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Abstract

Johansen’s (1988, 1991) likelihood ratio test for cointegration rank of a

vector autoregression (VAR) depends only on the squared sample canonical

correlations between current changes and past levels of a simple transformation

of the data. We study the asymptotic behavior of the empirical distribution of

those squared canonical correlations when the number of observations and the

dimensionality of the VAR diverge to infinity simultaneously and proportion-

ally. We find that the distribution weakly converges to the so-called Wachter

distribution. This finding provides a theoretical explanation for the observed

tendency of Johansen’s test to find “spurious cointegration”.

1 Introduction

Johansen’s (1988, 1991) likelihood ratio (LR) test for cointegration rank is a very

popular econometric technique. However, it is rarely applied to systems of more than

three or four variables. On the other hand, there exist many applications involving

much larger systems. For example, Davis (2003) discusses a possibility of applying

the test to the data on seven aggregated and individual commodity prices to test

Lewbel’s (1996) generalization of the Hicks-Leontief composite commodity theorem.

In a recent study of exchange rate predictability, Engel et al. (2015) contemplate

∗Supported by Keynes Fellowship grant.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/157857804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a possibility of determining the cointegration rank of a system of seventeen OECD

exchange rates. Banerjee et al. (2004) emphasize the importance of testing for no

cross-sectional cointegration in panel cointegration analysis (see Breitung and Pesaran

(2008) and Choi (2015)), and the cross-sectional dimension of modern macroeconomic

panels can easily be as large as forty.

The main reason why the LR test is rarely used in the analysis of relatively

large systems is its poor finite sample performance. Even for small systems, the test

based on the asymptotic critical values does not perform well (see Johansen (2002)).

For large systems, the size distortions become overwhelming, leading to severe over-

rejection of the null in favour of too much cointegration as shown in many simulation

studies, including Ho and Sorensen (1996) and Gonzalo and Pitarakis (1995, 1999).

In this paper, we study the asymptotic behavior of the sample canonical corre-

lations that the LR statistic is based on, when the number of observations and the

system’s dimensionality go to infinity simultaneously and proportionally. We show

that the empirical distribution of the squared sample canonical correlations converges

to the so-called Wachter distribution, originally derived by Wachter (1980) as the

limit of the empirical spectral distribution of the multivariate beta matrix of grow-

ing dimension and degrees of freedom. Our analytical findings explain the observed

over-rejection of the null hypothesis by the LR test.

The basic framework for our analysis is standard. Consider a p-dimensional VAR

in the error correction form

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + εt, (1)

where Dt and εt are vectors of deterministic terms and zero-mean, not necessarily

Gaussian, errors with unconstrained covariance matrix, respectively. The (quasi) LR

statistic for the test of the null hypothesis of no more than r cointegrating relationships

between the p elements of Xt against the alternative of more than r such relationships

is given by

LRr,p,T = −T
p∑

i=r+1

log (1− λi) , (2)

where T is the sample size, and λ1 ≥ ... ≥ λp are the squared sample canonical

correlation coeffi cients between residuals in the regressions of ∆Xt and Xt−1 on the

lagged differences ∆Xt−i, i = 1, ..., k − 1, and the deterministic terms. In the ab-
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sence of the lagged differences and deterministic terms, the λ’s are the eigenvalues

of S01S−111 S
′
01S
−1
00 , where S00 and S11 are the sample covariance matrices of ∆Xt and

Xt−1, respectively, while S01 is the cross sample covariance matrix.

Johansen (1991) shows that the asymptotic distribution of LRr,p,T under the as-

ymptotic regime where T →∞ while p remains fixed, can be expressed in terms of the

eigenvalues of a matrix whose entries are explicit functions of a (p− r)-dimensional
Brownian motion. Unfortunately, for relatively large p, this asymptotics does not

produce good finite sample approximations, as evidenced by the over-rejection phe-

nomenon mentioned above. Therefore, in this paper, we consider a simultaneous

asymptotic regime p, T →c ∞ where both p and T diverge to infinity so that

p/T → c ∈ (0, 1] . (3)

Our Monte Carlo analysis shows that the corresponding asymptotic approximations

are relatively accurate even for such small sample sizes as p = 10 and T = 20.

The basic specification for the data generating process (1) that we consider has

k = 1. In the next section, we discuss extensions to more general VARs with low-

rank Γi matrices and additional common factor terms. We also explain there that our

main results hold independently from whether a deterministic vector Dt with fixed

or slowly-growing dimension is present or absent from the VAR.

Our study focuses on the behavior of the empirical distribution function (d.f.) of

the squared sample canonical correlations,

Fp (λ) =
1

p

p∑
i=1

1 {λi ≤ λ} , (4)

where 1 {·} denotes the indicator function. The dependence of Fp (λ) on T is sup-

pressed to keep notations simple. We find that, under the null of r cointegrating

relationships, as p, T →c ∞ while r/p→ 0,

Fp (λ)⇒ Wc (λ) ≡ W (λ; c/(1 + c), 2c/(1 + c)) , (5)

where⇒ denotes the weak convergence of d.f.’s, andW (λ; γ1, γ2) denotes theWachter

d.f. with parameters γ1 and γ2, described in detail in the next section.
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As explained below, convergence (5) guarantees that the probability of the event

LRr,p,T/p
2 ≥ −c−1

∫
log (1− λ) dWc (λ)− δ (6)

converges to one as p, T →c ∞, for any δ > 0. In contrast, we show that under

the standard asymptotic regime, where T → ∞ while p is held fixed, LRr,p,T/p
2

concentrates around 2 for relatively large p. A direct calculation reveals that 2 is

smaller than the lower bound (6), for all c > 0, with the gap growing as c increases.

That is, the standard asymptotic distribution of the LR statistic is centered at a

too low level, especially for relatively large p. This explains the tendency of the

asymptotic LR test to over-reject the null.

The reason for the poor centering delivered by the standard asymptotic approxi-

mation is that it classifies terms (p/T )j in the asymptotic expansion of the LR statistic

as O (T−j) . When p is relatively large, such terms substantially contribute to the fi-

nite sample distribution of the statistic, but are ignored as asymptotically negligible.

In contrast, the simultaneous asymptotics classifies all terms (p/T )j as O(1). They

are not ignored asymptotically, which improves the centering of the simultaneous

asymptotic approximation relative to the standard one.

Our study is the first to derive the limit of the empirical d.f. of the squared sample

canonical correlations between random walk Xt−1 and its innovations ∆Xt. Wachter

(1980) shows that W (λ; γ1, γ2) is the weak limit of the empirical d.f. of the squared

sample canonical correlations between q- and m-dimensional independent Gaussian

white noises with the size of the sample n, when q,m, n→∞ so that q/n→ γ1 and

m/n → γ2. Yang and Pan (2012) show that Wachter’s (1980) result holds without

the Gaussianity assumption for i.i.d. data with finite second moments. Our proofs do

not rely on those previous results. The novelty and diffi culty of our setting is that Xt

and ∆Xt are not independent processes. This requires original ideas for our proofs.

The rest of this paper is structured as follows. In Section 2, we prove the con-

vergence of Fp (λ) to the Wachter d.f. under the simultaneous asymptotics. Section

3 derives the sequential limit of Fp (λ) as first T → ∞ and then p → ∞. It then
uses differences between the sequential and simultaneous limits to explain the over-

rejection phenomenon. Section 4 contains a Monte Carlo study. Section 5 concludes.

All proofs are given in the Supplementary Material (SM).
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2 Convergence to the Wachter distribution

Consider the following basic version of (1)

∆Xt = ΠXt−1 + ΦDt + εt (7)

with dD-dimensional vector of deterministic regressors Dt. We allow innovations εt to

be i.i.d. vectors with zero mean and a non-singular covariance matrix, not necessarily

Gaussian. Let R0t and R1t be the vectors of residuals from the OLS regressions of

∆Xt on Dt, and Xt−1 on Dt, respectively. Define

S00 =
1

T

T∑
t=1

R0tR
′
0t, S01 =

1

T

T∑
t=1

R0tR
′
1t, and S11 =

1

T

T∑
t=1

R1tR
′
1t, (8)

and let λ1 ≥ ... ≥ λp be the eigenvalues of S01S−111 S
′
01S
−1
00 .

The main goal of this section is to establish the weak convergence of the empirical

d.f. of the λ’s to the Wachter d.f., under the null of r cointegrating relationships,

when p, T →c ∞ and r/p→ 0. The Wachter distribution with d.f. W (λ; γ1, γ2) and

parameters γ1, γ2 ∈ (0, 1) has density

fW (λ; γ1, γ2) =
1

2πγ1

√
(b+ − λ) (λ− b−)

λ (1− λ)
(9)

on [b−, b+] ⊆ [0, 1] with

b± =
(√

γ1(1− γ2)±
√
γ2(1− γ1)

)2
, (10)

and atoms of size max {0, 1− γ2/γ1} at zero, and max {0, 1− (1− γ2)/γ1} at unity.
We assume that model (7) may be misspecified in the sense that the data gener-

ating process is described by the following generalization of (1)

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΨFt + εt, (11)

where εt, t = 1, ..., T, are still i.i.d.(0,Σ) with arbitrary Σ > 0, rank Π = r, but k

is not necessarily unity, and Ft is a dF -dimensional vector of deterministic or sto-

chastic variables that does not necessarily coincide with Dt. For example, some of
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the components of Ft may be common factors not observed and not modelled by

the econometrician. Further, we do not put any restrictions on the roots of the

characteristic polynomial associated with (11). In particular, explosive behavior and

seasonal unit roots are allowed. Finally, no constraints on Ft, and the initial values

X1−k, ..., X0, apart from the asymptotic requirements on dF and k as spelled out in

the following theorem, are imposed.

Theorem 1 Suppose that the data are generated by (11), and let Γ = [Γ1, ...,Γk−1].

If as p, T →c ∞,
(dD + dF + r + k + rank Γ) /p→ 0, (12)

then

Fp (λ)⇒ Wc (λ) ≡ W (λ; c/(1 + c), 2c/(1 + c)) , (13)

in probability. In special cases where innovations εt are Gaussian, convergence (13)

holds almost surely.

The weak convergence in probability of empirical d.f. Fp (λ) to Wc (λ) can be

understood as the usual convergence in probability of the Lévy distance between

Fp (λ) and Wc (λ) to zero (see Billingsley (1995), problem 14.5). Theorem 1 implies

that the weak limits of Fp (λ) corresponding to the general model (11) and to the

basic model ∆Xt = ΠXt−1 + εt are the same as long as (12) holds.

Condition (12) guarantees that the difference between the general and basic ver-

sions of S01S−111 S
′
01S
−1
00 has rank R that is less than proportional to p (and to T ).

Then, by the so-called rank inequality (Theorem A.43 in Bai and Silverstein (2010)),

the Lévy distance between the general and basic versions of Fp (λ) is no larger than

R/p, which converges to zero as p, T →c ∞. For further details, see the proof of
Theorem 1 in the SM.

Figure 1 shows quantile plots of Wc (λ) for different values of c. For c = 1/5, the

dimensionality of the data constitutes 20% of the sample size. The upper boundary

of support of the corresponding Wachter distribution is above 0.7. In particular, we

expect λ1 be larger than 0.7 for large p and T , even in the absence of any cointegrating

relationships. For c = 1/2, the upper boundary of support of the Wachter limit is

unity. This accords with Gonzalo and Pitarakis’(1995, Lemma 2.3.1) finding that as

T/p→ 2, λ1 → 1. For c = 4/5, the Wachter limit has mass 3/4 at unity.

Wachter (1980) derives W (λ; γ1, γ2) as the weak limit of the empirical d.f. of
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Figure 1: Quantile functions of Wc (λ) for c = 1/5, c = 1/2, and c = 4/5.

eigenvalues of the p-dimensional beta1 matrix Bp (n1/2, n2/2) with n1, n2 degrees of

freedom as p, n1, n2 → ∞ so that p/n1 → γ1/γ2 and p/n2 → γ1/(1 − γ2). The

eigenvalues of multivariate beta matrices are related to many important concepts in

multivariate statistics, including canonical correlations, multiple discriminant ratios,

and MANOVA. In particular, the squared sample canonical correlations between q-

and m-dimensional independent Gaussian samples of size n are jointly distributed as

the eigenvalues of Bq (m/2, (n−m)/2) , where q ≤ m and n ≥ q+m. Therefore, their

empirical d.f. weakly converges to W (λ; γ1, γ2) with γ1 = lim q/n and γ2 = limm/n.

Note that the latter limit coincides withWc (λ) when n = T+p, q = p, andm = 2p.

Hence, Theorem 1 implies that the limiting empirical distribution of the squared

sample canonical correlations between T observations of p-dimensional random walk

and its own innovations is the same as that between T+p observations of independent

p- and 2p-dimensional white noises. This suggests that there might exist a deep

connection between these two settings, which is yet to be discovered.

The weak convergence in probability of Fp (λ) established in Theorem 1 implies the

convergence in probability of bounded continuous functionals of Fp (λ) . An example

of such a functional is the scaled Pillai-Bartlett statistic for the null of no more than
1For the definition of the multivariate beta see Muirhead (1982), p. 110.
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r cointegrating relationships (see Gonzalo and Pitarakis (1995))

PBr,p,T/p
2 =

(
T/p2

) p∑
j=r+1

λj,

which is asymptotically equivalent to the scaled LR statistic under the standard

asymptotic regime. Since, by definition, λj ∈ [0, 1] , we have

PBr,p,T/p
2 = (T/p)

∫
f(λ)dFp (λ)−

(
T/p2

) r∑
j=1

λj, (14)

where f is the bounded continuous function

f(λ) =


0 for λ < 0

λ for λ ∈ [0, 1]

1 for λ > 1.

.

As long as r/p → 0 as p, T →c ∞, the second term on the right hand side of

(14) converges to zero. Therefore, Theorem 1 implies that PBr,p,T/p
2 converges to

c−1
∫
f(λ)dWc (λ) in probability (a.s. in cases of Gaussian εt). A direct calculation

of the latter integral yields the following corollary.

Corollary 2 Under the assumptions of Theorem 1, as p, T →c ∞,

PBr,p,T/p
2 P→ 2/ (1 + c) + c−1 max

{
0, 2− c−1

}
.

The above convergence in probability becomes the a.s. convergence when εt are Gaussian

vectors.

A similar analysis of the LR statistic (2) is less straightforward because log (1− λ)

is unbounded on λ ∈ [0, 1] . In fact, for c > 1/2, the statistic is ill-defined be-

cause a non-negligible proportion of the squared sample canonical correlations ex-

actly equal unity. However for c < 1/2, we can obtain an asymptotic lower bound

on LRr,p,T/p
2. Note that for such c, the upper bound of the support of Wc (λ) equals
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b+ = c
(√

2−
√

1− c
)−2

< 1. Let

log (1− λ) =


0 for λ < 0

log(1− λ) for λ ∈ [0, b+]

log(1− b+) for λ > b+.

(15)

Clearly, log (1− λ) is a bounded continuous function and

LRr,p,T/p
2 ≥ −

(
T/p2

) p∑
j=r+1

log(1− λj).

As we show in the SM, the latter inequality yields the following asymptotic lower

bound on LRr,p,T/p
2.

Corollary 3 Under the assumptions of Theorem 1, for any c ∈ (0, 1/2) and δ > 0,

Pr {LRr,p,T/p
2 < LRc − δ} → 0 as p, T →c ∞, where

LRc =
1 + c

c2
ln (1 + c)− 1− c

c2
ln (1− c) +

1− 2c

c2
ln (1− 2c) .

Furthermore, in cases where εt are Gaussian vectors, lim inf LRr,p,T/p
2 ≥ LRc a.s.

Corollary 3 implies that an appropriate “centering point”for the scaled LR sta-

tistic when p and T are large cannot be lower than LRc. As we show in the next

section, the standard asymptotic distribution concentrates around a point that is be-

low LRc for large p, which explains the over-rejection phenomenon. To study such

a concentration, in the next section, we consider the sequential asymptotic regime

where first T →∞, and then p→∞.

3 Sequential asymptotics and over-rejection

To obtain useful results under the sequential asymptotics, we study eigenvalues of the

scaled matrix

(T/p)S01S
−1
11 S

′
01S
−1
00 . (16)

Under the simultaneous asymptotic regime, the behavior of the scaled and unscaled

eigenvalues is the same up to the factor c−1 = limT/p. In contrast, as T →∞ while

p remains fixed, the unscaled eigenvalues converge to zero, while scaled ones do not.
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We focus on the basic case where r = 0, the data generating process is

∆Xt = εt, t = 1, ..., T, with X0 = 0, (17)

and the only deterministic regressor included by the econometrician in model (7) is

constant, that is dD = 1. Then, Johansen’s (1988, 1991) results imply that, as T →∞
while p is held fixed, the eigenvalues of the scaled matrix (16) jointly converge in

distribution to the eigenvalues of

1

p

∫ 1

0

(dB)F ′
(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dB)′ , (18)

where B is a p-dimensional Brownian motion and F is its demeaned version. We

denote the eigenvalues of (18) as λj,0, and their empirical d.f. as Fp,0 (λ) .

It is reasonable to expect that, as p → ∞, Fp,0 (λ) becomes close to the limit of

the empirical d.f. of eigenvalues of (16) under a simultaneous, rather than sequential,

asymptotic regime p, T →γ ∞, where γ is close to zero. We denote such a limit
as Fγ (λ) . This expectation turns out to be correct in the sense that the following

theorem holds.

Theorem 4 Let F0 (λ) be the weak limit of Fγ (λ) as γ → 0. Then, as p → ∞,
Fp,0 (λ) ⇒ F0 (λ) , in probability. The d.f. F0 (λ) corresponds to a distribution sup-

ported on [a−, a+] with

a± =
(

1±
√

2
)2
, (19)

and having density

f (λ) =
1

2π

√
(a+ − λ) (λ− a−)

λ
. (20)

A reader familiar with Large Random Matrix Theory (see Bai and Silverstein

(2010)) might recognize F0 (λ) as the d.f. of the continuous part of a special case

of the Marchenko-Pastur distribution (Marchenko and Pastur (1967)). The general

Marchenko-Pastur distribution has density

fMP

(
λ;κ, σ2

)
=

1

2πσ2κ

√
(a+ − λ) (λ− a−)

λ

over [a−, a+] with a± = σ2 (1±
√
κ)
2 and a point mass max {0, 1− 1/κ} at zero.
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Density (20) is two times fMP (λ;κ, σ2) with κ = 2 and σ2 = 1. The multiplication

by two is needed because the mass 1/2 at zero is not a part of the distribution F0.

Note that, as T →∞ while p remains fixed,

LR0,p,T/p
2 d→ 1

p

p∑
j=1

λj,0 =

∫
λdFp,0 (λ) . (21)

One may therefore conjecture that under the sequential asymptotics, LR0,p,T/p2 con-

verges in probability to
∫
λdF0 (λ).

Our next result verifies this conjecture. Since f(λ) ≡ λ is not a bounded function,

the verification cannot rely solely on Theorem 4. In the proof of the next theorem,

we show that the tails of Fp,0 (λ) behave suffi ciently regularly so that the convergence∫
λdFp,0 (λ)

P→
∫
λdF0 (λ) does take place.

Theorem 5 Under the sequential asymptotics, LR0,p,T/p2 converges in probability to∫
λdF0 (λ) = 2.

Theorem 5 is consistent with the numerical finding of Johansen et al. (2005, Table

2) that, as T becomes large while p is being fixed, the sample mean of the LR statistic

is well approximated by a polynomial 2p2+αp (see also Johansen (1988) and Gonzalo

and Pitarakis (1995)). The value of α depends on how many deterministic regressors

are included in the VAR. Our theoretical result justifies the 2p2 term in the above

approximation. A theoretical analysis of α would require a further study.

The concentration of the LR statistic around 2p2 explains why the critical val-

ues of the LR test are so large for large values of p. The transformation LR0,p,T 7→
LR0,p,T/p − 2p makes the LR statistic ‘well-behaved’under the sequential asymp-

totics and leads to more conventional critical values. We report the corresponding

transformed 95% critical values alongside the original ones in Table 1.

The transformed critical values resemble 97-99 percentiles of N(0, 1). Since the

LR test is one-sided, the resemblance is coincidental. However, we do expect that the

sequential asymptotic distribution of the transformed LR statistic is normal (possibly

with non-zero mean and non-unit variance). A formal analysis of this conjecture is

left for future research.

Corollary 3 and Theorem 5 can be used to explain the over-rejection phenomenon

from a theoretical perspective. The reason for finding spurious cointegration when p

is relatively large is the discrepancy between simultaneous and sequential asymptotic
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p Original CV CV/p− 2p p Original CV CV/p− 2p
1 4.13 2.13 7 111.79 1.97
2 12.32 2.16 8 143.64 1.96
3 24.28 2.09 9 179.48 1.94
4 40.17 2.04 10 219.38 1.94
5 60.06 2.01 11 263.25 1.93
6 83.94 1.99 12 311.09 1.92

Table 1: The 95% asymptotic critical values (CV) for Johansen’s LR test. The original
values are taken from the first column of Table II in MacKinnon et al. (1999).

behavior of the LR statistic. As can be seen from Figure 2, the lower bound, LRc, for

LR0,p,T/p
2 under the simultaneous asymptotics is larger than the probability limit,

2, under the sequential one.

TheMonte Carlo analysis in the next section shows that ‘typical’values of LR0,p,T/p2

in finite samples with comparable p and T are concentrated around LRc. In contrast,

the standard asymptotic critical values (divided by p2) are concentrated around two.

Hence, the standard asymptotic distribution of the LR statistic is centered at a too

low level. As c ≡ lim p/T increases, the discrepancy LRc − 2 grows, and the over-

rejection becomes more and more severe.

In addition to LRc, Figure 2 shows the probability limit of the scaled Pillai-

Bartlett statistic under the simultaneous asymptotics, derived in Corollary 2. In

contrast to LRc, this limit lies below 2. Therefore, we expect the Pillai-Bartlett

test to under-reject, especially in high-dimensional situations. This agrees with the

numerical findings of Gonzalo and Pitarakis (1995).

Incidentally, the average of LRc and the probability limit of the Pillai-Bartlett

statistic is numerically close to the sequential limit, at least for c ≤ 0.3. This explains a

relatively good performance of the test based on the linear combination (LR+PB)/2,

proposed by Gonzalo and Pitarakis (1995).

4 Monte Carlo

Throughout this section, the analysis is based on 1000 Monte Carlo (MC) replications.

We consider three different distributions for simulated data: Student’s t(3), which has

only two finite moments; Gaussian; and centered χ2(1) distribution, which is skewed

to the right. For each of the MC experiments, we report results only for the Student
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Figure 2: The simultaneous and sequential asymptotic behavior of the scaled (divided
by p2) LR and PB statistics. Dashed line: sequential probability limit of the scaled
LR and PB. Upper line: simultaneous asymptotic lower bound on the scaled LR.
Lower line: simultaneous probability limit of the scaled PB.

case. The corresponding results for the other two cases turn out to be very similar.

First, we generate pure random walk data with zero starting values for (p, T ) =

(10, 100) and (p, T ) = (10, 20) . Figure 3 shows the Tukey boxplots summarizing the

MC distribution of each of the λp+1−i, i = 1, ..., p. Indexing λ’s by p + 1 − i ensures
that i = 1 corresponds to the smallest squared sample canonical correlation, λp, and

i = p corresponds to the largest squared sample canonical correlation, λ1.

The boxplots are superimposed with the quantile function of the Wachter limit

with c = 1/10 for the left panel and c = 1/2 for the right panel. Precisely, the boxplot

for λp+1−i is compared to the value of the 100 (i− 1/2) /p quantile of the Wachter

limit. For i = 1, 2, ..., 10, these are the 5-th,15-th,...,95-th quantiles of Wc (λ) .We see

that, even for such small values of p and T, theoretical quantiles track location of the

MC distributions of the empirical quantiles very well.

