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Abstract

Locomotion of machines and robots operating in rough terrain is strongly influenced by the

mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is

subject to collisional energy losses, which is governed by mechanics comparable to hopping

or walking locomotion. Here we investigate the energetic cost associated with overcoming

an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model

considers collision-based interactions with the ground and the obstacle, without frictional

losses, and we quantify, analyse, and compare the sources of energetic costs for three loco-

motion strategies. Our results show that the energetic advantages of the locomotion strate-

gies are uniquely defined given the moment of inertia and the Froude number associated

with the system. We find that hopping outperforms rolling at larger Froude numbers and vice

versa. The analysis is further extended for a comparative study with animals. By applying

size and inertial properties through an allometric scaling law of hopping and trotting animals

to our models, we found that the conditions at which hopping becomes energetically advan-

tageous to rolling roughly corresponds to animals’ preferred gait transition speeds. The

energetic collision losses as predicted by the model are largely verified experimentally.

Introduction

Rolling wheels are designed to operate in flat environments and are optimised for this specific

domain. The economic costs for transportation drive the design of wheeled vehicles towards

ever less fuel consumption, defining energy expenditure as one of the main objectives to be

minimised. While a rolling strategy is undoubtedly dominating flat terrains in terms of energy

expenditure, the strategy should be reconsidered in more complex environments. Wheeled

locomotion in natural terrain has been extensively studied in the field of terramechanics [1],

which employs empirical and computational tools to model and predict the soil-vehicle inter-

action. Terramechanics has aided the design of off-road vehicles ever since cars left roads, and

with the advent of planetary exploration rovers, which need to operate in surroundings with

loose soil and variable terrain conditions [2], more challenging terrain-wheel interactions are

being analysed.

Alternatives to rolling are readily displayed by nature’s crawling, hopping and running ani-

mals, but can these gaits compete with the energy effective rolling motion? In a study where
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cyclists compete against runners in an off-road track, it was found that their energy expendi-

ture is comparable [3], but cyclists finished significantly faster. This implies that even when

rolling and running strategies are compared on an equal footing, the rolling strategy still out-

performs the running one in terms of its speed. This comparison, however, is commonly done

in environments which lack an important element of natural terrain: obstacles. The energetic

cost of a wheel colliding with obstacles is a classical problem in mechanics [4], yet it is generally

only studied for rolling collisions.

The study of the rimless wheel [5–6] calls attention to the similarities of rolling and walking

collisions, and links wheeled locomotion to legged locomotion. Collision mechanics is a com-

monly used tool for analysis of legged locomotion, as repetitive leg-ground interactions are

typical in this form of locomotion. The simplest models reduce the analysed system to a single

body with point mass and look at the momentum balance of the collision such as in [7], where

the authors explain observed locomotion behaviour in the walk to run transition, and the elas-

tic behaviour in stance phase during running. An analogous approach studies collisional

behaviour of quadrupedal animals [8] and shows that walk and gallop provide collision reduc-

tion strategies in stance phase. Collisional analysis of gaits is not confined to legged locomo-

tion, but has also been used to study arboreal locomotion, such as brachiation in gibbons, to

explain the observed overshoot during swinging motion [9]. Other collision-based models

study two-bodied locomotion, such as in [10] where toe-off impulses acting on a two-legged

system are investigated. A similar system is introduced in [11], where the concept of passive

dynamic walking is studied in a collisional context. Extensions of the two-legged models also

investigate the effect of mass distribution on stability as described in [12] and [13]. Collision-

based models have not only led to the advancement of our theoretical understanding of loco-

motion, but also facilitated the creation of dynamic walking robots [14]. Even though colli-

sion-based models have been studied extensively in the past, the effect of mass distribution on

the energetic cost of impulsive events have not been investigated in depth, which we deem cru-

cial for the study of a rotating and hopping wheel.

In this work, we make use of the collision-based modelling approach to analyse energy

expenditure of three strategies in a wheeled system in the task of overcoming an obstacle, and

explicitly emphasise the role of mass distribution in the energetic analysis of impulsive events.

We quantify mass distribution by the wheel’s moment of inertia around the centre of mass,

which uniquely defines the inertial properties of the rigid body. We find a new way of over-

coming the obstacle which is associated with low energetic costs in the case of a small moment

of inertia. The model thus underscores the importance of moment of inertia and centre of

mass position in locomotion with collisional events and suggests a new perspective to under-

stand and induce hopping. Other than the quantitative analysis of energetic advantage of hop-

ping and rolling, this model can provide useful insights to the study of moment of inertia-

dependent dynamics in locomotion such as in swing-leg retraction [15], posture control dur-

ing flight phase [16], and balance during stance phase [17].

We test and compare the energetic cost of three distinct strategies for a rigid wheel to over-

come an acute and rigid obstacle of given height, as illustrated in Fig 1. We use the result of

this comparison to find conditions for which hopping is energetically advantageous to rolling.

We then take the theoretical result and use it to study its prediction on animal-related locomo-

tion conditions. The three strategies we analyse are governed by different physical effects to

overcome the obstacle. The rolling strategy shown in Fig 1C is characterised by a wheel with

centred mass colliding with the obstacle and subsequently rolling over it. In the trivial hopping

strategy as shown in Fig 1B, the kinetic energy of the system is increased in vertical direction

by the potential energy required to overcome the obstacle (ETH = mgh). We introduce a third

strategy with the rotational hopping strategy as shown in Fig 1A. This strategy exploits rotation
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Fig 1. Locomotion strategies. The motion progression of the three studied strategies to overcome an obstacle. Energetic cost of collision is

derived and completely defined for each strategy by wheel radius R, eccentricity a of the wheel, the mass located in the centre of mass m, the

moment of inertia around the centre of mass I, the obstacle height h, and the approach velocity ux. (A) Motion progression of the rotational

hopping strategy using an off-centred wheel. Hopping is induced by reverting the rotation during stance phase. (B) Motion progression of the

trivial hopping strategy using a wheel with centred mass. Hopping is induced by an increase of the kinetic energy in vertical direction. (C) Motion

progression of the rolling strategy. The obstacle is overcome by a wheel with centred mass colliding and rolling over it.

https://doi.org/10.1371/journal.pone.0194375.g001
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to overcome the obstacle and–as we will see–not only surpasses the trivial hopping strategy in

terms of energy effectiveness, but also displays characteristics of legged hopping locomotion.

