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Abstract 

A novel ultra-high strength precipitation hardened martensitic steel with balanced ductility 

and creep resistance has been developed. It utilises a unique combination of nanometre scale 

intermetallic precipitates of Laves phases and β-NiAl to achieve such properties. The mechanical 

properties of this steel were assessed by tensile and creep testing. With different heat treatments, 

this steel showed a remarkable combination of mechanical properties: yield strength of >1800 

MPa, ultimate tensile strength of ~ 2000 MPa, tensile ductility up to ~8% at room temperature 

and creep rupture life > 2,000 hours under 700 MPa stress at 500 °C. The microstructures at 

different length scales were characterised using scanning / transmission electron microscopy and 

atom probe tomography. The austenisation and ageing temperatures were found be the key 

factors determining the microstructural development and resulting mechanical properties. Large 

primary Laves phase precipitates formed at lower austenisation temperatures resulted in reduced 

creep strength; whilst the small difference (20 °C) in ageing temperatures had significant impact 

on the spatial distribution characteristics of β-NiAl precipitates. Lower ageing temperature 

produced much smaller but more uniformly distributed β-NiAl precipitates which contributed to 

the higher observed yield strength. It is clear from this study that whilst this novel alloy system 

showed great potentials, careful design of heat treatment is still required to achieve balanced 

mechanical properties to meet the service requirements in aerospace propulsion systems. 
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1. Introduction 

Aerospace industries are constantly challenged to improve aircraft fuel efficiency and reduce 

greenhouse gas emissions driven by economic and environmental factors. For the propulsion 

systems, such improvements cannot be achieved without the advancement of materials 

capabilities, e.g. higher strength, better damage tolerance and more importantly higher 

temperature capability to enable higher operating temperatures and improve the thermal 

efficiency of the turbine engines [1]. 

Maraging steels usually consist of a relatively soft and ductile martensitic matrix of very low 

carbon content strengthened by the precipitation of a large number of nanometre sized 

intermetallic phases [2, 3]. As a result, this type of steels exhibits an excellent combination of 

ultrahigh strength with good fracture toughness, and therefore is widely used for critical 

applications in the aerospace sector since first developed some 40 years ago [4]. Traditional 

maraging steels such as the 18Ni grades (200, 250, 300, 350 and etc., where the number signifies 

the yield strength in ksi) contain around 18wt% Ni with high levels of Co (8~13wt.%) and Mo 

(3~5wt.%) as well as smaller additions of other alloying elements such as Ti and Al [5]. The high 

Ni content ensures that only martensitic phase transformation occurs during the decomposition of 

the austenite phase even at moderate to slow cooling rates. However, this also limits the elevated 

temperature capability of maraging steels, as the martensite enriched with Ni is not 

thermodynamically stable at elevated temperatures and a reverse transformation to the 

equilibrium austenite phase can occur after prolonged exposure to high temperatures [6, 7].  

In order to provide a material solution for low pressure turbine shaft applications in jet 

engines, a novel maraging steel with ultra-high strength and good resistance to creep at 

temperatures up to 500 °C has recently been developed [8, 9]. Unlike the traditional 18Ni 

maraging steels that mainly utilise Ni3Ti precipitates to provide strengthening, the new alloy 

contains much lower amount of Ni (around 7 wt.%).  It is strengthened by two nanometre sized 

intermetallic precipitates, namely an ordered β-NiAl phase which has a B2 (space group Pm3m) 

CsCl superlattice structure and a topological closed packed (TCP) C14 (Fe,Cr)2(W,Mo) Laves 

phase (space group P 63/mmc), to provide the high strength and good creep resistance.  

The fine Laves phases precipitates in 9-12% Cr heat resistant steels are recognised to improve 

creep strength through dispersion hardening and retardation of sub-grain boundaries movement 

[10-12]. The very fine β-NiAl precipitate, which is coherent with the BCC Fe matrix with a 

lattice constant of 0.2887 nm at room temperature  [13], is utilised in a number of precipitation 

hardened (PH) martensitic steels such as the widely used PH13-8Mo type steels [14, 15], the 
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GE1014 steel [16], and more recently a number of new high strength ferritic/martensitic steels 

under development [17-20]. However, the combination of the Laves phases and β-NiAl 

precipitates is unique in the novel steel studied in this work. Therefore, it is important to gain 

better understanding of the structure-property relationship for this novel maraging steel to 

achieve tailored properties that fit the application requirements. 

The aim of the current work is to investigate the effect of heat treatment conditions on the 

microstructure development and consequently the mechanical properties. Focus is placed on 

relating the austenisation temperature and ageing temperature to the precipitation behaviour and 

the resulting tensile strength, ductility and creep life. Microstructures at different length scales 

were characterised using optical microscopy, scanning electron microscopy (SEM) with electron 

backscattered diffraction (EBSD), transmission electron microscopy (TEM) and atom probe 

tomography (APT), whilst the mechanical properties were assessed by tensile and creep tests. 

2. Experimental 

2.1 The material and heat treatment 

The alloy was vacuum induction melted by Tata RD&T, UK Swindon Technology Centre 

then hot forged to square bars. Subsequently, the forged bars were subjected to a homogenisation 

heat treatment in vacuum at 1200 °C for 48 hours followed by gas quenching using high purity 

Argon. The composition of the as-received material is given in Table 1.  

Table 1 The chemical composition of the maraging steel 

Element Fe Cr Co Ni Al Mo W 

Weight % 68.11 9.90 8.02 6.99 1.80 2.75 2.43 

Atomic % 68.76 10.73 7.67 6.71 3.76 1.62 0.75 

 

The calculated equilibrium phase diagram of the steel with this composition using MatCalc 

software and MC_Fe_2.009 database is given in Figure 1(a). The possible precipitates are 

identified as B2 β-NiAl and Laves phase. The calculated equilibrium compositions as functions 

of temperature are given in Figure 1(b) and (c), respectively. Based on the calculated phase 

diagram, three heat treatment schemes were applied to the as received materials. For heat 

treatment 1 (HT1), the material was austenitised at 825 °C for 2 hours followed by air quenching, 

then aged at 560 °C for 5 hours. As can be seen in Figure 1(a), at 825 °C, a certain amount of 

Laves precipitates should form during austenisation. Heat treatment 2 (HT2) consists of 

austenisation at 870 °C for 1 hour, air quenching and ageing at 540 °C for 5 hours. For HT3, the 
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austenisation temperature of 960°C is believed to be high enough to avoid the formation of any 

precipitates during austenisation. Therefore, all Laves phase precipitates should form during the 

subsequent ageing heat treatment at 540°C for 5 hours. Conversely, β-NiAl precipitation should 

only take place during the ageing heat treatment for all three conditions. The heat treatment 

conditions are summarised in Table 2.  

 

 

Figure 1 Equilibrium thermodynamics calculation using MatCalc: (a) all phase in at.%, (b) 

composition of the Laves phase and (c) composition of the β-NiAl as functions of temperature; 

(d) the calculated volume percentages of Laves phase and β-NiAl. 

 

Similar amounts (in terms of atomic fractions) of Laves phase and β-NiAl are predicted for 

each heat treatment, based on the calculated phase diagrams. However, as the densities of these 

two precipitates are quite different, the molar/atomic percentage is not convenient to correlate to 

microstructural observations and mechanical properties. Therefore, the volume percentages 

(vol.%) of the two precipitation phases were calculated using the equilibrium density values of β-

NiAl and the Laves phase. These values were calculated using the predicted chemical 

compositions and the ideal structures of the unit cells with lattice parameters of a=0.475 nm and 
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c=0.773 nm for the Laves phase [21] and a=0.289 nm for β-NiAl [17]. As shown in Figure 1(d), 

the results suggest that at the ageing temperatures between 540 °C to 560 °C, the equilibrium 

volumes of the precipitates are around 8-9 vol.% for Laves phase and 10-11 vol.% for β-NiAl. 