The dispersion of the MC distributions around the corresponding theoretical quan-

tiles is quite large for the chosen small values of p and T. It is slightly smaller for

the Gaussian case, not reported here. To see how such a dispersion changes when

p and T increase while p/T remains fixed, we generate pure random walk data with

p = 20, 100 and T = 200, 1000 for p/T = 1/10, and p = 20, 100 and T = 40, 200 for
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Figure 3: The Tukey boxplots for 1000 MC simulations of ten sample squared canon-
ical correlations correponding to pure random walk data. The boxplots are superim-
posed with the quantile function of the Wachter limit.

p/T = 1/2.

Instead of reporting the Tukey boxplots, we plot only the 5-th and 95-th percentiles

of the MC distributions of the λp+1−i, i = 1, ..., p against 100 (i− 1/2) /p quantiles

of the corresponding Wachter limit. The plots are shown in Figure 4. We see that

the [5%,95%] ranges of the MC distributions of λp+1−i are still considerably large for

p = 20. These ranges become much smaller for p = 100.

The behavior of the smallest squared canonical correlation λp (that is, λp+1−i
with i = 1) in Figures 3 and 4 is special in that its MC distribution lies below

the corresponding Wachter quantile. This does not contradict our theoretical results

because a weak limit of the empirical distribution of λ’s is not affected by an arbitrary

change in a finite (or slowly growing) number of them.

Our next experiment simulates data with the number of cointegrating relation-

ships, r, equal to 1, 2, 3, and p. In each case, we set the first r diagonal elements

of matrix Π to ρ = −1, leaving the other elements equal zero. The sample size is

(p, T ) = (20, 200). Figure 5 shows the 5-th and 95-th percentiles of the MC dis-

tributions of λp+1−i (solid lines) plotted against the 100(i − 1/2)/p quantiles of the

corresponding Wachter limit.

Interestingly, exactly r squared canonical correlations deviate from the 45◦ line.

This remains to be the case when we set the first r diagonal elements of Π to

ρ = −0.75, or when we increase the sample size to (p, T ) = (100, 1000). When ρ

14



Figure 4: The 5-th and the 95-th percentiles of the MC distributions of λp+1−i, which
are plotted against 100(i− 1/2)/p quantiles of the Wachter limit. The dashed line is
the 45◦ line. Pure random walk data.

is further increased to −0.5 so that the stationary components of the data become

less persistent, the deviations from the 45◦ line become less pronounced.

The remarkable fact that the number of the squared canonical correlations deviat-

ing from the 45◦ line equals the cointegrating rank cannot be explained by Theorem

1. It is because the limiting empirical distribution of the squared canonical correla-

tions is insensitive to the asymptotic behavior of any finite number of them. We leave

asymptotic analysis of individual squared canonical correlations, as opposed to their

empirical distribution, for future research.

Plots of squared canonical correlations against the corresponding quantiles of the

Wachter distribution are known in the statistical literature as Wachter plots. They

were proposed by Wachter (1976) in the context of multiple discriminant analysis

as a tool to “recognize hopeless from promising analyses at an early stage.”Results

reported in Figure 5 suggest that counting the number of points where a Wachter

plot deviates from the 45◦ line might be useful for the determination of cointegration

rank.

For the interested reader, we now provide details on how to construct a Wachter

plot. First, find the squared canonical correlations λ1 ≥ ... ≥ λp by computing the
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Figure 5: The 5-th and 95-th quantiles of the MC distribution of λp+1−i plotted against
100(i−1/2)/p quantiles ofW1/10(λ). The number of cointegrating relationships r 6= 0.
(p, T ) = (20, 200).

eigenvalues of S01S−111 S
′
01S
−1
00 . Next, set c = p/T. Using the Wachter density formula

(9) with parameters γ1 = c/(1 + c) and γ2 = 2c/(1 + c), compute the 100 (i− 1/2) /p

quantiles of Wc (λ) for i = 1, 2, ..., p. Finally, plot points with x-coordinates equal

to the computed quantiles and y-coordinates equal to the corresponding λp+1−i. A

MATLAB code for the construction of a Wachter plot is available from the authors

upon request.

Our final MC experiment studies the finite sample behavior of LR0,p,T/p2. The

simulated data are pure random walk. Figure 6 shows the Tukey boxplots of the

MC distributions of LR0,p,T/p2 corresponding to p/T = 1/10, ..., 5/10 with p = 10

(left panel), and p = 100 (right panel). The boxplots are superimposed with the

plot of the simultaneous asymptotic lower bound LRc with c replaced by p/T . For

p = 10, we also show (horizontal dashed line) the standard 95% asymptotic critical

value (scaled by 1/p2) taken from MacKinnon et al. (1999, Table II). For p = 100,

the standard critical values are not available, and we show the dashed horizontal line

at height 2 instead. This is the sequential asymptotic probability limit of LR0,p,T/p2

as established in Theorem 5.
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Figure 6: The Tukey boxplots for the MC distributions of LR0,p,T/p2 for various p/T
ratios. The boxplots are superimposed with the simultaneous asymptotic lower bound
LRc. Dashed line in the left panel correspond to 95% critical value for the satandard
asymptotic LR test (taken from MacKinnon et al. (1999, Table II)). Dashed line in
the right panel has ordinate equal two.

The left panel of Figure 6 illustrates the over-rejection phenomenon. The horizon-

tal dashed line that corresponds to the standard 95% critical value is just above the

interquartile range of the MC distribution of LR0,p,T/p2 for c = 1/10, is below this

range for c ≥ 3/10, and is below all 1000 MC replications of the scaled LR statistic

for c = 5/10.

The SM contains two additional MC experiments, where we explore the sensitiv-

ity of the empirical distribution of the squared canonical correlations to the nuisance

parameters Ψ and Γ.We find that the effect of Ψ and Γ is mostly confined to a few of

the largest squared canonical correlations. For example, when Γ1 is a rank-one ma-

trix with a suffi ciently large norm, the largest squared canonical correlation becomes

substantially larger than the 100 (p− 1/2) /p quantile of the Wachter limit. However,

the MC distributions of the other squared canonical correlations do not substantially

change, and the entire empirical distribution remains close to theWachter distribution

in terms of the Lévy distance.
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5 Conclusion

In this paper, we consider the simultaneous, large-p, large-T , asymptotic behavior

of the squared sample canonical correlations between p-dimensional, not necessarily

Gaussian, random walk and its innovations. We find that the empirical distribution

of these squared sample canonical correlations weakly converges in probability to the

so-calledWachter distribution with parameters that depend only on the limit of p/T

as p, T →c ∞. In contrast, under the sequential asymptotics, when first T →∞ and

then p→∞, we establish the convergence in probability to the so-called Marchenko-
Pastur distribution. The differences between the limiting distributions under the

simultaneous and sequential asymptotics allow us to explain from a theoretical point

of view the tendency of the LR test for cointegration to severely over-reject the null

when the dimensionality of the data is relatively large.

The Monte Carlo analysis shows that the quantiles of the Wachter distribution

constitute very good centering points for the finite sample distributions of the cor-

responding squared sample canonical correlations. The quality of the centering is

excellent even for such small p and T as p = 10 and T = 20. However, for such

small values of p and T, the empirical distribution of the squared sample canonical

correlation can considerably fluctuate around the Wachter limit. As p increases to

100, the fluctuations become numerically very small.

This paper opens up many directions for future research. For example, it would

be interesting to study the simultaneous asymptotic behavior of a few of the largest

sample canonical correlations. As our Monte Carlo analysis suggests, when r 6= 0, ex-

actly r of the squared canonical correlations deviate from the corresponding Wachter

quantiles. Hence, the Wachter plot may potentially be useful for the determination

of the cointegration rank in high dimensional systems.

It would also be interesting to study the first order simultaneous asymptotic be-

havior of the centered and scaled LR statistic. This paper has established the lower

asymptotic bound on LR/p2. We conjecture that, after centering by this bound and

proper scaling, LR/p2 is distributed normally, at least when ε has suffi ciently many

moments. We are currently investigating this research direction.
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Abstract

This note contains supplementary material for Onatski and Wang (2017) (OW in what follows). It is

lined up with sections in the main text to make it easy to locate the required proofs.

Contents

1 Introduction 2

1.1 There is no supplementary material for this section of OW. . . . . . . . . . . . . . . . . . . . 2

2 Convergence to the Wachter distribution 2

2.1 Proof of Theorem OW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Reduction to random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 Stieltjes transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Reduction to Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Identities for Stieltjes transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 From identities to a system of approximate equations . . . . . . . . . . . . . . . . . . 23

2.1.6 Solving the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Proof of Corollary OW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Proof of Corollary OW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Sequential asymptotics and over-rejection 36

3.1 Proof of Theorem OW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Proof of Lemma 17 (Lévy distance between  and  is small) . . . . . . . . . . 37

3.1.2 Proof of Lemma 18 (lower bound on the smallest eigenvalue of ) . . . . . . . . 39

3.1.3 Proof of Lemma 19 ( and  are small) . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Proof of Theorem OW5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Showing that
R
d0 () = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Convergence of the second largest eigenvalue . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Asymptotic behavior of the largest eigenvalue . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Proof of Lemma 20 (lower bound on ̃1 in terms of ̃1 ) . . . . . . . . . . . . . . 48

3.2.5 Proof of Lemma 21 (lower bound on ̃1 ) . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Monte Carlo 63

4.1 Sensitivity to Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Sensitivity to Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1



1 Introduction

1.1 There is no supplementary material for this section of OW.

2 Convergence to the Wachter distribution

2.1 Proof of Theorem OW1

Throughout the proof, we will assume without loss of generality that   → ∞ so that  is strictly increasing,

and thus,  is a function of  This convention allows us to index various quantities that depend on  and

 by  only, which simplifies notation. Various constants will be often denoted as  The value of  may

change from one appearance to another.

2.1.1 Reduction to random walk

In this section, we prove that the following three simplifications incur no loss of generality. First, instead

of data generating process OW(11), we may consider pure random walk with zero initial values. Second,

instead of defining 00 01 and 11 as in OW(8), we may redefine them as

00 =
1




0 01 =
1




0
0 and 11 =

1




0
0 (1)

where  = [1   ]   is the projection on the space orthogonal to the constant vector  = (1 1  1)
0


and  is the upper triangular matrix with ones above the diagonal and zeros on the diagonal. As we shall

see below,
0 and

0 are circulant matrices (see Golub and Van Loan (1996, ch. 4.7.7)).

Therefore, they are simultaneously diagonalizable, which makes the second simplification desirable. Finally,

we may assume that the variance of  equals  for any  = 1   .

We need the following two auxiliary lemmas. Let { ()} and {̃ ()} be sequences of random distri-

bution functions (d.f.’s). We call these sequences asymptotically equivalent in probability, 
P∼ ̃, if the

Lévy distance L( ̃) converges in probability to zero as   → ∞ Since Lévy distance metrizes the

weak convergence, if 
P∼ ̃ and 

P⇒  (that is,  () weakly converges to  in probability), then

̃
P⇒  too, and vice versa. We define a.s. asymptotic equivalence similarly, and denote it as 

as∼ ̃

Let  and ̃ with  = 0 1 2 be random  ×  matrices, and let −1 and ̃−1 be their Moore-Penrose

generalized inverses (see Horn and Johnson (1985), p. 421).

Lemma 1 If −1 rank
³
 − ̃

´
as→ 0 as   → ∞ for  = 0 1 2 then 

as∼ ̃, where  () and ̃ ()

are the empirical d.f.’s of eigenvalues of 2
−1
1 02

−1
0 and ̃2̃

−1
1 ̃02̃

−1
0  respectively.

Proof. Let  = rank(2
−1
1 02

−1
0 − ̃2̃

−1
1 ̃02̃

−1
0 ) The convergence −1 rank( − ̃)

as→ 0 implies

that 
as→ 0 On the other hand, by the rank inequality (Theorem A.43 in Bai and Silverstein (2010)),

L( ̃) ≤ ¤
Let  = [−+1  ] where −+1 0 are arbitrary initial values and  with  ≥ 1 are generated

by OW(11), that is

∆ = Π−1 +
−1X
=1

Γ∆− +Ψ + 

Further, let ̃−+1  ̃0 be zero vectors, ̃ =
X

=1
 for  ≥ 1 and ̃ = [̃−+1  ̃ ]

Lemma 2 rank
³
 − ̃

´
≤ 2 ( + rankΓ+  +  ) 
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Proof. Write  in the VAR() form,

 =
X
=1

Π− +Ψ + 

where Π are such that Π =
X

=1
Π −  and Γ = −

X

=+1
Π . Express  as a function of the initial

values,  and  (see Johansen (1995, thm 2.1))

 =
X

=1

−
−+1X
=1

Π+−11− +
−1X
=0

 (− +Ψ−)  (2)

where 0 =  and  is defined recursively by  =
X∧

=1
−Π   = 1 2  Here  ∧  denotes the

minimum of  and . Let us denote Π1 −  as Π
∗
1 and let Π

∗
 = Π for  ≥ 2 Then, for  = 1 2 

∆ =  − −1 =
∧X
=1

−Π∗ =
−1X
=1

∆−
∧X
=1

Π∗ +
∧X
=1

Π∗  (3)

Clearly the column space of ∆1 is spanned by the column spaces of Π
∗
   = 1  . Use this as the basis

of induction. Suppose that the column spaces of each of ∆ with    are spanned by the column spaces

of Π∗   = 1  . The identity (3) then implies that the column space of ∆ is spanned by the column

spaces of Π∗   = 1  , too.
Now rewrite (2) as

 =
X

=1

−X
=0

∆

X
=1

Π+−11− +
−1X
=0

X
=0

∆ (− +Ψ−) 

where ∆0 = 0 =  and Π = 0 for   . Represent  as the sum 
(0)
 +

(1)
 with


(0)
 =

X
=1

X
=1

Π+−11− +
−1X
=0

(− +Ψ−)  and


(1)
 =

X
=1

−X
=1

∆

X
=1

Π+−11− +
−1X
=0

X
=1

∆ (− +Ψ−)  (4)

Since the column spaces of each of ∆ with  ≥ 1 are spanned by those of Π∗   = 1  , the space

spanned by 
(1)
   = 1   is also spanned by the column spaces of Π∗   = 1   Since the union of the

latter column spaces coincides with the union of the column spaces of Π and Γ we have

rank(1) ≤  + rankΓ (5)

where (1) = [
(1)
1− 

(1)
 ] with zero 

(1)
1− 

(1)
0  and 

(1)
 with  ≥ 1 defined by (4).

Next, represent 
(0)
 as the sum 

(00)
 + ̃ where


(00)
 =

X
=1

X
=1

Π+−11− +Ψ
−1X
=0

−  and ̃ =
−1X
=0

−  (6)

and let (00) = [
(00)
1−  

(00)
 ] with 

(00)
 =  for  = 1 −   0 and 

(00)
 with  ≥ 1 defined by (6).

Note that the columns space (00) is spanned by those of Π∗   = 1   the column space of the matrix of
the initial conditions [1− 0]  and the column space of Ψ Therefore,

rank(00) ≤  + rankΓ+  +   (7)

Since  = (1) +(00) + ̃ inequalities (5) and (7) yield the statement of the lemma.¤

3



Proof of no loss of generality. Now we are ready to prove the absence of a loss of generality in the

proposed simplifications. Rewrite definitions OW(8) in the following form

00 =
1


∆∆

0 01 =
1


∆

0
−1 and 11 =

1


−1

0
−1 (8)

where ∆ = [∆1 ∆ ]  −1 = [0 −1]  and  is the projection on the space orthogonal to

the rows of matrix [1  ]. Let ̃00 ̃01 and ̃11 be defined similarly, by replacing ∆ and −1 in (8)
by ∆̃ =

h
∆̃1 ∆̃

i
and ̃−1 =

h
̃0  ̃−1

i
 respectively.

By the definitions of 00 and ̃00

rank
³
00 − ̃00

´
= rank

½
1



³
∆ −∆̃

´
∆

0 +
1


∆̃

³
∆ −∆̃

´0¾
≤ 2 rank

³
∆ −∆̃

´


On the other hand,

rank
³
∆ −∆̃

´
∨ rank

³
−1 − ̃−1

´
≤ rank

³
 − ̃

´


where  ∨  denotes the maximum of  and  Therefore, by Lemma 2,

rank
³
00 − ̃00

´
≤ 4 ( + rankΓ+  +  ) 

Similarly, we have

rank
³
11 − ̃11

´
∨ rank

³
01 − ̃01

´
≤ 4 ( + rankΓ+  +  ) 

Since by assumption, ( + rankΓ+  +  ) → 0 Lemma 1 implies that the sequences of the empirical
d.f.’s of the eigenvalues of 01

−1
11 

0
01
−1
00 and of ̃01̃

−1
11 ̃

0
01̃
−1
00 are a.s. asymptotically equivalent. Since

̃00 ̃01 and ̃11 can be thought of as the equivalents of 0001 and 11 after the original data, , were

replaced by pure random walk with zero initial values, ̃, we conclude that such a replacement does not

incur any loss of generality.

If the data generating process is pure random walk with zero initial values, then (8) can be rewritten as

00 =
1




0 01 =
1




00 and 11 =
1




00

The differences of so defined  and their counterparts in (1) are matrices of rank no larger than  + 3
Indeed, for 00 we have

rank

µ
1




0 − 1




0
¶
≤ rank ( −) ≤  + 1

For 01 we have

rank

µ
1




00 − 1




0
0
¶
≤ rank (

0 −
0)

= rank (( −)
0 +

0 ( −)) ≤ rank ( −) + rank ( −)

≤  + 2

Finally, for 11 we have

rank

µ
1




00 − 1




0
0
¶
≤ rank (

0 −
0)

= rank (( −)
0 +

0 ( −) + ( −)
0)

≤ rank ( −) + 2 rank ( −) ≤  + 3
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Therefore, by Lemma 1, there is no loss of generality in redefining 00 01 and 11 as in (1). Hence, in

the rest of the proof of Theorem OW1, we use the definitions (1), and assume that the data are -dimensional

pure random walk with zero initial values. Moreover, since the eigenvalues of 01
−1
11 

0
01
−1
00 are invariant

with respect to the transformation  7→ Σ−12 we will assume that the columns of  are standardized so
that their variance equals . ¤
Before proceeding to the next section, let us show that matrices involved in the definitions (1) are

circulant, as mentioned above.

Lemma 3 Matrices  
0 and 

0 are circulant.

Proof. Matrix  is clearly circulant. Further, let  denote the -th column of   and let  =
[2    1]. By definition,  is circulant if 0 =  Now note that  commutes with  and

0 =  + 01 − 1
0

Therefore,


0 =

0 =

Hence, 0 is circulant. It remains to note that the transpose of a circulant matrix is a circulant matrix
and the product of two circulant matrices is a circulant matrix.¤
As is well known (see e.g. Golub and Van Loan (1996, ch. 4.7.7)), any  ×  circulant matrix  with

the first column  admits the diagonalization  = 1

F∗ diag (F)F , where

F = {exp (−i−1 (− 1))}=1 (9)

with  = 2 is the discrete Fourier transform matrix. Here the star superscript denotes transposition

and complex conjugation. Note that the first column of  equals 1 −  and that of  equals

 −  ( + 1)  (2 ) with  = (1 2   )0  A direct calculation of the products of F and these vectors

yields

 =
1


F∗ diag (0 −1)F ,

 =
1


F∗ diag

³
0 ∇̂∗

´
F , (10)


0 =

1


F∗ diag

³
0 ∇̂∗∇̂

´
F ,

where

∇̂ = diag
n¡

i1 − 1¢−1   ¡i−1 − 1¢−1o  (11)

2.1.2 Stieltjes transform

Our proof of the weak convergence  ()
P⇒  () consists of showing that the Stieltjes transforms of

 (),

() =

Z
1

− 
 (d)  (12)

converge in probability pointwise in  ∈ C+ ≡ { : I  0}, where I denotes the imaginary part of a complex
number , to the Stieltjes transform () of the Wachter distribution. The fact that a pointwise convergence
in probability of Stieltjes transforms implies the weak convergence in probability of the corresponding d.f.’s

is mentioned in Chatterjee (2006). However, since we cannot find a proof in the literature, we provide details

specific to our problem below.

In fact, we will prove the following more general fact.

Theorem 4 Let  () and ̃ () be two sequences of d.f.’s, supported on a subset of a fixed interval [− ]
with  ∞ and such that the corresponding Stieltjes transforms  () and ̃() satisfy | ()− ̃()| P→ 0

as →∞ pointwise in  ∈ C+ Then, L
³
 ̃

´
P→ 0

5



Proof. Suppose, as a matter of contradiction, that L
³
 ̃

´
does not converge. Then, there exist    0

and a subsequence {}  along which

Pr
³
L
³
  ̃

´
 
´
  (13)

Let 

and ̃


be convolutions of  and ̃ with distribution Φ of a zero mean Gaussian variable

with variance 2 so small that

Pr
³
L
³


 ̃



´
 2

´
  (14)

Note that

L
³


 ̃



´
≤
°°°


− ̃



°°° ≡ sup


¯̄̄


()− ̃


()
¯̄̄


By Theorem B.14 of Bai and Silverstein (2010)1,°°°

− ̃



°°° ≤ 

Z 5(1+)

−5(1+)

¯̄
 ()− ̃()

¯̄
d+




sup


Z
||2√3

¯̄̄
̃

(+ )− ̃


()
¯̄̄
d (15)

+




Z
||+1

¯̄̄


()− ̃


()
¯̄̄
d

where  ≡ R is the real part of   ≡ I and   0 is an absolute constant. Note that the density of ̃


is bounded by
¡√
2

¢−1
 and that2Z

||+1

¯̄̄


()− ̃


()
¯̄̄
d ≤ 4

Z −1
−∞
Φ () d ≤ 43−1(2

2)
√
2

Choosing    and 3−1(2
2) all sufficiently small, we can make the sum of the second and the

third term on the right hand side of inequality (15) smaller than 4 Then from (14),

Pr

Ã


Z 5(1+)

−5(1+)

¯̄
 ()− ̃()

¯̄
d  4

!
  (16)

Since for any 1 2 s.t. I1 = I2 =   0¯̄
 (1)−  (2)

¯̄ ∨ ¯̄̃(1)− ̃(2)
¯̄ ≤ |R1 −R2| 2,

the integral in (16) is different from a Riemann sum with a sufficiently large, but finite, number of summands

by less than 4 Therefore,
¯̄
 ()− ̃()

¯̄
does not converge to zero in probability pointwise in  ∈ C+

But such a convergence does take place.

Indeed, suppose not. Then, there exist  ∈ C+ and 1 1  0 such that

Pr
¡¯̄
 ()− ̃()

¯̄
 1

¢
 1 (17)

along a subsequence {} of the subsequence {}  But

 () =

Z 

−
 ( − ) dΦ () +

Z
||

 ( − ) dΦ ()  and

̃ () =

Z 

−
̃ ( − ) dΦ () +

Z
||

̃ ( − ) dΦ () 

1 In Bai and Silverstein’s notation, we choose  =
√
3  =  + 1 and  = 5 Such a choice yields  = 23  12 and

 = 3  1 so that the conditions of Theorem B.14 are satisifed.
2The first of the two displayed inequalities uses the fact that  and ̃ are supported on a subset of [− ]  whereas

the second one uses the bound Φ () ≤ −

√
2

−
2(22) for   0 and an inequality for the incomplete Gamma function (see

Olver (1997, p.67)).
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The absolute value of the second integrals on the right hand sides of the above equalities can be made less

than 14 by choosing a sufficiently large  The first integrals differ from corresponding Riemann sums with
a sufficiently large, but finite, number  of summands by less than 18 Therefore, from (17), we must have

Pr

Ã¯̄̄̄
¯
X
=1

( ( − )− ̃ ( − )) () ( − −1)

¯̄̄̄
¯  14

!
 1 (18)

where  is the derivative of Φ However, (18) is impossible because  () − ̃ () converge to zero in
probability, pointwise in  ∈ C+¤

2.1.3 Reduction to Gaussianity

This section shows that we may assume Gaussianity of the data without loss of generality. Then, the

rotational invariance of the multivariate Gaussian distribution allows us to effectively use the simultaneous

diagonalization (10), which is a key element of the proof of Theorem OW1.

