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Abstract 

 

The tips of axons are often far away from the cell soma where most proteins are synthesized. 

Recent work has revealed that axonal mRNA transport and localised translation are key 

regulatory mechanisms that allow these distant outposts of the cell to respond rapidly to 

extrinsic factors and maintain axonal homeostasis. Here, we review recent evidence pointing 

to an increasingly broad role for local protein synthesis in controlling axon shape, 

synaptogenesis and axon survival by regulating diverse cellular processes such as vesicle 

trafficking, cytoskeletal remodelling and mitochondrial integrity. We further highlight current 

research on the regulatory mechanisms that coordinate the localization and translation of 

functionally linked mRNAs in axons.   

  

 

Introduction 

 
RNA localisation and localised translation are highly conserved mechanisms that confer 

spatial and temporal control of protein expression. This might be especially important for 

highly polarized and morphologically complex cells such as neurons [1]* in which local 

translation enables axons and dendrites, remote subcellular compartments, to remodel their 

proteome precisely in response to local demand.  

 

The core components of the translation machinery are present in developing and mature 

axons, and axonal protein synthesis is involved in an increasing amount of physiological and 

disease-related processes [2-4]. With the combined progress made in the techniques of 

axonal isolation and next-generation sequencing (RNA-seq), thousands of mRNAs have now 

been detected in axons [5-7]. The identity of these mRNAs varies between neuronal 

subtypes [7], axonal subdomains [8] and throughout the axonal lifetime [8,9]. Recently, a cell-

type specific genome-wide analysis of the axonal translatome further revealed the dynamic 

nature of local translation during the establishment and maintenance of neural wiring in vivo, 

and identified subsets of axonally translated mRNAs encoding functionally linked proteins 

that match the temporal needs of the axon [10]*. Here we review recent advances in the role 

of local translation as a regulator of axonal shape and maintenance and discuss the 

mechanisms by which coordinated spatiotemporal translational control of specific subsets of 

mRNAs in axons can be achieved. 

 



 

Function of axonal protein synthesis 

Steering: 

The outgrowth and navigation of axons to the correct target area is mediated by 

surrounding extracellular guidance cues that are sensed by the highly motile, leading tip of 

the axon, the growth cone. Isolated axons separated from their cell bodies continue to grow 

properly when protein synthesis is acutely inhibited [11], but the cue-induced elongation or 

collapse response of an axon to several guidance cues is sensitive to local inhibition of 

translation [12]. Attractive cues such as netrin-1 and nerve growth factor (NGF) stimulate 

axonal protein synthesis of constituents of the cytoskeleton [13-15], whereas repulsive 

guidance cues like Sema3A and Slit2 induce local synthesis of proteins that promote the 

disassembly of the cytoskeleton [16,17]. Additionally, the asymmetrical synthesis of these 

proteins in growth cones exposed to a polarised cue gradient causes the local extension or 

withdrawal of filopodia and lamellipodia leading to steering towards or away from these in 

vitro gradients [13,14] (Figure 1a). Since these initial findings, various proteins have been 

shown to be locally synthesized during axon growth in vitro and in vivo, encoding cytoskeletal 

regulators, cell-adhesion molecules, guidance receptors and components of signaling 

pathways [2,10].  

 

Evidence demonstrating a requirement for these locally synthesized proteins for 

guidance in vivo is sparse due to the technical challenges associated with blocking protein 

synthesis exclusively in the axonal compartment. Studies in the mammalian spinal cord 

provide evidence that specific receptors (e.g. EphA2, Robo3.2) are synthesised in growing 

axons at the midline suggesting an underlying role for local translation in the switches of 

commissural growth cone responsiveness along the pathway [18,19]. In vivo inhibition of an 

axonally synthesised cell adhesion molecule (NFPC) [20] or an mRNA translation regulator 

(microRNA) [21] causes subtle defects in pathfinding and target entry in small subsets of 

retinal axons. This may indicate a differential reliance among retinal axonal subpopulations in 

vivo for de novo synthesised proteins. 

 

Branching:  

Once axons have navigated to their targets, they branch to form terminal arbors 

bearing synapses and establish correct connections with their post-synaptic partners [23]. 

