
On mass transport in porosity waves

Jacob S. Jordana,d,1, Marc A. Hessea,b,2, John F. Rudgec

aThe University of Texas at Austin, Department of Geological Sciences, 2305 Speedway
Stop C1160, Austin, TX 78712-1692

bThe University of Texas at Austin, Institute for Computational Engineering and Sciences,
201 E 24th Street, Stop 0200, Austin, TX 78712-1229

cBullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley
Road, Cambridge, UK CB3 0EZ

dYale University, Department of Geology and Geophysics, 210 Whitney Avenue, New
Haven, CT 06511

Abstract

Porosity waves arise naturally from the equations describing fluid migration

in ductile rocks. Here, we show that higher-dimensional porosity waves can

transport mass and therefore preserve geochemical signatures, at least partially.

Fluid focusing into these high porosity waves leads to recirculation in their

center. This recirculating fluid is separated from the background flow field by

a circular dividing streamline and transported with the phase velocity of the

porosity wave. Unlike models for one-dimensional chromatography in geological

porous media, tracer transport in higher-dimensional porosity waves does not

produce chromatographic separations between relatively incompatible elements

due to the circular flow pattern. This may allow melt that originated from the

partial melting of fertile heterogeneities or fluid produced during metamorphism

to retain distinct geochemical signatures as they rise buoyantly towards the

surface.
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1. Introduction1

Fluid migration in ductile rocks controls important geological processes such2

as melt segregation and fluid expulsion during regional metamorphism. Fluid3

production by partial melting and devolatilization leads to a percolating fluid4

network that allows for the segregation of fluid by porous flow at very low5

porosities (von Bargen and Waff, 1986; Cheadle, 1989; Wark and Watson, 1998;6

Miller et al., 2014; Ghanbarzadeh et al., 2014). Fluid segregation is driven7

by the buoyancy of the fluid and resisted by viscous compaction of the solid8

matrix (McKenzie, 1984; Scott and Stevenson, 1984; Fowler, 1985a). Fluid flow9

in rocks is predominantly vertical, because the segregation velocity of the fluid10

is significantly faster than the solid state creep velocity of the ductile rocks11

(Phipps Morgan, 1987; Sparks and Parmentier, 1991; Katz, 2008).12

Fluid production in heterogeneous rocks leads to spatial variations in fluid13

content that may evolve into porosity waves, which migrate upwards at a velocity14

greater than the segregation velocity of the buoyantly rising background fluid.15

Porosity waves are an ubiquitous feature of the equations governing melt mi-16

gration by porous flow (Spiegelman, 1993c). Porosity waves are also thought to17

arise from fluid expulsion during regional metamorphism (Bailey, 1990; Thomp-18

son and Connolly, 1990; Connolly, 1997, 2010; Tian and Ague, 2014; Skarbek19

and Rempel, 2016) and in the context of brine and hydrocarbon migration in20

sedimentary basins (McKenzie, 1987; Connolly and Podladchikov, 2000; Appold21

and Nunn, 2002; Joshi and Appold, 2016). In the aforementioned applications it22

is important to understand if solitary waves are effective carriers of energy, mass23

and geochemical signals. Here we revisit the viability of transport by porosity24

waves.25

An idealized limit of compaction-driven porosity waves are so-called solitary26

porosity waves, which propagate at constant phase velocity, λ, without change in27

shape (Figure 1a). In solitary waves the decompaction due to fluid overpressure28

at the front is perfectly balanced by compaction due to fluid underpressure in the29

back (McKenzie, 1984; Scott and Stevenson, 1984, 1986; Barcilon and Richter,30
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Figure 1: One dimensional solitary porosity wave with phase speed, λ = 4. a) A high accuracy

numerical solution for a dimensionless, one dimensional solitary porosity wave from Simpson

and Spiegelman (2011): Porosity, φ, is scaled to the background porosity, φ0 = 0.001. Fluid

pressure, P is scaled by the pressure due to buoyancy over the characteristic length scale,

∆ρgδ0. In the ambient background P is the lithostatic pressure, Pl. The upward volumetric

flux of the fluid, qf , and its vertical velocity wf are scaled to the background separation flux,

q0. Both qf and wf = qf/φ are elevated within the solitary porosity wave. b) Phase and

vertical fluid velocities as functions of amplitude, A, of the porosity increase at the center of

the solitary porosity wave. All calculations use the constitutive exponents (n,m) = (2, 1), see

Section 2.1 for definition.

1986; Wiggins and Spiegelman, 1995; Simpson and Spiegelman, 2011). In one31

dimension, the fluid velocity within the solitary wave is increased relative to32

the background, but always remains lower than the phase speed of the solitary33

porosity wave (Figure 1b). Therefore, no sustained mass transport occurs in34

one-dimensional solitary porosity waves (Richter and Daly, 1989; Barcilon and35

Lovera, 1989; Watson and Spiegelman, 1994; Spiegelman, 1994; Liang, 2008;36

Solano et al., 2014). This analysis of the one-dimensional case has led to the37

assumption that porosity waves in general cannot transport mass.38

In addition, fluid transport by porous flow in local chemical equilibrium39

leads to chromatographic separation of chemical elements according to their40

compatibility within the solid matrix (McKenzie, 1984; Navon and Stolper, 1987;41

Richter and Daly, 1989). A perfectly incompatible element travels at the velocity42
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of the fluid, whereas the effective transport velocity of a trace element decreases43

relative to the fluid velocity with increasing compatibility. In the limit of perfect44

compatibility, the trace element travels with the solid. In one dimension, this45

chromatographic separation destroys any geochemical signature associated with46

the production of the fluid (Liang, 2008).47

Figure 2: Tracer transport in a one dimensional solitary porosity wave, for animation see

supp 2.avi. Two chemical tracers of different compatibility are initially co-located with the

porosity anomaly due to melting of a heterogeneity. The green tracer is perfectly incompatible

(D = 0) with the solid phase and travels at the velocity of the melt. The blue tracer is slightly

compatible (D = 2× 10−3) with the solid and travels with a reduced velocity. For definition

of distribution coefficient, D, see Section 3. Time is scaled to the amount of time required for

the background melt to travel one characteristic compaction length, δ0. Characteristic scales

are introduced in Appendix Appendix A.3. The distance melt travels at the characteristic

velocity is demonstrated by the dotted black line and four times slower than the solitary

porosity wave traveling at the phase speed λ = 4. All calculations use the constitutive

exponents (n,m) = (2, 1), see Section 2.1 for definition.

