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Abstract

Approximate message passing (AMP) refers to a class of efficient algorithms for statisti-
cal estimation in high-dimensional problems such as compressed sensing and low-rank matrix
estimation. This paper analyzes the performance of AMP in the regime where the problem
dimension is large but finite. For concreteness, we consider the setting of high-dimensional re-
gression, where the goal is to estimate a high-dimensional vector β0 from a noisy measurement
y = Aβ0 +w. AMP is a low-complexity, scalable algorithm for this problem. Under suitable as-
sumptions on the measurement matrix A, AMP has the attractive feature that its performance
can be accurately characterized in the large system limit by a simple scalar iteration called state
evolution. Previous proofs of the validity of state evolution have all been asymptotic conver-
gence results. In this paper, we derive a concentration inequality for AMP with i.i.d. Gaussian
measurement matrices with finite size n×N . The result shows that the probability of deviation
from the state evolution prediction falls exponentially in n. This provides theoretical support
for empirical findings that have demonstrated excellent agreement of AMP performance with
state evolution predictions for moderately large dimensions. The concentration inequality also
indicates that the number of AMP iterations t can grow no faster than order logn

log logn for the
performance to be close to the state evolution predictions with high probability. The analysis
can be extended to obtain similar non-asymptotic results for AMP in other settings such as
low-rank matrix estimation.

1 Introduction

Consider the high-dimensional regression problem, where the goal is to estimate a vector β0 ∈ RN
from a noisy measurement y ∈ Rn given by

y = Aβ0 + w. (1.1)

Here A is a known n×N real-valued measurement matrix, and w ∈ Rn is the measurement noise.
The sampling ratio n

N ∈ (0,∞) is denoted by δ.
Approximate Message Passing (AMP) [1–6] is a class of low-complexity, scalable algorithms to

solve the above problem, under suitable assumptions on A and β0. AMP algorithms are derived
as Gaussian or quadratic approximations of loopy belief propagation algorithms (e.g., min-sum,
sum-product) on the dense factor graph corresponding to (1.1).
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Given the observed vector y, AMP generates successive estimates of the unknown vector, denoted
by βt ∈ RN for t = 1, 2, . . .. Set β0 = 0, the all-zeros vector. For t = 0, 1, . . ., AMP computes

zt = y −Aβt +
zt−1

n

N∑
i=1

η′t−1([A∗zt−1 + βt−1]i), (1.2)

βt+1 = ηt(A
∗zt + βt), (1.3)

for an appropriately-chosen sequence of functions {ηt}t≥0 : R→ R. In (1.2) and (1.3), A∗ denotes
the transpose of A, ηt acts component-wise when applied to a vector, and η′t denotes its (weak)
derivative. Quantities with a negative index are set to zero throughout the paper. For a demon-
stration of how the AMP updates (1.2) and (1.3) are derived from a min-sum-like message passing
algorithm, we refer the reader to [1].

For a Gaussian measurement matrix A with entries that are i.i.d. ∼ N (0, 1/n), it was rigorously
proven [1, 7] that the performance of AMP can be characterized in the large system limit via a
simple scalar iteration called state evolution. This result was extended to the class of matrices with
i.i.d. sub-Gaussian entries in [8]. In particular, these results imply that performance measures such

as the L2-error 1
N

∥∥β0 − βt
∥∥2

and the L1-error 1
N

∥∥β0 − βt
∥∥

1
converge almost surely to constants

that can be computed via the distribution of β0. (The large system limit is defined as n,N → ∞
such that n

N = δ, a constant.)
AMP has also been applied to a variety of other high-dimensional estimation problems. Some

examples are low-rank matrix estimation [9–14], decoding of sparse superposition codes [15–17],
matrix factorization [18], and estimation in generalized linear and bilinear models [5, 19,20].

Main Contributions: In this paper, we obtain a non-asymptotic result for the performance
of the AMP iteration in (1.2)–(1.3), when the measurement matrix A has i.i.d. Gaussian entries
∼ N (0, 1/n). We derive a concentration inequality (Theorem 3.1) that implies that the probability

of ε-deviation between various performance measures (such as 1
N

∥∥β0 − βt
∥∥2

) and their limiting
constant values fall exponentially in n. Our result provides theoretical support for empirical findings
that have demonstrated excellent agreement of AMP performance with state evolution predictions
for moderately large dimensions, e.g., n of the order of several hundreds [2].

In addition to refining earlier asymptotic results, the concentration inequality in Theorem 3.1
also clarifies the effect of the iteration number t versus the problem dimension n. One implication
is that the actual AMP performance is close to the state evolution prediction with high probability
as long as t is of order smaller than logn

log logn . This is particularly relevant for settings where the
number of AMP iterations and the problem dimension are both large, e.g., solving the LASSO via
AMP [6].

We prove the concentration result in Theorem 3.1 by analyzing the following general recursion:

bt = Aft(h
t, β0)− λtgt−1(bt−1, w),

ht+1 = A∗gt(b
t, w)− ξtft(ht, β0).

(1.4)

Here, for t ≥ 0, the vectors bt ∈ Rn, ht+1 ∈ RN describe the state of the algorithm, ft, gt : R → R
are Lipschitz functions that are separable (act component-wise when applied to vectors), and λt, ξt
are scalars that can be computed from the state of the algorithm. The algorithm is initialized with
f0(h0 = 0, β0). Further details on the recursion in (1.4), including how the AMP in (1.2)–(1.3) can
be obtained as a special case, are given in Section 4.1.

For ease of exposition, our analysis will focus on the recursion (1.4) and the problem of high-
dimensional regression. However, it can be extended to a number of related problems. A symmetric
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version of the above recursion yields AMP algorithms for problems such as solving the TAP equa-
tions in statistical physics [21] and symmetric low-rank matrix estimation [10, 12]. This recursion
is defined in terms of a symmetric matrix G ∈ RN×N with entries {Gij}i<j i.i.d. ∼ N (0, 1

N ), and
{Gii} i.i.d. ∼ N (0, 2

N ) for i ∈ [N ]. (In other words, G can be generated as (A + A∗)/2, where
A ∈ RN×N has i.i.d. N (0, 1

N ) entries.) Then, for t ≥ 0, let

mt+1 = Apt(m
t)− bt pt−1(mt−1). (1.5)

Here, for t ≥ 0, the state of the algorithm is represented by a single vector mt ∈ RN , the function
pt : R→ R is Lipschitz and separable, and bt is a constant computed from the state of the algorithm
(see [1, Sec. IV] for details). The recursion (1.5) is initialized with a deterministic vector m1 ∈ RN .

Our analysis of the recursion (1.4) can be easily extended to obtain an analogous non-asymptotic
result for the symmetric recursion in (1.5). Therefore, for problems of estimating either symmetric
or rectangular low-rank matrices in Gaussian noise, our analysis can be used to refine existing
asymptotic AMP guarantees (such as those in [9–11]), by providing a concentration result similar
to that in Theorem 3.1. We also expect that the non-asymptotic analysis can be generalized to
the case where the recursion in (1.4) generates matrices rather than vectors, i.e, bt ∈ Rn×q and
ht+1 ∈ RN×q (where q remains fixed as n,N grow large; see [7] for details). Extending the analysis
to this matrix recursion would yield non-asymptotic guarantees for the generalized AMP [5] and
AMP for compressed sensing with spatially coupled measurement matrices [22].

Since the publication of the conference version of this paper, the analysis described here has
been used in a couple of recent papers: an error exponent for sparse regression codes with AMP
decoding was obtained in [23], and a non-asymptotic result for AMP with non-separable denoisers
was given in [24].

1.1 Assumptions

Before proceeding, we state the assumptions on the model (1.1) and the functions used to define
the AMP. In what follows, K,κ > 0 are generic positive constants whose values are not exactly
specified but do not depend on n. We use the notation [n] to denote the set {1, 2, . . . , n}.

• Measurement Matrix: The entries of measurement matrixA ∈ Rn×N are i.i.d.∼ N (0, 1/n).

• Signal: The entries of the signal β0 ∈ RN are i.i.d. according to a sub-Gaussian distribution
pβ. We recall that a zero-mean random variable X is sub-Gaussian if there exist positive

constants K,κ such that P (|X − EX| > ε) ≤ Ke−κε2 , ∀ε > 0 [25].

• Measurement Noise: The entries of the measurement noise vector w are i.i.d. according
to some sub-Gaussian distribution pw with mean 0 and E[w2

i ] = σ2 < ∞ for i ∈ [n]. The
sub-Gaussian assumption implies that, for ε ∈ (0, 1),

P

(∣∣∣∣ 1n ‖w‖2 − σ2

∣∣∣∣ ≥ ε) ≤ Ke−κnε2 , (1.6)

for some constants K,κ > 0 [25].

• The Functions ηt: The denoising functions, ηt : R → R, in (1.3) are Lipschitz continuous
for each t ≥ 0, and are therefore weakly differentiable. The weak derivative, denoted by η′t,
is assumed to be differentiable, except possibly at a finite number of points, with bounded
derivative everywhere it exists. Allowing η′t to be non-differentiable at a finite number of
points covers denoising functions like soft-thresholding which is used in applications such as
the LASSO [6].
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Functions defined with scalar inputs are assumed to act component-wise when applied to vectors.
The remainder of the paper is organized as follows. In Section 2 we review state evolution, the

formalism predicting the performance of AMP, and discuss how knowledge of the signal distribution
pβ and the noise distribution pw can help choose good denoising functions {ηt}. However, we
emphasize that our result holds for the AMP with any choice of {ηt} satisfying the above condition,
even those that do not depend on pβ and pw. In Section 2.1, we introduce a stopping criterion for
termination of the AMP. In Section 3, we give our main result (Theorem 3.1) which proves that the
performance of AMP can be characterized accurately via state evolution for large but finite sample
size n. Section 4 gives the proof of Theorem 3.1. The proof is based on two technical lemmas:
Lemmas 4.3 and 4.5. The proof of Lemma 4.5 is long; we therefore give a brief summary of the
main ideas in Section 4.6 and then the full proof in Section 5. In the appendices, we list a number
of concentration inequalities that are used in the proof of Lemma 4.5. Some of these, such as the
concentration inequality for the sum of pseudo-Lipschitz functions of i.i.d. sub-Gaussian random
variables (Lemma B.4), may be of independent interest.

2 State Evolution and the Choice of ηt

In this section, we briefly describe state evolution, the formalism that predicts the behavior of
AMP in the large system limit. We only review the main points followed by a few examples; a
more detailed treatment can be found in [1, 4].

Given pβ, let β ∈ R ∼ pβ. Let σ2
0 = E[β2]/δ > 0, where δ = n/N . Iteratively define the

quantities {τ2
t }t≥0 and {σ2

t }t≥1 as

τ2
t = σ2 + σ2

t , σ2
t =

1

δ
E
[
(ηt−1(β + τt−1Z)− β)2

]
, (2.1)

where β ∼ pβ and Z ∼ N (0, 1) are independent random variables.
The AMP update (1.3) is underpinned by the following key property of the vector A∗zt + βt:

for large n, A∗zt +βt is approximately distributed as β0 + τtZ, where Z is an i.i.d. N (0, 1) random
vector independent of β0. In light of this property, a natural way to generate βt+1 from the “effective
observation” A∗zt + βt = s is via the conditional expectation:

βt+1(s) = E[β | β + τtZ = s ], (2.2)

i.e., βt+1 is the MMSE estimate of β0 given the noisy observation β0 + τtZ. Thus if pβ is known,
the Bayes optimal choice for ηt(s) is the conditional expectation in (2.2).

In the definition of the “modified residual” zt, the third term on the RHS of (1.2) is crucial to
ensure that the effective observation A∗zt + βt has the above distributional property. For intuition
about the role of this ‘Onsager term’, the reader is referred to [1, Section I-C].

We review two examples to illustrate how full or partial knowledge of pβ can guide the choice of
the denoising function ηt. In the first example, suppose we know that each element of β0 is chosen
uniformly at random from the set {+1,−1}. Computing the conditional expectation in (2.2) with
this pβ, we obtain ηt(s) = tanh(s/τ2

t ) [1]. The constants τ2
t are determined iteratively from the

state evolution equations (2.1).
As a second example, consider the compressed sensing problem, where δ < 1, and pβ is such

that P (β0 = 0) = 1− ξ. The parameter ξ ∈ (0, 1) determines the sparsity of β0. For this problem,
the authors in [2, 4] suggested the choice ηt(s) = η(s; θt), where the soft-thresholding function η is
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defined as

η(s; θ) =


(s− θ), if s > θ,
0 if − θ ≤ s ≤ θ,
(s− θ), if s < −θ.

The threshold θt at step t is set to θt = ατt, where α is a tunable constant and τt is determined
by (2.1), making the threshold value proportional to the standard deviation of the noise in the
effective observation. However, computing τt using (2.1) requires knowledge of pβ. In the absence

of such knowledge, we can estimate τ2
t by 1

n

∥∥zt∥∥2
: our concentration result (Lemma 4.5(e)) shows

that this approximation is increasingly accurate as n grows large. To fix α, one could run the AMP
with several different values of α, and choose the one that gives the smallest value of 1

n

∥∥zt∥∥2
for

large t.
We note that in each of the above examples ηt is Lipschitz, and its derivative satisfies the

assumption stated in Section 1.1.

2.1 Stopping Criterion

To obtain a concentration result that clearly highlights the dependence on the iteration t and the
dimension n, we include a stopping criterion for the AMP algorithm. The intuition is that the
AMP algorithm can be terminated once the expected squared error of the estimates (as predicted
by state evolution equations in (2.1)) is either very small or stops improving appreciably.

For Bayes-optimal AMP where the denoising function ηt(·) is the conditional expectation given
in (2.2), the stopping criterion is as follows. Terminate the algorithm at the first iteration t > 0 for
which either

σ2
t < ε0, or

σ2
t

σ2
t−1

> 1− ε′0, (2.3)

where ε0 > 0 and ε′0 ∈ (0, 1) are pre-specified constants. Recall from (2.1) that σ2
t is expected

squared error in the estimate. Therefore, for suitably chosen values of ε0, ε
′
0, the AMP will terminate

when the expected squared error is either small enough, or has not significantly decreased from the
previous iteration.

For the general case where ηt(·) is not the Bayes-optimal choice, the stopping criterion is: ter-
minate the algorithm at the first iteration t > 0 for which at least one of the following is true:

σ2
t < ε1, or (σ⊥t )2 < ε2, or (τ⊥t )2 < ε3, (2.4)

where ε1, ε2, ε3 > 0 are pre-specified constants, and (σ⊥t )2, (τ⊥t )2 are defined in (4.19). The precise
definitions of the scalars (σ⊥t )2, (τ⊥t )2 are postponed to Sec. 4.2 as a few other defintiions are needed
first. For now, it suffices to note that (σ⊥t )2, (τ⊥t )2 are measures of how close σ2

t and τ2
t are to σ2

t−1

and τ2
t−1, respectively. Indeed, for the Bayes-optimal case, we show in Sec 4.3 that

(σ⊥t )2 := σ2
t

(
1− σ2

t

σ2
t−1

)
, (τ⊥t )2 := τ2

t

(
1− τ2

t

τ2
t−1

)
.

Let T ∗ > 0 be the first value of t > 0 for which at least one of the conditions is met. Then the
algorithm is run only for 0 ≤ t < T ∗. It follows that for 0 ≤ t < T ∗,

σ2
t > ε1, τ2

t > σ2 + ε1, (σ⊥t )2 > ε2, (τ⊥t )2 > ε3. (2.5)

In the rest of the paper, we will use the stopping criterion to implicitly assume that σ2
t , τ

2
t , (σ

⊥
t )2, (τ⊥t )2

are bounded below by positive constants.
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3 Main Result

Our result, Theorem 3.1, is a concentration inequality for pseudo-Lipschitz (PL) loss functions. As
defined in [1], a function φ : Rm → R is pseudo-Lipschitz (of order 2) if there exists a constant
L > 0 such that for all x, y ∈ Rm,|φ(x)− φ(y)| ≤ L(1 + ‖x‖+ ‖y‖) ‖x− y‖ , where ‖·‖ denotes the
Euclidean norm.

Theorem 3.1. With the assumptions listed in Section 1.1, the following holds for any (order-2)
pseudo-Lipschitz function φ : R2 → R, ε ∈ (0, 1) and 0 ≤ t < T ∗, where T ∗ is the first iteration for
which the stopping criterion in (2.4) is satisfied.

P

(∣∣∣∣∣ 1

N

N∑
i=1

φ(βt+1
i , β0i)− E [φ (ηt (β + τtZ) , β)]

∣∣∣∣∣ ≥ ε
)
≤ Kte

−κtnε2 . (3.1)

In the expectation in (3.1), β ∼ pβ and Z ∼ N (0, 1) are independent, and τt is given by (2.1). The
constants Kt, κt are given by Kt = C2t(t!)10, κt = 1

c2t(t!)22
, where C, c > 0 are universal constants

(not depending on t, n, or ε) that are not explicitly specified.

The probability in (3.1) is with respect to the product measure on the space of the measurement
matrix A, signal β0, and the noise w.