The wheel’s mass distribution in this strategy is such that the centre of mass is off-centred,

due to which the centre of mass velocity will eventually have a component in vertical direction

as the wheel rolls over the ground. At a point where the velocity is directed away from the

ground, an induced rotation causes the wheel to revert its angular velocity. This forces the

boundary of the wheel to move away from the ground, which thus leads to a change from roll-

ing to a ballistic flight phase. The cost of this strategy is composed of the energetic cost of

reverting the rotation at take-off and the energetic cost of collision at touchdown.

The model for all strategies is completely described with its wheel radius R, its eccentricity a
(for the rotational hopping strategy), the mass located in the centre of mass m, the moment of

inertia around the centre of mass I, the obstacle height h, and the approach velocity ux. We will

first analyse locomotion strategies without specifying mass-size relationships before we apply

an allometric scaling law derived from hopping, running and trotting animals. This relates

mass, radius and moment of inertia to animal properties, and invokes the question of whether

animals would prefer to roll or hop in given environmental conditions.

The next section gives a detailed description of the used model and methods, followed by

the results of the strategy comparison and the study of the theoretical model for allometric

(animal related) scaling laws. We then verify the energetic collision losses of rolling and hop-

ping in an experimental setup of a wheel-obstacle test platform, before we discuss the results of

the strategy comparison.

Methods

Model assumptions

The subsequent theoretical analysis uses standard assumptions of planar rigid body mechanics.

The body inertia is given by the centre of mass with the point mass m, and the mass distribu-

tion represented by the moment of inertia I around the centre of mass. Collision of the rigid

body with the environment takes place at its boundary, which is a circular shape in all cases.

Note that forces acting on the boundary not only accelerate the centre of mass, but, depending

on their direction and point of attack, also induce a moment around the centre of mass accord-

ing to the moment of inertia I.We model environment interactions by inelastic collisions as

shown in [18] p.100, for example. This relates the pre-collision generalized velocity u− to the

post-collision velocity u+ by

uþ ¼ ðI � M� 1JTðJM� 1JTÞ� 1JÞu� ; ð1Þ

with I the identity matrix, M the generalised mass matrix, and J the Jacobian of the contact

point. Note that (1) does not allow for slippage between the wheel and the environment, mean-

ing that we do not have to model energetic losses due to friction. We will make extensive use

of what we call the collision matrix MC, which maps the pre- collision generalised velocities to

the dissipated energy by

DE ¼
1

2
ðu� ÞTMCu

� ; ð2Þ

with

MC ≔ � JTðJM� 1JTÞ� 1J: ð3Þ

Note that the collision matrix is simply derived by reformulating the difference in kinetic

energy before and after collision, i.e. ΔE = 1/2(u+)TMu+ − 1/2(u−)TMu−, by using (1).
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Rotational hopping strategy

Fig 2 shows the off-centred wheel model for the rotational hopping strategy with the general-

ized coordinates q = [x; y; ϕ]T with respect to an inertial frame of reference, with x the horizon-

tal position of the centre of mass, y the vertical position of the centre of mass, and ϕ the

angular position of the body. The radius of the wheel is denoted by the parameter R and its

eccentricity by a. Note that for all the calculations relating to the rotational hopping strategy,

the eccentricity was set to half the radius a = 0.5R. The ground contact Jacobian (see e.g. [18],

p.23 for the definition of Jacobians) is then

JH ¼
1 0 R � a cos�

0 1 � a sin �

" #

; ð4Þ

and the generalized mass matrix

M ¼

m 0 0

0 m 0

0 0 I

2

6
4

3

7
5: ð5Þ

We now describe the mode of locomotion of this system as also shown in Fig 2. Given a

forward speed ux of our system at an angle ϕ, the generalized pre-take-off velocity, defined

through the rolling kinematics, is

u�TO ¼ k

a cos� � R

a sin �

1

0

B
@

1

C
A; ð6Þ

where k = ux/(a cos ϕ − R) and the subscript TO indicates the take-off state. Fig 2(I) indicates

that the centre of mass velocity vCoM during rolling can point away from the ground, which we

exploit for a ballistic flight phase. A flight phase is induced if the angular velocity is reverted in

its direction in an instant, as this interrupts the rolling motion and causes the boundary of the

Fig 2. Rotational hopping model. Generalised coordinates q = [x, y, ϕ]T with x the horizontal displacement from

origin O, y vertical displacement from origin O, angular position ϕ, and system parameters mass m, moment of inertia

I, wheel radius R, eccentricity a, and obstacle height h. (I) State just before angular impulse. The angular velocity of the

system is reverted in a collisional event with angular impulse zR from _� �I to _� II . The velocity vCoM dictated by the

rolling motion then leads to a ballistic flight phase. (II) Ballistic flight phase. (III) State just before impulsive energy loss

due to impact z. Note that _�II ¼
_� �III .

https://doi.org/10.1371/journal.pone.0194375.g002
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robot to move away from the ground rather than staying on it. We induce this change by in

impulsive angular event, gauged such that the wheel reaches the angle ϕ = 0 at apex point. This

condition is fulfilled, if the angular speed after impulse is exactly _�þ ¼ � �
�
=tA, where tA is the

flight time to apex and ϕ� is the take-off angle. The angular impulse does not influence the

translational speed of the centre of mass at take-off, which means that a ballistic motion of

the centre of mass with initial velocity as given in (6) provides tA ¼ u�TO;y=g. We now find an

expression for the energetic cost to change the angular speed from pre-take-off to post-take-off

speed by

DER ¼
I
2

�
ð _� � Þ

2
þ ð _�þÞ

2
�
¼

I
2

�
�g

u�TO;y

 !2

þ k2

 !