Fluid transport with porosity waves and chromatographic separations appear48

to make it impossible to preserve the distinct geochemical signature associated49

with the source region of the fluid. This is illustrated by the numerical simula-50

tion shown in Figure 2. Here, fluid production has locally increased porosity and51

is initially co-located with two associated trace elements. Although the region of52
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elevated porosity and trace element concentration are initially co-located, they53

become separated during fluid migration. As the trace element signatures aban-54

doned by the porosity wave slowly migrate upwards, the continuous exchange55

between the fluid and solid separates tracers according to their compatibility.56

This implies that transport induced by the increase in fluid supply due to local57

fluid production carries with it no distinct geochemical signature.58

However, the conclusion that solitary porosity waves do not transport mass is59

based upon one dimensional studies of melt transport. It is well known that one-60

dimensional porosity waves are unstable in two and three dimensions and break61

up into sets of cylindrical or spherical porosity waves (Scott and Stevenson,62

1986; Wiggins and Spiegelman, 1995). Here we show that tracer transport in63

such higher dimensional porosity waves is dramatically different that in one64

dimension.65

2. Fluid flow in two dimensional porosity waves66

Models for fluid flow in ductile rocks assume a two phase mixture comprised67

of incompressible solid and melt phases. The flow of the fluid is described by68

Darcy’s law and the solid matrix undergoes viscous deformation, often assumed69

to be Newtonian (McKenzie, 1984; Scott and Stevenson, 1984; Fowler, 1985a).70

Due to the intrinsic weakness of ductile rocks, porosities are very small. This71

allows significant simplifications to the governing equations that describe the72

two phase mixture. These simplified equations admit solutions in the form of73

solitary waves as shown in Figures 1 and 2. The substantial literature on solitary74

wave solutions provides the ideal framework for discussing mass transport in75

porosity waves.76
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2.1. Governing equations in the small porosity limit77

The dimensionless governing equations for the evolution of a porosity anomaly

in a uniform background, in the limit of small porosities, are

∂φ

∂t
=
P
ξφ
, (1a)

−∇ ·Kφ∇P +
P
ξφ

= −∇ ·Kφẑ, (1b)

where P and φ are the dimensionless fluid pressure and porosity respectively and78

ẑ is the upward pointing unit vector. Here we write (1a) in terms of the partial79

derivative rather than the material derivative and assume no net translation of80

the solid. For the full dimensional governing equations see Appendix A.1.81

The dimensionless permeability, Kφ, and effective viscosity, ξφ, are functions

of porosity based on phenomenological laws,

Kφ = φn and ξφ = φ−m, (2a,b)

where the values of the exponents are typically n ∈ (2, 3) and m ∈ (0, 1), (Wark82

and Watson, 1998; Simpson and Spiegelman, 2011).83

The porosity has been scaled to the characteristic porosity, φ0, of the am-84

bient background outside the porosity anomaly. The natural length scale that85

arises from the governing equations is the compaction length of the background,86

δ0 =
√
K0ξ0/µ, where K0 and ξ0 are permeability and effective viscosity of the87

background and µ is the fluid viscosity.88

The fluid pressure, P, is scaled by the pressure due to buoyancy over a89

compaction length, ∆ρgδ0, where ∆ρ = ρs−ρf is the density difference between90

solid and fluid, and g is the gravitational acceleration. The sign of P therefore91

indicates over and underpressure. Time is scaled by the segregation time δ0/w0,92

where the segregation velocity w0 = Kφ∆ρg/φ0µ, is induced by the buoyancy93

of the fluid. The characteristic time scale is the time required for a percolating94

fluid to traverse a compaction length in the background.95

The governing equations (1) admit solitary wave solutions in one, two and96

three dimensions. Figure 3a shows porosity contours and the fluid pressure for97
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a two-dimensional solitary porosity wave. Due to buoyancy, the fluid in the98

upper half of the solitary porosity wave is above lithostatic pressure and dilates99

the matrix, while the pressure of the fluid in the lower half is below lithostatic,100

allowing the matrix to compact. This balance between dilation and compaction101

leads to steady upward migration of the solitary porosity wave at a fixed phase102

speed, with solutions when λ ≥ 3. Figure 3a also shows a cross-section of the103

two dimensional plot to help draw comparison to Figure 1. Below we utilize104

two dimensional solutions for solitary porosity waves with (n,m) = (2, 1) pro-105

vided by Simpson and Spiegelman (2011), to highlight previously unrecognized106

implications for mass transport in porosity waves.107

2.2. Mass transport mechanism in solitary porosity waves108

To understand mass transport within solitary porosity waves, the fluid and

solid flow fields must be computed. Although the governing equations in the

small porosity limit are independent of the solid flow field, knowledge of the solid

flow field is required to understand the transport of compatible trace elements.

The movement of the solid can be recovered by solving the following equation

for the scalar solid velocity potential,

−∇2U =
P
ξφ
. (3)

The potential U captures the perturbation to the solid velocity field from com-

paction and decompaction induced by the solitary porosity wave. Once U and

P are known, the flux of fluid relative to solid, qr, is described by Darcy’s law

and the solid velocity field, vs, is found from the gradient of the solid velocity

potential,

qr = φvf = −Kφ [∇P − ẑ] and vs = −∇U . (4 a,b)

In the small porosity limit, the motion of the solid can be neglected in the109

formulation of Darcy’s law, so that the fluid flux is equal to the relative fluid flux,110

qf = qr (see Appendix A.3). Throughout this study, u represents the horizontal111

component of the velocity field and w denotes the vertical vp = [up wp], where112
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Figure 3: a) Two-dimensional solitary porosity wave with phase speed, λ = 4, and constitu-

tive exponents, (n,m) = (2, 1). Dimensionless pressure of the melt phase, P, with porosity

contours, φ in gold from Simpson and Spiegelman (2011). The black line down the center of

the contour plot shows the spatial location of the “one-dimensional” profile. This profile is

analogous to Figure 1a. Notably, wf > λ suggesting that sustained mass transport is possible

within two-dimensional solitary porosity waves. b) Vertical melt velocity at the center of the

solitary porosity wave and phase speed as a function of amplitude, A. Constitutive exponents,

(n,m) = (2, 1) as in a.

subscript, p ∈ [f, s] denotes the fluid and solid phases. Unlike previous studies,113

the solid velocity has been scaled by φ0w0. This scaling takes into account the114

reduction of solid motion with declining background porosity.115

The fluid flux, qf , in both one and two dimensional solitary porosity waves is116

enhanced relative to the background, q0 = φ0w0. Similar to the one dimensional117

case, the phase velocity of the porosity wave is larger than the background fluid118

velocity (Figures 1 a and 3 a). In one dimension, fluid speed never exceeds the119

phase speed of the porosity wave. Therefore, an incompatible tracer experiences120

no sustained transport (Figure 1 and Figure 2). In contrast, Figure 3b, shows121

that the fluid velocity at the center of two dimensional velocity waves exceeds122

the phase velocity, wf > λ for all λ > 3.123

Figures 4a and 4b show the streamlines of the solid and fluid velocity fields,124
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vs and vf in a fixed Eulerian reference frame at an instant in time. In the125