Let  be a ×  matrix with i.i.d. standard normal entries, independent from  let

00 =
1




0 01 =
1




0
0 11 =

1




0
0

and let  () be the empirical d.f. of the eigenvalues of 01
−1
11

0
01

−1
00We would like to establish the

asymptotic equivalence 
P∼  This is achieved in four steps, similarly to Yang and Pan (2012), who

study the convergence of the empirical d.f. of the squared canonical correlations between two independent,

not necessarily Gaussian, white noise samples.

First, we show that 
P∼  follows from ̂

P∼ ̂ where ̂ () is the empirical d.f. of the eigenvalues

of the product of two random projection matrices, and ̂ () its Gaussian counterpart. Second, we prove

that ̂
as∼ ̄ where ̄ is a version of ̂ obtained by truncating, centralizing, and scaling the entries of

. Third, we perturb the random projections to ensure the boundedness of a few of the related matrices.

The size of the perturbation is captured by parameter  so we denote the perturbed ̄ () as ̄ ()  and

perturbed ̂ () as ̂ () We prove that ̄
P∼ ̂ follows from the asymptotic equivalence ̄

P∼ ̂

for all fixed   0 Finally, we establish the asymptotic equivalence ̄
P∼ ̂ for any fixed   0 by using

the generalization of the Lindeberg principle due to Chatterjee (2006).

Step 1: sufficiency of ̂
P∼ ̂ Note that matrix 01

−1
11 

0
01
−1
00 and the product of two projections

12 where

1 =
1




0
0
µ
1




0
0
¶−1

 and

2 =
1




0
µ
1




0
¶−1



have the same non-zero eigenvalues, and 12 has additional  − zero eigenvalues. Therefore, the empirical
d.f. ̂ () of the eigenvalues of 12 satisfies

̂ () =



 () +

 − 


1{≥0}

where 1{≥0} is the indicator function. Hence, it is sufficient to prove that ̂ ()
P∼ ̂ ()  where the

latter d.f. is the analogue of the former for the Gaussian data.

Step 2: truncation, centralization, and scaling. For each = 1 2  let  be such that   −1
and for all  ≥  we have

3E
³
2111{|11|

√
}

´
 2−

7



Let  = 1 for   1 and  = 1 for all  ∈ [ +1) Then, as  → ∞  → 0 and 
√
 → ∞

Furthermore,

−1 Pr(|11|  
√
 ) ≤ −3 E

³
2111{|11|

√
}
´
≤ 1 (19)

Let ̃ = 1{| |≤
√
} and let 


1   

2 be the matrices 1 2 with  replaced by ̃ . Denote the

empirical d.f. of the eigenvalues of  
1  

2 as  
 ()  and Pr(|11|  

√
 ) as  . Then for any   0, by

the rank inequality

Pr(L
³
 
  ̂

´
 ) ≤ Pr(rank( 

1  
2 − 12)   )

≤ Pr(rank( 
1 − 1)  2) + Pr(rank( 

2 − 2)  2)

≤ 2Pr(
X


1{| |
√
}  2) ≤ 2Pr

⎛⎝|X


(1{| |
√
} −  )|  

µ


2
− 

¶⎞⎠ 

Applying Bernstein’s inequality (see e.g. Bai and Silverstein (2010, p. 21)) to the latter probability, we obtain

Pr(L
³
 
  ̂

´
 ) ≤ 4 exp

µ
−2 ( 

2
−  )

2

¶


By (19),  (2)−  ≥  (4) for all sufficiently large  and  () along the sequence   → ∞ Therefore,

for all sufficiently large 

Pr(L
³
 
  ̂

´
 ) ≤ 4−

for some   0 It then follows from the Borel-Cantelli lemma that

L
³
 
  ̂

´
as→ 0 (20)

as   → ∞.
Next, let ̄ = ̃ − Ẽ and ̄1 ̄2 be the matrices 


1   

2 with ̃ replaced by ̄. Denote the

empirical d.f. of the eigenvalues of ̄1̄2 as ̄ (). Again, by the rank inequality, we have

L ¡̄  


¢ ≤ 1


rank(̄1̄2 −  

1  
2 )

≤ 1


rank(̄1 −  

1 ) +
1


rank(̄2 −  

2 )

Note that ̃− ̄ = Ẽ and that rank(Ẽ) = 1 by the i.i.d assumption. Therefore, we have

1


rank(̄1 −  

1 )

≤ 1


rank

(
1




0̃
0
"µ

1


̄

0̄
0
¶−1

−
µ
1


̃

0̃
0
¶−1#

̃

)
(21)

+
1


rank

(
1




0(̃− ̄)0
µ
1


̄

0̄
0
¶−1

̄

)

+
1


rank

(
1




0̃
0
µ
1


̄

0̄
0
¶−1

(̃− ̄)

)


The latter two ranks are no larger than rank(Ẽ) = 1 Sinceµ
1


̄

0̄
0
¶−1

−
µ
1


̃

0̃
0
¶−1

=

µ
1


̃

0̃
0
¶−1µ

1


̃

0̃
0 − 1


̄

0̄
0
¶µ

1


̄

0̄
0
¶−1
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the first rank on the right hand side of (21) is no larger than 2 rank(Ẽ) = 2
To summarize, 1


rank(̄1 −  

1 ) → 0 and similarly, 1

rank(̄2 −  

2 ) → 0 as   → ∞ Therefore

L ¡̄  


¢ as→ 0 which, taken together with (20), yields

L
³
̄ ̂

´
as→ 0

Since ̄1̄2 is invariant to rescaling of ̄, and since   (̄) → 1 as   → ∞ we may and will assume

that ̄ are i.i.d. with zero mean, unit variance, and satisfy | | ≤ ̄
√
 , where ̄ → 0 and ̄

√
 → ∞

as   → ∞.

Step 3: perturbing the projections. Matrices  (̄̄
0)−1  and (̄

0̄
0)−1 involved in the

definitions of projections ̄1 and ̄2 may have large norms, asymptotically. Therefore, we winsorize  and

replace the two other matrices by matrices of bounded norms.

The winsorization of  is done as follows. Let


0 =

X
=1


0


be a singular value decomposition of 
0 where 1 ≥  ≥  are the singular values. Throughout this

note, we will assume that  is an odd integer. The case of even  can be analyzed similarly, and we omit the

corresponding analysis. From (10), 2−1 = 2 = (2− 2 cos)−12 for  = 1  ( − 1) 2 and  = 0.
Let

 0 =
ed−1X
=1

ed0 +
−1X
=ed


0
 +

1

2
 

0
 

where  is a small positive number and ed denotes the smallest even integer larger than or equal to .
For future reference, note that the norm of 

0 is of order 
2 whereas

kk = ed =
¡
2− 2 cosed2

¢−12 ≤ √2 ()  (22)

where the latter inequality uses the fact that 1− cos ≥ 24 for  ∈ [0 2]. For any fixed   0 the right
hand side of (22) remains bounded as   → ∞.
Let

̃1 =
1


 0 ̄

0
µ
1


̄

0
 ̄
0
¶−1

̄ and ̃2 =
1


̄0
µ
1


̄̄0
¶−1

̄

and let ̃ () be the empirical d.f. of the eigenvalues of ̃1̃2

Lemma 5 Let 1 and 2 be  × matrices and let 1 and 2 be projections on the spaces spanned by

the columns of 1 and 2 respectively. If rank (1 − 2) =  then there exist ×  matrices 1 and 2 such

that 1 − 2 = 1 − 2  where 1 and 2 are projections on the spaces spanned by the columns of 1
and 2 respectively. In particular, rank (1 − 2) ≤ 2

Proof. Assume that 1 − 2 =  where  is  ×  and  =
¡
0 

¢
 This assumption does not lead

to a loss of generality because 1 and 2 are invariant with respect to multiplication of 1 and 2 from

the right by arbitrary invertible  ×  matrices. Let us partition 1 and 2 as [11 12] and [21 22] 
where 12 and 22 are the last  columns of 1 and 2 respectively. We have 21 = 11 and 22 +  = 12

Denote  − 21 as 1 where 21 is the projection on the space spanned by the columns of 21 and let

2 =122 Note that

2 = [212] = 21 + 2 

where the second equality holds because 21 is orthogonal to 2 Similarly, we have

1 = 11 + 1 = 21 + 1 

9



where 1 =112 Therefore, 1 − 2 = 1 − 2 ¤
By rank inequality (Bai and Silverstein (2010, thm. A.43)) and Lemma 5,

L
³
̄ ̃

´
≤ 1


rank(̄1̄2 − ̃1̃2) (23)

≤ 1


rank(̄1 − ̃1) +

1


rank(̄2 − ̃2) ≤ 2 ed+ 2




which converges to zero as   → ∞ and  → 0. A similar inequality holds for the Gaussian analogues,

̂() ̃() of d.f.’s ̄() ̃()
Next, let

̄1 =
1


 0 ̄

0
µ
1


̄

0
 ̄
0 + 

¶−1
̄ and ̄2 =

1


̄0
µ
1


̄̄0 + 

¶−1
̄

and let ̄ () be the empirical d.f. of the eigenvalues of ̄1̄2 (for later use, we denote the Gaussian

analogue of ̄ () as ̂ ()). Since the eigenvalues of ̄1̄2 and ̄2̄1̄2 coincide, and the eigenvalues

of ̃1̃2 and ̃2̃1̃2 coincide, Corollary A.41 of Bai and Silverstein (2010) yields

L3
³
̄ ̃

´
≤ 1


tr
³
̄2̄1̄2 − ̃2̃1̃2

´2
(24)

≤ 


tr
³
̄1 − ̃1

´2
+




tr
³
̄2 − ̃2

´2
for an absolute constant 

On the other hand,

1


tr
³
̄1 − ̃1

´2
=

1


tr

Ã
1


̄

0
 ̄
0
"µ

1


̄

0
 ̄
0 + 

¶−1
−
µ
1


̄

0
 ̄
0
¶−1#!2

=
2


tr

µ
1


̄

0
 ̄
0 + 

¶−2
≤ 2


tr

µ
1

2
̄̄0 + 

¶−2


where the last inequality follows from the fact that, by construction, 
0
 ≥  2 By Theorem 3.6 in Bai

and Silverstein (2010), the empirical d.f. of the eigenvalues of 1

̄̄0 a.s. converges to the Marchenko-Pastur

distribution. Hence, for any fixed   0

2


tr

µ
1

2
̄̄0 + 

¶−2
as→ 42

Z 



p
(− ) (− )

2 (+ 2)
2 d

where  = (1 +
√
)
2
and  = (1−√)2 

For  ∈ (0 1)  the above a.s. limit is bounded by 2 where  is a constant that depends only on  For

 = 1 we have

42
Z 4

0

p
(4− )d

2 (+ 2)
2  2

Z ∞
0

4d

12 (+ 2)
2
=
p
2

In any case, the limit converges to zero as → 0. Similarly,

1


tr
³
̄2 − ̃2

´2
=

2


tr

µ
1


̄̄0 + 

¶−2
with the a.s. limit of the latter expression converging to zero as → 0
Using (24), we arrive at the following result. With probability one, for any   0 there exists   0 s.t.

for any  ∈ (0 )
lim supL

³
̄ ̃

´
  (25)

as   → ∞. A similar result holds for L
³
̂ ̃

´
 Combining (23), (25), and similar inequalities for

the Gaussian case, we conclude that the asymptotic equivalence ̄
P∼ ̂ would follow from ̄

P∼ ̂ for

all fixed   0

10



Step 4: using the Lindeberg principle. Let ̄() and  () be the Stieltjes transforms of ̄ and

̂ respectively. By Theorem 4, the equivalence ̄
P∼ ̂ would follow from the pointwise in  ∈ C+

convergence |̄()− ()| P→ 0 In this section, we establish the latter convergence using Chatterjee’s
(2006) extension of the Lindeberg principle.

The Lindeberg principle is a method of establishing the convergence in distribution of sums of independent

random variables to a normal one by showing the closeness of the expectations of three-times differentiable

functions of the original sums and sums of independent normals. The method is concisely described in

Bentkus et al (2000). It has been extended by Chatterjee (2006) beyond sums, to cover nonlinear functions of

random variables. We will use Chatterjee’s Theorem 1.1 that we reproduce here for the reader’s convenience.

Theorem 6 (Chatterjee (2006)) Suppose  and  are random vector in R with  having independent

components. For 1 ≤  ≤  let

 = E |E ( |1 −1|− E ())| 
 = E

¯̄
E
¡
2
 |1 −1|− E

¡
 2


¢¢¯̄


Let 3 be a bound on max

³
E ||3 + E ||3

´
 Suppose  : R → R is a thrice continuously differentiable

function, and for  = 1 2 3 let  () be a finite constant such that |  ()| ≤  () for each  and 

where  denotes the -fold derivative in the -th coordinate. Then,

|E ()− E ( )| ≤
X
=1

µ
1 () +

1

2
2 ()

¶
+
1

6
3 ()3

Let  =   = vec (̄)  and  = vec () so that  =  = 0 Since ||3 ≤ ||2 ̄
√
 and  are

standard normals, we have

3 ≤ ̄
12 + 23212

Further, let  : R → R be a thrice continuously differentiable function with bounded derivatives up to the
third order. Finally, let  () =  (R̄ ()) and  ( ) =  (R ())  The following lemma is proven at
the end of this section.

Lemma 7 For any  ∈ C+ and   0 there exists   0 such that¯̄̄̄
 ()



¯̄̄̄
≤ −32

¯̄̄̄
¯2 ()

2

¯̄̄̄
¯ ≤ −2 and

¯̄̄̄
¯3 ()

3

¯̄̄̄
¯ ≤ −52

Similar inequalities hold for the derivatives of ̄ () with respect to ̄ 

The lemma and Theorem 6 yield

|E ()− E ( )| ≤ 



̄

for some   0 This implies |E ()− E ( )| → 0 as   → ∞ because ̄ → 0 and  → .

Furthermore, since  can be any thrice continuously differentiable function with bounded derivatives, we

have

|R̄ ()−R ()| P→ 0

Similarly, setting  () =  (Ī ()) and  ( ) =  (I ())  and using Lemma 7 and Theorem 6, we

obtain |Ī ()− I ()| P→ 0 and hence,

|̄ ()− ()| P→ 0

as required.
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It remains to prove Lemma 7. Recall that

 () =
1


tr−1 ≡ 1


tr (12 −  )

−1

with

1 =
1


 0

0
µ
1




0

0 + 

¶−1
 ≡ 1


 0

0−1 

2 =
1


0
µ
1


0 + 

¶−1
 ≡ 1


0−1 

Note that




= 

0
 
−1


= − 1

−1

¡


0

0 + 

0


¢
−1  and

−1


= − 1

−1

¡


0


0

0 + 

0


0


¢
−1 

Therefore, the chain rule for the derivative  yields a sum of terms, each of which has form

± 1√



(1)
 

0


(1)


where 
0
 equals either 

0
 or 

0
 (the superscript ‘(1)’ reminds us that the terms correspond to the

first-order derivative of ). The “left” matrix 
(1)
 belongs to the set


(1)
 ∈ { 0  1 1 01 12 12} (26)

with

1 =
1√

 0

0−1 and 2 =
1√

0−1 

The “right” matrix 
(1)
 belongs to the set


(1)
 ∈ {  2 2 0

2
0
12 12}  (27)

For some constant   0 that depends on  we have°°° (1)


°°°   and
°°° (1)



°°°  

To see this, note that kk  k1k  and k2k are clearly bounded, whereas

k1k ≤
°°°° 1√


 0

0−12

°°°°°°°−12

°°° = k1k12 °°°−12

°°°  

k2k ≤
°°°° 1√


0−12

°°°°°°°−12

°°° = k2k12 °°°−12

°°°  

Since
 ()


= − 1


tr

µ
−1




−1

¶
and

°°−1°° ≤ 1I we conclude that ¯̄̄̄
 ()



¯̄̄̄
≤ −32 (28)

for some constant  that depends on  and .
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To obtain the second derivative 22  we need to differentiate each term ± 1√



(1)
 

0


(1)
 in the

expansion of the first derivative separately. This amounts to obtaining either 
(1)
  or 

(1)
  

Given (26) and (27), we have


(1)



∈
½
0
1



1


 0 

1



1


2 1

2



 (12)



¾


and


(1)



∈
½
0
2


 

2



 0

2



 0

1


2

0
1

2


 

 (12)



¾


Whatever the specific values of 
(1)
  and 

(1)
  are, these derivatives can be represented as

sums of terms of the form

± 1√



0
 (29)

where  and  may be different from 
(1)
 and 

(1)
  but must satisfy

kk   and kk  

To see this, it is sufficient to verify that any of the matrices

1



2



1



2


 and

 (12)



can be represented as a sum of terms of the form (29). For  (12)   we have established this fact
above. For the other matrices, we have

1


=

1√

 0

0


0
1 +

1√

1

0
 −

1√

1

0
1 −

1√

1

0


0


0
1

2


=

1√



0


0
2 +

1√

2 − 1√


2

0
2 −

1√

2

0


0
2

1


=

1√

 0

0

−1
 −

1√

1

0
1 − 1√


1

0


0

−1
  and

2


=

1√



0

−1
 −

1√

2

0
2 − 1√


2

0

−1
 

Hence, indeed, these matrices can be represented as sums of terms of the form (29). To summarize, the

second derivative 22 can be represented as a sum of terms of the form

± 1



(2)
 

0


(2)
 

0


(2)


where the “left”, “middle”, and “right” matrices 
(2)
  

(2)
  

(2)
 are products of constant matrices of

bounded norm and terms of the form

1 21
0
12

0
2 12

−1
  −1  (30)

In particular, °°° (2)


°°°  
°°° (2)



°°°  
°°° (2)



°°°  

On the other hand,

2 ()

2
=
2


tr

µ
−1




−1




−1

¶
− 1


tr

Ã
−1

2

2
−1

!
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Therefore, ¯̄̄̄
¯2 ()

2

¯̄̄̄
¯ ≤ −2 (31)

For the third derivative, the same logic implies that 33 can be represented as a sum of terms of

the form

± 1

 32


(3)
 

0


(3)
0

(3)


0


(3)
 

where “left”, “middle-left”, “middle-right”, and “right” matrices 
(3)
  

(3)
 

(3)
 

(2)
 satisfy°°° (3)



°°°  
°°° (3)



°°°  
°°° (3)



°°°  
°°° (3)



°°°  

The arguments used to establish this fact remain the same as above. The only additional fact that needs to

be established is that −1  and 
−1
  can be represented as sums of terms of the form (29). The

reason we need this is that −1 and −1 enter products defining 
(2)
  

(2)
  

(2)
  in addition to matrices

1 21
0
1 2, and  0

2 (see (30)). We have

−1


= − 1√

−1 

0
1 − 1√


 0
1

0


0

−1
 

−1


= − 1√

−1 

0
2 − 1√


 0
2

0

−1
 

Hence, indeed, −1  and 
−1
  are sums of terms ± 1√




0
 with kk   and kk 



A straightforward calculation shows that

3 ()

3
= − 6


tr

µ
−1




−1




−1




−1

¶
+
3


tr

Ã
−1

2

2
−1




−1

!

+
3


tr

Ã
−1




−1

2

2
−1

!
− 1


tr

Ã
−1

3

3
−1

!


The facts that
°°−1°° is bounded, and that   22 and 33 can be represented as sum

of terms, respectively,

± 1√



(1)
 

0


(1)
 

± 1



(2)
 

0


(2)
 

0


(2)
  and

± 1

 32


(3)
 

0


(3)
0

(3)


0


(3)


with norm-bounded matrices 
(1)
 

(2)
  and 

(3)
  implies that¯̄̄̄

¯3 ()

3

¯̄̄̄
¯  −52 (32)

The proof of inequalities (28), (31), (32) for ̄ () is exactly the same as above, after  is replaced by ̄. ¤
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2.1.4 Identities for Stieltjes transform

For the rest of the proof of Theorem OW1, we assume that the data are generated by

 = −1 +   = 1  

with i.i.d.  ∼  (0 ) and 0 = 0 Replacing  by  in the definition (1) of   we obtain

00 =
1




0 01 =
1




0
0 and 11 =

1




0
0

Further, for the rest of the proof, we will assume that

 ∈ (0 1)  (33)

For  = 1 the Wachter limit equals the distribution having mass one at unity. On the other hand, matrix

01
−1
11 

0
01
−1
00 (with 

−1
11 and 

−1
00 being Moore-Penrose generalized inverses) equals  plus a matrix of rank

converging to zero as   →1 ∞ Hence, Theorem OW1 holds.

Let ̂ = F∗ be a × matrix whose rows are the discrete Fourier transforms at frequencies 0 1  ̄
of the rows of  Here and in the rest of the proof, ̄ =  − 1 The discrete Fourier transform matrix F
is as defined in (9). Further, let ̂−0 be the  × ̄ matrix obtained from ̂ by removing its first column,

corresponding to zero frequency. The diagonalization equations for 
0 and 

0 given in

(10), yield

00 =
1


̂−0̂

∗
−0 01 =

1


̂−0∇̂̂∗−0 and 11 =

1


̂−0∇̂

∗∇̂̂∗−0
Below we will work with real-valued sin and cos Fourier transforms of . In addition, we will interchange

the order of frequencies so that 1 and 2 with 1+ 2 =  become adjacent pairs. Specifically, recall that

 is assumed to be odd so that ̄ is even. Let  = {} be a ̄ × ̄ permutation matrix with elements

 =

⎧⎨⎩ 1 if  = 1  ̄ 2 and  = 2− 1
1 if  = ̄ 2 + 1  ̄ and  = 2

¡
̄ − + 1

¢
0 otherwise

 (34)

and let

 =
1√
2
̄ 2 ⊗

µ
1 1
i −i

¶
 (35)

where ⊗ denotes the Kronecker product, and i = √−1 is the imaginary unit. Further, let  = ̂−0 ∗
√
̄ 

and ∇ = diag ©∇1 ∇̄ 2

ª
with

∇ = −1
2

µ
1 − cot (2)

cot (2) 1

¶
 (36)

A direct calculation shows that

∇∇0 = ∇0∇ = diag
n
−11 2  

−1
̄ 2

2

o
with  = 4 sin

2 (2)  (37)

Lemma 8 The columns of  are i.i.d. 
¡
0 ̄

¢
vectors. Matrix 01

−1
11 

0
01
−1
00 equals 

−1 0−1 where

 = ∇00 = ∇∇00 and  = 0

Proof. Let + = diag {1 } and + = diag {1}. Note that + is an orthogonal matrix and + is

a unitary matrix. In particular, +
∗
++

0
+ =  . The statement about  follows from the rotational

invariance of Gaussian distribution and from the fact that F∗+ ∗+
√
 is an orthogonal matrix. The

statement about 01
−1
11 

0
01
−1
00 follows from a direct verification of the identity  0∇̂ ∗ = ∇0¤

The convenience of the −10−1 representation of 01−111 
0
01
−1
00 stems from the block-diagonality

of ∇ and the diagonality of ∇∇0. Let () be a  × 2 matrix that consists of the (2 − 1)-th and the 2-th
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columns of  In particular,  =
£
(1)  (̄ 2)

¤
 Then  can be represented as sums of independent

components of rank two. Specifically,

 =
X

()∇00() =
X

−1 ()
0
() and  =

X
()

0
()

Below, we exploit these representations to derive the following identities that involve the Stieltjes trans-

form  () of the empirical d.f. of the eigenvalues of 
−1 0−1

() =
̄



1

1− 
− 1



̄ 2X
=1

1

(1− )2
tr
³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´
 (38)

̄


+ () =

̄



1

1− 
− 1



̄ 2X
=1

1

(1− )2
tr
³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´
 (39)

1 + () =
̄



1

1− 
− 1



̄ 2X
=1

1

(1− )2
tr
³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´
 (40)

0 =
1



̄ 2X
=1

1

1− 
tr
³
[0 2]Ω

()


£
2 ∇0

¤0´
 (41)

where

Ω
()
 ≡ Ω() () =

Ã
1
1− 2 + 

()
 ()


1−∇0 + 

()0
 ()


1−∇ + 

()
 ()



1− 2 + ̃
()
 ()

!−1
 (42)

and the 2× 2 matrices () ≡ 
()
 () 

()
 ≡ 

()
 () and ̃

()
 ≡ ̃

()
 () are defined as follows. Let

 = − ()
0
()  =  − ()∇00()  =  − −1 ()

0
()

 = 
−1
 0 −   and ̃ = 0

−1
  −  

Then,


()
 = 0()

−1
 () 

()
 = 0()

−1
  0

−1
 () and ̃

()
 = 0()̃

−1
 ()

The entries of these matrices are quadratic forms in the columns of () In what follows, we use superscript

‘()’ to denote matrices that involve quadratic forms in the columns of () to distinguish them from related

matrices that do not involve such quadratic forms.