: ð7Þ

The first term in the above Equation is the cost to induce the required angular speed during

flight phase, while the second term accounts for the braking energy required to stop the rolling

motion. The impulsive actuation causes the wheel to hop over the obstacle without colliding

with it. The only dissipative collision is the ground collision at touchdown. Since the ground is

assumed to be flat and the flight phase symmetric, we have for the touchdown angle ϕTD = −ϕ�,
and the generalised velocity at touchdown

u�TD ¼

kða cos� � RÞ

� k a sin �

�
�
�g

u�TO;y

0

B
B
B
B
@

1

C
C
C
C
A
; ð8Þ

in which we find the translational velocities through the ballistic flight phase, and the angu-

lar velocity by the requirement of a symmetric flight phase. Note the subscript TD which indi-

cates the touchdown state. The energy loss at ground collision ΔEC is then calculated using (2),

where JH(ϕ = −ϕ�) is used for the Jacobian in (3) and u�TD for the generalised velocity. The total

energy consumed to overcome the obstacle is the sum of energy required to induce the back-

ward rotation at take-off plus any energy deficit of the final energy after touchdown as com-

pared to the initial energy. We therefore write for the total energy consumed to overcome the

obstacle with the rotational hopping strategy

DEH ¼ rðE0 � E1Þ þ DER; ð9Þ

With r(.) the ramp function, E0 ¼ 1=2ðu�TOÞ
TMu�TO; and

E1 ¼
1

2
ðu�TDÞ

TMu�TD þ
1

2
ðu�TDÞ

TMC � �
�

ð Þu�TD: ð10Þ

Note that the argument of the collision matrix is the landing angle −ϕ�, i.e. MC(−ϕ�). In our

analysis, we will require the wheel to overcome an obstacle of height h. This will influence the

required take-off angle of the rotational hopping strategy. The obstacle will be surpassed if the

following implicit equation, obtained through the ballistic dynamics, is true

0 ¼ 2gð1 � aÞ cos�þ ðk a sin �Þ2 � 2gh: ð11Þ

The solution will lead to the take-off angle ϕ� leading to a symmetric hopping strategy

which surpasses the obstacle.

Note that we assume the wheel is placed at take-off such that it is exactly above the obstacle

at apex point. This placement can lead to cases where the boundary of the wheel overlaps with
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the obstacle at take-off in the case of slow locomotion speeds. For the sake of simplicity, we do

not model these interactions, and we assume that the obstacle has no effect on the hopping

process.

Rolling strategy

The collision of a rigid wheel with an obstacle is a classic problem in collision mechanics. We

use the generalised rolling velocity before impact uR = ux � [1,0,−1/R]T which corresponds to a

wheel with centred mass rolling on flat ground. The energy loss at collision can be obtained

from the collision matrix with the Jacobian of the collision point

JR ¼
1 0 R � h

0 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rh � h2
p

" #

: ð12Þ

We assume the coefficient of restitution to be negligible, thus allowing for inelastic colli-

sions. We derive the collision loss using (2) with Jacobian as in (12)

ΔERC1 ¼
1

2
uT

RMCuR ¼
mu2

x

2
�

hð2mR2 � Rhmþ 2IÞ
RðmR2 þ IÞ

: ð13Þ

The impact on the flat ground after rolling over the obstacle is also considered in the theo-

retical prediction. Theoretical energy loss is easily obtained with the post-obstacle collision

velocity up as

ΔERC2 ¼
1

2
uT
pMCup; ð14Þ

With up given by (1) using JR and uR. Note that the collision matrix MC in (14) is formed by

using a Jacobian for a flat ground contact point, i.e. (4) with the eccentricity a = 0. This leads

to the total energy loss of the rolling collision

DER ¼ ΔERC1 þ ΔERC2: ð15Þ

Trivial hopping strategy

For the trivial hopping strategy of the centred wheel, we apply a vertical impulse just before

the obstacle, such that the wheel hops over the obstacle. The energy required for this strategy is

equal to the potential energy to lift the wheel onto the obstacle

DEHW ¼ mgh: ð16Þ

This energy is exactly lost during ground collision, so that the post-obstacle speed is identi-

cal to the initial speed. As in the case of the rotational hopping strategy, the wheel is placed at

take-off such that it will hop over the obstacle at apex point. We do not model obstacle overlap

due to this placement in the case of slow locomotion speeds.

Allometric scaling laws

The relation between hip height in running and hopping mammals and birds has been estab-

lished using biological data [19–21]. The relation for radius to mass was found using linear

regression in the logarithmic scales of mass and hip height. The residual least squares solution

is

R ¼ 0:2063 �m0:3720; ð17Þ
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with a coefficient of determination r2 = 0.821. The result closely corresponds to findings for

quadrupeds in [22]. We therefore employ the radius of gyration and leg mass found in [22] to

deduce the moment of inertia of the leg around the hip joint.