Translation machinery, as well as mitochondria for energy provision, is present at branching 

points and cue-induced local protein synthesis is required for axon branching in vitro [24-26] 



(Figure 1b). Recent dynamic imaging studies in vivo in Xenopus retinal ganglion cell (RGC) 

axon terminals demonstrated that RNA granules dock at sites that predict branch emergence 

and where ‘hotspots’ of de novo β-actin synthesis accumulate [22]*. Moreover, local 

inhibition of β-actin translation in axon terminals diminished both the generation and 

stabilization of new branches leading to reduced axonal arborisation [22]*. These results 

demonstrate the importance of local protein synthesis for axon branching in vivo [22]* and 

suggest a wider role in plastic (signal-induced) cell shape remodelling. The molecular 

mechanisms underlying the coordinated docking of specific mRNAs, translation-associated 

machinery and organelles at precise axonal locations are not known and are an interesting 

area for future study. 

 

Synapse formation and function: 

Synaptogenesis also requires local protein synthesis in the pre-synaptic 

compartment, as highlighted by recent findings of Hengst and colleagues [27] (Figure 1c). In 

cultured embryonic hippocampal neurons, they show that rapid local synthesis of SNAP-25 

and β-catenin occurs at sites of synapse formation and these axonally synthesized proteins 

are required for the assembly of presynaptic sites. Furthermore, repressing presynaptic 

translation affects synaptic vesicle recycling and blocking axonal translation of SNAP-25 and 

β-catenin mRNAs impairs presynaptic vesicle release [27-29]. The relevance of these 

findings in the mature brain was also recently demonstrated by the finding that presynaptic 

local translation is needed for long-term plasticity of GABA release in established synapses 

[30]. Combined with the discovery that hundreds of mRNAs are translated in mature axons in 

vivo [10]*, these studies open exciting new areas of research on the role of axon translation 

in neurotransmission.  

 

Surviving:    

A well-established mechanism to promote neuronal survival is through neurotrophins 

that generate retrograde signals that travel from the axon to the nucleus, resulting in 

activation of anti-apoptotic transcriptional networks [31]. In vitro application of NGF triggers 

local synthesis of pro-survival transcription factors such as cAMP-responsive element (CRE)-

binding protein (CREB) and its activator myo-inositol monophosphatase 1 (Impa-1) for 

retrograde transport, and the inhibition of this local synthesis results in an increase in 

neuronal and axonal degeneration [32,33] (Figure 2a). Axonal synthesis of the dynein 

regulators Lis1 and p150Glued was recently reported in response to NGF [34]. Their local 

translation mediates the transport of signaling vesicles that are presumed to contribute to 

axon survival. Interestingly, local synthesis of Lis1 was also shown to be necessary to induce 

retrograde transport of a pro-apoptotic signal upon NGF-deprivation [34]. These findings 



suggest that the balance between neuronal death and survival can be achieved by precise 

control of local protein synthesis in the axon [6]. 

 

Local translation also mediates NGF-dependent regulation of axonal mitochondrial 

integrity and inhibition of its associated apoptotic signaling (Figure 2b). Target-derived cues 

trigger the local synthesis of LaminB2 in RGC axons, where the protein localizes to 

mitochondria and regulates mitochondrial integrity and axon maintenance in vivo [35]. In 

dorsal root ganglion axons, axonally-applied NGF stimulates the recruitment and translation 

of Bcl-w mRNA, which then interacts with Bax to promote axon survival by inhibiting the 

caspase-dependent apoptotic pathway [36]. Axonally synthesized Bcl-w also interacts with, 

and blocks, the ER-associated IP3-receptor, preventing intracellular calcium dysregulation 

which could otherwise lead to the activation of calpain proteases and subsequent axon 

degeneration [37]. Interestingly, mRNAs encoding proteins involved in axon degeneration, 

such as caspases and SARM1, are translated particularly highly in vivo during the axon 

pruning phase of development [10]*. The functional relevance of this in the selective 

maintenance and removal of branches still needs to be determined.    

