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Specifically Neuropathic Gaucher’s
Mutations Accelerate Cognitive Decline

in Parkinson’s

Ganqiang Liu, PhD,1,2 Brendon Boot, MD,3,4 Joseph J. Locascio, PhD,1,5

Iris E. Jansen, MS,6,7 Sophie Winder-Rhodes, PhD,8

Shirley Eberly, MS,9 HBS, CamPaIGN, PICNICS, PROPARK, PSG, DIGPD,

Alexis Elbaz, MD, PhD,10,11 Alexis Brice, MD,12 Bernard Ravina, MD,13

Jacobus J. van Hilten, MD, PhD,14 Florence Cormier-Dequaire, MD,12

Jean-Christophe Corvol, MD, PhD,12 Roger A. Barker, PhD,8

Peter Heutink, PhD,6,7 Johan Marinus, PhD,14

Caroline H. Williams-Gray, PhD,8 and Clemens R. Scherzer, MD,1,2,3,4,5

for the International Genetics of Parkinson Disease Progression (IGPP)

Consortium

Objective: We hypothesized that specific mutations in the b-glucocerebrosidase gene (GBA) causing neuropathic
Gaucher’s disease (GD) in homozygotes lead to aggressive cognitive decline in heterozygous Parkinson’s disease
(PD) patients, whereas non-neuropathic GD mutations confer intermediate progression rates.
Methods: A total of 2,304 patients with PD and 20,868 longitudinal visits for up to 12.8 years (median, 4.1) from sev-
en cohorts were analyzed. Differential effects of four types of genetic variation in GBA on longitudinal cognitive
decline were evaluated using mixed random and fixed effects and Cox proportional hazards models.
Results: Overall, 10.3% of patients with PD and GBA sequencing carried a mutation. Carriers of neuropathic GD
mutations (1.4% of patients) had hazard ratios (HRs) for global cognitive impairment of 3.17 (95% confidence interval
[CI], 1.60–6.25) and a hastened decline in Mini–Mental State Exam scores compared to noncarriers (p 5 0.0009). Car-
riers of complex GBA alleles (0.7%) had an HR of 3.22 (95% CI, 1.18–8.73; p 5 0.022). By contrast, the common, non-
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neuropathic N370S mutation (1.5% of patients; HR, 1.96; 95% CI, 0.92–4.18) or nonpathogenic risk variants (6.6% of
patients; HR, 1.36; 95% CI, 0.89–2.05) did not reach significance.
Interpretation: Mutations in the GBA gene pathogenic for neuropathic GD and complex alleles shift longitudinal
cognitive decline in PD into “high gear.” These findings suggest a relationship between specific types of GBA muta-
tions and aggressive cognitive decline and have direct implications for improving the design of clinical trials.

ANN NEUROL 2016;80:674–685

Initial motor features of Parkinson’s disease (PD) typically

respond to dopaminergic medications. Dopaminergic

therapies do not slow the underlying neurodegenerative

disease process. Over time, the neuropathology spreads,

and, in many patients, dementia emerges as one of the

most debilitating and intractable complications of the dis-

ease.1 The pace of this cognitive disease progression varies

considerably between patients. Information on genes that

predict prognosis (and modulate disease progression) is

needed, both for improving trial design, especially with

respect to disease modifying therapies, as well as for devel-

oping a personalized medicine.

We hypothesized that mutations in the glucocerebro-

sidase gene (GBA) enriched in severe, neuropathic Gauch-

er’s disease (GD), but not those typical of mild, non-

neuropathic GD, will be associated with an aggressive cog-

nitive decline in PD. Two mutant copies of GBA cause

GD, the most prevalent lysosomal storage disease. This

autosomal-recessive disorder is linked to over 300 patho-

genic mutations in the GBA gene,2 which encodes b-

glucocerebrosidase. Severity of the GD phenotype varies

dramatically. Some GD patients have peripheral manifesta-

tions without neurological impairment (non-neuropathic

type 1; eg, hepatosplenomegaly, anemia, and bone dis-

ease).3 Others show early-onset, rapidly progressive neuro-

logical disease (neuropathic type 2) or a spectrum of

chronic neurological manifestations (subacute neuropathic

type 3).3 Chronic neurologic manifestations of GD include

eye movement and motor abnormalities, ataxia, spasticity,

seizures, as well as tremor. The current nosology for GD is

primarily based on the categorical presence or absence of

central nervous system disease and has clinical utility,

although considerable variation exists.3

Individuals carrying one mutant copy of GBA do

not develop GD. Heterozygotes, however, are 5-fold

increased among patients with PD,4 and mutations in

the GBA have emerged as the most common protein-

coding risk variants for PD.5 GBA mutations are also

associated with dementia with Lewy bodies.5 Initial

observations in 15,6 13,7 �6,8 and, recently, 19 carriers9

have suggested that—overall—GBA mutations may be

associated with the rate of progression of PD.6–8 Howev-

er, these studies could not deconvolute the specific effects

of neuropathic and non-neuropathic types of GBA muta-

tions on progression phenotypes because of the limited

numbers of carriers included. For stratification in clinical

trials or proactive interventions (eg, designed to prevent

dementia in patients with PD) it is important to have

the ability to predict the disease course of individual

patients. It is thus of practical importance to precisely

understand the relation between specific types of GBA

mutations and the speed of PD progression. Here, we

determined that GBA mutations linked to neuropathic

GD, but not those of non-neuropathic GD, are associat-

ed with a more rapid longitudinal cognitive decline in

seven international cohorts representing 2,304 patients

with PD longitudinally evaluated for up to 12.8 years

(median, 4.1) with 20,868 study visits.