The radius of gyration is

Rgy ¼ 0:047 �m0:33; ð18Þ

and the leg mass

mL ¼ 0:107 �m1:03; ð19Þ

which leads to a moment of inertia of one leg with respect to pivot point

I ¼ 2mL R2

gy ¼ 0:0004726 �m1:69: ð20Þ

The factor 2 accounts for two legs swinging in the same direction as in the case of quadru-

pedal animals, from which the data was retrieved.

Experimental set-up

The model was tested using a simple experimental setup as is illustrated in Fig 3. The wheel

consists of two wooden discs with a radius of R = 0.2m and 5mm thickness which were rigidly

connected with an 230x13mm aluminium rod in the centre of the wheel. A payload was added

on the centre of the rod to improve the mass to moment of inertia ratio, resulting in a mass of

m = 1.417kg and a moment of inertia of I = 0.008kg m2. To realize the off-centred mass, the

payload was transferred to a second rod placed at a distance of R=
ffiffiffi
2
p

from the centre of the

wheel. This shifted the overall centre of mass roughly to R=
ffiffiffi
8
p

from the centre of the wheel.

The modification led to a change in mass and inertia of ml = 1.495kg and Il = 0.01kg m2, respec-

tively. Four reflective markers were placed on the outer face of one disc for the purposes of

tracking the wheel motion. The wheel was then placed on one of four different heights on an

aluminium ramp and released, which would accelerate the wheel to four pre-impact velocities

before reaching a flat wooden track leading to the obstacle. Rubber sheets were fixed to the

wooden flat track and metal ramp to guarantee the no-slip condition. The obstacle consisted

of wood of 6mm thickness and was covered with a thin rubber sheet to reduce slip between the

wheel and obstacle. Two obstacle heights (3.6cm� 0.2R and 7.8cm� 0.4R) were investigated.

After the obstacle, the flat wooden track covered with rubber strips continued to provide space

for the collision after the obstacle was surpassed. For the hopping strategy, an impulse genera-

tor was installed, which consisted of a lever under the wooden track before the obstacle which

would push against the track from below and lift a part of the track. To activate the lever, a

weight of 1.5kg was dropped on the far end from a height no higher than the initial ramp posi-

tion of the system. The dropping height was optimised manually until the required energy was

achieved to overcome the obstacle at the tested speed. To track the motion of the wheel and to

get an indication of the obstacle position an OptiTrack motion capturing system was used

with 12 cameras placed around the testbed. Position data was tracked at a rate of 250Hz with a

precision of around 1.5mm and velocities were derived numerically from position data. Pre-

collision, flight phase, and post-collision states were obtained from the raw data to retrieve

energy conditions and losses. Each pre-collision velocity—obstacle height combination was

repeated until five successful samples were recorded.

In the experimental validation of the rotational hopping strategy, we only verify the ground

impact energy loss, not the impulsive event at take-off. This is because the ground impact

energy loss may be distorted by effects of ground-wheel interactions such as friction, which is
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not the case in the impulsive take-off event. We test the ground collision loss by throwing the

wheel by hand and induce a retracting motion to overcome the obstacle. The energy loss over

the impulsive event is then compared to the theoretical prediction according to Eq (2), given

the pre-touchdown velocity and touchdown angle. The position during flight phase, collision,

and rollout phase were again tracked using the motion capturing cameras.

Results

Theoretical results of the rotational hopping strategy

As shown in the methods section, hopping with the rotational hopping strategy as per Fig 2

comes with two energetic costs of different nature. The first cost is associated with the energy

required to induce a retracting motion of the wheel according to Eq (7). This cost increases

with shorter flight phase time, as the required rotation velocity scales with the flight phase

time. The second cost is due to the collision with the ground and is defined by the discrepancy

of the kinetic energy before take-off and after collision. The sum of these two costs is the

Fig 3. Experimental set-up. Sketch of the experimental conditions. A wooden and rigid wheel-axle system is placed on top of a ramp, released, and

guided towards an obstacle. Depending on the locomotion strategy, the system is either passively negotiating the obstacle or hopping over it by an

impulse. The motion is recorded with a motion capturing system using four trackable markers placed on one face of the wheel.

https://doi.org/10.1371/journal.pone.0194375.g003
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energy required to surpass the obstacle and reaccelerate the body to its initial state before take-

off.

Fig 4 shows the two energetic costs of the hopping locomotion of an off-centred wheel as a

function of locomotion speed. The wheel properties are defined for a mass of m = 80kg and an

obstacle height of h = 0.3R, Radius R = 1.05m, moment of inertia I = 0.78kgm2, and the take-off

angle which was found to be ϕ� = −0.43rad by solving the implicit Eq (11). We see for the cost

of retraction that a high cost occurs for low locomotion speeds, which is explained by the short

flight phase time and take-off angle, increasing the first term of Eq (7). For higher speeds, this

term becomes smaller, but the second term which accounts for the energy loss due to the

required rolling-deceleration increases quadratically with locomotion speed. The presence of

these two terms causes a minimum for the cost of retraction, slightly above 3m/s. For the cost

of collision, which we define as the difference between the initial kinetic energy before take-off

and the kinetic energy after collision, we see an increase towards higher locomotion speeds,

Fig 4. Costs for rotational hopping strategy. The two terms of the energetic collision loss in Eq (9) as a function of forward speed. The blue line

corresponds to the cost of retraction or rotation at take-off, and the yellow line corresponds to the energetic discrepancy between initial (pre-impulse)

and end (post-impact) state. The black dashed line indicates the trivial hopping strategy’s collision loss, equal to mgh. The parameters are: mass

m = 80kg, obstacle height of h = 0.3R, Radius R = 1.05m, moment of inertia I = 0.78kgm2, and the take-off angle ϕ� = −0.43rad.

https://doi.org/10.1371/journal.pone.0194375.g004
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which is explained by the dependency of collision loss with the quadratic form ΔE = u−Fu−/2

in Eq (2). The collision loss is significantly lower in the displayed range than for the case of a

wheel with centred mass which requires the potential energy mgh to overcome the obstacle.

