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We study experimentally the effects of span-wise confinement on turbulent miscible
fountains issuing from a round source of radius r0. A dense saline solution is ejected
vertically upwards into a fresh-water environment between two parallel plates, separated
by a gap of width W , which provide restraint in the span-wise direction. The resulting
fountain, if sufficiently forced, rapidly attaches to the side plates as it rises and is therefore
‘confined’. We report on experiments for five confinement ratios W/r0, spanning from
strongly confined (W/r0 → 2) to weakly confined (W/r0 ≈ 24), and for source Froude
numbers Fr0 ranging between 0.5 6 Fr0 6 96. Four distinct flow regimes are observed
across which the relative importance of confinement, as manifested by the formation and
growth of quasi-two-dimensional structures, varies. The onset of each regime is established
as a function of both W/r0 and Fr0. From our analysis of the time-averaged rise heights,

we introduce a ‘confined’ Froude number Frc ≡ Fr0 (W/r0)
−5/4

, which encompasses
the effects of confinement and acts as the governing parameter for confined fountains.
First-order statistics extracted from the flow visualisation, such as the time-averaged rise
height and lateral excursions, lend further insight into the flow and support the proposed
classification into regimes. For highly-confined fountains, the flow becomes quasi-two-
dimensional and, akin to quasi-two-dimensional jets and plumes, flaps (or meanders).
The characteristic frequency of this flapping motion, identified through an ‘eddy counting’
approach, is non-dimensionalised to a Strouhal number of St = 0.12 to 0.16, consistent
with frequencies found in quasi-two-dimensional jets and plumes.

1. Introduction

To the fluid dynamicist, a fountain can be defined as a continuous and localised
release of fluid for which buoyancy forces oppose momentum at the source. Following
the initial rise, the flow collapses onto itself under gravity, with the classic picture of the
flow comprising of a descending counterflow shrouding an ascending upflow. The many
applications for fountains (see Hunt & Burridge (2015) for a review) have motivated
their study in various configurations: axisymmetric (Turner 1966) and planar (Zhang
& Baddour 1997), releases in stratified environments (Bloomfield & Kerr 1998), non-
Boussinesq (Mehaddi et al. 2015), immiscible (Friedman et al. 2007), to name but a
few. One class of fountains which has not yet been investigated is confined fountains,
which arise when the flow is confined between two narrowly spaced plates. These plates
serve to restrict the growth of the flow in the span-wise dimension, hence the flow
develops primarily in the streamwise-and-crossstream plane. Our focus in this paper
is to investigate the dynamics of such confined fountains.

Confining shear flows in the span-wise direction is not a novelty. Confined jets, for

† Email address for correspondence: gary.hunt@eng.cam.ac.uk



2 A. L. R. Debugne and G. R. Hunt

instance, have long enjoyed considerable attention for their dispersive properties and
applications to effluent discharge in shallow waters (Jirka 2001; Landel et al. 2012b). More
recently, confined plumes have come under investigation too (Rocco & Woods 2015). The
literature commonly refers to these flows as ‘quasi-two-dimensional’, since their motion,
being restricted in the span-wise direction, is (at the large scale) primarily in a plane. In
these flows, instabilities rapidly induce a sinuous motion in the core (Chen & Jirka 1998).
In turn, this motion prompts the development of large-scale counter-rotating eddies on
alternate sides of the core which grow with downstream distance (z) from the source
and accentuate the jet’s (or plume’s) meandering (Landel et al. 2012a). The onset of
meandering marks the beginning of the far field and occurs around z/W & 10 (Dracos
et al. 1992), withW denoting the span-wise extent of the flow. Beyond this value, both the
core structure and the surrounding eddies develop self-similarly; internal variables (such
as the radius and velocity) retrieve the scaling of planar jets and plumes, respectively
(Landel et al. 2012a; Rocco & Woods 2015). To date, most studies have focused on the
far field as being somewhat more relevant to environmental applications.

As a motivation for the current investigation, we ask what the corresponding behaviour
is for confined fountains. Unlike jets and plumes, the rise of fountains is limited by
their buoyancy, so that the scope for the interplay between large-scale eddies astride a
meandering core is less clear. A far-field behaviour, therefore, may not always be reached,
which suggests that a more nuanced view on the effects of confinement is appropriate
for fountains. A priori, one might expect the dynamics to depend both on the degree of
physical confinement and on the source Froude number Fr0 (defined later); Fr0 governing
the final rise height of turbulent fountains (Turner 1966; Hunt & Burridge 2015). Other
questions remain open too: for instance, do large-scale eddies persist in organising the
motion, or are they shed from the driving core due to their density? It is the aim of this
paper to provide an understanding of confined fountains by studying confined aqueous-
saline releases in a series of experiments.

The remainder of the paper is structured as follows. In §2, we describe the experimental
method. Observations of the flow are reported in §3, where we illustrate the different flow
regimes in a series of snapshots. The thresholds for these regimes are first specified for a
single confinement ratio W/r0 in terms of source Froude numbers Fr0. Our quantitative
analysis (§4) then reveals how to generalise the findings from §3 to all confinement ratios
examined herein by constructing a modified ‘confined’ Froude number. Rise heights,
lateral excursions and characteristic frequencies are shown to collapse when scaled
accordingly. Finally, we draw conclusions in §5 and point to possible extensions of the
current study.

2. Experimental procedure

Confined fountains were produced by continuously ejecting a dyed saline solution
vertically upwards into a narrow gap from a round nozzle of radius r0. The gap, of width
W , was formed by attaching, with suction cups, a sheet of clear acrylic of dimensions
65× 75 cm2 to the front face of a large, fresh-water-filled visualisation tank. The spacing
W could be accurately adjusted so to set W within 0.5 mm using threaded rods mounted
on the suction cups. The nozzle was installed flush in a horizontal PVC section (shaded
grey in figure 1a), of width W , which was secured along the base of the acrylic sheet;
thus, it prevented outflow through the base of the sheet, so that the fountain fluid left
the gap sideways as a gravity current. Moreover, the PVC section helped minimise any
potential warping and enforce the uniformity of the gap width across the sheet; spacers
were positioned in the top corners to the same end. This experimental arrangement is
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Figure 1. (a) Diagram of the experiment illustrating the two rectangular plates confining the
fountain. A dyed saline fountain propagates through a narrow gap of width W filled with fresh
water and traces a typical S-shaped meander. The set-up is immersed in a large visualisation
tank and open to the top, left and right sides, so that the fountain is free to entrain fluid from the
ambient and to release the outflow sideways. The instantaneous (centreline) rise height zf (t) and
the lateral extents of the fountain left xl(t) and right xr(t) are marked by crosses (see §4). The
vertical and horizontal dashed lines denote the centreline and half the time-averaged rise height
zf/2, respectively. (b) Top view of the nozzle and base used for set A, W/r0 = 2.7 (table 1),
representative of the fully confined case. In (b), W = 11.6 mm and 2 r0 = 8.6 mm.

depicted in figure 1(a). Note that the left, right and top sides of the gap are unobstructed,
so that the fountain could freely entrain ambient fluid from the enclosing tank.

We conducted experiments at five different confinement ratios W/r0 ranging from 2.7
to 24.2. Additionally, one confinement ratio (W/r0 = 4.7) was achieved twice for different
combinations of W and r0, amounting to six sets of experiments. Of these sets, the set
run at a confinement ratio of W/r0 = 2.7 approaches the theoretical limit of complete
confinement, W/r0 = 2. Material constraints such as the thickness of the nozzle wall
prevented us from reaching lower values of W/r0. Nevertheless, the spacing between the
inner walls of the nozzle and the confining side walls is narrow (1.5 mm either way for
2 r0 = 8.6 mm, figure 1b), so that the experiments run at W/r0 = 2.7 may be regarded
as representative of the fully confined case.

Within each set, we set the separation W on the acrylic sheet and installed a PVC
section of appropriate width and nozzle radius before attaching our set-up to the inside
of the visualisation tank. Great care was taken to ensure that the nozzle was aligned
vertically. Then, within each set we varied the source Froude number

Fr0 =
w0√
r0 g′0

, (2.1)

where w0 = Q0/(πr
2
0) denotes the cross-section-averaged source velocity and g′0 the

source buoyancy, by increasing the volume flow rate Q0 dispensed by an Ismatec ‘MCP-
Z Process’ gear pump connected to the nozzle. This implies that the source Reynolds
number Re0 = w0r0/ν0 (with ν0 = 10−6 m2 s−1 the kinematic viscosity) was varied
simultaneously; hence it is, in general, not possible to segregate Re0-effects in our results.
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In total, 278 individual experiments were conducted over the ranges 0.5 6 Fr0 6 96 and
104 6 Re0 6 5772. To our knowledge, this represents the highest Fr0 at which round
fountains have been investigated to date. For three of these experiments, the extent of
the fountain occasionally exceeded that of the sheet of acrylic; this proved necessary to
observe the qualitative behaviour of confined fountains at very high Fr0. Note, however,
that their statistics are not included in our quantitative analysis. A summary of the
experimental parameters are given in table 1.

