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Abstract 

 The Faroe Islands Basalt Group (FIBG) comprises a gross stratigraphic thickness of 

over 6.5 km of dominantly extrusive basaltic facies erupted during the Late Palaeocene to 

Early Eocene. In this study we present 140 major and trace element analyses from flow by 

flow field and borehole sample profiles, through the Enni Formation, which comprises the 

final phase of volcanism preserved on the Faroe Islands. The sample profiles target 

geographically spaced and overlapping stratigraphic sequences tied relative to a 3D ArcGIS 

surface for the regionally extensive volcaniclastic Argir Beds marker unit. From these 

profiles five geochemical groups including one low TiO2 (Low-Ti <1.5 wt %) and four high 

TiO2 (High-Ti >1.5 wt %) groups differentiated by Nb, Zr, Y and V variations are identified 

in conjunction with previous studies. The spatial and stratigraphic distribution of these 

groups is mapped across the islands and demonstrates a complex inter-digitated flow field 

evolution. Within the finer scale variations, broad spatial and temporal development trends 

are identified demonstrating the potential for correlation within the volcanic succession at 

the local, tens of kilometres scale. Low-Ti lavas formed in association with lithospheric 

thinning and developed extensive flow fields between the Faroe Islands and East Greenland 

contemporaneous to the eruption of High-Ti smaller melt fraction lava flows in both 

locations. The progression of High-Ti lava groups preserved on either side of the developing 

rift zone is very similar, but is not, however, chronostratigraphic due to multiple inter-

digitations of the chemical types. We tentatively suggest that a previously proposed rift-

oblique transfer zone between the Faroe Islands and East Greenland enabled non-uniform 

lithospheric thinning and the preservation of a near-continuous High-Ti melting region 

between these areas beyond the onset of Low-Ti eruptions which were initially fed from the 

west. This study highlights the complex nature of late stage flood basalt plumbing systems 

and eruption dynamics in a rift proximal setting.  
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Introduction 

The Faroe Islands are situated in the North Atlantic Ocean between the UK and 

Iceland, (Fig. 1). The islands are composed entirely of the exposed remnants of the extensive 

lava plateau of the Palaeogene Faroe Islands Basalt Group (FIBG,Passey and Jolley, 2009), 

part of the larger North Atlantic Igneous Province (NAIP, Saunders et al., 1997). The majority 

of the FIBG comprises subaerial lava flows interbedded with pyroclastic and sedimentary 

(interbed) facies of much smaller volumes (Rasmussen and Noe-Nygaard 1970, Waagstein 1988, 

Passey and Bell 2007, Passey and Jolley 2009). The islands, along with their surrounding 

shallow shelf, comprise the Faroe Platform, a partly subsided section of the NW European 

continental margin (Waagstein 1988). Based on geophysical data, the Faroe Islands are inferred 

to be underlain by 35-40 km thick cratonic basement connected to the UK continental shelf (Bott 

et al., 1974; Casten 1973; Richardson et al., 1999). Isotopic evidence for contamination of some 

lava flows by Precambrian amphibolite facies also supports the presence of continental crust 

beneath the islands (Gariepy et al., 1983; Hald & Waagstein 1983; Holm et al., 2001) although 

contamination is generally very minor (Holm et al., 2001). 

A striking feature of the FIBG is the correspondence that has been identified between lava 

geochemical stratigraphic cycles, interbed development and ecosystem dynamics within the older 

Beinisvørð and Lopra Formations (Jolley et al. 2012). These magmatic cycles comprise initial 

mafic magma pulses followed by progressively more fractionated sequences, which are 

accompanied by interbed ecological signatures for increasing inter-eruption hiatus lengths 

towards the end of each cycle. This relationship, however, breaks down in the younger 

Malinstindur and Enni Formations, which comprise a mixed sequence of simple and compound 

lava flow facies with generally very minor volcaniclastic intercalations (Passey & Bell 2007; 

Passey & Jolley, 2009). The breakdown in this relationship is accompanied by the presence of 

separate low and high TiO2 lava geochemical groups in the upper Malinstindur and Enni 

Formations (Waagstein 1988). Published stratigraphically constrained geochemical data for the 
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Enni Formation is presented by (Rasmussen & Noe-Nygaard, 1969; Søager & Holm, 2009, 

2011) with further spot sample analyses being published by Waagstein (1977) and Hald & 

Waagstein (1983). 

Differentiation of the broad geochemical groups of the FIBG was defined using a 

classification scheme by Waagstein (1988) in which major groups from the FIBG were separated 

on a plot of TiO2/FeOt versus FeOt/MgO (Waagstein 1988; Larsen et al., 1999). The low TiO2 

compositions, recognised as MORB-like by Waagstein (1988), are proposed to have been sourced 

from the incipient rift zone to the north of the Faroe Islands at the time. These groups were 

investigated in more detail by spot sampling across the islands where one low TiO2 group (Low-

Ti <1.5 wt %) and three high TiO2 groups (High-Ti1, 2 & 3 all >1.5 wt %) were identified 

based on trace element and isotopic constraints (Søager & Holm, 2009).  