First, we establish the following lemma. Let


()
 = 0()

−1
  0

−1
  0

−1
 () ̃

()
 = 0()

−1
 ̃

−1
 

−1
 ()

̃
()
 = 0()

−1
 ̃

−1
 () 

()
 = 0()

−1
 () and ̃

()
 = 0()

−1
 ()

Further, let

 ≡  () = tr
¡
−1

¢
̄  ̃ ≡ ̃ () = tr

³
̃−1

´
̄ 

 ≡  () = tr
¡
−10−1

¢
̄  ̃ ≡ ̃ () = tr

³
−1̃−1

´
̄ 

 ≡  () = tr
¡
−1 0−10−1

¢
̄  ̃ ≡ ̃ () = tr

³
−1̃−1−1

´
̄ 

 = tr
−1̄  and ̃ = tr

−1̄ 

where  = −10−  and ̃ =  0−1 −  For the reader’s convenience, Table 1 lists definitions of

matrices and scalars used in our proofs below.

Lemma 9 The following identities hold


()
 = ̃

()0
  ̃

()
 = 

()
 − 

()
  and 

()
 = ̃

()
 − ̃

()
  (43)

Similarly,

 = ̃ ̃ =  −  and  = ̃ − ̃ (44)
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Table 1: Definitions of matrices, quadratic forms and traces that are used in the derivations below. Notations

used in this table suppress the dependence of various quantities, such as    etc., on .

×  matrices 2× 2 matrices scalars

 = −10 −  
()
 = 0()

−1
 ()  =

1
̄
tr
©
−1

ª
̃ =  0−1 −  

()
 = 0()

−1
 0

−1
 ()  =

1
̄
tr
©
−1 0−1

ª
 =  − ()∇00(), 

()
 = 0()

−1
  0

−1
  0

−1
 ()  =

1
̄
tr
©
−10−1−1

ª
 =  − −1 ()

0
(), 

()
 = 0()

−1
 ()  =

1
̄
tr
©
−1

ª
 = − ()

0
(), ̃

()
 = 0()̃

−1
 () ̃ =

1
̄
tr
n
̃−1

o
 = 

−1
 0 −  ̃

()
 = 0()

−1
 ̃

−1
 () ̃ =

1
̄
tr
n
−1̃−1

o
̃ = 0

−1
  −  ̃

()
 = 0()

−1
 ̃

−1
 

−1
 () ̃ =

1
̄
tr
n
−1̃−1 0−1

o
̃
()
 = 0()

−1
 () ̃ =

1
̄
tr
©
−1

ª
 =

1

tr
n¡

−1 0−1 − 
¢−1o

Proof. The identity 
()
 = ̃

()0
 is established by the following sequence of equalities


()
 = 0()

−1
  0

−1
 () = 0()

−1
  0

¡


−1
  0 − 

¢−1
()

= 0()
³
 − 

¡
0
¢−1



´−1
() =

µ
0()

³
0 −  ()

−1


´−1
()

¶0
=

³
0()

−1
 

¡
 0

−1
  − 

¢−1
()

´0
=
³
0()

−1
 ̃

−1
 ()

´0
= ̃

()0
 

The relationship ̃
()
 = 

()
 − 

()
 is obtained as follows

̃
()
 + 

()
 = 0()

³
̃−1 +−1

´
() = 0()

−1


³


¡
 0

−1
 

−1
 − 

¢−1
+ 

´
()

= 0()
−1


³
− +  0

−1
 

−1


¡
0

−1
 

−1
 − 

¢−1
+ 

´
()

= 0()
−1
 0

¡
 0 − 

−1
 

¢−1
() = 0()

−1
  0

¡
−1 0 − −1 

¢−1
−1 ()

= 0()
−1
 0

¡


−1
  0 − 

¢−1


−1
 () = 

()
 

The relationship 
()
 = ̃

()
 − ̃

()
 is obtained as follows


()
 + ̃

()
 = 0()

¡
−1 +−1

¢
() = 0()

−1


³


¡


−1
  0

−1
 − 

¢−1
+ 

´
()

= 0()
−1


³
− + 

−1
  0

−1


¡


−1
  0

−1
 − 

¢−1
+ 

´
()

= 0()
−1
 

¡
 − 

0−1
 

¢−1
() = 0()

−1
 

¡
−1  −  0−1 

¢−1
−1 ()

= 0()
−1
 

¡
 0

−1
  − 

¢−1
 0

−1
 () = ̃

()
 

Identities (44) are established similarly. The only differences are that the matrices involved are not indexed

by  and instead of the quadratic forms in the columns of () we work with traces.¤

Derivation of (38) Applying the Sherman-Morrison-Woodbury formula

( + )−1 =  −1 −  −1
¡
−1 +   −1

¢−1
  −1 (45)
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to the right hand side of

−1 =
³
 + −1 ()

0
()

´−1


we obtain

−1 = −1 −−1 ()

³
2 + 

()


´−1
0()

−1
  (46)

Using this and the identity

 =  + ()∇00() (47)

we expand −10 in the following form


−1
 0 + ()∇00()−1  0 − 

−1
 ()

³
2 + 

()


´−1
0()

−1
 0 + 

−1
 ()∇

0
()

−()∇0()

³
2 + 

()


´−1
0()

−1
  0 − 

−1
 ()

³
2 + 

()


´−1

()
 ∇

0
() + ()∇0() ∇

0
()

−()∇0()

³
2 + 

()


´−1

()
 ∇

0
()

Simplifying this expression yields

−1 0 = 
−1
  0 − 

−1
 ()

³
2 + 

()


´−1
0()

−1
 0 + ()∇0

³
2 + 

()


´−1
0()

−1
  0

+
−1
 ()

³
2 + 

()


´−1
∇

0
() + ()∇0()

³
2 + 

()


´−1
∇

0
()

Since  = −10 −  and  =  + ()
0
() it follows that

−1 =
¡
 + 

0


¢−1
 (48)

where

 = [() 
−1
 ()]

and

 =

⎛⎜⎝ ∇0()

³
2 + 

()


´−1
∇ − 2 ∇0

³
2 + 

()


´−1³
2 + 

()


´−1
∇ −

³
2 + 

()


´−1
⎞⎟⎠ 

Applying (45) to the right hand side of (48), we obtain

−1 =−1 −−1 
¡
−1 + 0

−1
 

¢−1
0

−1
  (49)

The identity ∇0∇ = −1 2 yields

 =

µ ∇0 0
0 2

¶⎛⎜⎝ 
()


³
2 + 

()


´−1
 − 2

³
2 + 

()


´−1
³

2 + 
()


´−1
 −

³
2 + 

()


´−1
⎞⎟⎠µ ∇ 0

0 2

¶


which implies that

−1 =
1

1− 

µ ∇−1 0
0 2

¶Ã
−1 2 2

2 
³
2 + 

()


´
− 

()


!µ ∇0−1 0
0 2

¶


and therefore, using ∇0∇ = −1 2 again, we obtain

−1 =

Ã
1
1− 2

1
1− ∇0

1
1− ∇


1− 2 − 

()


!
 (50)
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Further, the definitions of 
()
  

()
 and 

()
 yield

0
−1
  =

Ã

()
 

()0



()
 

()


!
 (51)

Using (50) and (51) in (49), we obtain

−1 =−1 −−1 Ω
()
 0

−1
  (52)

where

Ω
()
 =

Ã
1
1− 2 + 

()


1
1− ∇0 + 

()0


1
1− ∇ + 

()



1− 2 − 

()
 + 

()


!−1
=

Ã
1
1− 2 + 

()


1
1− ∇0 + 

()0


1
1− ∇ + 

()



1− 2 + ̃

()


!−1
 (53)

and the latter equality holds by Lemma 9.

Equation (52) yields

0()
−1() = 

()
 −

h

()
  

()0


i
Ω
()


h

()
  

()0


i0
 (54)

Note that


()
 =

h

()
  

()0


i
Ω
()
 (Ω

()
 )−1 [2 0]

0 =
h

()
  

()0


i
Ω
()


µ
1

1− 

£
2 ∇0

¤0
+
h

()
  

()0


i0¶


and thus, (54) can be rewritten as

0()
−1() =

1

1− 

h

()
  

()0


i
Ω
()


£
2 ∇0

¤0
=

1

1− 

µ∙
1

1− 
2 + 

()
 

1

1− 
∇0 + 

()0


¸
−
∙

1

1− 
2

1

1− 
∇0

¸¶
Ω
()


£
2 ∇0

¤0
=

1

1− 

µ
[2 0]

£
2 ∇0

¤0 − ∙ 1

1− 
2

1

1− 
∇0

¸
Ω
()


£
2 ∇0

¤0¶
=

1

1− 
2 − 1

(1− )2
£
2 ∇0

¤
Ω
()


£
2 ∇02

¤0


To summarize, we have the following identity

0()
−1() =

1

1− 
2 − 1

(1− )2
£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0
 (55)

Recall that by definition,

 () =
1


tr
h¡
−10−1 − 

¢−1i
=
1


tr
£
−1

¤
=
1



̄ 2X
=1

tr
h
0()

−1()
i


This equation and representation (55) yield identity (38)

 () =
̄



1

1− 
− 1



̄ 2X
=1

1

(1− )2
tr
³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´
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Derivation of identity (39) Since the eigenvalues of −10−1 coincide with those of  0−1−1
we have

 () =
1


tr
h¡
0−1−1 − 

¢−1i
=
1


tr
h
̃−1

i
=
1



̄ 2X
=1

tr
h
−1 0()̃

−1()
i
 (56)

Note that matrix ̃ can be obtained from  by swapping  for  and  for  0 Performing such a swap
in the above derivations of (55) yields

0()̃
−1() =



1− 
2 −

2

(1− )2
[2∇ ] Ω̃

()
 [2∇]

0
 (57)

where

Ω̃
()
 =

Ã

1− 2 + ̃

()



1−∇ + ̃

()0



1−∇0 + ̃

()



1− 2 − ̃

()
 + ̃

()


!−1


Lemma 9 implies that

Ω̃
()
 =

Ã

1− 2 + −1

³

()
 − 

()


´

1−∇ + 

()



1−∇0 + 

()0



1− 2 + 

()


!−1
=

µ
0 2
2 0

¶
Ω
()


µ
0 −12
2 0

¶


so that (57) yields

0()̃
−1() =



1− 
2 −

2

(1− )2
£
−1∇  2

¤
Ω
()


£
−1∇  2

¤0
 (58)

Combining this with (56) gives us

 () =
̄



1

1− 
− 1



̄ 2X
=1

tr

"


(1− )
2

£
−1∇  2

¤
Ω
()


£
−1∇  2

¤0#


Further, since ∇∇0 = 2 we have



(1− )
2 tr

h£
−1∇  2

¤
Ω
()


£
−1∇  2

¤0i
=



(1− )
2 tr

h
∇∇0

£
−1∇  2

¤
Ω
()


£
−1∇  2

¤0i
=



(1− )2
tr
h

£
−1∇0∇∇0

¤
Ω
()


£
−1∇∇0 ∇0

¤0i
=

−1

(1− )2
tr
³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´


and therefore,

 () =
̄



1

1− 
− 1



̄ 2X
=1

−1

(1− )2
tr
³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´


which is equivalent to identity (39),

̄


+  () =

̄



1

1− 
− 1



̄ 2X
=1

1

(1− )
2 tr

³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´


Derivation of identity (40) Multiplying both sides of the identity

−1 = −10−1 − 
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by −1 taking trace, dividing by , and rearranging yields

1 +  () =
1



̄ 2X
=1

tr
h
∇00()−1 0−1()

i
 (59)

Equations (46), (47), and (52) imply that

−10−1 =

µ
−1 −−1 ()

³
2 + 

()


´−1
0()

−1


¶³
 0 + ()∇

0
()

´
×
³
−1 −−1 Ω

()
 0

−1


´


Opening up brackets, we obtain

−1 0−1

= −1  0
−1
 −−1 ()

³
2 + 

()


´−1
0()

−1
  0

−1
 +−1 ()∇

0
()

−1


−−1  0
−1
 Ω

()
 0

−1
 −−1 ()

³
2 + 

()


´−1
0()

−1
 ()∇

0
()

−1


+−1 ()

³
2 + 

()


´−1
0()

−1
  0

−1
 Ω

()
 0

−1
 −−1 ()∇

0
()

−1
 Ω

()
 0

−1


+−1 ()

³
2 + 

()


´−1
0()

−1
 ()∇

0
()

−1
 Ω

()
 0

−1
 

Multiplying from the left by 0() and from the right by () and using the definitions of 
()
  

()
  

()
  and


()
  we obtain

0()
−1 0−1()

= 
()
 − 

()


³
2 + 

()


´−1

()
 + 

()
 ∇

()
 −

h

()
  

()


i
Ω
()


h

()
  

()0


i0
−()

³
2 + 

()


´−1

()
 ∇

()
 + 

()


³
2 + 

()


´−1 h

()
  

()


i
Ω
()


h

()
  

()0


i0
−() ∇

h

()
  

()0


i
Ω
()


h

()
  

()0


i0
+ 

()


³
2 + 

()


´−1

()
 ∇

h

()
  

()0


i
Ω
()


h

()
  

()0


i0


Rearranging terms and simplifying gives us

0()
−10−1() = 

³
2 + 

()


´−1

()
 ∇

µ

()
 −

h

()
  

()0


i
Ω
()


h

()
  

()0


i0¶
(60)

+

³
2 + 

()


´−1µ

()
 −

h

()
  

()


i
Ω
()


h

()
  

()0


i0¶


As follows from (54) and (55)


()
 −

h

()
  

()0


i
Ω
()


h

()
  

()0


i0
=

1

1− 
2 − 1

(1− )2
£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0
 (61)

Further,


()
 −

h

()
  

()


i
Ω
()


h

()
  

()0


i0
=

h

()
  

()


i
Ω
()
 (Ω

()
 )−1 [2 0]

0 −
h

()
  

()


i
Ω
()


h

()
  

()0


i0
=

1

1− 

h

()
  

()


i
Ω
()


£
2 ∇0

¤0
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Note that

1

1− 

h

()
  

()


i
Ω
()


£
2 ∇0

¤0
=

1

1− 

µ∙


1− 
∇ + 

()
 



1− 
2 + 

()
 − 

()


¸
−
∙



1− 
∇ 



1− 
2 − 

()


¸¶
Ω
()


£
2 ∇0

¤0
=

1

1− 

µ
[0 2]

£
2 ∇0

¤0 − 

1− 

£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0
+
h
0 

()


i
Ω
()


£
2 ∇0

¤0¶
=

1

1− 
∇ − 

(1− )2
£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0
+

1

1− 

h
0 

()


i
Ω
()


£
2 ∇0

¤0


Therefore,


()
 −

h

()
  

()


i
Ω
()


h

()
  

()0


i0
=

1

1− 
∇ − 

(1− )2
£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0
+

1

1− 

h
0 

()


i
Ω
()


£
2 ∇0

¤0


Using this and (61) in (60), we obtain

0()
−1 0−1()

= 

³
2 + 

()


´−1

()
 ∇

Ã
1

1− 
2 − 1

(1− )2
£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0!
+ 

³
2 + 

()


´−1
×
Ã

1

1− 
∇ − 

(1− )
2

£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0
+

1

1− 

h
0 

()


i
Ω
()


£
2 ∇0

¤0!

=
1

1− 
∇ −



³
2 + 

()


´−1
(1− )2

h

()
 ∇ + ∇  

()
 + 2

i
Ω
()


£
2 ∇0

¤0
=



1− 
∇ − 

(1− )2
£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0


that is,

0()
−1 0−1() =



1− 
∇ − 

(1− )2
£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0
 (62)

This identity together with (59) yield

1 +  () =
1



̄ 2X
=1

tr

"
∇0
Ã



1− 
∇ − 

(1− )
2

£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0!#

=
1



̄ 2X
=1

tr

"Ã
1

1− 
2 − 1

(1− )
2

£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0!#


which is equivalent to identity (40),

1 +  () =
̄



1

1− 
− 1



̄ 2X
=1

1

(1− )2
tr
³£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0´


Derivation of identity (41) An obvious identity

1


tr
£
 0−1

¤
=
1


tr
£
−1 0−1

¤
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and representations 0 =
X̄ 2

=1
()∇

0
() and  =

X̄ 2

=1
−1 ()

0
() yield

1



̄ 2X
=1

tr
h
∇

0
()

−1()
i
=
1



̄ 2X
=1

tr
h
−1 0()

−10−1()
i


Using (62) and (55) in this equation, we obtain

1



̄ 2X
=1

tr

"
∇

Ã
1

1− 
2 − 1

(1− )2
£
2 ∇0

¤
Ω
()


£
2 ∇0

¤0!#

=
1



̄ 2X
=1

tr

"
−1

Ã


1− 
∇ − 

(1− )
2

£
−1∇  2

¤
Ω
()


£
2 ∇0

¤0!#


Equivalently,

0 =
1



̄ 2X
=1

tr

"Ã
1

(1− )2
[∇  2]Ω

()


£
2 ∇0

¤0 − 1

(1− )2
[∇  2]Ω

()


£
2 ∇0

¤0!#

=
1



̄ 2X
=1

1

1− 
tr
³
[0 2]Ω

()


£
2 ∇0

¤0´


which is the same as identity (41).

2.1.5 From identities to a system of approximate equations

As we will see below, matrices 2 ̃2 2 etc. are close to 
()
  ̃

()
  

()
  etc., uniformly in  = 1  ̄ 2

(see Table 1 for definitions of  ̃ 
()
  ̃

()
  etc.) Therefore, matrices Ω

()
  defined in (53), can be well

approximated by

Ω =

µ 1
1− 2 + 2

1
1− ∇0 + 2

1
1− ∇ + 2


1− 2 + ( − ) 2

¶−1
(63)

=
1− 



µ

1− 2 + ̃2 − 1

1− ∇0 − 2
− 1
1− ∇ − 2

1
1− 2 + 2

¶


where the latter equality follows from (44), and

 = (1− )
¡
̃ − 2

¢
+ ̃ +  ( +  − 1)  (64)

Approximating Ω
()
 by Ω  sums by integrals, and ̄ by  in equations (38-41), we obtain the following

system of “approximate equations”⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

 () =
1
2

R 2
0

−1 ()
¡
̃ − 2 − 4 sin2 

¢
d+ 1()

 () =
1
2

R 2
0

−1 ()
¡
̃ − ̃ − 2

¢
d+ 2()

1 +  () =
1
2

R 2
0

−1 ()
¡
2 sin

2 + ̃ − 2
¢
d+ 3()

0 = 1
2

R 2
0

−1 ()
¡
4 sin

2 + 2
¢
d+ 4()

 (65)

where

 () = (1− )
¡
̃ − 2

¢
+ ̃ + 4 sin

2  ( +  − 1)  (66)

and  () are the approximation errors. Of course, system (65) can be viewed simply as the definition of

 ()   = 1  4 That these quantities are indeed the errors of the above mentioned approximations will
be clear from the proof of the following lemma.
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Lemma 10 There exists   0 such that, for any  with R = 0 and I  

()
as→ 0

for  = 1  4 as   → ∞.

Proof. Consider a decomposition  () = 
(1)
 ()+ 

(2)
 ()  where 

(1)
 () is the error due to the replace-

ment of Ω
()
 by Ω and 

(2)
 () is due to the replacement of sums by integrals, and ̄ by  For example,

for  = 1 we have


(1)
1 () =

1



̄ 2X
=1

1

(1− )
2 tr

³£
2 ∇0

¤ ³
Ω − Ω()

´ £
2 ∇0

¤0´
(67)

and


(2)
1 () =

̄



1

1− 
− 1



̄ 2X
=1

1

(1− )2
tr
³£
2 ∇0

¤
Ω
£
2 ∇0

¤0´
(68)

− 1

2

Z 2

0

−1 ()
¡
̃ − 2 − 4 sin2 

¢
d

Using equations (53) and (63), we obtain

Ω −Ω() = Ω

Ã

()
 − 2 

()0
 − 2


()
 − 2 

()
 − 

()
 − ( − ) 2

!
Ω
()
 

Therefore, for any  ∈ C+ the convergences (1) ()
as→ 0  = 1  4 would follow from the a.s. uniform in

 convergence to zero of all the elements of the matrix sandwiched between Ω and Ω
()
 in the above display,

and from the a.s. uniform in  boundedness of kΩk 
°°°Ω()

°°°  and °°∇0°°  The uniform convergences of

the matrix elements are established in Lemma 14 below. The uniform boundedness of
°°∇0°° immediately

follows from the definitions of  and ∇  The uniform boundedness of kΩk follows from Lemmas 15 and

16. Finally, the uniform boundedness of
°°°Ω()

°°° follows from that of kΩk and from Lemma 14.

For 
(2)
1 ()  using the explicit expression (63) for matrix Ω and the identities ∇0∇ = 2 and tr∇ =

−1 we obtain

̄



1

1− 
− 1



̄ 2X
=1

1

(1− )2
tr
³£
2 ∇0

¤
Ω
£
2 ∇0

¤0´

=
̄



1

1− 
− 1



̄ 2X
=1

2

1− 

̃ +  ( +  − 1)


=
̄



2

̄

̄ 2X
=1

−1
¡
̃ − 2 − 

¢
Since  = 4 sin2 ( ) and ̄ =  − 1 the latter expression can be interpreted as a Riemann sum
approximation for the integral

1

2

Z 2

0

−1 ()
¡
̃ − 2 − 4 sin2 

¢
d

The derivative of the integrand with respect to  equals

−4−2 () sin 2
¡
( +  − 1)

¡
̃ − 2

¢
+ ̃

¢
 (69)
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As follows from Lemmas 15 and 16, there exists   0 s.t. for any  with I   expression (69) a.s. remains

uniformly bounded in  as   → ∞ Therefore, 
(2)
1 ()

as→ 0 The convergences 
(2)
 ()

as→ 0  = 2  4
are established similarly, and we omit the corresponding details.¤
In the remaining part of this section, we formulate and prove Lemmas 14, 15, 16, referred to in the above

proof. We start from the following three auxiliary results.