Remarks:
1. By considering the pseudo-Lipschitz function φ(a, b) = (a−b)2, Theorem 3.1 proves that state

evolution tracks the mean square error of the AMP estimates with exponentially small probability
of error in the sample size n. Indeed, for all t ≥ 0,

P

(∣∣∣∣ 1

N

∥∥βt+1 − β0

∥∥2 − δσ2
t+1

∣∣∣∣ ≥ ε) ≤ Kte
−κtnε2 . (3.2)

Similarly, taking φ(a, b) = |a− b| the theorem implies that the normalized L1-error 1
N

∥∥βt+1 − β0

∥∥
1

is concentrated around E |ηt (β + τtZ)− β|.
2. Asymptotic convergence results of the kind given in [1,6] are implied by Theorem 3.1. Indeed,

from Theorem 3.1 we have for any fixed t ≥ 0:

∞∑
N=1

P
(∣∣∣ 1

N

N∑
i=1

φ(βt+1
i , β0i)− E [φ(ηt (β + τtZ), β)]

∣∣∣ ≥ ε) <∞.
Therefore the Borel-Cantelli lemma implies that for any fixed t ≥ 0:

lim
N→∞

1

N

N∑
i=1

φ(βt+1
i , β0i)

a.s.
= E [φ (ηt (β + τtZ) , β)] .

3. Theorem 3.1 also refines the asymptotic convergence result by specifying how large t can be
(compared to the dimension n) for the state evolution predictions to be meaningful. Indeed, if we
require the bound in (3.1) to go to zero with growing n, we need κtnε

2 →∞ as n→∞. Using the

expression for κt from the theorem then yields t = o
(

logn
log logn

)
.

Thus, when the AMP is run for a growing number of iterations, the state evolution predictions are
guaranteed to be valid until iteration t if the problem dimension grows faster than exponentially
in t. Though the constants Kt, κt in the bound have not been optimized, we believe that the

6



dependence of these constants on t! is inevitable in any induction-based proof of the result. An
open question is whether this relationship between t and n is fundamental, or a different analysis
of the AMP can yield constants which allow t to grow faster with n.

4. As mentioned in the introduction, we expect that non-asymptotic results similar to Theorem
3.1 can be obtained for other estimation problems (with Gaussian matrices) for which rigorous
asymptotic results have been proven for AMP. Examples of such problems include low-rank matrix
estimation [9–11], robust high-dimensional M-estimation [26], AMP with spatially coupled matrices
[22], and generalized AMP [7,27].

As our proof technique depends heavily on A being i.i.d. Gaussian, extending Theorem 3.1
to AMP with sub-Gaussian matrices [8] and to variants of AMP with structured measurement
matrices (e.g., [28–30]) is non-trivial, and an interesting direction for future work.

4 Proof of Theorem 3.1

We first lay down the notation that will be used in the proof, then state two technical lemmas
(Lemmas 4.3 and 4.5) and use them to prove Theorem 3.1.

4.1 Notation and Definitions

For consistency and ease of comparison, we use notation similar to [1]. To prove the technical
lemmas, we use the general recursion in (1.4), which we write in a slightly different form below.
Given w ∈ Rn, β0 ∈ RN , define the column vectors ht+1, qt+1 ∈ RN and bt,mt ∈ Rn for t ≥ 0
recursively as follows, starting with initial condition q0 ∈ RN :

bt := Aqt − λtmt−1, mt := gt(b
t, w),

ht+1 := A∗mt − ξtqt, qt := ft(h
t, β0).

(4.1)

where the scalars ξt and λt are defined as

ξt :=
1

n

n∑
i=1

g′t(b
t
i, wi), λt :=

1

δN

N∑
i=1

f ′t(h
t
i, β0i). (4.2)

In (4.2), the derivatives of gt : R2 → R and ft : R2 → R are with respect to the first argument.
The functions ft, gt are assumed to be Lipschitz continuous for t ≥ 0, hence the weak derivatives
g′t and f ′t exist. Further, g′t and f ′t are each assumed to be differentiable, except possibly at a finite
number of points, with bounded derivative everywhere it exists.

Let σ2
0 := E

[
f2

0 (0, β)
]
> 0 with β ∼ pβ. We let q0 = f0(0, β0) and assume that there exist

constants K,κ > 0 such that

P

(∣∣∣∣ 1n ∥∥q0
∥∥2 − σ2

0

∣∣∣∣ ≥ ε) ≤ Ke−κnε2 . (4.3)

Define the state evolution scalars {τ2
t }t≥0 and {σ2

t }t≥1 for the general recursion as follows.

τ2
t := E

[
(gt(σtZ,W ))2

]
, σ2

t :=
1

δ
E
[
(ft(τt−1Z, β))2

]
, (4.4)

where β ∼ pβ,W ∼ pw, and Z ∼ N (0, 1) are independent random variables. We assume that both
σ2

0 and τ2
0 are strictly positive.
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The AMP algorithm is a special case of the general recursion in (4.1) and (4.2). Indeed, the
AMP can be recovered by defining the following vectors recursively for t ≥ 0, starting with β0 = 0
and z0 = y.

ht+1 = β0 − (A∗zt + βt), qt = βt − β0,

bt = w − zt, mt = −zt.
(4.5)

It can be verified that these vectors satisfy (4.1) and (4.2) with

ft(a, β0) = ηt−1(β0 − a)− β0, and gt(a,w) = a− w. (4.6)

Using this choice of ft, gt in (4.4) yields the expressions for σ2
t , τ

2
t given in (2.1). Using (4.6) in

(4.2), we also see that for AMP,

λt = − 1

δN

N∑
i=1

η′t−1([A∗βt−1 + zt−1]i), ξt = 1. (4.7)

Recall that β0 ∈ RN is the vector we would like to recover and w ∈ Rn is the measurement
noise. The vector ht+1 is the noise in the effective observation A∗zt + βt, while qt is the error in
the estimate βt. The proof will show that ht and mt are approximately i.i.d. N (0, τ2

t ), while qt is
approximately i.i.d. with zero mean and variance σ2

t .
For the analysis, we work with the general recursion given by (4.1) and (4.2). Notice from (4.1)

that for all t,
bt + λtm

t−1 = Aqt, ht+1 + ξtq
t = A∗mt. (4.8)

Thus we have the matrix equations Xt = A∗Mt and Yt = AQt, where

Xt := [h1 + ξ0q
0 | h2 + ξ1q

1 | . . . | ht + ξt−1q
t−1], Qt := [q0 | . . . | qt−1],

Yt := [b0 | b1 + λ1m
0 | . . . | bt−1 + λt−1m

t−2], Mt := [m0 | . . . | mt−1].
(4.9)

The notation [c1 | c2 | . . . | ck] is used to denote a matrix with columns c1, . . . , ck. Note that M0

and Q0 are the all-zero vector. Additionally define the matrices

Ht := [h1| . . . |ht], Ξt := diag(ξ0, . . . , ξt−1),

Bt := [b0| . . . |bt−1], Λt := diag(λ0, . . . , λt−1).
(4.10)

Note that B0, H0, Λ0, and Ξ0 are all-zero vectors. Using the above we see that Yt = Bt+[0|Mt−1]Λt
and Xt = Ht +QtΞt.

We use the notation mt
‖ and qt‖ to denote the projection of mt and qt onto the column space of

Mt and Qt, respectively. Let

αt := (αt0, . . . , α
t
t−1)∗, γt := (γt0, . . . , γ

t
t−1)∗ (4.11)

be the coefficient vectors of these projections, i.e.,

mt
‖ :=

t−1∑
i=0

αtim
i, qt‖ :=

t−1∑
i=0

γtiq
i. (4.12)

The projections of mt and qt onto the orthogonal complements of Mt and Qt, respectively, are
denoted by

mt
⊥ := mt −mt

‖, qt⊥ := qt − qt‖. (4.13)

Lemma 4.5 shows that for large n, the entries of αt and γt are concentrated around constants. We
now specify these constants and provide some intuition about their values in the special case where
the denoising function in the AMP recursion is the Bayes-optimal choice, as in (2.2).
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4.2 Concentrating Values

Let {Z̆t}t≥0 and {Z̃t}t≥0 each be sequences of of zero-mean jointly Gaussian random variables whose
covariance is defined recursively as follows. For r, t ≥ 0,

E[Z̆rZ̆t] =
Ẽr,t
σrσt

, E[Z̃rZ̃t] =
Ĕr,t
τrτt

, (4.14)

where

Ẽr,t :=
E[fr(τr−1Z̃r−1, β)ft(τt−1Z̃t−1, β)]

δ
, Ĕr,t := E[gr(σrZ̆r,W )gt(σtZ̆t,W )], (4.15)

where W ∼ pw, and Z ∼ N (0, 1) are independent random variables. In the above, we take
f0(·, β) := f0(0, β), the initial condition. Note that Ẽt,t = σ2

t and Ĕt,t = τ2
t , thus E[Z̃2

t ] = E[Z̆2
t ] = 1.

Define matrices C̃t, C̆t ∈ Rt×t for t ≥ 1 such that

C̃ti+1,j+1 = Ẽi,j , and C̆ti+1,j+1 = Ĕi,j , 0 ≤ i, j ≤ t− 1. (4.16)

With these definitions, the concentrating values for γt and αt (if C̃t and C̆t are invertible) are

γ̂t := (C̃t)−1Ẽt, and α̂t := (C̆t)−1Ĕt, (4.17)

with
Ẽt := (Ẽ0,t . . . , Ẽt−1,t)

∗, and Ĕt := (Ĕ0,t . . . , Ĕt−1,t)
∗. (4.18)

Let (σ⊥0 )2 := σ2
0 and (τ⊥0 )2 := τ2

0 , and for t > 0 define

(σ⊥t )2 := σ2
t − (γ̂t)∗Ẽt = Ẽt,t − Ẽ∗t (C̃t)−1Ẽt,

(τ⊥t )2 := τ2
t − (α̂t)∗Ĕt = Ĕt,t − Ĕ∗t (C̆t)−1Ĕt.

(4.19)

Finally, we define the concentrating values for λt and ξt as

λ̂t :=
1

δ
E[f ′t(τt−1Z̃t−1, β)], and ξ̂t = E[g′t(σtZ̆t,W )]. (4.20)

Since {ft}t≥0 and {gt}t≥0 are assumed to be Lipschitz continuous, the derivatives {f ′t} and {g′t} are
bounded for t ≥ 0. Therefore λt, ξt defined in (4.2) and λ̂t, ξ̂t defined in (4.20) are also bounded.
For the AMP recursion, it follows from (4.6) that

λ̂t = −1

δ
E[η′t−1(β − τt−1Z̃t−1)], and ξ̂t = 1. (4.21)

Lemma 4.1. If (σ⊥k )2 and (τ⊥k )2 are bounded below by some positive constants (say c̃ and c̆,

respectively) for 1 ≤ k ≤ t, then the matrices C̃k and C̆k defined in (4.16) are invertible for
1 ≤ k ≤ t.

Proof. We prove the result using induction. Note that C̃1 = σ2
0 and C̆1 = τ2

0 are both strictly
positive by assumption and hence invertible. Assume that for some k < t, C̃k and C̆k are invertible.
The matrix C̃k+1 can be written as

C̃k+1 =

[
M1 M2

M3 M4

]
,

9



where M1 = C̃k ∈ Rk×k, M4 = Ẽk,k = σ2
k, and M2 = M∗3 = Ẽk ∈ Rk×1 defined in (4.18). By the

block inversion formula, C̃k+1 is invertible if M1 and the Schur complement M4 −M3M−1
1 M2 are

both invertible. By the induction hypothesis M1 = C̃k is invertible, and

M4 −M3M−1
1 M2 = Ẽk,k − Ẽ∗k(C̃k)−1Ẽk = (σ⊥k )2 ≥ c̃ > 0. (4.22)

Hence C̃t+1 is invertible. Showing that C̆t+1 is invertible is very similar.

We note that the stopping criterion ensures that C̃t and C̆t are invertible for all t that are
relevant to Theorem 3.1.

4.3 Bayes-optimal AMP

The concentrating constants in (4.14)–(4.19) have simple representations in the special case where
the denoising function ηt(·) is chosen to be Bayes-optimal, i.e., the conditional expectation of β
given the noisy observation β + τtZ, as in (2.2). In this case:

1. It can be shown that Ẽr,t in (4.15) equals σ2
t for 0 ≤ r ≤ t. This is done in two steps.

First verify that the following Markov property holds for the jointly Gaussian Z̃r, Z̃t with
covariance given by (4.14):

E[β | β + τtZ̃t, β + τrZ̃r] = E[β | β + τtZ̃t], 0 ≤ r ≤ t.

We then use the above in the definition of Ẽr,t (with ft given by (4.6)), and apply the
orthogonality principle to show that Ẽr,t = σ2

t for r ≤ t.

2. Using Ẽr,t = σ2
t in (4.14) and (4.15), we obtain Ĕr,t = σ2 + σ2

t = τ2
t .

3. From the orthogonality principle, it also follows that for 0 ≤ r ≤ t,

E
[∥∥βt+1

∥∥2
]

= E
[
β∗βt+1

]
, and E

[∥∥βr+1
∥∥2
]

= E
[
(βr+1)∗βt+1

]
,

where βt+1 = E[β | β + τtZ̃t].

4. With Ẽr,t = σ2
t and Ĕr,t = τ2

t for r ≤ t, the quantities in (4.17)–(4.19) simplify to the following
for t > 0:

γ̂t = [0, . . . , 0, σ2
t /σ

2
t−1], α̂t = [0, . . . , 0, τ2

t /τ
2
t−1],

(σ⊥t )2 := σ2
t

(
1− σ2

t

σ2
t−1

)
, (τ⊥t )2 := τ2

t

(
1− τ2

t

τ2
t−1

)
,

(4.23)

where γ̂t, α̂t ∈ Rt.

For the AMP, mt = −zt is the modified residual in iteration t, and qt = βt − β is the error
in the estimate βt. Also recall that γt and αt are the coefficients of the projection of mt and qt

onto {m0, . . . ,mt−1} and {q0, . . . , qt−1}, respectively. The fact that only the last entry of γ̂t is
non-zero in the Bayes-optimal case indicates that residual zt can be well approximated as a linear
combination of zt−1 and a vector that is independent of {z0, . . . , zt−1}; a similar interpretation
holds for the error qt = βt − β.

10



4.4 Conditional Distribution Lemma

We next characterize the conditional distribution of the vectors ht+1 and bt given the matrices in
(4.9) as well as β0, w. Lemmas 4.3 and 4.4 show that the conditional distributions of ht+1 and
bt can each be expressed in terms of a standard normal vector and a deviation vector. Lemma
4.5 shows that the norms of the deviation vectors are small with high probability, and provides
concentration inequalities for various inner products and functions involving {ht+1, qt, bt,mt}.

We use the following notation in the lemmas. Given two random vectors X,Y and a sigma-

algebra S , X|S
d
= Y denotes that the conditional distribution of X given S equals the distribution

of Y . The t × t identity matrix is denoted by It. We suppress the subscript on the matrix if the

dimensions are clear from context. For a matrix A with full column rank, P
‖
A := A(A∗A)−1A∗

denotes the orthogonal projection matrix onto the column space of A, and P⊥A := I−P
‖
A. If A does

not have full column rank, (A∗A)−1 is interpreted as the pesudoinverse.
Define St1,t2 to be the sigma-algebra generated by

b0, ..., bt1−1,m0, ...,mt1−1, h1, ..., ht2 , q0, ..., qt2 , and β0, w.

A key ingredient in the proof is the distribution of A conditioned on the sigma algebra St1,t where
t1 is either t + 1 or t from which we are able to specify the conditional distributions of bt and
ht+1 given St,t and St+1,t, respectively. Observing that conditioning on St1,t is equivalent to
conditioning on the linear constraints1

AQt1 = Yt1 , A
∗Mt = Xt,

the following lemma from [1] specifies the conditional distribution of A|St1,t
.

Lemma 4.2. [1, Lemma 10, Lemma 12] The conditional distributions of the vectors in (4.8)
satisfy the following, provided n > t and Mt, Qt have full column rank.

A∗mt|St+1,t

d
= Xt(M

∗
tMt)

−1M∗tm
t
‖ + Qt+1(Q∗t+1Qt+1)−1Y ∗t+1m

t
⊥ + P⊥Qt+1

Ã∗mt
⊥,

Aqt|St,t

d
= Yt(Q

∗
tQt)

−1Q∗t q
t
‖ + Mt(M

∗
tMt)

−1X∗t q
t
⊥ + P⊥Mt

Âqt⊥,

where mt
‖,m

t
⊥, q

t
‖, q

t
⊥ are defined in (4.12) and (4.13). Here Ã, Â

d
= A are random matrices inde-

pendent of St+1,t and St,t.

