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Abstract: Given the common trade-off between the spatial and temporal resolutions of current satellite16

sensors, spatial-temporal data fusion methods could be applied to produce fused remotely sensed data17

with synthetic fine spatial resolution (FR) and high repeat frequency. Such fused data are required to18

provide a comprehensive understanding of Earth’s surface land cover dynamics. In this research, a novel19

Spatial-Temporal Fraction Map Fusion (STFMF) model is proposed to produce a series of fine-spatial-20

temporal-resolution land cover fraction maps by fusing coarse-spatial-fine-temporal and fine-spatial-21

coarse-temporal fraction maps, which may be generated from multi-scale remotely sensed images. The22

STFMF has two main stages. First, FR fraction change maps are generated using kernel ridge regression.23

Second, a FR fraction map for the date of prediction is predicted using a temporal-weighted fusion model.24

In comparison to two established spatial-temporal fusion methods of spatial-temporal super-resolution25

land cover mapping model and spatial-temporal image reflectance fusion model, STFMF holds the26

following characteristics and advantages: (1) it takes account of the mixed pixel problem in FR remotely27

sensed images; (2) it directly uses the fraction maps as input, which could be generated from a range of28

satellite images or other suitable data sources; (3) it focuses on the estimation of fraction changes29

happened through time and can predict the land cover change more accurately. Experiments using30

synthetic multi-scale fraction maps simulated from Google Earth images, as well as synthetic and real31

MODIS-Landsat images were undertaken to test the performance of the proposed STFMF approach32

against two benchmark spatial-temporal reflectance fusion methods: the Enhanced Spatial and Temporal33

Adaptive Reflectance Fusion Model (ESTARFM) and the Flexible Spatiotemporal Data Fusion (FSDAF)34

model. In both visual and quantitative evaluations, STFMF was able to generate more accurate FR35

fraction maps and provide more spatial detail than ESTARFM and FSDAF, particularly in areas with36

substantial land cover changes. STFMF has great potential to produce accurate time-series fraction maps37
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with fine-spatial-temporal-resolution that can support studies of land cover dynamics at the sub-pixel38

scale.39

40

Keywords: Land cover, fraction maps, spatial-temporal fusion, spectral unmixing, super-resolution41

mapping.42

43



4

1. Introduction44

With the capabilities of broad spatial coverage and temporally repeated imaging from Earth45

observation sensors, remote sensing has considerable potential to provide time-series satellite images for46

studying land surface dynamics (Townshend et al. 1991; Yang and Lo 2002). In heterogeneous areas,47

land surface dynamics, such as urban expansion, flooding and deforestation, often occur at a fine spatial48

scale and within a short period. It is, therefore, necessary to collect fine-spatial-temporal-resolution49

remote sensing images to monitor fine scale land cover changes in a timely manner. Due to the common50

trade-off between the spatial resolution and the temporal repeat frequency of satellite sensing systems,51

there is so far no single satellite sensor that can provide remote sensing images with both fine spatial and52

temporal resolutions (Gao et al. 2006; Li et al. 2017; Zhu et al. 2016). Generally, fine spatial resolution53

(FR) satellite images are acquired infrequently and have a relatively coarse temporal resolution, making54

it hard to monitor rapid land cover changes. On the contrary, coarse spatial resolution (CR) satellite55

sensors acquire data with a high repeat frequency. However, their spatial resolutions are often too coarse56

to allow the detection of land cover changes occurring in small areas. Therefore, to deal with this dilemma,57

methods for spatial-temporal data fusion are highly desirable for application to both kinds of remotely58

sensed imagery to provide remote sensing data with fine spatial and temporal resolutions for studying59

land surface dynamics (Gao et al. 2006; Gong et al. 2013; Hansen and Loveland 2012; Li et al. 2015;60

Ling et al. 2016a; Ling et al. 2011; Zhu and Woodcock 2014).61

Recently, the spatial-temporal super-resolution mapping (STSRM) method proposed by Ling et al.62

(2011) has become a promising spatial-temporal fusion method to extract fine spatial and temporal63

resolution land cover change information (Li et al. 2016; Ling et al. 2016a; Wang et al. 2015; Wu et al.64
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2017; Xu et al. 2017). STSRM aims to predict a FR land cover map from CR fraction maps, assuming65

that another FR land cover map, acquired at previous time for the same area, is available. STSRM can66

be considered as an extension of the traditional super-resolution mapping approach applied to a mono-67

temporal image, by incorporating information about the land cover changes through time. The key of68

STSRM is the multi-scale land cover change principle that is using coarse-to-fine resolution change69

detection between current CR fraction maps and previous FR land cover map to predict the potential70

locations of current land cover labels of FR land cover map (Ling et al. 2011). The multi-scale land cover71

change principle in STSRM was further analyzed and assessed by using existing land cover maps, and it72

has been demonstrated consistently that the principle could be suitable for most current satellite sensors73

(Ling et al. 2016a). Some popular super-resolution mapping algorithms applied on mono-temporal74

remote sensing images were also extended to the spatial-temporal domain, leading to various STSRM75

models (He et al. 2016; Li et al. 2015; Li et al. 2017; Wang et al. 2016; Xu and Huang 2014; Zhang et al.76

2017). Compared with the traditional super-resolution mapping methods applied to mono-temporal77

remote sensing imagery, STSRM can provide details about the spatial distribution of different land cover78

classes and their changes over time. It is a promising means to produce fine spatial and temporal79

resolution land cover maps from multi-scale remote sensing imagery.80

It is noteworthy that in all existing STSRM models the FR pixels are treated as pure units. That is,81

the fine pixels within the input and the resultant FR land cover maps are all considered as pure pixels,82

and each of them is labeled as representing an area comprised of one and only one land cover class. This83

assumption is reasonable in some cases because the proportion of mixed pixels in an image is typically84

positively related to pixel size. However, the limitation of this assumption is also obvious, as mixing may85

still exist in FR image pixels, especially if the land cover mosaic is highly fragmented and heterogeneous.86
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In practice, the satellite sensor’s instantaneous field-of-view often includes more than one land cover87

feature irrespective of the scale of measurement. Indeed, the mixed pixel problem is widely observed in88

remote sensing images across different spatial scales (Keshava and Mustard 2002). It is well known that89

CR remote sensing data, such as those obtained from the Advanced Very High Resolution Radiometer90

(AVHRR), MEdium Resolution Imaging Spectrometer (MERIS) and MODerate resolution Imaging91

Spectroradiometer (MODIS) images, contain a large number of mixed pixels. However, the mixed pixel92

problem is also evident in medium and high spatial resolution satellite sensor images, such as Landsat93

(Lu and Weng 2004; Powell et al. 2007), ASTER (Weng et al. 2009), IKONOS (Lu and Weng 2009) and94

Quickbird (Lu et al. 2010), and spectral unmixing techniques may still be needed to obtain fraction maps95

to enhance the representation of land cover. In this situation, the assumption that all FR pixels are pure96

in STSRM models may be unreasonable in some real applications.97

Another limitation of using the pure pixel assumption in STSRM model is that land cover change98

information used by it may be partial and possibly erroneous. With the assumption, only one land cover99

class can be associated with a pixel and hence the only change that can be characterized is that it100

represents a complete alteration in land cover class: a land cover conversion (e.g. a change from forest101

to grassland). However, many important land cover changes happed at the sub-pixel scale (finer than the102

spatial resolution of pixel) may not involve a change in class label. For example, a pixel may represent a103

forested region which may undergo a substantial change such as a major reduction in tree cover and yet104

still remain classed as a forest. Changes of the latter type, therefore, do not involve a change in label but105

a change in the character of the land cover: a land cover modification. Land cover modifications cannot106

be studied using methods that assume pure pixels but they, and the land cover conversions, can be studied107

if mixed pixels are allowed such as via the application of soft classification techniques (Foody 2001).108
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Given the two limitations arising from the pure pixel assumption, error and uncertainty could be109

introduced in the resultant fine spatial and temporal resolution land cover maps produced by STSRM.110

Since land cover class fraction values produced by unmixing or soft classification analyses can be used111

to obtain more accurate land cover information at the sub-pixel scale than discrete land cover labels112

produced by hard classification (Foody 2002; Foody and Doan 2007), they may have a potential role to113

play in increasing the accuracy of the STSRM approach.114

A different approach to the STSRM for fusing fine-spatial-coarse-temporal and coarse-spatial-fine-115

temporal remotely sensed images is the spatial-temporal reflectance fusion model. Unlike the STSRM116

approach that aims to predict land cover class labels at a fine resolution, the spatial-temporal reflectance117

fusion approach is used to blend reflectance values of remotely sensed images. Gao et al. (2006) first118

proposed the spatial and temporal adaptive reflectance fusion model (STARFM) to blend Landsat and119

MODIS reflectance images and produce daily 30 m synthetic Landsat-like reflectance images. Hilker et120

al. (2009) developed a spatial and temporal adaptive fusion model (STAARCH) to explore spatio-121

temporal pattern details of forest disturbance based on Landsat and MODIS images. Thereafter,122

STARFM was developed as an enhanced spatial-temporal adaptive reflectance fusion model (ESTARFM)123

(Zhu et al. 2010) and a flexible spatio-temporal data fusion (FSDAF) model (Zhu et al. 2016). Moreover,124

other image spatial temporal fusion models, such as the unmixing based fusion model (Gevaert and125