Table 2 The conditions of heat treatment schemes used in this study 

 

 

 

 

 

2.2 Mechanical testing  

Following heat treatment, tensile and creep specimens were machined. The specimen designs 

for both tests were the same, with a gauge diameter of 4 mm and a gauge length of 20 mm.  

Tensile and creep testing was carried out at SMaRT, Swansea University, Singleton Campus. 

Tensile tests were conducted with a dual strain-rate of 0.00025 s-1 up to 2% strain and 0.068 s-1 

thereafter, using the standard BS EN ISO 6892. Creep testing was carried out by applying a 

constant load of 700 MPa to the sample at a temperature of 500 °C following the standard BS EN 

10291:2000. 

2.3 Optical and electron microscopy 

Samples for microstructural observations were prepared for materials in as-austenitised 

conditions (referred as HT1A, HT2A and HT3A) as well as in conditions after both austenisation 

and ageing for all three heat treatment schemes (referred as HT1AA, HT2AA and HT3AA, 

respectively). For optical microscopy, mechanically ground and polished samples were etched 

using a solution containing 20 ml Nitric acid (60% concentration), 20ml hydrochloric acid (36% 

concentration) and 60 ml water. For EBSD analysis in SEM, bulk samples were mechanically 

ground and polished to 1 µm followed by 2 hours of vibratory polishing using colloidal silica 

with a nominal particle size of 0.04 µm. Thin foil samples for TEM were mechanically thinned 

then twin jet polished electrochemically using a solution consisting of (by volume) 5% perchloric 

acid, 25% glycerol and 70% ethanol at 8 °C with a current around 35 mA.  

EBSD maps were collected using a FEI Quanta250 SEM operating at 20 kV and an Oxford 

Instruments HKL Nordlys camera with Channel 5 software. Typical areas of 200 µm by 200 µm 

Heat 

Treatment 

Austenisation 

Temperature  (°C) 

Austenisation 

Time (hours) 

Ageing Temperature 

(°C) 

Ageing Time 

(hours) 

HT1 825 2 560 5 

HT2 870 1 540 5 

HT3 960 1 540 5 
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were mapped using a step size of 0.25 µm. An indexing rate of at least 80% was achieved, then a 

post-acquisition noise reduction procedure outlined elsewhere was applied [22]. 

TEM thin foils were examined using a Philips CM30 TEM with a LaB6 source operating at 

300 kV and a JEOL 2100F FEGTEM operating at 200 kV. TEM images and diffraction patterns 

were recorded using photographic plates in the Philips CM30. Scanning TEM (STEM) images 

were recorded in the JEOL 2100F by JEOL HAADF and Gatan bright field detectors, 

respectively; whilst energy dispersive X-ray (EDX) analysis was obtained in the same instrument 

using an Oxford Instruments INCA X-Sight Si(Li) detector of 50 mm2 area. 

2.4 Atom probe tomography 

Specimens for atom probe were prepared using both electropolishing and focused ion beam 

(FIB) liftout. Electropolished needles were prepared using a two-step process. Initially 

matchsticks of 0.5 mm × 0.5 mm × 20 mm were electropolished using a solution of 25 vol.% 

perchloric acid (60% concentration) and 75 vol.% glacial acetic acid, at a DC voltage of 14 V, 

until a neck formed then separated into two needle-shaped specimens [23]. The shape of these 

needles was further refined using a polishing solution of 2 vol.% Perchloric acid (60% 

concentration) in butoxyethanol. This final step was performed just prior to loading in the atom 

probe system to prevent oxidation of the specimens. All unaged (austenisation only) specimens 

were prepared using electropolishing as site specific information was not required. 

For aged material, atom probe specimen were prepared by FIB method in a FEI Helios 

Nanolab 600 SEM following the standard lift-out procedure [24]. A protective layer of platinum 

was deposited on regions most likely to contain grain/lath boundaries, then a wedge of depth ~7 

µm was lifted out from this protected region. Sections of the lift-out lamella were mounted onto a 

standard silicon microtip coupon, and each microtip was sharpened using annular milling at 

decreasing ion beam currents into a fine point suitable for APT analysis. The penultimate stage of 

this milling, carried out at 30 kV and 40 pA, removed any remaining Pt capping layer, and 

resulted in a specimen with a final tip radius of less than 100 nm. Finally, the sharpened tips were 

exposed to a 5 kV and then 2 kV ion beam for several minutes to clean the surface of any gallium 

ion damage [25]. At this stage, SEM side profile images of each tip were obtained to aid post-

experiment 3D reconstruction of the atom probe data. 

All specimens were analysed using a Cameca LEAP 3000X HR atom probe, at an analysis 

chamber pressure of better than 3x10-11 Torr. All samples were run in pulsed-laser mode using a 
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532 nm laser, operated at 0.4 nJ and 200 kHz using a base specimen temperature of 50 K. 

Reconstruction and analysis was performed using the commercial software IVAS version 3.6.12. 

3. Results 

3.1 Mechanical properties 

The values of Vickers hardness HV30 (using a load of 30 kg) after different heat-treatments 

are given in Table 3. After ageing, the hardness values increase by approximately 70% to 90% 

compared to the as-austenitised conditions. Tensile stress-strain curves of the 3 heat-treatments at 

room temperature and 500 °C are shown in Figure 2(a). In the standard BS EN ISO 6892 the 

strain rate is increased at 2% strain, hence the increase in the flow stress due to strain-rate 

sensitivity of this material. For room-temperature tests, the ductility falls whilst the strength 

increases: HT3 shows a yield strength (YS) of 1892 MPa and an ultimate tensile strength (UTS) 

of 2009 MPa (see Table 3), which are the highest among the three heat treatment schemes. 

However, HT3 also exhibits the lowest tensile ductility of 2.8% (engineering strain to facture), 

approximately 3 times lower than the 8.1% in HT1. HT2 shows intermediate levels of YS, UTS 

and tensile ductility compared to HT1 and HT3. Furthermore, the YS and UTS values of all three 

heat treatment schemes show good correlations with the measured hardness values. As the testing 

temperature increases, the strength of the alloy decreases whilst the ductility improves. The 

changes of UTS and tensile ductility with testing temperature are given in Figure 2(b) and (c), 

respectively. At the highest testing temperature of 500 °C the differences of the tensile ductility 

among all heat-treatments diminishes to less than 1%. 
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Figure 2 (a) Tensile stress-strain curves for the different heat-treatments at room temperature and 

500 °C; changes of, (b) the ultimate tensile strength, and (c) the engineering strain to fracture, for 

the different heat-treatments at different testing temperatures. 

 

Table 3 Mechanical testing results for samples subjected to three different heat-treatments 

Sample 

Hardness 

(HV30) 
Tensile at 20 °C Tensile at 500 °C 

Creep (700 MPa at 

500 °C) 

Aust. 
Aust. + 

Aged 

Yield 

Strength 

(MPa) 

UTS 

(MPa) 

Strain to 

Fracture 

Yield 

Strength 

(MPa) 

UTS 

(MPa) 

Strain to 

Fracture 

Time to 

Rupture 

(h) 

Minimum 

Creep 

Rate (h-1) 

HT1 351 586 1799 1868 8.1% 1161 1341 15.5% 525 6.6×10-5 

HT2 341 595 1825 1920 4.3% 1181 1385 16.8% 750 2.6×10-5 

HT3 325 622 1892 2009 2.8% 1061 1454 15.0% 2148 6.2×10-6 

 

The fracture surfaces for HT1 and HT3 after tensile testing at room temperature and 450 °C 

are shown in Figure 3 and Figure 4, respectively. At room temperature, the fracture surfaces are 

distinctively different. For HT1, the fracture surface (Figure 3a) shows a significant amount of 

ductile features such as coalesced microvoids mixed with intergranular cracks. Conversely, the 

fracture surface of HT3 exhibits predominantly brittle fracture behaviour suggested by the 
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characteristic transgranular cleavage patterns (Figure 3b) [26]. These differences between 

fracture surfaces are consistent with the difference of tensile ductility observed between HT1 

(8.1%) and HT3 (2.8%) at room temperature. At elevated temperatures the fracture surfaces of 

both heat-treatments exhibit more ductile features. The difference of fracture behaviours between 

the two heat-treatments becomes less significant. As seen in Figure 4, at 450 °C both alloys show 

microvoid coalescence type fracture behaviours; however, the microvoids appear to be smaller in 

HT1, which also displays some intergranular cracks. The tensile results are summarised in 

Table 3. 