Subjects and Methods

Study Participants and Procedures
Seven longitudinal cohorts6,10–16 from North America and

Europe representing 2,304 patients with PD (and available

DNA) were analyzed (Table 1). The analysis included two

population-based, incident cohort studies (Cambridgeshire Par-

kinson’s Incidence from GP to Neurologist [CamPaIGN],17

Parkinsonism: Incidence, Cognition and Non-motor heteroge-

neity in Cambridgeshire (PICNICS)14,18; five purpose-built

biomarkers and clinical observational studies from academic

centers (Harvard Biomarker Study [HBS],19–22 PROfiling PAR-

Kinson’s disease [PROPARK],16 and the French Drug Interac-

tion with Genes in PD [DIGPD]); as well as two well-

phenotyped, failed phase III clinical trials with longitudinal,

observational extension studies (Deprenyl and Tocopherol Anti-

oxidative Therapy of Parkinsonism [DATATOP]15; Parkinson

Research Examination of CEP-1347 Trial/A Longitudinal

Follow-up of the PRECEPT Study Cohort [PreCEPT/Post-

CEPT]13. Six cohorts enrolled patients with a diagnosis of PD

established according to modified UK PD Society Brain Bank

diagnostic criteria. In DATATOP, the eligibility criteria required

a diagnosis of early, idiopathic PD (Hoen & Yahr [HY] stages

1 or 2) not on antiparkinsonian medications23. Detailed eligi-

bility criteria for the cohorts have been previously re-

ported.10,13,14,16,22–25 For all cohorts, diagnostic certainty was

increased by confirming the clinical diagnosis of PD during

longitudinal follow-up visits.26 In PRECEPT, the diagnosis was

supported by neuroimaging. In the DATATOP, the diagnosis

was further informed by record reviews and autopsies. Patients

identified during follow-up whose evaluations were not consis-

tent with a diagnosis of PD were excluded from analysis. Writ-

ten informed consent was obtained from all subjects under the

supervision of each local ethics committee. Patients with a

known LRRK2 G2019S mutation were excluded.
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Mutations were identified through targeted next-generation

sequencing of the entire GBA coding sequence and flanking

intronic regions in four data sets (Table 1). For 173 PD samples in

HBS, 332 PD samples in PreCEPT/PostCEPT and 437 PD sam-

ples in DATATOP, as well as 164 PD samples from PROPARK,

GBA mutations were systematically identified through full

sequencing of the exons and flanking intronic regions of GBA in

RefSeq (NM_001005741.2). To avoid sequencing its neighboring

pseudogene, the entire locus was amplified in a single long-range

polymerase chain reaction (PCR) reaction using the LA PCR Kit

(version 2.1; Takara Bio Inc., Otsu, Japan). Template DNA

(100ng) was added to a 50-ml reaction along with primers

(final concentration, 0.4mM) with the following sequences: for-

ward primer (50-CGACTTTACAAACCTCCCTG-30) and reverse

primer (50-CCAGATCCTATCTGTGCTGG-30), and cycling

conditions were 948C for 1 minute (one cycle), 988C for

TABLE 1. Overview of Study Cohorts

Study (Country) N (%

male)

Age at

Enrollment

(years, SD)

Years of

Education

(years,

SD)

Study

Years (years,

range)

Mutation

No. of

Subjects

(%)

Mutations

Screened

HBS (USA) 42 (7.6) Targeted sequencing

or N370S, E326K,

T369M genotyping

Carriers 42 (59.5) 65.2 (10.2) 15.0 (1.7) 1.7 (0.0–5.2)

Noncarriers 514 (64.6) 66.1 (9.8) 15.1 (1.9) 1.8 (0.0–8.0)

DATATOP (USA, Canada) 38 (8.7) Targeted sequencing

Carriers 39 (51.3) 61.1 (8.1) 13.6 (3.2) 6.6 (0.0–7.6)

Noncarriers 398 (68.1) 60.0 (9.1) 14.3 (3.4) 6.3 (0.0–7.8)

DIGPD (France) 32 (7.8) Sanger sequencing

Carriers 32 (50.0) 60.9 (8.9) 11.3 (3.3) 2.5 (0.0–5.0)

Noncarriers 377 (59.4) 62.5 (9.8) 12.1 (3.3) 2.2 (0.0–5.0)

CamPaIGN (UK) 15 (13.2) Sanger sequencing

Carriers 15 (73.3) 67.1 (9.4) 10.5 (2.6) 6.3 (0.0–11.8)

Noncarriers 99 (54.5) 69.8 (9.9) 11.7 (3.4) 7.0 (0.0–12.8)

PICNICS (UK) 8 (6.2) Sanger sequencing

Carriers 8 (62.5) 63.8 (7.8) 12.5 (2) 3.7 (0.0–4.7)

Noncarriers 121 (66.1) 69.2 (9.2) 12.1 (2.9) 3.0 (0.0–6.7)

PROPARK (Netherlands) 53 (16.2) Targeted sequencing or

whole-exome sequencing

Carriers 53 (69.8) 58.9 (10.1) 12.2 (4.4) 4.5 (0.0–5.4)

Noncarriers 274 (65.3) 59.7 (10.9) 12.0 (4.1) 4.7 (0.0–6.3)

