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1. Introduction

In recent years, an increasing number of applications has involved data that are
best described as being functional. Examples can be found in medicine (West
et al., 2007), neuroimaging (Jiang et al., 2009, Viviani et al., 2005), biology
(Wu and Müller, 2010, Illian et al., 2009), finance (Laukaitis, 2008) and quality
control (Colosimo and Pacella, 2010, Torres et al., 2011), to mention just a few
fields.

These data asked for the development of new methodologies that take into
account the properties of the functional data (see Ramsay and Silverman, 2005,
Ferraty and Vieu, 2006 and Horváth and Kokoszka, 2012). Most recently, much
attention has been devoted to inferential procedures for covariance operators
of functional data. Panaretos et al. (2010) examined the testing of equality of
covariance structures from two groups of functional curves generated from Gaus-
sian processes and Fremdt et al. (2013) extended their approach to the case of
non-Gaussian data. A similar asymptotic test after regularization of the pooled
covariance operator is also presented in Ji and Ruymgaart (2008). These meth-
ods make use of test statistics based on the Karhunen–Loéve expansions of the
covariance operators, thus exploiting the embedding of the space of covariance
operators in the space of Hilbert–Schmidt operators, which is the infinite dimen-
sional equivalent of embedding covariance matrices in the space of symmetric
matrices. However, Pigoli et al. (2014) show that better results can be achieved
by using metrics that take into account the non-Euclidean geometry of the space
of covariance operators. The drawback is that explicit analytic distributions are
not available for the test statistics based on these metrics and therefore the
authors proposed to use a permutation approach to carry out the test.

The aim of this work is to extend this idea to the case of multiple samples of
functional data. The testing of equality of several covariance operators has been
first considered by Boente et al. (2014), that, in order to improve asymptotic ap-
proximations, proposed to apply a bootstrap procedure to calibrate the critical
values of the test statistic obtained from the Hilbert–Schmidt norm of the differ-
ences between sample covariance operators. Paparoditis and Sapatinas (2016)
investigated then the properties of an empirical bootstrap methodology, appli-
cable to more than two populations, but its consistency has been proven only for
test statistics based on the Hilbert–Schmidt norms and on the Karhunen–Loéve
expansions of the covariance operators. More recently, Kashlak et al. (2016) ap-
plied concentration inequalities to the analysis of covariance operators. These
allow to construct non-asymptotic confidence sets that can be used to make
multiple-sample tests for the equality of covariances.

Since in the two-sample case the choice of the distance to define the test
statistic has been shown to impact the inferential performance in many scenar-
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ios (Pigoli et al., 2014), we propose here a more general approach that can be
applied to test statistics defined through any valid distance between covariance
operators. Previous works (Dryden et al., 2009; Pigoli et al., 2014) show that
using distances that take into account the geometry of the space of covariance
operators can benefit the statistical analysis. While we found out that this is the
case in the simulation settings we consider in Section 3.1, different distances can
be used if necessary, without any modification of the testing procedure. More-
over, an appropriate choice of the permutation strategy provides also pairwise
tests between groups with a guaranteed control of the family-wise error rate.
The proposed method has been implemented in R (R Core Team, 2016) and it
has been made available in the R package “fdcov” (Cabassi and Kashlak, 2016).

Let us consider q samples of random curves. We assume that curves in sample
i:

xi1, . . . , xini ∈ L2(Ω), i = 1, . . . , q

are realizations of a random process with mean μi and covariance operator Σi.
We would like to test the hypothesis

H0 : {Σ1 = Σ2 = · · · = Σq} against H1 : ∃i �= j s.t. Σi �= Σj .

Moreover, if the null hypothesis H0 is rejected, we would like to identify which
pairs of groups show a difference between covariance operators. To do this, we
will rely on the non-parametric combination methodology introduced by Pesarin
and Salmaso (2010) for multivariate permutation, which enables to combine
many different partial tests in an overall global test. In our case, the idea is to
combine all the pairwise comparisons between the q samples in order to obtain
the p-value of the global test. Using this method, the post-hoc comparisons are
straightforward: the global p-value and the partial p-values of the pairwise group
comparisons are computed simultaneously. However, some care is required when
jointly analyzing the latter, because a multiple testing problem arises. Thus, we
suggest to use a step-down approach to control the family-wise error rate. The
empirical power of the proposed test is evaluated through simulation studies
and compared with those of previously proposed testing procedures.

Finally, we analyze the covariance operators of age-dependent wheel-running
activity curves in mice (Morgan et al., 2003). These mice were from the 16-th
generation of a large evolution experiment artificially selecting for high levels of
wheel running activity (Swallow et al., 1998). Both the phenotypic and genotypic
covariances in all functional biological traits, including growth curves and ac-
tivity curves, are crucial because such covariances may constrain the evolution
of the functional trait (Irwin and Carter, 2013, 2014). In this specific mouse
experiment we wished to test the hypothesis that the phenotypic covariance
structure of activity across age had evolved under 16 generations of selection
relative to control lines of mice (Morgan et al., 2003). In addition, because there
were 4 replicate selected lines and four replicate control lines, all derived from
the same source population, we have the opportunity to test for the evolution
of activity curves by genetic drift by comparing replicate lines within a given
selection group. (see Koteja et al., 1999; Kane et al., 2008).
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2. Testing equality of covariance operators

In this section, we describe the proposed strategy to test the equality of co-
variance operators across multiple groups, which allows for the use of the most
appropriate metric for covariance operators in the problem at hand and, at the
same time, for the investigation of pairwise difference between groups. First, we
discuss a few possible choices of distance between covariance operators.

