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Abstract

Background: Small RNAs generated by RNA polymerase IV (Pol IV) are the most abundant class of small RNAs in flowering
plants. In Arabidopsis thaliana Pol IV-dependent short interfering (p4-si)RNAs are imprinted and accumulate specifically from
maternal chromosomes in the developing seeds. Imprinted expression of protein-coding genes is controlled by differential
DNA or histone methylation placed in gametes. To identify epigenetic factors required for maternal-specific expression of
p4-siRNAs we analyzed the effect of a series of candidate mutations, including those required for genomic imprinting of
protein-coding genes, on uniparental expression of a representative p4-siRNA locus.

Results: Paternal alleles of imprinted genes are marked by DNA or histone methylation placed by DNA
METHYLTRANSFERASE 1 or the Polycomb Repressive Complex 2. Here we demonstrate that repression of paternal p4-
siRNA expression at locus 08002 is not controlled by either of these mechanisms. Similarly, loss of several chromatin
modification enzymes, including a histone acetyltransferase, a histone methyltransferase, and two nucleosome remodeling
proteins, does not affect maternal expression of locus 08002. Maternal alleles of imprinted genes are hypomethylated by
DEMETER DNA glycosylase, yet expression of p4-siRNAs occurs irrespective of demethylation by DEMETER or related
glycosylases.

Conclusions: Differential DNA methylation and other chromatin modifications associated with epigenetic silencing are not
required for maternal-specific expression of p4-siRNAs at locus 08002. These data indicate that there is an as yet unknown
epigenetic mechanism causing maternal-specific p4-siRNA expression that is distinct from the well-characterized
mechanisms associated with DNA methylation or the Polycomb Repressive Complex 2.
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Introduction

Mendelian laws of inheritance state that a genetic element

behaves identically when transmitted through maternal or

paternal gametes. Genetic elements that break this law by

exhibiting preferential or exclusive expression when inherited

from one parent are genomically imprinted. Genomic imprinting

is well described only in placental mammals and flowering plants,

although a number of parent-of-origin-dependent effects are

observed in other organisms [1,2,3,4,5].

Flowering plants are characterized by double fertilization,

whereby two identical haploid sperm cells in the pollen grain

fertilize two cells in the female gametophyte. Fertilization of the

haploid egg cell generates the diploid embryo while fertilization of

the diploid central cell generates the triploid endosperm. The

endosperm is functionally analogous to mammalian placenta,

acting as a conduit between maternal somatic tissues and the

growing embryo but not contributing genetically to the next

generation. Endosperm makes up the bulk of grains such as rice,

wheat, and maize, making it a critical tissue for human nutrition.

With a single exception in maize [6], all characterized imprinted

genes in plants display uniparental expression specifically in the

endosperm and some imprinted genes affect the growth and

development of this tissue [7,8].

In plants, imprinted genes are associated with hypomethylated

maternal DNA regardless of which allele is expressed. In

Arabidopsis thaliana differential DNA methylation is established by

the opposing actions of DNA METHYLTRANSFERASE 1

(MET1) in the paternal gametophyte and the DNA glycosylase

DEMETER (DME) in the central cell of the female gametophyte

[9,10]. Loss of paternal DNA methylation through mutation of

MET1 activates the normally silent paternal allele of FLOWERING

WAGENINGEN (FWA), FERTILIZATION INDEPENDENT EN-

DOPSERM 2 (FIS2) and MATERNALLY EXPRESSED PAB C-
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TERMINAL (MPC), and reduces expression of the paternal-specific

imprinted gene PHERES (PHE) [11,12,13,14]. Similarly, loss of

DME activity inhibits the maternal expression of at least FIS2 and

MPC [13,15], and ectopic expression of DME outside of the

central cell is sufficient to induce expression of another maternal-

specific gene, MEDEA (MEA) [16]. These observations demon-

strate the importance of DNA methylation patterns in the

expression of imprinted genes.