This study focuses on the spatial and temporal development of lava geochemical groups 

within the youngest Enni Formation lava flows of the FIBG on the Faroe Islands. The bio-

stratigraphic and isotopic corroborated age of the Enni Formation is c. 55 Ma (Jolley et al., 2002; 

Storey et al., 2007; Passey & Jolley 2009). The formation, along with the underlying 

Malinstindur Formation, comprises the syn-breakup sequence of the NAIP (Larsen et al., 1999; 

Jolley & Bell 2002; Storey et al., 2007). Within the Enni Formation, the laterally extensive 

volcaniclastic dominated Argir Beds (Fig. 1d) form an important stratigraphic marker unit 

(Passey & Jolley 2009, Passey & Varming 2010). All samples in this study are therefore 

presented relative to the GIS surface for the Argir Beds (Passey & Varming, 2010). Through 

detailed zeolite zone mapping of the FIBG it has been estimated that around c. 1 km of 

stratigraphy is missing from the top of the Faroe Islands due to erosion (Jørgensen, 1984; 

Waagstein et al., 2002; Jørgensen 2006). Therefore, although this study investigates the 

uppermost preserved stratigraphy, the last eruptive products on the islands no longer exist due to 

erosion, so we are investigating the late stages, but not final eruptions of the FIBG. 
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Understanding the temporal and spatial evolution of LIP sequences is not only important 

for building our understanding of these major episodes in earth history, but also has significant 

practical applications. For correlation within LIP deposits, these applications are far reaching and 

include sub-surface exploration for hydrology (Burns et al. 2012), geothermal energy 

(Fridleifsson & Elders 2005), petroleum resources (Jerram, 2015; Millett et al., 2015) along 

with the potential for CO2 sequestration (Zakharova et al., 2012) and natural gas storage (Reidel 

et al., 2002). Understanding the potential but also the limitations of geochemical correlation 

within LIP sequences is therefore important for the effective exploration and development of 

resources associated with LIPs.  

 

Methods 

Several overlapping stratigraphic sample profiles were collected through the Enni 

Formation for this study. Every individual flow along a stratigraphic profile was sampled 

within the constraints of exposure and access. This involved, in a number of cases, sampling 

flows that were extensively altered or highly amygdaloidal. We justify sampling such flows 

due to the immobile behaviour of elements key to petrogenetic discrimination, such as Ti, P, 

Zr, Y and Nb, during pedogenesis and low grade metamorphism of basalts (e.g. Babechuk et 

al. 2014; Morrison 1978) along with the infinitely greater uncertainty of not sampling such 

stratigraphic intervals. For each sampled section (see supplementary data) the vast majority 

of flows were sampled, but where omissions occurred these are recorded in the presented 

stratigraphic columns. Sampling of altered compound flows was undertaken according to 

thickness, exposure and the presence of definite flow boundaries. Where substantial 

thicknesses occurred e.g. >10 m then a sample was generally taken from the base and from 

the top of the sequence. Sampling of tabular flows was undertaken from the freshest accessible 

part of each flow. 
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All GPS points were taken in the European Datum 1950 (ED50) coordinate system 

(same as the presently available topographic maps for the islands) in decimal degrees using a 

Garmin Etrex Legend HCX handheld GPS receiver with typical horizontal accuracy of c. 3 

m. The elevations for all waypoints were later extracted from the high resolution Digital 

Elevation Model (DEM) of the Faroe Islands in ArcGIS. The Argir Beds stratigraphic marker 

unit from the FIBG digital framework (Passey & Jolley, 2009; Passey & Varming, 2010) was 

used for relative height extraction and correlation in this study. The base of the Argir Beds 

forms a lithohorizon that has been mapped across the islands (Passey & Varming 2010) and 

is treated here, as a broadly isochronous surface. Minor updates to the Argir Beds surface 

were made using the spline surface interpolation tool in ArcGIS to incorporate additional 

reference points (Millett, 2014).  

140 basalt samples were analysed for major and trace elements by XRF on an ARL 

8420+ dual goniometer wavelength dispersive XRF spectrometer at the Open University. 

Samples were first crushed by fly-press followed by powdering of the least altered rock chips 

minus any observed secondary amygdale material in an Agate tema mill at the University of 

Aberdeen.  Major elements were determined on fused glass beads prepared from ignited powders 

mixed with a lithium metaborate/tetraborate flux following the analytical procedures outlined in 

Ramsey et al. (1995). In-house standards (WS-E & OU-3) were run at regular intervals to ensure 

analytical precision and accuracy (see supplementary data). Loss on ignition was determined after 

heating to 1000°C. Loss on ignition (LOI) ranges from c. 0 to 6.7 % for the dataset with the 

majority of samples (122 of 140) displaying values <3 % with a positive skew towards zero. 