2.1. Metrics for covariance operators

Let x be a random function which takes values in L2(Ω), Ω ⊆ R, such that
E(||x||2L2(Ω)) < +∞. The covariance operator Σx is defined, for g ∈ L2(Ω), as

Σxg(t) =
∫
Ω
cx(s, t)g(s)ds, where

cx(s, t) = cov(x(s), x(t)) =

= E [(x(s)− E [x(s)]) (x(t)− E [x(t)])] .

Then, Σx is a trace class, self-adjoint, compact operator on L2(Ω) with non
negative eigenvalues (see, e.g., Bosq, 2012, Section 1.5). Indeed, any compact
operator T has a canonical decomposition that implies the existence of two
orthonormal bases {uk}, {vk} for L2(Ω) such that Tf =

∑
k σk〈f, vk〉uk, or,

equivalently, Tvk = σkuk, where 〈v, v〉 indicates the inner product in L2(Ω) and
the non negative real numbers {σk}k∈N, are called the singular values of T . If
the operator is self-adjoint, there exists an orthonormal basis {vk} such that
Tf =

∑
k λk〈f, vk〉vk, or, equivalently, Tvk = λkvk and the sequence {λk} ∈ R

is called the sequence of eigenvalues for T . A compact operator T is said to be
trace class if the trace tr(T ) =

∑
k〈Tek, ek〉 < +∞ for every orthonormal basis

{ek}. A compact operator T is said instead to be Hilbert–Schmidt if its Hilbert–
Schmidt norm is bounded, i.e., ||T ||2HS = tr(T ′T ) < +∞, where T ′ denotes the
adjoint operator of T . The Hilbert–Schmidt norm is a generalization of the
Frobenius norm for finite-dimensional matrices.

It is then possible to embed the space of covariance operators in the space of
Hilbert–Schmidt operators and use the Hilbert–Schmidt distance ||Σ1 −Σ2||HS

to measure the distance between two covariance operators Σ1 and Σ2. However,
this is an extrinsic metric based on the above embedding and thus ignores the
geometry of the space of covariance operators, such as the trace class property
and the non negativity constraints on the eigenvalues. The same is true for
the other distances based on p-Schatten norms, such as the nuclear distance
or the spectral distance (see Pigoli et al., 2014). Pigoli et al. (2014) show that
when the covariance operator is the object of interest for the statistical analysis,
taking into account the property of the space leads to tests with higher empirical
power. This motivated the introduction of new metrics such as the square root
distance and the Procrustes distance. These are examples of distances that are
instead based on the additional structure available for covariance operators and
the simulation studies reported in Section 3.1 do indeed confirm that this family
of distances provide a better performance.
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Let Σ be a self-adjoint trace class operator, there exists a Hilbert–Schmidt
self-adjoint operator

(Σ)1/2f =
∑
k

λ
1/2
k 〈f, vk〉vk,

where λk are eigenvalues and vk eigenfunctions of Σ. The square root distance
between two covariance operators Σ1 and Σ2 is therefore defined as

dR(Σ1,Σ2) = ||Σ1/2
1 − Σ

1/2
2 ||HS.

The square root distance is based on the mapping of the two operators Σ1 and
Σ2 from the space of covariance operators to the space of Hilbert–Schmidt oper-
ators, through the square root map. This is a particular choice among a family
of such maps that transform the covariance operator Σ to a Hilbert–Schmidt
operator L so that Σ = LL′. It is easy to see that L is defined up to a unitary
operator R, since (LR)(LR)′ = LRR′L′ = LL′ = Σ. In the case of square root
distance, L is arbitrarily chosen to be symmetric. Therefore, a natural gener-
alization consists in following a Procrustes approach to minimize the distance
between two equivalence classes in the square root space. Pigoli et al. (2014)
define the square of the Procrustes reflection size-and-shape distance between
two covariance operators Σ1 and Σ2 as

dP (Σ1,Σ2)
2 = inf

R∈O(L2(Ω))
||L1 − L2R||2HS =

= inf
R∈O(L2(Ω))

trace((L1 − L2R)′(L1 − L2R)),

where Li are such that Σi = LiL
′
i, for i = 1, 2, and O(L2(Ω)) is the space of uni-

tary operators on L2(Ω). It can be seen that the square root and the Procrustes
distances are indeed well defined distances, their property being ultimately in-
duced by the Hilbert–Schmidt norm used in their definition.

2.2. Non-parametric combination

In this section we describe how it is possible to test the global hypothesis that
all the covariance operators are equal across the groups by combining pairwise
group comparisons which are based on the two-sample permutation test de-
scribed in Pigoli et al. (2014). This approach will allow us to use any metric in
the definition of the test statistics without making any assumption on the data
generating process.

Let us assume we have q independent groups of functional data

xi1, . . . , xini ∈ L2(Ω), i = 1, . . . , q.

and they are independent and identically distributed samples from a random
process with distribution Pi, mean μi and covariance operator Σi. In the follow-
ing, we denote with xi the vector of observations (xi1, . . . , xini) from group i.
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We would like to test if the covariance operators are all equal. The global null
hypothesis can be viewed as an intersection of partial null hypotheses and the
global alternative hypothesis as the union of the corresponding alternative hy-
potheses, i.e.

H0 :
⋂
i �=j

Hij
0 against H1 :

⋃
i �=j

Hij
1 , where Hij

0 : {Σi = Σj} and Hij
1 : {Σi �= Σj}.

The idea is to combine the k = q(q − 1)/2 two-sample tests for each pair
of groups in a global test, using the non-parametric combination algorithm of
Pesarin and Salmaso (2010).

Let Tij = d(Si, Sj) be the test statistic of our choice, associated to the par-

tial test Hij
0 of groups i and j respectively, where Si, Sj are sample covari-

ance operators of the corresponding groups and d(·, ·) is some distance between
covariance operators. In particular, in this work we consider the square root,
Procrustes and Hilbert–Schmidt distances defined in Section 2.1. Let us define
by T = (T1,2, T1,3, . . . , Tq−1,q), the vector of all partial test statistcs Tij , with
1 ≤ i < j ≤ q.