Over 125 genes in Arabidopsis are imprinted [17]. In contrast,

thousands of intergenic regions producing RNA Polymerase IV-

dependent small interfering (p4-si) RNAs are maternally expressed

in the developing seed [18]. Many p4-siRNAs are produced from

transposable elements, but others coincide with imprinted genes

such as FWA, MPC, and MEA [19,20] indicating that there may be

a connection between parent-of-origin specific expression of

protein-coding genes and non-coding RNAs. Recent genome-

wide analyses of DNA methylation in the endosperm further

support this connection between p4-siRNA expression and

imprinting of genes because maternal chromosomes undergo

extensive DME-mediated DNA demethylation at regions of p4-

siRNA production [21,22]. A plausible scenario was that p4-

siRNAs and imprinted genes might be coordinately regulated by

DME and MET1.

To examine the mechanism of p4-siRNA imprinting we

investigated the genetic requirements for maternal expression and

paternal silencing of p4-siRNAs at a representative locus. Here we

show that differential DNA methylation does not explain unipa-

rental expression of p4-siRNAs at locus 08002 and that various

histone modifications, including Histone H3 Lysine 27 methylation

(H3K27me), do not establish maternal-specific expression at this

site. Furthermore, demethylation of maternal chromosomes by

DME is dispensable for p4-siRNA expression in the endosperm.

Results

Loss of DNA methylation does not alter uniparental p4-
siRNA expression in endosperm

Loss of DNA METHYLTRANSFERASE 1 (MET1) does not

alter maternal-specific expression of p4-siRNAs at locus 08002 in

Arabidopsis endosperm [18]. MET1 is the primary methyltransfer-

ase in Arabidopsis and is responsible for maintenance of CG

dinucleotide methylation [23]. Methylation at CHG sites (where H

is A, T, or C) is performed by CHROMOMETHYLTRANS-

FERASE 3 (CMT3) and asymmetric methylation (at CHH sites) is

placed by DOMAINS REARRANGED METHYLTRAN-

FERASES (DRM1 and DRM2) [23]. To determine whether

non-CG DNA methylation represses paternal p4-siRNA alleles or

induces expression of maternal alleles, we crossed cmt3 or drm

mutants and wild-type plants of a differing ecotype. Five days after

fertilization, when p4-siRNA accumulation is highest, we extracted

RNA from crossed fruits and performed allele-specific northern

blots to determine the parental origin of p4-siRNAs at locus 08002

(figure 1). Demethylation of the pollen donor was insufficient to

induce paternal locus 08002 p4-siRNA accumulation, indicating

that CHG and CHH methylation do not repress paternal

expression of p4-siRNAs. In reciprocal crosses, no change in

locus 08002 p4-siRNA accumulation was detected, indicating that

non-CG methylation is not required for maternal p4-siRNA

expression.

To determine whether CHG and CHH methylation might act

redundantly to repress expression, as occurs at SUPPRESSOR OF

drm1 drm2 cmt3 [24], we also used the drm1 drm2 cmt3 triple mutant

(ddc) as maternal or paternal parent in inter-ecotype crosses.

Maternal-specific expression of locus 08002 p4-siRNAs was

maintained even when the pollen donor lacked both CHG and

CHH methylation (figure 1). These results indicate that differential

DNA methylation is not responsible for maternal-specific accu-

mulation of p4-siRNAs at locus 08002 although we have not ruled

out that MET1 acts redundantly with either CMT3 or DRM

proteins.

Various chromatin modifications do not affect p4-siRNA
expression

The Arabidopsis gene MEDEA (MEA) is exceptional because,

unlike other imprinted genes, paternal expression is not repressed

by MET1-mediated DNA methylation, but rather by histone H3

lysine 27 methylation (H3K27me) placed by the Polycomb

Repressive Complex 2 (PRC2). Loss of PRC2 in the pollen or

female gametophyte triggers biparental expression of MEA in

developing endosperm [12]. To investigate the role of PRC2 in

uniparental expression at locus 08002, we performed crosses as

above with the PRC2 mutation fertilization independent endosperm (fie).

FIE is the only Extra Sex Combs homolog in Arabidopsis and this

mutation lacks all potential PRC2 complexes [7]. When fie is

transmitted through pollen (from a heterozygous pollen donor)

paternal MEA accumulates in the developing seeds [12]. However,

biparental expression of locus 08002 p4-siRNAs was not detected

when this mutation was present in the paternal lineage (figure 2).