 

The constant import of cytosolic proteins into mitochondria is not only necessary to 

prevent apoptotic pathways but also to maintain its function in energy production and cellular 

metabolism [38]. Nuclear-encoded mitochondrial mRNAs have consistently been found 

enriched in axons in vitro regardless of the neuronal subtype and stage analysed [8,9,33,39] 

and they are translated in developing and mature axons in vivo [10]. Analysis of the axonal 

transcriptome of primary sympathetic neurons revealed more than 100 nuclear-encoded 

mitochondrial mRNAs, associated with a wide variety of mitochondrial functions [40]. Axonal 

synthesis of mitochondrial proteins such as ATP5G1 [41] or COXIV [42] was shown to be 

essential to maintain axonal mitochondrial membrane potential and to regulate ATP and 

Reactive Oxygen Species (ROS) production (Figure 2c). Thus, the local synthesis of 

mitochondrial-related proteins seems to be critical for axon viability in vitro and may be a 

major determinant of axon maintenance in vivo.   

 
Axonal mRNA localization 

 

The increasing diversity of functions attributed to axonally synthesized proteins at a 

precise developmental stage and in specific subdomains implies the existence of 

mechanisms to coordinate and control axonal translation according to local demand. This is 

partly due to the stage-specific changes in the axonal transcriptome. For instance, different 



mRNAs are present in young growing axons versus target-arrived axons, with expression of 

many presynaptic mRNAs present exclusively in the latter [8,39] (Figure 3a). In vivo, axonal 

translation is at its peak during the branching stage in mouse RGC axons [10]*, and this is 

accompanied by a dynamic change in the translatome between the axon elongation and 

axon branching/pruning stages [10,43].  

 

Transport, stability and translation of axonal mRNAs are primarily achieved through post-

transcriptional functions of RNA-binding proteins (RBPs). RBPs can bind to specific mRNAs 

through cis-elements in their untranslated regions (UTRs), repressing their translation and 

allowing their subsequent targeting to the axon. In cortical neurons, fragile-X mental 

retardation protein (FMRP) prevents telomere repeat-binding factor 2 (TRF2-S) from binding 

to its mRNAs, thereby influencing the transport of TRF2-S mRNAs into axons [44]. RBPs can 

also compete for the same mRNA, influencing their stability, as has been shown for HuD and 

KH-type splicing regulatory protein (KSRP) [45] (Figure 3b). Moreover, mRNAs themselves 

can compete for binding to RBPs for their axonal localization. Exogenous expression of 

3’UTR elements of GAP-43 and β-actin suggest that these mRNA’s compete for binding to 

ZBP1 [26], a competition mechanism also reported for endogenous nrn1 and GAP-43 

mRNAs for binding to HuD [46] (Figure 3c). Interestingly, a recent study has shown that 

axonal transcripts have significantly longer 3’UTRs [47]. It has therefore been proposed that 

regulation of the abundance and diversity of mRNA alternative splice isoforms can regulate 

the transport in the axonal compartment by introducing specific cis-regulatory elements in the 

mRNA [10]*. Various RBPs have also been found to fulfil independent or shared functions in 

growth/guidance, branching and synapse formation [7,48]. For example, the translation of 

adenomatous polyposis coli (APC) target mRNAs is highest during the stage of axon 

elongation in vivo and decreases afterwards, whereas the translation of target mRNAs for 

FMRP peaks later, at the axon branching stage [10]*, suggesting a prominent role for 

particular RBPs at specific stages to coordinate RNA localization and translation of 

functionally linked mRNAs.  

 

RBPs can also assemble and coordinate axonal transport of subsets of functionally 

linked mRNAs in specific ribonucleoprotein (RNP) complexes, or RNA regulons [49] (Figure 

3d). A good example of such regulation in axons comes from the identification of a RNA 

regulon orchestrated by the RBP SFPQ (splicing factor proline and glutamine rich) [50]*. The 

authors show that SFPQ binds and regulates axonal localization of the functionally linked 

creb1, impa-1, lmnb2 and Bcl-w mRNAs. SFPQ facilitates the co-assembly and co-trafficking 

of lmnb2 and Bcl-w mRNAs and regulates neurotrophin-dependent axon survival. 

Interestingly, SFPQ was found to colocalize with ribosomes in close proximity to 



mitochondria in axons. These results suggest that RBPs can precisely target mRNAs to 

favour direct coupling between local translation and use of the synthesized protein on-site. 

 

Together, dynamic expression of distinct mRNAs, splice variants, RBPs and the 

formation of RNA regulons permit exact temporal and spatial control of the axonal 

transcriptome. 

