pensive nature of using pre-existing WGS data to extract phenotype information combines
well with the efficient and fast running nature of Telomerecat and Parabam.

We have seen how Telomerecat identifies strong associations with age and gender as well
as confirming previous GWAS results. These serve as good indications of Telomerecat’s
ability to estimate telomere. The key story in this chapter, however, is the discovery of a
hitherto unknown mutation in DKC1 and its effect on the two brothers.
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We have seen how an extremely rare mutation in the highly conserved DKC1 is associated
with shortened telomere length in both brothers. Other shared variants seem not to be localised
in known telomere encoding genes or are not private to the pedigree. Given DKC1s known
highly conserved status and relationship to telomere length it seems extremely likely this is a
causal variant. The last piece of the puzzle, an in vivo assay of dyskerin activity across cell
types, will hopefully prove this.

Other members of the DKC1 variant brother’s pedigree were sequenced as part of the PID
study. Interestingly, the telomere lengths of the children of both brothers were substantially
below the cohort-wide average. This is despite the fact that both the mothers of these children
displayed normal telomere lengths. This is particularly interesting in the case of the sole
male progeny of F005484 whom we can guarantee as not having inherited the DKC1 variant:
he must have inherited his X chromosome from his unaffected mother. These observations
have implications for an “epigenetic” mode of telomere length inheritance. In support of this
hypothesis, previous studies have shown that the father’s telomere length has greater bearing
than the mother’s in influencing inherited telomere length (NORDFJALL et al., 2005).

This chapter is a collaborative effort, leveraging the expertise of clinicians directly
involved in the NIHR BioResource study. As well as highlighting the utility of Telomerecat,
it highlights the strength afforded when collaborators of different disciplines combine to a
common goal. This chapter represents exciting new territory for Telomerecat in driving new
understandings within the clinic.



Chapter 6

Conclusions

Computational biology is an inherently interdisciplinary field. This variety is reflected by
the diversity of topics covered in this thesis. The thesis is broad in scope and attempts to
encompass explorations in software design, statistics and biology. While the tools described
in this thesis are perhaps the most significant contribution, we hope that we have demonstrated
the ability of these tools to uncover new knowledge in the field of biology.

Some future work in improving and applying Telomerecat

As part of this thesis we have detailed two applications of the Telomerecat tool to separate
data sets. In both cases Telomerecat identified novel results. We see that the best use
case for Telomerecat, and other tools like it, is in conducting a broad first sweep of the
data in order to identify possible sources that warrant further study. A good example of
this approach is demonstrated in Chapter 5 where we identified a novel association with
a previously uncharacterised high penetrate mutation in DKC1, which was later verified
with the FlowFISH method. As a result of this finding, the two brothers now know more
about their condition. This is as direct a clinical result as a computational method could
hope to achieve. Furthermore, we are hopeful that the associations highlighted in Chapter
4, particularly associations between telomere length and molecular subtypes, can go on to
inform further work in PCa.

Telomere length estimation from WGS provides an extremely cheap and efficient way of
estimating telomere length when WGS data has already been generated. These tools will
be particularly advantageous on the next generation of large cohort studies like the 100,000
Genomes project run by Genomics England. A study of this size will provide unprecedented
power to detect genotypic and phenotypic associations with telomere length the likes of
which are as yet unseen. The fact that telomere length can be discerned from these samples



142 Conclusions

without the cost of additional experiments adds real value to the state of telomere biology in
general.

Telomerecat will be particularly well suited to these applications because of the speed
with which it can generate telomere length estimates. We hope that the method will also
be held in high regard for its adaptability in being able to natively account for ITSs and
its agnostic approach to ploidy. Furthermore, Telomerecat will have additional usage as
currently the only tool that works on non-human WGS samples.

In Chapter 3 we demonstrated Telomerecat’s ability to correctly identify telomere length
across a range of validation experiments. Furthermore, in Chapter 5 we saw that Telomerecat
agreed with FlowFish and showed agreement with previous GWAS results. Additionally,
each time it has been applied in this thesis it has observed a moderate correlation with age, as
expected. These factors considered together provide very strong indication that Telomerecat
is capable of estimating telomere length from WGS samples with a useful degree of accuracy.

That being said there are numerous ways in which Telomerecat might be improved. Fore-
most amongst these is the way that Telomerecat deals with genuine telomere heterogeneity.
We saw in Chapter 3 that Telomerecat performs poorly if we apply too strict a threshold for
inclusion as a true telomere read (even when accounting for sequencing error). We see the
most likely reason for this is that there is genuine heterogeneity in the sequence of telomere.