The partial tests Hij
0 : d(Σi,Σj) = 0 against Hij

1 : d(Σi,Σj) �= 0 marginally
satisfy the assumptions required for the test (i.e. they are marginally unbiased,
consistent and significant for large values) for any of the distances presented in
Pigoli et al. (2014). Therefore, the considered algorithms can be applied to any
functional dataset using the vector of test statistics T.

The partial test statistics in T are combined by a function Ψ that must satisfy
the properties indicated by Pesarin and Salmaso (2010):

1. Ψ is non-decreasing in each argument,
2. If one or more arguments are zero, Ψ attains its supremum value Ψ̄, pos-

sibly not finite.
3. For all α > 0, the critical value Tα

Ψ of Ψ is assumed to be finite and strictly
smaller than Ψ̄.

Also, the curves must be centred around the sample mean of each group,
because exchangeability of the observations is required in order to apply per-
mutations.

We indicate by x
(0)
ij the observations centred around the sample mean of the

group mi, by x
(0)
i the vector of centred observations of group i and by S

(0)
i the

associated sample covariance operator. Similarly, we indicate by π(b) the b-th
permutation of the data labels and so the superscript (b) indicates the centred
dataset, permuted according to π(b).

We obtain the following algorithm:

Algorithm 2.1 (Multiple-sample permutation test for the equality of covari-
ance operators).
Let xij , i = 1, . . . , q, j = 1, . . . , ni be the considered dataset.

1. Let x
(0)
ij = xij−mi, where mi is the sample mean of xi, for all i = 1, . . . , q,

j = 1, . . . , ni.
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2. Let T(0) be the k-dimensional vector containing the pairwise distances

between the sample covariance operators of the centred groups x
(0)
i and

x
(0)
j , d(S

(0)
i , S

(0)
j ), for all 1 ≤ i < j ≤ q.

3. For b = 1, . . . , B, consider a random permutation π(b) of the data la-
bels and compute the k-dimensional vector T(b) containing the distances
between the sample covariance operators of the groups of the permuted

dataset, d(S
(b)
i , S

(b)
j ), for all 1 ≤ i < j ≤ q. {T(b)}Bb=1 is a random sam-

pling from the permutational distribution of the random vector T.
4. Let

p̂ij(d) =

∑
b 1

[
d(S

(b)
i , S

(b)
j ) ≥ d

]
B

be consistent estimates of pij(d) = P
(
d(S

(b)
i , S

(b)
j ) ≥ d

)
, d ∈ R, d ≥ 0.

5. Compute the estimated partial p-values of the test as p̂ij = p̂ij(d(S
(0)
i ,

S
(0)
j )).

6. Combine the p̂ij through the combining function Ψ to obtain the observed

global test statistic T
(0)
Ψ = Ψ(p̂1,2, p̂1,3, . . . , p̂q,q−1).

7. For b = 1, . . . , B, compute the b-th combined test statistic as

T
(b)
Ψ = Ψ(p̂

(b)
1,2, p̂

(b)
1,3, . . . , p̂

(b)
q−1,q), where p̂

(b)
ij = p̂ij

(
d(S

(b)
i , S

(b)
j )

)
.

8. Compute the estimate of the p-value of the combined test

p̂Ψ =

∑
b 1[T (b)

Ψ ≥ T
(0)
Ψ ]

B
.

9. If p̂Ψ ≤ α, reject H0.

Proposition 1. If we make the additional assumptions that, when n goes to
infinity, then so also do the sample sizes of all groups and that the number B
of Monte Carlo iterations goes to infinity while k and α remain fixed, then it is
possible to prove that the test we obtain is strongly consistent and unbiased for
the overall null hypothesis H0 against the alternative H1.

This is a direct consequence of Theorems 2, 4.3.1 and 3, 4.3.2 of Pesarin and
Salmaso (2010).

2.3. Synchronized permutation tests

Step 3. of Algorithm 2.1 requires to generate a certain number of permutations of
the original dataset. When data belong to multiple groups, different strategies
can be used to generate the permuted samples. In Solari et al. (2009), three
different ways of permuting data are proposed.

The simplest idea is to perform permutations involving the whole dataset, so-
called pooled permutations. This means that a permutation π : {1, . . . ,

∑
i ni} →

{1, . . . ,
∑

i ni} is applied to the whole data vector X′ = (x1,x2, . . . ,xq). That is,
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defining by Pπ the permutation matrix associated to permutation π, such that
the (i, j)-th element of the matrix Pπ

i,j = 1 if j = π(i) and Pπ
i,j = 0 otherwise,

then the permuted dataset is

X∗ = PπX.

This can be done because, underH0, the observations of all groups are exchange-
able. So the first permuted group of observations x∗

1 is composed by the first n1

elements of X∗, the second one, x∗
2, by the following n2 elements, and so on, and

the test statistics T ∗
ij are computed using these permuted groups. However, this

strategy does not allow to test also the partial hypotheses, since each pairwise
comparison based on T ∗

ij involves not only the observations belonging to the pair
of considered groups, but also those of the other groups. Therefore, the resulting
global p-value is correct, but the partial p-values would not be accurate when
doing post-hoc comparisons.

The second proposal is to apply paired permutations, that is, while com-
paring the i-th and j-th groups, the inference is made on each paired vector
X′

ij = (xi,xj) independently. In other words, for each pair (i, j) we define a
permutation πij : {1, 2, . . . , ni + nj} → {1, 2, . . . , ni + nj} and permute each
paired vector independently:

X∗
ij = PπijXij

The result would be opposite than the one obtained with pooled permutations:
the partial tests are exact, just like in the two-sample case, but the global test
is not reliable since this method does not take into account the dependencies
between the marginal tests.