PreCEPT (USA, Canada) 32 (9.6) Targeted sequencing

Carriers 32 (56.3) 58.5 (7) 15.8 (3.4) 6.7 (0.0–8.2)

Noncarriers 300 (67.7) 60.7 (9.6) 16.1 (3.1) 6.7 (0.0–8.6)

The study names are Harvard Biomarkers Study (HBS)10,21,22; Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP)15,23;

Parkinson Research Examination of CEP-1347 Trial/A Longitudinal Follow-up of the PRECEPT Study Cohort (PreCEPT/PostCEPT)13; Cam-

bridgeshire Parkinson’s Incidence from GP to Neurologist (CamPaIGN)6,11,24; Parkinsonism: Incidence, Cognition and Non-motor heterogeneity

in Cambridgeshire (PICNICS)14; Drug Interaction with Genes in PD (DIGPD)25; and PROfiling PARKinson’s disease (PROPARK) study.16 HBS

was examined in two parts: 383 participants for whom targeted genotyping of three GBA mutations was performed; 173 individuals for whom full

sequencing of the GBA locus was performed (targeted sequencing).
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10 seconds followed by 688C for 15 minutes (30 cycles), and

728C for 10 minutes (one cycle). This long-range PCR assay

uses primers that target sequences that uniquely flank GBA and

produces a single 7,755-base-pair (bp) PCR product. PCR

products were visualized on an 0.8% agarose gel with ethidium

bromide to confirm successful amplification, which were then

used to construct Illumina ready sequencing libraries using the

NexteraXT kit (Illumina Inc., San Diego, CA), following the

manufacturer’s instructions. Uniquely indexed samples were

pooled (up to 384 samples/pool) and run on the Illumina

MiSeq instrument to generate 150-bp paired-end reads.

Sequencing reads were aligned to the human assembly genome

(GRCh37/hg19) using BWA27 (version 0.6.1). GBA mutations

were called by the GATK28 (version 1.6) toolkit. A genotype

quality of at least 50 and at least 10 3 coverage was achieved for

all samples. As a quality control, reproducibility of mutation

detection was assessed by sequencing 57 samples across different

batches in replicates, and the concordance rate was 100% across

the GBA mutation locus for all replicates. For 383 PD sample

in HBS, E326K, N370S, and T369M were previously geno-

typed.21 Genotypes for 339 of the 383 samples were confirmed

on the Illumina NeuroX chip with a genotyping concordance

rate of 100%; for 114 PD samples in CamPaIGN and 129 PD

samples in PICNICS, mutations and common genetic variants

had been identified through full exonic sequencing of GBA after

two-stage PCR, as part of a previous study.6 For 409 samples in

DIGPD, exons and flanking intronic regions of GBA were

sequenced. To avoid amplifying and sequencing the neighboring

pseudogene, GBA was amplified in three large fragments (a 2,972-

bp fragment encompassing exons 1–5; a 2,049-bp fragment encom-

passing exons 5–7, and a 1,682-bp fragment encompassing exons

8–11), using previously described primers and a unique 648C to

548C touch-down PCR program.29 PCR products were sequenced

with internal primers, adjacent to coding exons and exon-intron

boundaries, using the Big Dye Terminator Cycle Sequencing Ready

Reaction kit (Applied Biosystems, Foster City, CA), as prescribed.

Sequencing products were purified using the Big Dye XTerminator

Purification kit (Applied Biosystems), then electrophoresed on an

ABI 3730 automated sequencer and analyzed with DNA Sequenc-

ing Analysis (version 5.1) and Seqscape (version 2.6) software

(Applied Biosystems). One hundred sixty-three samples from

PROPARK, which are part of a larger PD exome cohort belonging

to the International Parkinson’s Disease Genomics Consortium,

were sequenced using the EZ Exome Library v2.0 (Roche Nimble-

Gen, Madison, WI) targeting 44.1Mb. Sequencing reads were

aligned to the human reference genome (hg19) with BWA.27

Single-nucleotide variants and small insertions/deletions (indels)

were called and filtered using the GATK (version 3.x).28 For 91 of

the 163 samples, the BAM files were available and calculation of

GBA coverage was performed. On average, 99.5% of the exonic

GBA regions were covered for at least 153. For the remaining sam-

ples, the overall targeted exome coverage (103) is 90.8%.

Study Design and Statistical Analysis
Differences in continuous and categorical baseline characteristics

were compared between noncarriers and carriers of genetic

variation in GBA (all carriers, carriers of the non-neuropathic

N370S mutation, and carriers of neuropathic GD mutations,

respectively), with Student t tests, and distribution-free Mann–

Whitney U or Fisher’s exact tests, as appropriate.