This is due to the off-centred position of the wheel and can be comprehended as follows: If the

moment of inertia around the centre of mass was zero in the off-centred wheel, we could find

a landing angle which causes no energy loss during collision. This angle is such that the touch-

down velocity of the centre of mass is perpendicular to the vector pointing from centre of mass

to ground contact point. In the case of systems with smaller moments of inertia as compared

to their masses, this effect can reduce the collision losses as compared to a wheel with centred

mass.

Fig 4 shows that for speeds higher than 3m/s, the rotational hopping strategy predicts a cost

of retraction of roughly 1/3 of the energetic cost of collision, and collisional energy loss is 2/3.

In accordance with these findings, studies of running guinea fowls report swing leg costs of

26% of the total energy used for locomotion irrespective of locomotion speed [23], and a study

for walking in humans predicts a cost of roughly 30% [24].

Mass-independent theoretical results

The rotational hopping strategy depends on a low moment of inertia to exploit its advantages

over other strategies. Surprisingly, we find that only if the moment of inertia scales with I =

αmR2, i.e. the square of the radius, where we refer to the mass independent quantity α 6¼ α(m)

as the moment of inertia factor, the ratio of energy loss of rolling and hopping is independent

of the mass, and solely depending on the Froude number Fr ¼ u2
x=ðgRÞ for legged locomotion

(which is the square of the Froude number used in continuum mechanics) and the obstacle

height h. Fig 5 shows regions of optimality as a function of the factor α, the Froude number,

and obstacle heights between h = 0.1R and h = 0.5R. We see that hopping is more efficient for

higher Froude numbers and low values of α, while rolling dominates at low Froude numbers

and a larger moment of inertia. The relative improvement of rotational hopping for higher

Froude numbers and low moment of inertia factors is explained by the different costs associ-

ated with overcoming the obstacle. While the rolling strategy loses kinetic energy when collid-

ing with the obstacle, the rotational hopping strategy has no costs associated with obstacle

collisions. On the other hand, while the rotational hopping strategy requires the rotation of the

wheel to be reversed to hop over the obstacle, the rolling strategy passively rolls over it. The

energetic costs in the strategies scale differently as a function of Froude number and moment

of inertia factor, which results in the depicted transition lines These lines represent the section

at which rolling and rotational hopping strategy have an equal energetic cost to overcome the

obstacle. The effect of obstacle height on the optimal Froude number is more prominent for

larger values of α, and appears to lose significance for lower values. The optimality transitions

as a function of h also change their shape first in favour of the rotational hopping strategies for

h = 0.1R to 0.2R, and then in favour of the rolling strategy from h = 0.3R to 0.5R.

Note that Fig 5 provides results independent of wheel mass. It thus defines, depending on

the wheel properties, whether it is better to roll or to hop over an obstacle of height h with loco-

motion velocity ux.

Animal-related theoretical results

Before we present the animal-related results in this section, the similarities of our model and

legged animal locomotion need to be explained as they are not obvious. Legged locomotion is

characterised by repetitive stance and possibly flight phases. The transition from one stride to

the next is often accomplished over an impulsive event, in which energy is dissipated in the
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leg-ground collision. The leg is doing work to compensate for the collisional energy loss (and

other losses) during the stance phase. The legs need to be swung back during the gait cycle to

allow for a repetitive motion. Our rotational hopping model accounts for all the above as fol-

lows: flight and stance phase are both modelled; collisional energy loss is modelled at flight-

stance transition through inelastic collisions; energy deficit at the end of the cycle accounts for

the work that needs to be done to reaccelerate to the initial wheel state; rotational motion is

induced during flight to reset wheel posture. For the rolling strategy, the wheel-obstacle colli-

sion is identical to collisions as in the rimless wheel model for walking [5–6], which becomes

obvious by drawing spikes from centre of mass to ground contact and obstacle contact in the

rolling strategy obstacle collision. There are, of course, limitations of our simple collisional

models to capture the complex energetics of legged locomotion. Many effects add to the com-

plexity of legged locomotion, e.g. terrain properties, leg morphology and compliance, friction

with the ground, etc., which are not captured by our simple model. The results presented in

Fig 5. Optimality regions of rotational hopping strategy and rolling strategy. Regions of strategies with least energy loss to overcome an obstacle of

height h as a function of the moment of inertia factor α = I/mR2, and the Froude number Fr ¼ u2
x=ðgRÞ . The results shown are independent of the mass

of the wheel.

https://doi.org/10.1371/journal.pone.0194375.g005
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this section assume that legged animals are underlying the same physical laws of overcoming

an obstacle as our wheel model and need to be interpreted with the above limitations in mind.

We now study the energetic costs for the three strategies to overcome an obstacle between

h = 0.1R and h = 0.5R. We assign animal properties to the wheel, by setting R to the animal leg

length, m to its body mass, and I to the leg moment of inertia around the hip. The exact scaling

laws are presented in the methods section. As the moment of inertia does not scale proportion-

ally to the square of the radius as follows from (20) (radius of gyration scales differently from

leg length), the results now depend not only on the locomotion speed, but also on the mass.

The energetics of the respective strategies are computed as described in the method section,

with (15) for rolling, (16) for trivial hopping, and (9) for rotational hopping.