To determine if other chromatin modifications might repress

paternal expression of p4-siRNAs at locus 08002, we tested several

candidate genes as above. HISTONE DEACETYLASE 6 (HDA6) is

associated with silencing of transposable elements [25] and rDNA

repeats [26,27]. KRYPTONITE (KYP) encodes a histone methyl-

transferase that catalyzes dimethylation at lysine 9 of histone H3

(H3K9me), the canonical mark of silent chromatin [28]. DE-

CREASE IN DNA METHYLATION 1 (DDM1) and MORPHEUS’

Figure 1. Loss of methylation does not induce biparental p4-
siRNA production in endosperm. Small RNAs were isolated from
inter-ecotype crosses between wild type and DNA methyltransferase
mutants at 5 days after fertilization; maternal parent is listed first for all
crosses. Parental origin of small RNA was determined with allele-specific
small RNA probes (08002.Col and 08002.Ler). 08002.L1 hybridizes to
small RNAs from both alleles and is a control for small RNA production
at this locus; tRNAmet is a loading control. Small RNAs were detected
specifically from maternal alleles in crosses between the wild-type
ecotypes Columbia-0 (Col) and Landsberg erecta (Ler). Demethylation of
the paternal genome through the mutations dna methyltransferase 1
(met1), chromomethyltranserase 3 (cmt3), and domains rearranged
methyltransferases 1 and 2 (drm) was not sufficient to trigger
accumulation of paternal p4-siRNAs. Furthermore, loss of all non-CG
methylation in the triple mutant drm1 drm2 cmt3 (ddc) was insufficient
to trigger paternal p4-siRNA accumulation.
doi:10.1371/journal.pone.0025756.g001

Genomic Imprinting of Pol IV-Dependent siRNAs
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MOLECULE 1 (MOM1) have similarity to SWI2/SNF2 ATPases

and encode presumed nucleosome remodeling proteins. Mutations

in DDM1 eliminate DNA methylation and transcriptional silencing

from transposable elements [25,29], while loss of MOM1 causes

transcriptional reactivation of transgenes and repeated sequences

without changes in DNA methylation [30,31]. These factors were

not necessary for either paternal repression or maternal expression

of locus 08002 p4-siRNAs in the endosperm (figure 2).

DEMETER-family glycosylases are neither sufficient nor
necessary to induce p4-siRNA expression

Loci generating p4-siRNAs undergo extensive DME-mediated

DNA demethylation in the central cell, leading to differential

methylation in endosperm [21,22]. Demethylation by DME is

required for expression of MEA, FWA, and FIS2 [10,11,15], and

partially required for expression of MPC [13]. DME expression is

also sufficient for expression of at least MEA, as ectopic expression

of DME triggers MEA accumulation in vegetative tissue and from

paternal alleles [16]. DME is part of a small family of glycosylases

in Arabidopsis including REPRESSOR OF SILENCING (ROS1),

a protein implicated in maintaining the expression of transgenes

[32], and two related proteins, DEMETER-LIKE 2 (DML2) AND

DEMETER-LIKE 3 (DML3) [33].

To determine whether demethylation by DME or its relatives is

involved in maternal expression of p4-siRNAs, we first assayed p4-

siRNA expression in transgenic lines overexpressing each

glycosylase behind the nearly constitutive 35S promoter (figure 3,

figure S1) [16,34]. Independent transgenic lines did not display

ectopic expression of type I p4-siRNAs, which are normally

restricted to endosperm, nor did they enhance expression of type

II p4-siRNAs, which accumulate vegetatively [18]. These

observations indicate that demethylation by DME or its relatives

are not sufficient to trigger p4-siRNA expression.

To determine whether demethylation acts in conjunction with

endosperm-specific factors to trigger expression of p4-siRNAs, we

next crossed DME family overexpression lines to wild-type plants

of a different ecotype and determined parental origin of locus

08002 p4-siRNAs at 5 days after fertilization. If demethylation is

required for expression, crosses generated with the transgenic lines

as pollen donors should result in biallelic expression of p4-siRNAs.

Instead, strict maternal-specific expression was detected for all

crosses (figure 4), indicating that ectopic demethylation of the

paternal genome by overexpression of DME family glycosylases is

insufficient to induce paternal expression at locus 08002.