The flow rates were measured on an Apollo ‘Lowflo’ flow meter during early experi-
ments (sets B, C, D, F) and on an Altrato ‘Ultrasonic’ flow meter in later experiments
(sets A, B, E). Whilst switching equipment during a campaign is unorthodox, in our case
the switch was justified as the Altrato flow meter allowed us to log the trace of Q0(t)
(see appendix A) and hence to exclude the possibility of the observed flow features being
produced by irregularities in Q0. Experiments from set B were partially repeated to check
for consistency between both devices, with good results (see §4). Both flow meters have
an accuracy of ±1.0%, which, together with a densitometer (Anton Paar ‘DMA 5000’)
accurate to the fourth decimal, allowed Fr0 to be reliably determined to within 3.9%,
at worst; the source buoyancy g′0 being measured as g′0 = (ρ0 − ρa)/ρa, with ρ0 and ρa
designating the densities of the source solution and of the ambient, respectively.

For visualisation, the source solution was stained with methylene blue and backlit by
an array of high-frequency fluorescent tubes. Recordings of the quasi-steady fountain,
initiated after the initial transients had passed, were made on a JAI ‘CVM4+CM’ CCD
camera at 12 or 24 frames per second. The recordings varied in duration, capturing
well over 100 buoyancy time scales w0/g

′
0 in the majority of runs and never less than

40w0/g
′
0. We then extracted flow statistics, such as those shown on figure 1, by tracking

in time the edge of the fountain based on a luminosity (or density) threshold within
an experimental error of 2.0%. Given that a sharp interface was maintained at all time
between the saline fountain and the fresh-water ambient, the data was not sensitive to the
choice of threshold value. Edge detection algorithms which rely on luminosity gradients
in the image, such as ‘Canny’ (Canny 1986), were also implemented. The findings across
both methods were consistent, differing only slightly in magnitude but not in scaling. For
simplicity and consistency, we proceed to analyse the results obtained from thresholding
the luminosity.

Finally, we note that the effects of wall friction will be neglected in this paper. Indeed,
Dracos et al. (1992), who performed experiments of quasi-two-dimensional jets on an open
water table, found that covering the water surface (i.e. introducing twice the friction)
did not alter their measurements significantly. Likewise, Giger et al. (1991) and Landel
et al. (2012a) estimated that the wall friction along their acrylic sheets resulted in a
10% loss of momentum. This value is likely to act as an upper bound in fountains which,
owing to their buoyancy, propagate less far: in Giger et al. (1991) and Landel et al.
(2012a), the 10% loss was inferred over downstream distances from the source of 40W
and 110W , respectively, whereas our fountains rise to 25W , at most (§4). In line with
previous researchers, we therefore proceed on the premise that the effects of wall friction
in our experiments are negligible.

3. Flow visualisation, observations and classification

Our observations lead us to propose a classification for confined fountain behaviour
into four regimes (§§3.1–3.4). In order of increasing role of confinement, we refer to these
regimes as:

– weakly-confined regime
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Set 2 r0 (cm) W (cm) Q0 (l/h) g′0 (m/s2) Fr0 Re0 W/r0 Symbol

A 0.86 1.16 22.3− 101 0.314 3.4− 14.4 475− 2152 2.7 ☆☆☆

B 0.85 2.00 5.00− 139 0.248− 0.477 0.5− 24.5 104− 5772 4.7 ◊◊◊

C 0.43 1.00 10.4− 57.4 0.255− 0.262 8.4− 46.9 428− 2361 4.7 ◊◊◊

D 0.43 2.56 3.70− 36.2 0.264− 0.283 5.8− 66.2 299− 3440 11.8 △△△

E 0.43 3.50 11.0− 126 0.278− 0.282 8.3− 96.0 449− 5176 16.6 ◯◯◯

F 0.46 5.59 3.80− 49.0 0.247− 0.248 5.1− 79.7 280− 4402 24.2 ◻◻◻

Table 1. Experimental parameters for the six experimental sets (A–F) and corresponding
symbol used in figures 7–11, 13, 14, 17 and 18.

– asymmetric-stable regime
– transitional regime
– meandering (quasi-two-dimensional) regime.

The features characteristic of each are illustrated by means of time series of the fountain
front zf (t) and snapshots of the flow taken from set B (W/r0 = 4.7). Each figure is
accompanied by a video, available online, of the experiment from which the snapshots
were extracted. We chose set B as a reference set to describe the regimes because the full
range of regimes is observed only when the fountain transitions from being round at the
source to being confined once it attaches to the walls. Fountains that are confined from
the source (W/r0 → 2) exhibit only a subset of the regimes for reasons explained in §3.5.
As such, in the following the limits of each regime are stated in terms of Fr0-thresholds
which pertain only to set B. We show how to generalise our findings to all confinement
ratios considered herein in §4.

3.1. Weakly-confined regime, Fr0 . 8

Instantaneously, confined fountains produced for small Fr0 bear a strikingly similar
appearance to their unconfined, axisymmetric counterparts. The resemblance is evident
on comparing figure 2(a–c) to figure 2 in Burridge & Hunt (2012). The fountain consists
of an upflow-counterflow double structure that is symmetric about the centreline and
which fluctuates vertically about its time-averaged rise height. Visually, the fountain
appears largely unaffected by the confinement.

A straightforward check allows us to confirm that the fountain is indeed in contact
with the walls: were it unconfined, we expect the fountain top to attain an external
radius of bt ≈ 0.5 r0Fr0 (Burridge & Hunt 2013; Hunt & Debugne 2016). For the
fountain shown in figure 2, produced at Fr0 = 5.4, this leads to bt > 2.5 r0, i.e.
bt > W/2 and the fountain fills the gap. Moreover, it is clear that the induced radial
inflow and the sideways fluctuations will prompt the fountain to cling to the walls
sooner, though how much sooner is difficult to quantify. Crucially, the distance over
which the fountain has clung is not sufficient to induce significant changes in its dynamics.

When the fountain is weak (Fr0 . 2), such that the gap width is larger than but
comparable to its external radius, the fountain cyclically attaches to the front and back
wall as it precesses around the source. We report on this behaviour in appendix B.
However, we do not include ‘weak’ confined fountains as a separate regime in our
classification; the effects of confinement are indeed the same as in weakly confined
fountains: the walls restrict the span-wise growth, but not sufficiently to induce two-
dimensional effects.
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Figure 2. Weakly-confined fountains: zf (t) for Fr0 = 5.4 and W/r0 = 4.7 (movie 1). The
bulk flow is unchanging (as illustrated by the sequence a–c) and visually indistinguishable from
unconfined round fountains.

3.2. Asymmetric–stable regime, 8 . Fr0 . 12

The effects of confinement become apparent beyond Fr0 ∼ 8. Shortly after the
initial (symmetric) rise-and-fall transient, any slight asymmetry or instability trips the
counterflow so as to fall to the left or right of centreline. On the side to which the
counterflow falls, a large recirculation region develops which extends from source to
fountain top (figure 3). This recirculation region is maintained, forcing the fountain
to arch over it. Most of the fountain fluid is therefore channelled along that arc and,
in part, re-entrained into the upflowing core, as is highlighted by the curved arrow in
figures 3(a–c). Patches that are not re-entrained disconnect (are shed) from the top of
the recirculation region to form a (somewhat intermittent) gravity current on reaching
the horizontal base. On the other side of the centreline, where the flow remains slender,
smaller lobes are shed; their rate of shedding however appears more regular, hence the
gravity current is more continuous on the slender side. Moreover, some fluid in the
recirculation region crosses the centreline near the source and feeds into the replete
gravity current.

The large recirculation region is to be likened to the large-scale eddies which typify
confined jets and plumes. Thus, for Fr0 & 8 we observe the first instance of (nascent)
quasi-two-dimensional effects. A qualitative difference can also be noted from the time
series in figure 3, where, by contrast with the weakly-confined regime, departures about
the mean are larger, and time scales associated with a given rise-and-fall event are longer.
Strikingly, the fountain is unable to unbind from the recirculating region. Unlike jets and
plumes which wind around eddies and propagate farther, for Fr0 ∼ 8 the fountain is
not sufficiently energetic to overcome the arched trajectory imposed by the recirculation
region. Instead, on account of the arched trajectory, this implies that more dense fluid
will be channelled toward and re-entrained into the folded side of the upflow, which in
turn fuels the recirculation region, and so on.

The asymmetric configuration proved stable to relatively large disturbances. To illus-
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Figure 3. Asymmetric–stable fountains: zf (t) for Fr0 = 8.9 and W/r0 = 4.7 (movie 2). A
sustained recirculation region forces the fountain to fold to one side (here, left of centreline in a–c)
for the duration of the experiment, though some surges in rise height (‘spikes’) can momentarily
perturb that arrangement. The curved arrow highlights the large-scale recirculation region.

trate this, we refer to the time series in figure 3 which showcases isolated disturbance
events seen as ‘spikes’, in which a marked increase in rise height occurs (e.g. around t =
35 s). During these spikes, the fountain momentarily breaks loose from the recirculation
region, rises rapidly upwards, and then typically returns to its original asymmetric state.
Only after O(100) such spikes did the fountain eventually fold to the other side of
centreline (as observed in 11 out of 30 experiments conducted in the asymmetric regime
at W/r0 = 4.7), showing that the asymmetric state was robust. Changes in side were
more frequent towards the higher end of the range 8 . Fr0 . 12, when the flow, being
more energetic at the source, overcomes the recirculation region more readily.