Eulerian reference frame the solid in the far-field is stationary. Solid streamlines126

show a dipole-like pattern. They emanate from the dilating region at the front127

of the porosity wave, and converge in the compacting region at the back. Fluid128

streamlines are sub-vertical and deflected towards the interior of the solitary129

porosity wave, indicating a focusing of the fluid flux into the high porosity130

wave. Focusing of the flow allows the speed of the fluid at center of the wave131

to exceed the phase speed (Figure 3b). This suggests that sustained tracer132

transport may be possible, because perfectly incompatible tracers at the center133

of the wave move faster than the solitary porosity wave and are not left behind134

as in Figure 2.135

However, in the Eulerian reference frame it is not possible to infer the phys-

ical path of fluid from the streamlines, because the porosity field and its asso-

ciated velocity fields evolve in time. In a Lagrangian reference frame, moving

with the constant phase speed of the solitary porosity wave,

w̃p = wp − λ, p ∈ [f, s], (5)

the porosity field and the streamlines become stationary (Figure 4c and 4d).136

Here, the solid streamlines are sub-vertical and deflected outward from the cen-137

ter of the porosity wave. In the far-field, the solid moves downward with speed138

λ.139

After shifting into the Lagrangian reference frame, the movement of the140

fluid becomes apparent. Fluid streamlines show distinct behavior in the interior141

and exterior of the porosity wave (Figure 4d). These regions are separated142

by two semi-circular dividing streamlines that meet at two stagnation points143

along the vertical symmetry axis of the porosity wave, where (uf , w̃f) = 0.144

In the interior, there are two symmetric cells of closed streamlines where fluid145

circulates outwards around two additional stagnation points along the horizontal146

axis of symmetry. Outside the circular dividing streamline, the fluid streamlines147

are sub-vertical and deflected away from the wave moving downward at a speed148

bounded between 0 and λ, relative to the background velocity of the solid. Fluid149
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Figure 4: Streamlines of a solitary porosity wave with λ = 4 and constitutive exponents

(n,m) = (2, 1). The porosity contours in gold are identical to those shown in Figure 3a. a)

Solid flow streamlines in Eulerian reference frame. b) Fluid streamlines in Eulerian reference

frame. c) Solid streamlines in Lagrangian reference frame. d) Fluid streamlines in Lagrangian

reference frame, w̃p = wp − λ, where p = (f, s). Dividing streamlines are depicted in red.

Within the dividing streamline there are symmetrical counter-rotating cells. Each panel is

20δ0 × 20δ0
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on the interior of the circular dividing streamline is transported by the solitary150

porosity wave, while fluid outside is stripped away and experiences no sustained151

transport. Unlike their one dimensional counterparts, two dimensional porosity152

waves may transfer mass.153

3. Tracer transport in porosity waves154

Starting with Korzhinskii (1965) and Hofmann (1972) it has been recognized155

that elements may undergo chromatographic separation during fluid percolation156

in geological processes. In magmatic systems, chromatographic separations are157

most commonly invoked in studies of trace element and radionuclide transport158

(McKenzie, 1984; Navon and Stolper, 1987; McKenzie, 1985a; De Paolo, 1996;159

Hauri, 1997; Hauri and Kurz, 1997). Similarly, chromatographic concepts have160

been important in metamorphic systems, where they are commonly applied161

to stable isotope transport (Norton and Taylor, 1979; Baumgartner and Rum-162

ble III, 1988; Bickle and McKenzie, 1987; Bowman and Willett, 1991). In either163

case, models with one-dimensional flow at constant porosity result in the linear164

separation of tracers based on their compatibility with the solid phase.165

3.1. Tracer transport in low porosity limit166

The chromatographic separation of tracers is determined by the distribu-

tion coefficient, which is variably defined, either as a ratio of mass fractions

(McSween et al., 2003), Dx = xs/xf , or as a ratio of concentrations (White,

2013),

D =
cs
cf

=
ρsxs
ρfxf

=
ρs
ρf
Dx. (6)

Here, cs is the total concentration of the tracer in all solid phases and cf is its

concentration in the fluid and similarly xs is the total mass fraction of tracer

partitioned into all solid phases while xf is the mass fraction of tracer in the

fluid. For a perfectly incompatible tracer D = 0, there is no incorporation of

the trace element into the solid phase and the velocity of the tracer is that of
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the fluid flow field (Figures 4b and 4d). Conversely, as D → ∞, the tracer

prefers the solid and the effective velocity of the tracer is that of the solid flow

field (Figures 4a and 4c). For all intermediate cases, the dimensionless effective

velocity in the small porosity limit is given by

ve =
φvf + vsD

φ+D/φ0
, (7)

where a term containing the characteristic porosity, D/φ0, has been retained,167

because the distribution coefficient itself may be small. Here, the dimensionless168

effective tracer velocity is scaled by w0. For dimensional equations, scaling and169

simplification see Appendix A.2, Appendix A.3 and Appendix A.4, respectively.170

When D � φ0 � 1, ve → vf and when D � φ0, ve → φ0vs ≈ 0. Figure 2171

illustrates the reduction in the effective velocity of a moderately compatible172

tracer relative to a perfectly incompatible tracer in a one dimensional flow field.173

Assuming chemical equilibrium and purely advective transport, the dimen-

sionless conservation equation for bulk tracer evolution in absence of hydrody-

namic dispersion is given by

∂C
∂t

+∇ · [veC] = 0, (8)

where the dimensionless bulk concentration of tracer in the small porosity limit

is given by

C = (φ+D/φ0)xf . (9)

For the derivation and scaling of equations (8) and (9) see appendices Appendix174

A.2 to Appendix A.4. Below, we first investigate the evolution of a perfectly in-175

compatible tracer in the fluid phase, before illustrating the effect of partitioning176

on tracer transport by porosity waves.177

3.2. Perfectly incompatible tracer178

Consider a local increase in porosity generated by localized melting or fluid179

production characterized by a distinctive geochemical tracer, C, as shown in the180

t = 0 panel of Figure 5. According to conventional wisdom, the tracer should181
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Figure 5: Demonstration of transport of bulk composition, C, for a perfectly incompatible

tracer, D = 0, initially co-located with a solitary porosity wave (λ = 5, (n,m) = (2, 1)). This

simulation uses the same governing equations and constitutive relationships as in Figure 2.