The primary aim of this study was to analyze the effect

of four types of GBA mutations on cognitive progression in

PD. To characterize how distinct types of GBA mutations are

associated with longitudinal disease progression in PD, we com-

pared four operationally defined groups of PD patients with

distinct types of GBA mutations to patients with PD not carry-

ing a GBA mutation. Patients with PD carrying one of four

types of GBA mutations or variant were considered and com-

pared to patients with PD not carrying a GBA mutation (non-

carriers), respectively. 1, Carriers of a GBA risk variant. The

E326K, T369M, and E388K variants are associated with risk of

PD21,30 and are linked to GD when occurring in conjunction

with other GBA mutations, but it is controversial whether they

are per se pathogenic for GD.31 2, Carriers of the common, non-

neuropathic N370S mutation. The pathogenic N370S mutation

is classically associated with mild, non-neuropathic phenotypes

of GD type 1. 3, Carriers of a neuropathic GD mutation. For

the purpose of this study, patients with PD who were heterozy-

gous carriers of a pathogenic GBA mutation associated with

neuropathic GD subtypes 2 or 3 in one or more published

reports (found on PubMed searches in September 2015) were

operationally defined as “carriers of a neuropathic GD muta-

tion” (Supplementary Table 1). This included carriers of the

L444P mutation, the prototypical mutation associated with

neuropathic GD types 2 and 3. 4, Carriers of complex GBA

alleles. Patients carrying complex GBA alleles (eg, more than

one GBA mutation/variant) were grouped separately. We also

explored longitudinal cognitive decline in patients with PD car-

rying any pathogenic GBA mutation or risk variant taken

together (“all GBA carriers”) compared to patients with PD not

carrying a GBA mutation.

Generalized longitudinal mixed fixed- and random-effects

analysis of cognitive decline was performed32 using serial Mini–

Mental State Exam (MMSE) scores longitudinally observed in

all cohorts starting from study enrollment. Ninety-five percent

of visits (19,801 of 20,868 study visits) were conducted within

6.5 years from the enrollment visit (median follow-up period,

4.1 years; maximum follow-up period, 12.8 years). The MMSE

score was the dependent variable and the primary predictors

were carrier status, time in the study (years), and their interac-

tion. Fixed covariates were sex, age, and disease duration upon

enrollment and years of education. An intercept term and linear

rate of change across time per subject were the random terms

(permitted to be correlated). A study term was also included as

a random effect. To avoid problems with somewhat non-

normal residuals, p values were obtained by penalized quasi-

likelihood ratio tests of the full model with the effect in ques-

tion contrasted with the model without the effect in question.

These analyses were implemented in R33 (version 3.1.2; R

Foundation for Statistical Sciences) using the glmmPQL func-

tion in the MASS package (version 7.3-40). p values less than

or equal to 0.05 were considered statistically significant.
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Cox proportional hazards models were used to estimate

the influence of carrier status on the hazard ratio of time to the

endpoint reaching global cognitive impairment as indicated by

a MMSE �25 according to the recommendation the Interna-

tional Parkinson and Movement Disorder Society (MDS) Task

Force.34 Age at onset was defined as the patient’s age at the

time of PD diagnosis for six studies. PROPARK defined age at

onset as the patient’s age at the time of first patient-reported

motor symptoms. A total of 63.7% of patients (1,467 of

2,304) were enrolled into a study cohort within 2 years from

their onset age, and 95% of study visits fell within 10 years

since onset (19,840 of 20,868 visits). For exploratory analysis

of motor progression, we evaluated the HR of time to reaching

advanced PD operationally defined as reaching an HY stage 3

(bilateral disease with loss of postural balance). One hundred

eighty-eight patients with global cognitive impairment at enroll-

ment and 244 with HY stage 3 already reached at enrollment

were removed from the Cox proportional hazards analyses,

respectively. Multivariate Cox regression analysis was performed

for each study separately and then across studies with carrier

status, age at onset of PD, sex, and years of education as pre-

dictors of global cognitive impairment and the same except for

education as predictors of HY stage 3. For the meta-analysis

across studies, a “study” term was included as a random effect

(a “frailty” model). The proportional hazards assumption of the

Cox regression model was tested and not violated by any pre-

dictor in any analysis. Cochran’s Q-test was used to test for het-

erogeneity of effects across studies.

Hypothetical Power Analysis for a Personalized
Clinical Trial Targeting Neuropathic GBA-PD
To estimate sample-size requirements for a personalized, 3-year

clinical trial of a hypothetical drug designed to halt cognitive

decline (as measured by the MMSE) specifically in patients car-

rying a neuropathic GBA mutation, we ran a power analysis.

We used a repeated-measures analysis of variance design of two

groups versus four time points (enrollment, 1 year, 2 years, and

3 years in study). One hypothetical group was assigned to pla-

cebo and therefore stipulated to have MMSE means across time

predicted by our mixed-effects model, and the second group

was assigned to treatment with an experimental drug, which

has the hypothetical ability to halt decline in MMSE scores (all

scores set equal to the predicted MMSE scores at enrollment).

We ran analyses assuming a two-tailed a of 0.05 to detect the

difference in trajectories across time for the two groups (group-

3 time interaction), and assuming a within group/time-point

standard deviation (SD) of 2 and a 1-year test-retest correlation

of 0.7 as approximate to those values found empirically, with a

first-order autoregressive decay across longer periods. The con-

servative Greenhouse-Geisser correction for degrees of freedom

for correlated error was also used. For comparison, analogous

computations were performed for a hypothetical clinical trial

scenario with “all comer” PD patients (not carrying a GBA

mutation).

We found required sample sizes to be 36 per placebo and

36 per drug group in order to achieve 80% power. By contrast,

if instead all-comer patients with PD (not carrying a GBA

mutation) were enrolled to test the same experimental drug

(over the same time period, assuming same a, same SD, and

same test-retest correlations), 893 patients would be required

per placebo and 893 per drug group to achieve 80% power

(Fig 3). Thus, a trial targeted to neuropathic GBA-PD could

shrink sample-size requirements by as much as 25-fold com-

pared to an equally powered trial of all-comer PD patients

without a GBA mutation.