It is noted that the oxidation of FeO to Fe2O3 during ignition means that the reported LOI 

values will be slightly underestimated where original FeO values were near c. 10 % for many 

of our samples. Trace elements were analysed on pressed powder pellets prepared after the 

method of (Watson 1996). Reference standards (BHVO-1, DNC-1, QLO-1 & W-2) were run at 

regular intervals to ensure analytical accuracy (see supplementary data).  
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Rare Earth Elements (REEs) were analysed by ICP-MS on an Agilent 7500s ICP-MS 

machine at the Open University on a subset of 34 samples selected based on the XRF results. 

The analyses were run calibrated against the reference materials set (BIR-1, BHVO-2, W-2, 

DNC-1 and AGV-1) to monitor accuracy and precision (see supplementary data). Mineral 

chemistry data was acquired on a MICROSCAN MK5 using a Link Analytical AN10/25S system 

at the University of Aberdeen. Data was acquired and processed using the ZAF4/FLS program. 

 

Stratigraphic Profiles 

Samples were collected from seven stratigraphic profiles and from three broad areas 

of the exposed Enni Formation (Figs. 1 and 2). The three areas comprise thick packages of 

Enni Formation lava flows and will be referred to in the text as the NE islands (Viðoy and 

Svínoy), the central islands (including Streymoy, Nólsoy and the southern tip of Eysturoy), 

and Sandoy (the southernmost exposures of the Enni Formation investigated in this study), 

see Figure 2. In all three areas sampling was undertaken from, or just below, the Argir Beds 

reference surface upwards, and include the youngest Enni Formation lavas exposed in each 

region aside from in the northeast where slightly younger lavas may be exposed on Fugloy 

(Passey, 2009, Passey & Jolley, 2009; Passey & Varming, 2010). All samples were collected 

from surface exposures aside from the basal part of the Nólsoy sequence, which comprises a 

compiled stratigraphic section (including whole rock geochemistry) from a suite of four 

shallow boreholes (Jolley & Passey, 2013). In all three areas sample profiles were chosen to 

overlap in relation to the 3D spatial framework so that continuous compiled sections through 

the Enni Formation could be investigated within each.  

The lava flow facies within the Enni Formation comprise interdigitating simple 

(tabular) and compound (braided) lava flows, often forming packages of a few tens to 

hundreds of metres (Passey & Bell, 2007; Passey & Jolley, 2009). Flow crusts are invariably 
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deeply weathered and in general the compound lava flows are more weathered than the 

simple flows due to their higher initial vesicularities and larger crust/core ratios (Fig. 3). In 

most cases, flow boundaries are weakly to pervasively oxidized with thin reddened boles and 

volcaniclastic units occurring between some flow packages (Fig. 3). Initial vesicular pore 

spaces within the sampled lavas have predominantly been filled with various zeolites, calcite 

and clays although partially filled and unfilled vesicles are also present in places (Jørgensen, 

1984; Jørgensen, 2006).  

The sampled lava flows comprise finely crystalline aphyric to plagioclase, olivine and 

much less commonly augite porphyritic basalts (Fig. 2). In general, the Low-Ti group lavas 

display aphyric to sparsely olivine and plagioclase phyric textures. Olivine is largely absent 

from the High-Ti lava flows, which are more commonly plagioclase phyric to aphyric. The 

High-Ti lava flows may also be densely plagioclase phyric in some cases with large zoned 

glomerocrysts displaying partially resorbed sieve textures indicative of disequilibrium. 

Groundmass textures range from inter-granular to intersertal with ophitic textures also 

occurring in a number of samples. 

 

Geochemistry 

Alteration 

High LOI values are exclusively associated with the previously discussed deeply 

weathered samples and therefore, the likelihood of post-emplacement redistribution of the 

more mobile major and trace elements is increased for these samples. Mobile elements such 

as Sr and Na display only limited additional scatter when compared to immobile elements 

such as Zr for the higher LOI samples, however, K displays clearly increased scatter, (Fig. 4), 

a common feature of similar aged basalts from East Greenland (e.g. Larsen et al., 1989). In 

contrast, the immobile elements such as Zr, Ti and P (all incompatible with early crystallizing 
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phases in basaltic melts) show strong linear correlations irrespective of LOI confirming a lack 

of any redistribution of these elements during post emplacement alteration (Fig. 4). All 

plotted major element data are recalculated to 100 wt. % on a dry basis with a fixed oxidation 

ratio of Fe2O3/FeO = 0.15 as used by Larsen et al. (1999) for basalts of the FIBG.  