Red lines with arrowed tips show the dividing streamlines and their direction of flow. Maroon

dots show the location of stagnation points where uf = w̃f = 0. Lastly, the gold circle is five

percent of the maximum porosity anomaly. Within this gold circle the tracer field is initialized

to xf = 1. For an incompatible tracer the dimensionless bulk composition is simply, C = φxf ,

so the variation of C within the wave is largely a reflection of dimensionless porosity field, φ.

become decoupled from the porosity wave, similar to the one-dimensional case182

shown in Figure 2. However, the results in Figure 5 illustrate that only the outer183

portion of the tracer is stripped away, while the tracer in the center migrates184

upward with the solitary porosity wave. This central region corresponds to the185

area within the circular dividing streamline. Once the porosity wave migrates186

a distance proportional to the radius of the circular dividing streamline, it will187

contain two distinct fluids: one derived from the heterogeneity that generated188

the solitary porosity wave and another from the background.189

To more effectively illustrate the motion of the tracer that is transported190

by the solitary porosity wave, consider the initial tracer distribution shown191

in the first panel of Figure 6. Here, the initial distribution of the tracer is192

confined to a disc that is smaller than the circular dividing streamline. In this193

case, the porosity wave transports two fluids of distinct composition within the194

circular dividing streamline, distinguished by the concentration of the tracer,195

C. The circulation of the fluid within the dividing streamline is much faster196

than the phase speed of the solitary porosity wave. This stretches the tracer197
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Figure 6: Transport of bulk composition, C, using initial tracer distribution confined to

disc smaller than the circular dividing streamline of a solitary porosity wave (λ = 5,

(n,m) = (2, 1)). The initial condition is, xf = 1 for φ > 0.7 max(φ) and zero elsewhere.

Circular dividing streamline is shown in red, stagnation points are in maroon and the gold

halo representing the five percent porosity contour is left for comparison to Figure 5.

into symmetrical filaments that spiral inwards to the central stagnation points198

in a swirling motion reminiscent of Cinnamon rolls, similar to tracer patterns199

observed solitary waves that arise in in Stokes flows in fluid conduits (Whitehead200

and Helfrich, 1988).201

The tracer pattern in Figure 6 remains relatively sharp, because molecular202

diffusion, Dmol and mechanical dispersion, Ddis, are neglected in the simulation.203

The presence of any significant hydrodynamic dispersion Dhyd = Dmol + Ddis,204

will tend to homogenize the composition of the fluid transported within the205

porosity wave. The importance of hydrodynamic dispersion is given by the206

Péclet number, Pe = wmr/Dhyd, where a suitable length scale is the radius, r, of207

the circular dividing streamline. Dispersion could result in the homogenization208

of the tracer within smaller porosity waves during migration. Furthermore,209

small amounts of tracer may be lost to the background across the dividing210

streamline when hydrodynamic dispersion is considered. The importance of211

dispersion is difficult to asses, because the physical size of solitary porosity212
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waves changes dramatically with the choice of the constitutive exponents, n213

and m. For discussion of this issue see Section 4.2.214

3.3. Tracers of varying compatibility215

Tracers with nonzero distribution coefficients are transported by an effective216

velocity field that is a weighted average of the solid and fluid flow fields, given217

by equation (7). The Lagrangian fluid streamlines for tracers with increasing218

distribution coefficients are shown in Figure 7. The overall circulation pattern219

remains the same, except the radius of the circular dividing streamline shrinks220

with increasing D as the effective velocity decreases. At the critical distribution221

coefficient, D∗, the circular dividing streamline has collapsed to a point and the222

solitary porosity wave stops transporting the tracer.223

This implies that the effect of partitioning on tracer transport in higher224

dimensional solitary porosity waves is drastically different from transport in225

one-dimensional columns typically considered. In one dimension the distribu-226

tion coefficient determines velocity of transport. In contrast, within higher227

dimensional solitary porosity waves the distribution coefficient determines the228

amount of tracer transported, but not its overall velocity. Of course, the migra-229

tion of compatible trace elements along the circular streamlines is retarded, but230

the overall vertical migration velocity is λ for all trace elements with D < D∗.231

Trace elements with D ≥ D∗, are not transported by solitary porosity waves.232

The exact value of D∗ depends on the phase speed and amplitude, of the

solitary porosity wave, as shown in Figure 8a and on the constitutive exponents,

n and m. As the distribution coefficient increases above D/φ0 = 10−1 the

volume of fluid transporting tracer, Ve, begins to decrease and vanishes at D∗.

For transport to occur the vertical effective velocity of the tracer, we, must

exceed the phase speed, λ, of the solitary porosity wave. Since the fluid velocity

is largest in the center of the wave, D∗ can be obtained from (7) by setting

we = λ at the center of the solitary porosity wave. Therefore, the critical

15



Figure 7: Demonstration of increasing distribution coefficient D on fluid streamlines within

a solitary porosity wave (λ = 5, (n,m) = (2, 1)). Fluid streamlines are shown in black

with the dividing streamline in blue. The red circle indicates the dividing streamline for the

perfectly incompatible incompatible case, D = 0, for reference. As D increases the semi-

circular dividing streamline of the effective velocity shrinks until it vanishes at the critical

distribution coefficient D∗. At D∗ the vertical fluid velocity of the wave in the Lagrangian

reference frame w̃e = 0. The blue dot in the D∗ panel indicates the point that the vertical

velocity profile becomes zero a the porosity maximum for a tracer with compatibility D∗. As

in Figures 3 and 4, the wave speed, λ = 4. The size of the domain in all cases is 20δ0× 20δ0.
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Figure 8: a) Normalized volume of tracer melt retained by two dimensional solitary porosity

waves as a function of partitioning behavior and phase speed. Light blue circles for λ = 4,

correspond to results shown in Figure 7. The intercept at the x-axis where Ve = 0 corresponds

with D∗. b) The phase speed of the critical partition coefficient, D∗ against phase speed, λ.

Filled in, colored, circles correspond to the x-intercept of 8a. For visualization of the growth

of D with λ and the corresponding porosity profile, see Figure B.12 in Appendix B.

distribution coefficient is given by

D∗/φ0 = φ (wf/λ− 1) at x̃ = 0, (10)

where the values of the variables at the center are obtained from the semi-233

analytical solution for the solitary porosity wave (Simpson and Spiegelman,234

2011). Figure 8b shows that D∗ increases rapidly with λ, because larger am-235

plitude porosity wave focus fluid more effectively. For distribution coefficients236

based on mass fractions the critical distribution coefficient is D∗x ∼ ρf/ρsD∗.237

Due to lithological changes, partitioning behavior often changes with depth238

as a porosity wave rises buoyantly. While the porosity wave itself is not affected239

by partitioning, the radius of the dividing streamline changes. Figure 9 illus-240

trates the resultant mixing behavior assuming a sharp decrease in D. Below the241

transition, the dynamics of tracer transport are analogous to the behavior shown242

in Figure 5. However, due to the nonzero distribution coefficient, the radius of243

the circular dividing streamline is smaller (Figure 7), resulting in a reduced vol-244

ume within which tracer is transported (Figure 8a). As the solitary porosity245
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Figure 9: Finite volume simulation initialized with solitary wave solution used in Figures 5

and 6. For animation see supp 9.avi. The gray-scale filled contours show the evolution of

tracer composition. As in Figure 5 the gold circle is five percent of the maximum porosity

anomaly. Half way through the domain, at sixty four characteristic compaction lengths, the

compatibility of the tracer with the solid matrix transitions from D/φ0 = 2.25 to perfectly

incompatible, D = 0, as indicated at the left hand side of the figure.