 

Figure 3 Fracture surfaces after tensile tests at room-temperature for (a) HT1 and (b) HT3 

Figure 4 Fracture surfaces after tensile testing at 450 °C for (a) HT1 and (b) HT3. 
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For creep tests conducted under 700 MPa at 500 °C, the creep strain-time curves and creep 

rate-time plots for the three heat-treatments are shown in Figure 5(a) and (b), respectively. There 

are significant differences in both the minimum creep rate and the creep rupture life/ductility 

among the three heat-treatments: HT3 has a creep rupture life four times of that in HT1, and the 

creep rupture life of HT2 is between the two (see Table 3). The creep performance in terms of 

rupture life shows a correlation with the austenisation temperature; in this case a higher 

austenisation temperature gives a longer creep rupture life. The creep fracture surfaces of HT1 

and HT3 (shown in Figure 6) exhibit significantly different modes of failure: HT1 appears to 

have failed by intergranular cracking whereas HT3 displays mainly microvoid coalescence with a 

smaller fraction of intergranular features. 

 

Figure 5 (a) Creep strain-time curves and (b) creep rate-time plots for the steel subjected to three 

different heat-treatments. The testing condition used is a load of 700 MPa at 500 °C. 

 

Figure 6 Fracture surfaces of creep tested (700 MPa at 500 °C) samples after (a) HT1 and (b) 

HT3. 
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3.2 Microstructures 

3.2.1 The prior austenite grain (PAG) size after austenisation 

The prior austenite grain boundaries (PAGBs) after austenisation were revealed after 

chemical etching using the solution described in Section 2.3. Optical micrographs showing 

typical PAG microstructures for HT1A, HT2A and HT3A are given in Figure 7(a), (b) and (c), 

respectively. The average PAG sizes measured by linear inception method are: 62.1±7.9 µm after 

HT1A, 43.7±7.0 µm after HT2A and 97.0±12.8 µm after HT3A with errors representing the 

standard deviations of the measurements. The highest austenisation temperature of 960 °C during 

HT3 gave rise to the biggest PAG size as a result of austenite grain growth. On the other hand, 

the longer duration of 2 hours austenisation at the lowest temperature of 825 °C during HT1 

produced a PAG size bigger than that after HT2 for which the austenisation is 1 hour at 870 °C. 

 

Figure 7 Optical micrographs shows the prior austenite grain structures after austenisation heat 

treatments in (a) HT1A, (b) HT2A and (c) HT3A. 

 

3.2.2 The martensitic matrix 

Selected areas of EBSD data representing the microstructures of the maraging steel in the as-

aged conditions after the three heat-treatments are plotted as boundary maps in Figure 8. 

Boundaries of disorientation between 15° and 50° marked as black lines in the IPF maps and red 

lines in the boundary maps. As disorientations between martensitic variants are more likely to be 

either less than 15° or greater than 50° [27], the boundaries between 15° and 50° are most likely 

to be prior austenite grain boundaries (PAGBs). All samples show typical lath martensite 

microstructure observed in low-carbon [28] and alloyed steels [27]. The mean intercept length 

measured against low angle boundaries of disorientation > 2°, i.e. mainly martensite lath 

boundaries, for HT1, HT2 and HT3 are 1.1±0.1 µm, 1.4±0.2 µm and 1.6±0.2 µm, respectively. 
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Figure 8 Microstructures of the martensitic matrix as disorientation boundaries maps in the 

materials subjected to (a) HT1, (b) HT2 and (c) HT3.  

 

3.2.3 Laves phase by STEM imaging and EDX element mapping 

Shown in Figure 9 are the micrographs by STEM-high angle annular dark field (HAADF) 

imaging of the microstructures after HT1 in austenitised only (HT1A) and austenitised-and-aged 

(HT1AA) conditions. As the bright contrast in HAADF images represents higher average atomic 

numbers (Z), the observed precipitates are believed to be the Mo, W and Cr-rich Laves phase 

predicted by the thermodynamic calculation (see Figure 1). The presence of Laves phase and its 

orientation relationship with the martensitic matrix is confirmed by EDX analysis and selected 

area diffraction (SAD) as discussed later. 

 

Figure 9 Typical microstructures after (a) HT1A and (b) HT1AA shown by STEM-HAADF 

images. 
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A substantial amount of large primary Laves precipitates were present in the microstructure 

after the low temperature austenisation at 825°C for 2 hours. These precipitates formed at PAGBs 

are indicated by the red arrows in Figure 9(a). They also appear to form within PAGs as pointed 

by the white arrows. The alignment of these precipitates suggests that they form along certain 

intergranular planar defects (e.g. twin boundaries) of the austenite grains. After ageing of HT1 

(Figure 9b), more secondary Laves precipitates formed within the martensite laths as well as 

along the lath boundaries. 

A qualitative EDX analysis of the primary Laves precipitates formed during austenisation 

after HT1A is given in Figure 10.  

Figure 10 (a) STEM-BF images showing the primary Laves phase precipitates formed during 

austenisation heat treatment in HT1; (b) EDX line profiles showing the variation of the counts 

(arbitrary units) of major constituent elements along the scan lines AB and CD; (c) and (d) 

STEM-EDX elements maps showing qualitatively the distribution of major constituent elements 

in the rectangular selections 1 and 2 shown in the BF images, respectively, 

 

From the element maps (Figure 10c and d), it is clear that whilst all show higher 

concentrations of Mo, W and Cr, the Laves phase precipitates formed on austenite grain 
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boundaries, e.g. Area 1 in Figure 10(a), exhibits greater depletions of elements such as Fe, Co 

and Ni compared to the ones formed within the PAGs such as those found in Area 2. This effect 

can be seen more clearly in Figure 10(b) by the EDX line profiles showing counts (arbitrary 

units) of different elements: the scan line AB shows the rejection of Fe, Co and Ni to the 

surrounding matrix by the formation of primary Laves phase precipitate on austenite grain 

boundaries; conversely, the scan line CD across several smaller intragranular primary Laves 

precipitates only reveals the enrichment of Mo and W when approaching the precipitates, whilst 

the rejection of other elements are not evident. 

EDX analysis of secondary Laves precipitates after HT1AA is given in Figure 11.  

Figure 11 (a) STEM-HAADF images showing both primary Laves phase precipitates formed 

during austenisation and secondary Laves phase precipitates formed during ageing of HT1; (b) 

EDX line profiles showing the variation of the counts (arbitrary units) of major constituent 

elements along the scan lines AB; (c) and (d) STEM-EDX element maps of the rectangular 

selections 1 and 2 in the HAADF image, respectively.  

 



15 

 

Around the primary Laves phase precipitates along the PAGB (Area 2 of Figure 11a), the 

corresponding element maps (Figure 11d) indicate substantial enrichment of Fe, Co and Ni in the 

immediate vicinity of the primary Laves precipitate resulting from the rejection of these elements 

by its formation. In Figure 11(c), the element maps of Area 1 show the secondary Laves phase 

precipitates formed during ageing. Both the precipitates inside the martensite lath and along the 

lath boundaries were enriched with Mo, W and Cr. It also appears that Laves phase precipitates 

on martensite lath boundary rejected Fe and Co to the matrix adjacent to the boundary. This can 

be clearly seen in Figure 11(e) by the EDX line profiles along the scan line AB marked in Figure 

11(a). However, in this case, the rejection of Ni is less evident. On the contrary, Ni and Al are 

seen in Figure 11(c) to cluster along the martensite lath boundary. 