Therefore, we want paired permutations to be done not independently but
jointly. At the same time, we would like to keep the partial comparisons sepa-
rate, so as to be able to do post-hoc comparison with no additional computa-
tional effort. Then, if the design is balanced, i.e. n1 = · · · = nq = n̄, a further
possibility is to apply synchronized permutations, exchanging the same num-
ber ν of units between each pair of blocks. As shown by Solari et al. (2009),
applying synchronized permutations allows both maintaining the dependencies
among partial tests and involving the observations of each comparison at the
same time. In particular, here we choose to apply constrained synchronized
permutations, that is to exchange units in the same original position within
each block. This can be achieved simply by appliying the same permutation
π : {1, 2, . . . , 2n̄} → {1, 2, . . . , 2n̄} to each paired vector Xij :

X∗
ij = PπXij .

In conclusion, if the groups are balanced, it is better to use synchronized
permutations, since they allow to produce an approximated distribution for
each partial test statistic Tij , similarly to the two-sample case, at the same time
as the approximated distribution for the global test statistic TΨ. In all other
settings, pooled permutations can be used and only the global hypothesis will
be considered.
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2.4. Post-hoc analysis

After performing the global test, if the null hypothesis H0 is rejected in favour
of the alternative H1, it is often of interest to find out which of the data samples
led to this conclusion. One of the advantages of the non-parametric combina-
tion methodology is that partial p-values are computed at the same time of
the global one. Therefore, the post-hoc comparisons can be done with a small
computational effort. We investigate here the methods that allow to control the
family-wise error rate, in order to simultaneously assess which of the partial null
hypotheses Hij

0 are rejected.

First, we recall the resampling step-down method proposed by Westfall and
Young (1993). The idea is that, rather than adjusting all p-values according
to the minimum p-value distribution, one should only adjust the minimum p-
value using this distribution and then adjust the remaining p-values according
to smaller and smaller sets of p-values. The effect of using restricted sets of
p-values is to make the adjusted p-values smaller, thereby improving the power
of the method.

Let the ordered partial p-values have indexes r1, . . . , rk so that p̂(1) = p̂r1 ,
p̂(2) = p̂r2 , . . . , p̂(k) = p̂rk . The step-down adjusted p-values are defined sequen-
tially as follows:

p̃(1) = P

(
min

j∈{r1,...,rk}
p̂j ≤ p̂(1)|H0

)

p̃(i) = max

{
p̃(i−1),P

(
min

j∈{ri,...,rk}
p̂j ≤ p̂(i)|H0

)}
, i = 2, . . . , k.

The use of max operator insures that the order of the adjusted p-values is the
same as that of the original p-values. Westfall and Young (1993) proved that
this procedure controls the family-wise error rate in the strong sense.

Pesarin and Salmaso (2010) showed that the resampling method proposed by
Westfall and Young (1993) is equivalent to iteratively use the non-parametric
combination with the Tippett combining function ΨTippett (Birnbaum, 1954):

Algorithm 2.2 (Step-down method for the Tippett combining function).

Let p(1), . . . , p(k) be the increasing ordered p-values corresponding to the set
of partial hypotheses.

1. p̃(1) = ΨTippett(p(1), . . . , p(k)) = min(p(1), . . . , p(k)),

– If p̃(1) ≤ α, reject the corresponding hypothesis H
(1)
0 and continue;

– Otherwise retain the hypotheses H
(1)
0 , . . . , H

(k)
0 and stop.

2. For i = 2, . . . , k, p̃(i) = ΨTippett(p(i), . . . , p(k))

– If p̃(i) ≤ α, reject also H
(i)
0 and continue;

– Otherwise retain the hypotheses H
(i)
0 , . . . , H

(k)
0 and stop.



3824 A. Cabassi et al.

Furthermore, Lehmann and Romano (2006) presented a similar step-down
method, that uses the test statistics Tij instead of the p-values pij . This method
is equivalent to the one based on the Tippett combining function but allows
to avoid the computations of the permutational distributions of the partial p-
values. For example, let us suppose that the individual tests Hij

0 are based on
test statistics Tij with large values indicating evidence against the partial null

hypotheses. Let K = {Hij
0 , 1 ≤ i < j ≤ q} be the set of all the partial test

hypotheses and K̄ a subset of K, K̄ ⊆ K. First of all, we have to define the
critical value of the combined test of all the hypotheses contained in K̄ at level
α ∈ [0, 1] so that the family-wise error rate is controlled in the strong sense.
Many definitions are possible, as long as the properties indicated in Lehmann
and Romano (2006), Theorem 9.1.3 are verified. We choose to use the definition
given in Solari et al. (2009), where the critical value of K̄ at level α is defined as
the m-th smallest value among the permutation distributions of TK̄ = max

Hij
0 ∈K̄

Tij

cK̄(α) =

{
max

Hij
0 ∈K̄

T
(b)
ij , b = 1, . . . , B

}
(m)

,

where m = B − �Bα. For this reason we will refer to this as the step-down
method for the maxT combining function. The algorithm is defined as follows:

Algorithm 2.3 (Step-down method for the maxT combining function).
Let T(1) = Tr1 ≥ . . . ≥ T(k) = Trk denote the observed ordered test statistics

where r1, . . . , rk are such that Tr1 ≥ Tr2 ≥ . . . ≥ Trk and let H
(1)
0 , H

(2)
0 , . . . , H

(k)
0

be the corresponding hypotheses.

1. Let K1 = K,

– If Tr1 ≥ cK1(α) reject H
(1)
0 and continue;

– Otherwise retain the hypotheses H
(1)
0 , . . . , H

(k)
0 and stop.