Garcia-Haro 2015; Zhukov et al. 1999; Zurita-Milla et al. 2008), the sparse representation based fusion126

model (Huang and Song 2012; Song and Huang 2013) and spatial and temporal reflectance fusion127

considering the sensor difference (Shen et al. 2013), have also been proposed. Once the fine spatial and128

temporal resolution remote sensing images have been produced by the spatial-temporal reflectance image129

fusion method, a spectral unmixing approach can then be used to produce the corresponding fine spatial130
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and temporal fraction maps. The effectiveness of this approach, however, depends greatly on the spatial-131

temporal reflectance fusion method, which often suffers from two major limitations when the final132

objective is to produce fraction maps. First, most spatial-temporal reflectance fusion methods do not133

account for land cover changes that may have occurred within the period represented by the time-series134

of remotely sensed images (Gevaert and Garcia-Haro 2015; Zhu et al. 2016). Second, spatial-temporal135

reflectance fusion methods can generally deal with image pairs with similar spectral bands. Given that136

many satellite sensors produce images with unique spectral bands, the range of application of these137

spatial-temporal reflectance fusion methods is thus limited. In comparison, STSRM-based approaches138

are free from the assumption of sensor-based coherence and can accommodate information on class label139

change, but not the land cover fraction changes.140

In this paper, a novel Spatial-Temporal Fraction Map Fusion (STFMF) model is proposed to141

generate fraction maps that have a fine resolution in both the spatial and temporal domains by fusing142

coarse-spatial-fine-temporal and fine-spatial-coarse-temporal remotely sensed images. Critically, the143

STFMF approach addresses limitations of other methods and hence forms an important contribution to144

the realization of the potential of remote sensing as a source of information on land cover fraction change.145

STFMF is based on the fraction maps generated from multi-scale remotely sensed images and uses kernel146

ridge regression (KRR) to predict FR fraction change maps through time, which are finally used to147

generate the time-series FR fraction maps with a temporal-weighted model. Compared with the STSRM148

method, the input and output FR data of STFMF are fraction maps, not the hard land cover class maps149

used in STSRM model, such that the mixed pixel problem can be dealt with at the fine spatial scale to150

some extent. Fraction maps with fine resolution have greater superiority than the hard land cover class151

maps in real applications, such as dynamic monitoring of impervious surfaces (Michishita et al. 2012;152
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Wu and Murray 2003), tree canopy estimation (Goodwin et al. 2005; Pu et al. 2003) and sub-pixel snow153

cover mapping (Rosenthal and Dozier 1996; Vikhamar and Solberg 2003), as they have more information154

at the sub-pixel scale. Compared with the spatial-temporal reflectance fusion approach, such as STARFM155

and ESTARFM, the proposed STFMF approach is applied directly to land cover fraction maps and could156

focus more on the fraction land cover changes through time. Meanwhile, there is no need for STFMF to157

ensure that the collected coarse and fine spatial resolution remote sensing images have similar bands and,158

thus, a greater number of available pairs of coarse and fine spatial resolution images can be used.159

The objectives of this research are three-fold. First, we proposed a new spatial-temporal fraction160

maps fusion method to produce fraction maps that have a fine resolution in both the spatial and temporal161

domains, and support more accurate studies of land cover dynamics at the sub-pixel scale. Second, we162

analyzed the performance and uncertainty of traditional spatial-temporal reflectance fusion approaches163

for predicting fraction maps. Although the spatial and temporal reflectance fusion approach has been164

applied widely to produce land cover maps at the per-pixel scale, few studies applied it to produce165

fraction maps at the sub-pixel scale. This study aims simultaneously to provide a benchmark comparison166

of their performances in predicting fraction maps. Third, we quantify the proposed approach in revealing167

spatial-temporal changes at the sub-pixel scale, based on the resultant time-series FR fraction maps168

within a short period of time (e.g. one month).169
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2. Methods170

The central feature of concern is the prediction of a FR fraction map for a date that lies between171

dates at which other appropriate remotely sensed are available. Thus, information from imagery that pre-172

and post-date the date of prediction are critical to spatial-temporal fusion.173

2.1 Problem formulation174

Let
i

c
TF ,

p

c
TF and

j

c
TF be the time-series CR fraction maps at previous date iT , predicted date175

pT and posterior date
jT with the same K land cover classes and 1 2M M coarse pixels. In176

addition, let
i

f
TF and

j

f
TF be the corresponding FR fraction maps at times iT and

jT with177

1 2( ) ( )M z M z   fine pixels, where z is the spatial resolution ratio (zoom factor) between the178

coarse and fine spatial resolution fraction maps. Note that the superscripts f and c indicate the fine and179

coarse spatial resolution fraction maps respectively. The objective of the proposed STFMF approach is180

to predict the FR fraction maps
p

f
TF from the available CR fraction maps

p

c
TF , with the aid of pre- and181

post-date coarse and fine spatial resolution fraction maps, that is,
i

c
TF ,

j

c
TF ,

i

f
TF and

j

f
TF . Note that182

the data and methods used to generate the time-series coarse and fine spatial resolution fraction maps183

i

c
TF ,

p

c
TF ,

j

c
TF ,

i

f
TF and

j

f
TF are not specific. They can, for example, be produced from existing184

datasets or produced from corresponding remote sensing images (e.g., CR MODIS and FR Landsat185

images) through the use of a soft classification (Foody et al. 1997), a spectral unmixing model such as186

linear spectral mixture model (LSM) (Adams et al. 1986) or a multiple endmember spectral mixture187

analysis model (Powell et al. 2007).188

One possible way to obtain the FR fraction maps
p

f
TF is to downscale the CR fraction maps

p

c
TF189

to the target fine resolution through the use of an appropriate spatial interpolation approach. With this190
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approach, however, the spatial and temporal prior information within pre- (e.g. iT ) and post-date of191

prediction (e.g.
jT ) coarse and fine spatial resolution fraction maps cannot be utilized. Moreover, the192

outcome of spatial interpolation is to some extent a smoothed representation, which would lead to edge193

blur and ringing effects around the boundaries of different land cover features. In general, during the194

period between iT and
jT , fraction values of different land cover classes at the FR may have changed195

from those in
i

f
TF to those in

k

f
TF , and may also have changed to those in

j

f
TF . As the fraction values196

in
i

f
TF and

j

f
TF are inputs, if we can predict the changes of FR fraction values of different land cover197

classes between
p

f
TF and

i

f
TF or

p

f
TF and

i

f
TF , the FR fraction maps

p

f
TF can thus be predicted.198

Let ( )
i

f
TF k be the FR fraction map of thk land cover class in

i

f
TF and ( )

i

c
TF k be the CR199

fraction map of thk land cover class in
i

c
TF . Assuming that the CR fraction map ( )

i

c
TF k has been200

geo-referenced to the coordinate system of the FR fraction map ( )
i

f
TF k , and , )

i

c
T zF k（ is the FR201

fraction maps which has been downscaled to the spatial resolution of ( )
i

f
TF k with a downscaling202

method. The relationship between , )
i

c
T zF k（ and ( )

i

f
TF k could be formulated as203

( )= , ) ( ) 1, 2, ,
i i i

f c
T T z TF k F k k k K    L（ ， , (1)204

in which
z indicates a downscaling operation used to increase the spatial resolution (i.e. make pixel205

size smaller) of ( )
i

c
TF k to that of ( )

i

f
TF k , and ( )

iT k is denoted as the fraction difference between206

( )
i

f
TF k and ( )

i

c
TF k . It is noteworthy that fraction map is not a physical variable directly observed by207

satellite sensors and generally produced from satellite images at different spatial resolutions. Therefore,208

the fraction difference ( )
iT k between ( )

i

f
TF k and ( )

i

c
TF k is associated with differences between209

the data sources, the means of endmember selection and the spectral unmixing methods used in the210

generation of the fine and coarse spatial resolution fraction maps. Likewise, the relationship shown in211

equation (1) applies equally at
pT , and is expressed as212
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( )= , ) ( ) 1, 2, ,
p p p

f c
T T z TF k F k k k K    L（ ， . (2)213

In this section, it is assumed that the data source, principles of endmember selection and spectral214

unmixing method for the generation of fine and coarse spatial resolution fraction maps in equations (1)215

and (2) at time iT are the same at
pT . ( )

pT k at time
pT is thus considered unchanged by216

comparing with ( )
iT k at time iT . Therefore, combining equations (1) and (2), the estimation of FR217

fraction maps ( )
p

f
TF k can be expressed as218

( )= ( ) ( , ) , )) 1, 2, ,
p i p i

f f c c
T T T z T zF k F k F k F k k K      L（ （ ， . (3)219

Denote ( ) , ) , )
i p p i

f c c
T T T z T zk F k F k    （ （ as the thk land cover fraction change map with spatial220

resolution equal to that of ( )
i

f
TF k and ( )

p

f
TF k , and ( ) ) )

i p p i

c c c
T T T Tk F k F k  （ （ as the CR fraction221

change map of the thk land cover class. Assume that ( )
i

f
TF k at time iT is known, the estimation of222

FR fraction map ( )
p

f
TF k becomes a key process of predicting the FR fraction change map ( )

i p

f
T T k223

from the CR fraction change map ( )
i p

c
T T k .224

Likewise, for equation (3), fine and coarse spatial resolution fraction maps ( )
i

f
TF k and ( )

i

c
TF k at225

pre-time iT could be replaced as fraction maps ( )
j

f
TF k and ( )

j

c
TF k at post-time

jT . The estimation226

of ( )
p

f
TF k is, therefore, to predict the FR fraction change map ( )

i p

f
T T k or ( )

p j

f
T T k from the observed227

CR fraction change map ( )
i p

c
T T k or ( )

p j

c
T T k according to equation (3). Note that the corresponding228

CR fraction change maps ( )
i p

c
T T k , ( )

p j

c
T T k and ( )

i j

c
T T k can be calculated from the known CR229

fraction maps ( )
i

c
TF k , ( )

p

c
TF k and ( )

j

c
TF k . ( )

i p

c
T T k , ( )

p j

c
T T k and ( )

i j

c
T T k are, therefore,230

expressed as231

( )= ( ) ( )
i p p i

c c c
T T T Tk F k F k  , (4)232

( )= ( ) ( )
p j j p

c c c
T T T Tk F k F k  , (5)233

( )= ( ) ( )
i j j i

c c c
T T T Tk F k F k  . (6)234
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Moreover, the FR fraction change maps ( )
i j

f
T T f can be calculated from the known FR fraction235

maps ( )
i

f
TF k and ( )

j

f
TF k , expressed as236

( )= ( ) ( )
i j j i

f f f
T T T Tk F k F k  . (7)237

Therefore, according to equations (6) and (7), a coarse and fine spatial resolution fraction change238

maps pair ( ), ( )
i j i j

c f
T T T Tk k  

 
can be obtained, where 1 ,k K L . Assuming that the relationships239

between the coarse and fine spatial resolution fraction maps pairs ( ), ( )
i p i p

c f
T T T Tk k  

 
and240

( ), ( )
p j p j

c f
T T T Tk k  

 
are similar to those of ( ), ( )

i j i j

c f
T T T Tk k  

 
, the FR fraction change maps ( )

i p

f
TT k241

and ( )
p j

f
T T k can then be predicted from ( )

i p

c
T T k and ( )

i j

c
T T k , respectively.242

243

Figure 1. Flowchart of the proposed the proposed STFMF approach.244

Fig. 1 shows the whole flowchart of the proposed STFMF approach. Fig 1 highlights especially that245

the model inputs are the coarse and fine spatial resolution fraction map pairs at dates that pre- and post-246

the date of prediction together with the CR fraction maps for the date of prediction. STFMF is composed247
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of two main stages: generating FR fraction change maps and estimation of the final FR fraction maps.248