Lemma 4.3 (Conditional Distribution Lemma). For the vectors ht+1 and bt defined in (4.1), the
following hold for t ≥ 1, provided n > t and Mt, Qt have full column rank.

h1|S1,0

d
= τ0Z0 + ∆1,0, and ht+1|St+1,t

d
=

t−1∑
r=0

α̂trh
r+1 + τ⊥t Zt + ∆t+1,t, (4.24)

b0|S0,0

d
= σ0Z

′
0 + ∆0,0, and bt|St,t

d
=

t−1∑
r=0

γ̂trb
r + σ⊥t Z

′
t + ∆t,t. (4.25)

where Z0, Zt ∈ RN and Z ′0, Z
′
t ∈ Rn are i.i.d. standard Gaussian random vectors that are inde-

pendent of the corresponding conditioning sigma algebras. The terms γ̂ti and α̂ti for i ∈ [t − 1] are

1While conditioning on the linear constraints, we emphasize that only A is treated as random.
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defined in (4.17) and the terms (τ⊥t )2 and (σ⊥t )2 in (4.19). The deviation terms are

∆0,0 =

(∥∥q0
∥∥

√
n
− σ0

)
Z ′0, (4.26)

∆1,0 =

[(∥∥m0
∥∥

√
n
− τ0

)
IN −

∥∥m0
∥∥

√
n

P
‖
q0

]
Z0 + q0

(∥∥q0
∥∥2

n

)−1(
(b0)∗m0

n
− ξ0

∥∥q0
∥∥2

n

)
, (4.27)

and for t > 0,

∆t,t =
t−1∑
r=0

(γtr − γ̂tr)br +

[(∥∥qt⊥∥∥√
n
− σ⊥t

)
In −

∥∥qt⊥∥∥√
n

P
‖
Mt

]
Z ′t

+Mt

(
M∗tMt

n

)−1
(
H∗t q

t
⊥

n
− Mt

n

∗
[
λtm

t−1 −
t−1∑
r=1

λrγ
t
rm

r−1

])
, (4.28)

∆t+1,t =

t−1∑
r=0

(αtr − α̂tr)hr+1 +

[(∥∥mt
⊥
∥∥

√
n
− τ⊥t

)
IN −

∥∥mt
⊥
∥∥

√
n

P
‖
Qt+1

]
Zt

+Qt+1

(
Q∗t+1Qt+1

n

)−1
(
B∗t+1m

t
⊥

n
−
Q∗t+1

n

[
ξtq

t −
t−1∑
i=0

ξiα
t
iq
i

])
. (4.29)

Proof. We begin by demonstrating (4.25). By (4.1) it follows that

b0|S0,0= Aq0 d
= (
∥∥q0
∥∥ /√n)Z ′0,

where Z ′0 ∈ Rn is an i.i.d. standard Gaussian random vector, independent of S0,0.
Define Qt := Q∗tQt and Mt := M∗tMt. For the case t ≥ 1, we use Lemma 4.2 to write

bt|St,t= (Aqt − λtmt−1)|St,t

d
= YtQ

−1
t Q∗t q

t
‖ +MtM

−1
t X∗t q

t
⊥ + P⊥Mt

Ãqt⊥ − λtmt−1

= BtQ
−1
t Q∗t q

t
‖ + [0|Mt−1]ΛtQ

−1
t Q∗t q

t
‖ +MtM

−1
t H∗t q

t
⊥ + P⊥Mt

Ãqt⊥ − λtmt−1.

The last equality above is obtained using Yt = Bt + [0|Mt−1]Λt, and Xt = Ht + ΞtQt. Noticing

that BtQ
−1
t Q∗t q

t
‖ =

∑t−1
i=0 γ

t
ib
i and P⊥Mt

Ãqt⊥ = (I − P
‖
Mt

)Ãqt⊥
d
= (I − P

‖
Mt

)
‖qt⊥‖√

n
Z ′t where Z ′t ∈ Rn is

an i.i.d. standard Gaussian random vector, it follows that

bt|St,t

d
= (I− P

‖
Mt

)

∥∥qt⊥∥∥√
n
Z ′t +

t−1∑
i=0

γtib
i + [0|Mt−1]ΛtQ

−1
t Q∗t q

t
‖ +MtM

−1
t H∗t q

t
⊥ − λtmt−1. (4.30)

All the quantities in the RHS of (4.30) except Z ′t are in the conditioning sigma-field. We can rewrite
(4.30) with the following pair of values:

bt|St,t

d
=

t−1∑
r=0

γ̂trb
r + σ⊥t Z

′
t + ∆t,t,

∆t,t =

t−1∑
r=0

(γtr − γ̂tr)br +

[(∥∥qt⊥∥∥√
n
− σ⊥t

)
I−

∥∥qt⊥∥∥√
n

P
‖
Mt

]
Z ′t

+ [0|Mt−1]ΛtQ
−1
t Q∗t q

t
‖ + MtM

−1
t H∗t q

t
⊥ − λtm

t−1.
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The above definition of ∆t,t equals that given in (4.28) since

[0|Mt−1]ΛtQ
−1
t Q∗t q

t
‖ +MtM

−1
t M∗t

(
λtm

t−1 −
t−2∑
i=0

λi+1γ
t
i+1m

i

)
− λtmt−1

=

t−2∑
j=0

λj+1γ
t
j+1m

j + λtm
t−1 −

t−2∑
i=0

λi+1γ
t
i+1m

i − λtmt−1 = 0.

This completes the proof of (4.25). Result (4.24) can be shown similarly.

The conditional distribution representation in Lemma 4.3 implies that for each t ≥ 0, ht+1 is
the sum of an i.i.d. N (0, τ2

t ) random vector plus a deviation term. Similarly bt is the sum of an
i.i.d. N (0, σ2

t ) random vector and a deviation term. This is made precise in the following lemma.

Lemma 4.4. For t ≥ 0, let Z ′t ∈ Rn, Zt ∈ RN be independent standard normal random vectors.
Let b0pure = σ0Z

′
0, h1

pure = τ0Z0, and recursively define for t ≥ 1:

btpure =

t−1∑
r=0

γ̂trb
r
pure + σ⊥t Z

′
t, ht+1

pure =

t−1∑
r=0

α̂trh
r+1
pure + τ⊥t Zt. (4.31)

Then for t ≥ 0, the following statements hold.

1. For j ∈ [N ] and k ∈ [n],

(b0purej
, . . . , btpurej

)
d
= (σ0Z̆0, . . . , σtZ̆t), and (h1

purek
, . . . , ht+1

purek
)

d
= (τ0Z̃0, . . . , τtZ̃t),

(4.32)

where {Z̆t}t≥0 and {Z̃t}t≥0 are the jointly Gaussian random variables defined in Sec. 4.2.

2. For t ≥ 0,

btpure =

t∑
i=0

Z ′i σ
⊥
i cti, htpure =

t∑
i=0

Zi τ
⊥
i dti, (4.33)

where the constants {cti}0≤i≤t and {dti}0≤i≤t are recursively defined as follows, starting with
c0

0 = 1 and d0
0 = 1. For t > 0,

ctt = 1, cti =
t−1∑
r=i

cri γ̂
t
r, for 0 ≤ i ≤ (t− 1), (4.34)

dtt = 1, dti =

t−1∑
r=i

dri α̂
t
r, for 0 ≤ i ≤ (t− 1). (4.35)

3. The conditional distributions in Lemma 4.3 can be expressed as

bt|St,t

d
= btpure +

t∑
r=0

ctr ∆r,r, ht+1|St+1,t

d
= ht+1

pure +
t∑

r=0

dtr ∆r+1,r. (4.36)
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Proof. We prove (4.32) by induction. We prove the btpure result; the proof for htpure is very similar.
The base case of t = 0 holds by the definition of b0pure. Assume towards induction that (4.32) holds

for (b0pure, . . . , b
t−1
pure). Then using (4.31), btpure has the same distribution as

∑t−1
r=0 γ̂

t
rσrZ̆r + σ⊥t Z

where Z ∈ Rn is a standard Gaussian random vector independent of Z̆0, . . . , Z̆t−1. We now show

that
∑t−1

r=0 γ̂
t
rσrZ̆r + σ⊥t Z

d
= σtZ̆t by demonstrating that: (i) var(

∑t−1
r=0 γ̂

t
rσrZ̆r + σ⊥t Z) = σ2

t ; and

(ii) E[σkZ̆k(
∑t−1

r=0 γ̂
t
rσrZ̆r + σ⊥t Z)] = σkσtE[Z̆kZ̆t] = Ẽk,t, for 0 ≤ k ≤ (t− 1). The variance is

E
( t−1∑
r=0

γ̂trσrZ̆r + σ⊥t Z
)2

=

t−1∑
r=0

t−1∑
k=0

γ̂trγ̂
t
kẼk,r + (σ⊥t )2 = σ2

t ,

where the last equality follows from rewriting the double sum as follows using the definitions in
Section 4.1:∑

r,k

γ̂trγ̂
t
kẼk,r = (γ̂t)∗C̃tγ̂t = [Ẽ∗t (C̃t)−1]C̃t[(C̃t)−1Ẽt] = Ẽ∗t (C̃t)−1Ẽt = Ẽt,t − (σ⊥t )2. (4.37)

Next, for any 0 ≤ k ≤ t− 1, we have

E[σkZ̆k(

t−1∑
r=0

γ̂trσrZ̆r + σ⊥t Z )]
(a)
=

t−1∑
r=0

Ẽk,rγ̂
t
r

(b)
= [C̃γ̂t]k+1

(c)
= Ẽk,t.

In the above, step (a) follows from (4.14); step (b) by recognizing from (4.16) that the required
sum is the inner product of γ̂t with row (k + 1) of C̃t; step (c) from the definition of γ̂t in (4.17).
This proves (4.32).

Next we show the expression for btpure in (4.33) using induction; the proof for htpure is similar.

The base case of t = 0 holds by definition because σ⊥1 = σ1. Using the induction hypothesis that
(4.33) holds for b0pure, . . . , b

t−1
pure, the defintion (4.31) can be written as

btpure =

t−1∑
r=0

γ̂tr

( r∑
i=0

Z ′iσ
⊥
i cri

)
+ σ⊥t Z

′
t =

t−1∑
i=0

Z ′iσ
⊥
i

( t−1∑
r=i

γ̂trc
r
i

)
+ σ⊥t Z

′
t =

t∑
i=0

Z ′iσ
⊥
i cti, (4.38)

where the last inequality follows from the definition of cti for 0 ≤ i ≤ t in (4.35). This proves (4.33).
The expressions for the conditional distribution of bt and ht+1 in (4.36) can be similarly obtained

from (4.25) and (4.24) using an induction argument.

4.5 Main Concentration Lemma

For t ≥ 0, let

Kt = C2t(t!)10, κt =
1

c2t(t!)22
, K ′t = C(t+ 1)5Kt, κ′t =

κt
c(t+ 1)11

, (4.39)

where C, c > 0 are universal constants (not depending on t, n, or ε). To keep the notation compact,
we use K,κ, κ′ to denote generic positive universal constants whose values may change through the
lemma statement and the proof.

Lemma 4.5. The following statements hold for 1 ≤ t < T ∗ and ε ∈ (0, 1).
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(a)

P

(
1

N
‖∆t+1,t‖2 ≥ ε

)
≤ Kt2K ′t−1 exp

{
−
κκ′t−1nε

t4

}
, (4.40)

P

(
1

n
‖∆t,t‖2 ≥ ε

)
≤ Kt2Kt−1 exp

{
−κκt−1nε

t4

}
. (4.41)

(b) i) Let Xn
..
= c be shorthand for P (|Xn − c| ≥ ε) ≤ Kt3K ′t−1 exp

{
−κκ′t−1nε

2/t7
}

. Then for
pseudo-Lipschitz functions φh : Rt+2 → R

1

N

N∑
i=1

φh
(
h1
i , . . . , h

t+1
i , β0i

) ..
= Eφh

(
τ0Z̃0, . . . , τtZ̃t, β

)
. (4.42)

The random variables Z̃0, . . . , Z̃t are jointly Gaussian with zero mean and covariance given by
(4.14), and are independent of β ∼ pβ.

ii) Let ψh : R2 → R be a bounded function that is differentiable in the first argument except
possibly at a finite number of points, with bounded derivative where it exists. Then,

P

(∣∣∣∣∣ 1

N

N∑
i=1

ψh(ht+1
i , β0i)− Eψh(τtZ̃t, β)

∣∣∣∣∣ ≥ ε
)
≤ Kt2K ′t−1 exp

{−κκ′t−1nε
2

t4

}
. (4.43)

As above, Z̃t ∼ N (0, 1) and β ∼ pβ are independent.

iii) Let Xn
.
= c be shorthand for P (|Xn − c| ≥ ε) ≤ Kt3Kt−1 exp

{
−κκt−1nε

2/t7
}

. Then for
pseudo-Lipschitz functions φb : Rt+2 → R

1

n

n∑
i=1

φb
(
b0i , . . . , b

t
i, wi

) .
= Eφb

(
σ0Z̆0, . . . , σtZ̆t,W

)
. (4.44)

The random variables Z̆0, . . . , Z̆t are jointly Gaussian with zero mean and covariance given by
(4.14), and are independent of W ∼ pw.

iv) Let ψb : R → R be a bounded function that is differentiable in the first argument except
possibly at a finite number of points, with bounded derivative where it exists. Then,

P

(∣∣∣∣∣ 1n
n∑
i=1

ψb(b
t
i, wi)− Eψb(σtZ̆t,W )

∣∣∣∣∣ ≥ ε
)
≤ Kt2Kt−1 exp

{
−κκt−1nε

2

t4

}
. (4.45)

As above, Z̆t ∼ N (0, 1) and W ∼ pw are independent.

(c)

(ht+1)∗q0

n

..
= 0,

(ht+1)∗β0

n

..
= 0, (4.46)

(bt)∗w

n

.
= 0. (4.47)

(d) For all 0 ≤ r ≤ t,

(hr+1)∗ht+1

N

..
= Ĕr,t, (4.48)

(br)∗bt

n

.
= Ẽr,t. (4.49)
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(e) For all 0 ≤ r ≤ t,

(q0)∗qt+1

n

..
= Ẽ0,t+1,

(qr+1)∗qt+1

n

..
= Ẽr+1,t+1, (4.50)

(mr)∗mt

n

.
= Ĕr,t. (4.51)

(f) For all 0 ≤ r ≤ t,

λt
..
= λ̂t,

(ht+1)∗qr+1

n

..
= λ̂r+1Ĕr,t,

(hr+1)∗qt+1

n

..
= λ̂t+1Ĕr,t, (4.52)

ξt
.
= ξ̂t,

(br)∗mt

n

.
= ξ̂tẼr,t,

(bt)∗mr

n

.
= ξ̂rẼr,t (4.53)

(g) Let Qt+1 := 1
nQ
∗
t+1Qt+1 and Mt := 1

nM
∗
tMt. Then,

P (Qt+1 is singular) ≤ tKt−1e
−κt−1κn, (4.54)

P (Mt is singular) ≤ tKt−1e
−κt−1κn. (4.55)

When the inverses of Qt+1,Mt exist,

P

(∣∣∣∣[Q−1
t+1 − (C̃t+1)−1

]
i+1,j+1

∣∣∣∣ ≥ ε) ≤ KK ′t−1 exp
{
−κκ′t−1nε

2
}
,

P
(∣∣γt+1

i − γ̂t+1
i

∣∣ ≥ ε) ≤ Kt4K ′t−1 exp

{−κκ′t−1nε
2

t9

}
, 0 ≤ i, j ≤ t.

(4.56)

P

(∣∣∣∣[M−1
t − (C̆t)−1

]
i+1,j+1

∣∣∣∣ ≥ ε) ≤ KKt−1 exp
{
−κκt−1nε

2
}
,

P
(∣∣αti − α̂ti∣∣ ≥ ε) ≤ Kt4Kt−1 exp

{
−κκt−1nε

2

t9

}
, 0 ≤ i, j ≤ (t− 1).

(4.57)

where γ̂t+1 and α̂t are defined in (4.17).

(h) With σ⊥t+1, τ
⊥
t defined in (4.19),

P

(∣∣∣∣ 1n ∥∥qt+1
⊥
∥∥2 − (σ⊥t+1)2

∣∣∣∣ ≥ ε) ≤ Kt5K ′t−1 exp

{−κκ′t−1nε
2

t11

}
, (4.58)

P

(∣∣∣∣ 1n ∥∥mt
⊥
∥∥2 − (τ⊥t )2

∣∣∣∣ ≥ ε) ≤ Kt5Kt−1 exp

{
−κκt−1nε

2

t11

}
. (4.59)

4.6 Remarks on Lemma 4.5

The proof of Theorem 3.1 below only requires the concentration result in part (b).(i) of Lemma
4.5, but the proof of part (b).(i) hinges on the other parts of the lemma. The proof of Lemma 4.5,
given in Section 5, uses induction starting at time t = 0, sequentially proving the concentration
results in parts (a) − (h). The proof is long, but is based on a sequence of a few key steps which
we summarize here.

The main result that needs to be proved (part (b).(i), (4.42)) is that within the normalized
sum of the pseudo-Lipschitz function φh, the inputs h1, . . . , ht+1 can be effectively replaced by
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τ0Z̃0, . . . , τtZ̃t, respectively. To prove this, we use the representation for ht+1 given by Lemma 4.3,
and show that the deviation term given by (4.3) can be effectively dropped. In order to show that
the deviation term can be dropped, we need to prove the concentration results in parts (c) – (h)
of Lemma 4.5. Parts (b).(ii), (b).(iii), and (b).(iv) of the lemma are used to establish the results in
parts (c) – (h).

The concentration constants κt,Kt: The concentration results in Lemma 4.5 and Theorem 3.1
for AMP iteration t ≥ 1 are of the form Kte

−κtnε2 , where κt,Kt are given in (4.39). Due to the
inductive nature of the proof, the concentration results for step t depend on those corresponding
to all the previous steps — this determines how κt,Kt scale with t.

The t! terms in κt,Kt can be understood as follows. Suppose that we want prove a concentration
result for a quantity that can be expressed as a sum of t terms with step indices 1, . . . , t. (A typical
example is ∆t+1,t in (4.3).) For such a term, the deviation from the deterministic concentrating
value is less than ε if the deviation in each of the terms in the sum is less than ε/t. The induction
hypothesis (for steps 1, . . . , t) is then used to bound the ε/t-deviation probability for each term in
the sum. This introduces factors of 1/t and t multiplying the exponent and pre-factor, respectively,
in each step t (see Lemma A.2), which results in the t! terms in Kt and κt.

The (C2)t and (c2)t terms in κt,Kt arise due to quantities that can be expressed as the product
of two terms, for each of which we have a concentration result available (due to the induction
hypothesis). This can be used to bound the ε-deviation probability of the product, but with a
smaller exponent and a larger prefactor (see Lemma A.3). Since this occurs in each step of the
induction, the constants Kt, κt have terms of the form (C2)t, (c2)t, respectively.