To further assess the role of DME in accumulation of p4-

siRNAs, we assayed p4-siRNA expression in dme mutant

endosperm, which is not demethylated at p4-siRNA loci [21,22].

In dme-2 heterozygotes, seeds inheriting a maternal dme allele abort

early in development while seeds inheriting a maternal DME allele

develop normally. To determine whether DME is necessary for

accumulation of p4-siRNAs from maternal chromosomes, we

dissected aborted and developed seeds from heterozygous dme-2

self-fertilized siliques during mid-embryo development (10–12

days post-fertilization). Unexpectedly, p4-siRNA accumulation in

dme seeds was higher than in wild-type siblings (figure 5). To

determine whether this was due to lack of demethylation by DME

or due to the developmental arrest of mutant seeds during an

earlier period of high p4-siRNA accumulation, we analyzed wild-

type and dme seeds from the same developmental stage. When

transmitted maternally the weaker dme-1 allele does not always

trigger seed abortion, making homozygous mutant lines possible.

Developing siliques from dme-1 and wild type were collected at 5

days post anthesis and p4-siRNA accumulation was assayed

(figure 5). dme-1 siliques display wild-type expression of p4-siRNAs,

indicating that demethylation by DME is not necessary for p4-

siRNA production from maternal chromosomes in the endosperm.

Discussion

Differential methylation of maternal and paternal DNA is

extensive in the endosperm of Arabidopsis, primarily due to

DEMETER-mediated demethylation of transposable elements in

the central cell [21,22]. Many transposable elements produce p4-

siRNAs, leading to the hypothesis that demethylation of these

elements in the endosperm causes maternal-specific production of

p4-siRNAs [22]. However, loss of DNA methylation in developing

seeds is insufficient for paternal p4-siRNA expression from the

representative p4-siRNA locus 08002 (figure 1), and loss of

maternal DNA demethylation does not eliminate p4-siRNA

expression (figure 5). We also demonstrate that several known

histone modifications, including H3K27 and H3K9 methylation,

are dispensable for paternal repression of locus 08002 (figure 2).

These data indicate an additional, as yet uncharacterized

chromatin signal affects maternal expression and paternal

repression of 08002 and possibly other p4-siRNA loci in

developing seeds.

Evidence indicates that this activating mark is established before

fertilization because p4-siRNA expression in the maternal flowers

is required for p4-siRNA expression in the developing seed [18].

Lack of p4-siRNA expression in mature pollen would restrict this

activating mark to maternal chromosomes [35]. This unidentified

mark could also be used by protein-coding genes because many

maternal-specific transcripts in the Arabidopsis seed transcriptome

identified are unaffected by loss of DNA or H3K27 methylation

[17].

We had previously concluded, based on dissection and genetic

analysis, that the activating mark would be carried on the maternal

alleles of the fertilized endosperm. This remains a plausible

explanation. However there is also the possibility that the maternal

p4-siRNAs are expressed in the maternal seed coat and

Figure 2. Assorted chromatin modifications are not required
for imprinted p4-siRNA production in endosperm. Small RNAs
were isolated from inter-ecotype crosses between wild type and a
histone modification mutant and parental origin of small RNA was
determined as described in figure 1. Accumulation of p4-siRNAs from
paternal chromosomes was not induced when the Polycomb Repres-
sive Complex 2 mutant fertilization independent endosperm (fie) was
transmitted paternally. Likewise, mutations in histone deacetylase 6
(hda6), the H3K9 methyltransferase kryptonite (kyp), and the nucleo-
some remodeling proteins decrease in dna methylation 1 (ddm1) and
morpheus’ molecule 1 (mom1) did not affect uniparental expression of
p4-siRNAs.
doi:10.1371/journal.pone.0025756.g002