2.2 Generating FR fraction change maps249

The estimation of fine resolution fraction change maps ( )
i p

f
TT k and ( )

p j

f
T T k from ( )

i p

c
T T k and250

( )
p j

c
T T k can be considered as an image reconstruction process, and can generally be achieved via251

spatial interpolation or image super-resolution approaches (Kim and Kwon 2010; Ni and Nguyen 2007).252

In this research, a super-resolution reconstructing approach based on kernel ridge regression (KRR) was253

applied (Kim and Kwon 2010). The first step of this approach is to learn the relationship between the254

coarse and fine spatial resolution fraction change maps pair ( ), ( )
i j i j

c f
T T T Tk k  

 
. Then, the learned255

relationship is applied to estimate the FR fraction change maps ( )
i p

f
TT k and ( )

p j

f
T T k from ( )

i p

c
T T k256

and ( )
p j

c
T T k respectively. In the super-resolution reconstruction process, the FR fraction change maps257

are estimated class by class, and it has three main steps: training dataset generation, candidate neighbors258

search and fine image patch reconstruction.259

2.2.1 Training dataset generation260

The training dataset is used to obtain the relationship between the coarse and fine spatial resolution261

images. Instead of directly using the whole coarse and fine spatial resolution fraction change maps pair262

( ), ( )
i j i j

c f
T T T Tk k  

 
, image patch pairs generated from them are used as the training dataset. As shown in263

Fig. 2, an example is used here to illustrate the generation process of image patch pairs in training dataset,264

where the spatial ratio z is set to be 4 and the window size P is set to be 3. The image patch pairs are265

composed of a large number of small sized coarse and fine spatial resolution image patch pairs extracted266

from corresponding fraction change maps of ( )
i j

c
TT k and ( )

i j

f
TT k . Let 1 2

, , 1{ }
ij ij

M Mm
T k T k mX x 

 be the267
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CR image patch sets generated from the thk CR fraction change map of ( )
i j

c
TT k , and ,ij

m
T kx be the268

thm CR image patch that is expressed as269

, , , ,[ (1), (2), , ( )]
ij ij ij ij

m m m m
T k T k T k T kx f f f P P L , (8)270

where P is the square window size of the CR image patch and
, ( )

ij

m
T kf V is the thk fraction change271

value of coarse pixel V in the thm CR image patch. Let 1 2

, , 1{ }
ij ij

M Mm
T k T k mY y 

 be the FR image patch272

sets generated from the thk fraction change map of
i j

f
TT , and ,ij

m
T ky be the thm FR patch that is273

, , , ,[ (1), (2), , ( )]
ij ij ij ij

m m m m
T k T k T k T ky I I I z z L , (9)274

where , ( )
ij

m
T kI v is the thk fraction change value of the fine pixel v in the thm FR image patch.275

276

Figure 2. An example of a coarse and fine spatial resolution image patch pair in the training dataset.277

As shown in Fig. 2, ,ij

m
T ky contains z z fine pixels within the thm central coarse pixel, and278

,ij

m
T kx contains P P coarse pixels which is composed of the thm central pixel and neighboring279

1P P  coarse pixels. Training dataset is denoted as
, ,,

ij ijT k T kX Y 
 

which is composed of the image280

pairs of CR image patches ,ijT kX and FR image patches ,ijT kY for land cover class k , where281

,ij i j

c
T k TTX  and ,ij i j

f
T k TTY  . Therefore, there is a total of 1 2M M image patch pairs in the training282

dataset , ,,
ij ijT k T kX Y 

 
. More information about the training dataset generating process could be found in283

Zhang et al. (2014) and Ling et al. (2016b).284
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2.2.2 Searching for candidate neighboring patch pairs285

To reconstruct the FR fraction change maps ( )
i p

f
TT k and ( )

p j

f
T T k by using the training dataset286

, ,,
ij ijT k T kX Y 

 
, similar CR and FR patch pairs need to be searched from the training dataset for each CR287

patch in the CR fraction change maps ( )
i p

c
TT k and ( )

p j

c
T T k . Let 1 2

, , 1{ }M Mm
T k T k mX x 

 be the CR288

patches dataset generated from the input thk CR fraction change maps of ( )
i p

c
TT k or ( )

p j

c
T T k . For289

a certain CR patch ,
m
T kx , similar CR patches in the training dataset , ,,

ij ijT k T kX Y 
 

can be searched290

according to the following criterion291

2
, , , ,

1

1
( , ) ( ( ) ( ))

ij ij

P P
m m m m
T k T k T k T k

V

f x x f V f V
P P






   

 , (10)292

where , ,( , )
ij

m m
T k T kf x x is the difference of fraction change values between the CR patch ,

m
T kx in293

( )
i p

c
TT k or ( )

p j

c
T T k and ,ij

m
T kx in the training dataset , ,,

ij ijT k T kX Y 
 

. , ( )m
T kf V is the fraction change294

value of pixel V in CR patch ,
m
T kx , and , ( )

ij

m
T kf V is the fraction change value of the corresponding295

pixel V in CR patch ,ij

m
T kx . The more similar the patches ,

m
T kx and ,ij

m
T kx , the less the value of f .296

The threshold  is a pre-defined parameter that is the tolerable fraction difference between two patches.297

If the f between patches ,ij

m
T kx and ,

m
T kx is less than the threshold value  , ,ij

m
T kx in training298

dataset is thus considered as the neighboring patch of ,
m
T kx . It is assumed that if the CR patches ,ij

m
T kx299

and ,
m
T kx have a similar spatial pattern, their corresponding FR patches ,ij

m
T ky and predicted ,

m
T ky300

should also be similar to each other (Freeman et al. 2002). , ,,
ij ij

m m
T k T kx y 

 
is thus regarded as the candidate301

neighboring patch pair for CR patch ,
m
T kx in ( )

i p

c
TT k or ( )

p j

c
T T k . It is noteworthy that only one302

candidate neighboring patch pair is always insufficient for the predicting of FR patch ,
m
T ky . We assume303

that N candidate neighboring image patch pairs, which are represented as  , ,
1

( ), ( )
ij ij

N
m m
T k T k

l
x l y l


, have been304

searched from the training dataset , ,,
ij ijT k T kX Y 

 
.305
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However, different CR patch should have different threshold value  , and it is almost infeasible306

to define a fixed  to search N candidate neighboring image patch pairs for various CR patches. An307

alternative solution for this is to directly find the N nearest neighboring patches from the training dataset308

for each CR patch. It is assumed that if there were enough elements in the training dataset, the searched309

nearest neighboring patches would be regarded as the N candidate neighboring image patch pairs. K-D310

tree search algorithm (Bentley 1975; Freeman et al. 2002) is used here to find the N nearest neighboring311

patches from the training dataset, as it holds the advantages of simple and efficient. K-D tree search312

algorithm first builds a K-D tree struct (with 1 2M M elements) from the training dataset , ,,
ij ijT k T kX Y 

 
313

. f , which are values between all of the 1 2M M CR patch ,ij

m
T kx and each input CR patch ,

m
T kx ,314

are then calculated. Finally, all of the f values are arranged in an ascending order, and the first N315

elements are, therefore, regarded as the candidate neighboring image patch pairs. The searched N316

candidate neighboring image patch pairs  , ,
1

( ), ( )
ij ij

N
m m
T k T k

l
x l y l


are used to reconstruct the latent FR317

fraction change maps ( )
i p

f
TT k and ( )

p j

f
T T k .318

2.2.3 FR fraction change map estimation with KRR319

Let ,
m
T ky be the HR patch of the input LR patch ,

m
T kx extracted from the CR fraction change map320

( )
i p

c
TT k or ( )

p j

c
T T k , ,ij

m
T ky and ,ij

m
T kx be the HR and LR patch pair extracted from the FR and CR321

fraction change maps ( )
i j

c
TT k and ( )

i j

f
TT k . If the root mean square error between ,

m
T kx and ,ij

m
T kx is322

lower than a value (e.g. 0.10), it is considered that ,
m
T ky is equal to ,ij

m
T ky . Otherwise, the estimation of323

,
m
T ky is based on the similar neighbors searched from candidate image patch pairs  , ,

1
( ), ( )

ij ij

N
m m
T k T k

l
x l y l


.324

Since ,
m
T kx and , ( )

ij

m
T kx l are similar, we also consider that the spatial distribution information of the325

predicted ,
m
T ky within ,

m
T kx should be similar to that of , ( )

ij

m
T ky l within , ( )

ij

m
T kx l . Given the searched326
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similar image patch pairs  , ,
1

( ), ( )
ij ij

N
m m
T k T k

l
x l y l


, the machine learning approach of KRR (Kim and Kwon327

2010) is applied here to estimate the FR fraction change image patch ,
m
T ky .328