Results

Clinical Cohort Characteristics at Enrollment
Mean ages at enrollment across the seven cohorts ranged

from 59.6 to 69.4, and mean MMSE scores from 27.1

to 29.3. Mean HY stages at enrollment ranged from 1.0

to 2.6.

GBA Mutations
Overall, 10.3% of the 1,921 patients with PD analyzed

by sequencing were carriers of a GBA mutation (Fig 1).

A total of 1.4% (26) of patients were heterozygous car-

riers of a neuropathic GD mutation (Fig 1). These

included the L444P mutation (found in 12 heterozygous

carriers), as well as the 84GG, G195E, H255Q, R257Q,

P266L, R359X, G377S, D409H, L444R, A456P,

N462K, R120W, and R463C mutations (Supplementary

Table 1). A total of 1.5% (28) were carriers of the non-

neuropathic N370S mutation. A total of 6.6% (127)

were heterozygous carriers of a risk variant (79 were car-

riers of the E326K, 46 with T369M, and 2 with E388K

risk variants). A total of 0.7 % (14) were carrier of a

complex GBA allele. Three additional rare mutations

(D140H, K(-27)R, and R463P) were detected. The

R463P and K(-27)R mutations have not been conclusive-

ly associated with a GD subtype and were thus excluded

from the mutation-type specific analyses. D140H muta-

tions identified were part of complex alleles (Fig 1; Sup-

plementary Table 1).

Patients With PD Carrying GBA Mutations
Enriched in Neuropathic GD Had an Aggressive,
Accelerated Longitudinal Cognitive Decline
At enrollment, disease duration, age at onset, and levo-

dopa equivalent drug dose were not materially different

in carriers of a neuropathic GBA mutation compared to

noncarriers included in the proportional hazards model

analysis (Table 2). Importantly, for this analysis, at

enrollment, MMSE scores were identical for carriers of a

neuropathic GD mutation compared to noncarriers; their

motor scores (HY stage and MDS Unified Parkinson’s

Disease Rating Scale Part III) at enrollment were slightly

elevated (Table 2).
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We performed a generalized mixed random- and

fixed-effects longitudinal meta-analysis for MMSE scores,

adjusting for the covariates of age at enrollment, sex,

duration of PD at enrollment, and years of education.

Neuropathic GD mutations predicted a significant

decline in MMSE scores over time with p< 0.0001

(Fig 2A).

Carriers of a neuropathic GBA mutation had a Cox

proportional HR for global cognitive impairment of 3.17

(95% confidence interval [CI], 1.60–6.25) compared to

noncarriers (p 5 0.0009), adjusting for age of onset, sex,

years of education, and study (Fig 2C,E). At 10 years

from diagnosis, 79.5% (95% CI, 76.4–82.8) of noncar-

riers were free of global cognitive impairment compared

to 52.2% (95% CI, 33.9–80.5) of neuropathic GD

mutation carriers (a 27.3% difference).

Patients with PD Carrying Complex GBA
Alleles Also Had a More Rapid Longitudinal
Cognitive Decline
Carriers of complex GBA alleles had a Cox proportional

HR for global cognitive impairment of 3.22 (95% CI,

1.18–8.73) compared to noncarriers (p 5 0.022), adjusting

for age of onset, sex, years of education, and study (Fig

2C,E). In the mixed random- and fixed-effects model anal-

ysis, the decline in MMSE scores was somewhat less pro-

nounced, likely due to lower MMSE scores at enrollment

recorded for this group of patients (Fig 2A).

Cognitive Decline in Patients With PD Carrying
the Non-Neuropathic N370S Mutation Was Not
Materially Faster Than in Noncarriers
Carriers of the non-neuropathic N370S mutation alleles

had a Cox proportional HR for global cognitive

FIGURE 1: Distribution of mutations in the Gaucher’s disease gene GBA among study patients with Parkinson’s disease. Over-
all, 10.3% of the 1,921 patients with Parkinson’s analyzed using sequencing were carriers of a GBA mutation. The location of
GBA mutations identified in this study is shown in (A) (RefSeq NM_001005741.2). Mutations reported in neuropathic GD type
2 or 3 are shown in magenta font. Mutations associated with mild, non-neuropathic GD type 1 (eg N370S) are shown in brown
font. Risk variants are shown in green, and those variants, whose clinical phenotype is not established, in black font. The distri-
bution of mutations is shown in the pie chart to the right of (B) with the number of carriers observed in parenthesis.
GD 5 Gaucher’s disease.
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impairment of 1.96 (95% CI, 0.92–4.18) compared to

noncarriers, adjusting for age of onset, sex, years of edu-

cation, and study (Fig 2C,E).

Patients with PD carrying GBA risk variants had a

Cox proportional HR for global cognitive impairment of

1.36 (95% CI, 0.89–2.05) compared to noncarriers,

adjusting for age of onset, sex, years of education, and

study (Fig 2E).