 

Crystal accumulation 

A number of samples display combined chemical and petrographic evidence for 

plagioclase accumulation. High Al2O3 samples (>15.5 wt. % used for the similar aged 

successions on East Greenland, Larsen et al. 1989), plot along mixing lines between aphyric 

sample compositions and average plagioclase phenocryst compositions (e.g. An70, Millett, 

2014) from the Enni Formation (Fig. 4). These accumulation trends also potentially extend 

below 15.5 wt. % Al2O3 for the more evolved compositions (Fig. 4). High MgO samples are 

predominantly associated with Low-Ti compositions and lie along mafic olivine (e.g. Fo85) 

control lines (Fig. 5). Glomerocrysts of olivine in some samples suggest minor accumulation 

effects, however, due to the weakly olivine porphyritic textures of most high MgO samples, 

olivine fractionation is inferred as the dominant MgO control for these samples. 

 

Crustal contamination 

Ratios of incompatible elements such as Ba/Nb, Ba/Th and Ba/Zr have been found to 

closely relate to isotopic (Sr-Nd and Pb-Pb) signatures for crustal contamination of NAIP 

magmas (Kerr, 1995; Larsen et al., 1998; Fitton et al., 1998; Holm et al., 2001; Kent et al., 

2002). In this study, no isotopic data is available and so the trace element ratios Ba/Zr and 

La/NbN (normalized to primitive mantle, McDonough & Sun 1995) are used to assess crustal 

contamination. Ba/Zr values >1-2 or La/Nb >1.5 may suggest possible crustal contamination 

(Larsen et al., 1998; Holm et al., 2001). Evidence for crustal contamination is very limited, 
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with all except four samples displaying Ba/Zr < 1, normal SiO2 (Fig. 4) and La/NbN < 1.5 

(not shown). The four samples displaying slightly elevated values are still low in comparison 

to the values observed in ODP Legs 152 and 163 from the SE Greenland margin (Larsen et 

al., 1998; Fitton et al., 1998) and are well within the array displayed by the Site 917 Upper 

series, which are regarded as relatively uncontaminated. Samples showing elevated silica and 

increased levels of crustal contamination are found on the Faroe Islands (e.g. Hald & 

Waagstein, 1983), however, these are volumetrically very restricted. 

 

Lava group subdivisions 

Only samples with LOI < 3 wt.%, Ba/Zr < 1 and Al2O3 < 15.5 wt. % are presented in 

this section to avoid any unquantified effects relating to alteration, contamination and crystal 

accumulation. All Enni Formation lavas comprise basaltic compositions (TAS classification 

of Le Maitre et al. 1989) of exclusively tholeiitic affinity (AFM scheme of Irvine & Barager, 

1971) which are features common to the entire FIBG (Waagstein, 1988; Passey & Jolley, 

2009).  

Two major groups including a low TiO2 (TiO2 <1.5 wt. %) and high TiO2 (TiO2 >1.5 

wt. %) series are clearly defined from major element compositions alone (Fig. 5). The Low-

Ti group comprises a less evolved suite of basalt with a wide range of MgO from c. 6.8 to 

13.1 wt.% whereas the High-Ti lava flows are much more evolved occupying a range of 

MgO from c. 5.7 to 7.3 wt.% MgO. The Low-Ti suite is dominated by an olivine 

fractionation trend above Mg# c. 58 (MgO c. 9 wt.%), below which point a clear inflection in 

the plots of FeOt, Al2O3 and CaO occurs signalling the onset of plagioclase +/- clinopyroxene 

crystallization (Fig. 4 and 5, see also Søager & Holm, 2011). Major element variations 

between the High-Ti Enni Formation samples are less systematic, however, they may be 

further subdivided into four sub groups (High-Ti1, -2, -3 and -4) based on incompatible and 
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immobile trace element criteria (Fig. 6). These groupings are largely comparable with and 

can be related to the nomenclature of Søager & Holm (2009) with the addition of a new 

subgroup (High-Ti4) for which only a single sample (Sample 121606 of Søager & Holm, 

2009) has previously been reported. The geochemical groups are defined in Table 2 (after 

Millett, 2014) based on chemical criteria alone without reference to stratigraphic position. 

In Figure 6, lines of constant inter-element ratios intersecting the origin have been 

plotted to intersect the main group arrays. Low-Ti lava flows display a very distinct Zr/Y 

ratio of c. 2.27, much lower than any of the high TiO2 groups. The ratios of Zr/Nb c. 22.8 and 

Nb/Y c. 0.1 are also distinct from the other groups but are, however, more scattered due to 

the low absolute values of Nb within the group which is close to the detection limit of the 

XRF analytical determination. 