 

Local translational control 

 

Despite clear spatiotemporal regulation of RNA localization, hundreds of different 

mRNAs reside in the same subcellular locations, such as the growth cone. This begs the 

question of how specific subsets of mRNAs are translated in response to specific cues. Axon 

guidance cues and neurotrophins stimulate kinases, inducing the subsequent 

phosphorylation of specific RBPs and release of their associated mRNAs for local translation 

[48,51] (Figure 4a). The same extracellular signals increase axonal protein synthesis through 

mTORC1 (mammalian target of rapamycin complex 1) activation of cap-dependent 

translation. Although mTORC1 controls global protein synthesis, it also selectively promotes 

the translation of subsets of mRNAs, including eIF4E-sensitive and 5’ terminal 

olygopyrimidine (TOP) mRNAs [52,53]. The mRNA specificity of axonal translation might 

therefore require the spatial and temporal combination of signaling pathways. Indeed, it has 

been suggested that integration of multiple cues can result in the crosstalk of signaling by 

multiple pathways which could fine-tune local translation for specific developmental and 

physiological situations [54]. 

 

Regulation of local translation of specific mRNAs can also be achieved by axonal 

microRNAs (miRNA) (Figure 4b). Axons contain a vast diversity of miRNAs that differ 

between neuronal populations [55]. Since miRNAs are known to repress translation mainly 

by binding to 3’UTRs, the longer 3’UTRs found in axonal transcripts could allow for more 

stringent, or even axon-specific, regulation by miRNAs. Moreover, inhibition or activation of 

specific miRNAs by extracellular cues can lead to the selective stimulation or repression of 

subsets of mRNAs in axons. For example, miR-338 controls axonal synthesis of two 

functionally linked mRNAs for the nuclear-encoded mitochondrial proteins COXIV and 

ATP5G1 [42,56]. This process can modulate the global axonal proteome, but also respond to 

acute needs in restricted subdomains as was recently reported for miR-182 in response to 

Slit2 in RGC growth cones [21]. Specific precursors of miRNAs have also been detected in 

axons [57], but whether and how they are locally processed, as recently shown in dendrites 

[58], still needs to be determined. 



 

Regulation of post-transcriptional modifications of mRNAs, of which n6-

methyladenosine (m6A) is the most prevalent one, has recently been suggested to participate 

in axonal translation [59]* (Figure 4c). Axonal GAP-43 mRNA is modified by m6A and is a 

substrate of the demethylase enzyme fat mass and obesity-associated protein (FTO). FTO 

itself can be axonally synthesized and depleting this enzyme in axons increases m6A 

modification of GAP-43 mRNA, thereby repressing its local translation [59]*. It would be 

interesting to investigate whether such processes can restrict the translation of subsets of 

mRNAs in response to extracellular cues. This work also opens the possibility for the 

involvement of other internal mRNA modifications, and the proteins involved in these 

modifications, in regulating axonal protein synthesis. 

 

Another attractive mechanism for spatiotemporal regulation of translation is the direct 

coupling and cue-induced dissociation of specific axon guidance receptors and ribosomes 

[60] (Figure 4d). Netrin-1 induces the dissociation and release of ribosomes from deleted in 

colorectal cancer (DCC), thereby increasing local translation [60]. Ribosomal protein-coding 

mRNAs are amongst the most abundant mRNAs present in axons [8,9,39] and translated in 

vivo [10], and it has been proposed that they can possibly repair damaged ribosomes or alter 

the composition of pre-existing ribosomes for specific translation [51]. Indeed, an intriguing 

possibility is that specific receptors can bind to ribosomes that are themselves tailored, 

through local proteomic remodelling, to preferentially translate specific subsets of mRNAs 

[61]*.  