The microstructures after heat treatment for HT3A (austenitised only) are shown in Figure 12 

as STEM-BF image. For HT3 after the austenisation, the lath martensite had very high 

dislocation densities without any noticeable precipitates.  

 

 

Figure 12 Typical microstructure after HT3A shown by STEM-BF image. 

 

As shown in Figure 13(a), after the subsequent ageing heat treatment (HT3AA), a large 

number of precipitates were found within the martensite laths as well as along the lath 

boundaries. Further qualitative analysis by EDX element mapping is given in Figure 13(c). All 

the precipitates seen in the small selected area of Figure 13(a), both the ones inside the martensite 
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lath and the ones along the lath boundaries, were shown to be enriched with the constituent 

elements of Laves phase, i.e. Mo, W and Cr. Furthermore, the EDX line profile (shown in Figure 

13d) along the scan line AB indicated higher counts of Mo, W and Cr at the lath boundaries than 

at the smaller precipitates within the martensite lath, probably due to the ease for diffusion and 

nucleation along lath boundaries. 

 

Figure 13 (a) STEM-HAADF image showing the typical microstructure after HT3AA; (b) EDX 

line profiles showing the variation of the counts (arbitrary units) of major constituent elements 

along the scan line AB; (c) STEM-EDX elements maps showing qualitatively the distribution of 

major constituent elements in the selected rectangular area of the HAADF image.  
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By manually selecting and measuring ~300 particles in high magnification STEM-HAADF 

images, the size distribution as equivalent circular diameter of the primary Laves precipitates 

after HT1A as well as of the secondary Laves precipitates after HT1AA and HT3AA are plotted 

as histograms in Figure 14. For HT1, the primary Laves phase precipitates formed after 

austenisation at 825°C for 2 hours show a broad distribution of sizes with a mean diameter of 

137±8 nm; whilst after the subsequent ageing at 560°C for 5 hours, the secondary Laves phase 

precipitates exhibit a narrower Gaussian distribution of their sizes with a mean diameter is 18±1 

nm. On the other hand, for HT3, only small secondary precipitates are present in the final 

microstructure, with a mean diameter of 19±1 nm and a narrower size distribution, as shown in 

Figure 14(c).  

 

Figure 14 Histograms showing the size distributions of the Laves phase precipitates for (a) 

Primary Laves formed after austenisation in HT1, (b) secondary Laves formed after ageing in 

HT1 and (c) the secondary Laves formed after ageing in HT3. 

 

In summary, in HT1 there are two types of W- and Mo-rich Laves phase precipitates present, 

with distinctively different sizes. After austenisation, large primary Laves are formed, whilst 

small secondary Laves are formed during the ageing process. For the same steel subjected to HT3, 

no Laves precipitate is observed after austenisation, and only after ageing do the small secondary 
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Laves phase precipitates form in the microstructure, located both within the martensite laths and 

along the lath boundaries. 

3.2.4 β-NiAl by TEM selected area diffraction and dark field imaging 

As predicted by the thermodynamics calculation (see Figure 1), in addition to the Laves phase 

precipitates, a comparable amount of β-NiAl precipitates should be present in the alloy at ageing 

temperatures used in this study under equilibrium conditions. However, direct characterisation of 

these β-NiAl precipitates using TEM remains challenging due to their very small size (usually 

<10 nm in diameter), little diffraction contrast as a result of full coherency with the ferrite matrix 

with a lattice misfit strain <1% [18] (the bulk lattice parameter is ~0.2887 nm for β-NiAl and 

~0.2866 nm for the ferrite [17]). Furthermore, the average atomic number of β-NiAl precipitates 

is similar to the matrix, giving low atomic number (Z) contrast under STEM-HAADF mode. 

Fortunately, the ordered structure of β-NiAl precipitates gives rise to superlattice reflections in 

selected area diffraction patterns (SADP), which are the forbidden reflections of the disordered 

ferrite matrix. Therefore, TEM-dark field (TEM-DF) technique using the superlattice reflection 

can be exploited to image β-NiAl precipitates in this alloy after the ageing.  

One such example of the alloy after HT1AA is given in Figure 15. The BF micrograph 

(Figure 15a) reveals several large secondary Laves precipitates by diffraction contrast. The 

insertion shows the SADP of this area taken with incident electron beam parallel to the [101] 

ferrite/ β-NiAl zone axis. The weak {111}β and {110}β superlattice reflections can be readily 

identified as well as the DPs from Laves phase precipitates. It also appears that the [1120]𝐿 zone 

axis of the Laves phase is parallel to the [101] ferrite zone axis. The same type of orientation 

relationship was reported recently between C14 structured (FeCrSi)2(MoNb) Laves phase and the 

type 444 ferrite stainless steel matrix [29]. The DF micrograph taken from  (010)β superlattice 

reflection (labelled as A in the SADP) of the same area is given in Figure 15(b), showing a large 

amount of fine β-NiAl precipitates that are not visible in the BF micrograph. 

Similarly, BF image SADP analysis of the alloy subjected to HT3AA are shown in Figure 15 

(c) and lower insertion, respectively. The DF image (Figure 15d) was taken with the incident 

electron beam parallel to the [011] ferrite zone axis. In this case, the β-NiAl precipitates appear 

to be smaller than those found after HT1AA, probably due the lower ageing temperature of 540 

°C used in HT3. SADP+DF did reveal the presence of β-NiAl precipitates in this alloy after 

ageing heat treatment, however, more quantitative information such as size distribution will be 

better studied by APT presented in the next section. 
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Figure 15 (a) TEM BF micrograph after HT1AA with SADP in insertion showing ferrite, β-NiAl 

superlattice and Laves phase reflections; (b) DF image of the same area of (a) using the β-NiAl 

(010)β superlattice reflection labelled as A in the SADP. (c) BF micrograph after HT3AA with 

SADP in insertion, (d) DF image of the same area of (c) using the β-NiAl (100)β superlattice 

reflection. 

 

3.2.5 Atom probe tomography 

Typical atom maps showing elements distribution in 5 nm thin slices of the reconstructed 3D 

APT datasets in materials after HT1AA and HT3AA are given in Figure 16, with the Laves phase 

indicated by clusters of red Mo atoms and the β-NiAl precipitates by green Ni and light blue Al 

atoms. APT results show a marked difference in the size and spacing of β-NiAl precipitates 

between the two heat treatments. In the HT1AA samples (Figure 16a), the β-NiAl particles are 

larger and more varied in shape, whilst in the HT3AA specimens (Figure 16b) these particles are 
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smaller and largely ellipsoid. Furthermore, after the HT3AA heat treatment, the β-NiAl particles 

also show a more uniform number density across all datasets studied, in contrast to the wider 

variations seen in the HT1AA specimens. 

 

Figure 16 Atom maps of typical samples (a) after HT1AA and (b) after HT3AA. For clarity and 

ease of comparison only Ni (green dots), Al (blue dots) and Mo (red dots) atoms are shown and 

volumes are restricted to 5 nm thick slices. 