In general, the high TiO2 groups display strong linear arrays of incompatible trace 

elements with the High-Ti3 lavas displaying the greatest scatter on all diagrams in 

comparison to the other groups. The Zr/Y ratio of c. 5.4 for the High-Ti3 lavas is 

indistinguishable from the High-Ti1 lavas, but the Zr/Nb and Nb/Y ratios for High-Ti3 lavas 

are distinct from High-Ti2 lavas and display minor overlap with High-Ti4 lavas. The scatter 

in the data cannot be explained by simple upper crustal magma chamber processes from a 

single source and so some degree of mixing or source variation must be invoked for the 

group. High-Ti3 and High-Ti4 lavas overlap in all but the V versus Nb/Y plot in Figure 6. 

The clear separation between High-Ti3 and High-Ti4 lava flows based on High-Ti4 lavas 

relative enrichment in V (along with TiO2, FeOt, Zn etc. not shown) at overlapping values of 

incompatible element ratios suggests that the High-Ti4 lavas comprise a distinct melt batch 

which does not appear to be related to High-Ti3 or any other group by shallow magma chamber 

dynamics involving any of the observed phenocryst phases. The cause of this enrichment in High-

Ti4 lavas remains poorly constrained, however, the clear stratigraphic association of this flow 
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package along with the REE evidence for slightly larger and shallower degrees of melting 

compared to High-Ti3 lavas, discussed below, support them forming a distinct magma batch. 

Figure 7(a) displays representative REE element data for the separate groups. The Low-Ti 

magmas display distinctly LREE depleted signatures e.g. La/SmN <1 similar to modern day MAR 

N-MORB (e.g. Debaille et al., 2006) and the more enriched High-Ti groups display LREE 

enriched signatures La/SmN >1 more similar to E-MORB. The data are compared to simple non-

modal incremental batch melting models in Figure 7(b), which clearly displays the Low-Ti 

magma suite must have been generated from a depleted mantle source (e.g. Waight & Baker, 

2012). This is in contrast to the High-Ti groups that must have been generated from a 

significantly more enriched source composition. Absolute values of the degree and depth of 

melting are highly model dependent. However, within a range of realistic starting compositions 

and modelling parameters it is apparent that a proportion of melting for both the Low-Ti and 

High-Ti suites likely took place within the garnet stability field of the mantle. This therefore 

implies elevated temperatures and at least some melting >2.7 GPa. The High-Ti groups all 

display very similar REE patterns, but plot as separate groups on the melting diagram albeit 

within a relatively very tight overall range. In general, the High-Ti1 and High-Ti2 groups display 

tendencies to slightly larger melt fractions (lower La/YbN) along with stronger garnet signatures 

(at higher Dy/YbN) compared to the High-Ti3 and High-Ti4 groups. 

The REE element data for the separate groups correspond well to the data from Søager & 

Holm (2009; 2011) and therefore, their isotopic arguments for the separate mantle source 

components of the separate Enni Formation groups can reasonably be extended to the sub-group 

data in this study. This infers that although the High-Ti groups are very similar on the basis of 

many chemical criteria, that they also comprise distinct and coherent magmatic batches coming 

from depth and which erupted at the surface as distinct petrogenetic suites. This assessment, if 

correct, therefore enables the detailed mapping of these chemical units within the late stages of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

the FIBG lava pile to assess when, where and how these melt batches were fed onto the FIBG 

palaeo-surface during the last stages of the syn-rift volcanism. 

A small group of samples have been termed ‘Transitional’ due to their plotting as 

outliers between the main groups and can reasonably be explained by mixing lines between 

the Low-Ti and High-Ti suites suggesting that sub-surface mixing of contemporaneous 

magma batches occurred (e.g. Millett, 2014). The Transitional lava flows show greatest 

affinity to the Low-Ti suite based on major elements and therefore it appears likely that they 

derived their mixed trace element signatures by interaction of a Low-Ti melt with a smaller 

volume of more trace-element enriched High-Ti melts. Two additional samples display no 

clear affinity with any of the groups and are simply labelled undefined within the 

supplementary data.  

Samples initially screened out as having high LOI, high Al2O3 or evidence for 

contamination, were subsequently assessed in light of the above chemical groups. A number 

of these samples remain undefined, but where any of these samples fits with all of a groups 

criteria, they have been labelled as relating to the respective group with the qualifier high 

LOI, high Al or contaminated, noted in brackets (supplementary data). 

 

Geochemical stratigraphy and correlation 

The compiled geochemical and facies stratigraphic profiles are combined and 

presented in the correlation panel in Figure 8. Dashed tie lines have been added to the section 

to represent a potential correlation framework that honours all the available spatially 

constrained geochemical data within this study. The presented tie line correlations are non-

unique but form a best estimate; in all cases the simplest scenario for joining the chemical 

profiles was sought. In many cases, individual lava flows with a distinct chemical signature 

are found ‘stranded’ in their respective stratigraphic profiles. A number of possible 
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explanations exist for these apparently laterally isolated lavas. These include local eruption 

sources, laterally restricted extent, topography including volcanic deposits, tectonic faulting 

and/or folding and drainage system control, (e.g. Fig. 9). 