2. For i = 2, . . . , k, let Ki be the set of hypotheses not previously rejected,

i.e. Ki = {H(i)
0 , . . . , H

(k)
0 },

– If Tri ≥ cKi(α) reject H
(i)
0 and continue;

– Otherwise retain the hypotheses H
(i)
0 , . . . , H

(k)
0 and stop.

Lastly, when using another combining function, it is possible to use the closed
testing procedure of Marcus et al. (1976). This method is based on the idea that
one may reject any hypothesis Hij

0 , while controlling the family-wise error rate,

when the test of Hij
0 itself is significant and the test of every intersection of

partial hypotheses that includes Hij
0 is significant. Hence, p̃ij is the maximum

of all the p-values of the partial hypotheses containing Hij
0 . This method has

two major drawbacks: it requires a greater number of computations and it is
very conservative. However, it is a useful tool when the use of the Tippett or
maxT combining functions is not suitable.
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Fig 1. Covariance operators of the subjects in the Berkeley growth study dataset.

3. Simulation studies

3.1. Synthetic datasets

We generate synthetic datasets as follows. All the curves are generated on an
equispaced grid of 31 points on Ω = [0, 1] and the sample size of each group is
n̄ = 20. Unless otherwise stated, curves are simulated from a multivariate Gaus-
sian process. We consider q different groups (with q varying across simulation
studies) and for all q groups the mean function is equal to sin(x), x ∈ [0, 1].
The covariance operator of each group varies according to the test case. Let
Σ1 and Σ2 be the sample covariance operators of the male and female sub-
jects in the Berkeley growth study dataset described in Ramsay and Silverman
(2005), rescaled to [0, 1]. We obtained this covariance operators from the func-
tional dataset available in the R package fda (Ramsay et al., 2014), without any
preprocessing. A surface representation of Σ1 and Σ2 can be seen in Figure 1.

We then consider two forms for the expression of the covariance operators of
some of the groups under the alternative:

First test case Some of the groups have covariance operator Σ(γ) = [(Σ1)
1/2+

γ{(Σ2)
1/2R̃− (Σ1)

1/2}][(Σ1)
1/2 + γ{(Σ2)

1/2R̃− (Σ1)
1/2}]′ where R̃ is the

operator minimizing the Procrustes distance between Σ1 and Σ2 (Pigoli
et al., 2014) and γ ∈ [0, 5] is a parameter which controls how far this
covariance operator is from Σ1.

Second test case Some of the groups have covariance operator Σ(γ) = (1 +
γ)Σ1, γ ∈ [0, 5].

The two test cases represent two different ways in which the null hypothesis
can be violated. The second case pertains to a difference in the total variation
between groups, while the first test case presents also a difference in shape
between covariance operators.

Each permutation test is performed with B = 1000 iterations of the Monte
Carlo Algorithm 2.1 and is repeated for 1000 replicates of the simulated dataset.
In the following, we use this simulated data to evaluate the empirical size and
the empirical power of the proposed test when using different distances between
covariance operators. All the functions needed to apply the permutation tests



3826 A. Cabassi et al.

Fig 2. Empirical power of synchronized permutation global and partial tests applied to the
first test case using maxT combining function. p-values have been adjusted using the maxT
step-down procedure.

to these simulated data have been made available in the R package “fdcov”
(Cabassi and Kashlak, 2016).

3.2. Empirical size and power of the test

We consider first a simulation with q = 3 groups, where the first group has
covariance operator Σ1 and the others two covariance operators Σ(γ). Figures 2
and 3 show the empirical power of the global and partial tests done using the
synchronized permutations, the maxT combining function and the Procrustes,
square root and Hilbert–Schmidt distance, for the first and second test cases
respectively. It is evident that the test has greater empirical power when using
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Fig 3. Empirical power of synchronized permutation global and partial tests applied to the
second test case using the maxT combining function. p-values have been adjusted using the
maxT step-down procedure.

Procrustes and square root distances, with the latter being in this case prefer-
able due to the lower computational cost. Moreover, the global test appears to
have the correct level for all the distances while the partial tests are conserva-
tive for γ = 0, as expected, and the proportion of rejection for the partial test
between the second and third group (which have equal covariances) is close to
or less than 5% for all values of γ.

We want now to explore how the performance of the test changes when the
number of groups increases. Figure 4(a) shows the empirical power of the global
test using the square root distance when the number of groups goes from 4 to
10, always with the first group with covariance operator Σ1 and all the others
with covariance operator Σ(γ), with γ varying from 1 to 5. It is possible to see
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Fig 4. Empirical power of synchronized permutation global tests applied to the first test case
using the maxT combining function, with 4, 6, 8 and 10 data samples.

that the level of the test is respected for all numbers of groups while the empir-
ical power tends to decrease when the number of groups increases. This is due
to the fact that only q partial tests out of q(q − 1)/2 are bringing information
about the violation of the null and they form a smaller and smaller proportion
of all the partial tests when q increases. If we instead have half of the groups
with covariance operator Σ1 and half with covariance operator Σ(γ), the loss of
empirical power when q increases is smaller, as shown by the empirical power
curves reported in Figure 4(b). This is because of the larger proportion of false
partial hypothesis.