3.3. Transitional regime, 12 . Fr0 . 16

The fountain becomes increasingly unstable on further increasing the forcing at the
source. While mostly retaining an asymmetric structure (figure 4a), the flow now carries
sufficient energy to sporadically unbind from the recirculation region (4a–b, dotted
outline). The latter is shed sideways, allowing the fountain to soar up as a near-symmetric
jet (4c). Subsequently, during collapse (4d), instabilities prompt the flow to fold to either
side of centreline and another recirculation region is rapidly re-established. The flow then
locks into an asymmetric state until the next ‘spike’ (4e–f). These spikes, which show
as large peaks in time series 4, appear to have no one specific frequency associated with
them; equally, intervals of lower rise heights (which mark periods of relatively stable,
asymmetric flow) are also irregular in duration.

The principal difference between asymmetric-stable and transitional fountains is
that, after being destabilised, transitional fountains show no preferential direction for
folding. In addition, transitional fountains also display prolonged periods in which the
flow flaps left and right several times before settling to one side. Both behaviours are
indicative of a diminished influence of the recirculation region. As the fountain becomes
increasingly forced, the recirculation region forms farther from the source and, as a
consequence, becomes increasingly unable to sustain itself: whereas close to the source,
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Figure 4. Transitional fountains: zf (t) for Fr0 = 14.0 and W/r0 = 4.7 (movie 3). Instantaneous
snapshots (a–f) illustrate the transition from one stable state (a) (folded left) to another (f)
(folded right). The transitions are prompted by sporadic spikes in rise height (c) which appear
as peaks in the time series.

the recirculation region is able to deflect the fountain towards it to fuel itself, when
forming farther from the source it disconnects from the fountain and loses its bind on
the central core (see §3.4).

The transitional regime marks a range of Froude numbers for which the flow is neither
stably asymmetric nor meandering (§3.4). As such, it shares features with both regimes,
making a clear delineation difficult. Qualitative differences, such as repeated changes in
flopping direction (compare movies 2 and 3), were used to classify the flow as either
‘asymmetric-stable’ or ‘transitional’. This led to the threshold between both regimes
falling at Fr0 ∼ 12. We later allude to more rigorous approaches in §4, which consist
in comparing the average flow left and right of the centreline. However, the thresholds
predicted by these approaches coincide with those inferred from straightforward obser-
vation.

3.4. Meandering (quasi-two-dimensional) regime, Fr0 & 16

If one extrapolated observations of quasi-two-dimensional jets and plumes to flows
with negative buoyancy, the ‘meandering’ (or quasi-two-dimensional) regime is what one
would naturally anticipate. Large circulatory structures form, on a scale comparable to
the rise height, at or near the peak of the fountain. After they disconnect from, and thus
are no longer fed by, the upflow, the circulation of these structures rapidly dissipates,
typically to cease rotating within a single revolution. Gravity then prompts them to fall
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around the upflow, randomly to the left and right. The upflow sinuously wraps around
the descending structures; their presence deflects the upflowing core, soon prompting the
growth of another eddy on the opposite side of the centreline to the previous structure.
These cycles, of growth and decay on one side prompting growth and decay on the other
side, repeat. Thus the fountain describes a sinuous or flapping motion, reminiscent of
the meandering behaviour of quasi-two-dimensional jets and plumes. One such cycle is
depicted in figure 5, with the growth and decay (a–d) of a ‘right’ eddy soon followed
by the growth and decay of a ‘left’ eddy (e–i). Note how eddies ‘stack’ (figure 5a–b),
and hence how the behaviour is different from the flapping motion observed in planar
fountains (Zhang & Baddour 1997). Also discernible from snapshots 5(a–i) (as indeed
from snapshots of all previous regimes) are small-scale eddies forming on the periphery
of larger structures. Although the fountain has become quasi-two-dimensional at the
large scale, the smaller scales which drive dissipation remain three-dimensional in nature.

It would be ill-advised to regard the meandering regime as fundamentally different
from previous regimes. Once circulatory structures form on a large scale and collapse
around the fountain, their presence inclines the upflow away from them (figures 3a, 4a,f
and 5i). Simultaneously, as these structures collapse, dense fluid is re-entrained along
one side of the upflow, creating a torque. If a structure forms sufficiently close to the
source, this torque inclines the tip of the fountain, causing it to fuel the structure with
lobes of fluid. The structure’s circulation, being fuelled, is maintained and the fountain
locks into an asymmetric state. If, on the other hand, the structure forms farther from
the source, it disconnects from the fountain core: its circulation rapidly dissipates and
the structure collapses around the core, prompting the cycles of growth and decay on
alternate sides of the fountain described in the paragraph above. Hence, the mechanism
by which large-scale structures form is the same throughout all regimes; what varies,
however, is the subsequent interplay between these structures and the fountain core.

3.5. Differences in behaviour with confinement ratio

The previous description of the four regimes applies to all values of W/r0 explored in
our experiments, albeit with different Fr0-thresholds (§4). However, some peculiarities
of fountains at lower and higher W/r0 are worth pointing out.

For strongly confined fountains (set A, W/r0 = 2.7), the asymmetric-stable and
transitional regimes are bypassed. Instead, they are replaced by a sustained flapping,
with short-lived recirculation regions forming and shedding on alternate sides of the
core. This behaviour is reminiscent of transitional fountains on the brink of meandering,
although it persists throughout the transition from weakly-confined to meandering. The
flapping motion, as expected, then evolves into meandering at higher Fr0.

As in the asymmetric regime, the formation of large-scale structures (recirculation
regions) signifies the onset of quasi-two-dimensional effects; unlike the asymmetric or
the transitional regimes however, at W/r0 = 2.7 these structures are not maintained.
Notably, at this low confinement ratio we did not observe any significant amount of fluid
crossing the centreline from one side to the other. At other confinement ratios, when a
recirculation was maintained and dense fluid channelled towards the upflow, any excess
fluid that could not be re-entrained crossed the centreline and fed into the opposite
outflowing gravity current (§3.2). The narrowness of the gap at W/r0 = 2.7 prevents this
crossing, which might be instrumental in sustaining recirculation regions and hence, in
sustaining a stable folded configuration.

Interestingly, this conclusion finds support in the contrasting observations made on
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Figure 5. Meandering fountains: zf (t) for Fr0 = 24.5 and W/r0 = 4.7 (movie 4). Instantaneous
snapshots (a–i), spaced one second apart, depict the growth and subsequent shedding of
large-scale structures on alternating sides of the fountain that are typical of the meandering
(‘forced’) regime.

line fountains by Baines, Turner & Campbell (1990) and Zhang & Baddour (1997).
Baines et al. noted that line fountains were mostly symmetrical about the centreline,
but sporadically folded for prolonged periods of time. By contrast, in Zhang & Baddour,
line fountains were reported to continually flap. An explanation for this discrepancy that
is in line with our observations may be found in their source geometry. Whilst Zhang
& Baddour dispensed fluid from a thin slot, Baines et al. approximated a line source
with an array of closely spaced circular sources. Hence, close to the source their flow was
three-dimensional. This arrangement permits a flow across the source from the folded
recirculation region and, hypothetically, might allow the recirculation to be sustained.
Conversely, such cross-flow is not possible with Zhang & Baddour’s source; thus, as in
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Figure 6. Illustration of a ‘burst’ event observed at Fr0 = 63.8 and W/r0 = 11.8. The same
colour map has been applied to (a) and (b), with dark red being indicative of high density.
Whereas in (a) the fountain is dense and compact, in (b) it has spread and diluted significantly,
leading to an increase in rise height of ∼ 50 r0. Note that (a) and (b) are not correlated in time
but have been chosen to maximise the contrast between the dense and the dilute configuration.

our strongly confined fountains, their line fountains flapped left and right.

The next distinction needs to be made at moderate-to-high W/r0 (> 11.8), i.e. for
weaker confinement. Fountains at these confinement ratios exhibited a greater range of
dilution in our depth-averaged visualisations. Sporadically, the increased dilution led to
‘burst’ events, during which vast clouds of dilute fluid occupied a much larger space. This
process is illustrated in figure 6, where we contrast two snapshots of the same run: the
fountain is compact and dense in 6(a), whilst it is large and dilute in 6(b). The associated
increase in rise height from (a) to (b) is approximately 50 r0 ≈ 4W .

The ‘bursts’ depicted in figure 6 occurred rarely and only for high Fr0, such that the
fountain was meandering. Whilst we do not have the trace of Q0(t) for set D, which
featured most bursts, we recorded Q0(t) at similar Fr0 and found fluctuations of no
more than 1% (appendix A), which is insufficient to explain the observed increases in
rise height.

It is relatively straightforward to reason why increased dilution leads to increased rise
heights. Descending lobes of fluid that are more dilute and more spread out interact less
strongly with the upflow, hence the fountain is free to rise vertically upwards. What is
less clear is how the additional dilution is made possible. One explanation is that the
fountain dilutes as a result of not completely filling the gap at all time. However, such
behaviour was not observed in our experiments.