The distribution of the separate Enni Formation geochemical groups varies 

substantially within the study area. Low-Ti lavas dominate the compiled stratigraphic profiles 

in the NE islands area (profiles 1 & 2, Fig. 8) but also comprise a relatively coherent group of 

similar thickness across the central islands and Sandoy. The majority of the Transitional lava 

flows are found in the NE islands section along with one of only two spatial occurrences of 

contaminated lava flows near the base. Tracking the Low-Ti lava flows laterally, there is a 

Low-Ti dominated section in both the central islands and Sandoy sections within the interval 

c. 100-400m above the Argir Beds. There is no evidence to suggest that this sequence does 

not form a laterally continuous extension of the main Low-Ti sequences found to the NE and 

so a continuous flow field is inferred. Within this main band of Low-Ti lava flows only three 

flows of different composition are inter-digitated with the sequence, including two High-Ti1 

and one High-Ti3 lava flows. These samples provide evidence for continued eruption of these 

magmas during this period dominated by Low-Ti eruptions. A second occurrence of 

contaminated Low-Ti lava flows occurs within this main Low-Ti interval at the base of the 

Nólsoy profile. Outside of this main sequence of Low-Ti lava flows, two further Low-Ti 

samples occur away from the NE islands section. The first sits directly above the Argir Beds 

at Fossdalur, and may correlate back to the main NE profiles. The second occurs isolated 

within the Sandoy profile. No Low-Ti lava flows are observed in the upper half of both the 

central islands and Sandoy profiles suggesting that these lava flows were displaced by the 

build-up of a more proximally erupted High-Ti flow field within this area at this time.  

High-Ti1 lava flows are generally dominant in the basal parts of the central islands 

and Sandoy sample profiles but are also sporadically present in the NE islands section 
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forming the only high TiO2 representatives in that profile. In the NE Viðoy profile two High-

Ti1 lavas are found either side of Transitional group lava flows below the Argir Beds surface 

and then a single isolated flow is also found near the top of the same section. The lower two 

lava flows may potentially be traced back to the larger package of High-Ti1 lava flows that 

dominate the Fossdalur section below the Argir Beds surface, however, the upper flow must 

again represent a laterally discontinuous flow that does not reach the profile slightly further to 

the SE. In the basal parts of the central islands and Sandoy sections, High-Ti1 lava flows 

become inter-digitated with Low-Ti and High-Ti2 flows prior to the last High-Ti1 flow at c. 

200 m above the Argir Beds.  

Each compositional group dominates the eruptive sequence for short periods with the 

flow group thickness variations between the profiles suggesting that the High-Ti1 and High-

Ti2 lava flows became progressively focused towards the south, whilst the Low-Ti lava flows 

in contrast became dominant in the north. The distribution data for the High-Ti1 and High-

Ti2 lava flows clearly indicates that they were being erupted coeval to the Low-Ti lava flows, 

but were more prevalent in the south. In contrast, they largely preceded the eruption of High-

Ti3 lava flows and entirely preceded the eruption of High-Ti4 flows. Based on the current 

group subdivision parameters, High-Ti2 lava flows largely post-date High-Ti1 lava flows, 

however, some overlap existed between the two groups. Spatially, High-Ti2 flows appear to 

have been restricted to the central islands and Sandoy areas whereas High-Ti1 lava flows 

reached all parts of the study area albeit in lesser quantities to the north. 

High-Ti4 lava flows comprise the most spatially restricted group of the Enni 

Formation. The group dominates the interval c. 415-540 m above the Argir Beds on Sandoy 

within which no other lava groups are present. The only exception is a solitary High-Ti4 lava 

flow that is observed in the study area occurring at c. 300 m in the Nólsoy Profile. The 

surrounding lava flows and correlation panel make the joining of this sample to the main 
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Sandoy group relatively straightforward and so it appears that the High-Ti4 lava flows were 

erupted during a distinct temporally and spatially constrained interval in the southern area of 

the Faroe Islands. 

High-Ti3 lava flows also define a spatially and stratigraphically well constrained 

interval. Aside from a single isolated lava flow found in the Sandoy profile below a package 

of Low-Ti and High-Ti1 lava flows, High-Ti3 flows dominate the final stages of the Enni 

Formation eruptions in the central islands and Sandoy localities. The base of the High-Ti3 

lava flows in the Sandoy profile is ~240 m higher than the base of the sequence in the central 

islands, relative to the Argir Beds. This may be explained, in part, by the much thicker 

sequence of High-Ti4 lava flows present on Sandoy compared to the central islands section, 

c.100 m difference, potentially representing a constructional edifice focused towards the 

south. This still leaves c.140 m difference between the two sections. Interestingly, the tie 

lines for all proposed chemical correlations between the central islands and Sandoy display a 

progressive increase from c. 60 m to c. 120 m to c. 240 m difference with increasing 

stratigraphic height. This could imply that the proposed offset for the Skopunarfjørður fault, 

c. 200-300 m down-faulting to the south between Nólsoy and Sandoy (Passey, 2009; Passey 

& Varming, 2010), may be larger than predicted. The progressive increase in offset could 

also be the result of syn-eruptive faulting or alternatively reflect variations in eruption sites 

during this time, in line with the proposed development of competing shallow shield 

volcanoes during this time as suggested by Jolley & Passey (2013). 