wave crosses the transition in the distribution coefficient, the expansion of the246

dividing streamline incorporates background fluid into the transported volume.247

This newly incorporated fluid, is primarily derived from above the transition and248

becomes mixed with the tracer carried from below in a swirling pattern anal-249

ogous to the dynamics in Figure 6. The migration of solitary porosity waves250

across such transitions in mineral assemblage therefore provides a natural mix-251

ing mechanism for fluids with different trace element signatures and different252

depths of origin.253

4. Discussion254

For clarity, the analysis presented in this manuscript is based upon highly255

idealized solutions for solitary porosity waves. These waves have been stud-256

ied extensively and their properties are well constrained (Scott and Stevenson,257
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1984, 1986; Barcilon and Richter, 1986; Barcilon and Lovera, 1989; Richter and258

McKenzie, 1984; Richter and Daly, 1989; Wiggins and Spiegelman, 1995; Simp-259

son and Spiegelman, 2011). For the Lagrangian reference frame used in this260

study, knowledge of the exact phase velocity of the porosity waves is essential.261

The results above show that solitary porosity waves in two dimensions transport262

mass. Below we use numerical simulations to demonstrate that this conclusion263

also applies to a broader set of less idealized porosity waves and their formation.264

This is followed by a comparison of tracer transport in two-dimensional poros-265

ity waves and classical results in one-dimensional linear columns. Finally, we266

discuss the physical dimensions and transport timescales of the porosity waves267

in ductile rocks as well as the limitations of this model.268

4.0.1. Tracer incorporation during formation of porosity waves269

The examples discussed in Section 3.2 demonstrate that an incompatible270

tracer can be transported by a fully formed, two-dimensional solitary porosity271

wave. In all examples shown above the tracer is initially located in the recircu-272

lating region within the circular dividing streamline. In these simulations fluid273

at the center of the solitary porosity wave is isolated from the background for274

the entire duration of transport. Therefore, it is not yet clear if a tracer can be275

incorporated into a porosity wave during its formation.276

To illustrate the incorporation of a tracer into porosity waves, we study277

the break-up of a perturbed one-dimensional solution representing a laterally278

extensive region of elevated porosity. Several authors have shown that one-279

dimensional solitary porosity waves are unstable in higher dimensions and lead280

to the formation of stable, higher-dimensional porosity waves (Scott and Steven-281

son, 1986; Wiggins and Spiegelman, 1995). Figure 10 shows the evolution of a282

perturbed one-dimensional solitary porosity wave from Simpson and Spiegelman283

(2011) in two-dimensions. The unperturbed one-dimensional evolution of this284

initial condition using the same parameters is shown in Figure 2, which demon-285

strates that tracers are not transported. If the two-dimensional simulation is286

not perturbed, the solution remains one-dimensional and reproduces the behav-287
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Figure 10: Finite volume simulation initialized with a transversely perturbed one-dimensional

solution for a solitary porosity wave, for animation see supp 10.avi. The initial condition

corresponds to the one-dimensional solitary porosity wave (λ = 4, (n,m) = (2, 1)) from

Simpson and Spiegelman (2011), also shown in Figure 2. Tracer is initialized so that xf = 1

where φ is greater than 50% of the maximum porosity anomaly. Contours for 20% and 80%

of the maximum initial porosity anomaly are shown in gold.

ior seen in Figure 2. However, a slight perturbation in porosity leads to the288

break-up of this one-dimensional wave and the formation of a two-dimensional289

porosity wave.290

Figure 10 shows that some tracer is initially left behind, while the wave re-291

mains quasi-one-dimensional. Eventually, the wave-front scallops and forms a292

porosity maximum in the center of the domain due to the perturbation. This293

central porosity maximum begins to collect fluid laterally, increasing the fluid294

velocity and propelling the tracer upwards. The local increase in vertical fluid295

velocity leads to the incorporation of a fraction of the tracer originally co-located296

with the one-dimensional solitary porosity wave. Meanwhile, the porosity field297

coalesces into a radially symmetric porosity wave that travels with constant ve-298

locity and asymptotes towards solitary wave behavior as described in Section 2.299

Within this porosity wave a swirling tracer mixing pattern develops similar to300

Figure 6. This suggests that the formation of porosity waves leads to the in-301

corporation and mixing of geochemical signatures initially located within the302

one-dimensional porosity wave with that of the ambient background near the303
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initial location.304

The porosity wave forming in Figure 10 is not a true solitary wave in the305

mathematical sense, but the dynamics of tracer transport are similar to the lim-306

iting case of a true solitary porosity wave. This demonstrates that a broader set307

of porosity waves recirculate fluid in the interior and therefore allow mass and308

tracer transport. Given that wave-like behavior is ubiquitous in simulations of309

fluid flow in ductile ductile rocks, this transport mechanism applies to a broad310

range of geological phenomena, including: partial melting and melt segregation311

in the mantle (Katz and Rudge, 2011; Weatherley and Katz, 2012) fluid release312

during regional metamorphism (Bailey, 1990; Thompson and Connolly, 1990;313

Connolly, 1997, 2010; Tian and Ague, 2014; Connolly and Podladchikov, 2015;314

Skarbek and Rempel, 2016) and brine migration during compaction of sedimen-315

tary basins (McKenzie, 1987; Connolly and Podladchikov, 2000; Appold and316

Nunn, 2002; Joshi and Appold, 2016). These waves arise in a range of porous317

media as they are a consequence of the dispersive nature of the governing equa-318

tions for fluid flow in a viscously compacting medium (Spiegelman, 1993a,b).319

4.1. Implications for trace element transport in ductile rocks320

This manuscript shows that two-dimensional solitary porosity waves may321

transport mass and that trace element transport is possible when D < D∗.322

Increasingly compatible elements may be transported as phase speed and am-323

plitude increase (Figure 8b). Tracer transport in porosity waves differs from324

one-dimensional tracer chromatography in several important ways. Classical325

chromatography in a linear flow field has the following characteristics:326

1. Each element travels at a different velocity, determined by its distribution327

coefficient.328

2. The absolute abundance of elements is not affected by chromatographic329

separation.330

3. Linear chromatography provides no natural mechanism for mixing of dis-331

tinct fluids.332
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In contrast, transport in two dimensional porosity waves has the following char-333

acteristics:334

1. Elements with D < D∗ are transported together with the velocity of the335

porosity wave, λw0.336

2. The absolute abundance of elements transported with the wave is deter-337

mined by compatibility.338

3. Transport in porosity waves provides a natural mechanism for mixing of339

distinct fluids from different depths in a viscously compacting medium.340

These differences arise because the transported fluid migrates along closed stream-341

lines inside the porosity wave (Figure 4d). Along these closed streamlines chro-342

matographic separation affects the angular velocity of tracers interacting with343

the solid phase, which only leads to a phase shift. This negates the chromato-344

graphic separations for sufficiently incompatible elements that are otherwise345

inevitable during fluid percolation. Instead of reducing the effective transport346

speed, increasing compatibility of a tracer reduces the diameter of the circular347

dividing streamline (Figure 7), thereby reducing the mass of tracer transported348