3.3. Comparison with the other existing tests

We compare now the proposed method, using the square root distance and
the maxT combining function, with some alternative approaches to test for the
difference between covariance operators. We consider first a generalization of the
Levene’s test (Anderson, 2006) which is sensitive only to the difference in total
variation between groups and it is implemented using the permutational analysis
of variance. Paparoditis and Sapatinas (2016) introduced an empirical bootstrap
approach based on Hilbert–Schmidt distance (or alternatively, on other test
statistics based on the Karhunen–Loéve expansions of the covariance operators).
In the interest of a fair comparison, we apply here the same procedure to the test
statistics based on the square root distance. It should be noted however that
the theoretical properties of this modified procedure still need to be studied.
Finally, we consider the test based on the concentration inequalities method of
Kashlak et al. (2016).
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Fig 5. Empirical power of synchronized permutation, Levene’s, empirical bootstrap and con-
centration inequalities-based global tests applied to the first (left) and second (right) test cases.
Data are sampled from a Gaussian process. The results shown were obtained using the com-
bining function maxT and the p-values have been adjusted with the step-down procedure.

Figure 5 shows the empirical power of the generalisation of Levene’s test
(Anderson, 2006), the empirical bootstrap by Paparoditis and Sapatinas (2016)
and the concentration inequalities method of Kashlak et al. (2016) for the two
test cases, compared to the results obtained using the proposed permutation
test. Here data are simulated from q = 3 groups with the first group having
covariance operator Σ1 and the other two covariance operators Σ(γ). It appears
that the permutation test and the empirical bootstrap have approximately the
same empirical power in both test cases. On the contrary, Levene’s test per-
forms very differently. As expected, it outperforms the others in the second test
case, where it captures very well the differences in scale, but it is dramatically
less powerful in the first test case, where the difference between the covariance
operator is mostly in shape. The non-asymptotic test of Kashlak et al. (2016)
is slightly less powerful than the permutation test and the empirical bootstrap
but it has the advantage of being much less computationally expensive than the
resampling-based methods.

We want also to explore what happens when data are generated from a non-
Gaussian distribution. We simulated data from a multivariate t distribution with
4 degrees of freedom and correlation matrix implied by the covariance operator
Σ1 for the first group and Σ(γ) for the other two groups. Here it is not possible
to apply the non-asymptotic test of Kashlak et al. (2016), because calibration
parameters are not yet available when data are not Gaussian. Figure 6 shows
the empirical power for the permutation test, the empirical bootstrap test and
the Generalized Levene’s test. Here the permutation test appears to perform
slightly better then the bootstrap, while Levene’s test is again performing very
well in the second tests case but not in the first. Overall, the empirical power of
all tests is lower than in the Gaussian case, but they respect the nominal level.
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Fig 6. Empirical power of synchronized permutation, Levene’s and empirical bootstrap global
tests applied to the first (left) and second (right) test cases. Data are generated using a
multivariate t-Student. The results shown were obtained using the combining function maxT
and the p-values have been adjusted with the step-down procedure.

4. Application to evolutionary biology

In this section we apply the proposed permutation test to a dataset of interest
in evolutionary biology. We focus here on the phenotypic covariance function,
i.e. the covariance between observed function-valued biological traits. While the
interest of evolutionary biology may ultimately be on the genetic covariance, i.e.
the proportion of covariance which is caused by genes, studying differences in
the phenotypic covariance is also crucial because it may constrain the evolution
of the functional trait (Irwin and Carter, 2013, 2014). The main question of
interest here is whether there is a difference in the covariance operator of a
function-valued trait (Kingsolver et al., 2001; Stinchcombe et al., 2012) among
experimental lines of mice with known differences in evolutionary histories.

4.1. Dataset

Data were collected from aging house mice (Mus domesticus) that were members
of the 16th generation of a selective breeding experiment for increased voluntary
wheel-running behavior (Swallow et al., 1998). This experiment produced four
replicate lines selected for the total number of wheel revolutions run on days 5
and 6 of a six day exposure to running wheels that occurred when the mice were
six to eight weeks of age, and four replicate control lines that were randomly bred
each generation (see Swallow et al., 1998, for additional details). At generation
16, a total of 360 mice were used to establish an aging colony (Morgan et al.,
2003; Bronikowski et al., 2006). Half of the mice in the colony were from the four
high-selected lines and half were from the four control lines that were randomly
bred with respect to running behavior, and half of each selection group was
housed with running wheels (active mice) and half was housed in cages without
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Fig 7. Voluntary wheel running activity dataset, raw data, control and selected lines.

wheels (sedentary mice). One male from one of the control lines died of unknown
causes during the early stages of the experiment. Each week every mouse was
measured for body mass and food consumed, and each active mouse had the
total number of wheel revolutions run that week recorded (see Morgan et al.,
2003; Bronikowski et al., 2006, for more details).

Herein we examine only data from the active mice from both selection groups
from the first 80 weeks of the experiment, as reported by Morgan et al. (2003).
The variables in the dataset are: a unique id number for each mouse and id
of fullsib family (the group of first-degree relatives which, on average, share
50% of their genes) from which the mouse was drawn; the age and sex of the
mouse; the line number (lines 1, 2, 4, 5 are control lines, the others are selected
lines); the week of wheel measure and the number of revolutions run during
the week. Some of these variables have been collected in view of identifying the
genetic component of the covariance and will not be used in the present analysis.
Total activity, measured as number of revolutions run in a given day, can be
decomposed into the product of mean velocity and duration of activity. Thus,
increased total activity levels could be accomplished by an increase in mean
velocity, an increase in the amount of time spent running, or a combination of
both. We will not consider here the family relationship between mice, although
they would be an important part of any subsequent genetics analysis.

The raw data are presented in Figure 7. Each line connects the number
of revolutions run by each mouse during the first 80 weeks of the experiment
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Fig 8. Voluntary wheel running activity dataset after smoothing and alignment, control and
selected lines.

(Morgan et al., 2003). Mice identified by ID numbers 90183 and 90224 are taken
as examples of the selected and control lines respectively. The corresponding
wheel-running functions have been highlighted in each figure. The first one is a
male belonging to family number 29 from line 1 (control), while the second one
is a female belonging to family number 11 from line 3 (selected).