  

Local translation is intimately linked with the cytoskeleton that may serve as a scaffold 

to organize the translational machinery [62], and acute disruption of local cytoskeletal 

dynamics affects cue-induced axonal translation [63]. These results lead to the idea that 

proteins involved in cytoskeletal dynamics can also regulate local translation by binding to 

specific subsets of mRNAs. Such a dual function was first proposed for APC, a plus-end 

microtubule binding protein, that was shown to act as a RBP regulating the axonal 

localization and translation of β2B-tubulin mRNA [64]. A more recent study has shown that 

the actin regulator Mena also binds to a specific set of mRNAs by associating with the RBPs 

hnRNPK and PCBP1 [65]*. Mena is required for both basal and BDNF-induced axonal 

translation of one of its target mRNAs. Moreover, Mena can bind to specific receptors 

opening the possibility for direct spatiotemporal restriction of its dual function after the arrival 

of an extracellular cue [66]. Even more intriguing is the finding that mRNAs binding to APC 

and Mena are enriched in functions related to APC and Mena, suggesting an 

interdependency and cross-talk between their direct role as regulators of cytoskeletal 



dynamics and their involvement in mediating local translation of mRNAs important for the 

same function (Figure 4e). It will be very interesting to see whether this is a more common 

self-regulatory mechanism occurring in proteins with other functions. 

 

Conclusions  

 
Remarkable advances have been made in the recent years in our understanding of 

the functional importance of axonal protein synthesis and the associated regulatory 

mechanisms. It is now clear that axonal translation plays a key role in axon survival and is 

increasingly moving centre-stage in studies of neurodegenerative disease and mitochondrial 

disorders [3,51]. It is also clear that localised translation underlies structural plasticity 

providing a precise mechanism to remodel the proteome locally in response to extrinsic cues, 

cell contacts or activity. However, many exciting open questions remain. With the advent of 

novel and more sensitive techniques to identify the mRNAs present and translated [67], and 

new methods to obtain cell-type specific proteomes in vivo [68], the complexity of the axonal 

translatome and the diversity in functions of locally synthesized proteins in developing and 

mature axons will likely become even more evident and better understood. Moreover, further 

investigation into the underlying molecular events allowing the selective control and 

coordination of axonal translation may enable the design of new strategies for therapies 

aimed at neurodevelopmental and neurodegenerative diseases.  
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Figure legends: 

Figure 1: Axonal protein synthesis in shaping the axon. 

 (a) Cue-induced asymmetrical translation of mRNAs coding for cytoskeletal proteins, or their 

modulators, mediates growth cone responses. (b) Localized protein synthesis of cytoskeletal 

proteins mediates the emergence and stabilization of new axon branches in response to 

extracellular cues. (c) Local mRNA recruitment and translation is necessary for 

synaptogenesis and synapse vesicle release. 	
  
 

Figure 2: Axonal protein synthesis in maintaining the axon. 

(a) Target-derived cues induce local protein synthesis of transcription factors and their 

regulators, mediating axon-soma communication and axon survival. (b) Axonal protein 

synthesis is necessary to maintain mitochondrial integrity and inhibition of anti-apoptotic 

pathways. (c) Axon survival relies on maintaining proper mitochondrial physiology by local 

synthesis of mitochondrial-related proteins.  

 

Figure 3: Mechanisms regulating axonal mRNA localization. 

(a) The axonal transcriptome changes over time thereby providing the correct mRNAs 

needed at each time point. (b) FMRP can bind to and sequester the RBP TFR2-S, which 

prevents TFR2-S from transporting its mRNAs into the axon (1). RBPs can also compete for 

binding to the same mRNA thereby influencing mRNA stability (2). (c) Different mRNAs can 

also compete for binding to the same RBP allowing axonal transport for only one of the two 

different mRNA isoforms. (d) A RNA regulon can be formed by the RBP SFPQ, which 

ensures axonal localization of functionally-related mRNAs. 

 

Figure 4: Mechanisms of local translational control. 

(a) Upon cue stimulation RBPs can be phosphorylated, which releases mRNAs making them 

available for translation. (b) microRNAs can bind and suppress translation of axonal mRNAs. 

Upon cue stimulation microRNAs can be released from their mRNA, increasing their 

translation (1) or microRNA levels can be upregulated and suppress local translation of 

specific mRNAs (2). (c) Post-transcriptional mRNA modification occurs in axons and 

regulates translation of axonal mRNAs. (d) Translational machinery can be directly coupled 

to a guidance cue receptor and cue stimulation releases this translational machinery and 

increases translation. (e) Cytoskeletal proteins APC and Mena have a dual function as RBPs 

regulating the axonal translation of mRNAs related to their own function. 
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