GBA mutations predicted a decline in MMSE

scores over time (Fig 2B) in all carriers compared to non-

carriers with p 5 0.0001 in the generalized mixed ran-

dom- and fixed-effects model analysis, adjusting for

covariates and study. Multiple lines of evidence, includ-

ing sensitivity analyses,35 indicated that dropout bias did

not unduly influence this analysis. All carriers of a GBA

mutation, taken together, had a Cox proportional HR

for global cognitive impairment of 1.75 (95% CI, 1.28–

2.40) compared to noncarriers (p 5 0.0005), adjusting

for age of onset, sex, years of education, and study (Fig

2D). The HRs for global cognitive impairment in muta-

tion carriers versus noncarriers from the Mantel-Haenszel

procedure were examined for each of the seven indepen-

dent cohorts. Proportional HRs across studies were

homogeneous with I2 5 40.5%, p 5 0.21 by Cochran’s

Q-test for heterogeneity, suggesting it was not imperative,

though permissible, to analyze “studies” as a random

term in order to allow a more-universal inference.

We then explored the effect of GBA mutations on

motor disease progression. HY stage 3 marks the transition

from mild to moderate disease with impaired balance. It is

meaningful for patients because of fall risk and impact on

quality of life.36 In this population, none of the four types

of GBA mutations investigated was statistically significant-

ly associated with progression to HY stage 3 compared to

noncarriers, respectively, in the Cox proportional hazards

model adjusted for sex and age at onset. For all carriers of a

GBA mutation, taken together, the HR for progressing to

HY stage 3 was increased by a factor of 1.26 compared to

noncarriers. However, this missed the threshold for statisti-

cal significance (95% CI, 0.98–1.61; p 5 0.068).

Discussion

Seven deeply phenotyped, longitudinal cohorts from

North America and Europe representing 2,304 patients

with PD were followed longitudinally for up to 12.8

years (median, 4.1) with a total of 20,868 in-person

study visits. This makes the current analysis one of the

largest longitudinal observational studies reported for

PD. Much progress has been made in delineating

genome variation associated with susceptibility for

TABLE 2. Clinical Characteristics of Participants With PD at Enrollment

N 5 2,116 Noncarriers All GBA

Carriers

p* Carriers of Non-

neuropathic

N370S

p** Carriers of

Neuropathic

GD Mutations

p***

Total No. (N) 1,918 198 38 24

No. of men (N, %) 1,242 (64.6) 115 (58.1) 0.07 24 (63.2) 0.86 9 (37.5) 0.01

No. of Europeans (N, %)a 1,602 (83.5) 150 (75.8) 0.01 32 (84.2) 1.00 19 (79.2) 0.58

Age of onset (years, SD) 60.1 (10.6) 58.4 (9.7) 0.02 59.3 (8.9) 0.56 59.7 (10.9) 0.83

Disease duration at enrollment (years, SD) 2.6 (3.4) 2.6 (3.7) 0.96 2.0 (2.3) 0.13 2.0 (3.3) 0.36

Years of education (years, SD) 14.1 (3.4) 13.6 (3.6) 0.07 13.7 (3.2) 0.49 13.8 (3.9) 0.77

MMSE (mean, SD) 28.8 (1.2) 28.8 (1.2) 0.97 28.8 (1.1) 0.89 29.2 (1.0) 0.17

MDS-UPDRS III (mean, SD) 27.7 (13.1) 29.4 (12.9) 0.06 23.9 (12.3) 0.06 32.2 (10.5) 0.04

Hoehn & Yahr stage (mean, SD) 1.8 (0.7) 1.9 (0.7) 0.03 1.7 (0.7) 0.49 2.1 (0.6) 0.02

Levodopa equivalent drug doseb (mean, SD) 330.5 (393.3) 375.5 (430.9) 0.27 403.2 (377.1) 0.09 481.2 (612.8) 0.28

Group comparisons were performed using Student t test for age at enrollment, age at onset, and disease duration at enrollment; Mann-Whitney-

Wilcoxon test for MDS-UPDRS, Hoehn & Yahr, MMSE, and levodopa equivalent drug dose; and the Fisher’s exact test for sex and ancestry. Note

that at enrollment, mean MMSE scores for carriers and non-carriers were virtually identical (bold).

* All carriers compared to noncarriers; **carriers of the non-neuropathic N370S mutation compared to noncarriers; ***neuropathic GD mutation

carriers compared to noncarriers.
aAncestry information was not available for PROPARK.
bLevodopa equivalent drug dose was not available for the PreCEPT/PostCEPT cohort.
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developing PD,25,37 but little is known about the genetic

architecture controlling disease progression.11,24,38 In a

surprising analogy to GD, GBA mutations enriched in

neuropathic GD in homozygotes (leading to death at age

2 or severe neurological complications) were associated

with aggressive cognitive decline in PD. Patients carrying

these mutations had an HR of 3.17 (95% CI, 1.60–

6.25) for developing global cognitive impairment com-

pared to patients without a mutation — a 217% risk

increase. By contrast, patients carrying the common

N370S mutation linked to non-neuropathic GD showed

a trend toward intermediate rates of longitudinal cogni-

tive decline. This did not reach statistical significance,

likely due to insufficient power. This report is the first to

evaluate the differential effects of distinct types of neuro-

pathic, complex alleles, non-neuropathic, and risk varia-

tion in GBA on the longitudinal trajectory of cognitive

decline in PD. It suggests the clinical-genetic concept of

aggressive, neuropathic GBA-PD. The cross-sectional

observation that PD is more frequent among carriers of a

FIGURE 2.
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neuropathic GD mutations, compared to carriers of non-

neuropathic GD mutations in an Ashkenazi-Jewish popu-

lation,39,40 is fully consistent with the new longitudinal

trajectories here discovered.

This concept has implications for trial design.