At several times during the experiment, data collection was skipped for one
or two weeks. In these cases, the data collected after the skipped week(s) was
divided by number of weeks, giving multiple weeks in a row with the same value.
This is easily seen in Figure 7 at weeks 38, 39, 40, when the values are constant
for each mouse, because the wheel revolutions recorded for week 40 were divided
by 3 and assigned to weeks 38 and 39 as well as 40. The weeks in which this
occurred are: 34; 35; 38; 39; 40; 50; 51; 72; 73.

We regularized data using cubic smoothing splines. In particular, we used the
the routine spline.smooth() of the R package “stats” (R Core Team, 2016).
Since individual mice can have their own biological clock, curves are aligned to
remove phase variability (Ramsay and Silverman, 2005), via the elastic analysis
described in Tucker et al. (2013) and implemented in the R package “fdasrvf”
(Tucker, 2016). Figure 8 shows the smooth and aligned wheel-running activity
curves.
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4.2. Missing observation

In the voluntary wheel running activity dataset, all groups (experimental lines)
are composed of 20 mice. However, one of the mice died of unknown causes
during the early stages of the experiment and therefore one group has only 19
observations. For this reason, in order to apply the synchronized permutations,
we have to prove that the presence of a missing observation does not affect the
inference. Note that we could have used pool permutations if we were only inter-
ested in the global hypothesis, but the desire to carry out comparisons between
lines as well motivated us to justify the extension of synchronised permutations
to this setting.

Following the guidelines given by Pesarin and Salmaso (2010), we give a
new formulation of the test that takes into account the presence of missing
data. Thanks to this, we are able to prove that it is possible to apply the
proposed test to an unbalanced dataset with one missing observation, under
certain assumptions on the process that generates the missing observations.

Consider again a functional dataset of the form

X = {xij , i = 1, . . . , q, j = 1, . . . , ni},

that consists of q ≥ 2 samples of size ni ≥ 2. The groups are related to q levels
of a treatment and the data xij are supposed to be independent and identically
distributed with distributions Pi ∈ P , i = 1, . . . , q. In order to take into account
that, for whatever reason, some of the data are missing, Pesarin and Salmaso
(2010) suggested to consider the inclusion indicator associated to the considered
dataset, that is

O = {oij , i = 1, . . . , q, j = 1, . . . , ni},
where oij = 1 if xij has been observed and collected, oij = 0 otherwise. We
denote with oi the vector of observation indicators (oi1, . . . , oini) from group i.
This indicator represents the observed configuration in the dataset. Hence, the
dataset can be seen as the pair of matrices (X,O). Therefore we would like to
perform the following test:

H0 : {(x1,o1)
d
= . . .

d
= (xq,oq)} against H1 : {H0 is not true}.

Thus, if we assume that data are jointly exchangeable under the null hypothesis
with respect to the groups, we can, again, utilize a permutation test. Let us
represent by Pi the joint multivariate distribution of (xi,oi), i = 1, . . . , q under
the null hypothesis. Then it holds:

Pi = Poi · Pxi|oi
.

The idea of Pesarin and Salmaso (2010) is to break down the null hypothesis in
the following way:

H0 : {[o1
d
= . . .

d
= oq] ∩ [x1

d
= . . .

d
= xq|O]} = {HO

0 ∩H
X|O
0 }.
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Furthermore, we assume that the missing data are missing completely at ran-
dom. In this case, we can condition with respect to the observed inclusion in-
dicator and ignore HO

0 , because O does not provide any information about
treatment effects (Rubin, 1976). In other words, the partial hypotheses on O
are true by assumption and the null hypothesis can be simplified:

H0 = H
X|O
0 = {x1

d
= . . .

d
= xq|O}.

We indicate by O∗ any permutation of O, the permutational vector of inclusion
indicators, and by κ∗ = [κ∗

1, . . . , κ
∗
q ] the corresponding vector of counts of valid

observations in each group, where

κ∗
i =

ni∑
j=1

o∗ij , i = 1, . . . , q.

Then we can group the set of all permutations of the dataset, according to
the vectors of actual sample sizes of valid data κ∗. Now, let T be the vector
of partial test statistics based on functions of sample valid data; we denote
its permutation distribution as F [T|(X,O)], T ∈ R

k. Pesarin and Salmaso
(2010) pointed out that, if the permutation sub-distributions of the partial test
statistics are invariant with respect to the sub-groups induced by O∗, then we
can simply evaluate F [T|(X,O)] ignoring the missing values. This implies that

F [T|(X,O)] = F [T|(X,O∗)]

holds for every T ∈ R
k, for every permutation O∗ of O and for all datasets X.

In the case of the tests for covariance operators, this is true because the test
statistic TΨ of the global test is a combination of the partial test statistics of the
pairwise comparisons between the groups. These, in turn, depend only on the
distances between covariance operators and their permutations. We can suppose
that, under the null hypothesis, the permutation distribution of the partial test
statics Tij depends essentially on the number κ∗

i , κ
∗
j of summands. Thus, just

like in the case of the multivariate analysis of variance studied in Pesarin and
Salmaso (2010), the previous distributional equality is equivalent to

F [T|(X,κ)] = F [T|(X,κ∗)], . (1)

Hence, we would like our partial test statistics to be invariant with respect to
κ∗ and for all X. Now, suppose that we are in the balanced case, i.e. n1 = · · · =
nq = n̄ and one observation is missing in one of the groups, say group a, where
1 ≤ a ≤ q. In the wheel-running dataset, for instance, q = 8, n̄ = 20 and one
observation is missing in group 1. All the pairwise comparisons between groups
i and j with 1 ≤ i < j ≤ q and i, j �= a are not affected by the problem of
missing data since κ∗

i = κ∗
j = n̄. As regarding the others, at each iteration of

the algorithm, we could have κ∗
a = n̄ and κ∗

j = n̄ − 1 or viceversa, depending
on the permutation. However, since distances are symmetric, this two cases are
permutationally equivalent under the null hypothesis and Equation (1) is always
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satisfied. For this reason, we can apply the synchronised permutations as usual.
At each iteration of Algorithm 2.1 the sample covariance of each permuted group
is computed only with the available data. This is more complicated when the
number of missing data becomes greater than one, since the vector κ∗ of actual
sample sizes can assume other values.