All of the Transitional lava flows are found in close association to Low-Ti lava flows 

aside from one sample in the Nólsoy profile which occurs c. 100 m above the last Low-Ti 

sample, postdating three significant interbeds and three separate High-Ti lava packages. In all 

but two instances, these Transitional lava flows are also found within c. 60 m of High-Ti lava 

flows. These stratigraphic associations appear consistent with subsurface mixing. 
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In the study area, weak crustal contamination signatures are only found in association 

with the Low-Ti lava flows. These occur in two distinct locations within the stratigraphy, 

below the Argir Beds in the NE islands profile (-150 m to -230 m) and also towards the base 

of the Nólsoy profile in the central islands area (130 m to 170 m). Both occurrences are found 

associated with interbeds of variable thickness supporting evidence for eruption hiatuses at 

these times and therefore, extended magma chamber storage times potentially enabling 

greater crustal assimilation.  

In summary, the distribution patterns for the geochemically defined lava groups of the 

Enni Formation show a number of coherent spatial and temporal variations. As already 

reported in the literature (Waagstein, 1988; Passey & Jolley, 2009; Søager & Holm, 2011), 

the MORB-like Low TiO2 lava flows are dominant in the NE of the islands, but have also 

been found to form a continuous interval of lava flows throughout the entire FIBG study area. 

This sequence decreases in thickness from the NE to the central islands section, but remains 

essentially constant from there to the furthest south Sandoy profile. Minor inter-digitation 

between these Low-Ti lava flows and all but the High-Ti4 flows is observed over this 

interval. High-Ti lava groups are also present over the entire study area, but are 

volumetrically dominant towards the south. The distribution of High-Ti4 appears to be very 

localized and sourced to the south based on the available data. The top of the FIBG is 

dominated by Low-Ti lava flows in the NE and by High-Ti3 lavas in the central islands and 

Sandoy sections. From the current data, it is clear that the High-Ti3 lavas on Sandoy are 

stratigraphically higher than those of the Low-Ti lavas in the NE. The fact that the islands 

have undergone differential erosion means that it cannot be excluded that the Low-Ti lava 

flows may have been deposited in the NE at an equivalent time to those of the High-Ti3 lava 

flows in the south, however, based on the current study, High-Ti3 lava flows are the 

uppermost, and potentially youngest exposed remnants of the FIBG. 
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Discussion 

The Malinstindur and Enni formations have been correlated, based on basalt 

geochemistry, with the Milne Land Formation (Larsen et al., 1999) and subsequently the 

Geikie Plateau and Rømer Fjord Formations (Søager & Holm, 2009) of Central East 

Greenland. Isotopic studies by Søager & Holm (2009; 2011) identified that the main High-Ti 

and Low Ti groups found on the Faroe Islands comprise separate mantle sources, which they 

suggest are associated with zoned regions of both enriched and depleted material within a 

proto-Icelandic plume. The Malinstindur and Enni formations are thought to have been 

erupted rapidly in as little as 300,000 years (Passey & Jolley 2009), equivalent to the East 

Greenland succession above the layered Skaergaard intrusion (Larsen & Tegner, 2006). 

Important to the accuracy of these correlations, and to testing the correlative potential of lava 

flow geochemistry in general, are detailed investigations into the spatial and temporal 

evolution of lava chemical types. Within this study, the sample coverage within the final 

stages of the FIBG has been significantly extended. By integration of the new data with the 

published chemical divisions of Søager & Holm (2009; 2011), mapping of the separate 

sources, based on incompatible trace element systematics, has enabled the spatial and relative 

temporal distribution of these lava groups to be investigated across the Faroe Islands.  

A temporal progression from High-Ti1 to High-Ti2 to High-Ti3 lava types was 

identified from the sampling of Søager & Holm (2009) and used to infer a stratigraphic 

evolution similar to that of the Milne Land to Geikie Plateau to Rømer Fjord Formations of 

Central East Greenland (Larsen et al., 1989). In the current study, it is clearly identified that 

the High-Ti1 and High-T2 lava types are inter-digitated on the Faroe Islands. This 

demonstrates that these geochemical groups were erupted during overlapping time periods 

and, therefore, precludes their correlation at the chronostratigraphic formation level. A 
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similar progression in magmatic dynamics that fed the FIBG and East Greenland lava piles is 

not precluded, and on the contrary, appears most likely (Søager & Holm, 2009), the change 

was simply progressive in contrast to being temporally distinct. 