Assume a function model ( )y f x w  , where w is the estimation noise, x is the input329

variable and y is the corresponding regression value, KRR aims to estimate the regression function330

f . Given a set of training data  , , , ,( (1), (1)), , ( ( ), ( ))
ij ij ij ij

m m m m
T k T k T k T kx y x N y NL L , we can estimate f̂ by331

solving an optimization problem:332

22
, ,

1

1ˆ argmin ( ( ))
2 2ij ij

N
m m
T k T k H

f H m

f y f x f


 

   , (11)333

where H is a kernel Hilbert space with kernel K , and  is a regularization constant parameter. The334

first term of equation (11) is the data fidelity term, while the second is the regularization term. Then the335

optimal solution for f̂ from equation (11) has the following form:336

,
1

ˆ( ) ( , )
ij

N
m

m T k
m

f K x


    , (12)337

2

, ,
, 1

( , )
ij ij

N
n m

n m T k T kH
n m

f K x x 


  . (13)338

Let
1

, ,[ , , ]
ij ij

N
T k T ky yy L L and , ,( , )

ij ij

n m
nm T k T kK K x x K , and then the original optimization339

problem shown in equation (11) is formulated as:340

2

2

1
ˆ arg min

2 2
T

     y K K , (14)341

by calculating the gradient of equation (14), we can obtain the following equation:342

2( ) 0C         Ky K y K . (15)343

One solution for equation (15) is
1ˆ ( + )   K I y , and this is the only solution due to the form of344

ˆ( )f  . Therefore, the estimate of ˆ( )f  is:345

,
1

ˆ ˆ( )= ( , )
ij

N
n

n T k
n

f K x


  , (16)346

In this research, the kernel function K is based on a Gaussian kernel and is presented as:347
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2

( , ) exp
s t

K s t


 
  
 
 

. (17)348

Therefore, for any input LR image patch ,
m
T kx , the corresponding FR image patch ,

m
T ky can be349

predicted by equation (16). Once the FR image patches dataset  , 1 2, 1, ,m
T ky m M M L L has been350

produced, the FR fraction change maps ( )
i j

f
TT k and ( )

p j

f
T T k can then be produced by merging the351

FR image patches with a spatial averaging filter. More information about the merging process is352

presented in Zhang et al. (2015).353

2.3 Final FR fraction map estimation354

With the estimated FR fraction change maps
i p

f
TTΔ and

p j

f
T TΔ , the final FR fraction maps

p

f
TF can,355

thus, be predicted using equation (3). To take advantage of the predicted results being based on the FR356

fraction maps
i

f
TF and

j

f
TF that respectively pre- and post-date it, a temporal weighted model is used357

here to predict
p

f
TF . In the absence of knowledge on the land cover changes, the model is based on the358

assumption that the FR fraction maps at time
pT are a linearly weighted combination of the FR fraction359

maps and corresponding FR fraction change maps at both pre- and post-time iT and
jT . Consequently,360

p

f
TF is predicted as:361

( ) ( )p j i p

p i i p j p j

i p p j i p p j

T T T Tf f f f f
T T T T T T T

T T T T T T T T

     
 

c c
F F Δ F Δ

c c c c
, (18)362

where
1 2 [

1[ , , ]
i p i p

n
TT TT TTc cc L L is the change ratio vector between fraction maps

i

c
TF and

p

c
TF , and363

1[ , , ]
p j p j p j

n
T T T T T Tc cc L L is the change ratio vector between fraction maps

p

c
TF and

j

c
TF .

i p

k
T Tc and364

p j

k
T Tc are the change ratio between fraction maps of the thk land cover class ( 1, ,k K L L ), and they365

are presented as366

1 2
2

, ,
11 2

1
( ( ) ( ))

i p i p

M M
k
T T T k T k

V

c f V f V
M M





 


 , (19)367
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1 2
2

, ,
11 2

1
( ( ) ( ))

p j p j

M M
k
T T T k T k

V

c f V f V
M M





 


 , (20)368

where , ( )
iT kf V , , ( )

pT kf V and , ( )
jT kf V are the fraction values for coarse pixel V in the thk369

fraction maps
i

c
TF ,

p

c
TF and

j

c
TF . Since

i pTTc and
p jT Tc can be calculated from

i

c
TF ,

p

c
TF and

j

c
TF ,370

and
i

f
TF and

j

f
TF are already known, the final FR fraction map

p

f
TF can be predicted once the FR371

fraction change maps
i p

f
TTΔ and

p j

f
T TΔ have been estimated.372

Theoretically, fraction values of the different land cover classes in the predicted FR fraction maps373

p

f
TF should be in the range of 0 and 1, and the sum of fraction values of different land cover class for374

each fine pixel in
p

f
TF should be exactly 1. To make the resultant FR fraction maps

p

f
TF satisfy both375

restrictions, a normalization operation is further applied. Let , ( )
pT kI v be the fraction value of fine pixel376

v in the thk fraction map of original predicted
p

f
TF and

*
, ( )

pT kI v be the corrected fraction values377

in the normalized
p

f
TF , and

*
, ( )

pT kI v be expressed as378

,*
,

,
1

( )
( )

( )

p

p

p

T k

T k K

T k
k

I v
I v

I v





. (21)379

2.4 Accuracy Assessment380

Four indices are used for the quantitative evaluation of the resultant FR fraction maps obtained from381

the various approaches: the correlation coefficient (CC), root mean square error (RMSE), absolute382

average difference (AAD), and universal image quality index (UIQI) (Wang and Bovik 2002). The CC383

index indicates the degree of correlation (or similarity) between the predicted and reference fraction maps,384

and its value lies in the range of 0 and 1, where a larger value means a better match. By contrast, RMSE385

reflects the difference between the predicted and reference fraction maps with small RMSE values386

indicating a closer match, the ideal value of RMSE is 0. AAD is used to assess the average bias of the387



21

individual predicted fraction maps, with small values indicating high quality. UIQI accounts for an388

estimation of CC and differences in the mean luminance and contrast, and it was designed to overcome389

some limitations of RMSE (Vivone et al. 2015). UIQI varies in the range of -1 to 1, and larger values390

denote better fidelity to the reference fraction maps.391

392
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3. Experiments and results393

To assess the performance of the proposed STFMF approach, two experiments based on the394

synthetic fraction maps simulated from Google Earth images (GEI), as well as synthetic and real MODIS-395

Landsat images for study areas with different land cover mosaics were undertaken. In the first experiment,396

the input fraction maps were simulated by downscaling the FR GEI land cover maps. In the second397

experiment, the input fraction maps were generated from the MODIS and Landsat images using the linear398

spectral mixture (LSM) model (Keshava and Mustard 2002). To implement the LSM model in the399

MODIS-Landsat experiment, spectral endmembers were obtained using the Pixel Purity Index algorithm400

(Chang and Plaza 2006) and manual selection, and the fully constrained least squares spectral unmixing401

analysis (Heylen et al. 2011) was applied to generate fraction maps from the MODIS and Landsat images.402

Two popular spatial-temporal reflectance fusion algorithms, that is, ESTARFM (Zhu et al. 2010)403

and FSDAF (Zhu et al. 2016), are used as the comparative methods against which the performance of404

STFMF was evaluated. ESTARFM needs two pairs of CR and FR remotely sensed reflectance images,405

and both coarse and fine spatial resolution remotely sensed reflectance images at iT and
jT were406

used as the input. FSDAF needs only one reflectance image pair. To have a comprehensive comparison,407

FSDAF based on the reflectance image pair at iT and FSDAF based on the image pair at
jT were408

applied as the comparative methods.409

3.1 The GEI experiment410

The study area of this experiment is Wuhan city, China. With the FR (5 m) GEIs [see Figs. 3(a)-(c)]411

acquired on April 24, 2012, December 20, 2014 and February 20, 2016, the corresponding FR land cover412

maps, as shown in Figs. 3 (d)-(f), were generated by manually digitizing. Each of the land cover maps413
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includes four land cover classes of water, vegetation, bareland and impervious surface. Then, the 30 m414

Landsat-like fraction maps and the 480 m MODIS-like fraction maps were simulated from the FR land415

cover maps by spatial degrading. The original GEI contains 1920 × 1920 pixels, and thus the Landsat-416

like fraction map contains 320 × 320 pixels and the MODIS-like fraction map contains 20 × 20 pixels.417

The MODIS-like fraction maps at 2014 were used as the input CR images at the predicted time (e.g.
pT ).418

ESTARFM, FSDAF and STFMF were then applied to produce the Landsat-like FR fraction maps at 2014.419

420

Figure 3. Time-series 5 m Google Earth images and corresponding land cover maps in the GEI experiment.421

For ESTARFM and FSDAF, they were designed originally to predict FR reflectance images. As422

there are no satellite reflectance images in the GEI experiment, the simulated fraction maps were then423

used as the input of ESTARFM and FSDAF to directly predict the FR fraction maps at 2014. The Landsat-424

like and MODIS-like fraction maps at 2012 and 2016 were used as the input FR and CR data that pre-425

(e.g. iT ) and post- (e.g.
jT ) the date of prediction in ESTARFM and STFMF. For FSDAF, as only one426
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image pair pre- (2012) or post- (2016) the date of prediction is needed. The FSDAF based on the pair of427

fraction maps that include the data for 2012 is regarded as FSDAF2012, while that based on the pair of428

fraction maps that include the data for 2016 is regarded as FSDAF2016. The advantages of using simulated429

fraction maps is that it could represent greater control on the errors arising from factors such as the430

spectral unmixing analysis, geographical mis-registration and differences in satellite sensor properties.431

Moreover, the reference data (e.g. Landsat-like fraction maps at 2014) are known at the date of prediction432

and could thus be used objectively to assess the quality of results produced by different methods.433

434

Figure 4. Time-series Landsat-like and MODIS-like fraction maps of four land covers in the GEI experiment.435
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436

Figure 5. FR fraction maps and corresponding fraction difference images produced by ESTARFM, FSDAF2012,437