Fig 6A shows regions of optimal strategy as a function of body mass, locomotion speed, and

obstacle height for the trivial hopping and rolling in terms of energy required to overcome an

obstacle. We see that rolling dominates lower speeds and performs better at higher body mas-

ses. The lower the obstacle height, the better the hopping strategy performs. Indeed, we can

study the limit case for which the obstacle height vanishes and find that optimality transition

from rolling to hopping occurs at a Froude number of 1, with Fr ¼ u2
x=ðgRÞ. A simulation

study of gait transitions with energy optimality objective [25] reached a similar conclusion,

stating that running is preferred over walking for vanishing step lengths at a Froude number

of larger than one. Vanishing step lengths would correspond to infinitesimal obstacle heights

in our model.

Fig 6B shows the rotational hopping strategy and its optimality transitions from rolling to

hopping for the same obstacle heights and mass/locomotion speed as in 6A. We see that even

though rolling is still superior to hopping for low locomotion speeds, the rotational hopping

strategy takes over optimality at lower speeds than in the trivial hopping case. Fig 4 already

hinted toward this observation, by the rotational strategy’s lower energetic losses. We would

like to point out that the improved performance is dependent on our allometric scaling law of

moment of inertia with body mass m. As we have seen in Fig 5, the optimality transitions are

Fig 6. Optimal locomotion strategy for animal related parameters. Regions of optimal strategies as a function of body mass m, locomotion speed ux,

and obstacle height h. Parameters are set using the allometric relations (17)–(20), which scale the wheel radius R such that it corresponds to the animal

leg length, the point mass m corresponds to animal body mass, and the moment of inertia around the centre of mass I corresponds to leg moment of

inertia around the hip. (A) Rolling strategy compared to trivial hopping strategy and their optimal regions. (B) Rolling and rotational hopping strategy

and their optimal regions. Walk to hop/run/trot gait transitions for various animals are indicated [26–30].

https://doi.org/10.1371/journal.pone.0194375.g006
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independent of mass if the moment of inertia factor α is of the form I/mR2. Since this is not the

case in the allometric relations (17)–(20), this is not exactly true. We find, however, that for the

allometric scaling law of leg moment of inertia (20), the optimality transition happens above a

Froude number of Fr = 0.3, only slightly varying with body mass. This is in close correspon-

dence with experimental findings in quadrupedal animals [26]. Note that Fig 6B shows the

transition of the best strategy, not the quantitative energetic loss. We found that 0.5m/s away

from the transition line, the rolling and hopping strategies roughly differ by a factor of 2 for all

masses, which indicates a rather quick change in optimality as a function of locomotion speed.

The energy loss difference between hopping and rolling strategies varies less strongly as a func-

tion of mass.

As we scaled the moment of inertia of the wheel with the moment of inertia of animal’s

legs, we indicated transition speeds from walking gaits to hopping, running, or trotting for var-

ious animals, and we observed that they seem to follow the transition lines.

Experimental results

For validation of our model assumptions, we constructed an experimental test platform as

shown in Fig 3 and explained in detail in the methods section. Fig 7 shows the motion progres-

sion for the three locomotion strategies in experiment. We would like to refer the reader to

our supplementary material S1 Video, where we added a slow-motion video of the experimen-

tal procedures.

In the simple case of the centred wheel, we performed a controlled set of experiments to

assess the collisional energy losses as explained in detail in the methods section. The results for

Fig 7. Motion progression of experimentally tested strategies. (A) motion progression of the rolling experiment at an approach speed of 1.8 m/s. (B)

motion progression of the trivial hopping experiment at an approach speed of 1.9 m/s. (C) motion progression of the rotational hopping experiment by

throwing the wheel. Approach speed corresponds to 2 m/s.

https://doi.org/10.1371/journal.pone.0194375.g007
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two different obstacle heights as a function of the kinetic and potential energy before the obsta-

cle collision are shown in Fig 8A and 8B, along with the theoretical predictions of the model.

The variance arises mainly due to noise in the measurements and the numerical derivative to

obtain system velocity but may also stem from ignored effects such as damping, friction, and

the omitted lateral dimension. The impulse generator created variations in hopping heights,

which was accounted for in post-processing by subtracting the gap potential energy arising

due to the distance between wheel apex height in flight phase and obstacle height. Measure-

ment noise and possible elastic restitution at touchdown may have caused the energy loss to

fall under the predicted value in some cases. The results show that optimality transition of

both theory and experiment occur at around the same initial energy, i.e. approach speed,

which validates our model assumption that collisions are the dominant energetic loss during

the process of overcoming the obstacle.

For the case of the off-centred wheel, we assessed the accuracy of the energy saving mecha-

nism at collision as predicted by the quadratic form (2). A simple validation is obtained by

throwing the wheel to land at different touchdown angles and speeds and comparing the

experimental losses with the theoretical prediction. Fig 9 shows the relative error of the pre-

dicted energy loss at collision divided by the total energy at touchdown, as a function of the

total energy at touchdown. The total energy is the sum of kinetic and potential energy, and the

relative error is the theoretical predicted energy loss minus the experimental energy loss. As

shown by the results, the experimental losses tend to be larger than the theoretical prediction,

which we explain by non-modelled internal losses in the system and friction. The results show

that the collisional model of the off-centred wheel can provide accurate predictions of energy

loss in experimental conditions. This ensures that the predictions in Fig 4, where we claimed

that the off-centred wheel can significantly reduce energetic collision losses as compared to the

case of the centred wheel, are valid.