4. Experimental results

Having described the flow qualitatively in §3, in this section we proceed to analyse
the statistics extracted from the flow visualisation. Specifically, the flow visualisation
allows us to track in time the outline of the fountain. Thus, we focus our analysis on
three diagnostics (and on variables that can be constructed therewith): zf (t), the rise
height on the centreline; xl(t), the farthest lateral excursions left of centreline; and xr(t),
the farthest lateral excursion right of centreline (figure 1). Note that we impose that
xl(t) and xr(t) be at heights exceeding half the time-averaged rise height zf/2 (cf. the
dashed horizontal line in figure 1), so as to avoid sampling the signal of outflowing gravity
current.
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Figure 7. Time-averaged centreline rise height zf normalised by the source radius r0 against
Fr0 for different values of W/r0. The corresponding symbols for each confinement ratio are given
in table 1 and repeated in the legend. The dashed line represents the rise height of unconfined
round fountains, zf = 2.46 r0Fr0 (Hunt & Burridge 2015). Error bars in faded grey.

4.1. Rise heights and lateral excursions

We begin by inspecting the time-averaged rise height of the fountain front on the
centreline, zf . In figure 7, we apply the scaling for round unconfined fountains and plot
zf normalised by r0 against the source Froude number Fr0. The plot encompasses all
experimental sets. Two observations are immediately apparent: first, within each set the
rise heights scale linearly on the jet length, zf ∝ r0Fr0, across all regimes; second, the
gradient of that linear relation varies with W/r0. Indeed, the rise heights in sets B and C
(◊◊◊, both conducted at W/r0 = 4.7) overlie, which confirms that the gradient is a function
of W/r0 rather than of W or r0 separately. Specifically, figure 7 suggests that increasing
the gap width for a fixed Froude number causes zf/r0 to decrease for confinement ratios
W/r0 6 11.8, but then to increase for W/r0 > 16.6. This behaviour, which is difficult to
rationalise, hints that r0 is not an appropriate length scale. Note that for set D (△△△), the
last few experiments at the highest values of Fr0 diverge from the linear scaling due to
the ‘bursts’ reported in §3.5.

Also plotted in figure 7 (dashed line) is the rise height for unconfined round fountains,
zf = 2.46 r0Fr0. We notice that the rise heights of relatively strongly confined fountains
(low W/r0 (☆☆☆, ◊◊◊)) lie close to those of unconfined round fountains. This closeness is
surprising, given that all fountains plotted in figure 7 were in contact with the walls,
i.e. even with the largest gap width none achieved the unconfined limit. In particular,
sets A (☆☆☆) and B (◊◊◊) are the sets for with the most severe confinement (table 1). Any
attempt to reconcile the rise heights in sets A and B with rise heights in unconfined
fountains would require that the losses of the upflow to the large circulatory structures
in confined fountains exactly equal the losses of the upflow to the counterflow in all
azimuthal directions in unconfined fountains. Generalising such a requirement seems
unphysical. The agreement in rise heights must therefore be regarded as a coincidence.
Crucially, as will be shown shortly, the seemingly close rise heights diverge when suitably
scaled.

A notable preliminary result is nonetheless that zf scales linearly on Fr0 (the
gradients for each set can be inferred from figure 8a). As alluded to in §1, the internal
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variables of quasi-two-dimensional jets and plumes recover the scaling of their planar
counterparts for sufficiently large z (Landel et al. 2012a; Rocco & Woods 2015). Planar

fountains rise as zf ∝ Fr
4/3
0 (Baines et al. 1990; Zhang & Baddour 1997), in clear

contrast with our measurements of confined fountains (figure 7). Of note is that in jets
and plumes, variables such as the velocity are measured at, or near, the core of the
flow, i.e. not at the periphery of the flow where eddies form. The core, which meanders
between the eddies, maintains its coherence over height and is free to develop quasi-two-
dimensionality. On the contrary, the upflowing core in fountains becomes progressively
weaker with height as buoyancy depletes its momentum; near the top, the fountain is
swayed by eddies to the extent that its motion becomes predominantly lateral. It is
undeniable that eddies have a stronger and more disruptive influence on (or feedback
with) fountains than in jets and plumes. The dynamics of confined fountains, being
disrupted, become distinct from (free) planar fountains. It is therefore not surprising
that their rise heights scale differently. Likewise, experiments on rectangular sources
by Vinoth & Panigrahi (2014) have shown that large source ratios are required at the
source to attain the two-dimensional scaling. In our experiments, it is questionable
whether the upflowing core, which remains slender (e.g. figure 5), departs sufficiently
from being round to form a planar fountain. Again, therefore, we would expect zf ∝ Fr0.

The fact that we observe the same qualitative behaviour for confined fountains at
different values of Fr0 and W/r0 strongly suggests that there is a common scaling which
applies to, and governs, confined fountains such as those studied herein (at least over
the range of confinement ratios considered, 2.7 6 W/r0 6 24.2). We set out to identify
this common scaling by collapsing the rise heights zf across all confinement ratios.

First, we explore how the rise heights vary with the confinement ratio by extracting,
for each value of W/r0, the gradients ks (where ‘s’ reads ‘set’) of the linear relationship
zf/W = ksFr0 from figure 7. Here, we normalise the rise heights by W rather than
by r0 since the fountain experiences the length scale W as soon as it has expanded to
reach the walls; suitably highly forced confined fountains are therefore expected to scale
on W . Since W/r0 is constant within each set, the relationship zf/r0 ∝ Fr0 (figure 7)
also implies that zf/W scales linearly on Fr0. The gradients ks are plotted against the
confinement ratio W/r0 in figure 8(a). The rate of decrease of ks as a function of W/r0

is notably steeper at low values of W/r0 than at high values of W/r0, which implies that
the rise heights are more sensitive to small changes in confinement when confinement
is relatively strong (low W/r0) than when confinement is relatively weak (high W/r0).
Most of the variation of ks with W/r0 is therefore occurring at low values of W/r0. Of
note is that the value of ks at W/r0 = 2.7 (☆☆☆) is approximately 13 times greater than
at W/r0 = 24.2 (◻◻◻).

Next, attempting to derive the trend observed for ks in figure 8(a) on theoretical
grounds is difficult in the absence of detailed measurements for the evolution of inner
variables (e.g. the local velocity or buoyancy). We therefore opt to calculate, and adopt,
a best fit through the gradients ks instead. The resulting power law, drawn on figure 8(a)
as a black line, follows

ks = 3.32

(
W

r0

)−5/4

. (4.1)

Equation (4.1) suggests that confined fountains reach a time-averaged rise height of
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Figure 8. (a) Gradients ks ≡ ∆(zf/W )/∆Fr0, obtained from linear fits to the rise heights in
figure 7, against W/r0. The black line represents the best fit (4.1) to the gradients as a function
W/r0. In contrast to this best fit, grey lines highlight the discrepancy that ensues on adopting
a simplified scaling for ks based on the assumption that, prior to attachment, the flow behaves
like an unconfined fountain (appendix C). The shaded region demarks W/r0 < 2, which is not
physical. (b) Time-averaged centreline rise height zf normalised by W against the confined

Froude number Frc ≡ Fr0(W/r0)−5/4 (4.3). Error bars in faded grey. Symbols as in table 1.

zf/W = 3.32Fr0

(
W

r0

)−5/4

+ms, (4.2)

where ms ∼ 1 denotes intercepts at Fr0 = 0. The normalised rise heights zf/W are
plotted against the suggested scaling Fr0(W/r0)−5/4 in figure 8(b). The collapse is
excellent (with a mean coefficient of determination of R2 = 0.99), especially considering
the range of parameters explored in this study. There remains a slight offset at the source,
ms, which varies across sets, but typically ms ∼ 1. Crucially, neither the scaling nor the
pre-factor of the fit to ks (4.1) depend on ms, so long as ms is not a function of Fr0

(as is indeed supported by the linear dependencies on figure 7, and by the collapse on
figure 8b).

Whilst our data does not extend beyond W/r0 = 24.2, and as such, we cannot verify
the suitability of (4.2) at greater confinement ratios, the gentle slope of ks at higher
values of W/r0 (figure 8a) implies that most of the variability of ks with W/r0 has
been captured by (4.1). Therefore, it seems likely that (4.2) should apply, at least in
an approximate sense, at greater values of W/r0 too. Equation (4.2) will not apply,
however, in the limit of no confinement (W/r0 → ∞), where the rise heights scale as
zf/r0 = 2.46Fr0 (Turner 1966) and where accordingly, there can be no dependence on
W ; see the discussion in §5.