Comparison with earlier work : Lemmas 4.3 and 4.5 are similar to the main technical lemma
in [1, Lemma 1], in that they both analyze the behavior of similar functions and inner products
arising in the AMP. The key difference is that Lemma 4.5 replaces the asymptotic convergence
statements in [1] with concentration inequalities. Other differences from [1, Lemma 1] include:

– Lemma 4.5 gives explicit values for the deterministic limits in parts (c)–(h), which are needed
in other parts of our proof.

– Lemma 4.3 characterizes the the conditional distribution of the vectors ht+1 and bt as the
sum of an ideal distribution and a deviation term. [1, Lemma 1(a)] is a similar distributional
characterization of ht+1 and bt, however it does not use the ideal distribution. We found that
working with the ideal distribution throughout Lemma 4.5 simplified our proof.

4.7 Proof of Theorem 3.1

Proof. Applying Part (b).(i) of Lemma 4.5 to a pseudo-Lipschitz (PL) function of the form φh(ht+1, β0),
we get

P

(∣∣∣∣∣ 1

N

N∑
i=1

φh(ht+1
i , β0i)− E [φh(τtZ, β)]

∣∣∣∣∣ ≥ ε
)
≤ Kte

−κtnε2 ,

where the random variables Z ∼ N(0, 1) and β ∼ pβ are independent. Now let φh(ht+1
i , β0i) :=

φ(ηt(β0i − ht+1
i ), β0i), where φ is the PL function in the statement of the theorem. The function

φh(ht+1
i , β0i) is PL since φ is PL and ηt is Lipschitz. We therefore obtain

P

(∣∣∣∣∣ 1

N

N∑
i=1

φ(ηt(β0i − ht+1
i ), β0i)− E [φ(ηt(β − τtZ), β)]

∣∣∣∣∣ ≥ ε
)
≤ Kte

−κtnε2 .

The proof is completed by noting from (1.3) and (4.5) that βt+1 = ηt(A
∗zt+βt) = ηt(β0−ht+1).
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5 Proof of Lemma 4.5

5.1 Mathematical Preliminaries

Some of the results below can be found in [1, Section III.G], but we summarize them here for
completeness.

Fact 1. Let u ∈ RN and v ∈ Rn be deterministic vectors, and let Ã ∈ Rn×N be a matrix with
independent N (0, 1/n) entries. Then:

(a)

Ãu
d
=

1√
n
‖u‖Zu and Ã∗v

d
=

1√
n
‖v‖Zv,

where Zu ∈ Rn and Zv ∈ RN are i.i.d. standard Gaussian random vectors.
(b) Let W be a d-dimensional subspace of Rn for d ≤ n. Let (w1, ..., wd) be an orthogonal basis

of W with ‖w`‖2 = n for ` ∈ [d], and let P
‖
W denote the orthogonal projection operator onto W.

Then for D = [w1 | . . . | wd], we have P
‖
WÃu

d
= 1√

n
‖u‖P

‖
WZu

d
= 1√

n
‖u‖Dx where x ∈ Rd is a

random vector with i.i.d. N (0, 1/n) entries.

Fact 2 (Stein’s lemma). For zero-mean jointly Gaussian random variables Z1, Z2, and any function
f : R→ R for which E[Z1f(Z2)] and E[f ′(Z2)] both exist, we have E[Z1f(Z2)] = E[Z1Z2]E[f ′(Z2)].

Fact 3. Let v1, . . . , vt be a sequence of vectors in Rn such that for i ∈ [t] 1
n

∥∥∥vi − P
‖
i−1(vi)

∥∥∥2
≥ c,

where c is a positive constant that does not depend on n, and P
‖
i−1 is the orthogonal projection onto

the span of v1, . . . , vi−1. Then the matrix C ∈ Rt×t with Cij = v∗i vj/n has minimum eigenvalue
λmin ≥ c′t, where c′t is a positive constant (not depending on n).

Fact 4. Let g : R→ R be a bounded function. For all s,∆ ∈ R such that g is differentiable in the
closed interval between s and s+∆, there exists a constant c > 0 such that |g(s+ ∆)− g(s)| ≤ c |∆|.

We also use several concentration results listed in Appendices A and B, with proofs provided for
the results that are non-standard. Some of these may be of independent interest, e.g., concentration
of sums of a pseudo-Lipschitz function of sub-Gaussians (Lemma B.4).

The proof of Lemma 4.5. proceeds by induction on t. We label as Ht+1 the results (4.40),
(4.42), (4.43), (4.46), (4.48), (4.50), (4.52), (4.54), (4.56), (4.58) and similarly as Bt the results
(4.41), (4.44), (4.45), (4.47), (4.49), (4.51), (4.53), (4.55), (4.57), (4.59). The proof consists of
showing four steps:

1. B0 holds.

2. H1 holds.

3. If Br,Hs holds for all r < t and s ≤ t, then Bt holds.

4. if Br,Hs holds for all r ≤ t and s ≤ t, then Ht+1 holds.

For the proofs of parts (b).(ii) and (b).(iv), for brevity we assume that the functions ψh and
ψb are differentiable everywhere. The case where they are not differentiable at a finite number of
points involves additional technical details; see Appendix D.
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5.2 Step 1: Showing B0 holds

We wish to show results (a)-(h) in (4.41), (4.44), (4.45), (4.47), (4.49), (4.51), (4.53), (4.55), (4.57),
(4.59).

(a) We have

P

(
‖∆0,0‖2

n
≥ ε

)
(a)

≤ P

(∣∣∣∣∣
∥∥q0
∥∥

√
n
− σ⊥0

∣∣∣∣∣ ≥
√
ε

2

)
+ P

(∣∣∣∣‖Z ′0‖√n − 1

∣∣∣∣ ≥√ ε

2

)
(b)

≤ K exp {−κε2nε/4}+ 2 exp {−nε/8} .

Step (a) is obtained using the definition of ∆0,0 in (4.26), and then applying Lemma A.3. For step
(b), we use (4.3), Lemma A.4, and Lemma B.2.

(b).(iii) For t = 0, the LHS of (4.44) can be bounded as

P

(∣∣∣∣∣ 1n
n∑
i=1

φb
(
b0i , wi

)
− E[φb(σ0Z̆0,W )]

∣∣∣∣∣ ≥ ε
)

(a)
= P

(∣∣∣∣∣ 1n
n∑
i=1

φb
(
σ0Z

′
0i + [∆0,0]i, wi

)
− E[φb(σ0Z̆0,W )]

∣∣∣∣∣ ≥ ε
)

(b)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

φb
(
σ0Z

′
0i , wi

)
− E[φb(σ0Z̆0,W )]

∣∣∣∣∣ ≥ ε

2

)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

φb
(
σ0Z

′
0i + [∆0,0]i, wi

)
− 1

n

n∑
i=1

φb
(
σ0Z

′
0i , wi

)∣∣∣∣∣ ≥ ε

2

)
.

(5.1)

Step (a) uses the conditional distribution of b0 given in (4.25), and step (b) follows from Lemma
A.2. Label the terms on the RHS of (5.1) as T1 and T2. Term T1 can be upper bounded by Ke−κnε

2

using Lemma B.4. We now show a similar upper bound for term T2.

T2

(a)

≤ P

(
1

n

n∑
i=1

L
(
1 + 2

∣∣σ0Z
′
0i

∣∣+ |[∆0,0]i|+ 2 |wi|
)
|[∆0,0]i| ≥

ε

2

)
(b)

≤ P

(
‖∆0,0‖√

n

∥∥∥∥ 1√
n

+
|∆0,0|√

n
+ 2σ0

|Z ′0|√
n

+ 2
|w|√
n

∥∥∥∥ ≥ ε

2L

)
(c)

≤ P

(
‖∆0,0‖√

n
·
(

1 +
‖∆0,0‖√

n
+ 2σ0

‖Z ′0‖√
n

+ 2
‖w‖√
n

)
≥ ε

4L

)
, (5.2)

where inequality (a) holds because φb is pseudo-Lipschitz with constant L > 0. Inequality (b)
follows from Cauchy-Schwarz (with 1 denoting the all-ones vector). Inequality (c) is obtained by
applying Lemma C.3. From (5.2), we have

T2 ≤ P
(
‖w‖√
n
≥ σ + 1

)
+ P

(
‖Z ′0‖√
n
≥ 2

)
+ P

(
‖∆0,0‖√

n
≥
εmin

{
1, 1

4L

}
4 + 4σ0 + 2σ

)
(a)

≤ Ke−κn + e−n +Ke−κnε
2
,

(5.3)

where to obtain (a), we use assumption (1.6), Lemma B.2, and B0(a) proved above.
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(b).(iv) For t = 0, the probability in (4.45) can be bounded as

P

(∣∣∣∣∣ 1n
n∑
i=1

ψb(b
0
i , wi)− E[ψb(σ0Z̆0,W )]

∣∣∣∣∣ ≥ ε
)

(a)
= P

(∣∣∣∣∣ 1n
n∑
i=1

ψb(σ0Z
′
0i + [∆0,0]i, wi)− E[ψb(σ0Z̆0,W )]

∣∣∣∣∣ ≥ ε
)

(b)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

(
ψb(σ0Z

′
0i + [∆0,0]i, wi)− ψb(σ0Z

′
0i , wi)

)∣∣∣∣∣ ≥ ε

2

)
(5.4)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

ψb(σ0Z
′
0i , wi)− E[ψb(σ0Z̆0,W )]

∣∣∣∣∣ ≥ ε

2

)
.

Step (a) uses the conditional distribution of b0 given in (4.25), and step (b) follows from Lemma
A.2. Label the two terms on the RHS of (5.4) as T1 and T2, respectively. We now show that each
term is bounded by Ke−κnε

2
. Since |ψb| is bounded (say it takes values in an interval of length B),

the term T2 can be bounded using Hoeffding’s inequality (Lemma A.1) by 2e−nε
2/(2B2).

Next, consider T1. Let Π0 be the event under consideration, so that T1 = P (Π0), and define an
event F as follows.

F :=

{∣∣∣∣ 1√
n

∥∥q0
∥∥− σ0

∣∣∣∣ ≥ ε0} , (5.5)

where ε0 > 0 will be specified later. With this definition, we have

T1 = P (Π0) ≤ P (F) + P (Π0|Fc) ≤ Ke−κnε
2
0 + P (Π0|Fc). (5.6)

The final inequality in (5.6) follows from the concentration of
∥∥q0
∥∥ in (4.3). To bound the last term

P (Π0|Fc), we write it as

P (Π0|Fc) = E [I{Π0}|Fc] = E [E [I{Π0}|Fc,S0,0] | Fc]
= E [P (Π0|Fc,S0,0) | Fc] ,

(5.7)

where I{·} denotes the indicator function, and P (Π0|Fc,S0,0) equals

P

(∣∣∣∣∣ 1n
n∑
i=1

(
ψb

(
1√
n

∥∥q0
∥∥Z ′0i , wi)− ψb(σ0Z

′
0i , wi)

)∣∣∣∣∣ ≥ ε

2

∣∣∣∣∣Fc,S0,0

)
. (5.8)

To obtain (5.8), we use the fact that σ0Z
′
0i

+ [∆0,0]i = 1√
n

∥∥q0
∥∥Z ′0i which follows from the defini-

tion of ∆0,0 in Lemma 4.3. Recall from Section 4.4 that S0,0 is the sigma algebra generated by
{w, β0, q

0}; so in (5.8), only Z ′0 is random — all other terms are in S0,0. We now derive a bound
for the upper tail of the probability in (5.8); the lower tail bound is similarly obtained.

Define the shorthand diff(Z ′0i) := ψb(
1√
n

∥∥q0
∥∥Z ′0i , wi) − ψb(σ0Z

′
0i
, wi). Since ψb is bounded, so

is diff(Z ′0i). Let |ψb| ≤ B/2, so that
∣∣diff(Z ′0i)

∣∣ ≤ B for all i. Then the upper tail of the probability
in (5.8) can be written as

P

(
1

n

n∑
i=1

diff(Z ′0i)− E[diff(Z ′0i)] ≥
ε

2
− 1

n

n∑
i=1

E[diff(Z ′0i)]
∣∣∣Fc,S0,0

)
. (5.9)

20



We now show that
∣∣E[diff(Z ′0i)]

∣∣ ≤ 1
4ε for all i ∈ [n]. From here on, we suppress the conditioning

on Fc,S0,0 for brevity. Denoting the standard normal density by φ, we have

∣∣E[diff(Z ′0i)]
∣∣ ≤ ∫

R
φ(z) |diff(z)| dz

(a)

≤
∫
R
φ(z)C

∣∣∣∣∣z
(∥∥q0

∥∥
√
n
− σ0

)∣∣∣∣∣ dz (b)

≤ 2Cε0.

The above is bounded by 1
4ε if we choose ε0 ≤ ε/8C. In the chain above, (a) follows by Fact 4 for a

suitable constant C > 0 as ψb is bounded and assumed to be differentiable. Step (b) follows since∣∣∣ 1√
n

∥∥q0
∥∥− σ0

∣∣∣ ≤ ε0 under Fc.
The probability in (5.9) can then be bounded using Hoeffding’s inequality (Lemma A.1):

P

(
1

n

n∑
i=1

diff(Z ′0i)− E[diff(Z ′0i)] ≥
ε

4

∣∣∣Fc,S0,0

)
≤ e−nε2/(8B2).

Substituting in (5.8) and using a similar bound for the lower tail, we have shown via (5.7) that
P (Π0 | Fc) ≤ 2e−nε

2/(8B2). Using this in (5.6) with ε0 ≤ ε/8C proves that the first term in (5.4) is
bounded by Ke−nκε

2
.

(c) The function φb(b
0
i , wi) := b0iwi ∈ PL(2) by Lemma C.1. By B0(b).(iii),

P

(∣∣∣∣ 1n(b0)∗w − E[σ0Z̆0W ]

∣∣∣∣ ≥ ε) ≤ Ke−κnε2 .
This result follows since E[σ0Z̆0W ] = 0 by the independence of W and Ẑ0.

(d) The function φb(b
0
i , wi) := (b0i )

2 ∈ PL(2) by Lemma C.1. By B0(b).(iii),

P

(∣∣∣∣ 1n ∥∥b0∥∥2 − E[(σ0Z̆0)2]

∣∣∣∣ ≥ ε) ≤ Ke−κnε2 .
This result follows since E[(σ0Ẑ0)2] = σ2

0.
(e) Since g0 is Lipschitz, the function φb(b

0
i , wi) := (g0(b0i , wi))

2 ∈ PL(2) by Lemma C.1. By
B0(b).(iii),

P

(∣∣∣∣ 1n ∥∥m0
∥∥2 − E[(g0(σ0Z̆0,W ))2]

∣∣∣∣ ≥ ε) ≤ Ke−κnε2 .
This result follows since E[(g0(σ0Z̆0,W ))2] = τ2

0 by (4.4).
(f) The concentration of ξ0 around ξ̂0 follows from B0(b).(iv) applied to the function ψb(b

0
i , wi) :=

g′0(b0i , wi). Next, the function φb(b
0
i , wi) := b0i g0(b0i , wi) ∈ PL(2) by Lemma C.1. Then by B0(b).(iii),

P

(∣∣∣∣ 1n(b0)∗m0 − E[σ0Z̆0g0(σ0Z̆0,W )]

∣∣∣∣ ≥ ε) ≤ Ke−κnε2 .
This result follows since E[σ0Z̆0g0(σ0Z̆0,W )] = σ2

0E[g′0(σ0Z̆0,W )] = ξ̂0Ẽ0,0 by Stein’s Lemma given
in Fact 2.

(g) Nothing to prove.
(h) The result is equivalent to B0(e) since

∥∥m0
⊥
∥∥ =

∥∥m0
∥∥ and (τ⊥0 )2 = τ2

0 .
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5.3 Step 2: Showing H1 holds

We wish to show results (a)–(h) in (4.40), (4.42), (4.43), (4.46), (4.48), (4.50), (4.52), (4.54), (4.56),
(4.58).

(a) From the definition of ∆1,0 in (4.27) of Lemma 4.3, we have

∆1,0
d
= Z0

(∥∥m0
∥∥

√
n
− τ⊥0

)
−
∥∥m0

∥∥ q̃0Z̄0√
n

+ q0

(
n

‖q0‖2

)(
(b0)∗m0

n
−
ξ0

∥∥q0
∥∥2

n

)
. (5.10)

where q̃0 = q0/
∥∥q0
∥∥, and Z̄0 ∈ R is a standard Gaussian random variable. The equality in (5.10)

is obtained using Fact 1 to write P
‖
q0
Z0

d
= q̃0Z̄0. Then, from (5.10) we have

P

(
1

N
‖∆1,0‖2 ≥ ε

)
(a)

≤ P

(∣∣∣∣∣
∥∥m0

∥∥
√
n
− τ0

∣∣∣∣∣ ‖Z0‖√
N
≥
√
ε

9

)
+ P

(∥∥m0
∥∥

√
n
·
∣∣Z̄0

∣∣
√
N
≥
√
ε

9

)

+ P

(∣∣∣∣∣ (b0)∗m0

√
n ‖q0‖

− ξ0

∥∥q0
∥∥

√
n

∣∣∣∣∣ ≥
√

ε

9δ

)
.