Fig 8. Experimental collision loss for rolling and trivial hopping strategies. (A) Energy loss of rolling strategy and trivial hopping strategy as a

function of pre-collision energy for an obstacle height of 0.18R. Error bars indicate one standard deviation. (B) Energy loss of rolling strategy and trivial

hopping strategy as a function of pre-collision energy for an obstacle height of 0.39R. Error bars indicate one standard deviation.

https://doi.org/10.1371/journal.pone.0194375.g008
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Discussion

In this work, we have studied the task of a wheel overcoming an obstacle. Because wheels are

generally studied in the context of rolling, we aimed to find out if strategies like hopping can

be energetically advantageous in this context. Based on collisional mechanics, we have ana-

lysed three strategies, namely the rolling strategy, the trivial hopping strategy, and the rota-

tional hopping strategy. Collision based models which study impulsive transitions of the

centre of mass [7–10], are powerful tools to understand the underlying physical principles of

locomotion, but more complex models might explain effects which are not covered by the sim-

ple representation [31]. In this spirit, the inclusion of mass distribution represented by the

moment of inertia around the centre of mass, as presented here, was a necessary model exten-

sion to find the rotational hopping strategy. Due to this enhancement of the model, we found

that the trivial hopping strategy (which is unaffected by the moment of inertia) is not necessar-

ily the most energy-effective in the task of overcoming an obstacle, but, as shown in Figs 4 and

6, that the rotational hopping strategy is superior over a wide range of parameter values. We

Fig 9. Prediction error of energetic collision loss for rotational hopping strategy. The off-centred mass wheel was thrown over the obstacle, and the

touchdown position and velocity state was used to predict theoretical loss ΔETheor, which was compared to the experimental loss ΔEExp to give the

prediction error ΔEPred. The value is normalized with the total energy at touchdown ΔETotal = ΔEKin + ΔEPot.

https://doi.org/10.1371/journal.pone.0194375.g009
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provided quantitative results that show at which point a wheel better hops than rolls over an

obstacle as a function of the Froude number, of the ratio α = I/(mR2), and of the obstacle

height. The three tested locomotion strategies underlie different sources of energetic cost. The

passive rolling strategy collides with the obstacle, the trivial hopping strategy requires the fixed

energy mgh to be lifted over the obstacle, and the rotational hopping strategy uses a backward

rotation to retract its boundary to clear the obstacle and has a reduced collision at touchdown

due to the eccentricity of the wheel. Although the strategies are different in their source of

energetic loss, a comparison of the collisional losses reveals that the advantage of hopping over

rolling as shown in Fig 5 is independent of mass m, and can distinctly be determined by only

the Froude number and moment of inertia factor for a given obstacle height h. The energetics

of the three strategies therefore uniquely determine the best way to overcome an obstacle

given wheel size, speed, mass distribution, and obstacle height.

The results shown in Fig 6 presented velocity regions of advantages for hopping over rolling

strategies for a wheel with the same size, mass, and mass distribution as hopping and trotting

animals have. The results show that animal gait transitions from walking to hopping locomo-

tion occur around the boundary from advantages in hopping to rolling. These results point to

similarities between the wheel roll-hop transition and gait transitions in legged animals.

One aspect which relates to both systems is the cost to retract the wheel or leg. During flight

phase of the wheel model, as seen in Fig 4, the cost to induce the retracting motion at higher

locomotion speeds is around 30%. Similar findings were presented for the energetic cost of

swing leg retraction in animals [32, 33], and results obtained with mechanical models as in

[15, 16] further highlight the importance of modelling swing leg retraction in legged locomo-

tion energetics. Furthermore, the rotational hopping strategy also allows for a redirection of

centre of mass after touchdown, which costs no energy due to the smooth rolling transition of

the wheel. This effectively results in a trajectory like that in spring-mass models for locomotion

[34]. As indicated in [5] and [6], walking energetics can be modelled with a rimless spoked

wheel, where the legs are interpreted as spokes. The rolling collision loss studied here is indeed

identical to the spoked wheel collision, as revealed by a simple rotation of the system (the effect

of gravity is negligible over a collisional event). If walking therefore is associated with the same

collisional energy loss as rolling, Fig 6B may explain why animals change their gaits at the tran-

sition where hopping becomes more advantageous than rolling. Note that this is only true,

however, if the rotational hopping strategy presented in this work does capture the correct

energetic costs as found in legged animals. If so, the leg, through walking, may incorporate

advantages of rolling at slow speeds, and of hopping at faster speeds. Based on the premise of

environments with obstacles and the objective to minimise energy, the wide use of legged hop-

ping rather than rolling in nature seems reasonable.

Our results need to be interpreted with consideration of the model assumptions. A simple

obstacle may not completely represent the complexity of natural environments, and legs can

certainly exploit more subtle effects than a rigid wheel. Nevertheless, we showed how optimal

strategies to overcome an obstacle from rolling to hopping occur in a wheel, and we largely

verified the energetic loss predictions in experiments. The results state that if the moment of

inertia of the body is small, the superiority of hopping becomes apparent even at low locomo-

tion speeds. The slender legs of animals hint toward a design in nature to reduce leg moment

of inertia, possibly to exploit the same physical effects as studied in the wheel model.

Supporting information

S1 Video. Slow motion videos of sample experiments. The three locomotion strategies were

filmed with 300fps. Locomotion speeds are around 2m/s and pre-collision energies around 5J.
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Obstacle height 7.8cm.

(MP4)

Author Contributions

Conceptualization: Fabio Giardina.

Formal analysis: Fabio Giardina.

Investigation: Fabio Giardina.

Methodology: Fabio Giardina.

Supervision: Fumiya Iida.

Validation: Fabio Giardina.

Writing – original draft: Fabio Giardina.

Writing – review & editing: Fabio Giardina.