Enrolling patients with neuropathic GBA-PD into

genetics-guided, proof-of-concept trials for disease-

modifying precision therapeutics may increase power,

shorten trial duration, shrink sample sizes, and, possibly,

cut costs. Our hypothetical power analysis estimates that

a trial targeted to neuropathic GBA-PD could shrink the

sample size required by as much as 25-fold compared to

an equally powered trial of PD patients without a GBA

mutation (Fig 3). Furthermore, the MMSE used in the

current analysis has limited sensitivity.41 More-sensitive

instruments, such as the Montreal Cognitive Assessment

scale,41 might detect cognitive changes in carriers of a

neuropathic GD mutation earlier and further improved

statistical power and shorten trial duration. Importantly,

prospective interventions (eg, designed to prevent

dementia in patients with PD) or therapies with signifi-

cant side effects require accurate risk-benefit analyses

based on the prognosis for individual patients. Can

enough patients with PD and a neuropathic GD muta-

tion be recruited for clinical trials? Neuropathic GD

mutations are as common in “sporadic” PD than

LRRK2 G2019S mutations.42 Considering that 1.4% of

patients with PD from academic centers, clinical trials,

and population-based cohorts in the United States, Can-

ada, and Europe with GBA sequencing data carried a

neuropathic GD mutation and another 0.7% carried a

complex GBA allele, this appears possible, albeit chal-

lenging. Beyond GBA, variants in other loci, such as

MAPT11and SNCA,43 are emerging that might contrib-

ute to modulating cognitive decline. Moreover, demo-

graphic, clinical, and environmental factors are likely to

influence the rate of cognitive decline in a particular

patient (eg, Zhu et al44).

FIGURE 2: Specifically neuropathic GD mutations accelerate cognitive decline in patients with PD. (A,C,E) Neuropathic GD
mutations carriers were linked to a more-rapid cognitive decline in PD (in heterozygotes). (A) Neuropathic GD mutations pre-
dicted decline in Mini–Mental State Exam scores over time in the generalized longitudinal mixed model meta-analysis in het-
erozygous patients. Illustrative mean scores on the MMSE across time predicted from the estimated fixed-effect parameters in
the mixed random- and fixed-effects model analysis are shown for Parkinson’s patients carrying specific types of GBA muta-
tions and those without a GBA mutation. Carriers of a neuropathic GD mutation showed accelerated longitudinal cognitive
decline compared to noncarriers with p < 0.0001, adjusting for the covariates of age at enrollment, sex, duration of PD upon
enrollment, and years of education. Illustrative mean scores on the MMSE across time for PD patients with a neuropathic GD
mutation are shown as magenta triangles; values for PD patients without a GBA mutation are represented as blue squares.
Illustrative means scores on the MMSE across time for carriers of a risk variant (heterozygous carriers of E326K, T369M, and
E388K; green triangles), the non-neuropathic N370S mutation (brown rhombi), or complex GBA alleles (orange circles) are also
shown. (B) Illustrative mean MMSE scores across time predicted from the estimated fixed-effect parameters in the mixed ran-
dom- and fixed-effects model analysis are shown for Parkinson’s patients without a GBA mutation (noncarriers) and those car-
rying any of the GBA mutations (all carriers). Carriers had overall a more-rapid decline in cognitive function (as measured by
serial MMSE) compared to noncarriers with p 5 0.0001, after adjusting covariates (solid lines indicate mean value of disease
duration at enrollment; dotted-dashed lines indicate 1 SD longer disease duration at enrollment; and dashed lines indicate 1
SD shorter disease duration at enrollment). (C) Covariate adjusted survival curves for Parkinson’s patients without a GBA muta-
tion (noncarriers; blue line) and those carrying specific types of GBA mutations: risk variants (green, interrupted line), the com-
mon, non-neuropathic N370S mutation (brown, dotted line), neuropathic GD mutations (magenta line), or complex GBA alleles
(orange, dotted-dashed line). (D) All carriers of a GBA mutation, taken together, had an overall hazard ratio for global cogni-
tive impairment of 1.75 (95% CI, 1.28–2.40) compared to noncarriers with p 5 0.0005, adjusting for age of onset, sex, years of
education, and study. The covariate adjusted survival curves are shown (carriers, red interrupted line; noncarriers, blue line).
The means of covariate-adjusted predicted values are visualized. (E) The forest plot shows hazard ratios for global cognitive
impairment in carriers of one of these specific types of GBA mutations. The hazard ratio for global cognitive impairment in car-
riers of neuropathic GD mutation was 3.17 (95% CI, 1.60–6.25; magenta). The squares represent point estimates, with the
height of the square inversely proportional to the standard error of the estimates. The horizontal lines indicate 95% confidence
intervals of the estimates. In (A), the group of patients with neuropathic GD mutations includes 26 heterozygous carriers with
the following mutations: 12 with L444P, 2 with R463C, and 1 each of R257Q, 84dupG, R120W, D409H, R359X, P266L, N462K,
A456P, L444R, G377S, H255Q, and G195E. The 14 carriers of complex alleles shown in (A) included 8 patients with E326K and
D140H, 1 with E326K and T369M, 1 with E326K and R463C, and 1 with E326K and R257Q; and homozygous carriers of
E326K/E326K, T369M/T369M, and E326/E326K/L444P/L444P genotypes, respectively. In (C), the group of patients with neu-
ropathic GD mutations includes 24 heterozygous carriers with neuropathic GD mutations: 12 with L444P, 2 with R463C, and 1
each of R257Q, 84dupG, R120W, R359X, P266L, A456P, L444R, G377S, H255Q, and G195E. The 12 carriers of complex alleles
shown in (C) included 6 patients with E326K plus D140H mutations, 1 with E326K plus T369M, 1 with E326K plus R463C, and
1 with E326K plus R257Q; and homozygotes carriers with E326K/E326K, T369M/T369M, and E326/E326K/L444P/L444P,
respectively. It should be note that in the Cox proportional hazards analyses, the number of mutation carriers differs from that
in the mixed fixed- and random-effects analysis, attributed to the removal of subjects, who had already reached the endpoint
at enrollment (left censored). The number of mutation carriers available for this analysis also differs from the number of car-
riers shown in Figure 1 because partially genotyped samples were here included, whereas data only for fully sequenced sam-
ples are shown in Figure 1. CI 5 confidence interval; GD 5 Gaucher’s disease; SD 5 standard deviation.
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This study has considerable strengths. Genetic