(Figure 8a). Therefore, mass transport in porosity waves may alter the relative349

abundances of trace elements with different compatibilities. The dynamics ob-350

served in Figures 9 and 10 demonstrate that fluid transport in porosity waves351

provides natural mechanisms to mix fluid of different origin and depth.352

4.2. Physical size and speed of porosity waves353

The size, ∆, and velocity, Λ, of a porosity wave determine if the phenom-354

ena discussed here are relevant to a particular geologic process. Figure 11a355

shows combinations of dimensional size and velocity for which porosity waves356

are expected, given typical upper-mantle parameters. Parameter values and357

calculations for Figure 11 are detailed in Appendix B.358

The existence of porosity waves is limited to a diagonal band in logarithmic359

∆Λ-space, by the conditions that λ > 3 and that the porosity is small. Here we360

assume that the small porosity approximation is valid to 5% porosity, so that361
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φmax = 0.05. Note that the φmax boundary cannot be traced all the way, because362

the semi-analytic solutions of Simpson and Spiegelman (2011) only converge for363

λ ≤ 8.75, for (n,m) = (2, 1). It is therefore possible that very large very slow364

waves exist that are not captured here.365

The velocity of a porosity wave increases with size as, Λ ∼ ∆2, because366

the segregation velocity of the melt increases with the compaction length as,367

w0 ∼ δ20 . Thus, the slope of the band in logarithmic ∆Λ-space is two and the368

speed of a porosity wave increases rapidly with its size. Figure 11a also shows369

the dependence of wave speed and size on the model parameters φ0 and λ. At370

constant φ0, an increase in λ initially increases the size of the wave more rapidly371

than its velocity, see also Figure B.12. However, due to the limited range of the372

phase speed, 3 ≥ λ ≥ 8.75, the dominant control on both size and velocity of373

the wave is the background porosity, φ0.374

Unfortunately, φ0 is poorly constrained and often treated as an adjustable375

parameter (McKenzie, 1985b; Connolly, 1997). Figure 11a shows that decreas-376

ing φ0 will reduce the size of the porosity wave, but only at the expense of its377

velocity. Similarly, the wave velocity can be increased by elevating the back-378

ground porosity. However, the maximum wave velocity that can be attained is379

limited by the small porosity approximation.380

Numerical simulations of fluid flow in ductile rocks commonly lead to poros-381

ity waves that exceed 5% porosity (Connolly and Podladchikov, 2000; Appold382

and Nunn, 2002; Connolly and Podladchikov, 2007; Šrámek et al., 2012; Joshi383

et al., 2012). These porosity waves are not described by the small porosity anal-384

ysis presented here. However, such waves likely also transport mass in higher385

dimensions, as long as the porosity contrast to the background is sufficient to386

focus fluid flow into the wave.387

Figure 11b shows that the contours of the critical distribution coefficient,388

D∗, are mostly vertical. The ability of a porosity wave to transport tracers389

therefore increases with its size. This is due to the improved melt focusing390

in large high-amplitude waves. The behavior changes only in the vicinity of391

the λ = 3 cut-off, where the contours become near horizontal, suggesting that392
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Figure 11: Band of possible solitary porosity waves given the dimensional length of the wave,

∆, and the dimensional speed of the wave, Λ. The parameters used to generate this figure are

typical upper-mantle values and can be found along with details of calculation in Appendix B.

Red contours show the background porosity, φ0 required for a wave given its dimension and

speed. The gold contour represents, the chosen boundary of the small porosity approximation,

φmax = 0.05. Analysis assuming small porosity applies to solutions below and to the left

of this contour. a) Gray scale contours show phase speed, λ, given the diameter of the

recirculating region, ∆, and dimensional wave speed Λ. b) Gray scale contours illustrate the

critical distribution coefficient, D∗, for tracers in solitary porosity waves.

transport improves with increasing velocity, and hence background porosity, φ0.393

Note that even waves with λ = 3 can transport tracers, though the transported394

volume/area is very small, see Figure B.12.395

The analysis in this manuscript is limited to the standard viscous rheology,396

with the constitutive exponents (n,m) = (2, 1), in two dimensions. The size397

and velocity of small amplitude porosity waves and their ability to transport398

tracers is likely to change dramatically with the choice of constitutive exponents399

and the spatial-dimension (Simpson and Spiegelman, 2011). In general, tracer400

transport is determined by the efficiency of fluid focusing for a particular wave401

(Figure 4b). This focusing is likely to be more efficient in three dimensions, so402

that the magnitude of D∗ in Figure 11b should provide a lower limit.403
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5. Conclusions404

Here we show that higher-dimensional solitary porosity waves transport405

mass, because they focus the background fluid flow. This allows the fluid ve-406

locity to exceed the phase velocity in the high porosity center of the wave.407

Streamlines in a Lagrangian reference frame, moving with the phase velocity408

of the solitary porosity wave, show that the fluid recirculates in the core of409

the porosity wave. Mass within the recirculating region is transported by the410

porosity wave, because it is separated from the outer flow field by a circular,411

dividing streamline. Incompatible tracers are transported in the volume of the412

porosity wave enclosed by the dividing streamline of the fluid flow field. For413

compatible tracers, the radius of this circular dividing streamline, and hence the414

volume transported, decreases as the tracers becomes more compatible, until the415

transport ceases as the distribution coefficient exceeds a critical value. Unlike416

one-dimensional chromatography, transport in porosity waves does not produce417

chromatographic separations between relatively incompatible elements. Instead,418

it transports them together with the phase velocity of the porosity wave, and419

modifies their relative abundances. Therefore, porosity waves in ductile rocks420

provide a potential mechanism for the transport and preservation of geochemical421

signatures derived from melting of fertile heterogeneities in the mantle and the422

devolatilization metamorphic rocks. Sufficiently incompatible trace elements423

will travel together in an isolated batch of churning fluid. Furthermore, poros-424

ity waves provide a natural mechanism for mixing fluids and their geochemical425

signatures.426
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Appendix A. Model equations436