(5.11)

Step (a) follows from Lemma C.3 applied to ∆1,0 in (5.10) and Lemma A.2. Label the terms on the
RHS of (5.11) as T1 − T3. To complete the proof, we show that each term is bounded by Ke−κnε

for generic positive constants K,κ that do not depend on n, ε.
Indeed, T1 ≤ Ke−κnε using Lemma A.3, Lemma A.4, result B0(e), and Lemma B.2. Similarly,

T2 ≤ Ke−κnε using Lemma A.3, Lemma A.4, result B0(e), and Lemma B.1. Finally,

T3

(a)

≤ P

(∣∣∣∣(b0)∗m0

n
·
√
n

‖q0‖
− ξ̂0σ0

∣∣∣∣ ≥ 1

2

√
ε

9δ

)
+ P

(∣∣∣∣∣ξ0

∥∥q0
∥∥

√
n
− ξ̂0σ0

∣∣∣∣∣ ≥ 1

2

√
ε

9δ

)
(b)

≤ 2K exp

{
−κnε

4(92)δmax(1, ξ̂2
0σ

4
0, σ
−2
0 )

}
+ 2K exp

{
−κnε

4(92)δmax(1, ξ̂2
0 , σ

2
0)

}
.

Step (a) follows from Lemma A.2, and step (b) from Lemma A.3, B0(f), the concentration of
∥∥q0
∥∥

given in (4.3), and Lemma A.6.
(b)(i) The proof of (4.42) is similar to analogous B0(b)(iii) result (4.44).
(b)(ii) First,

P

(∣∣∣∣∣ 1

N

N∑
i=1

ψh(h1
i , β0i)− E[ψh(τ0Z̃0, β)]

∣∣∣∣∣ ≥ ε
)

(a)
= P

(∣∣∣∣∣ 1

N

N∑
i=1

ψh(τ0Z0i + [∆1,0]i, β0i)− E[ψh(τ0Z̃0, β)]

∣∣∣∣∣ ≥ ε
)

(b)

≤ P

(∣∣∣∣∣ 1

N

N∑
i=1

(ψh(τ0Z0i + [∆1,0]i, β0i)− ψh(τ0Z0i , β0i))

∣∣∣∣∣ ≥ ε

2

)

+ P

(∣∣∣∣∣ 1

N

N∑
i=1

ψh(τ0Z0i , β0i)− E[ψh(τ0Z̃0, β)]

∣∣∣∣∣ ≥ ε

2

)
. (5.12)

Step (a) follows from the conditional distribution of h1 stated in (4.24) and step (b) from Lemma
A.2. Label the two terms on the RHS as T1 and T2. Term T2 is upper bounded by Ke−κnε

2
by

Hoeffding’s inequality (Lemma A.1). To complete the proof, we show that T1 has the same bound.

22



Consider the first term in (5.12). From the definition of ∆1,0 in Lemma 4.3,

τ0Z0i + [∆1,0]i =

∥∥m0
∥∥

√
n

[(I− P
‖
q0

)Z0]i + ui, where ui := q0
i

(
(b0)∗m0

‖q0‖2
− ξ0

)
. (5.13)

For ε0 > 0 to be specified later, define event F as

F :=

{∣∣∣∣ 1√
n

∥∥m0
∥∥− τ0

∣∣∣∣ ≥ ε0} ∪{∣∣∣∣ 1n(b0)∗m0 − 1

n
ξ0

∥∥q0
∥∥2
∣∣∣∣ ≥ ε0} . (5.14)

Denoting the event we are considering in T1 by Π1, so that T1 = P (Π1), we write

T1 = P (Π1) ≤ P (F) + P (Π1 | Fc) ≤ Ke−κnε
2
0 + P (Π1 | Fc), (5.15)

where the last inequality is by B0(e),B0(f) and the concentration assumption (4.3) on q0. Writing
P (Π1|Fc) = E[P (Π1|Fc,S1,0) | Fc], we now bound P (Π1|Fc,S1,0). In what follows, we drop the
explicit conditioning on Fc and S1,0 for brevity. Then P (Π1|Fc,S1,0) can be written as

P

(∣∣∣∣∣ 1

N

N∑
i=1

(
ψh

(∥∥m0
∥∥

√
n

[(I− P
‖
q0

)Z0]i + ui, β0i

)
− ψh(τ0Z0i , β0i)

)∣∣∣∣∣ ≥ ε

2

)

≤ P

(∣∣∣∣∣ 1

N

N∑
i=1

ψh

(∥∥m0
∥∥

√
n

[(I− P
‖
q0

)Z0]i + ui, β0i

)
− ψh

(∥∥m0
∥∥

√
n
Z0i + ui, β0i

)∣∣∣∣∣ ≥ ε

4

)

+ P

(∣∣∣∣∣ 1

N

N∑
i=1

ψh

(∥∥m0
∥∥

√
n
Z0i + ui, β0i

)
− ψh(τ0Z0i , β0i)

∣∣∣∣∣ ≥ ε

4

)
.

(5.16)

The above uses Lemma A.2. Note that in (5.16), only Z0 is random as the other terms are all in
S1,0. Label the two terms on the RHS (5.16) as T1,a and T1,b. To complete the proof we show that

both are bounded by Ke−κnε
2
.

First consider T1,a.

T1,a

(a)

≤ P

(
C

N

N∑
i=1

∣∣∣∣∣
∥∥m0

∥∥
√
n

[P
‖
q0
Z0]i

∣∣∣∣∣ ≥ ε

4

)
(b)

≤ P

(
C

N

N∑
i=1

|τ0 + ε0|
∣∣∣[P‖q0Z0]i

∣∣∣ ≥ ε

4

)
(c)

≤ P

(
C

N

N∑
i=1

∣∣q0
i

∣∣
‖q0‖

|Z| ≥ ε

4 |τ0 + ε0|

)
(d)

≤ P

(
|Z|√
N
≥ ε

4C |τ0 + ε0|

)
(e)

≤ e−κNε
2
.

Step (a) holds by Fact 4 for a suitable constant C > 0. Step (b) follows because we are conditioning

on Fc defined in (5.14). Step (c) is obtained by writing out the expression for the vector P
‖
q0
Z0:

P
‖
q0
Z0 =

q0

‖q0‖

N∑
j=1

q0
j

‖q0‖
Z0j

d
=

q0

‖q0‖
Z,

where Z ∈ R is standard Gaussian (Fact 1). Step (d) follows from Cauchy-Schwarz and step (e) by
Lemma B.1.

Considering T1,b, the second term of (5.16), and noting that all quantities except Z0 are in S1,0,

define the shorthand diff(Z0i) := ψh

(
1√
n

∥∥m0
∥∥Z0i + ui, β0i

)
− ψh(τ0Z0i , β0,i). Then the upper tail

of T1,b can be written as

P

(
1

N

N∑
i=1

(diff(Z0i)− E[diff(Z0i)]) ≥
ε

4
− 1

N

N∑
i=1

E[diff(Z0i)]
∣∣∣Fc,S1,0

)
. (5.17)
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Since ψh is bounded, so is diff(Z0i). Using the conditioning on Fc and steps similar to those in
B0(b)(iv), we can show that 1

N

∑N
i=1 E[diff(Z0i)] ≤ 1

8ε for ε0 ≤ Cτ0ε, where C > 0 can be explicitly
computed. For such ε0, using Hoeffding’s inequality the probability in (5.17) can be bounded by
e−nε

2/(128B2) when ψh takes values within an interval of length B. A similar bound holds for the
lower tail of T1,b. Thus we have now bounded both terms of (5.16) by Ke−nκε

2
. The result follows

by substituting the value of ε0 (chosen as described above) in (5.15).
(c),(d),(e),(f) These results can be proved by appealing to H1(b) in a manner similar to

B0(c)(d)(e)(f).

(g) From the definitions in Section 4.1 and defining Q1 := 1
n

∥∥q0
∥∥2

, we have γ1
0 = Q−1

1
1
n(q0)∗q1

and γ̂1
0 = Ẽ0,1/Ẽ0,0 = Ẽ0,1σ

−2
0 . Therefore,

P
(∣∣γ1

0 − γ̂1
0

∣∣ ≥ ε) (a)

≤ P
(∣∣Q−1

1 − σ
−2
0

∣∣ ≥ ε̃)+ P

(∣∣∣∣ 1n(q0)∗q1 − Ẽ0,1

∣∣∣∣ ≥ ε̃) (5.18)

where (a) follows from Lemma A.3 with ε̃ := min{
√
ε/3, ε/(3Ẽ0,1), εσ2

0/3}. We now show that

each of the two terms in (5.18) is bounded by Ke−κnε̃
2
. Since σ2

0 > 0, by Lemma A.6 and (4.3),
we have P

(∣∣Q−1
1 − σ

−2
0

∣∣ ≥ ε̃) ≤ 2Ke−κnε̃
2σ2

0 min(1,σ2
0). The concentration bound for 1

n(q0)∗q1 follows
from H1(e).

(h) From the definitions in Section 4.1, we have
∥∥q1
⊥
∥∥2

=
∥∥q1
∥∥2 −

∥∥∥q1
‖

∥∥∥2
=
∥∥q1
∥∥2 − (γ1

0)2
∥∥q0
∥∥2

,

and (σ⊥1 )2 = σ2
1 − (γ̂1

0)2σ2
0. We therefore have

P

(∣∣∣∣ 1n ∥∥q1
⊥
∥∥2 − (σ⊥1 )2

∣∣∣∣ ≥ ε)
(a)

≤ P

(∣∣∣∣ 1n ∥∥q1
∥∥2 − σ2

1

∣∣∣∣ ≥ ε

2

)
+ P

(∣∣∣∣(γ1
0)2 1

n

∥∥q0
∥∥2 − (γ̂1

0)2σ2
0

∣∣∣∣ ≥ ε

2

)
(b)

≤ K exp
{
−κnε2

}
+K exp

{
−κnε2

4(9) max(1, (γ̂1
0)4, σ4

0)

}
In the chain above, (a) uses Lemma A.2 and (b) is obtained using H1(e) for bounding the first
term and by applying Lemma A.3 to the second term along with the concentration of

∥∥q0
∥∥ in (4.3),

H1(g), and Lemma A.5 (for concentration of the square).

5.4 Step 3: Showing Bt holds

We prove the statements in Bt assuming that B0, . . . ,Bt−1, andH1, . . . ,Ht hold due to the induction
hypothesis. The induction hypothesis implies that for 0 ≤ r ≤ (t − 1), the deviation probabili-
ties P ( 1

n‖∆r,r‖2 ≥ ε) in (4.41) and P ( 1
n‖∆r+1,r‖2 ≥ ε) in (4.40) are each bounded by Kre

−κrnε.

Similarly, the LHS in each of (4.42) – (4.59) is bounded by Kre
−κrnε2 .

We begin with a lemma that is required to prove Bt(a). The lemma as well as other parts of Bt
assume the invertibility of M1, . . . ,Mt, but for the sake of brevity, we do not explicitly specify the
conditioning.

Lemma 5.1. Let v := 1
nH
∗
t q
t
⊥−

1
nM

∗
t

[
λtm

t−1 −
∑t−1

i=1 λiγ
t
im

i−1
]

and Mt := 1
nM

∗
tMt. If M1, . . . ,Mt

are invertible, we have for j ∈ [t],

P
(∣∣[M−1

t v]j
∣∣ ≥ ε) ≤ Kt2Kt−1 exp{−nκκt−1ε

2/t2}.
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Proof. We can represent Mt as

Mt =
1

n

(
nMt−1 M∗t−1m

t−1

(M∗t−1m
t−1)∗

∥∥mt−1
∥∥2

)
,

Then, if Mt−1 is invertible, by the block inversion formula we have

M−1
t =

(
M−1

t−1 + n
∥∥mt−1
⊥
∥∥−2

αt−1(αt−1)∗ −n
∥∥mt−1
⊥
∥∥−2

αt−1

−n
∥∥mt−1
⊥
∥∥−2

(αt−1)∗ n
∥∥mt−1
⊥
∥∥−2

)
, (5.19)

where we have used αt−1 = 1
nM

−1
t−1M

∗
t−1m

t−1 and (M∗t−1m
t−1)∗αt−1 = (mt−1)∗mt−1

‖ . Therefore,

M−1
t v =

[
M−1

t−1v[t−1] + αt−1
(
(αt−1)∗v[t−1] − vt

)
at−1

−
(
(αt−1)∗v[t−1] − vt

)
at−1

]
, (5.20)

where ar := n/ ‖mr
⊥‖

2 for r ∈ [t], and v[r] ∈ Rr denotes the vector consisting of the first r elements

of v ∈ Rt. Now, using the block inverse formula again to express M−1
t−1v[t−1] and noting that

αt−1 = (αt−1
0 , . . . , αt−1

t−2), we obtain

M−1
t v =

M−1
t−2v[t−2] + αt−2

(
(αt−2)∗v[t−2] − vt−1

)
at−2 + αt−1

[t−2]

(
(αt−1)∗v[t−1] − vt

)
at−1

−
(
(αt−2)∗v[t−2] − vt−1

)
at−2 + αt−1

t−2

(
(αt−1)∗v[t−1] − vt

)
at−1

−
(
(αt−1)∗v[t−1] − vt

)
at−1

 .
Continuing in this fashion, we can express each element of M−1

t v as follows:

[
M−1

t v
]
k

=


v1a0 +

∑t−1
j=1 α

j
0

(
(αj)∗v[j] − vj+1

)
aj k = 1,

−
(
(αk−1)∗v[k−1] − vk

)
ak−1 +

∑t−1
j=k α

j
k−1

(
(αj)∗v[j] − vj+1

)
aj 2 ≤ k < t,

−
(
(αt−1)∗v[t−1] − vt

)
at−1 k = t.

(5.21)

We will prove that each entry of M−1
t v concentrates around 0 by showing that each entry of v

concentrates around zero, and the entries of αj , aj concentrate around constants for j ∈ [t].
For k ∈ [t], bound |vk| as follows. Substituting qt⊥ = qt −

∑t−1
j=0 γ

t
jq
j in the definition of v and

using the triangle inequality, we have

|vk| ≤
∣∣∣∣(hk)∗qtn

− λt
(mk−1)∗mt−1

n

∣∣∣∣+
∣∣γt0∣∣ ∣∣∣∣(hk)∗q0

n

∣∣∣∣+

t−1∑
i=1

∣∣γti ∣∣ ∣∣∣∣(hk)∗qin
− λi

(mk−1)∗mi−1

n

∣∣∣∣ . (5.22)

Therefore,

P (|vk| ≥ ε) ≤ P
(∣∣∣∣ 1n(hk)∗qt − λt

1

n
(mk−1)∗mt−1

∣∣∣∣ ≥ ε′)+ P

(∣∣γt0∣∣ ∣∣∣∣ 1n(hk)∗q0

∣∣∣∣ ≥ ε′)
+

t−1∑
i=1

P

(∣∣γti ∣∣ ∣∣∣∣ 1n(hk)∗qi − λi
1

n
(mk−1)∗mi−1

∣∣∣∣ ≥ ε′) (5.23)

where ε′ = ε
t+1 . The first term in (5.23) can be bounded using Lemma A.3 and induction hypotheses

Ht(f) and Bt−1(e) as follows.

P

(∣∣∣∣(hk)∗qtn
− λt

(mk−1)∗mt−1

n

∣∣∣∣ ≥ ε′)
≤ P

(∣∣∣∣(hk)∗qtn
− λ̂tĔk−1,t−1

∣∣∣∣ ≥ ε′

2

)
+ P

(∣∣∣∣λt (mk−1)∗mt−1

n
− λ̂tĔk−1,t−1

∣∣∣∣ ≥ ε′

2

)
≤ Kt−1 exp

{
−κκt−1nε

′2}+ 2Kt−1 exp

{
− κκt−1nε

′2

9 max(1, λ̂2
t , Ĕ

2
k−1,t−1)

}
.
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For k ∈ [t], the second term in (5.23) can be bounded as

P

(∣∣γt0∣∣ ∣∣∣∣ 1n(hk)∗q0

∣∣∣∣ ≥ ε′) ≤ P ((
∣∣γt0 − γ̂t0∣∣+

∣∣γ̂t0∣∣) ∣∣∣∣ 1n(hk)∗q0

∣∣∣∣ ≥ ε′)
≤ P

(∣∣γt0 − γ̂t0∣∣ ≥ √ε′)+ P

(∣∣∣∣ 1n(hk)∗q0

∣∣∣∣ ≥ ε′

2
min

{
1,
∣∣γ̂t0∣∣−1

})
≤ Kt−1 exp{−κκt−1nε

′}+Kt−1 exp{−κκt−1nε
′2},

where the last inequality follows from induction hypotheses Ht(g) and Ht(c). Similarly, for k ∈
[t], i ∈ [t− 1], the third term in (5.23) can be bounded as

P

(∣∣γti ∣∣ ∣∣∣∣(hk)∗qin
− λi

(mk−1)∗mi−1

n

∣∣∣∣ ≥ ε′)
≤ P

(
(
∣∣γti − γ̂ti ∣∣+

∣∣γ̂ti ∣∣) ∣∣∣∣(hk)∗qin
− λi

(mk−1)∗mi−1

n

∣∣∣∣ ≥ ε′)
≤ P

(∣∣γti − γ̂ti ∣∣ ≥ √ε′)+ P

(∣∣∣∣(hk)∗qin
− λi

(mk−1)∗mi−1

n

∣∣∣∣ ≥ ε′

2
min

{
1,

1

γ̂ti

})
≤ Kt−1 exp

{
−κκt−1nε

′}+ 2Kt−1 exp
{
−κκt−1nε

′2} .
Substituting ε′ = ε

t+1 in each of the above bounds and using them in (5.23),

P (|vk| ≥ ε) ≤ KtKt−1 exp
{
−κκt−1ε

2/t2
}
. (5.24)

Furthermore, from induction hypotheses B0(g)− Bt−1(g), for 0 ≤ i < j ≤ (t− 1):

P
(∣∣∣αji − α̂ji ∣∣∣ ≥ ε) ≤ Kt−1 exp

{
−nκt−1ε

2
}
. (5.25)

Also, using induction hypotheses B0(h)− Bt−1(h) and Lemma A.6, for 0 ≤ r ≤ (t− 1):

P
(∣∣∣ar − (τ⊥t )−2

∣∣∣ ≥ ε) ≤ Kt−1 exp
{
−nκt−1ε

2
}
. (5.26)

Finally, from (5.21), we have for k ∈ [t],

P
(∣∣[M−1

t v
]
k

∣∣ ≥ ε) (a)

≤ P
(
∪k∈[t] {|vk| ≥ ε} ∪0≤r<t

{∣∣∣ar − (τ⊥t )−2
∣∣∣ ≥ κ1ε/t

}
∪0≤i<j<t

{∣∣∣αji − α̂ji ∣∣∣ ≥ κ2ε/t
})

(b)

≤Kt2Kt−1 exp{−nκκt−1ε
2/t2}.

where in step (a), κ1, κ2 are appropriately chosen positive constants, and step (b) follows from the
bounds in (5.24), (5.25), and (5.26).