The collapse of the rise height data in figure 8(b) across all values of confinement ratios
tested herein provides convincing evidence that the scaling Fr0 (W/r0)−5/4 encapsulates
the dynamics of confined fountains. More evidence is provided later, e.g. in figures 9–11.
Consequently, we define the ‘confined’ Froude number

Frc ≡ Fr0 (W/r0)−5/4 (4.3)
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Asymmetric-stable Transitional Meandering

W/r0 Fr0 Frc Fr0 Frc Fr0 Frc

2.7 – – 5.20 1.48 9.38 2.67
4.7 7.72 1.11 12.2 1.76 16.2 2.34
11.8 20.0 0.91 49.8 2.27 58.7 2.68
16.6 37.8 1.13 64.0 1.91 87.6 2.61
24.2 73.4 1.36 – – – –

Frc = 1.13± 0.18 Frc = 1.86± 0.33 Frc = 2.58± 0.16

Table 2. Thresholds for the flow regimes (§3) for all confinement ratios considered in terms of
source Froude number Fr0 and confined Froude number Frc (4.3). A blank entry (–) indicates
that a regime was not observed in our experiments. The thresholds given correspond to the first
value of Fr0 for which the features characteristic of a particular regime first appeared. For a
graphic representation of the onset of flow regimes as a function of Frc and W/r0, the reader is
referred to figure 9.

as the governing parameter for confined fountains. In physical terms, identical values of
Frc can be achieved either on increasing the forcing Fr0 for fixed W/r0, or on narrowing
the dimensionless gap W/r0 for fixed Fr0. Since Fr0 is indicative of the height attained
by the fountain, ‘confinement’ is therefore expressed in Frc in terms of a ratio of the
stream-wise extent of the fountain to its span-wise extent (albeit not one to one).

If the confined Froude number Frc is to encapsulate the effects of confinement, then
bands of Frc should coincide with the flow regimes observed in §3. This notion is
pursued in figure 9, where we colour-code every experiment according to their observed
regime, and in table 2, where we cite the thresholds for the regimes in terms of Fr0

for each set and calculate corresponding values of Frc. In figure 9, horizontal lines
(i.e. lines of constant Frc) conclusively separate the colour-coded regimes. Likewise in
table 2, we notice that Frc takes a nominally constant value across all sets: Frc ∼ 1.1
in the asymmetric regime and Frc ∼ 2.6 in the meandering regime. Agreement in the
transitional regime is poorer: by its very nature this regime marks a transition from one
distinct behaviour to another, hence it is not surprising that transitional fountains are
difficult to classify. Nevertheless, for threshold values of Fr0 varying by a factor of 10,
thresholds of Frc vary by approximately 6 to 17% only, a variation only slightly above
our error margin. The overall ability of Frc to delineate regimes, therefore, is good,
reinforcing the suitability of the scaling (4.3).

To readers familiar with work on unconfined fountains, the threshold values in table 2,
and in general values of Frc achieved in our experiments (Frc . 7.0, figure 8b), may
appear low in magnitude. It is important to point out that, unlike unconfined fountains
for which low values of Fr0 do imply weak releases, in confined fountains low values of
Frc cannot be viewed as giving rise to momentum-poor fountains. The weakly-confined
fountain in figure 2, for instance, was formed at Frc = 0.78, yet it clearly retains the
slender upflow-counterflow structure characteristic of highly forced (unconfined) releases.
‘Low’ values of Frc (‘low’ relative to Fr0 in unconfined fountains) should therefore not be
mistaken for low levels of forcing. Weak confined fountains, such as shown in appendix B
(where Frc = 0.08), probably occur at much lower values of Frc and lie outside the scope
of this paper.
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Figure 9. Regime diagram for the different flow regimes observed in §3. Each experiment,
run at a particular {Fr0,W/r0}, is colour-coded according to the observed flow behaviour of
that experiment. Horizontal lines, which represent average threshold values for Frc (table 2),
demarcate approximate boundaries for the symmetric-asymmetric transition (bottom line, red)
and the transitional-meandering transition (top line, turquoise), respectively. The vertical dotted
line denotes the limit of fully confined fountains, W/r0 = 2. The symbols, as in previous plots,
represent different sets of experiments (table 1), although for the purpose of this plot their colour
has been changed to refer to the flow regimes (see annotation).

Next, we inspect a salient feature of confined flows, namely their considerable lateral
excursions (as seen, for example, in figure 5c). In order to analyse their extent, we consider
separately the farthest points left (xl) and right (xr) of centreline which lie above zf/2
(figure 1). The minimal height of zf/2 is imposed only to avoid the lateral outflows and
has little bearing on the results. Rather than tracking a specific point in the Lagrangian
sense, xl(t) and xr(t) follow the extreme outer edge of the fountain regardless of the
height at which this peak excursion occurs (so long as it exceeds zf/2). Hence, xl(t)
and xr(t) are susceptible to discontinuities or ‘jumps’. Whilst these discontinuities do
not affect time averages, they will have to be taken into account later when estimating
velocities based on the gradients of xl(t) and xr(t).

The time-averaged lateral excursions xl and xr are normalised by the gap width W
and plotted against Frc in figure 10(a). In order to not clutter the figure, the symbols (cf.
table 1) were retained for the ‘left’ variables, but replaced by dots for the ‘right’ variables.
As expected, the fountain grows laterally as Frc increases. We note that left and right
excursions generally overlap, but splay out in the asymmetric regime (Frc ∼ 1.1) where
the fountain stably folds to one side (figure 3). The upper branch corresponds to the
side on which the fountain has folded; the lower branch corresponds to the opposite side
where, by comparison, the fountain is slender. The two branches then rejoin at the onset
of the meandering regime (Frc & 2.6) and follow a linear scaling xl,r ∝W Frc. A linear
scaling is also observed in the weakly-confined regime, albeit with a lower prefactor.
These observations are reinforced in figure 10(b), where we plot the height-to-width
aspect ratio of the fountain zf/xl,r. For all values of confinement, the bulk structure
of the fountain appears to be similar in Frc. Moreover, we notice that the trends in
figure 10(b) reflect the classification into regimes given in table 2: in the weakly-confined
regime, the aspect ratio is large (zf/xl,r ∼ 5 to 6) and similar to the aspect ratio of
unconfined round fountains (Burridge & Hunt 2013; Hunt & Debugne 2016); then, as
the asymmetric-stable regime is established, large circulatory structures begin to form,
causing the aspect ratio to decrease; finally, in the meandering regime, the aspect ratio
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Figure 10. (a) Time-averaged lateral extent of the fountain left of centreline (xl, various
symbols) and right of centreline (xr, dots) normalised by W against the confined Froude number
Frc. For clarity, error bars (in faded grey) are plotted for xl/W only. The dotted lines delineate
the limits for the asymmetric-stable and meandering regimes (table 2). The inset provides a
zoomed view onto the interval 0.7 . Frc . 2.9 to highlight the formation of two distinct
branches in the asymmetric-stable and transitional regimes. Set A is not plotted in the inset,
because fountains in set A do not fold asymmetrically (and hence, their lateral extents to not
splay). (b) Aspect ratio of the fountain: ratio of the rise height zf to the lateral extent of the
fountain xl,r against Frc for forced releases, Fr0 > 3.0. Symbols and dotted lines as in (a).

asymptotes to a constant value of approximately two, meaning that the fountain is as
wide as it is high (adding xl and xr). Thus, figure 10(b) offers a new interpretation of
the regimes in terms of the fountain’s height-to-width ratio.

4.2. Fluctuations

Having examined the time-averaged excursions xl,r, we now turn to their fluctuating
part. In particular, suitably chosen fluctuations about the mean excursion should be
representative of the size of the large-scale eddies which typify confined flows.

We first construct the ‘fluctuating’ part of our instantaneous snapshots by subtracting
from each snapshot the experiment-averaged picture of the flow. In the resulting frames,
the large-scale eddies are thereby made distinct from the fountain core and their outline
can then be traced by applying a luminosity threshold (see the black lines in figure 12a).
For each (fluctuating) snapshot, we then record the lateral extent of eddies at every
height to the left and right of centreline as λl,r(z, t). Two key quantities are inferred:
first, the average eddy size λl,r, calculated by averaging in z and t; and second, the
average size of large eddies Λl,r, calculated by averaging in t the instantaneous maxima
in z. As a remark, we note that many entries in λl,r(z, t) are zeroes, since eddies form
intermittently and rarely at great heights. Therefore, in order to obtain representative
eddy sizes, we average λl,r(z, t) over non-zero entries only.

The results are shown in figure 11. Average (large-scale) eddies λl,r and large (large-
scale) eddies Λl,r clearly follow the same trends, with Λl,r being approximately a factor
two greater. Similarly to the average excursions xl,r in figure 10, three phases of growth
can be distinguished: modest growth in the symmetric regime, followed by a phase of
non-linear growth in the asymmetric and transitional regimes as quasi-two-dimensional
effects become prominent, and finally linear (but accelerated) growth in the meandering
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regime. However, the measures λl,r and Λl,r are distinct from xl,r in that they do not
include the width of the upflow; thereby making them a more accurate measure of
the scale of intermittent eddies. Landel et al. (2012a), who studied the properties of
large-scale eddies in quasi-two-dimensional jets, also noted a linear growth in the far
field – here, that far field would correspond approximately to the meandering regime,
Frc & 2.6. Over distances from the source comparable to the heights attained by our
fountains, they reported eddy sizes between 4W and 4.5W , consistent in magnitude
with our findings. Crucially, it is evident that the large-scale eddies occupy a significant
proportion of the flow: ratios of λl,r to xl,r lie slightly above 1 : 2.5, whilst ratios of Λl,r

to xl,r lie closer to 3 : 4. It is therefore not surprising that the dynamics of confined
fountains are closely linked to the behaviour of large-scale eddies.