Genomic Imprinting of Pol IV-Dependent siRNAs
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Figure 3. DEMETER family glycosylases are insufficient to induce vegetative expression of p4-siRNAs. Ectopic expression of the DEMETER
glycosylase behind the strong, nearly constitutive 35S promoter (35S::DME) does not cause ectopic accumulation of type I p4-siRNAs (00687, 02815,
08002, and siRNA 02) in leaves, nor does it alter expression of type II p4-siRNAs (AtRep2, Simplehat, and siRNA1003) in leaves. Similarly,
overexpression of the related glycosylases REPRESSOR OF SILENCING (35S::ROS1), DEMETER-LIKE 2 (35S::DML2), or DEMETER-LIKE 3 (35S::DML3) has no
affect on p4-siRNA expression. Two independent transgenic lines were assayed for each overexpression construct. 35S::ROS1 lines are in the C24
background [34]; all other lines are in the Col background [16].
doi:10.1371/journal.pone.0025756.g003

Figure 4. DEMETER family glycosylases do not trigger paternal expression of p4-siRNAs.Small RNAs were isolated from inter-ecotype
crosses between wild type and transgenic lines and parental origin of small RNA was determined as described in figure 1. Expression of the DEMETER
glycosylase in the male gametophyte from the strong, nearly constitutive 35S promoter (35S::DME) does not trigger paternal expression of p4-siRNAs
in endosperm. Similarly, overexpression of the related glycosylases REPRESSOR OF SILENCING (35S::ROS1), DEMETER-LIKE 2 (35S::DML2), or DEMETER-
LIKE 3 (35S::DML3) does not affect imprinted p4-siRNA expression in endosperm. Two independent transgenic lines were assayed for each
overexpression construct. 35S::ROS1 lines are in the C24 background [34]; all other lines are in the Col background [16].
doi:10.1371/journal.pone.0025756.g004
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transported into the endosperm. A formal additional possibility is

that these RNAs are present in the seed coat associated with our

dissected endosperm. However these explanations based on

sporophytic expression are only consistent with our genetic

analysis if NRPD1 activity is affected by gene dosage. Therefore

we favor the hypothesis based on specific expression from the

maternal alleles in endosperm.

Although there is significant overlap between regions of DME

demethylation and p4-siRNA expression [21,22], we have shown

that DME demethylation is not required for p4-siRNA expression at

a variety of p4-siRNA loci. Furthermore, p4-siRNA expression in

the female gametophyte is not required for DME activity because

none of the mutations that lack p4-siRNAs exhibit the seed abortion

phenotypes associated with loss of DME activity. These data lead to

the conclusion that DME-mediated DNA demethylation and p4-

siRNA expression occur independently at many genomic regions,

especially transposable elements. FWA is imprinted in Arabidopsis

halleri, most likely through the action of DME at a SINE element,

and yet A. halleri FWA lacks the tandem repeats that are required for

p4-siRNA expression in A. thaliana [19,36]. A. halleri FWA might

therefore be an example of a genomic region that has recruited

DME but not Pol IV. It is possible that DME and Pol IV have

independent roles in establishing parent-of-origin chromatin

signatures across the Arabidopsis genome.

Parent-of-origin chromatin signals might be more prevalent

than previously thought. Although imprinted expression of

endogenous protein-coding genes has only been described in

placental mammals and flowering plants, parent-of-origin phe-

nomena exist throughout the animal kingdom. Some transgenes in

the nematode Caenohabditis elegans and the zebrafish Danio rerio are

imprinted [1,5], and Drosophila melanogaster transgenes inserted near

regions of heterochromatin or within the Y chromosome are also

imprinted [2,37]. Parent-of-origin effects are not limited to

uniparental gene expression. The first published case of parental

‘‘imprints’’ is Sciarid flies, where paternal chromosomes are

eliminated from specific cell lineages [3,38]. In coccid insects the

entire paternal genome is either heterochromatinized or eliminat-

ed from somatic tissues [4], while in C. elegans the X chromosome

adopts specific histone modifications depending on the parent of

origin [39]. It seems likely that parent-of-origin chromatin

signatures are widespread throughout sexual eukaryotes, and it

will be interesting to discover what role small RNA-directed

chromatin modification might play in establishing or responding

to these signals.

Materials and Methods

Plant growth conditions and genotypes
All plants were grown under standard conditions including

16 hours of light each day. Mutant alleles were as follows.