(a) Recall the definition of ∆t,t from (4.28). Then using Fact 1, it follows 1√
n

∥∥qt⊥∥∥P
‖
Mt
Z ′t

d
=

1
n

∥∥qt⊥∥∥ M̃tZ̄
′
t, where the columns of M̃t ∈ Rn×t form an orthogonal basis for the column space of

Mt with M̃∗t M̃t = nIt, and Z̄ ′t ∈ Rt is an independent random vector with i.i.d. N (0, 1) entries.
Then,

∆t,t =
t−1∑
r=0

(γtr − γ̂tr)br + Z ′t

(
1√
n

∥∥qt⊥∥∥− σ⊥t )− 1

n

∥∥qt⊥∥∥ M̃tZ̄
′
t +MtM

−1
t v,
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where Mt ∈ Rt×t and v ∈ Rt are defined in Lemma 5.1. Writing MtM
−1
t v =

∑t−1
j=0m

j
[
M−1

t v
]
j+1

and using Lemma C.3, we have

‖∆t,t‖2 ≤ 2(t+ 1)

[
t−1∑
r=0

(γtr − γ̂tr)2 ‖br‖2 +
∥∥Z ′t∥∥2

(
1√
n

∥∥qt⊥∥∥− σ⊥t )2

+
1

n2

∥∥qt⊥∥∥2
∥∥∥M̃tZ̄

′
t

∥∥∥2
+

t−1∑
j=0

∥∥mj
∥∥2 [

M−1
t v
]2
j+1

 ,
Applying Lemma A.2,

P

(
‖∆t,t‖2

n
≥ ε

)
≤

t−1∑
r=0

P

(∣∣γtr − γ̂tr∣∣ ‖br‖√n ≥√ε̃t
)

+ P

∥∥qt⊥∥∥√
n

∥∥∥M̃tZ̄
′
t

∥∥∥
n

≥
√
ε̃t


+ P

(∣∣∣∣∣
∥∥qt⊥∥∥√
n
− σ⊥t

∣∣∣∣∣ ‖Z ′t‖√n ≥√ε̃t
)

+

t−1∑
j=0

P

(∣∣∣[M−1
t v
]
j+1

∣∣∣ ∥∥mj
∥∥

√
n
≥
√
ε̃t

)
, (5.27)

where ε̃t := ε
4(t+1)2

. We now bound each of the terms in (5.27).

For 0 ≤ r ≤ t− 1, the first term is bounded as

P

(∣∣γtr − γ̂tr∣∣ 1√
n
‖br‖ ≥

√
ε̃t

)
≤ P

(∣∣γtr − γ̂tr∣∣ (∣∣∣∣ 1√
n
‖br‖ − σr

∣∣∣∣+ σr

)
≥
√
ε̃t

)
≤ P

(∣∣γtr − γ̂tr∣∣ ≥ 1

2

√
ε̃t min{1, σ−1

r }
)

+ P

(∣∣∣∣ 1√
n
‖br‖ − σr

∣∣∣∣ ≥ √ε)
(a)

≤ Kt−1 exp {−κκt−1nε̃t}+Kt−1 exp {−κκt−1nε} ,

where step (a) follows from induction hypotheses Ht(g), B0(d) − Bt−1(d), and Lemma A.4. Next,
the third term in (5.27) is bounded as

P

(∣∣∣∣∣
∥∥qt⊥∥∥√
n
− σ⊥t

∣∣∣∣∣ ‖Z ′t‖√n ≥√ε̃t
)
≤ P

(∣∣∣∣∣
∥∥qt⊥∥∥√
n
− σ⊥t

∣∣∣∣∣ ≥
√
ε̃t√
2

)
+ P

(
‖Z ′t‖√
n
≥
√

2

)
(b)

≤ Kt−1 exp {−κκt−1nε̃t}+ exp {−n/8} ,

where step (b) is obtained using induction hypothesis Ht(h), Lemma A.4, and Lemma B.2. Since
1√
n

∥∥qt⊥∥∥ concentrates on σ⊥t by Ht(h), the second term in (5.27) can be bounded as

P
( 1√

n

∥∥qt⊥∥∥ · 1

n

∥∥∥M̃tZ̄
′
t

∥∥∥ ≥√ε̃t)
≤ P

(∣∣∣∣ 1√
n

∥∥qt⊥∥∥− σ⊥t ∣∣∣∣ ≥ √ε)+ P

(
1

n

∥∥∥M̃tZ̄
′
t

∥∥∥ ≥ 1

2

√
ε̃t min{1, (σ⊥t )−1}

)
≤ Kt−1 exp {−κκt−1nε̃t}+ tKKt−1 exp{−κκt−1nε̃t/t},

(5.28)

where the last inequality is obtained as follows. The concentration for
∥∥qt⊥∥∥ /√n has already

been shown above. For the second term, denoting the columns of M̃t by {m̃0, . . . , m̃t−1}, we have
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‖M̃tZ̄
′
t‖2 =

∑t−1
i=0 ‖m̃i‖2 (Z̄ ′ti)

2 = n
∑t−1

i=0(Z̄ ′ti)
2 since the {m̃i} are orthogonal, and ‖m̃i‖2 = n for

0 ≤ i ≤ t− 1. Therefore,

P
( 1

n2

∥∥∥M̃tZ̄
′
t

∥∥∥2
≥ ε̃t

)
= P

( t−1∑
i=0

(Z̄ ′ti)
2 ≥ nε̃t

) (c)

≤
t−1∑
i=0

P
(
|Z̄ ′ti | ≥

√
nε̃t
t

) (d)

≤ 2te−
nε̃t
2t .

Step (c) is obtained from Lemma A.2, and step (d) from Lemma B.1. This yields the second term
in (5.28)

Finally, for 0 ≤ j ≤ (t− 1), the last term in (5.27) can be bounded by

P
(
|[M−1

t v]j+1|
∥∥mj

∥∥
√
n
≥
√
ε̃t

)
= P

(
|[M−1

t v]j+1|
(∣∣∣∥∥mj

∥∥
√
n
− τj

∣∣∣+ τj

)
≥
√
ε̃t

)

≤ P

(∣∣∣∥∥mj
∥∥

√
n
− τj

∣∣∣ ≥ √ε)+ P

(
|[M−1

t v]j+1|≥
1

2

√
ε̃t min{1, τ−1

j }
)

(e)

≤ Kt−1 exp {−κκt−1nε}+Kt2Kt−1 exp
{
−κκt−1nε̃t/t

2
}
,

where step (e) follows from induction hypothesis Bt−1(e), and Lemma 5.1. Substituting ε̃t = ε
4(t+1)2

,

we have bounded each term of (5.27) as desired.
(b).(iii) For brevity, define Eφb := E[φb(σ0Z̆0, ..., σtZ̆t,W )], and

ai = (b0i , ..., b
t
i, wi), ci = (b0purei

, ..., btpurei
, wi) (5.29)

Using Lemma A.2, we have

P
(∣∣∣ 1
n

n∑
i=1

φb
(
b0i , ..., b

t
i, wi

)
− Eφb

∣∣∣ ≥ ε)
≤ P

(∣∣∣ 1
n

n∑
i=1

φb(ci)− Eφb
∣∣∣ ≥ ε

2

)
+ P

(∣∣∣ 1
n

n∑
i=1

(φb(ai)− φb(ci))
∣∣∣ ≥ ε

2

)
.

(5.30)

Lemma 4.4 (Eq. (4.32)) shows the joint distribution of (b0purei
, ..., btpurei

) is jointly Gaussian for
i ∈ [N ]. The first term in (5.30) can therefore be bounded as

P
(∣∣∣ 1
n

n∑
i=1

φb(ci)− Eφb
∣∣∣ ≥ ε

2

)
= P

(∣∣∣ 1
n

n∑
i=1

φb(σ0Z̆0,i, . . . , σtZ̆t,i, wi)− Eφb
∣∣∣ ≥ ε

2

)
≤ 2 exp

(
−κnε2

t3

)
, (5.31)

where the last inequality is obtained from Lemma B.4. Here κ > 0 is a generic absolute constant.
We now bound the second term in (5.30) using the pseudo-Lipschitz property of φb. Denoting

the pseudo-Lipschitz constant by L, we have

∣∣∣ 1
n

n∑
i=1

(φb(ai)− φb(ci))
∣∣∣2 ≤ [ 1

n

n∑
i=1

|φb(ai)− φb(ci)|

]2

≤

[
L

n

n∑
i=1

(1 + 2 ‖ci‖+ ‖ai − ci‖) ‖ai − ci‖

]2

≤ 3L2

[
1 +

4

n

n∑
i=1

‖ci‖2 +
1

n

n∑
i=1

‖ai − ci‖2
] 1

n

n∑
j=1

‖aj − cj‖2
 , (5.32)
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where the last inequality is obtained by first applying Cauchy-Schwarz, and then using Lemma C.3.
For j ∈ [N ], note that E ‖cj‖2 = σ2

1 + . . .+σ2
t +σ2. Now using (5.32) we bound the second term

in (5.30) as follows.

P
(∣∣∣ 1
n

n∑
i=1

(φb(ai)− φb(ci))
∣∣∣ ≥ ε

2

)
= P

(∣∣∣ 1
n

n∑
i=1

(φb(ai)− φb(ci))
∣∣∣2 ≥ ε2

4

)
≤ P

([
1 +

4

n

n∑
i=1

‖ci‖2 +
1

n

n∑
i=1

‖ai − ci‖2
][ 1

n

n∑
j=1

‖aj − cj‖2
]
≥ ε2

12L2

)
≤ P

( 1

n

n∑
i=1

‖ai − ci‖2 ≥
ε2 min{1, 1

12L2 }
2 + 8(σ2

1 + . . .+ σ2
t + σ2)

)
+ P

( 1

n

n∑
j=1

‖cj‖2 ≥ 2(σ2
1 + . . .+ σ2

t + σ2)
)
.

(5.33)

Label the two terms above as T1 and T2. We bound T2 as

P
( 1

n

n∑
j=1

‖cj‖2 ≥ 2(σ2 +

t∑
r=1

σ2
r )
)

= P
( 1

n

n∑
j=1

(
‖cj‖2 − E‖cj‖2

)
≥ (σ2 +

t∑
r=1

σ2
r )
)
≤ e−κn/t3 ,

(5.34)

for an absolute constant κ > 0, where the last inequality is obtained by applying the concentration
result in Lemma B.4 to the pseudo-Lipschitz function φb(cj) = ‖cj‖2.

n∑
i=1

‖ai − ci‖2 =

n∑
i=1

t∑
k=0

(bkpurei − b
k
i )

2 =
n∑
i=1

t∑
k=0

(
k∑
r=0

ckr [∆r,r]i

)2

≤
n∑
i=1

t∑
k=0

(
k∑

r′=0

(ckr′)
2

k∑
r=0

([∆r,r]i)
2

)
=

t∑
k=0

(
k∑

r′=0

(ckr′)
2

k∑
r=0

‖∆r,r‖2
)

=
t∑

r=0

‖∆r,r‖2
t∑

k=r

k∑
r′=0

(ckr′)
2,

(5.35)

where the inequality is obtained by applying Cauchy-Schwarz.
Comparing (4.32) and (4.33) in Lemma 4.4, we observe that for k ≥ 0 and j ∈ [n],

E
(
bkpurej

)2
= σ2

k =
t∑
i=0

(σ⊥i )2(cki )
2. (5.36)

Therefore,
k∑
i=0

(cki )
2 ≤ σ2

t

min0≤i≤k(σ
⊥
i )2
≤
σ2
k

ε2
, (5.37)

where the last inequality follows from the stopping criterion in (2.5). Using (5.37) and (5.35) we
have

1

n

n∑
i=1

‖ai − ci‖2 ≤
1

n

t∑
r=0

‖∆r,r‖2
t∑

k=r

σ2
k

ε2
.
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Therefore we can bound the first term T1 in (5.33) as follows.

T1 = P
( 1

n

t∑
r=0

‖∆r,r‖2 ≥
ε2

(σ2
1 + . . .+ σ2

t )

ε2 min{1, 1
12L2 }

(2 + 8(σ2
1 + . . .+ σ2

t + σ2))

)
≤

t∑
r=0

P

(
1

n
‖∆r,r‖2 ≤

κε2

t3

)
(a)

≤ Kt3Kt−1 exp

{
−κκt−1nε

2

t7

}
. (5.38)

where K,κ > 0 are some absolute constants. The inequality (a) follows from steps B0(a)− Bt(a).
Finally, substituting (5.38) and (5.34) in (5.33), and then combining with (5.31) and (5.30), we

obtain

P
(∣∣∣ 1
n

n∑
i=1

φb
(
b0i , ..., b

t
i, wi

)
− Eφb

∣∣∣ ≥ ε) ≤ Kt3Kt−1 exp

{
−κκt−1nε

2

t7

}
. (5.39)

(b).(iv) For brevity, we write bt,i :=
∑t−1

r=0 γ̂
t
rb
r
i . Then using the conditional distribution of bt

in (4.25) and Lemma A.2, we write

P
(∣∣∣ 1
n

n∑
i=1

ψb(b
t
i, wi)− E[ψb(σtZ̆t,W )]

∣∣∣ ≥ ε)
= P

(∣∣∣ 1
n

n∑
i=1

ψb(bt,i + σ⊥t Z
′
ti + [∆t,t]i, wi)− E[ψb(σtZ̆t,W )]

∣∣∣ ≥ ε)
≤ P

(∣∣∣ 1
n

n∑
i=1

(
ψb(bt,i + σ⊥t Z

′
ti + [∆t,t]i, wi)− ψb(bt,i + σ⊥t Z

′
ti , wi)

) ∣∣∣ ≥ ε

3

)
+ P

(∣∣∣ 1
n

n∑
i=1

ψb(bt,i + σ⊥t Z
′
ti , wi)−

1

n

n∑
i=1

EZ′t [ψb(bt,i + σ⊥t Z
′
ti , wi)]

∣∣∣ ≥ ε

3

)
+ P

(∣∣∣ 1
n

n∑
i=1

EZ′t [ψb(bt,i + σ⊥t Z
′
ti , wi)]− E[ψb(σtZ̆t,W )]

∣∣∣ ≥ ε

3

)
.

(5.40)

Label the terms of (5.40) as T1−T3. First consider T2. Since ψb is bounded, Hoeffding’s inequality
yields T2 ≤ 2e−κnε

2
.

To bound T3, first note that the R2 → R function EZ [ψb(x + Z, y)], Z ∼ N (0, 1), is bounded
and differentiable in the first argument (due to the smoothness of the Gaussian density). Hence,
using induction hypotheses B0(b).(iv)−Bt−1(b).(iv), the probability of each of the following events
is bounded by Kt−1 exp

{
−κt−1nε

2/t2
}

:∣∣∣∣∣ 1n
n∑
i=1

Eψb(
t−1∑
r=0

γ̂trb
r
i + σ⊥t Z

′
ti , wi)− Eψb(

t−2∑
r=0

γ̂trb
r
i + γ̂tt−1σt−1Z̆t−1 + σ⊥t Z

′
ti ,W )

∣∣∣∣∣ ≥ ε

t
,∣∣∣∣∣ 1n

n∑
i=1

Eψb(
t−2∑
r=0

γ̂trb
r
i + γ̂tt−1σt−1Z̆t−1 + σ⊥t Z

′
ti ,W )− Eψb(

t−3∑
r=0

γ̂trb
r
i +

t−1∑
r′=t−2

γ̂tr′σr′Z̆r′ + σ⊥t Z
′
ti ,W )

∣∣∣∣∣ ≥ ε

t
,

...∣∣∣∣∣ 1n
n∑
i=1

Eψb(γ̂t0b0i +
t−1∑
r′=1

γ̂tt−1σt−1Z̆t−1 + σ⊥t Z
′
ti ,W )} − Eψb(

t−1∑
r′=0

γ̂tr′σr′Z̆r′ + σ⊥t Z
′
ti ,W )

∣∣∣∣∣ ≥ ε

t
.

(5.41)

30



In the above, the expectation in each term is over the random variables denoted in upper case.