Various definitions for λl,r were considered before settling on the most intuitive, namely
that associated with tracking the eddies’ outline. One alternative would have been to
define average-sized fluctuations as twice the standard deviation σ, or as a measure
closely related. Landel et al. (2012a), for instance, follow the centroid of eddies using
particle image velocimetry measurements and infer typical eddy sizes as two standard
deviations about the centroid’s location. Burridge & Hunt (2013) calculate the extent
of vertical fluctuations in unconfined fountains as the difference between ‘peaks’ and
‘troughs’, which represent averages over time intervals when the rise height zf (t) is
greater or lower than zf ± σ, respectively. Such definitions are meaningful when the
underlying distribution is approximately symmetric; in that case, quantities above and
below one standard deviation have a similar physical interpretation (e.g. ‘eddy present’
versus ‘eddy absent’). By contrast, the lateral fluctuations of confined fountains have
a skewed distribution: there are more small-to-moderate lobes than there are large-
scale eddies. Consequently it becomes less straightforward to interpret ‘one standard
deviation’. We therefore resorted to the more natural approach of tracking the widths of
eddies via λl,r(z, t).

One drawback of this approach is that it cannot easily be extended to the vertical
fluctuations in rise height. However, except in the weakly-confined regime, the latter
are not relevant dynamically. Only occasionally does a large eddy form at or near the
centreline. Rather, the vertical fluctuations constitute a damped response to the left-right
meandering of the fountain, which is dictated by the lateral fluctuations λl,r. Hence, we
do not further investigate the vertical fluctuations herein.

4.3. Frequencies

Based on figure 11 we established that the large-scale eddies grow larger with increasing
Frc. A natural continuation is to inspect the time scales over which these eddies form.

There are many techniques available to extract temporal information from a series of
snapshots or signals. Decomposition methods, for instance, have successfully separated
different oscillating modes in low-Re0 fountains in Vinoth & Panigrahi (2014). Burridge
& Hunt (2013), in their study of fluctuations at the (unconfined) fountain top, performed
Fourier transforms of the rise height signal zf (t) to identify dominant frequencies. Both
methods are valid, but tend to require some tuning. In this section, we present a novel,
intuitive approach in which eddies are ‘counted’ as they form. We demonstrate the
robustness of this approach by comparing the resulting frequencies to those identified
with Fourier transforms in appendix D.

Figure 12 depicts our ‘eddy counting’ approach. The main idea consists in identifying
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Figure 11. Representative sizes for large-scale eddies, as inferred from the lateral fluctuations.
(a) Time- and height-averaged eddy size λl,r, and (b) time-averaged maximal eddy size Λl,r,
both normalised by W , against Frc. For clarity, error bars (in faded grey) have been plotted for

λl and Λl only. Symbols as in figure 10.
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Figure 12. Illustration of our ‘eddy counting’ approach for W/r0 = 11.8 and Fr0 = 63.8.
(a) An instantaneous snapshot from which the time-averaged luminosity has been subtracted.
The black lines encircling eddies were used to calculate λl,r(z, t) (§4.2). The dashes outline the
‘windows’, left and right of the centreline, within which the luminosity is averaged (in x) to
produce the time series (b) and (c), respectively. In (b) and (c), crosses mark the detected peaks
and the dashed line indicates the instant at which (a) was taken. The dashed line has just passed
a peak in (c) (right window), and a remnant of the associated eddy is visible in (a). Similarly,
the dashed line is approaching a peak in (b) (left window), and the nascent eddy can also be
observed in (a). An animated version is available online (movie 5).

traces left by large-scale eddies in suitably constructed time series. Specifically, we wish
to construct a (z, t) time series by averaging the flow horizontally over a region where
large structures typically form. By doing so, the large structures will appear in the
time series as dense streaks separated by intervals of lighter ambient. These streaks are
then counted, and their total is divided through the recording interval to calculate the
formation frequency associated with large eddies.

Figure 12(a) shows an instantaneous snapshot from which the mean flow has been
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Figure 13. Formation frequencies fl,r of large-scale eddies to the left and right of centreline
identified by our ‘eddy counting’ approach: (a) in dimensional form and (b) normalised by the
source frequency w0/r0. In (b), solid lines denote best fits for fl and fr over Fr0 > 3 (shifted
for ease of reading). Symbols as in figure 10.

subtracted in order to increase the contrast between the intermittent eddies and the ever-
present core. Then, as described above, the time series in figure 12(b,c) were obtained
by averaging the flow horizontally over the ‘windows’ delimited by white dashed lines
in figure 12(a). One clearly discerns streaks, which correspond to eddies forming and
collapsing. These streaks were counted by identifying luminosity peaks in the time series.
To ensure that our algorithm selected only large-scale eddies, we stipulated that the
peaks exceed the median luminosity and had a width (at half-prominence) of at least half
the median. These settings led to good detection properties while minimising omissions
and double-counting. The peaks thus detected are indicated by crosses in figures 12(b,c).
We note very good agreement between separate bright streaks and detected peaks. In
particular, for the time instant shown in figure 12(a) (marked as a dashed line in 12b,c),
our algorithm is about to successfully identify the formation of an eddy to the left of
the centreline. Our results were not sensitive to the size of the windows, provided they
were sufficiently large so as to enclose the majority of eddies. We opted for windows
spanning ([−1.8xl,−0.5xl] , [0.5 zf , 1.5 zf ]) and ([0.5xr, 1.8xr] , [0.5 zf , 1.5 zf ]) left and
right, respectively.

The formation frequencies fl,r are plotted against Fr0 in dimensional form in fig-
ure 13(a). The error in fl,r was estimated as ±2/∆T , where ∆T is the recording interval.
The resulting error bars were mostly smaller than the symbol size and are omitted for
clarity. The formation frequencies decrease as Fr0 is increased, consistent with the notion
that eddies grow larger and more persistent with Fr0 (figure 11). At moderate Fr0, the
‘eddy counting’ approach predicts formation frequencies in the range 0.1 to 0.2 s−1,
i.e. one eddy being formed (left or right) every 2.5 to 5 s, which agrees well with our
observations. We notice that, although there is some variation across the experimental
sets, the formation frequencies generally lie close together, which suggests that the gap
width W has little influence on the formation of eddies. This is confirmed in figure 13(b),
where we normalise fl,r by the source frequency w0/r0. All sets fall onto one line,
regardless of regime or confinement ratio. Lines of best fit yield the relations
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fl
w0/r0

= 0.126Fr−1.58
0 and

fr
w0/r0

= 0.131Fr−1.60
0 , (4.4)

with coefficients of determination R2 = 0.97 and 0.98, respectively. A similar scaling is
retrieved when extracting fl,r via Fourier transforms of xl,r(t) (appendix D), hence (4.4)
is not unique to our approach. Moreover, our attempts to include W/r0 in the frequencies
inevitably separate the data points into their respective sets, unless the scaling is chosen
such that (W/r0)−5/4 cancels out (i.e. fl,r (W/r0)2 ∝ (w0/r0)Fr−1.60

c ). We conclude that
the gap width does not affect the formation frequencies.

The absence of a dependence on W from (4.4) is counter-intuitive and not well
understood. Based on our observations, the quasi-steady flapping appears to stem from
the interplay between the large-scale eddies and the fountain core (see §3.4), rather
than, say, from instabilities propagating from the source. Following this reasoning,
the formation of eddies, being a large-scale process, should accordingly scale on W .
An argument, however, which supports the absence of W in the frequency scalings

centres on the volume of large-scale eddies Ve, which follows Ve ∼ Wλ
2

l,r ∝ r3
0Fr

2
0

(from λl,r ∝ WFrc, figure 11). Thus, Ve is independent of W . Although this still poses
constraints on the volume flux supplying the eddies Qe, it is at least conceivable that
fl,r ∼ Qe/Ve is independent of W . Likewise, it is worth recalling that, within each set,
the rise height zf ∝ r0Fr0; the gap width entering only when a common scaling is
sought across the sets. It therefore seems plausible that W indeed cancels out in (4.4).

Finally, it is traditional for studies on confined flows to recast the formation frequencies
of large-scale eddies into Strouhal numbers. Herein, we define the lateral Strouhal
numbers

Stl,r ≡
fl,r

ûl,r/λl,r
, (4.5)

where ûl,r represents the characteristic velocity of large-scale eddies, defined later.
Equation (4.5) is equivalent to rescaling the formation frequencies fl,r on length and
velocity scales that pertain to the large-scale eddies themselves, rather than to the
fountain. In quasi-two-dimensional jets, Landel et al. (2012a) found Strouhal numbers
ranging between 0.07 and 0.25, approximately, at downstream distances of 20W to
60W . Specifically, the Strouhal number associated with a single eddy increased with
downstream distance until merger with another eddy, at which point it consistently
dropped to 0.07. These observations echo those of Dracos et al. (1992). Rocco & Woods
(2015) reported that the core meandered at an average Strouhal number of 0.16 in quasi-
two-dimensional plumes, which should broadly reflect the Strouhal numbers of lateral
eddies.