4.3. Hypothesis testing

We can finally apply the test to the smoothed and aligned wheel-running activity
curves. The aim of the analysis is to check if the covariance operators of the eight
groups of mice are the same and, if this is not the case, to identify which lines
have different covariances. This is necessary for two reasons. First, the covariance
operator is in itself of biological interest for exploring which type of variability
is environmental in nature and which is due to genetic components. Second,
inference on the mean functions often requires the assumption of equality of
covariance operator and it is important to be able to check this assumption.

We want then to test the hypothesis

H0 : {Σ1 = · · · = Σ8} against H1 : {at least one of the equalities is not true}.

To this end, we use the Monte Carlo Algorithm 2.1 to obtain an estimate of the
permutation test proposed in Section 2.2. We have shown in the previous section
that synchronized permutations can be used, even if one of the observations is
missing. We use here the square root distance between covariance operators
as partial test statistic and we choose the maxT combining function. We set
the number of iterations B to 1000. We choose to use the square root distance
because it showed the best performance in the simulation study described in the
previous section and it is also computationally less expensive then the Procrustes
distance. However, the analysis carried out with the Procrustes distance would
have led to the same conclusions.

The p-values of the partial tests between each pair of lines, adjusted with the
step-down method, are reported in Figure 9. The p-value of the global test (<
0.001) indicates that there is strong evidence to reject the null hypothesis. This
is due mainly to the first group of mice for which some partial null hypotheses
are rejected (i.e., the differences between the covariance operator of line 1 and
the covariance operators of these others lines are significant) and, when using
the maxT combining function, we reject H0 even if only one of the partial tests
is rejected.

The results of this test are somewhat surprising. First, no differences were
detected between the selected lines and the control lines. Under the type of
directional selection applied (Swallow et al., 1998) there is at least a theoret-
ical expectation that genetic variances and covariances would evolve between
selected and unselected populations (e.g. Falconer and Mackay, 1996); indeed,
work on the 31st generation of mice from this same selection experiment demon-
strated some evolution of the genetic variances of wheel running over the first
6 days of wheel running (Careau et al., 2015). Second, the results suggest that
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Fig 9. Partial p-values of the synchronized permutation test on the covariance operators of
the aligned data. For each 1 ≤ j ≤ i ≤ q, i �= j, the value reported in row i, column j
corresponds to the adjusted p-value of the test H0 : {Σi = Σj} against H1 : {Σi �= Σj}. The
global p-value of the test is the minimum of the partial p-values and therefore is less than
0.001.

line 1 randomly differs from one other control line and one other selected line.
Such random differences in biological populations can be caused by genetic drift
occurring during the selection experiment or by founder effects when the origi-
nal base population was randomly subdivided into eight lines. Indeed, the trait
that was actually under selection (wheel running on days 5 and 6 of a 6 day ex-
posure) and underlying physiological traits (e.g., basal metabolic rate) already
demonstrated the effects of drift and/or founder effects in Swallow et al. (1998)
and Kane et al. (2008). The results presented herein are strongly suggestive of
similar processes influencing the phenotypic covariance structure of wheel run-
ning across age, which presents interesting possibilities for additional biological
experiments examining the impacts of constraints on functional traits (Irwin
and Carter, 2013, 2014).

5. Conclusions and further developments

We extended the application of hypothesis tests that take into account the ge-
ometry of the space of covariance operators to the case of multiple groups, using
a permutation approach. In particular, synchronized permutations allow us to
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make inference also on the pairwise comparison between groups while control-
ling the family-wise error rate. We illustrate via simulation studies that the
proposed test has the correct effect size and indeed the square root distance and
the Procrustes distance lead to higher empirical power in the multiple groups
comparison as well. While we have shown that the method can be applied in
the case of a missing observation, a more general treatment of the case of unbal-
anced design and missing data is scope for future works. However, even in case
of more general unbalanced design is still possible to apply the proposed method
using pooled permutations, although only the global hypothesis can be tested
in this way. It is worth to notice that other methods (such as bootstrap) are
focused on the global hypothesis as well and a satisfactory treatment of partial
hypothesis for unbalanced designs still needs to be devised.

We have also shown that the empirical power for the global test is compa-
rable to those obtained using bootstrap approximation in the Gaussian case
and slightly better in the non-Gaussian case. It is worth to notice that, while
simulation results shows the bootstrap approach to be promising as well for the
global test, its property has not yet rigorously studied for test statistics based
on metric different from the Hilbert–Schmidt distance and this is an interesting
direction for future research.

The application of the procedure to the mice voluntary wheel running activ-
ity curves shows that, while a difference between covariance operators is indeed
present, this is not caused by selection itself. Instead it would appear that ran-
dom biological processes such as genetic drift or founder effects are influencing
the covariance operators of the phenotypic curves. This is an important result
that suggests further investigation of this trait and demonstrates the importance
of random processes during evolution. We did not consider here the family rela-
tionships between mice. However, in finite populations under selection, it may be
possible for the family relationships to introduce dependencies in wheel-running
activity curves; how to account for this would be a major focus when developing
any subsequent genetics analysis and it will be scope for future work.
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