analyses of the GBA locus were performed at the end of

the clinical longitudinal follow-up period. Physicians

therefore recruited and longitudinally assessed the par-

ticipants without knowledge of their GBA genotype.

This design should be less vulnerable to recruitment

and ascertainment bias than previous case-control stud-

ies given that patients were assigned to one of two

groups simply based on the presence or absence of

mutated GBA alleles in a form of “double-blinded Men-

delian randomization.” The meta-analysis included two

community-based cohorts6,14 and six from academic

centers with cohort-specific eligibility criteria, differ-

ences in enrollment ages, and recruitment from distinct

source populations.

Confirmation across multiple heterogeneous popu-

lations likely adds to the validity of the results. Although

time-static “cross-sectional” studies certainly have their

value, longitudinal studies are generally considered more

informative and powerful and provide information about

individual change.32 Most important, of course, is the

fact that longitudinal designs examine the critical time

dimension, which could be entirely hidden in a cross-

sectional study.

A constraint of this meta-analysis is that in DATA-

TOP and PreCEPT, DNA was collected several years

after enrollment for a subset of participants.13 Thus, they

may under-represent patients with more rapidly progres-

sive disease, but it is unlikely that this would yield a spu-

rious association between GBA mutations and rapid

cognitive decline.

The mechanism through which GBA mutations

modulate the PD process is controversial.45 Autosomal-

recessive mutations in GBA cause GD through a decrease

or loss in GCase function and replacing GCase enzyme

in patients with GD corrects hepatosplenomegaly and

hematological abnormalities. L444P, the prototypical

mutation of neuropathic GD, leads to reduced b-

glucocerebrosidase (GCase) enzymatic activity.37,46

N370S appears to confer a milder reduction in GCase

activity.46 In PD, however, both GBA loss-of-function

and toxic gain-of-function hypotheses have been pro-

posed.5,47 In cultured cells, mutant GBA promoted a-

synuclein accumulation in a dose-dependent manner

without observed loss of GCase function.47 However, in

PD patients heterozygous for a GBA mutation, GCase

activity is reduced in induced pluripotent stem-cell–

derived neurons,48 brain,45 cerebrospinal fluid,48 and

blood.37 Reduced GCase activity causes accumulation of

glucosylceramide,48 lysosomal dysfunction,49 and accu-

mulation of a-synuclein protein,47–50 a neuropathological

hallmark of PD. Furthermore, a-synuclein, in turn, may

further reduce the availability of functional glucocerebro-

sidase,45,49 and GCase activity is low even in PD patients

without a GBA mutation, although to a lesser extent

than those with a mutation.45 Thus, it is possible that

therapeutics effective in GBA-PD could also be of benefit

for PD patients without a GBA mutation.

In GD, enzyme replacement therapy is effective in

reversing peripheral disease manifestations, but does not

penetrate the blood–brain barrier. In an encouraging

development for both neuropathic GD and PD, small

FIGURE 3: Improved power in genetically targeted clinical trials. A trial targeted to neuropathic GBA-PD could shrink sample
size requirements by as much as 25-fold compared to an equally powered trial of “all comers” PD patients (without a GBA
mutation) in this hypothetical power estimate. Required sample sizes were 36 for the placebo and 36 for the experimental
treatment group in order to achieve 80% power. A traditional clinical trial of “all comers” PD patients (not carrying a GBA
mutation) would require 893 patients per group to achieve the same power (over the same 3-year time period, assuming same
a, standard deviation, and test-retest correlations). a 5 0.05 for detecting the difference in trajectories for MMSE across time
for the placebo versus the treatment group (group 3 time interaction), MMSE scores predicted by our study were used. See
Methods for details. MMSE 5 Mini–Mental State Exam; PD 5 Parkinson’s disease.
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molecules designed to correct the GCase pathway in the

brain are in development.

Acknowledgment

This study was supported by the Michael J. Fox Founda-

tion (to C.R.S.); NIH grants PDBP U01 NS082157 (to

C.R.S.), NS050095, and NS24778; Harvard NeuroDis-

covery Center (to C.R.S.); U.S. Department of Defense

(to C.R.S. and B.R.); M.E.M.O. Hoffman Foundation (to

C.R.S.), Parkinson’s Disease Foundation (to B.R.);

Wellcome Trust, MRC, Parkinson’s UK, Cure-PD, Patrick

Berthoud Trust, Van Geest Foundation and NIHR (to

R.A.B. and C.H.W.-G.); Assistance Publique Hôpitaux de
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