FSDAF2016 and STFMF in the GEI experiment.438

With the input multi-scale fraction maps shown in Fig. 4, the FR fraction maps and corresponding439

fraction error images produced by ESTARFM, FSDAF2012, FSDAF2016 and STFMF are presented in Fig.440

5. The fraction error images were generated by comparing the resultant FR fraction maps with the441

reference FR fraction maps at 2014. Additionally, four enlarged subarea images with spatial size of 50 ×442

50 pixels were shown in Fig. 6 to provide a clearer visual comparison of the results, and the red boxes in443
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Fig. 5 indicate the locations of the four enlarged subarea images.444

445

Figure 6. FR fraction maps at the subarea of the rectangle as shown in Fig. 5 (with spatial size of 50 × 50 pixels) for446

four land coves in the GEI experiment.447

For the results of ESTARFM shown in Fig. 5, there were many pixels with mis-estimated fractional448

cover in the vegetation and bareland classes, and many pixels were over-estimated in the fraction maps449

of impervious surface. These errors arose because ESTARFM assumes that there were no land cover450

changes during the period spanned by the prediction process. Any areas that had undergone change would451

not be accurately estimated in the results. For FSDAF2012 and FSDAF2016, there are more pixels with mis-452

estimated fractional cover. As presented in Fig. 6, the results of FSDAF2012 and FSDAF2016 are almost453

the same as the subarea fraction maps at 2012 and 2016 respectively. This is because FSDAF is454

mathematically based on the linear spectral mixture theory to detect temporal land cover change (Zhu et455

al. 2016). However, the input data of this GEI experiment are already the fraction maps that assumed to456

be perfectly generated by spectral unmixing, and the results of FSDAF would be similar to the pre- or457

post-time FR fraction maps. Focusing on the result of STFMF, it is evident that there are relatively few458

pixels with large mis-estimation errors indicated by dark blue and red colours in Fig. 5 and Fig. 6. Overall,459

it was evident that of the methods investigated the STFMF produced the FR fraction maps that were460
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visually closest to the reference FR fraction maps.461

Table 1. Accuracy assessment of the FR fraction maps generated by different methods in the GEI experiment. (The462

bold means the best value)463

Ideal ESTARFM FSDAF2012 FSDAF2016 STFMF

CC

Water 1 0.9941 0.9428 0.9810 0.9908

Vegetation 1 0.9408 0.6702 0.9099 0.9603

Bareland 1 0.8710 0.2859 0.8192 0.9000

Impervious surface 1 0.9724 0.7896 0.9678 0.9774

Mean 1 0.9446 0.6721 0.9195 0.9571

RMSE

Water 0 0.0224 0.0693 0.0406 0.0284

Vegetation 0 0.1555 0.3686 0.1944 0.1289

Bareland 0 0.1554 0.3864 0.2086 0.1383

Impervious surface 0 0.0905 0.2483 0.0976 0.0827

Mean 0 0.1060 0.2681 0.1353 0.0946

AAD

Water 0 0.0019 0.0090 0.0039 0.0026

Vegetation 0 0.0637 0.1619 0.0552 0.0524

Bareland 0 0.0567 0.1697 0.0539 0.0526

Impervious surface 0 0.0218 0.0817 0.0217 0.0231

Mean 0 0.0361 0.1056 0.0337 0.0327

UIQI

Water 1 0.9941 0.9423 0.9799 0.9899

Vegetation 1 0.9388 0.6666 0.9090 0.9577

Bareland 1 0.8633 0.2830 0.7852 0.8904

Impervious surface 1 0.9720 0.7738 0.9674 0.9760

Mean 1 0.9420 0.6664 0.9104 0.9535

Table 1 exhibits the accuracy assessment of the FR fraction maps produced by four spatial-temporal464

fusion methods. FSDAF2012 was associated with the worst accuracy values, particularly for the fraction465

maps of vegetation and bareland. The FSDAF2016 results were better than those from the FSDAF2012,466

because FSDAF failed to estimate temporal land cover change, and land cover change between 2014 and467

2012 was larger than that between 2016 and 2014. ESTARFM produced fraction maps with higher468

accuracy values than those of FSDAF2012 and FSDAF2016, as it can take advantage of both pre- and post-469

prediction date CR and FR fraction maps. Consistent with the abovementioned visual comparison, the470

FR fraction maps produced by STFMF achieved almost the largest CC and UIQI values and smallest471

RMSE and AAD values and had an obvious improvement by comparing with the results of ESTARFM472
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and FSDAF. This is because STFMF can not only take the best advantages of both the CR and FR fraction473

maps at 2012 and 2014, but also effectively deal with the temporal land cover change.474

3.2 The MODIS-Landsat experiment475

In order to have a comprehensive and rigorous validation of the performance of STFMF for different476

landscapes, both synthetic and real MODIS-Landsat images covering areas with heterogeneous (urban477

area) and homogeneous (rainforest area) landscapes were used. In addition, this experiment sought to478

show that a dense time series of FR fraction maps could be produced.479

In the following MODIS-Landsat experiments, all of the Landsat Operational Land Imager (OLI,480

path 123 and row 039) and Enhanced Thematic Mapper Plus (ETM+, path 226 and row 069) images481

were collected as the land surface reflectance products from the USGS Earth Explorer482

(http://earthexplorer.usgs.gov). Additionally, the MODIS/Terra Surface Reflectance Daily L2G Global483

composite product of MOD09GA images (MODIS tile: h12v10) were obtained from the NASA’s Earth484

Observing System Data and Information System (EOSDIS, http://reverb.echo.nasa.gov/reverb). MODIS485

images based on MOD09GA product have a spatial resolution of nearly 480 m, and the spatial ratio486

between MODIS and Landsat images is 16. As MODIS and Landsat images have different geographic487

reference systems, all of the MODIS images were reprojected into the geographic reference system of488

the original Landsat OLI and ETM+ images: UTM, WGS 84.489

3.2.1 The urban area experiment490

In this experiment, synthetic MODIS-Landsat images located for the urban area of Xianning city,491

China, were used to validate the performance of STFMF for a region with a heterogeneous land cover492

mosaic. Three cloud-free Landsat-8 Operational Land Imager (OLI) multispectral images acquired on493
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December 6, 2013, October 25, 2015 and October 30, 2017 were used as the FR Landsat images at times494

iT , pT and jT , respectively. As shown in the first row of Fig. 7, each of the three time-series Landsat495

OLI images has a spatial size of 28.8 km × 28.8 km (960 × 960 pixels). For the CR images, synthetic496

MODIS images [see the second raw of Fig. 7], comprising 60 × 60 coarse pixels, were used; they were497

downscaled from the three Landsat-8 OLI images by a spatial averaging process. It is noteworthy that498

the synthetic MODIS images could represent greater control on the errors caused by satellite sensor499

difference and could thus be used objectively to assess and comprise the quality of FR fraction maps500

produced by different methods.501

502

Figure 7. Landsat and downscaled MODIS images in the synthetic MODIS-Landsat experiment on urban area.503

Time-series fine and coarse spatial resolution fraction maps of four land covers, water, vegetation,504

bareland and impervious surface, were then produced from the Landsat-8 OLI and synthetic MODIS505

images. With the generated MODIS and Landsat fraction maps at 2013 and 2017 and synthetic MODIS506

fraction maps at 2015, the FR fraction maps at 2015 were produced by the proposed STFMF approach.507

For ESTARFM and FSDAF, the inputs were the original Landsat-8 OLI reflectance images at 2013 and508
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2017, and corresponding synthetic and real MODIS reflectance images at 2015, the output was the509

predicted Landsat-8 OLI images at 2015, which were then used to generate the final FR fraction maps of510

four land cover classes at 2015. Fig. 8 shows the fraction maps produced by different methods for the511

synthetic MODIS images and also presents the fraction error maps by comparing with the reference FR512

fraction maps. Table 3 reports the accuracy assessment of the resultant FR fraction maps.513

514

Figure 8. Reference FR fraction maps, resultant FR fraction maps and fraction error maps in the synthetic MODIS-515

Landsat experiment on urban area.516

For ESTARFM, as shown in the second column of Fig. 8, the fraction maps of water and bareland517
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have many pixels with under-estimated fractional value (blue pixels in the error map), while the518

vegetation and impervious surface fraction maps have many pixels with over-estimated fractional values519

(red pixels in the error map) around the boundaries. Compared with ESTARFM, more pixels with mis-520

estimated fractional cover can be found in the results of FSDAF2013, especially for the fraction maps of521

vegetation and bareland. By contrast, for the vegetation and impervious surface fraction maps of522

FSDAF2017, the result was superior to those from ESATRFM and FSDAF2013. Although FSDAF has the523

ability to deal with land cover change to some extent, it is still sensitive to land cover change. Focusing524

on the results of the proposed STFMF approach, it was evident that there are fewer pixels with large mis-525

estimation of fractional cover in the error maps in comparison to those from the other methods. In526

addition, more spatial detail, such as of the linear water feature, was evident in the results, and the527

boundaries of different land cover features were represented most clearly. The FR fraction maps produced528

by STFMF are visually closest to the reference FR fraction maps.529

Table 2 reports the accuracy assessment, although the water, vegetation and bareland fraction maps530

of ESTARFM were more accurate than those from FSDAF2013 and FSDAF2017, it had the smallest CC531

and UIQI values and largest RMSE and AAD values for the fraction map of the impervious surface.532

Compared with FSDAF2013 and FSDAF2017, it can be found that the fraction maps of FSDAF2017 have533

smaller CC and UIQI values and larger RMSE and AAD values than those of FSDAF2013. This is because534

the land cover change of fraction maps between 2013 and 2015 is larger than that between 2015 and535

2017. Consistent with visual comparison, by taking advantages of both the fine and coarse spatial536

resolution fraction maps at 2013 and 2017, the proposed STFMF approach produced the FR fraction537

maps with the largest CC and UIQI values and smallest RMSE and AAD values.538

Table 2. Accuracy assessment of the FR fraction maps generated by different methods in the synthetic MODIS-539