Recall from the proof of Lemma 4.4 above that
∑t−1

r′=1 γ̂
t
t−1σt−1Z̆t−1 + σ⊥t Z

′
ti

d
= σtZ̆t. Thus T3, the

third term in (5.40), can be bounded by the probability of the union of the events in (5.41), which
is no larger than tKt−1 exp

{
−κt−1nε

2/t2
}

.
Finally, consider T1, the first term of (5.40). From the definition of ∆t,t in Lemma 4.3, we

have bt,i + σ⊥t Z
′
ti + [∆t,t]i = bt,i + 1

n

∥∥qt⊥∥∥ [(I − P
‖
Mt

)Z ′t]i + ui, where u = (u1, . . . , un) is defined

u :=
∑t−1

r=0(γtr − γ̂tr)br +
∑t−1

j=0m
j [M−1

t v]j+1, with v and Mt defined as in Lemma 5.1. For ε0 > 0
to be specified later, define the event F as

F :=

{∣∣∣∣ 1√
n

∥∥qt⊥∥∥− σ⊥t ∣∣∣∣ ≥ ε0} ∪{ 1

n
‖u‖2 ≥ ε0

}
∪t−1
r=0

{∣∣∣∣ 1√
n
‖br‖ − σr

∣∣∣∣ ≥ ε0} . (5.42)

Denoting the event we are considering in T1 by Πt and following steps analogous to (5.15)–(5.16)
in H1(b).(ii), we obtain

P (T1) ≤ P (F) + E[P (Πt | Fc,St,t) | Fc]
≤ Kt2Kt−1 exp

{
−κκt−1nε

2
0/t

4
}

+ E[P (Πt | Fc,St,t) | Fc],
(5.43)

where the bound on P (F) is obtained by the induction hypotheses Ht(h), B0(d)−Bt−1(d), Lemma
A.4, and steps similar to the proof of Bt(a) for the concentration of ‖u‖2 /n (cf. (5.27)).

For the second term in (5.43), we have

P (Πt|Fc,St,t) =

P

(∣∣∣ 1
n

n∑
i=1

(
ψb(bt,i +

‖qt⊥‖√
n

[(I− P
‖
Mt

)Z ′
t]i + ui, wi)− ψb(bt,i + σ⊥

t Z
′
ti , wi)

)∣∣∣ ≥ ε)

≤ P

(∣∣∣ 1
n

n∑
i=1

(
ψb(bt,i +

‖qt⊥‖√
n
Z ′
ti + ui, wi)− ψb(bt,i + σ⊥

t Z
′
ti , wi)

)∣∣∣ ≥ ε

2

)

+

(∣∣∣ 1
n

n∑
i=1

(
ψb(bt,i +

‖qt⊥‖√
n

[(I− P
‖
Mt

)Z ′
t]i + ui, wi)− ψb(bt,i +

‖qt⊥‖√
n
Z ′
ti + ui, wi)

)∣∣∣ ≥ ε

2

)
,

(5.44)

where we have omitted the conditioning to shorten notation. Label the two terms in (5.44) as T1,a

and T1,b. To complete the proof we show that both terms are bounded by Ke−κnε
2/t.

First consider T1,b. We note that

P
‖
Mt
Z ′t =

t−1∑
r=0

m̃r

√
n

[
(m̃r)∗Z ′t√

n

]
d
=

t−1∑
r=0

m̃r

√
n
Ur, (5.45)

where m̃r, 0 ≤ r ≤ t−1, are columns of M̃t, which form an orthogonal basis forMt with M̃∗t M̃t = nIt,
and U1, . . . , Ut are i.i.d. ∼ N (0, 1). Then,

T1,b

(a)

≤ P

(
C

n

n∑
i=1

∣∣∣∥∥qt⊥∥∥√
n

[P
‖
Mt
Z ′t]i

∣∣∣ ≥ ε

2

)
(b)

≤ P

(
C

n

n∑
i=1

∣∣∣(σ⊥t + ε0)[P
‖
Mt
Z ′t]i

∣∣∣ ≥ ε

2

)

= P

(∣∣∣C
n

n∑
i=1

t−1∑
r=0

m̃r
iUr√
n

∣∣∣ ≥ ε

2
∣∣σ⊥t + ε0

∣∣
)

(c)
= P

(∣∣∣C
n

n∑
i=1

( t−1∑
r=0

(m̃r
i )

2
)1/2 Z√

n

∣∣∣ ≥ ε

2
∣∣σ⊥t + ε0

∣∣
)

(d)

≤ P
(√ t

n
|Z| ≥ ε

2C
∣∣σ⊥t + ε0

∣∣) ≤ 2e−κnε
2/t.

(5.46)
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In the above, (a) follows from Fact 4 for a suitable constant C > 0. Step (b) holds since we are
conditioning on event Fc defined in (5.42). In step (c), Z ∼ N (0, 1) since

∑
r m̃

r
iUr is a zero-mean

Gaussian with variance
∑

r(m̃
r
i )

2. Step (d) uses the Cauchy-Schwarz inequality and the fact that
‖m̃r‖ =

√
n for 0 ≤ r < t.

Finally T1,a, the first term in (5.44), can be bounded using Hoeffding’s inequality. Noting that
all quantities except Z ′t are in St,t, define the shorthand diff(Z ′ti) := ψb(

∑t−1
r=0 γ̂

t
rb
r
i + 1√

n

∥∥qt⊥∥∥Z ′ti +

ui, wi)− ψb(
∑t−1

r=0 γ̂
t
rb
r
i + σ⊥t Z

′
ti , wi). Then the upper tail of T1,a can be written as

P

(
1

n

n∑
i=1

diff(Z ′ti)− E[diff(Z ′ti)] ≥
ε

2
− 1

n

n∑
i=1

E[diff(Z ′ti)]
∣∣∣Fc,St,t

)
. (5.47)

Using the conditioning on Fc and steps similar to those in B0(b).(iv), we can show that 1
n

∑
i E[diff(Z ′ti)]]

≤ 1
4ε for ε0 ≤ C(σ⊥t )ε, where the constant C > 0 can be explicitly computed. For such ε0, using

Hoeffding’s inequality the probability in (5.47) can be bounded by e−nε
2/(32B2), where B is the

upper bound on |diff(·)|. A similar bound holds for the lower tail of T1,a. Thus both terms of (5.44)

are bounded by Ke−κnε
2/t.

The proof is completed by collecting the above bounds for each of the terms in (5.40), and
observing that the overall bound is dominated by P (T1) in (5.43). Hence the final bound is of the
form Kt2Kt−1 exp

{
−κκt−1nε

2/t4
}

.
(c) The function φb(b

t
i, wi) := btiwi ∈ PL(2) by Lemma C.1. Then by Bt(b).(iii), 1

n(bt)∗w
.
=

σtE[Z̆tW ] = 0.
(d) The function φb(b

r
i , b

t
i, wi) := bri b

t
i ∈ PL(2) by Lemma C.1. The result then follows from

Bt(b).(iii).
(e) The function φb(b

r
i , b

t
i, wi) := gr(b

r
i , wi)gt(b

t
i, wi) ∈ PL(2) since gt is Lipschitz continuous (by

Lemma C.1). Then by Bt(b).(iii),

1

n
(mr)∗mt .= E[gr(σrZ̆r,W )gt(σtZ̆t,W )] = Ĕr,t.

where the last equality is due to the definition in (4.15).
(f) The concentration of ξt around ξ̂t follows from Bt(b).(iv) applied to the function ψb(b

t
i, wi) :=

g′t(b
t
i, wi). Next, for r ≤ t, φb(b

0
i , . . . , b

t
i, wi) := bri gt(b

t
i, wi) = brimi ∈ PL(2), by Lemma C.1. Thus

by Bt(b).(iii),

1

n
(br)∗mt .= E[σrZ̆r gt(σtZ̆t,W )]

(a)
= σrσtE[Z̆rZ̆t]E[g′t(σtZ̆t,W )]

= Ẽr,tE[g′t(σtZ̆t,W )] = Ẽr,tξ̂t,

where (a) holds due to Stein’s lemma (Fact 2).
(g) For 1 ≤ r, s ≤ t, note that [Mt]r,s = 1

n(mr−1)∗ms−1. Hence by Bt−1(e), [Mt]r,s concentrates

on [C̆t]r,s = Ĕr−1,s−1. We first show (4.55). By Fact 3, if 1
n ‖m

r
⊥‖

2 ≥ c > 0 for all 0 ≤ r ≤ t − 1,

then Mt is invertible. Note from Bt−1(h) that 1
n ‖m

r
⊥‖

2 concentrates on (τ⊥r )2, and (τ⊥r )2 > ε3 by
the stopping criterion assumption. Choosing c = 1

2ε3, we therefore have

P (Mt singular) ≤
t−1∑
r=0

P

(∣∣∣∣ 1n ‖mr
⊥‖

2 − (τ⊥r )2

∣∣∣∣ ≥ 1

2
ε3

)

≤
t−1∑
r=0

Kr−1e
−κr−1n(ε3)2/4 ≤ tKt−1e

−κκt−1n(ε3)2 .

(5.48)
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where the second inequality follows from B0(h)− Bt−1(h).
Next, we show (4.57). Recall the expression for M−1

t from (5.19):

M−1
t =

(
M−1

t−1 + n
∥∥mt−1
⊥
∥∥−2

αt−1(αt−1)∗ −n
∥∥mt−1
⊥
∥∥−2

αt−1

−n
∥∥mt−1
⊥
∥∥−2

(αt−1)∗ n
∥∥mt−1
⊥
∥∥−2

)
, (5.49)

Block inversion can be similarly used to decompose C̆t in terms of C̆t−1, which gives the concen-
trating values of the elements in (5.49).

Let Fr denote the event that M−1
r is invertible, for r ∈ [t]. Then, for i, j ∈ [t], we have

P
(
|[M−1

t ]i,j − [C̆−1
t ]i,j |≥ ε | Ft

)
≤ P (Fct−1) + P

(
|[M−1

t ]i,j − [C̆−1
t ]i,j |≥ ε | Ft,Ft−1

)
≤ (t− 1)Kt−2e

−κκt−2n + P
(
|[M−1

t ]i,j − [C̆−1
t ]i,j |≥ ε | Ft,Ft−1

)
,

(5.50)

where the final inequality follows from the inductive hypothesis Bt−1(g). Using the representation
in (5.49), we bound the second term in (5.50) for i, j ∈ [t]. In what follows, we drop the conditioning
on Ft,Ft−1 for brevity.

First, consider the entry at i = j = t. By Bt−1(h) and Lemma A.6,

P
(∣∣∣n‖m⊥t−1‖−2 − (τ⊥t−1)−2

∣∣∣ ≥ ε) ≤ Kt−1 exp
{
−κκt−1nε

2
}
.

Next, consider the ith element of −n
∥∥mt−1
⊥
∥∥−2

αt−1. For i ∈ [t− 1],

P
(∣∣∣n ∥∥mt−1

⊥
∥∥−2

αt−1
i−1 − (τ⊥t−1)−2α̂t−1

i−1

∣∣∣ ≥ ε) ≤ 2Kt−1e
−κκt−1nε2 , (5.51)

which follows from Bt−1(g), the concentration bound obtained above for n
∥∥mt−1
⊥
∥∥−2

, and combining
these via Lemma A.3.

Finally consider element (i, j) of M−1
t−1 + n

∥∥mt−1
⊥
∥∥−2

αt−1(αt−1)∗ for i, j ∈ [t− 1]. We have

P
(∣∣∣[M−1

t−1]i,j + n
∥∥mt−1
⊥
∥∥−2

αt−1
i−1α

t−1
j−1 − [C̆−1

t ]i,j − (τ⊥t−1)−2α̂t−1
i−1α̂

t−1
j−1

∣∣∣ ≥ ε)
(a)

≤ P
(
|[M−1

t−1]i,j − [C̆−1
t ]i,j |≥

ε

2

)
+ P

(
|αt−1
j−1 − α̂

t−1
j−1|≥

ε′

2

)
+ P

(
|n
∥∥mt−1
⊥
∥∥−2

αt−1
i−1 − (τ⊥t−1)−2α̂t−1

i−1|≥
ε′

2

)
(b)

≤ Kt−1e
−κt−1nε

2

4 + 2Kt−1e
−κκt−1nε

′2

4 +Kt−1e
−κt−1nε

′2

4 ≤ 4Kt−1e
−κκt−1nε2 .

Step (a) follows from Lemma A.2 and Lemma A.3 with ε′ := min
(√

ε
3 ,

ε(τ⊥t−1)2

3α̂t−1
i−1

, ε
3α̂t−1
j−1

)
. Step (b)

follows from the inductive hypothesis, Ht(g), and (5.51).
Next, we prove the concentration of αt around α̂t. Recall from Section 4.1 that αt = 1

nM
−1
t M∗tm

t

where Mt := 1
nM

∗
tMt. Thus for 1 ≤ i ≤ t, αti−1 = 1

n

∑t
j=1

[
M−1

t

]
i,j

(mj−1)∗mt. Then from the
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definition of α̂t in (4.17), for 1 ≤ i ≤ t,

P (|αti−1 − α̂ti−1|≥ ε) = P
(∣∣∣ t∑

j=1

(
1

n
[M−1

t ]i,j(m
j−1)∗mt − [(C̆t)−1]i,jĔj−1,t)

∣∣∣ ≥ ε)
(a)

≤
t∑

j=1

[
P
(∣∣∣(mj−1)∗mt

n
− Ĕj−1,t

∣∣∣ ≥ ε̃j)+ P (|[M−1
t ]i,j − [(C̆t)−1]i,j |≥ ε̃j)

]
(b)

≤ Kt4Kt−1 exp
{
−κκt−1nε

2/t9
}

+ 4tKt−1 exp
{
−κκt−1t

−2nε2
}
.

Step (a) uses ε̃j := min
{√

ε
3t ,

ε
3tĔj−1,t

, ε
3t[(C̆t)−1]k,j

}
and follows from Lemma A.2 and Lemma A.3.

Step (b) uses Bt(e) and the work above.

(h) First, note that
∥∥mt
⊥
∥∥2

= ‖mt‖2 − ‖mt
‖‖

2 = ‖mt‖2 − ‖Mtα
t‖2. Using the definition of τ⊥t

in (4.19),

P
(∣∣∣ 1
n

∥∥mt
⊥
∥∥2 − (τ⊥t )2

∣∣∣ ≥ ε) = P
(∣∣∣ 1
n

∥∥mt
∥∥2 − 1

n

∥∥Mtα
t
∥∥2 − τ2

t + (α̂t)∗Ĕt

∣∣∣ ≥ ε)
≤ P

(∣∣∣ 1
n

∥∥mt
∥∥2 − τ2

t

∣∣∣ ≥ ε

2

)
+ P

(∣∣∣ 1
n

∥∥Mtα
t
∥∥2 − (α̂t)∗Ĕt

∣∣∣ ≥ ε

2

)
.

(5.52)

The bound for the first term in (5.52) follows by Bt(e). For the second term,

∥∥Mtα
t
∥∥2

= n(αt)∗Mtα
t (a)

= (αt)∗MtM
−1
t M∗tm

t = (αt)∗M∗tm
t =

t−1∑
i=0

αti(m
i)∗mt,

where (a) holds because αt = M−1
t M∗tm

t/n. Hence

P
(∣∣∣ 1
n

∥∥Mtα
t
∥∥2 − (α̂t)∗Ĕt

∣∣∣ ≥ ε

2

)
= P

(∣∣∣ t−1∑
i=0

( 1

n
αti(m

i)∗mt − α̂tiĔi,t
)∣∣∣ ≥ ε

2

)
(a)

≤
t−1∑
i=0

P (|αti − α̂ti|≥ ε̃i) +
t−1∑
i=0

P
(∣∣∣ 1
n

(mi)∗mt − Ĕi,t
∣∣∣ ≥ ε̃i)

(b)

≤ Kt5Kt−1 exp
{
−κκt−1nε

2/t11
}

+Kt4Kt−1 exp
{
−κκt−1nε

2/t9
}
.

Step (a) follows Lemma A.2 and Lemma A.3, using ε̃i := min
{√

ε
6t ,

ε
6tĔi,t

, ε
6tα̂ti

}
, and step (b) using

Bt(e) and the proof of Bt(g) above.

5.5 Step 4: Showing Ht+1 holds

The statements in Ht+1 are proved assuming that Bt,Ht hold due to the induction hypothesis.
(a) The proof of Ht+1(a) is similar to that of Bt(a), and uses the following lemma, which is

analogous to Lemma 5.1.

Lemma 5.2. Let v := 1
nB
∗
t+1m

⊥
t − 1

nQ
∗
t+1(ξtq

t −
∑t−1

i=0 α
t
iξiq

i) and Qt+1 := 1
nQ
∗
t+1Qt+1. Then for

j ∈ [t+ 1],
P (|[Q−1

t+1v]j |≥ ε) ≤ Kt2K ′t−1 exp
{
−κ′t−1nε

2/t2
}
.

(b)–(h) The proofs of the results in Ht+1(b)−Ht+1(h) are along the same lines as Bt(b)−Bt(h).
By the end of step Ht+1(h), we will similarly pick up a t5K term in the pre-factor in front of the
exponent, and a κt−11 term in the exponent. It then follows that the Kt, κt are as given in (4.39).

34



A Concentration Lemmas

In the following, ε > 0 is assumed to be a generic constant, with additional conditions specified
whenever needed.

Lemma A.1 (Hoeffding’s inequality). If X1, . . . , Xn are bounded random variables such that ai ≤
Xi ≤ bi, then for ν = 2

[∑
i(bi − ai)2

]−1

P
( 1

n

n∑
i=1

(Xi − EXi) ≥ ε
)
≤ e−νn2ε2 , P

(∣∣∣ 1
n

n∑
i=1

(Xi − EXi)
∣∣∣ ≥ ε) ≤ 2e−νn

2ε2 .

Lemma A.2 (Concentration of Sums). If random variables X1, . . . , XM satisfy P (|Xi| ≥ ε) ≤
e−nκiε

2
for 1 ≤ i ≤M , then

P
(∣∣∣ M∑

i=1

Xi

∣∣∣ ≥ ε) ≤ M∑
i=1

P
(
|Xi| ≥

ε

M

)
≤Me−n(mini κi)ε

2/M2
.