An improved approach to modelling telomere heterogeneity? One way to deal with this
heterogeneity, that future versions of Telomerecat may employ, is to model the phenomenon
more closely. Figure 3.18 in Chapter 3 shows a histogram of all reads binned by the amount
of mismatching loci in each read. We propose that this is a mixture of three different
distributions. The left of the plot shows reads with few mismatches, these are likely to be
genuine telomere reads and look as though they may be defined by an exponential distribution.
In the middle, the distribution becomes flat, perhaps this is the contribution of subtelomere
reads and could be described by a uniform distribution. To the right most extreme of the
figure are reads with high mismatches, these are unlikely to be telomere reads, perhaps
modelled by the normal distribution. We then might be able to fit a combined mixture model
to these distributions such that we could predict the amount of reads contributed by the
distribution representing full telomere.

This method has the advantage of obtaining an estimate for the reads in the sample
without enforcing a hard coded threshold. This approach could even shed light on how far
telomere heterogeneity differs between samples. It would be interesting to observe how the
distribution fit to the complete reads differed between samples.
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Considering different types of telomere sequence Currently, Telomerecat only works
on samples where the telomeres consist of the TTAGGG canonic repeat. The TTAGGG
hexamer is found in all vertebrates, however other organisms use a different repeat. By
allowing the user to specify their own hexamer of choice we could widen the applicability of
the program. In these cases a careful examination would need to be made of how other parts
of the program were affected. For example, certain strains of yeast are known to display
extremely heterogeneous telomeres and it is not clear how this extreme heterogeneity would
affect the ITS filtering system. We would need to be precise in how we defined complete
telomere reads so as not to create an influx of false positives.

A related problem is the consideration of variable telomere repeats. The TelomereHunter
program already incorporates a consideration of G-type, C-type and J-type variant telomere
repeats. These variant repeats are often found in telomeres having undergone ALT but are
hypothesised to be interspersed within healthy telomere as well (VARLEY et al., 2002). While
Telomerecat does not directly account for variant telomere repeats some reads containing
variant repeats will naturally be included as fully telomeric. Telomerecat allows for a
maximum of 10% disagreement from the telomere sequence after accounting for sequence
error.

We have briefly tested a prototype version of Telomerecat that accepts occurrences of the
variant telomere repeat and found that the results did not differ significantly from the existing
method. Although, admittedly these tests were not conducted on samples that had undergone
ALT. Furthermore, we realised that in hard coding for human variant repeats we could be
further limiting the applicability of Telomerecat to human only samples.

Estimating telomere length in minION and 10X sequencing Further to improvements
to the existing algorithm, an area of future work could adapting Telomerecat to work on
new types of sequencing technologies. A number of new sequencing technology present
interesting opportunities for deriving even more information regarding telomere length.
Foremost amongst these new technologies are minION and 10X.

minION, developed and distributed by Oxford Nanopore Technologies (LU et al., 2016),
is an “ultra long-read” technology that can produce fragment lengths of hundred of KB.
As telomere in humans are routinely not longer than 15KB this brings the telomere firmly
into view as entirely sequenceable. It stands to reason that it would be possible to sequence
an entire telomere along with enough subtelomere sequence for the read to be aligned to
a specific chromosome. Estimating the length of telomeres on individual chromosomes
has so far been the preserve of imaging based techniques like qFISH and so capturing this
information with a sequencing approach would be desirable.
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In a similar vein the GemCode platform distributed by 10X could be used to provide
information about individual telomeres using WGS data (EISENSTEIN, 2015). GemCode is a
library preparation that adds a barcode to all of the reads from the same molecule. This library
preparation technique can be used in conjunction with the Illumina sequencing platform so
can be accommodate by existing technologies.

It might be possible to directly apply Telomerecat to these data. We could simply apply
the algorithm to sets of reads associated to the barcodes found in the sample. This relies
on there being high enough sequencing depth so that there were observable reads over
each boundary in the sample. Allowing for this constraint, we could plausibly provide a
distribution of telomere lengths throughout the sample.

A potential application for Parabam

In Chapter 2 we detailed our method for processing BAM files in parallel. Parabam is the
first tool to allow users to apply a function to each read in the BAM file using higher order
language features like conditional statements and loops. In this section we discuss potential
applications for Parabam.

Through the development of Telomerecat and in preparing this thesis Parabam has proven
useful as a tool of general application. For example, it was used multiple times to extract
pertinent data for figures, for instance Figure 3.15 where we needed to extract mapping
data for each read in a TELBAM file and all reads mapped to chromosome 14. Another
interesting supplementary use of Parabam was in creating the random subset of the file used
to benchmark the software in Section 2.5 (the user-rule to facilitate this is shown in Appendix
A).