Columbia ecotype: met1-1 [40], drm 1-2 (SALK_031705) [41],

drm2-2 (SALK_150863) [41], cmt3-11 (SALK_148381) [41], hda6-

9 (E. Havecker, C. Melnyk, and D. Baulcombe, unpublished

allele), ddm1-2 [42], mom1-2 (SALK_141293) [30], and fie (GABI

362D08); Landsberg erecta ecotype: cmt3-7 [43], and kyp-2 [28];

Wassilewskijia ecotype: drm1-1 [44] and drm2-1 [44]. The dme-1

and dme-2 mutations were isolated in Columbia and backcrossed to

Landsberg erecta [16]. The drm1 drm2 double mutant contained

drm1-1 and drm2-1; the ddc triple mutant contained drm1-2, drm2-

2, and cmt3-11. Mutations were confirmed using molecular

markers or visible phenotypes. Wassilewskijia and C24 contain

the Columbia-0 allele at locus 08002 (figure S2).

To eliminate possible self-fertilization, crosses were performed

24 hours after manual emasculation of immature flowers. For each

cross, six to ten siliques were collected 5 days after fertilization. To

determine the effect of the loss-of-function dme-2 allele, dme-2

heterozygotes were allowed to self-fertilize. The resulting seeds were

dissected 10–12 days after fertilization and divided into DME+ and

dme- based on development of the embryo. For analysis of the

weaker dme-1 allele, flowers were inspected daily and marked upon

anthesis. Siliques were collected 5 days after anthesis.

Generation of transgenic lines
Total RNA from wild-type Columbia-0 leaf tissue was used to

reverse transcribe and amplify full-length cDNAs of DML2 and

DML3 with the following primers: DML2: 59-CACCATGGAA-

GTGGAAGGTGAAGTG-39 and 59-TCATTCCTCTGTCTT-

CTCTTTAGTTCTG-39; DML3 59-CACCATGTTGACAGA-

TGGTTCACAACAC-39 and 59-CTATATATCATCATCACT-

CATAAACTTTGGCC-39. PCR products were introduced into

pENTR D-TOPO (Invitrogen) and the resulting entry vectors were

recombined into pEARLEYGATE 202 [45]. 35S::DML2 and

35S::DML3 constructs were stably transformed into wild-type

Columbia-0 using standard protocols. Generation of 35S::DME

and 35S::ROS1 are described elsewhere [16,34].

Overexpression of DME-family glycosylases was verified with

quantitative reverse transcription-PCR using QuantiFast SYBR

Green One-Step RT-PCR Kit (Qiagen) and the following primers:

Figure 5. p4-siRNA expression in endosperm does not require
DEMETER demethylation. Left side: Developing (WT) or arrested
(dme-) seeds were dissected from self-fertilized dme-2 heterozygous
fruits 10–12 days after fertilization and small RNAs were extracted. DME-
deficient seeds express p4-siRNAs at levels higher than wild type,
perhaps due to arrest at an earlier developmental stage or due to
endosperm overgrowth. Right side: RNA was extracted from wild type
and dme-1 homozygous fruits at 5 days after anthesis and small RNAs
were extracted. Mutant seeds accumulate p4-siRNAs slightly higher
than wild type seeds, perhaps due to endosperm overgrowth in mutant
seeds.
doi:10.1371/journal.pone.0025756.g005

Genomic Imprinting of Pol IV-Dependent siRNAs

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e25756



DME 59-ATTAAGGATTTCCTAGAACG-39 and 59-ATCCTA-

ACTGCTATCCTTCC-39; MEA 59-GCTAATCGTGAATGC-

GATCC-39 and 59-AGAGAGTCCCATGTAAATGC-39; ROS1

59-GGGATGAACCATAAACTTGC-39 and 59-CAACTGGAA-

AGGCAAGATGG-39; DML2 59-GCTTGCCGAAAGAATCA-

AGG-39 and 59-CCGACATTCGTGTCAACAGG-39; DML3 59-

GAATGGCTTCGAAATGCTCC-39 and 59-GGTACTCGAA-

TAGTTGATGC-39; GAPDH 59-CTCCCTTGGAAGGAGCT-

AGG-39 and 59-GATGCATTGCTGATGATAGG-39 (figure S1).