References
1. Wong JY. Terramechanics and off-road vehicle engineering: terrain behaviour, off-road vehicle perfor-

mance and design. Butterworth-Heinemann; 2007.

2. Shibly H, Karl I, Dubowsky S. An equivalent soil mechanics formulation for rigid wheels in deformable

terrain, with application to planetary exploration rovers. J. Terramechanics 2005; 42.

3. Mastroianni GR, Zupan MF, Chuba DM, Berger RC, Wile AL. Voluntary pacing and energy cost of off-

road cycling and running. Applied ergonomics 2000; 31.

4. Taghavifar H, Mardani A. Off-road Vehicle Dynamics. Springer International Publishing; 2017.

5. McGeer T. Passive dynamic walking. Int. J. Rob. Res. 1990; 9.

6. Margaria R. Biomechanics and energetics of muscular exercise. Oxford University Press, 1976.

7. Ruina A, Bertram JEA, Srinivasan M. A collisional model of the energetic cost of support work qualita-

tively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the

walk-to-run transition. J. Theor. Biol. 2005; 237.

8. Lee DV, Bertram JEA, Anttonen JT, Ros IG, Harris SL, Biewener AA. A collisional perspective on qua-

drupedal gait dynamics. J. R. Soc. Interface 2011; 8.

9. Usherwood JR, Bertram JE. Understanding brachiation: insight from a collisional perspective. J. Exp.

Biol. 2003; 206.

10. Kuo AD. Energetics of actively powered locomotion using the simplest walking model. J. Biomech. Eng.

2002; 124.

11. Garcia M, Chatterjee A, Ruina A, Coleman M. The simplest walking model: stability, complexity, and

scaling. J. Biomech. Eng. 1998; 120.

12. Goswami A, Espiau B, Keramane A. Limit cycles in a passive compass gait biped and passivity-mimick-

ing control laws. Autonomous Robots 1997; 4.

13. Hass J, Herrmann JM, Geisel T. Optimal mass distribution for passivity-based bipedal robots. Int. J.

Rob. Res. 2006; 25.

14. Collins SH, Ruina A. A bipedal walking robot with efficient and human-like gait. In IEEE Intl. Conf.

Robot. Autom. 2005: 1983–1988.

15. Seyfarth A, Geyer H, Herr H. Swing-leg retraction: a simple control model for stable running. J. Exp.

Biol. 2003; 206.

16. Libby T, Moore TY, Chang-Siu E, Li D, Cohen DJ, Jusufi A, Full RJ. Tail-assisted pitch control in lizards,

robots and dinosaurs. Nature 2012; 481.

17. Goswami, A., Kallem, V. Rate of change of angular momentum and balance maintenance of biped

robots. In IEEE Intl. Conf. Robot. Autom. 2004: 3785–3790.

18. Pfeiffer F, Glocker C. Multibody dynamics with unilateral contacts. John Wiley & Sons; 1996.

19. Alexander RM. Three uses for springs in legged locomotion. Int. J. Rob. Res. 1990; 9.

20. Dawson TJ, Taylor CR. Energetic cost of locomotion in kangaroos. Nature 1973; 246.

Collision-based energetic comparison of rolling and hopping over obstacles

PLOS ONE | https://doi.org/10.1371/journal.pone.0194375 March 14, 2018 18 / 19

https://doi.org/10.1371/journal.pone.0194375


21. Rubenson J, Heliams DB, Lloyd DG, Fournier PA. Gait selection in the ostrich: mechanical and meta-

bolic characteristics of walking and running with and without an aerial phase. Proc. of the Royal Soc.

London-B 2004; 271.

22. Kilbourne BM, Hoffman LC. Scale effects between body size and limb design in quadrupedal mammals.

PLoS One 2013; 8.

23. Marsh RL, Ellerby DJ, Carr JA, Henry HT, Buchanan CI. Partitioning the energetics of walking and run-

ning: swinging the limbs is expensive. Science 2004; 303.

24. Doke J, Donelan JM, Kuo AD. Mechanics and energetics of swinging the human leg. J. Exp. Biol. 2005;

208.

25. Srinivasan M, Ruina A. Computer optimization of a minimal biped model discovers walking and running.

Nature 2006; 439.

26. Alexander R, Jayes AS. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool.

1983; 201.

27. Alexander RM, Vernon A. The mechanics of hopping by kangaroos. J. Zool. 1975; 177.

28. Fedak MA, Heglund NC, Taylor C. Energetics and mechanics of terrestrial locomotion. II. Kinetic energy

changes of the limbs and body as a function of speed and body size in birds and mammals. J. Exp. Biol.

1982; 97.

29. Hoyt DF, Wickler SJ, Cogger EA. Time of contact and step length: the effect of limb length, running

speed, load carrying and incline. J. Exp. Biol. 2000; 203.

30. Heglund NC, Taylor CR. Speed, stride frequency and energy cost per stride: how do they change with

body size and gait? J. Exp. Biol. 1988; 138.

31. Full RJ, Koditschek DE. Templates and anchors: neuromechanical hypotheses of legged locomotion on

land. J. Exp. Biol. 1999; 202.

32. Haberland M, Karssen JD, Kim S, Wisse M. The effect of swing leg retraction on running energy effi-

ciency. In IEEE Intl. Conf. on Intelligent Robots and Sys. 2011: 3957–3962.

33. Pontzer H. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and

quadrupeds. J. Exp. Biol. 2007; 210.

34. Blickhan R. The spring-mass model for running and hopping. J. Biomech. 1989; 22.

Collision-based energetic comparison of rolling and hopping over obstacles

PLOS ONE | https://doi.org/10.1371/journal.pone.0194375 March 14, 2018 19 / 19

https://doi.org/10.1371/journal.pone.0194375