PolyQ tracts in the AR gene Parabam lends itself particularly well to analyses that require
the entire BAM file to be processed. Firstly, because of speed with which Parabam can
conduct complex analyses. Furthermore, because the user-rule based paradigm is well suited
to analysing unmapped reads that are otherwise difficult to summon from the BAM file.

One possible application, with special relevance to PCa, is the analysis of a polyglutamine
expansion (polyQ) in the AR gene. PolyQs are repetitive stretches of the genome found
within coding regions of the genome1. PolyQ expansion has been identified as the cause of
Huntington’s disease (WALKER, 2007). In Huntington’s disease an unreliable mechanism
of DNA replication of the PolyQ sequence causes expansion in the gene over progressive
generations.

1so called for their constituent sequence “CAG” that codes for the glutamine amino acid, whose symbol is
“Q”
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In contrast to Huntington’s disease where long polyQ tracts are associated with the
disease phenotype, a recent meta-analysis suggested that shorter polyQ tracts in the AR gene
were a risk factor for PCa (QIN et al., 2017). Clearly this is not the final word on the matter
though, as previous studies have suggested an association between longer polyQ tracts and
reduced time to progression in prostate cancer (POWELL, 2011).

Parabam could be used to investigate PolQ tracts in AR. A similar approach to the one
utilised for the study of telomere reads could be applied to PolyQ tracts. We could create
a subset of reads and their pairs which have been observed to contain the PolyQ repeat
sequence and then conduct further analysis into the maximum observed length of repeats.
Our experience in dealing with repetitive sequencing reads as part of the Telomerecat method
may have particular pertinence to this problem as when assessing the length of a tract an
error in the sequence can shorten the observed tract length, skewing the analysis.

Most of the studies in this field have observed the risk of AR polyQ tract length in the
germline. An application of this tool to the Prostate ICGC cohort could be used to see how
the tract length differed between normal and tumour samples from the same donor.

Software design and practices in bioinformatics

Chapter 2 is software orientated and focuses on the design and implementation of the Parabam
algorithm. We hope that in Chapter 2 we demonstrated the importance of good design in
bioinformatics software. So often in the field of computational biology, concern with the
actual design of software comes as a distant second to the primary concern of methodology.

It is certainly important that the methodology of these tools is sound; the tools must
provide accurate and useful information. However, a lack of focus on best practices in
software design leads to a multitude of frustrations. It is our view that software engineers,
distinct even from computer scientists, must stake a claim for importance in the field by
impressing the need for coding best practices.

The computational advances over the past few years have caused a huge proliferation
in data. This proliferation has only emphasised the need for standardisation of working
practices. Tools are produced at a great rate, but how many are maintained or cited, primarily
because they do not work beyond a handful of test cases? Who ever heard of a computational
biology research groups with a dedicated code tester? How many computational biology labs
conduct code reviews or enforce the use of version repository system?

Perhaps the problem is that often computational biology research groups are structured
so as to mirror that of their traditional biologists (so called “wet labbers”). We wonder
whether a better mode of practice would be for computational biology groups to mirror agile
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software development companies. How much more reproducible would our science be if we
transferred some of the practices of professional software engineering firms to academia?

Managing software A problem familiar to many computational biologists is the difficulty
in installing software in order to run it in the first place. This is a direct consequence of
prioritising immediate results over software design. As long as the software compiles on the
authors computer in a manner sufficient to generate results, then the software is considered
complete. To improve our field, time must be taken to ensure that software is compatible on
a range of user machines.

One way of combating this problem is in the use of programs like Docker (MERKEL,
2014) that aim to modularise the installation of software by providing “containers”. Con-
tainers are lightweight environments that provide a layer of abstraction between the program
and the host operating system, without the overheads of a virtual machine. Conveniently, the
software designer may then ensure only that the container is run-able and not worry about
ensuring their code works on a broad range of machines.

Both Telomerecat and Parabam are available as Docker containers. Furthermore, we have
also ensured that both tools are easily installed via the Python Package Index such that only
a single user command is required to install the tools. We have ensured that both tools work
on a variety of Linux, Fedora, and MacOS platforms.

Over-parametrisation in software Another problem that plagues bioinformatics software
is over parametrisation. Some notable bioinformatics software is designed such that the onus
is put upon the user to provide many individual parameters to a piece of software in order to
make it run. This is poor design.