 

Isoconcentration surface is commonly used in APT to differentiate precipitates and phase 

boundaries, and variations caused by the choice of isoconcentration threshold values are small 

[30]. Isoconcentration surfaces of 6 at.% Mo and 15 at.% Ni were found to most effectively 

discriminate the Laves phase and β-NiAl precipitates respectively from the matrix. The details of 

all isoconcentration surfaces across each dataset were exported for statistically morphological 

analysis. Only complete particles (i.e. precipitates wholly contained in the APT reconstruction, 

not intersecting with the surface) were included for calculation. The measurements were averaged 

across all datasets for each heat treatment condition and normalised by the dataset size. The size 

distribution of β-NiAl precipitates as histograms of equivalent circular diameters (ECDs) is 

shown in Figure 17. A summary of these results is given in Table 4.  
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Figure 17 Histograms showing the size distributions of the β-NiAl phase precipitates after heat 

treatment HT1AA and HT3AA. 

 

Table 4 Statistical analysis of the distribution of the secondary Laves phase precipitates and β-

NiAl precipitates in the maraging steel after heat treatment HT1AA and HT3AA. 

Heat treatment HT1 A+A HT3 A+A 

Phase β-NiAl 
Primary 

Laves phase 

Secondary 

Laves phase 
β-NiAl 

Secondary 

Laves phase 

Average Equivalent Circular 

Diameter, dECD (nm) 
5.2±1.0 137±8.3 * 17.8 ±1.0 * 3.8±0.3 19.1±0.8 * 

Number of precipitates per 1 

million ions 
20.0±3.0 N/A N/A 63.6±40.1 N/A 

Number density, Nv (m-3) 16.7×1023 0.012×1023 # 0.22×1023 # 53.2×1023 0.19×1023 # 

Volume Percent, Vf 12.1 % + 1.6 % ‡ 6.4 % ‡ 15.7 % + 6.8 % ‡ 

Inter-particle spacing (nm) 

[31] 
25 5.6×103 174 14 175 

* measured by TEM; ‡ determined by the “lever rule” method using APT data according to Ref. [18, 32]; # 

calculated based on Vf from APT data using the lever rule method and dECD measured by TEM; + calculated from 

number density (Nv) and dECD measured by APT according to Ref. [19]. 

 

To derive the spatial distribution characteristics of the precipitation phases listed in Table 4, a 

number of methods were used. For the smaller and almost spherical β-NiAl precipitates, the 
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number density can be readily measured by APT, and the volume fraction can be estimated by 

[19]: 

𝑉𝛽 =
4

3
𝜋𝑟𝛽

3𝑁𝑣 (1) 

where 𝑉𝛽is the volume fraction of β-NiAl, 𝑟𝛽 is the mean radius and 𝑁𝑣 is the number density of 

β-NiAl precipitates measured by APT. 

For the larger and complex shaped Laves phase particles (both primary and secondary), 

measuring the number density by APT is difficult whilst approximating their shape as sphere is 

inaccurate. Therefore, the above method described in Eq.(1) is not suitable for Laves phase. 

Conversely, the composition of the Laves phase can be determined reliably by APT. Therefore, 

the Lever rule method [18, 32] is better suited to derive the volume fraction of Laves phases:  

𝑉𝐿 ≈
𝐶𝑜 − 𝐶𝛼

𝐶𝐿 − 𝐶𝛼
 (2) 

where 𝑉𝐿 the volume fraction of Laves phase particles, 𝐶𝑜, 𝐶𝛼 and 𝐶𝐿 are the concentrations of the 

partitioning alloying elements in the bulk, the martensitic matrix and the Laves phase precipitate, 

respectively. Average value of 𝑉𝐿 were calculated using only concentrations of Mo and W as 

these two elements predominately partitioned between Laves phase and the martensitic matrix 

with very little in solid solution of the β-NiAl (see Table 5 to Table 7).  

Finally, the inter-particle spacing 𝜆 can be expressed as: 

𝜆 =
4(1 − 𝑉𝑓)𝑟

3𝑉𝑓
 (3) 

where 𝑉𝑓 is the volume fraction of the precipitates and 𝑟 is the corresponding mean radius [31]. 

From Table 4, the β-NiAl precipitates on average are larger and spaced further apart after 

HT1AA than after HT3AA, whilst the number density is ~3 times higher in the latter. The size 

distribution histogram shows clearly that the number of larger β-NiAl precipitates (ECD > 5nm) 

is substantially higher after HT1AA compared to narrower distribution in HT3AA. This 

difference is believed to be the result of different ageing temperature (560 °C in HT1 and 540 °C 

in HT3), i.e. higher ageing temperatures led to coarser and less frequent β-NiAl precipitates with 

a wider size distribution. 

The isoconcentration surfaces were also used to separate the atoms belonging to each phase 

into separate datasets for comparison of the precipitate chemistry. Regions with >6 at.% Mo and 
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>35 at.% Ni were used to extract only the atoms within the centre of the Laves phase and β-NiAl 

particles, respectively. To obtain the matrix composition, regions with <2.5 at.% Mo and <15 at.% 

Ni were isolated. By extracting each into isolated datasets phase without the overlapping 

interfacial regions, each could then be separately analysed. This is important as a significant peak 

overlap exists in the mass spectrum for this material at 27 Da, which can correspond to the +1 

charge state of 27Al as well as the +2 charge state of the 54Fe isotope, as discussed further in [33]. 

Due to the very segregated nature of Al in this maraging steel after ageing, in the β-NiAl 

precipitates the 27 Da peak was made up almost entirely by 27Al1+, whilst within the matrix this 

peak was dominated by 54Fe2+. Although this peak overlap can be deconvoluted by IVAS based 

on the other isotopes present, this can only be done globally, and the fact that Al has only a single 

isotope makes the deconvolution challenging. By extracting the β-NiAl particles and matrix to 

separate datasets, the deconvolution can be applied to each region separately, which obtains far 

more reliable chemical compositions of the different constituent phases in this alloy. 

Table 5 gives the chemical composition for the matrix after various heat treatment conditions. 

The compositions of the matrix after HT1A and HT3A are very similar to the initial bulk 

composition given in Table 1. After ageing, due to the precipitation of the intermetallic phases, 

the martensite matrix sees substantial depletion of Ni, Al, Mo and W whilst Co and Cr 

concentrations show little change. 

 

Table 5 Matrix composition after various heat treatments obtained by APT (in at.%); error 

represents the weighted standard deviation among multiple APT samples. 

Heat 

Treatment 
Fe Cr Co Ni Al Mo W 

HT1A  

(Aust. Only) 
68.8±0.5 10.8±0.1 7.7±0.2 6.5±0.5 3.6±0.1 1.5±0.2 0.6±0.1 

HT3A  

(Aust. Only) 
69.5±0.5 10.8±0.1 7.6±0.1 6.0±0.2 4.0±0.7 1.6±0.1 0.6±0.2 

HT1AA 

(Aust.+Aged) 
77.2±1.5 10.7±0.8 7.2±0.8 2.5±0.7 1.6±1.0 0.6±0.2 0.1±0.1 

HT3AA 

(Aust.+Aged) 
77.3±2.9 10.6±1.4 7.5±0.4 2.5±0.8 1.1±0.1 0.8±0.3 0.2±0.1 

 

Table 6 summarises the composition of the primary Laves phase in the unaged HT1 sample 

and the secondary ones in aged HT1 and HT3 materials. The W content of the primary Laves 

phase precipitate formed during austenisation at 825 °C is significantly higher than that of the 

secondary precipitates formed during ageing at 540 / 560 °C. Furthermore, the Cr and Ni contents 
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of the primary Laves phase precipitate are substantially lower than those of the secondary ones. 

All these observations are in good agreement with the predicted composition of Laves phase as a 

function of temperature shown in Figure 1(b). The only contradiction is the Mo content, where 

prediction suggests higher values in the secondary Laves phase formed at lower temperatures; 

however, the measured Mo content is higher in the primary one. This could be due to limited 

sampling by the APT method as the size of the primary Laves phase precipitate (with an ECD of 

137 nm) could be bigger than an APT sample. For the secondary Laves phase precipitates formed 

after HT1AA and HT3AA, the compositions are very similar to each other, and also consistent 

with the predictions made by MatCalc with MC_Fe_2.009 database shown in Figure 1(b). 