Unfortunately, we do not have direct measurements of the velocities. Nevertheless, we
may gain an estimate of the velocities representative of large-scale eddies by differentiat-
ing in time the position of the eddies’ edge, xl,r(t). The characteristic velocities ûl,r are
then calculated as the r.m.s. of dxl,r/dt. Some precaution is necessary given that xl,r(t)
is not a smooth or continuous signal (see §4.1). The details of how we calculated ûl,r are
laid out in appendix E.

Left and right Strouhal numbers Stl,r (4.5) are plotted against Frc in figure 14. Note
that we evaluated (4.5) based on the values of fl,r, ûl,r and λl,r for each experiment, i.e.
we did not use fitted power laws. Despite some scatter, the Strouhal numbers for our
experiments convincingly fall within the band prescribed by Landel et al. (2012a) and,
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Figure 14. Strouhal numbers Stl,r (4.5) against Frc. Faded vertical lines denote the error
bars. Symbols as in figure 10.

to some extent, Rocco & Woods (2015). For sets A and B (☆☆☆, ◊◊◊), Stl,r reach 0.12 to
0.16 in the meandering regime. However, it is difficult to ascertain that all sets fall onto
one line. Some level of discrepancy may point towards the relative inappropriateness of
(4.5), in which we rely on experiment-averaged quantities to uncover the dynamics of
temporally and spatially evolving structures. Notwithstanding, the range of our values
for Stl,r is consistent with previous studies on confined flows, with a level of scatter not
unusual for this type of measurement.

As an aside, time series such as shown in figures 12(b,c) can be used to develop
rigorous methods for separating the asymmetric-stable, transitional and meandering
regimes. The streaks in figures 12(b) and (c), for instance, stagger, which is indicative of
flapping, and hence of the meandering regime. In the asymmetric regime, where large-
scale eddies form primarily on one side, one time series showcases many streaks, whereas
the other showcases barely any. The transitional regime features a mixture of both
behaviours. Thus, diagnostics can be built by subtracting one time series from the other
and inspecting the distribution of peaks in the resulting matrix. Yet another method
consists in tracking the centre of gravity {zg(t), xg(t)} from ‘fluctuating’ snapshots such
as figure 12(a) and inferring the regime from its trajectory. As stated in §3 however, in
the vast majority of cases, visual inspection suffices to distinguish regimes.

5. Conclusions

We have analysed, qualitatively and quantitatively, the behaviour of confined fountains
for a wide range of governing parameters Fr0 and W/r0. We have shown that confined
fountains can be classified into four regimes, each characterised by slightly different
interactions between the typical large-scale structures and the core of the fountain. The
thresholds for these regimes can be delimited approximately by bands of a ‘confined’
Froude number Frc ≡ Fr0 (W/r0)−5/4 as (see table 2):

– weakly-confined regime: Frc . 1.1
– asymmetric-stable regime: 1.1 . Frc . 1.8
– transitional regime: 1.8 . Frc . 2.6
– meandering (quasi-two-dimensional) regime: Frc & 2.6

The confined Froude number Frc can be interpreted as a ratio between the height
of the fountain, determined by Fr0, and its span-wise extent, restricted by W ; thus,
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Frc expresses the level of confinement experienced by the fountain. Moreover, most
quantities of interest, including the time-averaged rise height zf (figure 8) and the
average large-scale eddy size λl,r (figure 11), scale on WFrc. Notably, the formation
frequencies fl,r (figure 13) do not. Reasons for this are not fully understood and warrant
further investigation.

The behaviour of confined fountains should be regarded as analogous to that of
confined jets and plumes. As with other quasi-two-dimensional shear flows, large-scale
eddies dominate and organise the flow. Their influence is somewhat more pronounced
in fountains because of the finite vertical extent of the flow, which, furthermore, is
comparable to the size of large-scale eddies.

Intriguingly, we did not observe any instance of more than two large-scale eddies being
present simultaneously. When the eddies were distributed on both sides of the core, a
serpentine S-shaped motion ensued in the core (e.g. figure 1). It would be interesting
to see if, on increasing Frc further, a greater number of eddies (and hence of winds in
the core) could be achieved. The dimensions of our current set-up did not allow us to
readily explore this possibility.

One outstanding open question regards the scaling of the rise height zf . For the
confinement ratios considered in this study, (4.2) represents an empirical fit which,
accordingly, lies in excellent agreement with the data. The modest slope of ks at high
values of W/r0 suggests that (4.2) should remain valid at larger values of confinement
ratio too. However, whilst it would be speculative to specify an upper bound for the
validity of (4.2) in terms of W/r0 (other than the conservative W/r0 = 24.2), it is clear
that in the limit of no confinement, W/r0 →∞, (4.2) does not apply. Ideally, a universal
scaling law would be found that describes the transition from fully confined fountains to
unconfined fountains. Such a law would be all but trivial: it would have to encompass
regions of the {Fr0,W/r0}-space corresponding to fountains for which (i) the upflow
has clung to the walls, (ii) only the counterflow has clung to the walls, and (iii) only
the induced flow is modified by confinement. The vast majority of our experiments fall
within category (i), for which the scaling (4.2) seems appropriate in light of figures 8-11
and table 2.

Whilst we have mapped out the behaviour of confined fountains in terms of the
principal governing parameters {Fr0,W/r0}, it would be informative to perform a study
in which the source Reynolds number Re0 was varied independently of Fr0. The vast
majority of our experiments were conducted at moderate-to-high Re0, such that our
results should be largely independent of Re0. Based on the work on unconfined round
fountains by Burridge, Mistry & Hunt (2015), one would indeed expect the influence of
Re0 to be secondary, provided Re0 is reasonably high.

Finally, given the fountain’s intermittent nature, it is questionable whether a time-
averaged theoretical modelling approach would lend much insight. It appears more
promising instead to study the statistical distribution of the large-scale eddies (e.g. their
trajectory, size and longevity) in order to better understand their role in organising
the flow. This requires knowledge of velocity vectors. The next significant advance will
therefore likely stem from more detailed measurements or from numerical simulations.
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the Fluid Dynamics Laboratory at the Cambridge University Engineering Department
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Figure 15. Typical traces of Q0(t), here for (a) Q0 = 33.6, (b) 78.9 and (c) 127.4 (litres/hour).

Dashed lines represent experiment-averaged flow rates Q0 and dotted lines Q0 ± σ(Q0), where

σ denotes the standard deviation. For the three experiments shown, σ(Q0) 6 0.005Q0.
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Appendix A. Traces of volume flow rate

Given that many features of confined fountains display intermittency (most notably
their large-scale eddies), it is essential to assure that this behaviour is not an artefact
of fluctuations of the source flow rate Q0(t). In this appendix, we demonstrate that
fluctuations in Q0 were small and, more importantly, that their dominant frequency does
not correlate to the characteristic frequencies observed in the fountain.

Three typical traces are plotted in figure 15 for small, moderate and high values
of the time-averaged volume flow rate Q0. These traces were recorded on an Altrato
‘Ultrasonic’ flow meter (accuracy 1.0%) at a rate of 10 Hz. We provided back pressure to
the flow circuit by inserting a ball valve downstream of the flow meter so as to minimise
the formation of micro-bubbles, to which ultrasonic flow meters are susceptible. Whilst
some erroneous readings (due to micro-bubbles) could not be prevented altogether, these
readings were very short in duration (∼ 0.1 s) and did not affect the average.

From figure 15, it is evident that the source flow rate did not vary significantly over
the course of a given experiment. Standard deviations across all recorded experiments
rarely exceeded 1% of the experiment-averaged flow rate Q0. Moreover, the dominant
frequencies associated with fluctuations such as seen in figure 15 lay around 0.03 s−1,
far from the frequencies that characterise the meandering motion in confined fountains
(figure 13). (We extracted the dominant frequencies through Fast Fourier Transforms
(FFT); see appendix D.) Less energetic peaks were also noted around 0.08 to 0.10 s−1,
closer to the formation frequencies of large-scale structures. However, it is unlikely that
fluctuations at the source of magnitude < 0.01Q0 should be responsible for the observed
large-scale processes.
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Figure 16. Confined weak fountains: zf (t) for Fr0 = 0.54 (movie 6). The fountain attaches to
the front and back wall successively as it precesses around the source, resulting in a bimodal
time series. (a) and (b) depict a low peak and a high peak, respectively.

We conclude that the volume flow rate at the source was nominally constant and did
not affect the observed flow features. Therefore, in the main text we drop the overbar
notation and write Q0 ≡ Q0.

Appendix B. Confined weak fountains

Weakly-confined fountains (§3.1) are visually indistinguishable from their unconfined
counterparts. From this resemblance, we concluded that the effects of confinement at
Fr0 . 8 and W/r0 = 4.7 were too weak to induce notable changes in dynamics. Whilst
this observation remains true at moderate Fr0, in this appendix we report on weakly-
confined ‘weak’ fountains, for which Fr0 is low (cf. the ‘weak’ unconfined fountains in
the classification of Kaye & Hunt (2006)).

In the spirit of §3, we use the unconfined Froude number Fr0 instead of Frc. Moreover,
since weak fountains were (intentionally) only achieved at W/r0 = 4.7, we do not seek
to generalise our results to Frc.