Lemma 11 Let Ω be a ×  deterministic complex matrix, and  ∼ 

¡
0 ̄

¢
. Then, for any  ≥ 2

E
¯̄
0Ω − trΩ ¯̄ ≤ 2̄− kΩk 

where  depends only on 

Proof. The lemma is a straightforward corollary of Lemma 2.7 in Bai and Silverstein (1998).¤

Lemma 12 As   → ∞


as→ 42

¡
1− 2

¢
 (70)

Proof. By definition,  = tr
−1̄ = tr

¡
∇∇00¢−1 ̄  Let  () denote the empirical distribution of

the eigenvalues of  and let

̂() =

Z
1

− 
d ()

be its Stieltjes transform. Then by Theorem 1.1 of Silverstein and Bai (1995), for any  ∈ C+ ̂()
as→

() with

 = − 1

()
+

Z
d ()

1 +  ()


where  () is the limit of the empirical distribution of the diagonal elements of ∇∇0 −1   = 1  ̄ 2
Recall that

 = 4 sin
2 (2) = 2− 2 cos = 2 (1− cos (2 )) 

Therefore,  () is the cumulative distribution function of the random variable [2 (1− cos)]−1  where 
is distributed uniformly on the interval [0 ]  This fact implies that

 = − 1

()
+
1



Z 

0

d

2 (1− cos) +  ()

= − 1

()
+

1

2i

I
||=1

d


³
2
³
1− +−1

2

´
+ ()

´
= − 1

()
− 1

2i

I
||=1

d

(2 − (2 + ()) + 1)


The integrand has two poles at

12 =
() + 2±

p
22

() + 4()

2


Note that 12 = 1, which implies that one of them is inside the contour and the other is outside. Therefore,

we have

 = − 1

()
± 1

1 − 2

= − 1

()
± 1p

22
() + 4()

(71)
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where the choice of + or − sign depends on which of 12 is inside the contour. Squaring and rearranging,
we obtain

 (() + 1)
2
(() + 4)−() = 0 (72)

Further, since min=1̄ 2 
−1
 ≥ 14 denoting the -th largest eigenvalue of a symmetric matrix  as

 ()  we have (see e.g. Bai and Yin (1993))

 () = 
¡
∇∇00¢ ≥  (

0)
4

as→ (1−√)2
4



Therefore, () is analytic at  = 0 ̂ (0)
as→  (0)  and (0) satisfies equation (72) with  = 0

That is,

̂ (0)
as→ (0) =

4

1− 2


But  =


̄
̂ (0)  Hence, we have (70).¤

Lemma 13 Let min  max and min0 max0 be the smallest and largest eigenvalues of  and of 

respectively. Then,°°−1

°° ≤ 1
¡
(I)min

¢

°°−1 °° ≤ 4min  °°−1 0

°°2 ≤ 4maxmin °°−1°° ≤ 1
¡
(I)min0

¢

°°−1°° ≤ 4min0 and °°−1 0°°2 ≤ 4max0min0

Further,¯̄
tr
¡
−1 −−1

¢¯̄ ≤ 8 ¡(I)min¢  ¯̄tr ¡−1  0
−1
 −−10−1

¢¯̄ ≤ 3212max0
³
(I)

32
min

´


and ¯̄
tr
¡
−1 0

−1
 

−1
 −−1 0−1−1

¢¯̄ ≤ 96max0 ¡(I)2min¢ 
Proof. By definition of   we have°°−1

°° = °°°°−12

³

−12
 

−1
  0

−12
 − 

´−1

−12


°°°° ≤ °°−1 °°°°°°³−12 
−1
  0

−12
 − 

´−1°°°° 
On the other hand,

°°−1 °° = −1min and
°°°°³−12 

−1
  0

−12
 − 

´−1°°°° ≤ 1 (I)  Therefore,°°−1

°° ≤ 1 ¡(I)min¢  (73)

The required bound for
°°−1°° is established similarly.

Further, denoting the -th largest eigenvalue of a symmetric matrix  as  ()  we have°°−1 °° = 1 () ≤ 1
¡

¡∇∇0¢min¢ ≤ 4min  (74)

The required bound on
°°−1°° is established similarly. Next,°°−1  0
°°2 = °°−1 0

−1


°° = °°°−1 −()∇−0−()−()∇0−0−()−1
°°° 

where ∇− is the block-diagonal matrix obtained from ∇ by removing its -th 2 × 2 block, and −() is
obtained from  by removing the 2 − 1-th and 2-th columns. On the other hand,°°°−1 −()∇−0−()−()∇0−0−()−1

°°° ≤ max

°°°−1 −()∇−∇0−0−()−1
°°°

= max
°°−1 

−1


°° = max
°°−1 °° 
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Using (74), we obtain °°−1 0
°°2 ≤ 4maxmin  (75)

The required bound for
°°−10°° is established similarly.

Now let us establish the bounds on the differences of traces. As follows from (52), −1 differs from−1

by a matrix of rank no larger than 4. Therefore,¯̄
tr
¡
−1 −−1

¢¯̄ ≤ 4°°−1 −−1
°° ≤ 4 ¡°°−1

°°+ °°−1°°¢  (76)

so that ¯̄
tr
¡
−1 −−1

¢¯̄ ≤ 4 ¡(I)min¢+ 4 ¡(I)min0¢ ≤ 8 ¡(I)min¢  (77)

where the last inequality holds because − is a positive-semidefinite matrix and hence min ≤ min0

Similarly, −1 0
−1
 differs from −10−1 by a matrix with rank no larger than 8. It is because

−1  0
−1
 −−1 0−1 = −1 0

¡
−1 −−1

¢
+−1

¡
 0 − 0

¢
−1 +

¡
−1 −−1

¢
0−1

where the rank of −1 −−1 is no larger than 4, and the ranks of 0 −  0 and −1 −−1 are no larger
than 2 each. Therefore,¯̄
tr
¡
−1 0

−1
 −−1 0−1

¢¯̄ ≤ 8 ¡°°−1  0
°°°°−1

°°+ °°−1 0°°°°−1°°¢ ≤ 3212max0
³
(I)

32
min

´


where we used (73) and (75). Finally, −1  0
−1
 

−1
 differs from −10−1−1 by a matrix with

rank no larger than 12. Therefore,¯̄
tr
¡
−1  0

−1
 

−1
 −−10−1−1

¢¯̄ ≤ 96max0 ¡(I)2min¢ ¤
Now, we are ready to formulate and prove Lemmas 14, 15, and 16.

Lemma 14 For any pair
³

()
  

´
∈
n³


()
  

´

³

()
  

´

³

()
  

´

³

()
  

´o
and any  ∈ C+ as

  → ∞ we have

max
=1̄ 2

°°°() − 2

°°° as→ 0

Proof. First, let us prove the convergence

max
=1̄ 2

°°°() − 2

°°° as→ 0 (78)

Since the square of the spectral norm is no larger than the sum of the squared elements of the matrix, it is

sufficient to prove the element-wise convergences. Take, for example, the element in the second row and the

second column of 
()
 − 2 We need to show that

max
=1̄ 2

¯̄
02

−1
 2 − 

¯̄ as→ 0 (79)

or, equivalently, that for any   0

Pr

µ
max

=1̄ 2

¯̄
02

−1
 2 − 

¯̄
  i.o.

¶
= 0 (80)

where “i.o.” stands for “infinitely often”.

Let B be the indicator function of the event min  , where  is a positive number smaller than

(1−√)2 (recall that   1 without loss of generality). Theorem II.13 of Davidson and Szarek (2001)
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implies that the probability of B = 0 is decaying exponentially fast in . Hence, by the Borel-Cantelli

lemma,

Pr
³
∪̄ 2=1 (B = 0) i.o.

´
= 0

On the other hand,

Pr

µ
max

=1̄ 2

¯̄
02

−1
 2 − 

¯̄
  i.o.

¶
≤ Pr

µ
max

=1̄ 2

¯̄
02

−1
 2 − 

¯̄
  ∩̄ 2=1 (B = 1) i.o.

¶
+Pr

³
∪̄ 2=1 (B = 0) i.o.

´


Therefore,

Pr

µ
max

=1̄ 2

¯̄
02

−1
 2 − 

¯̄
  i.o.

¶
≤ Pr

µ
max

=1̄ 2

¯̄
02

−1
 2 − 

¯̄
  ∩2=1 (B = 1) i.o.

¶
≤ Pr

µ
max

=1̄ 2

¯̄B02−1 2 − B
¯̄
  i.o.

¶
≤ Pr

µ
max

=1̄ 2

¯̄
02

−1
 B2 − tr

£
−1 B

¤
̄
¯̄
 2 i.o.

¶
+Pr

µ
max

=1̄ 2

¯̄
tr
£¡
−1 −−1

¢B¤ ̄ ¯̄  2 i.o.

¶


By Lemma 11, for any  ≥ 2

E
¯̄
02

−1
 B2 − tr

£
−1 B

¤
̄
¯̄ ≤ 2̄−E

°°−1 B
°° (81)

On the other hand, by Lemma 13,
°°−1 °° ≤ 4min and thus,°°−1 B

°° ≤ 4 and E°°−1 B
°° ≤ ¡4¢ 

Combining this with (81), we obtain

E
¯̄
02

−1
 B2 − tr

£
−1 B

¤
̄
¯̄ ≤ 2̄−

where  depends only on  and . By Markov’s inequality

Pr

µ
max

=1̄ 2

¯̄
02

−1
 B2 − tr

£
−1 B

¤
̄
¯̄
 2

¶
≤ ̄

2

2̄−

(2)


The right hand side of the latter inequality is summable over  for sufficiently large  and therefore,

Pr

µ
max

=1̄ 2

¯̄
02

−1
 B2 − tr

£
−1 B

¤
̄
¯̄
 2 i.o.

¶
= 0 (82)

Finally, since the rank of the positive semi-definite matrix −1 − −1 is no larger than two, we have by
Weyl’s theorem (see Theorem 4.3.6 in Horn and Johnson (1985))¯̄

tr
£¡
−1 −−1

¢B¤¯̄ ≤ 2°°−1 B
°° ≤ 8

and

Pr

µ
max

=1̄ 2

¯̄
tr
£¡
−1 −−1

¢B¤ ̄ ¯̄  2 i.o.

¶
= 0 (83)
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Equalities (82) and (83) imply that (80) holds.

The convergence of the element in the first row and the first column of 
()
 − 2 can be shown similarly

to (79). For the off-diagonal elements, note that

02−1
−1
 2 =

1

2

¡
02−1 

0
2

¢µ 0 −1
−1 0

¶µ
2−1
2

¶


Hence, we again can use Lemma 11 and the Borel-Cantelli lemma to obtain desired results.

The a.s. convergences of the maxima over  = 1  ̄ 2 of
°°°() − 2

°°°  °°°() − 2

°°° and °°°() − 2

°°°
can be proven by closely following the strategy of the above proof of (78). We omit details. The only two

new aspects of the remaining proofs are related to the need for bounds on the spectral norms of −1 0
−1
 

−1  and −1 0
−1
 

−1
  and on the differences between the traces of these matrices and the traces of

−1 0−1 −1 and −1 0−1−1 respectively. Such bounds are provided by Lemma 13.¤

Lemma 15 For any  ∈ C+ quantities  ≡ ()  ≡ ()  ≡ () and  ≡  almost surely

remain bounded as   → ∞

Proof. By definition

|| ≤ 

̄

°°−1 0−1°°  || ≤ 

̄

°°−1°°  || ≤ 

̄

°°−10−1−1°°  and || ≤ 

̄

°°−1°° 
Therefore, Lemma 15 follows from Lemma 13 and the convergences (see e.g. Bai and Yin (1993)) min0

as→
(1−√)2 and max0

as→ (1 +
√
)
2
¤

Lemma 16 There exists   0 such that, for any  with R = 0 and I   a.s.,

lim inf
→∞

max
=12

| |  2
¡
1− 2

¢
and lim inf

→∞
sup

| ()|  2

¡
1− 2

¢


Proof. By Lemma 9, ̃ =  −  Elementary algebra then yields the following representation  =


(1)
 +

1


(2)
  where


(1)
 = ( + ) ( − 1) 

and


(2)
 = () (1 +  − )−  () +  ()− 1− 


()

2

Note that for  ∈ C+  ∈ C+ Hence, for  ∈ C+ such that R = 0 we have R ()  0 and
| − 1|  1 (84)

This inequality and Lemma 12 imply that, for any  ∈ C+ such that R = 0
¯̄̄

(1)


¯̄̄
 22

1−2 for sufficiently
large   as   → ∞ a.s.

Further, Lemma 13 implies that ||  ||  and || (as well as ||  ||  and ||) remain bounded
for sufficiently large   as   → ∞ a.s. Moreover, the presence of the imaginary part of  in the

denominator of the bound on
°°−1°° in Lemma 13 imply that, for  ∈ C+ such that R = 0 the value of

the bound on ||  ||  and || does not depend on . In particular, for any such ,
¯̄̄

(2)


¯̄̄
is bounded

for sufficiently large   as   → ∞ a.s., uniformly in , with the value of the bound independent from 

with I  .3 Hence, by choosing  sufficiently large, we can ensure that, for any  with R = 0 and I  ¯̄̄
1


(2)


¯̄̄
 1

2

¯̄̄

(1)


¯̄̄
 and therefore

| |  2
¡
1− 2

¢


A proof of the a.s. uniform over  bound on  () is almost identical to the above proof, and therefore we
omit details.¤

3For such  there exist bounds on ||  ||  and || that depend only on .
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2.1.6 Solving the system

By definition, |()| is bounded by (I)−1  Further, by Lemmas 9 and 15,  ≡ () ̃ ≡ ̃() and
 ≡ () are a.s. bounded by absolute value. Therefore, with probability one, there exists a subsequence
of   along which () () ̃() and () converge to some limits   ̃ and 

These limits must satisfy a limiting version of system (65), that is equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
 = 1

2

R 2
0

−1 ()
¡
̃ − 2 − 4 sin2 ¢d

 = 1
2

R 2
0

−1 ()
¡
̃ − ̃ − 2

¢
d

1 +  = 1
2

R 2
0

−1 ()
¡
2 sin2 + ̃ − 2

¢
d

0 = 1
2

R 2
0

−1 ()
¡
2 sin2 + 

¢
d

 (85)

where

 () = (1− )
¡
̃ − 2

¢
+ ̃ + 4 sin2  ( + − 1)  (86)

Let us consider, until further notice, only such  that R = 0 and I   for some   0. Let us solve
system (85) for  Adding two times the last equation to the first one, and subtracting the second equation

we obtain

0 =
1

2

Z 2

0

−1 () (2+ ̃) d (87)

Note that
R 2
0

−1 () d 6= 0 Otherwise, from the second equation of (85), we have  = 0 which cannot
be true. Indeed, for any 0 ≤  ≤ 1 and  ∈ C+ with R = 0

I

µ
1

− 

¶
=

I

2 + (I)2
≥ I

1 + (I)2


Therefore, I () ≥ I
³
1 + (I)2

´
 and  () cannot converge to  = 0.

Since
R 2
0

−1 () d 6= 0 (87) yields
̃ + 2 = 0 (88)

with ̃ 6= 0 and  6= 0 (if one of them equals zero, the other equals zero too, and  = 0 by the second
equation of (85), which is impossible). Since  6= 0 the last equation implies that  6= 0 as well.
Further, subtracting from the third equation the sum of  times the second and  times the last

equation, and using (88), we obtain

1 =
1

2

Z 2

0

−1 ()



(2 + ) ( −  − 1) d (89)

This equation, together with (88) and the second equation of (85) yield

 =
 (2 + − 2)

(1 +  − ) (2 + )
 (90)

Next, for the integrand in the last equation of (85), it is straightforward to verify using (66) and (88)

that

−1 ()
¡
2 sin2 + 

¢
=
1

2



 + − 1 + −1 ()


2

µ
(1− )  (2 + ) + 2 (2 + − 1)

 + − 1
¶
 (91)

This assumes that

 + − 1 6= 0 (92)

which must hold because otherwise,

 () = (1− )
¡
̃ − 2

¢
+ ̃
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would not depend on  and the last equation of (85) would imply that +  = 0 The latter equation and

the equality  + − 1 = 0 would yield  = − (1− )
−1

 which, when combined with the second equation

of (85), would give us  = −−1 (1− )−1  This cannot be true because  being a limit of  (), must
satisfy I ≥ 0 for I  0
Equations (89), (91), and the last equation of (85) imply that

 =
2

2− 1− (1− )  (1− )
− 2 (93)

Combining this with (90) yields

 = 
1− 


 (94)

Finally, elementary calculations given at the end of this section show thatµ
1

2

Z 2

0

1

+ 2 sin2 
d

¶2
=

1

 (+ 2)
 (95)

where  ∈ C\ [−2 0]. Using (95), (89), and the definition of  (), we obtain the following relationshipµ
2 ( + − 1)

 (2 + ) ( −  − 1)
¶2
=

4 ( + − 1)2
 ((1− ) (−2 − )− 2) (−+  + 2) (+ 2 − 2)  (96)

that holds as long as
 ((1− ) (−2 − )− 2)

2 ( + − 1) ∈ C\ [−2 0] 

The latter inclusion holds because otherwise  () is not a bounded function of  which would contradict
Lemma 16.

Using (93) in (96), and simplifying, we find that there exist only three possibilities. Either

 = − 1

1− 
 (97)

or

1− (+  − 1)  +  (1− ) (1− ) 2 = 0 (98)

or


1− 
− (+  − )  +  (1− ) (1− ) 2 = 0 (99)

Equation (97) cannot hold because otherwise, (94) would imply that I  0 which is impossible as
argued above. Equation (98) taken together with (93) implies that

+  − 1 = 0

which was ruled out above. This leaves us with (99), so that, using (94), we get

 =
− ( − − )±

q
( − − )

2 − 4 (1− ) 

2 (1− ) 
 (100)

For  ∈ C+ with R = 0 the imaginary part of the right hand side of (100) is negative when ‘−’ is used
in front of the square root. Here we choose the branch of the square root, with the cut along the positive

real semi-axis, which has positive imaginary part. Since I cannot be negative, we conclude that

 =
− ( − − ) +

q
( − − )

2 − 4 (1− ) 

2 (1− ) 
 (101)
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But the right hand side of the above equality is the value of the limit of the Stieltjes transforms of the

eigenvalues of the multivariate beta matrix  ( ( − ) 2) as   → ∞ This can be verified directly by

using the formula for such a limit, given for example in Theorem 1.6 of Bai, Hu, Pan and Zhou (2015). As

follows fromWachter (1980), the weak limit of the empirical distribution of the eigenvalues of the multivariate

beta matrix  ( ( − ) 2) as   → ∞ equals  (;  (1 + )  2 (1 + )).
Equation (101) shows that, for  with R = 0 and I   with probability one, any converging sub-

sequence of () converges to the same limit. Hence, () a.s. converges for all  with R = 0 and
I   Note that () is a sequence of bounded analytic functions in the domain { : I  }  where 
is an arbitrary positive number. Therefore, by Vitaly’s convergence theorem (see Titchmarsh (1939), p.168)

() a.s. converges to  described by (101), for any  ∈ C+ The a.s. convergence of  () to the Wachter
distribution follows from the Continuity Theorem for the Stieltjes transforms (see, for example, Corollary 1

in Geronimo and Hill (2003)).

Note that we have just proven the a.s. weak convergence  () ⇒  () for Gaussian data. Since, as
has been shown above, the Gaussian and non-Gaussian versions of  () are asymptotically equivalent in
probability, we conclude that the weak convergence  ()⇒ () takes place for non-Gaussian data too,
albeit, possibly only in probability.

Proof of (95). Consider

I = 1

2

Z 2

0

1

+ 2 sin2 
d

where  ∈ C\ [−2 0]  Changing the variable of integration to  = exp {i}  we obtain

I = 1

2i

I
||=1

1

− ( − −1)2 2
d


= − 1

2i

I
||=1

2

(2 − 1) (2 − 2)
d

where

12 = + 1±
p
 (+ 2)

Since 12 = 1 whereas |1| 6= 1 and |2| 6= 1 there are only two poles of the integrand that are situated
inside the unit circle. They are either 

12
1 −121  which we shall call case 1, or 

12
2 −122  which we shall

call case 2. By Cauchy’s residue theorem,

I = ∓ 2

1 − 2


with “−” corresponding to case 1 and “+” corresponding to case 2. Whatever the case, we have

I2 = 4

(1 − 2)
2 =

1

 (+ 2)


2.2 Proof of Corollary OW2

Since the probability limits of 
2 and 0 

2 are the same as long as  → 0, we shall only
compute the latter limit. As   → ∞ we have

0 
2 P→ −1

Z
d()

Using the explicit formula for the density of the Wachter distribution OW(9), we obtain,Z
d() =

1 + 

2

Z +

−

p
(+ − ) (− −)

1− 
d+max {0 2− 1}  (102)

where

± = 
³√
2∓√1− 

´−2
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Denote
R
d()−max {0 2− 1} as I. Let

 = (− −)  (+ − −)

so that  = − + (+ − −) Then

I = 1 + 

2

Z 1

0

(+ − −)
2
p
(1− )

1− − − (+ − −)
d

Changing variables to  where  = (1− cos ) 2 so that d = 1
2 sin d we obtain

I = 1 + 

8

Z 

0

(+ − −)
2
sin2 

2−+−−
2 + +−−

2 cos 
d

Further, letting  = cos  + i sin  so that

cos  =
 + −1

2
, sin  =

 − −1

2i
, and d =

d

i


we obtain

I = − 1 + 

16i

I
||=1

(+ − −)
2
³
−−1
2

´2
2−+−−

2 + +−−
2

+−1
2

d




where the contour integral is taken over the unit circle in the complex plane. Noting that

2− + − −
2

+
+ − −
2

 + −1

2
= (+ )

¡
+ −1

¢


where

 =

p
1− − +

p
1− +

2
  =

p
1− − −

p
1− +

2


we represent I in the following form

I = − 1 + 

64i

I
||=1

(+ − −)
2 ¡
2 − 1¢2

 (+ ) ( + )

d

2


Since     0 the integrand has poles at 0 and − The corresponding residues are

0 =
1 + 

2

¡
2 + 2

¢


and

− = −1 + 

2

¡
2 − 2

¢


so that

I = 1 + 

2

¡
2 + 2

¢− 1 + 

2

¡
2 − 2

¢


Noting that

2 + 2 =
−+ 22 + 1
(+ 1)

2 and 2 − 2 =
1− 2
1 + 



we further simplify the above expression for I to obtain
I = 2

+ 1


Therefore, Z
d() =

2

+ 1
+max {0 2− 1} 

and

0 
2 P→ 2

+ 1
+
1


max {0 2− 1} 

As follows from Theorem OW1, in cases where  are Gaussian, the convergence is a.s.

33



2.3 Proof of Corollary OW3

As explained in OW, for   12 we have


2 ≥ − ¡2¢ X

=+1

log(1− )

Therefore,


2 ≥ − ()

Z
log (1− ) d () +

¡
2

¢ X
=1

log(1− )

If  → 0 as   → ∞ the second term on the right hand side of the above display converges to zero.