Lemma A.3 (Concentration of Products). For random variables X,Y and non-zero constants
cX , cY , if

P (|X − cX | ≥ ε) ≤ Ke−κnε
2
, and P (|Y − cY | ≥ ε) ≤ Ke−κnε

2
,

then the probability P (|XY − cXcY | ≥ ε) is bounded by

P
(
|X − cX | ≥ min

(√ ε

3
,
ε

3cY

))
+ P

(
|Y − cY | ≥ min

(√ ε

3
,
ε

3cX

))
≤ 2K exp

{
− κnε2

9 max(1, c2
X , c

2
Y )

}
.

Proof. The probability of interest, P (|XY − cXcY | ≥ ε), equals

P (|(X − cX)(Y − cY ) + (X − cX)cY + (Y − cY )cX | ≥ ε) .

The result follows by noting that if |X − cX | ≤ min(
√

ε
3 ,

ε
3cY

) and |Y − cY | ≤ min(
√

ε
3 ,

ε
3cX

), then
the following terms are all bounded by ε

3 :

|(X − cX)cY | , |(Y − cX)cY | , and |(X − cX)(Y − cY )| .

Lemma A.4 (Concentration of Square Roots). Let c 6= 0.

If P
(∣∣X2

n − c2
∣∣ ≥ ε) ≤ e−κnε2 , then P (||Xn| − |c|| ≥ ε) ≤ e−κn|c|

2ε2 .

Proof. If ε ≤ c2, then the event c2 − ε ≤ X2
n ≤ c2 + ε implies that

√
c2 − ε ≤ |Xn| ≤

√
c2 + ε. On

the other hand, if ε ≥ c2, then c2 − ε ≤ X2
n ≤ c2 + ε implies that 0 ≤ |Xn| ≤

√
c2 + ε. Therefore,

|X2
n − c2|≤ ε implies

||Xn| − |c|| ≤ |c|max(1−
√

(1− (ε/c2))+,
√

1 + (ε/c2)− 1),

where x+ := max{x, 0}. Note, (1 + x)1/2 ≤ 1 + 1
2x for x ≥ 0, and (1− x)1/2 ≥ 1− x for x ∈ (0, 1).

Using these, we conclude that |X2
n − c2|≤ ε implies

||Xn| − |c|| ≤ |c|max
(

1−
√(

1− ε

c2

)
+
,

√
1 +

ε

c2
− 1
)

≤ |c|max
( ε
c2
,
ε

2c2

)
=

ε

|c|
.
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Lemma A.5 (Concentration of Powers). Assume c 6= 0 and 0 < ε ≤ 1. Then for any integer
k ≥ 2,

if P (|Xn − c| ≥ ε) ≤ e−κnε
2
, then P

(∣∣∣Xk
n − ck

∣∣∣ ≥ ε) ≤ e−κnε2/[(1+|c|)k−|c|k]2 .

Proof. Without loss of generality, assume that c > 0. First consider the case where ε < c. Then
c− ε ≤ Xn ≤ c+ ε implies

(c− ε)k − ck ≤ Xk
n − ck ≤ (c+ ε)k − ck =

k∑
i=1

(
k

i

)
ck−iεi.

Hence, |Xn − c| ≤ ε implies
∣∣Xk

n − ck
∣∣ ≤ εc0, where

c0 =

k∑
i=1

(
k

i

)
ck−iεi−1 <

k∑
i=1

(
k

i

)
ck−i = (1 + c)k − ck.

Therefore,

P (|Xk
n − ck|≥ ε) ≤ P (|Xn − c| ≥ ε/c0) ≤ e−κnε2/[(1+c)k−ck]2 . (A.1)

For the case where 0 < c < ε < 1, Xn ∈ [c−ε, c+ε] implies (c−ε)k−ck ≤ Xk−ck ≤ (c+ε)k−ck.
Using ε < 1, we note that the absolute values of

(c− ε)k − ck =
k∑
i=1

(
k

i

)
ck−i(−ε)i, and (c+ ε)k − ck =

k∑
i=1

(
k

i

)
ck−iεi

are bounded by c1 := (1 + c)k − ck. Thus |Xn − c| ≤ ε implies
∣∣Xk

n − ck
∣∣ ≤ εc1. Therefore the same

bound as in (A.1) holds when 0 < c < ε < 1 (though a tighter bound could be obtained in this
case).

Lemma A.6 (Concentration of Scalar Inverses). Assume c 6= 0 and 0 < ε < 1.

If P (|Xn − c|≥ ε) ≤ e−κnε
2
, then P (|X−1

n − c−1|≥ ε) ≤ 2e−nκε
2c2 min{c2,1}/4.

Proof. Without loss of generality, we can assume that c > 0. We have

P (|X−1
n − c−1|≤ ε) = P (c−1 − ε ≤ X−1

n ≤ c−1 + ε).

First consider the case 0 < ε < c−1. Then, Xn is strictly positive in the interval of interest, and
therefore

P (c−1 − ε ≤ X−1
n ≤ c−1 + ε) = P

( −εc
c−1 + ε

≤ Xn − c ≤
εc

c−1 − ε

)
≥ 1− e−nκε2c2/(ε+c−1)2 ≥ 1− e−nκε2c4/4. (A.2)

Next consider 0 < c−1 < ε < 1. The probability to be bounded can be written as

P (X−1
n ≥ c−1 + ε) + P (−(ε− c−1) ≤ X−1

n < 0)

= P
(
Xn − c ≤

−εc
ε+ c−1

)
+ P

( −εc
ε− c−1

≤ Xn − c ≤ −c
)

≤ e−nκε2c2/(ε+c−1)2 + e−nκc
2 ≤ e−nκc2/4 + e−nκc

2 ≤ 2e−nκc
2/4,

(A.3)

where the last two inequalities are obtained using ε > c−1 and ε < 1, respectively. The bounds
(A.2) and (A.3) together give the result of the lemma.
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B Gaussian and Sub-Gaussian Concentration

Lemma B.1. For a random variable Z ∼ N (0, 1) and ε > 0, P (|Z| ≥ ε) ≤ 2e−
1
2
ε2.

Lemma B.2 (χ2-concentration). For Zi, i ∈ [n] that are i.i.d. ∼ N (0, 1), and 0 ≤ ε ≤ 1,

P
(∣∣∣ 1
n

n∑
i=1

Z2
i − 1

∣∣∣ ≥ ε) ≤ 2e−nε
2/8.

Lemma B.3. [25] Let X be a centered sub-Gaussian random variable with variance factor ν, i.e.,

lnE[etX ] ≤ t2ν
2 , for all t ∈ R. Then X satisfies:

1. For all x > 0, P (X > x) ∨ P (X < −x) ≤ e−
x2

2ν , for all x > 0.

2. For every integer k ≥ 1,
E[X2k] ≤ 2(k!)(2ν)k ≤ (k!)(4ν)k. (B.1)

Lemma B.4. Let Z1, . . . , Zt ∈ RN be random vectors such that (Z1,i, . . . , Zt,i) are i.i.d. across
i ∈ [n], with (Z1,i, . . . , Zt,i) being jointly Gaussian with zero mean, unit variance and covariance
matrix K ∈ Rt×t. Let G ∈ RN be a random vector with entries G1, . . . , GN i.i.d. ∼ pG, where pG
is sub-Gaussian with variance factor ν. Then for any pseudo-Lipschitz function f : Rt+1 → R,
non-negative constants σ1, . . . , σt, and 0 < ε ≤ 1, we have

P
(∣∣∣ 1

N

N∑
i=1

f(σ1Z1,i, . . . , σtZt,i, Gi)− E[f(Z1,1, . . . , Zt,1, G)]
∣∣∣ ≥ ε)

≤ 2 exp

 −Nε2

128L2(t+ 1)2
(
ν + 4ν2 +

∑t
m=1(σ2

m + 4σ4
m)
)
 ,

where L > 0 is an absolute constant. (L can be bounded above by three times the pseudo-Lipschitz
constant of f .)

Proof. Without loss of generality, assume E[f(σ1Z1,i, . . . , σtZt,i, Gi)] = 0 for i ∈ [N ]. In what
follows we demonstrate the upper-tail bound:

P
( 1

N

N∑
i=1

f(σ1Z1,i, . . . , σtZt,i, Gi) ≥ ε
)
≤ exp

(
−Nε2

4κ̃t

)
, (B.2)

where

κ̃t = 32L2(t+ 1)2
(
ν + 4ν2 +

t∑
m=1

(σ2
m + 4σ4

m)
)
. (B.3)

The lower-tail bound follows similarly.
Using the Cramér-Chernoff method, for any s > 0 we can write

P
( 1

N

N∑
i=1

f(σ1Z1,i, . . . , σtZt,i, Gi) ≥ ε
)
≤ E

[
es

∑N
i=1 f(σ1Z1,i,...,σtZt,i,Gi)

]
e−sNε. (B.4)
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To prove (B.2), we will show that

E

[
exp

(
s

N∑
i=1

f(σ1Z1,i, . . . , σtZt,i, Gi)
)]
≤ exp

(
Nκ̃ts

2
)

for 0 < s <

√
1

κ̃t
. (B.5)

Then, using (B.5) in (B.4) and taking s = ε/2κ̃t yields the upper tail bound in (B.2).
We now prove (B.5). For i ∈ [N ], let (Z̃1,i, . . . , Z̃t,i, G̃i) be an independent copy of (Z1,i, . . . , Zt,i, Gi).

Since E[f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i)] = 0, using Jensen’s inequality we have

E[exp(−sf(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i))] ≥ exp(−sE[f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i)]) = 1.

Therefore, using the independence of Z̃ and Z we write

E[esf(σ1Z1,i,...,σtZt,i,Gi)] ≤ E[esf(σ1Z1,i,...,σtZt,i,Gi)] · E[e−sf(σ1Z̃1,i,...,σtZ̃t,i,G̃i)]

= E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))]. (B.6)

Using (B.6) we prove (B.5) by demonstrating that for each i ∈ [N ],

E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))] ≤ exp
(
κ̃ts

2
)

for 0 < s <

√
1

κ̃t
. (B.7)

For i ∈ [N ] we have

E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))]

=

∞∑
q=0

sq

q!
E (f(σ1Z1,i, . . . , σtZt,i, Gi)− f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i))

q

(a)
=
∞∑
k=0

s2k

(2k)!
E (f(σ1Z1,i, . . . , σtZt,i, Gi)− f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i))

2k, (B.8)

where step (a) holds because the odd moments of the difference equal 0. Next, using the pseudo-
Lipschitz property of f , for an absolute constant L > 0, we have for k ≥ 1:

(f(σ1Z1,i, . . . , σtZt,i, Gi)− f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i))
2k

≤ L2k

[
1 +

t∑
m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i

]k [ t∑
m=1

σ2
m(Zm,i − Z̃m,i)2 + (Gi − G̃i)2

]k
(a)

≤ L2k

[
1 +

t∑
m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i

]k
2k

[
t∑

m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i

]k
(b)

≤ (2L2)k

[
t∑

m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i + (2t+ 2)

(
t∑

m=1

σ4
m(Z4

m,i + Z̃4
m,i) +G4

i + G̃4
i

)]k
,

(c)

≤ (2L2(4t+ 4))k

4t+ 4

[
t∑

m=1

σ2k
m (Z2k

m,i + Z̃2k
m,i) +G2k

i + G̃2k
i + (2t+ 2)k

(
t∑

m=1

σ4k
m (Z4k

m,i + Z̃4k
m,i) +G4k

i + G̃4k
i

)]

≤ (2L(2t+ 2))2k

4t+ 4

[
t∑

m=1

σ2k
m (Z2k

m,i + Z̃2k
m,i) +G2k

i + G̃2k
i +

t∑
m=1

σ4k
m (Z4k

m,i + Z̃4k
m,i) +G4k

i + G̃4k
i

]
,

(B.9)
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where inequalities (a), (b), (c) are all obtained using using Lemma C.3. Using (B.9) in (B.8) and
recalling that {(Zm,i)1≤k≤t, Gi} are identically distributed as {(Z̃m,i)1≤k≤t, G̃i}, we get

E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))]

≤ 1 +

∞∑
k=1

(s2L(2t+ 2))2k

(2k)!(4t+ 4)
2

[
t∑

m=1

σ2k
m EZ2k

m,i + EG2k
i +

t∑
m=1

σ4k
m EZ4k

m,i + EG4k
i

]
(a)

≤ 1 +
∞∑
k=1

(s2L(2t+ 2))2k

(2k)!(2t+ 2)

[
t∑

m=1

σ2k
m 2(k!)2k + 2(k!)(2ν)k +

t∑
m=1

σ4k
m 2(2k!)22k + 2(2k!)(2ν)2k

]
(b)

≤ 1 +

∞∑
k=1

(s2L(2t+ 2))2k

(t+ 1)

[
1

k!

t∑
m=1

σ2k
m +

νk

k!
+

t∑
m=1

(4σ4
m)k + (4ν2)k

]

≤ 1 +

∞∑
k=1

(s2L(2t+ 2))2k

[
ν + 4ν2 +

t∑
m=1

(σ2
m + 4σ4

m)

]k
(c)
=

(
1− s216L2(t+ 1)2

[
ν + 4ν2 +

t∑
m=1

(σ2
m + 4σ4

m)
])−1

(d)

≤ e
s232L2(t+1)2

[
ν+4ν2+

∑t
m=1(σ2

m+4σ4
m)

]
. (B.10)

In the chain of inequalities above, (a) is obtained using the sub-Gaussian moment bound (B.1);

step (b) using the inequality (2k)!
k! ≥ 2kk!, which can be seen as follows.

(2k)!

k!
=

k∏
j=1

(k + j) = k!

k∏
j=1

(k
j

+ 1
)
≥ (k!)2k.

The equality (c) holds because s lies in the range specified by (B.5), and (d) holds because 1
1−x ≤ e

2x

for x ∈ [0, 1
2 ]. This completes the proof of (B.7), and hence the result.

C Other Useful Lemmas

Lemma C.1 (Product of Lipschitz Functions is PL(2)). Let f : Rp → R and g : Rp → R be
Lipschitz continuous. Then the product function h : Rp → R defined as h(x) := f(x)g(x) is
pseudo-Lipschitz of order 2.

Lemma C.2. Let φ : Rt+2 → R be PL(2). For (c1, . . . , ct+1) constants and Z ∼ N (0, 1), the
function φ̃ : Rt+1 → R defined as φ̃ (v1, . . . , vt, w) = EZ [φ(v1, . . . , vt,

∑t
r=1 crvr + ct+1Z,w)] is then

also PL(2).

Lemma C.3. For any scalars a1, ..., at and positive integer m, we have (|a1|+ . . .+ |at|)m ≤
tm−1

∑t
i=1 |ai|

m. Consequently, for any vectors u1, . . . , ut ∈ RN ,
∥∥∑t

k=1 uk
∥∥2 ≤ t

∑t
k=1 ‖uk‖

2.

Proof. The first result follows from applying Hölder’s inequality to the length-t vectors (|a1| , . . . , |at|)
and (1, . . . , 1). The second statement is obtained by applying the result with m = 2.
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The supplement available at http://bit.ly/2iWMgbr contains the proof of Lemma 4.5 parts (b).(ii)
and (b).(iv) for the case where the denoising functions {ηt(·)}t>0 are differentiable in the first
argument except at a finite number of points. The proof in Sec. 5 covers the case where the
denoising functions {ηt(·)}t>0 are differentiable everywhere. The proof of the general case is longer
and somewhat tedious, so we include it in the supplement.

Acknowledgement

We thank Andrew Barron for helpful discussions regarding certain technical aspects of the proof.
This work was supported in part by a Marie Curie Career Integration Grant (GA Number 631489).

References

[1] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with applications to
compressed sensing,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 764–785, 2011.

[2] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,”
Proc. Natl. Acad. Sci. USA, vol. 106, no. 45, pp. 18914–18919, 2009.

[3] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, “Probabilistic reconstruction in com-
pressed sensing: algorithms, phase diagrams, and threshold achieving matrices,” J. Stat. Mech. Theory
Exp., no. 8, 2012.

[4] A. Montanari, “Graphical models concepts in compressed sensing,” in Compressed Sensing (Y. C. Eldar
and G. Kutyniok, eds.), pp. 394–438, Cambridge University Press, 2012.

[5] S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in
Proc. IEEE Int. Symp. Inf. Theory, pp. 2168–2172, 2011.

[6] M. Bayati and A. Montanari, “The LASSO Risk for Gaussian Matrices,” IEEE Trans. Inf. Theory,
vol. 58, pp. 1997–2017, April 2012.

[7] A. Javanmard and A. Montanari, “State evolution for general approximate message passing algorithms,
with applications to spatial coupling,” Information and Inference: A Journal of the IMA Inference,
vol. 2, no. 2, pp. 115–144, 2013.

[8] M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope phase transitions and message
passing algorithms,” Ann. Appl. Probab., vol. 25, pp. 753–822, 04 2015.

[9] S. Rangan and A. K. Fletcher, “Iterative estimation of constrained rank-one matrices in noise,” in Proc.
IEEE Int. Symp. Inf. Theory, pp. 1246–1250, 2012.

[10] Y. Deshpande and A. Montanari, “Information-theoretically optimal sparse PCA,” in Proc. IEEE Int.
Symp. Inf. Theory, pp. 2197–2201, 2014.

[11] A. Montanari and E. Richard, “Non-negative principal component analysis: Message passing algorithms
and sharp asymptotics,” IEEE Trans. Inf. Theory, vol. 62, no. 3, pp. 1458–1484, 2016.

[12] Y. Deshpande, E. Abbe, and A. Montanari, “Asymptotic mutual information for the balanced binary
stochastic block model,” Information and Inference: A Journal of the IMA, vol. 6, pp. 125–170, 2016.
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