 

Table 6 Compositions of the Laves phase precipitates (in at.%); error represents the weighted 

standard deviation among multiple APT samples. 

Heat Treatment Fe Cr Co Ni Al Mo W Si 

HT1A Aust. Only 

(Primary) * 
44.9 10.9 5.1 1.4 0.6 21.0 14.8 1.0 

HT1AA Aust.+Aged 

(Secondary) 
43.8±2.3 21.1±0.9 5.6±0.7 4.1±1.8 0.6±0.4 16.6±0.6 6.5±2.3 1.4±0.4 

HT3AA Aust.+Aged 

(Secondary) 
42.1±6.2 22.3±3.0 6.0±0.5 3.5±0.8 0.4±0.2 17.1±6.1 6.4±4.0 1.1±0.1 

* For material subjected to HT1A, only one out three APT samples contained part of a primary Laves phase 

precipitate, therefore the measurement uncertainty cannot be estimated. 

 

Similarly, the compositions of β-NiAl precipitate formed during ageing (presented in Table 7) 

are broadly similar between the two heat treatments, with roughly equal atomic concentrations of 

Ni and Fe as well as slightly higher percentages of Al. However, some discrepancies are observed 

between the measured composition of β-NiAl and the predicted ones shown in Figure 1(c), as the 

MatCalc calculation indicates a β-NiAl composition of ~50 at.% Ni, 30 at.% Al and 20 at.% Fe 

between 540 °C and 560 °C. Further discussions on the compositions of precipitates are 

presented in Section 4.1. 

 

Table 7 Comparison of the β-NiAl particle composition after the two ageing treatments obtained 

by APT (in at.%); error represents the weighted standard deviation among multiple APT samples. 

Heat Treatment Fe Cr Co Ni Al Mo W 

HT1AA 

(Aust.+Aged) 
25.1±3.9 3.4±0.2 4.5±0.3 30.0±6.0 36.3±7.1 0.3±0.2 0.1±0.1 

HT3AA 28.0±1.9 4.3±0.7 4.1±0.5 26.3±8.1 36.0±7.9 0.5±0.12 0.2±0.1 
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(Aust.+Aged) 

 

The key observations from the compositional information in Table 5 to Table 7 and the 

morphological analysis in Table 4 show that whilst the chemical compositions of the precipitation 

phases as well as the martensitic matrix are insensitive to the 20 °C difference of the ageing 

temperatures between HT1 and HT3, the APT analysis clearly indicates significant differences in 

the size and spatial distribution of the β-NiAl particles as a result of the 20 °C difference. The β-

NiAl are larger and spaced further apart in the HT1AA sample, and less numerous; whilst the β-

NiAl particles after HT3AA are smaller and much more numerous. 

4. Discussion 

4.1 The composition and distribution of precipitation phases 

For the secondary Laves phase precipitates formed during ageing, the measured compositions 

(see Table 6) can be roughly expressed as 43Fe-22Cr-6Co-4Ni-17Mo-6.5W-1Si-0.5Al (at.%), 

which is in reasonable agreement with the equilibrium composition predicted by MatCalc. The 

measured ratio of atomic concentrations between Fe+Cr and Mo+W is 2.77, whilst the predicted 

value is ~2.6. Albeit both are higher than the stoichiometric value of 2, these values are well 

within the reported range between 2.36 to 2.88 for Laves phase precipitates formed during creep 

testing at 650 °C in a Co (3 wt.% ) modified P911-type steel [34]. Among the major constituent 

elements, the differences between the measured and predicted concentrations of Mo and W are 

less than 0.5 at.% and 2 at.%, respectively; whilst the measured Fe content is ~9 at.% higher and 

the measured Cr content is ~6.5 at.% lower than predicted equilibrium values. For minor 

constituent elements of the Laves phase, the measured Ni content is ~4 at.% which is about half 

of the predicted level of 8 at.%; furthermore, around 6 at.% of Co was found in the secondary 

Laves phase precipitates which was not predicted by the thermodynamics calculation using the 

MC_Fe_2.009 database. 

The observed differences between measured and predicted compositions could simply be due 

to equilibrium state not being reached for the Laves phase precipitate after ageing for 5 hours. A 

TCP R-phase is believed to be metastable and precede the precipitation of the C14 Laves phase 

[35]. Work on a Fe-10Cr-1.4W-4.5Co (at.%) steel showed the presence of R-phase after ageing at 

600 °C for 1000 hours [36]. A detailed study [37] of the R-phase composition in maraging steels 

of the Fe-Cr-Ni-Co-Mo system showed that although the concentrations of elements in R-phase 

precipitates vary with base steel composition and ageing conditions, the overall atomic ratio is 



26 

 

centred around 40Fe-20Cr-7Co-3Ni-30Mo (at.%), which is quite similar to the composition of 

the secondary Laves phase precipitates measured in the present study. Therefore, it is possible 

that after ageing for 5 hours, some metastable R-phase precipitate could be present in this 

maraging steel among the Laves phase, which contributed to the deviations from the equilibrium 

compositions. 

In addition, more than 1 at.% of Si was found in the secondary Laves phase precipitates in the 

current work. Interestingly, various previous studies [21, 38-40] have showed the important role 

played by Si in accelerating the precipitation kinetics of Laves phase particles in 9-12% Cr steels. 

Significant concentrations of Si were reported in the Laves phase precipitates found in these 

studies. For example, Aghajani et al. [39] reported an average of 7 at.% of Si in Laves phase 

particles in a 12% Cr martensitic steel containing only 0.15 wt.% of Si in bulk. As Si is an 

impurity in the maraging steel studied in this work with bulk concentration < 0.05 wt.%, the 

presence of >1 at.% Si in the vast majority of these precipitates reaffirms the predominant 

presence of Laves phase. Furthermore, Hosoi et al. [40] showed that decreasing Si content from 

0.29 to 0.008 wt.% increases the time required to form Laves phase by a factor of almost 100 at 

600 °C (values taken from Fig. 9 of Ref. [40]) for 9Cr-2Mo steels. Similarly, the very low Si 

content in the current steel probably contributed to the slow precipitation kinetics of secondary 

Laves phase precipitates leading to the observed deviations from predicted equilibrium 

compositions. 

For β-NiAl, precipitates which were formed solely after ageing heat treatment at 540 °C and 

560 °C, the following points are observed for the measured composition (see Table 7): (i) Al is 

~5 at.% higher, (ii) Ni is 18-22 at.% lower, (iii) Fe is 4-8 at.% higher than the predicted 

equilibrium values and (iv) the presence of Cr, Mo W and Co which were not predicted by 

MatCalc with MC_Fe_2.009. One possible explanation for the observed discrepancies is that 

similar to secondary Laves phase, after ageing for 5 hours the equilibrium composition of β-NiAl 

had not been reached. Studies on β-NiAl in C-free PH13-8Mo steel [14], low carbon Alloy1014 

steel [41] and a medium carbon secondary hardening steel [42] all found that with increasing 

ageing time, the concentrations of Ni and Al increased whilst the Fe content decreased. 

Therefore, it is possible for the current steel with increasing ageing time, the Ni and Fe content 

could converge towards predicted equilibrium values. Admittedly, this will probably lead to even 

higher Al concentration in β-NiAl than predictions. Furthermore, Cr, Mo and/or Co were also 

found to be soluble in the β-NiAl precipitates in different steel systems [14, 32, 42]. These 

observations all suggest that the precipitation chemistry of β-NiAl is more complex than simple 



27 

 

thermodynamics based calculation predicts. The actual alloy compositions, especially the 

variation of the martensitic matrix composition prior to the ageing heat treatment due to the 

precipitation of primary Laves phase during austenisation in HT1, could affect the precipitation 

behaviour of β-NiAl as well. Nevertheless, comparing the β-NiAl precipitates formed after HT1 

and HT3, the differences are small. 