Therefore, by Theorem OW1, for any   0

Pr

µ


2  −−1
Z
log (1− ) d()− 

¶
→ 0

and in cases of Gaussian  almost surely,

lim inf  
2 ≥ −−1

Z
log (1− ) d()

By definition of log

−−1
Z
log (1− ) d() = −−1

Z
log (1− ) d() ≡ 

Using the explicit formula for the density of the Wachter distribution OW(9), we obtain

 = −
1 + 

22

Z +

−
log (1− )

p
(+ − ) (− −)

 (1− )
d

where

± = 
³√
2∓√1− 

´−2


Let  = (− −)  (+ − −) so that  = − + (+ − −) Then

 = −
1 + 

22

Z 1

0

log (1− − − (+ − −))
p
(1− ) (+ − −)

2

((+ − −)+ −) (1− − − (+ − −))
d

Changing variables to  where  = (1− cos ) 2 so that d = 1
2 sin d we obtain

 = −
1 + 

82

Z 

0

log
³
2−+−−

2 + +−−
2 cos 

´
(+ − −)

2 sin2 ³
++−
2 − +−−

2 cos 
´³

2−+−−
2 + +−−

2 cos 
´d

Further, letting  = cos  + i sin  so that

cos  =
 + −1

2
, sin  =

 − −1

2i
, and d =

d

i


we obtain

 =
1 + 

162i

I
||=1

log
³
2−+−−

2 + +−−
2

+−1
2

´
(+ − −)

2
³
−−1
2

´2³
++−
2 − +−−

2
+−1
2

´³
2−+−−

2 + +−−
2

+−1
2

´ d
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where the contour integral is taken over the unit circle in the complex plane. Noting that

2− + − −
2

+
+ − −
2

 + −1

2
= (+ )

¡
+ −1

¢


where

 =

p
1− − +

p
1− +

2
  =

p
1− − −

p
1− +

2


and that
+ + −
2

− + − −
2

 + −1

2
= (− )

¡
− −1

¢


where

 =

p
+ +

p
−

2
  =

p
+ −

p
−

2


we represent  in the following form

 =
1 + 

42i

I
||=1

log
¡
(+ )

¡
+ −1

¢¢
()2

¡
2 − 1¢2

(− ) ( − ) (+ ) ( + )

d



=
1 + 

42i

I
||=1

log
¡
(+ )

¡
+ −1

¢¢
2

¡
2 − 1¢2

 (− )
¡
 − 



¢
(+ )

¡
 + 



¢ d




The integral has form  =

I
||=1

log
¡
()

¡
−1

¢¢
 () −1d with () = 

¡
−1

¢
. Hence, expanding

the logarithm yields two identical terms, so that

 =
1 + 

22i

I
||=1

log (+ ) 2
¡
2 − 1¢2

 (− )
¡
 − 



¢
(+ )

¡
 + 



¢ d



Since     0 and     0 log (+ ) is analytic inside the unit circle and the integrand has three
simple poles there: 0 − and  The corresponding residues are

0 = −1 + 

2



log  = −1 + 

2
log 

− =
1 + 

2

log
³
− 2



´
22

¡
2 − 2

¢
 (+ ) (+ )

=
1 + 

2

p
1− −

p
1− + log

µ
− 2



¶
=

1− 2
2

log

µ
− 2



¶


and

 =
1 + 

2
log
¡
+ 



¢

¡
2 − 2

¢
(+ ) (+ )

=
1 + 

2

p
+
p
− log

µ
+





¶
=

1


log

µ
+





¶
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Summing up, we obtain

 = −
1 + 

2
log +

1− 2
2

log

µ
− 2



¶
+
1


log

µ
+





¶


Noting that

 =

√
1− 

1 + 
 2 − 2 =

1− 2
1 + 

  =

√
2

1 + 
 and +  =

p
2 (1− )

1 + 


we further simplify the above expression for  to obtain

 =
1 + 

2
log (1 + )− 1− 

2
log (1− ) +

1− 2
2

log (1− 2) 

3 Sequential asymptotics and over-rejection

3.1 Proof of Theorem OW4

First, let us show that the weak limit 0 () of  () as  → 0 exists and equals the continuous part of
the Marchenko-Pastur distribution with density OW(20). By definition and Theorem OW1,  () is the

(scaled) Wachter d.f.  (;  (1 + )  2 (1 + )) with density () and support [̂− ̂+] given by

() =
1 + 

2

q
(̂+ − )(− ̂−)

 (1− )
 and ̂± =

³√
2∓

p
1− 

´−2


As  → 0 ̂± → ± where ± =
¡
1±√2¢2 as in OW(19), and () converges to the density given by

OW(20). This implies the weak convergence of  () to 0 () with 0 supported on [− +] and having
density OW(20).

Next, recall that matrix

1



Z 1

0

(d) 0
µZ 1

0

 0d
¶−1 Z 1

0

 (d)
0

(103)

has been derived by Johansen (1991) as the limit in distribution of matrix 

̃01̃

−1
11 ̃

0
01̃
−1
00 as  → ∞

where

̃00 =
1




0 ̃01 =
1




00 and ̃11 =
1




00 (104)

In that derivation, the distribution of the data generating process is inessential. Only the i.i.d.-ness of

innovations and the existence of their second moments are of importance. Therefore, for the purpose of

proving Theorem OW4, we may and will assume that  is Gaussian.

In addition, and again without loss of generality, we will assume that  and (103) are defined on the

common probability space so that the convergence of 

̃01̃

−1
11 ̃

0
01̃
−1
00 to (103) is in probability. We denote

the empirical d.f. of the eigenvalues of 

̃01̃

−1
11 ̃

0
01̃
−1
00 as ̃ ()  and note that, L

³
̃  0

´
→ 0 as

 →∞ while  is held fixed. Here L (· ·) is the Lévy distance.
To establish Theorem OW4, we need to show that 0() ⇒ 0() in probability as  → ∞. It is

sufficient to show that for any   0 and all sufficiently large 

Pr (L (0 0)  )  1−  (105)

We shall split L (0 0) into several parts, and show that each of them is small with high probability.

Let

 = ∇00 = ∇∇00 and  = 0

as in Lemma 8. For any  let  be the smallest integer satisfying  ≤  and let     Let  denote

the empirical distributions of eigenvalues of




−1 0−1 (106)
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and let  be its counterpart when  is replaced by  .

By the triangle inequality,

L (0 0) ≤ L (0 ) + L
¡
  

¢
+ L ¡   ¢+ L³  ̃´+ L³̃  0´  (107)

We can choose   0 so small that the first term on the right hand side of (107) satisfies

L (0 )  4 (108)

By Theorem OW1, the second term a.s. converges to zero as  → ∞ Therefore, for all sufficiently large ,

we have

Pr
¡L ¡  ¢  4

¢
 1− 4 (109)

Further, for any  and  the rank of the difference between 

−1 0−1 and 


̃01̃

−1
11 ̃

0
01̃
−1
00 remains

below a fixed positive integer, say . Indeed, by Lemma 8, 

−10−1 equals 


01

−1
11 

0
01
−1
00  where

 are defined by (1). On the other hand, comparing (1) with (104), we see that the rank of the difference

between 

01

−1
11 

0
01
−1
00 and 


̃01̃

−1
11 ̃

0
01̃
−1
00 is bounded by a fixed positive integer. Therefore, for the

fourth term on the right hand side of (107) we have

L
³
  ̃

´
  (110)

As was mentioned above, as  →∞ while  is fixed, the fifth term satisfies

L
³
̃  0

´
→ 0 (111)

To establish (105), it remains to show that the third term on the right hand side of (107), L ¡   ¢,
is small with high probability for sufficiently small  all large  and all   ̃  where ̃ may depend on .

Hence, the following lemma completes the proof of Theorem OW4.

Lemma 17 For any   0 there exists   0 such that for any  ∈ (0 )  all sufficiently large  and all
  ̃  where ̃ may depend on  we have

Pr
¡L ¡   ¢  4

¢
 1− 2 (112)

3.1.1 Proof of Lemma 17 (Lévy distance between  and  is small)

Below, whenever we need to say “for any   0 there exists   0 such that for any  ∈ (0 )  all
sufficiently large  and all   ̃  where ̃ may depend on ”, we will abbreviate this statement by “under

conditions of Lemma 17”.

Let  =
√
̄  where ̄ =  − 1. Then the elements of  are i.i.d. (0 1) Some of the arguments below

are more conveniently expressed in terms of  rather than . Consider

 = ()
¡
0

¢−12 ¡
∇00¢ ¡∇∇00¢−1 ¡∇0¢ ¡0¢−12 

Note that  is identical to the real symmetric matrix −12 ( )−1 0−12 and thus,  and
 are the empirical distributions of eigenvalues of and  respectively. By Theorem A.45 (norm

inequality) of Bai and Silverstein (2010),

L ¡   ¢ ≤ °° −

°°  (113)

Hence, it is sufficient to prove that under conditions of Lemma 17,

Pr
¡°° −

°°  4
¢
 1− 2 (114)

37



Let us introduce some new notation. Let ̄ =  − 1, and let ∇ be defined similarly to ∇ with

 replaced by  . Consider a partition  =
£
  −

¤
 where  and − are  × ̄ and  × (̄ − ̄)

respectively. Define

 = 
0
  = ∇∇00   = ∇00 

and

0 = 00 = ∇∇00 0 = ∇00
Then

 = −12  ()
−1

 0
−12
 and  = 

−12
0 0 (0 )

−1
00

−12
0

By Theorem 1 of Onatski and Wang (2017a), when →∞°°

°° as→ ³√
2−

p
1− 

´−2
 (115)

In particular,
°°

°° a.s. remains bounded by an absolute constant. Convergences (115) and°°°−12

°°° as→ (1−√)−1 
°°°12

°°° as→ (1 +
√
) (116)

(see e.g. Geman (1980) and Silverstein (1985)) imply that there exists an absolute constant  such that, for

any sufficiently small ,

lim sup
°°°()

−12
 0
°°°   (117)

with probability one. In addition, for any sufficiently small , (116) implies

lim sup
°°°−12 − 

°°° ≤ 3√ (118)

Further, it is also true that, for any sufficiently small ,

lim sup
°°°−120 − 

°°° ≤ 3√ (119)

with probability one. To see this, consider a  × ̄ matrix  with  =
¥
̄
¦ ≥  (here b·c denotes the

integer part of a real number), such that the upper × ̄ block of  coincides with  and the remaining part

of  consists of i.i.d. (0 1) variables independent from  Note that 0 can be viewed as a ×  principal

submatrix of 0 ≡ 0 By Theorem 4.3.15 of Horn and Johnson (1985),

min (0) ≤ min (0) ≤ max (0) ≤ max (0)  (120)

where min() and max() denote the smallest and the largest eigenvalues of a symmetric matrix . Since
0 is the sample covariance matrix with  =

¥
̄
¦
 its largest and smallest eigenvalues a.s. converge to

the same limits as those of   and thus, (120) yields (119).

Inequalities (118) and (119), and convergence (115) imply that to establish Lemma 17, it is sufficient to

show that under conditions of Lemma 17,

Pr
³°°°̃ − ̃

°°°  4
´
 1− 2 (121)

where

̃ =  ()
−1

 0  and ̃ = 0 (0 )
−1

00

Let

 = ()
12 (0 )

−1 ()
12 −  and  = 0 −  

Using the identity

0 (0 )
−1

 00 = ( + ) ()
−12

( + ) ()
−12 ¡

 0 + 0
¢
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it is straightforward to verify that

̃ − ̃ =
¡
1 + 01

¢
+ 2 +

¡
3 + 03

¢
+ 4 (122)

where

1 =  ()
−1

 0 

2 =  ()
−12

 ()
−12

0 

3 =  ()
−12

 ()
−12

 0  and

4 =  ()
−12

( + ) ()
−12

0 

The following two lemmas are proven in the next two subsections of this note.

Lemma 18 There exists 0 such that for any  ∈ (0 0)  the smallest eigenvalue of  a.s. converges

as →∞ to a number larger than 1/17.

Lemma 19 Under conditions of Lemma 17,

Pr (kk ≤  and kk ≤ 
√
)  1− 2

where  is an absolute constant.

These lemmas together with inequality (117) and the decomposition (122) guarantee that under conditions

of Lemma 17,

Pr
³°°°̃ − ̃

°°° ≤ 
√

´
 1− 2

This implies (121), which yields Lemma 17.

3.1.2 Proof of Lemma 18 (lower bound on the smallest eigenvalue of )

Without loss of generality, assume that  is odd so that ̄ ≡  − 1 is even. For any   0 define
 = ∆

0
  where

∆ =

⎧⎨⎩ 1

2 (1 +  − cos1)2 
1

2
³
1 +  − cos̄2

´2
⎫⎬⎭

with  = 2 (cf. (37)). Note that k∆k  1 (2)  Denote the Stieltjes transform of the empirical

d.f. of the eigenvalues of as ()  By Silverstein and Bai (1995), for any  ∈ C+  ()
as→  ()

as →∞ where  ≡  () satisfies

 = − 1

+
1

2

Z 2

0

d

2 (1 +  − cos) + 
 (123)

Let  () be the d.f. whose Stieltjes transform is  ()  and let  be the lower boundary of its support.
By Theorem 1.1 of Bai and Silverstein (1998), the smallest eigenvalue of  a.s. converges to . Since

 ≤   it remains to show that for any sufficiently small    1(17)
Silverstein and Choi (1995) show that the support of  () can be found as follows. Find  ⊂ R, such

that for any  ∈   is well defined by (123) as a function of  and has positive derivative at . Then the

complement of the support of  () coincides with ().
Clearly,  () is well defined for (i):   −−1 (2 + 4)  (ii):  ∈ ¡−−12 0¢  and (iii):   0 For

case (i), we have

dd = −2 − 1

2

Z 2

0

d

(2 (1 +  − cos) + )
2 ≤ −2 − −1−2  0
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For case (ii), we have

d2d2 = −2−3 + 1

2

Z 2

0

22d

(2 (1 +  − cos) + )3
 0

so that dd is strictly increasing. Furthermore, as  ↑ 0 dd → +∞ and  → +∞ Let (̄ 0) ⊆¡−−12 0¢ be the interval where dd  0 Then, according to Silverstein and Choi’s (1995) result,
( (̄) +∞) is outside the support of  () and hence, any point in the support of  () is no larger
than  (̄) 
For case (iii), we need to use an explicit form of () Changing the variable of integration in (123) from

 to  = i we obtain

() = − 1

+

1

2i

I
||=1

d

 (2 + 2 − − −1 + )


Using Cauchy’s theorem,

() = −−1 +
³
(2 + 2 + )

2 − 4
´−12



and hence

dd =
1

2
−  (2 + 2 + )³

(2 + 2 + )2 − 4
´32 

Let  = 2 + 2 +  Then, dd  0 at   0 if and only if

 () ≡ 2
¡
2 − 4¢3 − (− 2− 2)4 2  0

at   2 + 2 When  =  = 0 () has two roots at zero and four roots at two. By continuity, for small
 and  there are two roots in a neighborhood of zero, and four in a neighborhood of two. Now, for   1
 () → −∞ as  → +∞ Furthermore,  (2)  0 and  (2 + 2)  0 Therefore, there can be either one or
three roots of () that satisfy   2 + 2

Subcase (1): There is only one root 1  2 + 2 We then have dd  0 for  ∈
³
0 1−2−2



´
 and

thus, according to Silverstein and Choi’s (1995) result, the lower boundary of support of  () equals

 = − 

1 − 2− 2 +
1p

21 − 4
 (124)

Let  = (2) Then, writing 1 = 2 + 1 + 2
2 + 

¡
2
¢
 and substituting this to (1) = 0 we find that

1 = 2 + 16
2 + 

¡
2
¢


Using this in (124), we obtain  = 1 (16) + 
¡
−1

¢
 Hence,   1(17) for sufficiently small .

Subcase (2): There are three roots 1 ≤ 2 ≤ 3, each of which is larger than 2 + 2 Then, dd  0

for  ∈
³
0 1−2−2



´
and for  ∈

³
2−2−2


 3−2−2



´
 Note that as  goes from 0 to 1−2−2


 () goes

from −∞ to  defined by (124). Therefore, the lower boundary of the support of  () cannot be smaller
than  Repeating arguments used for subcase (1), we again find that   1(17) for sufficiently small .

3.1.3 Proof of Lemma 19 ( and  are small)

First, let us focus on  Define

 ≡ ( + )
−1 −  = ()

−12
(0 − ) ()

−12


We would like to show that under conditions of Lemma 17,

Pr (kk ≤ )  1− 4 (125)
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Consider partition ∇∇0 = diag {∆ ∆−}  where ∆ is ̄ × ̄ . Then,

 = ()
−12 ¡

∆
0


2 −  + −∆−
0
−

2
¢
()

−12
 (126)

By Lemma 18, almost surely, as →∞

lim sup
°°°()

−12
°°°  √17  5 (127)

Further,

∆
0


2 −  = 
¡
∆

2 −∇∇0 2
¢
0 

Recall that the diagonal elements of ∆ have form
1
2 (1− cos 2 )−1 with  ≤ ̄2 The diagonal elements

of ∇∇0 have a similar form with  replaced by   Since

cos = 1− 1
2
2 +

1

4!
4 cos 

for some  ∈ [0 ], we have

1

2 2
(1− cos 2 )−1 = 1

(2)2

Ã
1− cos 

12

(2)
2

 2

!−1
for some  ∈ [0 ]  and hence

1

2 2
(1− cos 2 )−1 − 1

(2)
2 =

cos 

12 2

Ã
1− cos 

12

(2)2

 2

!−1


Since  ≤ ̄2 and     we have

1− cos 
12

(2)
2

 2
 1− 212  112

and thus ¯̄̄̄
¯ 12 2 (1− cos 2 )−1 − 1

(2)
2

¯̄̄̄
¯  1 2 (128)

A similar inequality holds for the elements of ∇∇0 :¯̄̄̄
¯ 12 2 (1− cos 2)−1 − 1

(2)2

¯̄̄̄
¯  1 2  (129)

Therefore, ¯̄̄̄
1

2 2
(1− cos 2 )−1 − 1

2 2
(1− cos 2)−1

¯̄̄̄
 2 2 

and hence, °°∆
0


2 − 
°°  °°2 () 0°°  4 (130)

with high probability for any sufficiently small  sufficiently large  and all    . To obtain the last

inequality in (130), we used the fact that the largest eigenvalue of 
0
 a.s. converges to

¡
1 +
√

¢2


Consider now the component −∆−
0
− 2 of (126). Since 1− cos ≥ 26 for  ∈ [0 ]  we have

2 2 (1− cos 2 )  (2)2 3 (131)

Let us represent ∆− as diag {∆−1 ∆−}  where
 =

¡
̄ − ̄

¢
̄
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and each block ∆− is ̄-dimensional. We can choose  so that  is an integer, so such a representation
is possible. Using the fact that the diagonal elements of ∆− 2 have form¡

2 2 (1− cos 2 )¢−1 with  = ̄2 + 1  (+ 1) ̄2

we find that the upper bound on the diagonal elements of ∆− 2 equals
¡
2 2

¡
1− cos ̄

¢¢−1
 By

(131), this is no larger than 3
¡
̄

¢2
.

Let us partition − conformably with ∆− so that − =
£
−1  −

¤
 Then, from the above, we

have °°−∆−0− 2°° ≤ 3 ¡2̄¢ X
=1

−2
°°−0−̄°° 

The Gaussian concentration inequality for the singular values of a rectangular matrix with i.i.d. Gaussian

entries (see Theorem II.13 of Davidson and Szarek (2001)) implies that, for any   0,

Pr

Ã°°−0−̄°° ≥ µ1 +q̄ + 

¶2!
 exp

©−̄22ª 
Take  = 14. Then,

X
=1

Pr

Ã°°−0−̄°° ≥ µ1 +q̄ + 14
¶2!



∞X
=1

exp
n
−̄122

o


Clearly, the right hand side of the above inequality can be made arbitrarily small by choosing sufficiently

large   Therefore, with large probability, for sufficiently large   all
°°−0−̄°° are smaller than³

1 +
p
̄ + 14

´2
and

°°−∆−0− 2°° ≤ 3 ¡2̄¢ X
=1

−2
µ
1 +

q
̄ + 14

¶2
≤  (132)

for some constant  that does not depend on . Using the definition of , (130), (132), and (127), we

conclude that inequality (125) does take place under conditions of Lemma 17.

Let us now consider   Partition ∇ as diag {∇1 ∇−}  where ∇1 is ̄× ̄ .Write  in the following

form

 =
³
−0 (2 ) + 

³
∇01 + ̄2

´
0 − 

´
+ −

³
∇0− + ̄−̄2

´
0−

Let us denote ∇01 + ̄2 as ∇̂
0
1 and ∇0 + ̄2 as ∇̂

0
 . Then

−0 (2 ) + 

³
∇0 + ̄2

´
0 −  = −0 (2 ) + 

³
∇̂01 − ∇̂

0


´
0 + 

0
 (2) 

By definition, the block-diagonal elements of ∇̂01 have form (cf. (36))Ã
0 − 12 sin 2

1−cos 2
1
2

sin 2
1−cos 2 0

!

The block-diagonal elements of ∇̂0 have a similar form with  replaced by   Now,

sin = − cos 1
3!

3 and cos = 1− 1
2
2 +

cos 2
4!

4

for some 1 2 ∈ [0 ]  Therefore, we have
1

2

sin 2

1− cos 2 =
2 − cos 1

6 (2 )
3

(2 )
2 − cos 2

12 (2 )
4 =

1

2

1− cos 1
6 (2 )

2

1− cos 2
12 (2 )

2 
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so that
1

2

sin 2

1− cos 2 −
1

2
=
(2 )2

2

cos 2
12 − cos 1

6

1− cos 2
12 (2 )2

and thus, ¯̄̄̄
1

2

sin 2

1− cos 2 −
1

2

¯̄̄̄
 6 2 (133)

Similarly, ¯̄̄̄
1

2

sin 2
1− cos 2 −

1

2

¯̄̄̄
 6 2  (134)

Let 1 and 2 be × ̄2 matrices that consists of the odd and even columns of  , respectively. Then,

the latter two inequalities and the fact that  ≤ ̄2 imply that°°° ³∇̂01 − ∇̂0´ 0°°° ≤ 2°°1Γ02°°  (135)

where Γ is a diagonal matrix with diagonal elements smaller than 3 by absolute value. On the other
hand,

°°1Γ02°° is the square root of the largest eigenvalue of 1Γ022Γ01
Note that the rank of Γ

0
22Γ is no larger than  and there exists an orthogonal transformation  such

that Γ
0
22Γ

0 is diagonal with only the first  diagonal elements potentially non-zero. Furthermore,
these non-zero diagonal elements coincide with the eigenvalues of 2Γ

202 But

2Γ
202 ≤

(3)2

2

2
0
2

2


With high probability, for sufficiently any small  and large °°202 (2)°°  2
Hence, the only  potentially non-zero diagonal elements of Γ

0
22Γ

0 are smaller than (3)2.
Let 11 be the  ×  matrix that consists of the first  columns of 1

0 Note that the entries of 11
are i.i.d. standard normals. Then, we have

1Γ
0
22Γ

0
1 ≤ (3)2 11011 

Since the norm of 11
0
11 is smaller than 5 with high probability for sufficiently large , it must be that°°1Γ022Γ01°° ≤ (9)2 

with high probability for any sufficiently small  large  and all   ̃  where ̃ may depend on .

Combining this with (135), we obtain°°° ³∇̂01 − ∇̂0´ 0°°° ≤ 18√ (136)

Further, °°−0 (2 ) + 
0
 (2)

°° ≤ 1
2

°° − 0
°°+ 1

2

°° − 
0


°° ≤ 4√
with high probability, for sufficiently small  large  and    . Combining this with (136), we obtain°°°−0 (2 ) + 

³
∇01 + ̄2

´
0 − 

°°° ≤ 20√ (137)

Next, consider −
³
∇0− + ̄−̄2

´
0− part of   Let −1 and −2 be ×

¡
̄ − ̄

¢
2 matrices

that consist of odd and even columns of − . Then,°°°− ³∇0− + ̄−̄2
´
0−

°°°2 ≤ 4°°−2Υ0−1°°2 = 4°°−2Υ0−1−1Υ0−2°° 
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where

Υ = diag

½
1

2

sin 2

1− cos 2
¾̄ 2

=̄2+1



Let be the orthogonal matrix such thatΥ0−1−1Υ0 is diagonal. Note that the rank ofΥ
0
−1−1Υ

is no larger than  Therefore, there are only  potentially non-zero elements on the diagonal ofΥ0−1−1Υ0
Without loss of generality, these are the first  elements. Let −21 be the first  columns of −20 Then,
we have °°°− ³∇0− + ̄−̄2

´
0−

°°°2 ≤ 4
°°−210−21°°°°Υ0−1−1Υ0°° (138)

= 4
°°−210−21°°°°−1Υ20−1°° 

Consider the partition −1 =
£
−11  −1

¤
 and note that Υ2 = diag

©
Υ21 Υ

2


ª
with

Υ = diag

⎧⎨⎩ 1

2

sin
³³


̄
2 + 1

´
2


´
1− cos

³³

̄
2 + 1

´
2


´   1
2

sin
³
(+ 1)

̄
2
2


´
1− cos

³
(+ 1)

̄
2
2


´
⎫⎬⎭ 

We have⎛⎝ 1

2

sin
³³


̄
2 + 

´
2


´
1− cos

³³

̄
2 + 

´
2


´
⎞⎠2

=
1

2 2

cos2
³

̄
2 + 

´



1− cos
³

̄
2 + 

´
2


≤ 1

2 2
1

1− cos ̄



3

̄ 2
2

1

2


Therefore, °°−1Υ20−1°° ≤ X
=1

°°−1Υ2 0−1°° ≤ X
=1

3

2̄2
1

2

°°°°°−10−1̄2

°°°°° 
Using the large deviation inequality argument as above, we conclude that with high probability,°°−1Υ20−1°° ≤ ̄ 

where  is an absolute constant. This and (138) yield°°°− ³∇0− + ̄−̄2
´
0−

°°°2 ≤ 4 ¡
̄

¢ °°−210−21°° ≤ 1

where 1 is an absolute constant. Hence, with high probability, for any sufficiently small  large  and all

  ̃  where ̃ may depend on °°°− ³∇0− + ̄−̄2
´
0−

°°° ≤ 
√


for some absolute constant  Combining this with (137), we conclude that under conditions of Lemma 17

Pr (kk ≤ 
√
)  1− 4

for some absolute constant .