For sufficiently weak releases (Fr0 . 2 at W/r0 = 4.7), where the gap width is
larger than but comparable to the lateral extent of the fountain, the dynamics of
weakly-confined ‘weak’ fountains are distinct from their unconfined counterparts as a
consequence of confinement. Unconfined fountains with these source conditions are known
to circle and bob around the source (Williamson et al. 2008). Here, this form of motion
is impeded by the walls, thus to complete its ‘circles’ the fountain must periodically
rise against the front and the back walls. This is illustrated by the time series for
{Fr0 = 0.54, Re0 = 104} (see video 6) shown in figure 16. The response is regular
and bimodal, each peak corresponding to the attachment of the fountain to the front
and back wall.

As is common in the fountain literature, it appears that a finer subdivision of regimes
might be appropriate for weak releases. This subdivision, however, is brought on by
changes in Fr0, rather than by varying effects of confinement. Moreover, the fountain in
figure 16 being clearly laminar, we expect that its dynamics will depend on the Reynolds
number Re0 (Williamson et al. 2008). At low Fr0 and low Re0, it therefore appears that
weak fountains are more susceptible to Fr0 and Re0 than to W/r0. For this reason, we
do not count ‘weak’ confined fountains as a separate regime in §3 and opt to not further
investigate them herein.

Appendix C. Gradients ks
It is well-known that (unconfined) fountains scale on local flow variables: the

subsequent rise height beyond some arbitrary height above the source z∗, for instance,
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can be predicted based on the local Froude number Fr(z∗) (e.g. Hunt & Debugne
2016). In our experiments, the fountain evolves from being round at the source to
being confined from a height z = za onwards, where the flow attaches to the walls (the
subscript ‘a’ reading ‘attachment’). For z > za, the fountain develops as a confined flow.
Whilst the transition from the round source to the attachment height is determined by
the source geometry and by entrainment, the subsequent rise of the confined fountain
should scale on local variables which take into account confinement, i.e. on the local
flow conditions at z = za. Herein, we estimate these local flow conditions at attachment
height based on the spreading rate and the dilution of a forced, round and, crucially,
unconfined fountain. The ensuing scaling (C 4) is at odds with measurements, which
highlights the necessity to perform more detailed measurements before a theoretical
account of confined fountains (leading to (4.2)) can be derived.

We did not measure the attachment height za or the internal variables at height za in
our experiments. However, as stated above, we may estimate za and the internal variables
on assuming that, prior to attachment, the flow behaves like a forced, unconfined and
round fountain. (The assumption of a forced fountain is justified by our focus on high-
Fr0 fountains; see appendix B.) Then, for a round fountain whose radius b spreads at a
rate b = 2αz close to the source (Hunt & Debugne 2016),

b(z = za) ≈ W

2
⇒ za ≈

W

4α
(C 1)

Based on our observations, all the fountains attached to the walls a short distance O(W )
above the source. Hence, it is advisable to treat α in (C 1) as a problem-specific spreading
coefficient which includes, e.g., the tendency of flows to cling to surfaces, rather than as
a classic entrainment coefficient (Morton et al. 1956).

Following the same rationale as in (C 1), we assume a jet-like scaling near the source
to infer the velocity at height za as

wa ≈ 2w0

(
W

r0

)−1

(C 2)

and the reduced gravity at height za from conservation of buoyancy (i.e. allowing the
flow to dilute), (r2

0w0)g′0 =
[
(W/2)2wa

]
g′a, as

g′a ≈ 2 g′0

(
W

r0

)−1

. (C 3)

Finally, we combine the confined variables ba ≡ W/2, wa (C 2) and g′a (C 3) into an
‘attachment’ Froude number Fra, which describes the local flow conditions at z = za, as

Fra =
wa√
ba g′a

≈ 4Fr0

(
W

r0

)−1

. (C 4)

Thus, based on the assumption that the flow prior to attachment behaves like a
round fountain, (C 4) predicts that the rise heights of confined fountains should scale on
zf/W ∝ Fr0 (W/r0)−1. This implies that the gradients ks should follow ks ∝ (W/r0)−1.

To test the soundness of (C 4), we attempt to fit a curve of the type ks ∝ (W/r0)−1 to
the gradients in figure 8(a) (grey lines). While the general trend is well captured by the
−1 power law, the gradients unmistakably fall onto two distinct curves: an upper curve
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for W/r0 6 4.7 (☆☆☆, ◊◊◊), given by ks = 2.50 (W/r0)−1, and a lower curve for W/r0 > 11.8
(△△△, ◯◯◯, ◻◻◻), given by ks = 1.61 (W/r0)−1. This corresponds to a relative difference in pre-
factor of 44% (taking the mean as a reference). This significant discrepancy implies that
(C 4) and arguments leading up to (C 4) (i.e., that the flow may be treated as unconfined
prior to attachment) oversimplify the actual dynamics of confined fountains. Notably,
(C 4) neglects the effects of confinement altogether. A more sophisticated account, such
as would emerge from measuring the inner variables at attachment height wa and g′a, is
probably required to retrieve the scaling (4.1). In the absence on such measurements, in
the main text we proceed by adopting the empirical fit to our data (4.1).

Appendix D. Fourier transforms

In §4.3, we presented an ‘eddy counting’ approach to identifying the formation
frequencies of large-scale eddies. Encouragingly, the resulting frequencies agree well
with these the naked eye discerns in experiments. In this appendix, we provide further
confirmation of our approach by comparing its results to those obtained from Fourier
transforms.

The signals xl,r(t) measure the lateral excursion of the fountain; in other words, xl,r(t)
track the outer edge of large eddies when large eddies are present (figure 1). Thus, if these
eddies form at a particular frequency, then this frequency should emerge from xl,r(t) as
a dominant frequency, say fF(l,r).

We adopted the following procedure to reliably determine fF(l,r). First, we performed a
Fourier transform using Matlab’s (R2015b) inbuilt FFT algorithm. The resulting signal
(in the frequency domain) was then smoothed by applying a Savitzky-Golay filter of
third order over a window of ∆f = min [ 0.10, 1.0/Fr0 ] s−1 (cf. Burridge & Hunt
(2013)), which provided sufficient smoothing whilst retaining distinct peaks. For each
experiment, the two frequencies associated with the largest amplitudes were sampled, and
the highest of the two was denoted the ‘dominant frequency’, fF(l) or fF(r), accordingly.
To ensure that this dominant frequency had captured the trends underlying xl,r(t), we
then reconstructed the lateral motion by excluding any frequencies greater than fF(l,r)

and superimposed the reconstructed signal onto the original signal. This lent confidence
that fF(l,r) was indeed representative of the lateral motion.

The dominant frequencies thus extracted from the FFT are plotted separately in fig-
ure 17(a), and together with the frequencies obtained from the ‘eddy counting’ approach
(faded) in figure 17(b). It is evident that both methods agree in trend as in magnitude.
Although the FFT produces fewer outliers in set E, it also has greater scatter across all
sets. Moreover, the interpretation of counting eddies is straightforward. Therefore, in the
main text, we proceed to analyse the formation frequencies fl,r identified by counting
eddies.

Appendix E. Characteristic velocities for large-scale eddies

Our aim in this appendix is to provide an estimate for the characteristic velocities of
large-scale eddies. As alluded to in §4.3, we calculate the characteristic velocities ûl,r
by taking the r.m.s. of the derivative dxl,r/dt. Thus, we assume that the translational
velocities at the edge of an eddy are representative of its overall velocity.

Care needs to be taken in applying the r.m.s. because xl,r(t) is not continuous
everywhere. The signal xl,r(t) follows the farthermost edge of an eddy so long as that edge
lies above zf/2 (§4.1) and, more generally, is within our field of vision. When the eddy
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Figure 17. Comparison between two methods for finding dominant frequencies in confined
fountains: dominant frequencies fF(l,r), extracted from Fourier transforms of the signals xl,r(t),
superimposed on the formation frequencies fl,r identified by the ‘eddy counting’ approach (§4.3)
in grey. Symbols as in figure 13.

leaves the field of vision, either sideways or downward, xl,r(t) appears to ‘jump’ abruptly
as it rejoins the next candidate eddy. The eddy’s exit from the field of vision therefore
causes discontinuities which will be interpreted as large and sudden variations in xl,r(t).
Whilst these discontinuities affect neither average excursions xl,r nor frequencies fF(l,r),
they introduce large artificial gradients which would be exacerbated by taking the r.m.s.

In order to avoid unphysical values of dxl,r/dt, we mark the time instants during
which xl,r(t) is within three pixels of the boundaries of the field of vision left, right
and downward. Subsequently, these time instants are excluded when calculating ûl,r =
(dxl,r/dt)r.m.s.. A few outliers remain, which are screened out by excluding any gradient
lying above or below three standard deviations.

The resulting characteristic velocities ûl,r, normalised by the buoyancy-induced ve-

locity
√
g′0W , are plotted against Fr0 in figure 18. The scaling

√
g′0W is inherited

from unconfined fountains, where velocities scale as
√
g′0r0 (e.g. Hunt & Debugne 2016).

Characteristic velocities mirror the classification into regimes (§3), again splaying in the
asymmetric and transitional regimes before merging in the meandering regime. However,
no clear power law emerged from ûl,r, hence we did not explore the scaling further.
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