Landsat experiment of an urban area. (The bold means the best value)540
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Ideal ESTARFM FSDAF2013 FSDAF2017 STFMF

CC

Water 1 0.8974 0.8684 0.8780 0.9107

Vegetation 1 0.8878 0.8374 0.8741 0.8957

Bareland 1 0.8149 0.7624 0.7975 0.8337

Impervious surface 1 0.6986 0.7274 0.7892 0.8095

Mean 1 0.8247 0.7989 0.8347 0.8624

RMSE

Water 0 0.1086 0.1205 0.1200 0.1023

Vegetation 0 0.1336 0.1565 0.1429 0.1271

Bareland 0 0.1353 0.1516 0.1440 0.1282

Impervious surface 0 0.1393 0.1244 0.1092 0.1017

Mean 0 0.1292 0.1382 0.1290 0.1148

AAD

Water 0 0.0621 0.0722 0.0643 0.0607

Vegetation 0 0.0888 0.1138 0.0926 0.0873

Bareland 0 0.0846 0.0991 0.0883 0.0821

Impervious surface 0 0.0675 0.0630 0.0498 0.0491

Mean 0 0.0757 0.0870 0.0738 0.0698

UIQI

Water 1 0.8973 0.8596 0.8777 0.9072

Vegetation 1 0.8874 0.8288 0.8741 0.8926

Bareland 1 0.8105 0.7566 0.7970 0.8286

Impervious surface 1 0.6861 0.7214 0.7850 0.7990

Mean 1 0.8203 0.7916 0.8334 0.8568

3.2.2 The rainforest area experiment541

Real MODIS-Landsat images of a region of rainforest were used to further validate the performance542

of the proposed STFMF approach for a relatively homogeneous landscape. A time-series cloud-free543

Landsat ETM+ images (path 226 and row 069) acquired on July 28, 2002 ( iT ), August 13, 2002 ( pT )544

and August 29, 2002 ( jT ) were used as the FR remotely sensed images. The corresponding real545

MOD09GA images (MODIS tile: h12v10) acquired at almost the same time as that of Landsat ETM+546

images were used as the CR remotely sensed image. As shown in Fig. 9, each band of the Landsat ETM+547

images includes 432 × 432 pixels, and each band of the MOD09GA images contains 27 × 27 pixels.548

Three land covers, forest, bareland and burned area, were studied and the fine and coarse spatial549

resolution fraction maps.550
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551

Figure 9. MODIS, Landsat reflectance images and fraction maps of forest, bareland and burned area in the MODIS-552

Landsat experiment on rainforest area.553

The Landsat ETM+ image acquired on August 13, 2002 was used to produce the reference FR554

fraction maps. ESTARFM and FSDAF were applied for the original time-series Landsat and MODIS555

reflectance images to predict the FR Landsat-like multispectral images. Specially, FSDAF is based on556

the MODIS-Landsat images pair at iT , as the fractional land cover change between pT and jT is557

larger than that between iT and pT . As shown in the second and third rows of Fig. 10, the fused FR558

reflectance images were used as the inputs of LSM to produce the Landsat-like fraction maps. With the559

time-series Landsat and MODIS fraction maps, the proposed STFMF approach was used to produce the560

Landsat-like fraction maps as shown in the last row of Fig. 10. Moreover, the corresponding fraction561

error maps for different methods were generated by comparing with the reference FR fraction maps. The562

accuracy assessment of the results generated by different fusion methods is listed in Table 3.563
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564

Figure 10. Reference FR fraction maps, resultant FR fraction maps and corresponding fraction error maps in the565

MODIS-Landsat experiment on rainforest area.566

Similar trends as those observed in the MODIS-Landsat experiment on urban area can also be found567

in this MODIS-Landsat experiment for the rainforest area. As shown in Fig. 10, due to the inability of568

ESTARFM to deal with land cover changes, many pixels with over-estimated (red pixels in the error569

maps) and under-estimated (blue pixels in the error maps) fractions appear in the results. Compared with570

the ESTARFM results, there were fewer over-estimated forest fraction features in the output of FSDAF,571

but more over-estimated bareland fraction features and under-estimated burned area fraction features572

appear across the results. Overall, the results of FSDAF have the lowest accuracy values, as shown in573

Table 3. This demonstrates that FSDAF is not able to deal with land cover change well in a real situation.574
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Notably, the results of the proposed STFMF approach have fewer pixels with large fraction mis-575

estimation in the error maps, and the under-estimated and over-estimated fraction features decrease576

significantly. STFMF produced FR fraction maps that were visually closer to the reference FR fraction577

maps shown in Fig. 10. For the accuracy assessment reported in Table 3, consistently with the above578

images experiments, STFMF produced the FR fraction maps with the largest CC and UIQI values and579

smallest RMSE and AAD values, which highlights its potential for the production of FR fraction maps580

for a relatively homogeneous landscape even if land cover change may have occurred within a short time.581

Table 3. Accuracy assessment of the fraction maps generated by different spatial-temporal fusion methods applied582

to the MODIS-Landsat experiment on rainforest area. (The bold means the best value)583

Ideal ESTARFM FSDAF STFMF

CC

Forest 1 0.9564 0.9522 0.9721

Bareland 1 0.8360 0.8554 0.9143

Burned area 1 0.8484 0.7634 0.9042

Mean 1 0.8802 0.8570 0.9302

RMSE

Forest 0 0.1239 0.1337 0.0971

Bareland 0 0.1697 0.2193 0.1218

Burned area 0 0.1460 0.2048 0.1177

Mean 0 0.1465 0.1859 0.1122

AAD

Forest 0 0.0800 0.0863 0.0597

Bareland 0 0.1091 0.1462 0.0725

Burned area 0 0.0845 0.1152 0.0686

Mean 0 0.0912 0.1159 0.0669

UIQI

Forest 1 0.9519 0.9491 0.9716

Bareland 1 0.8145 0.7469 0.9099

Burned area 1 0.8260 0.5268 0.9025

Mean 1 0.8642 0.7409 0.9280

Finally, STFMF was used to generate a time series of FR fraction maps for the experiment focused584

on the rainforest. During the period from July 28, 2002 (
iT ) to August 29, 2002 (

jT ), as shown in the585

first row of Fig. 11, we collected four other scenes of MOD09GA images (cloud-free images covering586

the study site); however, there is only one scene of Landsat ETM+ image (acquired on August 13, 2002)587

covering the study site during
iT and

jT . To provide a greater understanding of the forest fraction588
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changes that occurred between
iT and

jT , it is of interest to obtain time-series fine spatial and589

temporal forest fraction maps between
iT and

jT from the CR MODIS images applying STFMF.590

591

Figure 11. Time-series MODIS reflectance images, MODIS forest fraction maps, predicted Landsat-like forest592

fraction maps and forest fraction change maps between July 28, 2002 and August 29, 2002.593

With the collected subarea MOD09GA images acquired on August 6, 13, 22 and 27 of 2002 and the594

endmembers of three land cover classes of forest, bareland and burned area, the time-series MODIS595

forest fraction maps were then generated by using LSM. Since the MODIS-Landsat forest fraction map596

pairs at
iT and

jT are already known, four time-series FR forest fraction maps shown in Fig. 11 can,597

thus, be reconstructed from the MODIS forest fraction maps at August 6, 13, 22 and 27 of 2002 (
pT ) by598

using STFMF. Moreover, the last row of Fig. 11 shows the FR (Landsat-like) forest fraction change maps599

at August 6, 13, 22, 27 and 29 of 2002 by comparing with the Landsat image-based forest fraction map600

acquired on July 28, 2002.601

From July 28, 2002 to August 29, 2002 (which is almost one month), there were substantial land602

cover changes that occurred. By observing the time-series MODIS forest fraction maps shown in the603
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second row of Fig. 11, it is possible to observe the trend of forest fraction change that happened within604

the one-month period; however, due to the coarse spatial resolution of MODIS images, the detail about605

the spatial patterns of forest fraction change was almost lost. By contrast, the predicted time-series606

Landsat-like forest fraction maps contain greater spatial detail, especially some small-sized linear forest607

cover features. Simultaneously, the forest fraction change maps generated by using the predicted Landsat-608

like forest fraction maps exploit more spatial detail information about the forest cover change, in which609

the change of forest cover started at the north central part, and then spread from the northwest to the610

southeast. This experiment demonstrates the potential of STFMF for generating a dense time-series of611

fine spatial and temporal forest fraction maps, which will provide more accurate information about where,612

when and how forest fraction changes occur through time. Critically, it allows exploitation of the high613

temporal resolution of CR MODIS imagery to provide FR land cover information.614

615



38

4. Discussion616

In above synthetic and real experiments, STFMF achieved the most accurate FR fraction maps in617

both terms of visual and quantitative comparisons. In addition, STFMF showed great potential to produce618

a time series of FR land cover fraction maps from the high temporal resolution of CR images.619

4.1 Influence of satellite sensor difference620

In order to assess the influence of satellite sensor difference on the performance of the proposed621

STFMF model, the synthetic MODIS images were replaced by the real MODIS/Terra Surface622

Reflectance 8-Day L3 Global composite product of MOD09A1 images (Terra MODIS tile: h27v06), as623

shown in Fig. 12, in the MODIS-Landsat urban area experiment. Table 4 reports the accuracies of the FR624

fraction maps generated by different methods with real MODIS-Landsat images.625

626

Figure 12. Real MODIS reflectance images (MOD09A1) in the MODIS-Landsat experiment on urban area.627

The accuracy values [see Table 4] of the predicted FR fraction maps produced using real MODIS628

images were worse than those obtained through the use of synthetic MODIS images [see Table 2]. In629

particular, FSDAF2013 and FSDAF2017 showed a greater decline in accuracy relative to ESTARFM and630