3.2 Proof of Theorem OW5

The plan of our proof is as follows. First, we show that
R
d0 () = 2 as stated by the theorem. Next, we

prove that, for any   0

Pr

µ¯̄̄̄Z
(−min (+ +  )) d0 ()

¯̄̄̄
 

¶
→ 0 (139)
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as →∞ For this, we establish the convergence 20
P→ + and show that 10 = P () as →∞ SinceZ

(−min (+ +  )) d0 () =
1



X
=1

(0 −min (+ +  0)) 

such an asymptotic behavior of 20 and 10 implies (139). Finally, by Theorem OW4,

Pr

µ¯̄̄̄Z
min (+ +  ) d0 ()−

Z
d0 ()

¯̄̄̄
 

¶
→ 0

This convergence and (139) yield Theorem OW5.

Throughout the proof, we interpret matrix

1



Z 1

0

(d) 0
µZ 1

0

 0d
¶−1 Z 1

0

 (d)0 (140)

as the probability limit of 

̃01̃

−1
11 ̃

0
01̃
−1
00 when  →∞ (see Johansen (1991)), where

̃00 =
1




0 ̃01 =
1




00 and ̃11 =
1




00 (141)

The same argument as in the proof of Theorem OW4 allows us to assume, without loss of generality, that 

is Gaussian.

3.2.1 Showing that
R
d0 () = 2

By OW(20), Z
d0 () =

Z +

−



2

p
(+ − ) (− −)


d

where ± =
¡
1±√2¢2  Let  = (− −)  (+ − −) so that  = − + (+ − −) ThenZ

d0 () =
(+ − −)

2

2

Z 1

0

p
(1− )d =

(+ − −)
2

2



8
= 2

3.2.2 Convergence of the second largest eigenvalue

In this subsection, we would like to show that 20
P→ + as  → ∞. Suppose this is not true. Then, for

some   0 and any 0  0 there exists   0 such that

Pr (|20 − +|  )  2

Denote the eigenvalues of 

̃01̃

−1
11 ̃

0
01̃
−1
00 as ̃1 ≥  ≥ ̃  Since the latter matrix converges in

probability to (140) as  →∞ it must be true that for any  and all sufficiently large 

Pr
³¯̄̄
20 − ̃2

¯̄̄
 2

´
 

Hence, to prove the convergence 20
P→ + it is sufficient to show that for any 0  0 there exists   0

such that for all sufficiently large 

Pr
³¯̄̄
̃2 − +

¯̄̄
 2

´
  (142)

We can interpret ̃  as the -th largest eigenvalue of the product of projections 2̃12 where

̃1 =
00 (

00)−1  and 2 =
0 (

0)−1 
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Let

1 =
0

0 (
0

0)−1 

Then, by Lemma 5, there exist projections ̃ and  on one-dimensional subspaces of R , such that

2̃12 − 212 = 2̃2 − 22

Since 2̃2 and 22 are positive semi-definite, by interlacing inequalities (see Theorem 4.3.4 in Horn

and Johnson (1985)),

3 ≤ ̃2 ≤ 1  (143)

where  is the -th largest eigenvalue of 212

Note that  equal the eigenvalues of


01

−1
11 

0
01
−1
00  where  are as defined in (1), that is

00 =
1




0 01 =
1




0
0 and 11 =

1




0
0

By Lemma 8,



01

−1
11 

0
01
−1
00 =




−1 0−1

where

 = ∇00 = ∇∇00  = 0

and  is a × ̄ matrix (̄ ≡  − 1) with i.i.d.  ¡0 ̄¢ entries.
For any  let  be the smallest integer satisfying  ≤  Onatski and Wang’s (2017a) Theorem 1

and Theorem OW1 imply that 1
as→ + and 3

as→ + as →∞ where

+ =
³√
2−

p
1− 

´−2


As  → 0 we have |+ − +|→ 0 Therefore, for sufficiently small  and large 

Pr
¡¯̄
1 − +

¯̄ ∨ ¯̄3 − +
¯̄
 4

¢
 2

This inequality, together with (143) and inequality (114) imply (142).

3.2.3 Asymptotic behavior of the largest eigenvalue

In this subsection, we would like to show that 10 = P () as →∞ Since (140) is the probability limit of


̃01̃

−1
11 ̃

0
01̃
−1
00 as  →∞ it is sufficient to show that for any   0 all sufficiently large  and all   ̃ 

where ̃ may depend on ,

Pr
³
̃1  

´
  (144)

We start from reinterpreting the eigenvalue ̃1 as the largest eigenvalue of matrix


̃−12̃̃−1̃0̃−12

defined below. Recall definitions (9), (34), and (35) of the discrete Fourier transform matrix F , the permu-
tation matrix  and the unitary matrix  Let + = diag {1 }  + = diag {1}  and let a × 1 vector
0 and a × ̄ matrix −0 (with ̄ =  − 1) be defined as£

0 −0
¤ ≡ F∗+ ∗+

√
 

Since F∗+ ∗+
√
 is an orthogonal matrix, the entries of

£
0 −0

¤
are i.i.d. (0 1)

Using (10) and (141), we obtain after some algebra

̃00 = −0
0
−0

̃01 = 
0

0 + 
000 2 = −0∇00−0 + −0

0
0
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where 0 =
³
01   0̄2

´
with

0 = −
1√
2

µ
1

sin
1− cos

¶


and

̃11 = −0∇∇00−0 + −0
0
0 + 0

00−0 +
¡
 2 − 1¢ 000(12 )

where  = ∇ so that 0 =
³
01  

0̄
2

´
with

0 = −
1√
2

µ
cos

1− cos 
− sin
1− cos

¶


Next, let 0 be a random orthogonal  ×  matrix, independent from −0 and such that 00 equals
k0k 1 where 1 is the first column of  Denote k0k as  and 0−0 as  and let

̃ = 0̃00
0
0 = 0

̃ = 0̃01
0
0 = ∇00 + 

0
1 and

̃ = 0̃11
0
0 = ∇∇00 + 

0
1 + 1

00 + 2
¡
 2 − 1¢ 110(12 )

Since 0 is an invertible matrix, the eigenvalues of


̃01̃

−1
11 ̃

0
01̃
−1
00 and 


̃−12̃̃−1̃ 0̃−12 coincide,

and in particular, ̃1 is the largest eigenvalue of


̃−12̃̃−1̃ 0̃−12 as claimed above.

Now recall some notation from Section 3.1.1. Specifically, recall that  denotes the smallest integer

satisfying  ≤ , ̄ =  − 1 and ∇ denotes a ̄ × ̄ matrix defined similarly to ∇ with  replaced

by   Further,

 = 
0
   = ∇00   = ∇∇00 

where  is a × ̄ matrix from the partition  =
£
  −

¤


Let us define

̃ =   ̃ =  + 
0
1  and

̃ =  + 
0
1 + 1

0

0
 + 2

¡
 2 − 1

¢
1

0
1(12)

where  and  defined as  and  after  is replaced by   and let ̃1 be the largest eigenvalue of


̃
−12
 ̃̃

−1
 ̃0̃

−12
  The following two lemmas are established in the next two sections of this note.

Lemma 20 Under conditions of Lemma 17,

Pr
³
̃1  

³
1 + ̃1

´´
 

where  is an absolute constant.

Lemma 21 For any   0 there exists   0 such that for any  ∈ (0 ) and all sufficiently large 

Pr
³
̃1  −34

´
 

where  is an absolute constant.

Choosing  sufficiently small and using Lemmas 20 and 21, we obtain (144).
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3.2.4 Proof of Lemma 20 (lower bound on ̃1 in terms of ̃1)

Let

̃ = ̃ − ̃ and ̃ =
³
̃

´12 ³
̃

´−1 ³
̃

´12
− 

Then

̃1 =

°°°°̃−12 ³̃ + ̃

´³
̃

´−1 ³
̃ + ̃

´0
̃−12

°°°°
≤ 2

°°°̃−1°°°µ°°°°̃

³
̃

´−1
̃ 0

°°°°+ °°°°̃ ³̃
´−1

̃0

°°°°¶ 

Since

̃

³
̃

´−1
̃ 0 = ̃

³
̃

´−12
( + ̃)

³
̃

´−12
̃0

= ̃

³
̃

´−1
̃0 + ̃

³
̃

´−12
̃

³
̃

´−12
̃ 0 

we have

̃1 ≤ 2
°°°̃−1°°°µ°°°°̃

³
̃

´−1
̃ 0

°°°° (1 + k̃k) + °°°°³̃
´−1°°°° k̃k2¶

≤ 2
°°°̃−1°°°µ̃1 °°°̃

°°° (1 + k̃k) + °°°°³̃
´−1°°°° k̃k2¶  (145)

We will now establish bounds on various terms in the latter expression.

Bounds on

°°°̃

°°° and °°°̃−1°°°  Since
°°°̃

°°° as→ ¡
1 +
√

¢2
and

°°°̃−1 °°° as→ ¡
1−√¢−2 as →∞ we have°°°̃

°°° ≤ 4 and °°°̃−1°°° ≤ °°°̃−1 °°° ≤ 4 (146)

for any  ∈ (0 14)  with probability arbitrarily close to one, for all sufficiently large  and all    

Bound on

°°°°³̃
´−1°°°°  This norm equals the inverse of the smallest eigenvalue of ̃11 Recall that

(see (141) and (1))

̃11 = 
00 2 and 11 = 

0
0 2

Note that the eigenvalues of 
0 are the same as those of 

0 Further,


0 =

0 +
00 =

0 +
00

Hence, the -th largest eigenvalue of 
0 is no smaller than the -th largest eigenvalue of 

0

Therefore, the probability that the smallest eigenvalue of ̃11 is below some number, say   0 is no
larger than the probability that the smallest eigenvalue of 11 is below 

On the other hand, in notation of Section 3.1.1, 11 = 0 Therefore, by Lemmas 18 and 19, for

any   0 all sufficiently large  and all   ̃  where ̃ may depend on 

Pr
³°°°(11 )−1°°°  

´
 4

where  is an absolute constant. The same inequality must hold for

°°°°³̃11´−1°°°° and thus, for any   0
all sufficiently large  and all   ̃  where ̃ may depend on 

Pr

µ°°°°³̃
´−1°°°°  

¶
 4 (147)
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Bound on k̃k  Consider the following decomposition

̃ = 0 −  + 
0
1 − 

0
1

= 0 −  + 

³
1:̄ − 

´
01 + − :̄ 

0
1

where : denotes the sub-vector of  that consists of all entries of  starting from entry  and ending with

entry  By Lemma 19, under conditions of Lemma 17,

Pr (k0 − k ≤ 
√
)  1− 8 (148)

Next, by definition of 

01:̄ − 0 =
³
01 − 01   

0̄
2

 − 0
̄2



´


where

0 − 0 = −
1√
2

µ
−1 − −1 

1



sin
1− cos −

1



sin
1− cos

¶


Using (133) and (134), we conclude that for some absolute constant  and all    °°1: − 
°° ≤ −12 ≤ 

p


This inequality and the fact that 2 is independent from  and has the chi-squared distribution with 

degrees of freedom imply that °°° ³1:̄ − 

´
01
°°° ≤ 

√
 (149)

with probability arbitrarily close to one, for all sufficiently large  and all    

Finally, since by definition of  and by (131),°°° :̄°°°2 ≤ 1 (4 ) + X
=̄2+1

−2 ≤  ≤ 

we have °°°− :̄ 01°°° ≤ 
√
 (150)

with probability arbitrarily close to one, for all sufficiently large  and all    

Combining (148-150), we obtain that under conditions of Lemma 17,

Pr (k̃k ≤ 
√
)  1− 4 (151)

Bound on k̃k  Using the definition of ̃ we have

k̃k ≤ 1 +

°°°°³̃

´12 ³
̃

´−1 ³
̃

´12°°°° = 1 + °°°°³̃
´−12 ³

̃

´³
̃

´−12°°°°
≤ 2 +

°°°°³̃
´−12 ³

̃ − ̃

´³
̃

´−12°°°° ≤ 2 + °°°°³̃
´−1°°°°°°°̃ − ̃

°°° 
By (147), we have with high probability

k̃k ≤ 2 +
°°°̃ − ̃

°°°
for some absolute constant  all sufficiently large  and all   ̃  where ̃ may depend on .

49



Now, consider ̃ − ̃  By definition, we have

̃ − ̃ = 0 −  +
1

12
21

0
1

¡
−2 − −2

¢
+

³


³
1:̄

2 − 
2


´
01 + 1

³
01:̄

2 − 0
2


´
0
´

+

³
− :̄ 

0
1 + 1

0
 :̄

0−
´
 2

The decomposition

0 = ∆
0
 + −∆−

0
−

and inequalities (130) and (132) imply that, under conditions of Lemma 17,

Pr (k0 − k ≤ )  1− 8 (152)

Further, with probability arbitrarily close to one, for sufficiently large  and all    °°°° 1122101 ¡−2 − −2
¢°°°° ≤ 2 (153)

Next, by definition of 

01:̄
2 − 0

2
 =

³
01

2 − 01
2
   

0̄
2

 2 − 0
̄2

 2

´


where

0
2 − 0

2
 = −

1√
2

µ
1

 2
cos

1− cos −
1

 2

cos
1− cos 

1

 2
− sin
1− cos −

1

 2

− sin
1− cos

¶


Using (128-129) and (133-134), we conclude that for some absolute constant  and all    °°°1:̄ 2 − 
2


°°° ≤ −1 ≤ 

Therefore, with probability arbitrarily close to one, for all sufficiently large  and all    °°° ³ ³1:̄ 2 − 
2


´
01 + 1

³
01:̄

2 − 0
2


´
0
´°°° ≤  (154)

Finally, by definition and by (131) °°° :̄ °°°2 ≤ 

Therefore, with probability arbitrarily close to one, for all sufficiently large  and all    °°° ³− :̄ 01 + 1
0
 :̄

0−
´
 2

°°° ≤ 3212 (155)

Combining (152-155), we obtain that under conditions of Lemma 17,

Pr (k̃k ≤ )  1− 4 (156)

The established bounds on
°°°̃

°°°, °°°̃−1°°°  °°°°³̃
´−1°°°°  k̃k  and k̃k together with (145) yield

Lemma 20.
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3.2.5 Proof of Lemma 21 (lower bound on ̃1)

The largest eigenvalue, ̃1 , of ̃̃
−1
 ̃ 0̃−1 equals that of the product of the projections on the

column spaces of matrices ∇00 + 
0
1 and 0  Since the former space is spanned by the columns of£

 ∇00
¤
 ̃1 cannot be larger than

°°°P̃1P2°°°2, where P̃1 and P2 are the projections on the column
spaces of

£
 ∇00

¤
and 0 

Denote the projection on the column space of ∇00 as P1 and that on the orthogonal space as M1

Then

P̃1P2 = P1P2 + PM1P2
where PM1 is the projection on the space generated by the vectorM1  This yields

̃1 ≤ 2 kP1P2k2 + 2
°°PM1P2

°°2 = 2 kP1P2k2 + 20M1P2M1

0M1


Onatski and Wang’s (2017a) Theorem 1 implies that, as →∞

kP1P2k2 as→ 
³√
2−

p
1− 

´−2
 (157)

Therefore, to establish Lemma 21, it is sufficient to show that for any   0 there exists   0 such that
for any  ∈ (0 ) and all sufficiently large 

Pr

µ
0M1P2M1

0M1
 14

¶
  (158)

where  is an absolute constant. Below, we will denote absolute constants that may take different values

from one appearance to another as 1 and 2 We will denote constants that depend on the value of 

as  

To simplify notation, we will omit the subscript  from  ∇  and   However, we will keep notation

 and ̄ =  − 1 to remind the reader that  is close to . Our plan is to derive bounds on 0M1

and 0M1P2M1 and then combine these bounds to obtain (158).

By definition,

0M1 = 0 − 00
¡
∇∇00¢−1 

where

 = ∇ = − 1√
2

µ
cos1

1− cos1 
− sin1
1− cos1 

cos2
1− cos2 

− sin2
1− cos2  

¶0


Therefore,

0M1 = 0∆−1−
̄X

=1


0


¡
∆0

¢−1
 

where  and  are, respectively, the -th element of  and the -th column of  and

∆ = ∇0∇ = diag
n
(2− 2 cos)−1 2

ō2
=1

 (159)

Denoting matrix ∆0 2 as  , we obtain

0M1 =
X



¡
∆−1 = − 0

−1
2


¢
 (160)

where = is the Kronecker delta. First, we are going to analyze the part of the sum corresponding to  = 

We call this part the diagonal component of 0M1
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The diagonal component of 0M1 Using the Sherman-Morrison-Woodbury (SMW) formula (see (45)),

we obtain

−1 =−1− −
−1− 

0

−1
− 

∆−1  2 2 + 0
−1
− 

 (161)

where − =
¡
 2

¢X
 6=∆

0
  Therefore,

∆−1 − 0
−1

2
 =

∆−2 
2
 

2

∆−1  2 
2 + 0

−1
− 



Since 2 = 2
2
∆

2
 where 

2
 = cos

2 d2e for odd  and 2 = sin
2 d2e for even  we have

2
¡
∆−1 − 0

−1
2


¢
=

22
2
 

2

 + 0
−1
− 

(162)

where  = ∆
−1
 

2
 

2

Bounds on 0
−1
−  In this subsection, we show that there exist2  1  0 such that 

0

−1
−  ∈

[12] with overwhelming probability as →∞.
Definition 22 (Tao and Vu (2011)) Let E be an event depending on  Then E holds with overwhelming
probability (w.ow.p.) if Pr (E) ≥ 1−

¡
−

¢
for every constant   0 Here 

¡
−

¢
denotes a quantity

that is smaller than − with constant  that may depend on .

Assuming that   12 we have

− ≡
¡
 2

¢X
 6=
∆

0
 ≥

¡
 2

¢ X
 6=≤2

∆
0
 

and, by (159), min≤2∆ ≥ (2)−2  so that

°°−1− °° ≤
°°°°°°°
⎛⎝(2)−2 −1 X

 6=≤2


0


⎞⎠−1
°°°°°°° = 22−1min (163)

where min is the smallest eigenvalue of the Wishart matrix
X

 6=≤2 
0
 (2)  Therefore,

0
−1
−  ≤ 22−1min0

Gaussian concentration inequalities for 2 () and min (see e.g. Theorem II.13 of Davidson and Szarek

(2001)) imply that there exist 2  0 and   0 such that

Pr
¡
0

−1
−  ≥ 2

¢ ≤ − (164)

Now, let us establish a lower bound. The following inequality follows from the tail inequality for linear

combinations of 2 (see Laurent and Massart (2000), Lemma 1)

Pr

µ
0

−1
−  ≤ tr−1− − (2)

q
 tr−2−

¶
≤ −

where  is any positive number. Setting  =
√
2 and using

2



q
 tr−2− ≤ 2

r
2



°°−1− °° 12 tr−1− ≤ 2°°−1− °°+ 1

2
tr−1− 
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we obtain

Pr
¡
0

−1
−  ≤ tr−1−  (2)−

°°−1− °° √¢ ≤ −
√
2 (165)

To analyze the term tr−1−  (2) in (165), consider the decomposition

− =
¡
 2

¢ X
 6=2

∆
0
 +

¡
 2

¢ X
 6=≥2

∆
0
 

Since the rank of the first term on the right hand side is smaller than 2 we have by Weyl’s inequalities
for eigenvalues, for any  ≤ 2


¡
−1−

¢
 +2

⎛⎜⎝
⎛⎝¡ 2 ¢ X

 6=≥2
∆

0


⎞⎠−1
⎞⎟⎠ 

°°°°°°¡ 2 ¢
X

 6=≥2
∆

0


°°°°°°
−1



where  () denotes the -th largest eigenvalue of symmetric matrix  . Therefore,

tr−1−  (2) 
1

4

°°°°°°¡ 2 ¢
X

 6=≥2
∆

0


°°°°°°
−1



Since ∆ =
³
2− 2 cos 2d2e



´−1
and 1− cos  26 for  ∈ (0 ]

∆ 
6

2 (2 d2e )2
≤ 3 2 

¡
22

¢


and

tr−1−  (2) 
2

12

°°°°°°
X

 6=≥2
−2

0


°°°°°°
−1

 (166)

For simplicity, assume that   2 (the other case can be analyzed similarly with only minor changes).

Let  =
³
02  

0̄


´0
and

 () =
√


°°°°∙ 1

2
2 

1

̄
̄

¸°°°°
Then,  (·) is a 2√-Lipschitz function. Indeed, let  ≡

³
02  

0̄


´0
∈ R(−2) Then

| ( + )−  ()| ≤ √
°°°°∙ 1

2
2 

1

̄
̄

¸°°°° ≤ 2√

kk2 

where kk2 is the Euclidean norm of  Therefore, by Gaussian concentration inequality (see Ledoux (2000)

prop. 2.18), for every  ≥ 0
Pr ( () ≥ E () + ) ≤ −

28 (167)

On the other hand, by Latala’s (2004) Theorem 1, there exists  such that

E () ≤ √
⎛⎝s X

≥2
−2 +

q
 (2)

2
+ 4

s X
≥2

−4

⎞⎠ 

The right hand side of the above inequality is smaller than some other absolute constant  so that

E () ≤  (168)
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and hence, there exist 1  0 and 2  0 such that

Pr ( () ≥ 1) ≤ −2 (169)

Combining (166) and (169) yields

Pr
©
tr−1−  (2) ≤ 2

¡
122

1

¢ª ≤ Pr

⎛⎜⎝
°°°°°°
X
≥2

−2
0


°°°°°°
−12

≤ −11

⎞⎟⎠
= Pr

³
 ()−1 ≤ −11

´
= Pr ( () ≥ 1) ≤ −2

Hence, for some absolute constants 1  0 and 2  0 we have

Pr
¡
tr−1−  (2) ≤ 1

¢ ≤ −2 (170)

Combining (165) and (170), and recalling that
°°−1− °° is bounded from above with probability approaching

one exponentially fast (see (163)), we conclude that there exists an absolute constant 1  0 such that

Pr
¡
0

−1
−  ≤ 1

¢
 2−

1
2

√
 (171)

This and (164) yield the following lemma.

Lemma 23 For some absolute constants 1  0 and 2  0 
0

−1
−  ∈ [12] w.ow.p.