RNA extraction and northern hybridizations
RNA was extracted from leaves using TRIH Reagent (Sigma-

Aldrich) according to the manufacturer’s protocol. RNA from

crossed siliques or dissected seeds was extracted as follows: 5–6

siliques were frozen in liquid nitrogen and ground to a fine

powder. 500 mL of room temperature extraction buffer (100 mM

glycine pH 9.5, 10 mM EDTA, 100 mM NaCl, 2% SDS) was

added and once thawed, samples were further homogenized and

placed on ice. Lysates were extracted once with cold Tris-saturated

phenol (pH 8.0), twice with cold 25:24:1 Tris-saturated phenol:-

chloroform:isoamyl alcohol, and once with cold 24:1 chlorofor-

m:isoamyl alcohol before precipitation with sodium acetate and

ethanol.

Small RNA was enriched from 30–50 mg total RNA with

mirVana miRNA isolation columns (Ambion) according to the

manufacturer’s protocol. Small RNAs were resolved on a 7M

urea/1X TBE/15% acrylamide gel (19:1 acrylamide:bisacryla-

mide) and transferred to Hybond N+ membrane (GE/Amersham).

Membranes were UV-crosslinked before pre-hybridization in

UltraHyb Oligo buffer (Ambion). Oligonucleotides were labeled

with [c-32P]-ATP and T4 polynucleotide kinase and purified over

an illustra MicroSpin G-25 column (GE/Amersham). After

overnight hybridization with labeled oligonucleotides in UltraHyb

Oligo buffer membranes were washed twice in 2X SSC, 0.1%

SDS. Hybridization and washing was at 35uC. Membranes were

exposed to phosphor-storage screens for detection of siRNAs.

Probe sequences are as follows (underlined bases are LNA):

tRNAmet 59-TCGAACTCTCGACCTCAGGAT-39; 08002.L1 59-

CCCATGGTCTCAAACACATCCTCG-39; 08002.Ler 59-TCA-

AGTGAATCTTTAGCGTATGCT-39; 08002.Col 59-AGTGAA-

TCTAGAGATTTAGCGTAT-39; 00687 59-GTTCCTCGTTC-

TACCCTCATACCT-39; 02815 59-CCATGTCATTCCACCC-

ATCAAAAG-39; siRNA02 59-GTTGACCAGTCCGCCAGCC-

GAT-39; AtRep2 59-GCGGGACGGGTTTGGCAGGACGTT-

ACTTAAT-39; Simplehat 59-TGGGTTACCCATTTTGACAC-

CCCTA-39; siRNA1003 59-ATGCCAAGTTTGGCCTCACGG-

TCT-39. All experiments were replicated with independent

biological samples.

Supporting Information

Figure S1 Characterization of DEMETER family over-
expression lines. Transgenic lines expressing the four members

of the DEMETER family behind the nearly constitutive 35S

promoter were assayed for transcript accumulation in leaves by

quantitiative reverse transcription-PCR. Overexpression of RE-

PRESSOR OF SILENCING (ROS1) is in the C24 ecotype [34]; all

other constructs are in Columbia (Col-0) [16]. All graphs are mean

values for 3 biological replicates and were normalized to GAPDH

expression. 35S::DME and 35S::ROS1 lines are homozygous;

35S::DML2 and 35S::DML3 are pooled samples of homozygous

and hemizygous T2 individuals. Overexpression of DEMETER

(DME) is weak, but sufficient to induce expression of MEDEA

(MEA) in leaves (pink bars).

(EPS)

Figure S2 The 08002 polymorphism in various Arabi-
dopsis ecotypes. The p4-siRNA locus 08002 contains a six

nucleotide indel between Arabidopsis ecotypes Columbia (Col) and

Landsberg erecta (Ler). This polymorphism is the basis of the allele-

specific probes 08002.Col and 08002.Ler (hybridizing to the

region in bold type). To determine if these probes would also bind

siRNAs from other ecotypes, the 08002 region from Wassilewskijia

(WS) and C24 was sequenced. These ecotypes are (Col)-like for the

indel, but they also differ from Col at a single nucleotide (in red).

However, this SNP does not appear to affect hybridization of the

Col probe to C24 and WS siRNAs.

(TIF)
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