Appendix A.1. Dimensional model equations437

The equations governing the percolative flow of a fluid through a viscously

deformable, permeable matrix were originally presented by McKenzie (1984),

Scott and Stevenson (1984) and Fowler (1985b) and are given by

∂ρfφ

∂t
+∇ · [ρfφvf ] = Γ, (A.1a)

∂ρs(1− φ)

∂t
+∇ · [ρs(1− φ)vs] = −Γ, (A.1b)

φ(vf − vs) = −Kφ

µ
[∇P + ρfgẑ] , (A.1c)

∇P = ∇ ·
(
η
[
∇vs +∇vTs − 2

3 (∇ · vs) I
])

+∇ (ζ∇ · vs)− ρgẑ, (A.1d)

where φ is the porosity or fluid fraction, ρf is the density of fluid, µ is the vis-438

cosity of the fluid, vf is the fluid velocity and Γ is the fluid production rate.439

The density of the solid matrix is ρs, its velocity is vs and its permeability is440

Kφ. The densities of the fluid and solid are assumed to be constant, but not441

necessarily equal, so ρ̄ = ρfφ + ρs(1 − φ). Here P is the pressure of the fluid,442

η and ζ are the effective shear and bulk viscosities of the two phase mixture,443

g is acceleration due to gravity, z is the vertical coordinate and ẑ = ∇z the444

upward pointing unit vector. For closure, constitutive relationships are needed445

for permeability and effective viscosity and a mass transfer rate, Γ, is required.446

For a full thermodynamic description of fluid production rate, melting-freezing,447

or dissolution-precipitation, additional conservation energy, material composi-448

tions and equations of state for reactions and phase equilibria are required (e.g.449

Rudge et al. (2011)).450

If the shear viscosity η is constant the momentum balance of the solid can
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be written as

∇P = η∇×∇× vs +∇
[
(ζ + 4

3η) (∇ · vs)
]
− ρgẑ, (A.2)

which allows the identification of three different contributions to the fluid pres-

sure gradient,

∇P = ∇P ∗ +∇P +∇Pl. (A.3)

where P ∗ is dynamic pressure, Pl is lithostatic pressure in the absence of fluid

(Pl ≡ −ρsgz), and P is an effective compaction pressure defined by

P ≡ ξφ∇ · vs, (A.4)

where ξφ ≡ ζ + 4
3η. Substituting (A.3) into the system (A.1) yields

∂φ

∂t
+ vs · ∇φ = (1− φ)

P
ξφ

+
Γ

ρs
, (A.5a)

−∇ · Kφ

µ
∇P +

P
ξφ

= ∇ · Kφ

µ
(∇P ∗ −∆ρgẑ) + Γ

∆ρ

ρfρs
, (A.5b)

∇ · vs =
P
ξφ
, (A.5c)

∇P ∗ = η∇×∇× vs + φ∆ρgẑ, (A.5d)

where ∆ρ = ρs − ρf . Equation (A.5b) is a modified Helmholtz equation for

compaction pressure P that reduces to the familiar Darcy’s law in the limit of

large ξφ. Equation (A.5c) relates the divergence of the solid flow field to the

compaction pressure and the resistance of the media to volumetric expansion and

contraction. Finally, Equation (A.5d) is a Stokes-like equation for solid velocity

and dynamic pressure driven by deviatoric stresses with buoyancy driven by

porosity. Equation (A.5c) can be decoupled from Equation (A.5d) by applying

a Helmholtz decomposition to the solid velocity field, vs = −∇U + ∇ × Ψ,

where U is the scalar potential and Ψ is the vector potential (Spiegelman,

1993c). Lastly, using (A.3), the fluid flux relative to the movement of the solid

matrix is given by

qr = φ(vf − vs) = −Kφ

µ
(∇ [P ∗ + P −∆ρgz]) . (A.6)
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Appendix A.2. Tracer conservation equation451

For a tracer that partitions into both phases the bulk concentration in the

system is conserved and given by,

C = φρfxf + (1− φ)ρsxs, (A.7)

where ρp and xp are the densities and mass fractions of tracer partitioned across

the solid phases and fluid phase respectively. At local chemical equilibrium the

partition coefficient, D defined in (6), can be used to eliminate xs from (A.7),

so that

C = (φ+ (1− φ)D) ρfxf . (A.8)

Tracer is transported by advection of the two phases, molecular diffusion and

mechanical dispersion. The latter two are usually negligible on transport dis-

tances considered in melt migration. Therefore, we focus on advective transport

here, so that the total mass conservation equation is given by

∂C

∂t
+∇ · [(φvf + (1− φ)vsD) ρfxf ] = 0, (A.9)

where vf and vs are the fluid and solid velocities. Using (A.8) to eliminate ρfxf

the evolution equation for the bulk composition is simply

∂C

∂t
+∇ · [veC] = 0, (A.10)

where the effective velocity of the tracer is given by

ve =
φvf + (1− φ)vsD

φ+ (1− φ)D
. (A.11)

Appendix A.3. Scaling452

The compaction length is the intrinsic length scale for the system of gov-

erning equations given by (A.5). The compaction length is the solid phase

relaxation distance for a piezometric overpressure dilating the porosity, or the

length scale over which P responds to variations in the relative fluid flux qr.
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Using a reference porosity, 0 < φ0 < 1, the characteristic compaction length, is

given by,

δ0 =

√
K0ξφ0

µ
, (A.12)

where K0 = Kφ(φ0) and ξφ0
= ξφ(φ0) in equation (2). The buoyancy-driven

separation flux of the fluid relative to the solid is given by

φ0w0 =
K0∆ρg

µ
, (A.13)

where w0 is the characteristic fluid segregation velocity. Using (A.12) and (A.13)

along with material properties, the suite of model equations can be scaled by

the following,

x = δ0x
′ ∇ = ∇′/δ0

φ = φ0φ
′ t = (δ0/w0)t′

vf = w0v
′
f vs = φ0w0v

′
s

P = ∆ρgδ0P ′ P ∗ = φ0∆ρgδ0P
∗′ (A.14)

Kφ = K0K
′
φ ξφ =

η

φ0
ξ′φ

C = φ0ρfC U = φ0w0δ0U

Ψ = φ0w0δ0Ψ
′ Γ =

ρsφ0w0

δ0
Γ′

where primes denote dimensionless variables. Substituting these scales into the

system of equations given by (A.1) and dropping the primes we obtain the

dimensionless system of governing equations

∂φ

∂t
+ φ0vs · ∇φ = (1− φ0φ)

P
ξφ

+ Γ, (A.15a)

−∇ · [Kφ∇P] +
P
ξφ

= ∇ · [Kφ (φ0∇P ∗ − ẑ)] + Γ
∆ρ

ρf
, (A.15b)