Conversely, the different ageing temperatures had significant effects on the spatial 

distribution characteristics of the β-NiAl precipitates as shown in Table 4. The measured mean is 

~30% smaller after ageing at the lower temperature of 540 °C in HT3AA, whilst the estimated 

volume fraction is ~30% higher. The effects on precipitation number density and inter-particle 

spacing are even more profound, with the number density being >200% higher and the inter-

particle spacing being ~45% lower after HT3AA when compared to those values after HT1AA. 

For HT1AA, the estimated volume fraction (12.1 vol.%) of β-NiAl by APT is in good agreement 

with that predicted by MatCalc (10.9 vol.%), as shown in Figure 1(d). For HT3AA, the difference 

between the 15.7 vol.% from APT and predicted 10.8 vol.% by MatCalc is noticeably bigger. 

The volume fraction derived by the lever rule method for the primary Laves phase after 

HT1A is 1.6 vol.%, which is lower than the 2.5 vol.% predicted by MatCalc. For the smaller 

secondary Laves phase precipitates, the volume fractions derived by APT (6.4 vol.% after 

HT1AA and 6.8 vol.% after HT3AA) are also slightly lower than the predicted values by 

MatCalc (8.6% and 8.5%, respectively). Interestingly, the mean size and volume fraction of the 

secondary Laves phase precipitates after HT1AA are both slightly lower than those after HT3AA 

despite the fact that the ageing temperature (560 °C) of HT1AA is 20 °C higher than that of 

HT3AA (540 °C). 

In summary, whilst the 20 °C difference of ageing temperatures did not show strong impact 

on the chemical compositions of the β-NiAl precipitates, it did exert strong influence on the 

spatial distribution characteristics of the β-NiAl particles. For the Laves phase, the 20 °C 

difference had negligible effect on both the chemical composition and spatial distribution of the 

secondary Laves phase precipitates. The subsequent influences on mechanical properties are 

discussed in the next section. 

4.2 Effect of heat treatment on mechanical properties 

The basic factors contributing to the room temperature yield strength for martensitic steels are 

solid solution strengthening, dislocation strengthening, sub-boundary strengthening, and 

precipitation strengthening [43]. As the extent of solid solution strengthening, dislocation 
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strengthening and sub-boundary strengthening are not expected to differ significantly in materials 

after HT1AA and HT3AA, the focus of the discussion is placed on the factor that could be 

affected by the different heat treatments, i.e. the precipitation strengthening mechanism. 

For coherent precipitates, depending on the size, the contribution to the increases of yield 

strength is achieved through either the Orowan dislocation bypassing (looping) or particle cutting 

(shearing) mechanisms [44]. The critical radius rcrit of the precipitate above which the 

strengthening mechanism switches from particle shearing to Orowan looping is generally 

believed to be only a few nanometres [45]. For the β-NiAl precipitates in PH13-8Mo steel, 

rcrit=3.8 nm (or dcrit=7.6 nm) is obtained through the best reproduction of experimental yield 

strength trend by thermo-kinetic simulation [46]. Most of the β-NiAl precipitates after both HT1 

and HT3 in this steel are smaller than the critical size of dcrit=7.6 nm (see Figure 17). Therefore, 

the contribution from β-NiAl precipitates to yield strength is predominately by particle shearing 

mechanism. Conversely, for the incoherent secondary Laves phase precipitates, the size 

distributions shown in Figure 14 indicate that the majority of the particles have diameters greater 

10 nm with mean dceq approaching 20 nm. Therefore, Orowan looping is believed to be the 

operating strengthening mechanism. 

For the shearing mechanism, three main factors contributing to the increase of yield strength 

are coherency strengthening (Δσcoherency), order strengthening (Δσorder) and modulus mismatch 

strengthening (Δσmodulus) [47].  

First, the stress field associated with the misfit strain between the coherent precipitates and 

matrix interacts with the stress field of dislocations giving rise to coherency strengthening 

expressed as [48] 

𝛥𝜎𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 = 𝑀𝜒(𝜀𝐺)
3

2(
𝑟𝑓𝑏

Γ
)

1

2 (4) 

where M=2.9 is the Taylor factor for BCC metals in tension; 𝜒 is a constant with a value of 2.6; 

G=77 GPa is the shear modulus of the ferrite matrix [49], r is the mean radius of the precipitates, 

b≈0.25 nm is the magnitude of the Burgers vector in the ferrite matrix, f is the volume fraction of  

the precipitates, Γ ≈ 𝐺𝑏2/2 is the dislocation line tension, 𝜀 is the lattice mismatch parameter 

defined as 𝜀 = |
𝑎𝑝−𝑎𝑚

𝑎𝑚
| [

1+2𝐺(1−2𝜈𝑝)

𝐺𝑝(1+𝜈𝑝)
] in which 𝑎𝑝=0.289 nm and 𝑎𝑚=0.286 nm are the lattice 

parameters of the β-NiAl precipitate and ferrite matrix, 𝐺𝑝=73 GPa and 𝜈𝑝=0.31 are the shear 

modulus and Poisson's ratio of the β-NiAl precipitate [50]. 
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Second, when dislocations cut through the ordered β-NiAl precipitates, anti-phase boundaries 

(APBs) with specific energies are created leading to the order strengthening effect. Adopting a 

simple yet common assumption that the fine precipitates are cut by weakly coupled pairs of 

dislocations with the trailing one remaining straight whilst the leading one bows out, the order 

strengthening (Δσorder) can be described as [48]:  

𝛥𝜎𝑜𝑟𝑑𝑒𝑟 = 0.81𝑀
𝛾𝐴𝑃𝐵

2𝑏
[(

3𝜋𝑓

8
)

1

2 − 𝑓] (5) 

where 𝛾𝐴𝑃𝐵 is the APB energy of the precipitate phase and other parameters are the same as those 

defined in Equations (4). The reported values of 1/2<111>{110} APB energy in single crystal 

NiAl showed wide variation, ranging from 200±40 mJ·m-2 [51] to 800±40 mJ·m-2 [52]. A more 

recent review by Noebe et al. [50] compared experimental work by weak beam TEM with 

theoretical calculations and concluded that APB energy in NiAl should have a value towards the 

higher end of this range with 𝛾𝐴𝑃𝐵 of 1/2<111>{110} of at least 500 mJ·m-2. The value of 𝛾𝐴𝑃𝐵 =

500 mJ·m-2 was also used in recent work as the APB energy of β-NiAl precipitates in steels [19, 

46]. Therefore, the same value is adopted in the current study.  

Third, as a dislocation moves from the matrix into a particle of different shear modulus, there 

is a change in dislocation energy giving rise to the modulus mismatch strengthening effect. There 

are a number of theoretical approaches proposed by different researchers. For example, the 

Russell-Brown [53] model has been used in recent studies [19, 54] to calculate 𝛥𝜎𝑚𝑜𝑑𝑢𝑙𝑢𝑠 caused 

by Cu and β-NiAl precipitates in steels for its simplicity. However, this approach requires the 

estimates of mean particle interspacing L which may be subject to considerable error; possibly as 

much as 50 % according to Russell and Brown [53]. Conversely, the Melander-Persson [55] 

approach, which have been used to quantify 𝛥𝜎𝑚𝑜𝑑𝑢𝑙𝑢𝑠  in precipitate strengthened aluminium 

alloys [47, 56], does not require the estimated value of L according to the following expression: 

𝛥𝜎𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = 0.0055𝑀(𝛥𝐺)
3

2(
𝑓

Γ
)

1

2𝑏(
𝑟

𝑏
)

3𝑚

2
−1

 (6) 

where m=0.85 is a constant, 𝛥𝐺 is difference of the shear modulus between the ferrite matrix 

(G=77 GPa) and the β–NiAl (Gp=73 GPa), and other parameters are the same as defined in 

Equation (4). Considering the difficulty to accurately determine the mean interspacing between β-

NiAl precipitates, it is believed that the Melander-Persson approach is more appropriate to 

estimate the modulus strengthening effect of β–NiAl. 