STFMF. The mean CC values of FSDAF2013 and FSDAF2017 results decreased by 0.0785 and 0.0393,631

while those of ESTARFM and STFMF were 0.0162 and 0.0088 respectively. This indicates that the632
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satellite sensor difference would have a negative impact on the results of all spatial-temporal fusion633

methods, and especially for FSDAF. This is because there are no registration error and bandwidth634

difference between MODIS and Landsat images when the synthetic MODIS images were used while635

with the real MODIS images, errors associated with mis-registration and the bandwidth differences636

would be inherited into the results. However, when all spatial-temporal fusion methods are compared, a637

similar trend as that in the synthetic MODIS-Landsat experiment can also be observed. The fraction maps638

produced by STFMF had the better accuracy values in comparison to those from ESTARFM and FSDAF.639

Moreover, the decrease of CC, UIQI values and the increase of RMSE, AAD values for STFMF results640

were smaller than that of ESTARFM and FSDAF. This demonstrates that STFMF is more accurate, and641

less sensitive to the errors caused by differences in the satellite sensor data used.642

Table 4. Accuracy assessment of the FR fraction maps generated by different methods in the real MODIS-Landsat643

experiment on urban area.644

ESTARFM FSDAF2013 FSDAF2017 STFMF

CC

Water 0.8677(-0.0297) 0.8034(-0.0650) 0.8479(-0.0301) 0.9021(-0.0086)

Vegetation 0.8670(-0.0208) 0.8028(-0.0346) 0.8486(-0.0255) 0.8890(-0.0066)

Bareland 0.8005(-0.0143) 0.6946(-0.0678) 0.7431(-0.0545) 0.8243(-0.0094)

Impervious surface 0.6985(-0.0001) 0.5808(-0.1465) 0.7420(-0.0471) 0.7989(-0.0106)

Mean 0.8084(-0.0162) 0.7204(-0.0785) 0.7954(-0.0393) 0.8536(-0.0088)

RMSE

Water 0.1233(0.0148) 0.1468(0.0263) 0.1386(0.0186) 0.1074(0.0051)

Vegetation 0.1520(0.0183) 0.1739(0.0174) 0.1615(0.0185) 0.1310(0.0039)

Bareland 0.1536(0.0183) 0.1724(0.0208) 0.1678(0.0238) 0.1316(0.0033)

Impervious surface 0.1444(0.0051) 0.1747(0.0504) 0.1272(0.0180) 0.1046(0.0028)

Mean 0.1433(0.0141) 0.1669(0.0287) 0.1488(0.0197) 0.1186(0.0038)

AAD

Water 0.0739(0.0118) 0.0896(0.0174) 0.0805(0.0162) 0.0631(0.0024)

Vegetation 0.1057(0.0169) 0.1296(0.0158) 0.1109(0.0182) 0.0900(0.0027)

Bareland 0.1015(0.0169) 0.1175(0.0184) 0.1122(0.0239) 0.0851(0.0030)

Impervious surface 0.0721(0.0046) 0.1021(0.0391) 0.0610(0.0112) 0.0510(0.0018)

Mean 0.0883(0.0126) 0.1097(0.0227) 0.0911(0.0174) 0.0723(0.0025)

UIQI

Water 0.8673(-0.0300) 0.7919(-0.0678) 0.8394(-0.0383) 0.8978(-0.0093)

Vegetation 0.8584(-0.0290) 0.7887(-0.0401) 0.8472(-0.0268) 0.8858(-0.0067)

Bareland 0.7589(-0.0516) 0.6910(-0.0656) 0.7143(-0.0827) 0.8189(-0.0097)

Impervious surface 0.6726(-0.0135) 0.5061(-0.2153) 0.7395(-0.0455) 0.7905(-0.0085)

Mean 0.7893(-0.0310) 0.6944(-0.0972) 0.7851(-0.0483) 0.8483(-0.0086)
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Note: The values in brackets indicate the difference between the real and synthetic MODIS-Landsat experiments on645

urban area, negative value means decreasing and positive value mean increasing.646

4.2 Influence of the number of candidate neighboring patch pairs647

The number of candidate neighboring patch pairs (N) is a critical parameter in the KRR model used648

in STFMF. In order to evaluate how N influences the results of STFMF, the value of N was set at values649

varying from 5 to 90, and Fig. 13 reports the corresponding mean CC and RMSE values of four land650

cover fraction maps in the GEI experiment and the MODIS-Landsat urban area experiment. Generally,651

when N was very small, such as 5, the FR fraction maps of STFMF in both experiments had the lowest652

CC and highest RMSE values. This is because the use of few neighboring patch pairs results in a failure653

to provide enough FR spatial feature information for the prediction process. The CC values increased654

rapidly when N increased from 5 to 70 in the GEI experiment and 5 to 80 in the MODIS-Landsat655

experiment. With the continuous increase of N (e.g. larger than 70), the results of STFMF in the GEI656

experiment achieved decreasing CC values and increasing RMSE values. But for the MODIS-Landsat657

experiment, there was almost no obvious increase when N was larger than 80. Compared with the658

MODIS-Landsat experiment, the changes of CC and RMSE values for the results in GEI experiment are659

more sensitive to the variation of N, but similar trend of CC and RMSE values can be observed from660

them. Fig. 13 indicates that a larger value of N is suggested, but the STFMF results would have no661

obvious improvement when the value of N is set at a very large value (such as larger than 80). Moreover,662

it is noteworthy that the computation cost would increase rapidly with the increment of N. Therefore, in663

practice, if there is a specific limitation of the computation cost, it is suggested to set N as a relative small664

value, such as between 60 to 80.665
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666

Figure 13. Influence of the candidate neighboring patch pairs number (N) on the STFMF results in the GEI667

experiment and MODIS-Landsat experiment on urban area.668

4.3 Influence of fraction errors669

In order to have a quantitative analysis of the influence of fraction errors on the resultant FR fraction670

maps of STFMF, the Gaussian noise was added into the synthetic time-series Landsat-like fraction maps671

in the GEI experiment to simulate errors caused by different spectral unmixing methods. Table 5 lists the672

accuracy assessment of STFMF results with different fraction error levels ranging from 0 to 0.2 with an673

interval of 0.02. The corresponding input MODIS-like fraction maps in STFMF were downscaled from674

the Gaussian noise-based Landsat-like fraction maps by spatially averaging. It is evident from table 5675

that with the increment of fraction errors, the CC values of STFMF results had a continuous decrease,676

while the RMSE values had a continuous increase. Moreover, the decrease of CC values and the increase677

of RMSE values became larger with the increasing of fraction error. This illustrates that errors in fraction678

maps would have a serious impact on the STFMF results. In practice, the fraction errors caused by679

spectral unmixing vary from method to method, and more powerful spectral unmixing methods should680

be applied to provide more accurate fraction maps, in order to finally improve the STFMF results.681

Table 5. Accuracy assessment of the STFMF results with different fraction error levels in the GEI experiment.682

Fraction error 0 0.02 0.04 0.06 0.080 0.10 0.12 0.14 0.16 0.18 0.20

CC Water 0.9908 0.9888 0.9844 0.9768 0.9654 0.9497 0.9293 0.9050 0.8770 0.8401 0.7992



42

Vegetation 0.9603 0.9596 0.9572 0.9537 0.9476 0.9407 0.9299 0.9185 0.9033 0.8849 0.8614

Bareland 0.9000 0.8994 0.8957 0.8913 0.8826 0.8727 0.8586 0.8436 0.8212 0.7970 0.7669

IS 0.9774 0.9769 0.9749 0.9706 0.9656 0.9581 0.9472 0.9337 0.9173 0.8972 0.8733

Mean 0.9571 0.9562 0.9531 0.9481 0.9403 0.9303 0.9163 0.9002 0.8797 0.8548 0.8252

RMSE

Water 0.0284 0.0328 0.0409 0.0512 0.0632 0.0758 0.0888 0.1018 0.1145 0.1287 0.1425

Vegetation 0.1289 0.1327 0.1406 0.1509 0.1651 0.1797 0.1977 0.2152 0.2344 0.2542 0.2752

Bareland 0.1383 0.1391 0.1424 0.1462 0.1527 0.1594 0.1682 0.1765 0.1872 0.1979 0.2096

IS 0.0827 0.0853 0.0915 0.1010 0.1113 0.1238 0.1380 0.1532 0.1684 0.1839 0.2000

Mean 0.0946 0.0975 0.1038 0.1123 0.1231 0.1347 0.1482 0.1617 0.1761 0.1912 0.2068

Note: IS indicates impervious surface.683

4.4 Comparisons of three satellite images spatial-temporal fusion models684

Benefiting from the free availability, wide swath, short revisit-rate and long-term archiving of CR685

satellite images and amount of spatial details in FR satellite images, spatial-temporal fusion methods can686

reconstruct time-series fine spatial and temporal resolution images for large areas and over long-time687

frames. As shown in Fig. 14, current satellite images spatial-temporal fusion models could be688

summarized into three different levels: surface reflectance level, land cover class level and land cover689

fraction level. Surface reflectance level includes the popular spatial-temporal fusion methods of690

STARFM, ESTARFM and FSDAF, and the output of them is the FR surface reflectance multispectral691

images. Although the predicted FR multispectral images can be used to produce FR land cover map as692

that of STMRF and FR fraction maps as that of STFMF, they were designed particularly for the prediction693

of reflectance multispectral images, and most of them are sensitive to the land cover change.694
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695

Figure 14. Illustration of the three different levels of satellite images spatial-temporal fusion models.696

Since STSRM takes into account land cover change information, land cover change would have less697

impact on the final FR land cover map than is observed with the other methods. The main disadvantage698

of STSRM is the pure pixel assumption of the input and output FR land cover maps. A major limitation699

of using the ‘pure’ pixel assumption in STSRM is that land cover change information occurring at the700

sub-pixel scale cannot be considered fully. An example shown in Fig. 15 is used to further illustrate the701

limitation. Assume that the fraction values of land cover class A for one fine pixel are 95% and 65 % at702

time 1T and 2T respectively, and the class labels of the fine pixel are the same land cover class A at703

both time 1T and 2T . If we focus on the class label, there would be no land cover change for the fine704

pixel; but in fact, there is 30% loss of fraction values (land cover class A) at the sub-pixel scale between705

time 1T and 2T . By contrast, for the proposed STMFM approach, the 30% loss of fraction values can706

be observed.707
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708

Figure 15. An example used to illustrate the FR land cover change of pure labeled pixel and fine pixel fraction values709

in STSRM and STFMF models.710

711

Figure 16. An example used to show the combination of STFMF and super resolution mapping (SRM). (a) Land712

cover map generated by labeling the resultant fraction maps of STFMF at per-pixel scale; (b) 30 m Landsat OLI713

image; (c) FR land cover map generated by the combination of STFMF and SRM at sub-pixel scale; (d) Reference714