−∇2U =
P
ξφ
, (A.15c)

∇P ∗ = ∇×∇×∇×Ψ + φẑ. (A.15d)
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The volumetric flux of the fluid is given by

qr = φ (vf − φ0vs) = −K (∇P + φ0∇P ∗ − ẑ) . (A.16)

Substituting (A.14) into (A.8-A.11), the scaled dimensionless tracer evolution

equations is

∂C
∂t

+∇ · [veC] = 0, (A.17)

where the dimensionless bulk composition and effective velocity are given by

C = (φ+ (1− φ0φ)D/φ0)xf (A.18)

and

ve =
φvf + (1− φ0φ)vsD

φ+ (1− φ0φ)D/φ0
. (A.19)

Here we have dropped the primes indicating dimensionless variables.453

Appendix A.4. Small porosity approximation and the reduced model for fluid454

migration455

Throughout this manuscript we apply the small porosity approximation,

assuming that the ambient mantle has a porosity φ0 � 1. Application of the

small porosity limit to the dimensionless system of governing equations (A.15)

results in the following simplifications: The solid volume fraction is unity, (1−

φ0φ) ≈ 1. Equation (A.15d) decouples, because terms containing P ∗ in other

equations are negligible. Terms containing vs are negligible, except the term

containing D in (A.19). After the application of these simplifications to the

dimensionless system (A.15), the system reduces to

∂φ

∂t
=
P
ξφ
, (A.20a)

−∇ ·Kφ∇P +
P
ξφ

= −∇ ·Kφẑ, (A.20b)

−∇2U =
P
ξφ
. (A.20c)
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Using the scaled relationship for permeability, Kφ = φn, the phase velocities

are given by

vf = −φ(n−1) (∇P − ẑ) and vs = −∇U . (A.21)

The evolution of the dimensionless bulk composition is given by

∂C
∂t

+∇ ·
[
φvf + vsD

φ+D/φ0
C
]

= 0. (A.22)

Appendix B. Dimensional solitary porosity waves456

To explore the relevancy of solitary porosity waves as a transport mechanism457

in regional metamorphic fluid release and magma transport applications alike,458

the wavelength or size of the wave and speed of the wave must be known. Here459

we define the size of a solitary porosity wave to be the diameter of the circular460

dividing streamline, ∆ = D(λ)δ0, where D(λ) for λ ∈ [3, 8] is an empirical461

fit to the semi-analytic solutions shown in Figure 8c and further illustrated in462

Figure B.12. The dimensional speed of the wave, Λ = λw0 is simply the phase463

speed of the wave multiplied by the characteristic segregation velocity due to464

the buoyancy of the melt. Determining the physical size and speed of porosity465

waves is complicated by three factors:466

1. The strong dependence of the solitary waves on the constitutive exponents467

n and m as well as the physical dimension.468

2. The natural variation and the uncertainty in the magnitude of the physical469

parameters (e.g. grain size of the ambient mantle background).470

3. The presence of the two parameters φ0 and λ that are often unconstrained471

and hence commonly used as fitting parameters.472

All results presented in Sections 2 and 3 are for porosity waves with consti-473

tutive exponents (n,m)=(2,1) and in two-dimensions. Therefore, the discussion474

of the effect of these parameters is beyond the scope of this manuscript, but475

clearly an important question for future work. Similarly, we will not explore the476
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Figure B.12: Gray scale contours show the logarithm of scaled porosity field, φ′ = φ/φ0. The

maroon contour shows the circular, dividing streamline, the diameter of which is D(λ). It

is worth noting that the dividing streamline and amplitude increase considerably with phase

speed λ, the extent of the porosity anomaly grows much more slowly. This illustrates that

relatively fast moving waves are higher amplitude and thus focus melt far more efficiently.
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possible range of physical parameters, but simply assume commonly chosen val-477

ues for the upper-mantle as given in Table B.1. We focus on the two parameters478

φ0 and λ, which are often unclear.479

Table B.1: Parameters required for Equation(B.7)

Variable Description Value Dimensions

d Grain size 10−3 m

g Gravity 9.81 m s−2

η Shear viscosity of solid 1019 Pa s

τ Dimensionless parameter in K0 1600 –

µ Viscosity of fluid 1 Pa s

∆ρ Density difference of melt & matrix 500 kg m−3

The relevant physical relationships for solitary porosity waves form a non-

linear system of algebraic equations,

Λ = λw0, (B.1)

∆ = D(λ)δ0, (B.2)

w0 =
K0∆ρg

φ0µ
, (B.3)

K0 =
d2φ20
τ

, (B.4)

δ0 =

√
K0ξ0
µ

, (B.5)

ξ0 = ζ0 +
4

3
η, (B.6)

where D(λ) is a cubic fit of model output as shown in 8c and Table B.2, and480

ζ0 = ζ∗φ∗η/φ0. The ratio of bulk to shear viscosity of the matrix at reference481

porosity, φ∗, is denoted, ζ∗, and may range from 10− 200. The product of ζ∗φ∗482

has been estimated both experimentally and theoretically ranging from 1 − 10483

(Cooper, 1990; Hewitt and Fowler, 2008). Here we choose ζ∗φ∗ = 1 so equation484

B.6 becomes ξ0 = η(1/φ0 + 4/3). Lastly, τ (a dimensionless parameter in the485

permeability, K0) is chosen to be 1600, which is appropriate for n = 2 (Frank,486
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1968; von Bargen and Waff, 1986; Cheadle, 1989).487

Table B.2: Polynomial fit for f(λ) = a0 + a1 · λ+ a2 · λ2 + a3 · λ3 + a4 · λ4

a0 a1 a2 a3 a4

D −32.1647 17.4541 −2.4443 0.1237 0

φ′max −97.6775 66.7686 −14.9377 1.2758 0

D∗ 31.8696 −28.2758 8.8501 −1.1785 0.0654

The nonlinear system of algebraic equations (B.1)−(B.6) are combined to

obtain a single residual function,

R(∆,Λ, λ) = ∆−D(λ)
1

λ

(
Λτµ

d∆ρg

)√
η

τµ

[
4

3
+

(
λ
d2∆ρg

Λτµ

)]
= 0. (B.7)

Given values for Λ and ∆ the residual function is solved for λ and the relation-

ships described in (B.1)–(B.6) are determined. Additionally, the background

porosity can be expressed by rearranging (B.1) as,

φ0 =
1

λ

Λτµ

d2∆ρg
. (B.8)

This background porosity is contoured in Figure 11. General contours for poros-488

ity maximum porosity, or amplitude plus the background porosity, φ′max = A+1,489

are obtained using a cubic fit with coefficients provided in Table B.2. The di-490

mensional gold contours for φ = 0.05 in Figure 11a are calculated by multiplying491
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