Ideally, users should be able to run a piece of software with a single parameter; the
input data. While it is good to provide the user with options to customise software, in our
experience it is often the case that frequently an analysis will not require fine parametrisation
and in these cases a default parameter should be provided. No one is better placed to provide
default parameters than the designer of the software.

To ensure that our programs do not suffer from these problems, Parabam and Telomerecat
have followed a command line interface design similar to that of samtools (the programmatic
interface for BAM and SAM files). Samtools is well designed software that follows this
principle of simplified parametrisation. Perhaps the success of samtools is best captured
by it’s near ubiquity on the computers of computational biologists. The samtools-esque
paradigm for command line interface specifies:

program command /path/to/inputfile.type



147

For instance when running Telomerecat the following command is sufficient to generate a
length estimation for a given sample:

telomerecat bam2length /path/to/inputfile.bam

Final thoughts

At the core of this thesis is a desire to add additional value to the combined sum of science,
through reinterpretation of existing data. This comes with its own set of challenges. A key
development hurdle to Parabam and Telomerecat was ensuring that the tools worked on a
varied set of inputs. Considerable effort has gone into preparing the software for unexpected
occurrences in features of the data or even the way it was formatted. There is still work to be
done in this area.

This said, we feel there is tremendous value in creating tools that provide new insights
from pre-existing data. In particular, we hope that Parabam finds a place as a software
framework, relied upon to manipulate these high density data sets in hitherto unfathomed
ways. Additionally, we are pleased to see Telomerecat has been used in at least three cancer
studies already (aside from Chapter 4, see Section 3.4.4) to uncover new associations. We
attest that there is no greater satisfaction for a computational biologist than to see their code
being put to good use.

There’s plenty of work left to do, especially in shedding new light on the life altering
diseases highlighted in this thesis. We hope that the tools presented here assist as we approach
these ends.
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Appendix A

Online code repositories and documentation

The complete code for Telomerecat is available from the following online code repository:

http://www.github.com/jhrf/telomerecat

Documentation for Telomerecat can be found at:

http://telomerecat.readthedocs.io/en/latest/

Likewise, the code for Parabam can be found in the following repository:

http://www.github.com/jhrf/parabam

Documentation for Parabam can be found at:

http://parabam.readthedocs.io/en/latest/

The AlignedSegment interface as provided by pysam

When reads are passed to user-rules in Parabam, the read is of type AlignedSegment.
The AlignedSegment type is provided by the Python interface to samtools called pysam. It
provides the a great many variables, all of which are accessible by the user rule. For a full
specification of the pysam AlignedSegment class please refer to:
http://pysam.readthedocs.io/en/latest/api.html#pysam.AlignedSegment

An example instruction file for the subset operation mode

Below is the instruction file written to subsample the file used in benchmarking as part of
Chapter 2. This function meant that 25% of reads were retained at random. We think that the
brevity of this function demonstrates the simplicity of code required for complex operations.



160

1 i m p o r t random
2

3 d e f r u l e ( r e a d s , c o n s t a n t s , p a r e n t ) :
4 i f random . random ( ) < 0 . 2 5 :
5 r e t u r n {" subsample " : r e a d s }
6 r e t u r n {}
7

8 d e f g e t _ s u b s e t _ t y p e s ( ) :
9 r e t u r n [ " subsample " ]

An example instruction file for the stat operation mode

The following is an example of a user-rule and blueprint definition that counts the number
of reads that have exactly 50/50 GC content. The output of this user rule would be a single
CSV file with a row for each of the input BAM files. Each row would have two columns, the
name of sample and the amount of reads with exactly 50/50 GC ratio.

1

2 d e f g e t _ g c _ r a t i o ( r e a d ) :
3 g c _ c o u n t = 0
4 t o t a l = 0
5 f o r base i n r e a d . seq :
6 i f ba se == "G" or base == "C " :
7 g c _ c o u n t += 1
8 t o t a l += 1
9

10 r e t u r n g c _ c o u n t / t o t a l
11

12 d e f r u l e ( read , c o n s t a n t s , p a r e n t ) :
13 r e s u l t s = {}
14 i f g e t _ g c _ r a t i o ( r e a d ) == . 5 :
15 r e s u l t s [ " g c _ c o u n t " ] = 1
16 r e t u r n r e s u l t s
17

18 d e f g e t _ b l u e p r i n t s ( b l u e p r i n t s ) :
19

20 b l u e p r i n t s [ " g c _ c o u n t " ] = {" d a t a " : 0 , " s t o r e _ m e t h o d " : " cumu "}
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