The order of the diagonal component. Lemma 23 and equation (162) imply thatX


22
2
 

2

 +2
≤
X


2
¡
∆−1 − 0

−1
2


¢ ≤X


22
2
 

2

 +1
(172)

w.ow.p. On the other hand, since 2 + 2+1 = 1 and  = +1 for odd  we have, for any   0

̄X
=1

22
2
 

2

 +
=

̄2X
=1

1

 − cos (2) =


2

Z 

0

d

 − cos +(1)

as →∞, where  = 1 + 1
22 2 . According to Gradshteyn and Ryzhik (2000, formula (2.553)),



2

Z 

0

d

 − cos =


2
√
2 − 1 

Hence, there exist 1  0 and 2  0 such that, w.ow.p.,


¡
2

2
¢ ≤X



2
¡
∆−1 − 0

−1
2


¢ ≤ 
¡
1

2
¢
 (173)

The off-diagonal component of 0M1 We will now establish a bound on the second moment of the

off-diagonal component of 0M1 The square of this component consists of three parts⎛⎝− 2

 2

X
6=


1


0

−1

⎞⎠2

= ()
4
(1 +2 +3) 

where

1 = 2
X
6=

2
2


¡
0

−1
¢2


2 = 4
X
6= 6=


2


¡
0

−1
¢ ¡
0

−1
¢
 and

3 =
X

6= 6=6=


¡
0

−1
¢ ¡
0

−1
¢
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The above sums run over ordered pairs, triples, and quadruples of unequal indices (no repeated indices

in any of these sets). Multiplier 2 in the definition of 1 takes into account the fact that the term, say,

21
2
2

¡
01−12

¢2
appears in

³X
6= 

0

−1

´2
four times (corresponding to 1212 1221

2112 and 2121), whereas it appears in
X

6= 
2

2


¡
0−1

¢2
only two times (corresponding

to 21
2
2 and 22

2
1). Multiplier 4 in the definition of 2 has a similar justification.

Analysis of 1 By (161),

0
−1 = 0

Ã
−1− −

−1− 
0

−1
− 

 + 0
−1
− 

!
 =


¡
0

−1
− 

¢
 + 0

−1
− 

 (174)

Similarly,

0
−1
−  =


¡
0

−1
−

¢
 + 0

−1
−



where − =
¡
 2

¢X
6= ∆

0
 so that

2
2


¡
0

−1
¢2
=
¡
0

−1
−

¢2Ã 

 + 0
−1
−



 + 0
−1
− 

!2
 (175)

Lemma 24 For any  6=  2
2


¡
0−1

¢2 ≤ 
4 for some constant  that depends on 

Proof. Similarly to (174), we get

0
−1
−  = 0

−1
−−

¡
0

−1
−

¢2
 + 0

−1
−



Using this in (175), we obtain

2
2


¡
0

−1
¢2
=

()
2 ()

2 ¡
0

−1
−

¢2³¡
 + 0

−1
−

¢ ¡
 + 0

−1
−

¢− ¡0−1−¢2´2 
By the Cauchy-Schwarz inequality,¡

0
−1
−

¢ ¡
0

−1
−

¢− ¡0−1−¢2 ≥ 0
Therefore,

2
2


¡
0

−1
¢2 ≤ ()

2 ()
2 ¡
0

−1
−

¢2¡


0

−1
−+ 

0

−1
−

¢2
≤ ()

2 ()
2

2
= 22

2
∆∆ ()

4 ≤ 
4¤

The fact that

2
2
 = 2

2
 ()

4
 (176)

together with Lemma 23 and an analogous result for 0
−1
− imply that the last squared term in (175)

is bounded by  w.ow.p. This and Lemma 24 guarantee that, for any integer 

E22
¡
0

−1
¢2 ≤ E

¡
0

−1
−

¢2
+ (−) (177)
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as →∞

But

E
¡
0

−1
−

¢2
= E

¡
tr−2−

¢
 ≤ E−2min

where min is the smallest eigenvalue of a Wishart matrix
X

6=≤2 
0
 (2) (see (163) for a similar

inequality derived above). Lemma 25 below implies that E−2min is bounded by an absolute constant for all
sufficiently large  so that

E
¡
0

−1
−

¢2 ≤ 

This inequality, inequality (177) and the fact that there are less than  2 terms in the sum defining 1

implies that

E1 ≤  (178)

for all sufficiently large  How large  needs to be may depend on .

Lemma 25 Let  be a × matrix with i.i.d. (0 1) entries, where  ≤ (1 + )2 with  ∈ (0 1)  Let
min be the smallest eigenvalue of 

0 Then, for any   0 there exists   0 which may depend on
 and  , such that E−min ≤  for all sufficiently large  and  along a sequence → ∞

Proof: It follows from Chen and Dongarra (2005, p. 610) that

Pr (min ≤ )  −+1
−+1

2 Γ (− + 2) 

Their min  and equalmin and  in our notation, respectively. By Stirling’s formula (see e.g. 6.1.38

in Abramowitz and Stegun (1970)),

Γ (− + 2) ≥
√
2 (− + 1)

−+32
−(−+1)

Further, for  ≤ (1 + )2 we have (1− )2 ≤ − + 1 Therefore, for all   0 we have

Pr
¡
−1min  

¢
 −+1−

−+1
2 Γ (− + 2) ≤ (2 (− + 1))

−12
Ã


µ
1− 

2

¶2!−−+1
2



Hence, for any   0 and sufficiently large  along a sequence → ∞ we have

Pr
¡
−1min  

¢ ≤ −
µ
1− 

2

¶−2


On the other hand, according to Lemma 2.6 of Bai and Silverstein (1998), if for all   0 Pr
¡
−1min  

¢ ≤
− for some positive  and  then, for any positive   

E−min ≤  

 − 
¤

Analysis of 2 Similarly to (175), we have


2


¡
0

−1
¢ ¡
0

−1
¢
=
¡
0

−1
−

¢ ¡
0

−1
−

¢
× 

 + 0
−1
−



 + 0
−1
−

2
2
¡

 + 0
−1
− 

¢2
Further,

0
−1
− = 0

−1
−−

¡
0

−1
−

¢ ¡
0

−1
−

¢
 + 0

−1
−
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and

0
−1
− = 0

−1
−−

¡
0

−1
−

¢ ¡
0

−1
−

¢
 + 0

−1
−



To shorten notation, denote

0
−1
− =   

0

−1
− =  etc.

Further, let 
(+)
 = 0

−1
− 

(+)
 = 0

−1
− and 

(+)
 = 0

−1
−  Then


2


¡
0

−1
¢ ¡
0

−1
¢
=

µ
 − 

 + 

¶µ
 − 

 + 

¶
(179)

× 

 + 
(+)




 + 
(+)


2
2
³

 + 
(+)


´2
Using the identity

1

+ 
=

1

+ 
− − 

(+ ) (+ )


we expand the right hand side of (179) as followsµ
 − 

 + 

¶µ
 − 

 + 

¶

×
⎛⎝ 

 + E(+)

−


³

(+)
 − E(+)

´
³
 + 

(+)


´³
 + E(+)

´
⎞⎠

×
⎛⎝ 

 + E(+)

−


³

(+)
 − E(+)

´
³
 + 

(+)


´³
 + E

(+)


´
⎞⎠

×
⎛⎝ 

 + E
(+)


−


³

(+)
 − E(+)

´
³
 + 

(+)


´³
 + E(+)

´
⎞⎠2

It is straightforward to verify that E () = 0 Therefore, opening up brackets in the above expression
and taking expectation, we obtain a sum of terms each of which is proportional to a monomial in    


(+)
 − E(+)  

(+)
 − E(+)  and 

(+)
 − E(+) of degree no less than three. Moreover, the coefficients

of proportionality are smaller by absolute value than a quantity which depends only on  w.ow.p.

The validity of the last statement follows from Lemma 23 (cf. discussion immediately below (176)) and

from the fact that E(+)  E(+) and E(+) are bounded from below by a positive absolute constant. We

establish this fact for E(+) (a proof for the other expectations is similar). By definition of 
(+)
 and by

(166),

E(+) = E tr−1−  ≥
2

6
E

°°°°°°
X

6=≥2
−2

0


°°°°°°
−1

By Jensen’s inequality

E

°°°°°°
X

6=≥2
−2

0


°°°°°°
−1

≥

⎛⎜⎝E
°°°°°°

X
6=≥2

−2
0


°°°°°°
12
⎞⎟⎠
−2

≥ 

for some absolute constant  with the last inequality following from (168).
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Lemma 24 and the boundedness of the coefficients of proportionality w.ow.p. imply that an upper bound

on the expected value of the right hand side of (179) would follow from upper bounds on the expected value

of monomials in     
(+)
 −E(+)  

(+)
 −E(+)  and 

(+)
 −E(+) of degree no less than three.

We will use Hölder’s inequality. Take, for example, the monomial 

³

(+)
 − E(+)

´
 We have

E
¯̄̄


³

(+)
 − E(+)

´¯̄̄
≤ ¡E2¢12 ¡E4¢14µE³(+) − E(+)

´4¶14
 (180)

On the other hand, for any  ≥ 2

E | | ≡ E
¯̄
0

−1
−

¯̄
= E

¯̄̄̄
1

2

£
0 

0


¤µ 0 −1−
−1− 0

¶ ∙



¸¯̄̄̄


Therefore, by Lemma 2.7 of Bai and Silverstein (1998),

E | | ≤ −2
¯̄̄̄
1


E tr−2−

¯̄̄̄2
≤ −2

where the latter inequality can be established using a slightly modified version of (163) and from Lemma 25.

A similar inequality holds for E ||  Finally,

E
¯̄̄

(+)
 − E(+)

¯̄̄
≤ E

¯̄̄

(+)
 − tr−1−

¯̄̄
+E

¯̄
tr−1−− E tr−1−

¯̄


The first term on the right hand side of the above inequality is bounded by −2 similarly to E ||  To
bound the second term, we use the following decomposition

tr−1−− E tr−1− =
X
6=

(E − E−1) tr
¡
−1− −−1−

¢


where E denotes the expectation conditional on (1)  () and E0 ≡ E denotes the unconditional expec-
tation. SMW formula yields

tr
¡
−1− −−1−

¢
= − 0

−2
−

 + 0
−1
−



Hence,

E
¯̄
tr
¡
−1− −−1−

¢¯̄
= E

¯̄
0

−2
−

¯̄¯̄
 + 0

−1
−

¯̄ ≤ E°°−1−°° ≤ 

where the last inequality follows from an inequality similar to (163) and from Lemma 25.

Now using the Burkholder inequality (see Bai and Silverstein (1998), Lemma 2.2), we get

E
¯̄
tr−1−− E tr−1−

¯̄ ≤  2
 −

and hence

E
¯̄̄

(+)
 − E(+)

¯̄̄
≤ 

−2

Recalling (180), we obtain

E
¯̄̄


³

(+)
 − E(+)

´¯̄̄
≤ 

−32

Similarly, expected value of monomials of order  are bounded by 
−2We conclude that, for any   0

E
¯̄̄̄


2


1

2
0

−1
0

−1

¯̄̄̄
≤ 

−32 + (−)

as →∞ Since there are less than  3 such terms in the sum defining 2 we have

E2 ≤ 
32 (181)

for all sufficiently large 
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Analysis of 3 By (175)


1

2
0

−1
0

−1

=

Ã
1


0

−1
−



 +
1

0

−1
−



 +
1

0

−1
− 

!

×
Ã
1


0

−1
−



 +
1

0

−1
−



 +
1

0

−1
− 

!


Further,

1


0

−1
− =

1


0

−1
− −

1

0

−1
−

1

0

−1
−

 +
1

0

−1
−



1


0

−1
− =

1


0

−1
− −

1

0

−1
−

1

0

−1
−

 +
1

0

−1
−



Denoting 1

0

−1
− as 

+
 

1

0

−1
−  as 

+
  etc., we have


1

2
0

−1
0

−1 =

6Y
=1

3

where

31 = + −
+ 

+


 + +
32 = 

+
 −


+
 

+


 + 
+




33 =


 + 
+


34 =


 + 
+


 and

35 =


 + 
+


36 =


 + 
+




Consider now the following identities

31 = + −
+ 

+


 + E+
+

+ 
+


¡
+ − E+

¢¡
 + E+

¢2 − + 
+


¡
+ − E+

¢2¡
 + E+

¢2 ¡
 + +

¢  (182)

32 = 
+
 −


+
 

+


 + E+
+


+
 

+


³

+
 − E+

´
³
 + E+

´2 −

+
 

+


³

+
 − E+

´2
³
 + E+

´2 ³
 + 

+


´  (183)

33 =
2X

=0

(−1) 
¡

+
 − E+

¢¡
 + E+

¢1+ − 
¡

+
 − E+

¢3¡
 + E+

¢3 ¡
 + 

+


¢  (184)

34 =
2X

=0

(−1) 
³

+
 − E+

´
³
 + E+

´1+ −


³

+
 − E+

´3
³
 + E+

´3 ³
 + 

+


´  (185)

35 =
2X

=0

(−1) 
¡
+ − E+

¢³
 + E+

´1+ − 
¡
+ − E+

¢3³
 + E+

´3 ³
 + 

+


´  (186)
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and

36 =
2X

=0

(−1) 
³

+
 − E+

´
³
 + E+

´1+ −


³

+
 − E+

´3
³
 + E+

´3 ³
 + 

+


´  (187)

Further, note that

+ = + −
³

+


´2
 + 

+


= + −
³

+


´2
 + E+

+

³

+


´2 ³

+
 − E+

´
³
 + E+

´³
 + 

+


´ (188)

and


+
 = 

+
 −

³

+


´2
 + 

+


= 
+
 −

³

+


´2
 + E+

+

³

+


´2 ³

+
 − E+

´
³
 + E+

´³
 + 

+


´  (189)

Using (188) and (189) in the terms of (186) and (187) corresponding to  = 1, we obtain

35 =


 + E+

− 
¡
E+ − E+

¢³
 + E+

´2 − 
¡
+ − E+

¢³
 + E+

´2
+



³

+


´2
³
 + E+

´2 ³
 + E+

´ + 
¡
+ − E+

¢2³
 + E+

´3 (190)

−


³

+


´2 ³

+
 − E+

´
³
 + E+

´2 ³
 + E+

´³
 + 

+


´ − 
¡
+ − E+

¢3³
 + E+

´3 ³
 + 

+


´
and

36 =


 + E+

−


³
E+ − E+

´
³
 + E+

´2 −


³

+
 − E+

´
³
 + E+

´2
+



³

+


´2
³
 + E+

´2 ³
 + E+

´ + 

³

+
 − E+

´2
³
 + E+

´3 (191)

−


³

+


´2 ³

+
 − E+

´
³
 + E+

´2 ³
 + E+

´³
 + 

+


´ − 

³

+
 − E+

´3
³
 + E+

´3 ³
 + 

+


´ 
Using identities (182-185) and (190-191), we represent the product

Y6

=1
3 in the form of a weighted

sum of monomials in +  
+
  

+
  

+
 − E+  +  +  +  + − E+  etc. A somewhat lengthy but

straightforward inspection reveals that the expectation of all the monomial terms of degree less than five is

zero. Take, for example the monomial term

+ 
+



¡

+
 − E+

¢¡
 + E+

¢2 

³

+
 − E+

´
³
 + E+

´2
×

⎛⎜⎝ 1

 + E+

− 
¡
E+ − E+

¢³
 + E+

´2
⎞⎟⎠
⎛⎜⎝ 

 + E+

−


³
E+ − E+

´
³
 + E+

´2
⎞⎟⎠ 
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which is obtained by taking the product of the first order terms in (182-185) and zeroth order terms in

(190-191). We have

E
h
+ 

+


¡

+
 − E+

¢ ³

+
 − E+

´i
= 0

because the expression under the expectation can be represented in the form of a weighted sum of monomials

in the components of vector  of order three and one only. The expectation of such monomials, conditional

on    
−1
−

−1
−

−1
−  and −1− is zero.

By the same logic as in the above subsection, the expectation of the monomial terms of order five and

more in the expansion of
Y6

=1
3 is bounded by 

−52 Since there are no more than  4 such terms,

we have

E3 ≤ 
32 (192)

for all sufficiently large .

Combining (178), (181), and (192) yields

E

⎛⎝ 2

 2

X
6=


1


0

−1

⎞⎠2

≤ 
32

or all sufficiently large . By Markov’s inequality,

Pr

⎛⎝¯̄̄̄¯̄ 2 2
X
6=


1


0

−1

¯̄̄̄
¯̄ ≥ 45

⎞⎠ ≤ 
−110 (193)

This inequality and (173) imply that there exist absolute constants 1  0 and 2  0 such that

Pr

µ


22
≤ 0M1 ≤ 

12

¶
→ 1

as →∞.

Comparison to 0M1P2M1 Represent  as  =  + − where

 =

½
 for  ≤ 

0 otherwise


We will choose the value of the integer  later.

We have

0M1P2M1 ≤ 20M1P2M1 + 2
0
−M1P2M1−

Now, recall that P1 =  −M1 Therefore,

0−M1P2M1− = 0−P2− − 20−P1P2− + 0−P1P2P1−

and hence,

0−M1P2M1− ≤ 0−P2− + 3 kP1P2k k−k2  (194)

Further, clearly

0M1P2M1 ≤ 0M1 (195)
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Analysis of 0M1 By definition

0M1 =
X

=1

2
¡
∆−1 − 0

−1
2


¢− ()2 X
6=


0

−1

Similarly to (172), we have w.ow.p.,

X
=1

22
2
 

2

 +2
≤

X
=1

2
¡
∆−1 − 0

−1
2


¢ ≤ X
=1

22
2
 

2

 +1
 (196)

Let  be an even integer. Then,

X
=1

22
2
 

2

 +
=

2X
=1

1

 − cos 2

=


2

Z 

0

d

 − cos +(1)

as →∞ where  = 1 +
1
22 2  According to Gradshteyn and Ryzhik (2000, 2.553 (3)),



2

Z 

0

d

 − cos =



p
2 − 1

arctan

Ã
2
p
2 − 1

2 2
tan



2

!

Choosing  to be the even integer closest to  ()
14

 we obtain (using linear approximations of tan and
arctan around zero)

lim
→0

 ()
34



Ã


2

Z 

0

d

 − cos

!
= 1

so that for any   0 there exists   0 such that for all    we have

X
=1

22
2
 

2

 +
≤ (1 + )



 ()
34



Combining this with (196) yields

X
=1

2

µ
∆−1 −



 2
0

−1

¶
≤ 

 ()
34

for an absolute constant   0 and all sufficiently small , w.ow.p. Since, similarly to (193), we have

Pr

⎛⎝¯̄̄̄¯̄ 2 2
X

6=


1


0

−1

¯̄̄̄
¯̄ ≥ 45

⎞⎠ ≤ 
−110

we conclude that, for all sufficiently small ,

Pr
³
0M1 ≤ 74

´
→ 1 (197)

as →∞.

Analysis of 0−P2− + 3 kP1P2k k−k2  By definition, we have k−k2 =
X̄

=+1
2  Recall that

 = − 1√
2

µ
1

sin1
1− cos1  1

sin2
1− cos2  

¶0
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Therefore,

̄X
=+1

2 =
1

4

¡
̄ − 

¢
+
1

2

̄2X
=2+1

µ
sin

1− cos

¶2
≤ 1
4
̄ +

̄2X
=2+1

1

1− cos 2




For  which is the even integer closest to  ()
14

 we have

̄2X
=2+1

1

1− cos 2


=


2

Z 

()
54

d

1− cos +(1) =


2
cot

∙
1

2
 ()

54

¸
+(1)

as →∞ so that

k−k2 ≤  ()
54

for all sufficiently small  and some absolute constant   0 as →∞

Since, by Theorem 1 of Onatski and Wang (2017a), kP1P2k ≤ 
√
 as →∞ we have

3 kP1P2k k−k2 ≤  ()
34



On the other hand, since P2 is a projection on a random -dimensional subspace of R̄ 

0−P2− ≤  k−k2 


≤  ()

14

with high probability as →∞ Hence,

0−P2− + 3 kP1P2k k−k2 ≤  ()
34

(198)

with high probability as →∞.
Combining (197) and (198) yields

0M1P2M1 ≤ 74

with high probability for all sufficiently small  as →∞ To summarize,

0M1P2M1

0M1
≤ 74

2
≤ 14

with high probability, for all sufficiently small  as →∞

4 Monte Carlo

In this section, we explore the sensitivity of the empirical distribution of the squared canonical correlations

to the nuisance parameters Ψ and Γ All figures given below show the 5-th and 95-th percentiles of the MC
distributions of the squared canonical correlations, +1−, (solid lines) plotted against the 100( − 12)
quantiles of the corresponding Wachter limit. The figures correspond to the entries of  having Student’s

(3) distribution. The results for Gaussian and centered 2 (1) distributions are very similar.

4.1 Sensitivity to Ψ

We simulate the data generating process

∆ = Π−1 +
−1X
=1

Γ∆− +Ψ + 
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Figure 1: The 5-th and 95-th quantiles of the MC distribution of +1− plotted against 100( − 12)
quantiles of 110() (  ) = (20 200) The data generating process has a linear deterministic trend with
i.i.d. (0 1) coefficients collected in matrix Ψ (the first column - intercept, the second column - slope).

Right panel corresponds to the case where the trend is omitted from the econometrician’s model.

where Ψ is a × 2 matrix with i.i.d. (0 2) entries, and  = (1 )
0 Matrices Π and Γ are set to be zero.

That is, the data components are random walks with heterogeneous linear time trends. The initial values

are zero, and the sample size is (  ) = (20 200) 
The left panel of Figure 1 corresponds to the case where the econometrician’s model

∆ = Π−1 +Φ +  (199)

is correctly specified. That is,  = (1 )
0 and Φ is not constrained to be zero. The right panel corresponds

to an under-specification, where the deterministic terms are mistakenly omitted from (199). Parameter 2

is set to one.

We see that omitting two deterministic terms (the constant and the time index) leads to a deviation of

the two largest squared canonical correlations from the 45◦ line. This is, perhaps, not surprising because
under the mis-specification the canonical correlations are based on changes and levels of the raw data, as

opposed to the residuals from the regressions on the deterministic terms. Therefore, the changes and levels

contain two deterministic components resulting in the two largest canonical correlations being large.

The degree of the deviation of the two largest squared canonical correlations depends on the value of 

When  decreases, the deviation becomes smaller, and entirely disappears when  = 0. When we increase
 to 1.9, the time trend starts to dominate the data so much that matrix 11 becomes very poorly scaled

under the mis-specification, and the numerical results become inaccurate.

When the model is correctly specified, the MC quantiles of Wachter plots lie close to the 45◦ line.
However, in contrast to Figure OW4, the line is closer to the 5-th and is further away from the 95-th MC

quantile. This phenomenon does not disappear even when  = 0

4.2 Sensitivity to Γ

First, we generate data with Γ1 = 0 where  is a -dimensional vector uniformly distributed on the unit
sphere, and  ∈ (0 1) so that the generated process does not become (2) We set Π, Ψ and the initial
values to zero. The samples size is (  ) = (20 200)  The econometrician’s model is (199) with Φ = 0.
Figure 2 reports results for  = 01 04 07 and 09 As  increases, the MC distribution of the largest

squared canonical correlation shifts upwards and away from the corresponding quantile of the Wachter limit.
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Figure 2: The 5-th and 95-th quantiles of the MC distribution of +1− plotted against 100( − 12)
quantiles of 110() (  ) = (20 200) The data generating process has Γ1 = 0 where  is uniformly
distributed on the unit sphere.

The deviation becomes clearly noticeable for  = 07. The other squared canonical correlations remain close
to the Wachter limit.

We repeat this MC experiment with Γ1 = 0 where  is a  × 2 matrix distributed as the first two
columns of a random orthogonal matrix (uniformly distributed over the orthogonal group). The results are

reported in Figure 3. Now the two largest squared canonical correlations deviate from the corresponding

quantiles of the Wachter limit for relatively large . The reason is the presence in ∆ and −1 of two
persistent and related stochastic components, 0∆ and 0−1
Note that the econometrician’s model is still (199). Hence, it omits the lag ∆−1 and the canonical

correlations are computed using the raw data, not regressed on ∆−1.
Overall, we see that making Ψ or Γ non-zero does influence the empirical distribution of the squared

canonical correlations when the econometrician’s model is misspecified. However, this influence is mostly

confined to a few of the largest squared canonical correlations. In particular, for low-rank non-zero Ψ or Γ
the empirical distribution of the squared canonical correlations remains close to the Wachter limit in terms

of the Lévy distance.
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