Finally, for the Orowan looping mechanism, the yield strength increment (ΔσOrowan) is given 

as [56]: 
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𝛥𝜎𝑂𝑟𝑜𝑤𝑎𝑛 = 𝑀
0.4𝐺𝑏

𝜋√1 − 𝜈
 
1

𝐿
ln (

2𝑟𝑠

𝑏
) (7) 

where ν≈0.3 is the Poisson’s ratio of the matrix and L is mean inter-precipitate distance, 

𝑟𝑠=(2/3)1/2𝑟 is the mean radius in the glide plane, other parameters are the same as the ones in 

Equation (5). 

Using Equations (4) to (7) and the spatial distribution characteristics of the precipitates listed 

in Table 4, the contributions to yield strength from β-NiAl and secondary Laves phase 

precipitates after HT1 and HT3 by various strengthening mechanisms can be estimated and listed 

in Table 8.  

 

Table 8 Estimated contributions to yield strength from different precipitates after HT1 and HT3 

by various strengthening mechanisms, all unit in MPa. 

Heat 

Treatment 
β-NiAl 

Laves 

phase 

Total 

𝛥𝜎𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 𝛥𝜎𝑜𝑟𝑑𝑒𝑟 𝛥𝜎𝑚𝑜𝑑𝑢𝑙𝑢𝑠 Sub total 𝛥𝜎𝑂𝑟𝑜𝑤𝑎𝑛  

HT1 53 603 46 702 199 901 

HT3 52 641 53 746 201 947 

 

The strengthening provided by β-NiAl precipitates to YS is in the range of 700 MPa, which is 

about 3.5 times of the contribution (~200 MPa) from the Laves phase. The different spatial 

distribution of precipitation phases due to the different heat treatment conditions between HT1 

and HT3 contributed to a total difference of ~46 MPa. This is about half of the observed 93 MPa 

(see Table 3) difference in YS. In general, the effect of different heat treatment used in this study 

on YS of the maraging steel is very limited. However, the heat treatment effect on tensile 

ductility and fracture behaviour is significant (see Table 3 and Figure 3). This effect is believed to 

be predominately the result of the different volume fractions of β-NiAl precipitates after HT1 

(~12%) and HT3 (~16%). Recent studies [31, 32, 57] on a series of β-NiAl strengthened ferritic 

steels showed that the two major factors governing the ductility are (i) the volume fraction of β-

NiAl and (ii) the Al content in the α-Fe matrix. It has been shown that when the volume fraction 

of β-NiAl decreased from 13.6 % to 7.3 %, the bending ductility increased dramatically from 1.5 

% to 5 % [31] accompanied by a possible change of the fracture mode from distinctive brittle 

cleavage to a mixture with substantial ductile fractures [32]. These behaviours are very similar to 

the observed differences between HT1 and HT3 in this study. As the Al content in the matrix 
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after the ageing heat treatment is very similar between HT1 and HT3 (see Table 5), it is not 

considered as a major contribution factor to the observed difference in tensile ductility. 

The outstanding heat resistance performance of this steel achieved by the unique combination 

of β-NiAl and Laves phase precipitates is clearly demonstrated in Figure 5. In comparison, heat 

resistant steels strengthened mainly by β-NiAl phase, such as the well reported ‘FBB-8’ family 

[18, 58, 59], had a YS of about 600 MPa at 500 °C [60], which is well below the applied stress 

(700 MPa) in the creep tests at the same temperature in the current study. Similarly, 15Cr ferritic 

heat resistant steels that are primarily strengthened by Laves phase showed an UTS of ~600 MPa  

at 500 °C [61]. In contrast, the YS and UTS of the maraging steel in this study are in the range of 

1100 MPa and 1400 MPa, respectively. 

The impact of different heat treatments on creep performance of this steel is also significant 

as shown in Figure 5. According to Abe [43], for 9Cr (wt.%) tempered martensitic steels, the 

transient creep, i.e. the linear decrease of creep rate during the early stage in creep testing, is 

basically the consequence of the movement and annihilation of dislocations; meanwhile, the 

onset of accelerated creep is closely associated with the migration of boundaries, i.e. the 

microstructure instability. For HT1 and HT2, the onset of accelerated creep is very early, only 

10-20 hours into creep testing; whilst for HT3 the transient creep lasted to ~1,000 hours before 

the onset of accelerated creep. As extensive fine and continuous Laves phase precipitates are 

found along lath boundaries after ageing (e.g. see Figure 13), the lath boundaries were essentially 

immobilised. Instead, in the maraging steel of this study, cavitation is believed to be the dominant 

creep failure mechanisms. Indeed, TEM examination of fractured creep samples after both HT1 

and HT3 found extensive cavities in the microstructure particularly at Y-junction of lath 

boundaries, triple junction of PAGBs and most importantly between primarily Laves phase 

particles and matrix [62]. On the other hand, no apparent difference was observed between HT1 

and HT3 after interrupted creep testing to 0.5% creep strain [62]. These observations suggest that 

the large primary Laves phase particles formed during austenisation at lower temperatures are 

detrimental to creep rupture life in this maraging steel, especially those found on PAGB. This is 

also supported by the distinctly different creep fracture surfaces shown in Figure 6, with HT1 

showing characteristic intergranular fracture whilst HT3 exhibiting predominantly microvoid 

coalescence. 
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5. Conclusions 

A novel ultra-high strength maraging steel was developed utilising nanostructured 

intermetallic precipitates of β-NiAl and Laves phase. With different heat treatment, this steel 

showed a remarkable combination of mechanical properties:  yield strength of >1800 MPa, 

ultimate tensile strength of ~ 2000 MPa, tensile ductility up to ~8% at room temperature and 

creep rupture life > 2,000 hours under 700 MPa stress at 500 °C. By characterising the 

microstructures at different length scales using optical metallography, SEM/EBSD, TEM and 

atom probe tomography, insights were obtained to understand better the effect of heat treatment 

conditions on the microstructure development in this steel to achieve more balanced strength, 

ductility and creep life. 

The following conclusions can be made:  

(i) Large primary Mo, W and Cr rich Laves phase precipitates were formed at PAGBs 

and planner defects within PAGs during austenisation at temperatures below the Laves 

phase solvus. The primary Laves phase precipitates were believed to be detrimental to 

the creep rupture life of this steel. 

(ii) The 20 °C difference between ageing at lower temperature of 540 °C and higher 

temperature of 560 °C had negligible effect on the secondary Laves phase precipitates 

in terms of both chemical compositions and spatial distribution characteristics.  

(iii) Whilst the chemical composition of the β-NiAl precipitates was not strongly affected 

by the different ageing temperatures, its spatial distribution characteristics were 

significantly affected. Ageing at the lower temperature of 540 °C produced much 

smaller β-NiAl precipitates with higher number density and volume fraction compared 

to ageing at 560 °C for the same duration of 5 hours. 

(iv) The main strengthening mechanism provided by secondary Laves phase precipitates is 

Orowan looping whilst β-NiAl precipitates provide strengthening by particle shearing. 

The contribution to yield strength from β-NiAl precipitates is estimated to be ~3.5 

times of that from the secondary Laves phase ones. However, the secondary Laves 

phase precipitates on martensitic lath boundaries are believed to be important for the 

creep life by degreasing the mobility of these boundaries. 

(v) For complex alloying system in this novel steel, careful design of heat treatment aided 

by computational thermodynamics method is still required to achieve balanced 

mechanical properties that can meet stringent service requirements in aerospace 

propulsion system. 
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