Google Earth Map covering the zoomed subarea of Landsat images.715

Generally, with the resultant FR fraction maps of STFMF, it is instinctive and readily to obtain a716

land cover map. An example shown in Fig. 16 is used to indicate the land cover mapping process. With717

the fraction maps of open water, vegetation, bareland and impervious surface generated by STFMF in718

the MODIS-Landsat images experiment, we can obtain a land cover map, as shown in Fig. 16(a), by719

using the tradition classification labeling strategy, where the class of a pixel is labeled as the land cover720

class which has the largest fraction values. The resultant FR land cover map shown in Fig. 16(a) shows721

the potential to present more spatial details about the four land covers than the original CR (MODIS)722
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fraction maps and could have advantages to monitor the land cover changes occurred at Landsat image723

pixel scale.724

However, a more effective way is to combine STFMF and super resolution mapping (SRM), to725

make the most use of resultant FR fraction maps. As a post-processing of spectral unmixing, SRM is a726

technique to predict the sub-pixel spatial locations of different land cover classes by using fraction maps727

as input, and can produce land cover maps at a finer spatial resolution than the input data (Atkinson 2005).728

Motivated by this, it is possible to use the fraction maps generated by STFMF as the input of SRM to729

further produce a land cover map with finer spatial resolution than that of the output fraction maps of730

STFMF. As shown in Fig, 16(c), the finer spatial resolution land cover map was produced by a spatial731

regularization-based SRM model (Ling et al. 2014; Zhong et al. 2015) with a spatial ratio of 6. Comparing732

Fig. 16(c) with Fig. 16 (a), it is observed that the 5 m land cover map generated by the combination of733

STFMF and SRM has more spatial smooth boundaries and presents more spatial details about different734

land covers. In addition, the land cover map shown in Fig. 16(c) is closer to the reference Google Earth735

Map shown in Fig. 16(d). This demonstrates the great potential of the combination of STFMF and SRM736

in the field of land cover mapping, and they could be integrated to provide finer spatial resolution land737

cover map.738

4.5 Computation efficiency739

In order to validate the computation efficiency of the proposed STFMF against ESTARFM and740

FSDAF, table 6 reports the computation cost of the ESTARFM, FSDAF and STFMF methods in real741

MODIS-Landsat experiments on urban and rainforest areas. The implementations of ESTARFM and742

FSDAF were performed by the IDL code (Zhu et al. 2010; Zhu et al. 2016), while STFMF was743
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implemented by the MATLAB platform (MATLAB R2017b version). All of the algorithms used in this744

research were implemented on an Intel(R) Core(TM) i7-7700K Processer at 4.20 GHz. From table 6, it745

can be found that ESTARFM is the most time consuming, while FSDAF takes the least time in both of746

the two experiments. The computation cost of STFMF was more than that of FSDAF and lower than that747

of ESTARFM. For STFMF, most of the computation time is spent on KRR, in which the candidate748

neighboring patch pairs searching, the training and the predicting processes are time-consuming. A749

possible improvement is to take into account various spatial patterns of fraction changes during the750

training, in order to avoid repeatedly building training model for each prediction process. By this way,751

the computation cost of STFMF is expected to be obviously decreased, as the training process is the most752

time-consuming step.753

Table 6. Computation cost of the ESTARFM, FSDAF and STFMF methods in real MODIS-Landsat experiment on754

urban area and rainforest area.755

Spatial size ESTARFM FSDAF STFMF

Urban area 960 × 960 pixels 1359s 295s 364s

Rainforest area 432 × 432 pixels 304s 85s 242s

4.6 Limitations and future work756

The input data are crucial to the performance of the proposed STFMF method. At first, STFMF757

aims to use the fraction change information with different spatial resolutions between fraction maps at758

iT and jT as the training dataset to predict the fraction change maps at pT . The implicit assumption759

is that for any CR fraction change pattern, a similar CR and FR fraction change pattern can be found760

from the training dataset and they can be used to predict the final FR fraction change map. However, if761

the fraction maps at iT and jT are similar to each other, there will be not enough representative762

fraction change pattern information contained in the training dataset, and the predicting accuracy in763
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STFMF would be, therefore, decreased. For example, when there are land cover changes like floods on764

pT , STFMF will be difficult to capture the changes on pT , because data on iT and jT contain no765

information about floods. This phenomenon can be found in the GEI experiment, in which for the766

produced FR fraction map of water, ESTARFM had better accuracy than that of the proposed STFMF.767

This is because fraction maps of water at 2012 and 2016 were similar to each other and contained little768

information about the change of water. Therefore, it is suggested that the fraction maps collected at iT769

and jT should not be similar to each other, in order to contain more important information about the770

fraction change of various classes. Moreover, with a large study area, there will be higher possibilities to771

contain more fraction change spatial patterns for different classes. Secondly, fraction errors caused by772

spectral unmixing would limited the performance of STFMF. This issue arises because STFMF uses773

directly the fraction maps generated by a spectral unmixing analysis as input, and the accuracy of the774

fraction maps, therefore, affects the accuracy of the final result. In the experiments, the linear spectral775

mixture model was used to produce the fraction maps. Although linear spectral mixture modeling has776

physical significance, the actual spectral mixtures of the land surfaces are often non-linear (Keshava and777

Mustard 2002). To estimate the fraction maps more accurately from remotely sensed images, alternative778

non-linear spectral mixture models, such as artificial neural networks (Foody et al. 1997) and support779

vector machines (Brown et al. 2000) could be used.780

The method used to predict the FR fraction change maps from CR fraction change maps is another781

key problem for STFMF. It is noteworthy that predicting FR image from the CR image is a pathological782

inversion problem, and there are possibilities that similar CR fraction change maps would produce783

different FR fraction change maps, especially when the spatial ratio between CR and FR images is high.784

A popular solution for this problem is to use the learning based methods by assuming that similar CR785
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fraction change maps would be corresponding to similar FR fraction change maps. This has been786

successfully applied in the field of image supper-resolution (Freeman et al. 2002) and land cover supper-787

resolution mapping (Ling et al. 2016b). In this research, KRR is used as the learning algorithm, as it has788

used widely in the field of image super-resolution and has less number of parameters to be determined789

(Kim and Kwon 2010). But there are limitations when using KRR and further improvement exists. The790

normalization operation in equation (21) should be implemented for the output FR fraction maps791

predicted by KRR to ensure that the sum of the fraction values for all classes is 1. However, this will792

change the original values of the resultant FR fraction maps, and biases are likely to happen for the793

normalized fraction values. Generally, a better way of keeping the sum of the fraction values for all794

classes at 1 is to add constraints when deriving the FR fraction maps but not after all the fraction maps795

have been calculated. But it is hard for KRR to globally constrain the resultant fraction values of all796

classes at the same time. Besides KRR, there are some more powerful machine learning algorithms, such797

as deep learning convolutional neural networks (Dong et al. 2016; Zhang et al. 2016), which are expected798

to have a better performance than KRR. The future introduction of a framework based on deep learning799

algorithms into the proposed approach is of great interest, and will help improve the performance of800

STFMF.801

There exists uncertainty for the weights of each prediction calculated globally in equations (18)-802

(20). Generally, a better way is to calculate these weights at local scale, as the temporal similarity between803

CR fraction maps will change site by site. However, given that the fraction error caused by the spectral804

unmixing is always inevitable in real applications, if the local weights are applied, the fraction error at805

the local scale would most likely be introduced into the final result. This is the reason why only global806

weights were applied in this research, but it is of great interest to develop more suitable approaches to807
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incorporate local weights in the model.808

5. Conclusion809

In this paper, a novel approach, termed as STFMF, was proposed to generate fine spatial and810

temporal resolution fraction maps by fusing multiscale coarse-spatial-fine-temporal and fine-spatial-811

coarse-temporal remotely sensed images. Compared with the STSRM method, the proposed approach812

considers the mixed pixel problem at the fine spatial scale and can produce FR fraction maps instead of813

a FR land cover map. Compared with the traditional reflectance image spatial-temporal fusion methods,814

the proposed approach does not use directly the original remotely sensed images as inputs, but focuses815

on the multi-scale fraction maps generated by spectral unmixing and, thus, is theoretically more able to816

deal with any land cover change occurring at the sub-pixel scale. STFMF is good for spatial-temporal817

fusion, because it (1) can accommodate for the mixed pixel problem in FR remotely sensed images, (2)818

can use fraction maps generated from a range of satellite images or other suitable data sources, (3) focuses819

on the accurate estimation of fraction cover changes happened through time.820

The performance of STFMF was assessed with several experiments including both synthetic and821

real images, and was also compared with two popular image spatial-temporal fusion methods: ESTARFM822

and FSDAF. The results show that the proposed approach is able to produce FR fraction maps with the823

greatest visual performance compared with the two benchmark methods, and contains more spatial detail824

about the land cover features in the regions of study. In both the synthetic and real image experiments,825

the proposed approach typically produced the largest CC and UIQI and smallest RMSE and AAD values.826

Moreover, the proposed approach was used to generate a time-series of FR forest fraction maps, which827

demonstrates the potential of STFMF in the production of a time-series of fine spatial and temporal forest828
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fraction maps for real-world application. In addition, it is of great interest to combine STFMF and SRM829

to produce finer spatial resolution land cover maps than the resultant fraction maps produced by the830

proposed STFMF approach in future research.831
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