The progression from High-Ti2 to High-Ti3 appears to be more stratigraphically 

constrained with only a single High-Ti3 lava flow being identified below the youngest 

package of the High-Ti2 lava flows within the Sandur section on Sandoy. This single flow 

may represent a short-lived precursor to the main eruption phase of the High-Ti3 lava flows.  

The distribution of the lava types on the Faroe Islands reveals a complex spatial and 

temporal stratigraphic evolution where any single stratigraphic profile within the c. 60 km 

extent will give a variably incomplete history if treated as a generalized chronostratigraphic 

chemical section. Given these constraints, the general progression from larger (High-Ti1 and 

High-Ti2) to smaller (High-Ti3 and High-Ti4) melt fractions identified from Central East 

Greenland and the Faroe Islands (Tegner et al. 1998; Søager & Holm 2009) appears to be 

broadly robust for the latter stages of the High-Ti Enni Formation groups. The key constraint 

identified from the current study is that the progression was not linear and the derived flow 

fields overlapped in space and time.  

The distribution of Low-Ti lavas within the Enni Formation of the FIBG display a 

number of interesting features. The data confirms the previously reported dominance of Low-

Ti lava flows towards the north of the Faroe Islands. The distribution of the Low-Ti lava 

flows compared to the High-Ti lava flow sequences varies through time, with the front 

between the different compositions moving significantly across the islands during the final 

stages of volcanism. During one interval, c. 200-300 m above the Argir Beds, the Low-Ti 

lava flows formed a continuous flow field across the entire exposed remnants of the FIBG 

potentially with implications for Low-Ti lavas reaching beyond into the Faroe Shetland Basin 

at this time. Prior to and after this southward excursion, the Low-Ti flow fields appear to 
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have been displaced northwards by the accumulation of extensive High-Ti lava flow fields, 

likely representing low angle shield volcanoes which appear to have been erupted further to 

the south. From the evidence outlined in this study along with the data from East Greenland 

(Larsen et al. 1999; Søager & Holm 2009; Waight & Baker 2012), it is clear that the Low-Ti 

and High-Ti lava flows were being produced and erupted simultaneously during this time. 

Waight & Baker (2012) and Søager & Holm (2009), both propose that the Low-Ti melts from 

East Greenland and the Faroe Islands respectively were derived from depleted components 

within the proto-Icelandic plume. 

If the broad correlation of High-Ti lava types is accepted, then at least two possible 

scenarios for the margin magmatic development at this time may be envisaged. Firstly, it 

could be that near identical High-Ti melting regimes occurred symmetrically on either side of 

a thinned lithospheric zone of Low-Ti melt production (e.g. Figure 10a) as proposed by 

Søager & Holm (2009; 2011). Alternatively, a situation could be envisaged whereby the 

High-Ti melts were being produced within a more continuous melting region, with the Low-

Ti lavas initially being fed into the High-Ti flow fields from an area of progressively thinning 

lithosphere to the west (e.g. Fig. 10b). A non-uniform rifting and thinning scenario could 

have been enhanced by the presence of a major transform zone between the Faroe Islands and 

the Blosseville Kyst region of East Greenland (e.g. Guarnieri, 2015). Such a feature could, 

therefore, have promoted earlier thinning of the lithosphere to the west and east of the Faroe 

Islands in the lead up to and early onset of rifting.  

In such a setting, longer melt columns producing the first locally sourced Low-Ti 

melts would have been initially restricted to the west and east of the Faroe Islands. At the 

same time, a semi-continuous region of High-Ti melt production, requiring relatively thicker 

lithosphere, could have existed across the fault zone between the FIBG and the Blosseville 

Kyst for longer, explaining the close similarities between the FIBG and East Greenland 
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successions without requiring independently near symmetrical melting regimes on either side 

of a continuous zone of Low-Ti melting.  

The proposed site of the proto-Icelandic anomaly under either central (Lawver & 

Müller, 1994), or central east (Torsvik et al., 2015) Greenland at the time, could also 

potentially raise questions as to the presence of symmetrical melt columns on either side of 

the rift system. Upwelling mantle material convecting along the base of the lithosphere from 

the anomaly source (e.g. Hartley et al., 2011), would have reached East Greenland first, but 

would then have had to pass through a High-Ti followed by Low-Ti melting regime prior to 

reaching the Faroe Islands, which does not appear to be supported by the isotopic evidence 

which suggests separate mantle sources for the Low and High-Ti samples (Søager & Holm, 

2009; 2011). We therefore tentatively suggest that the melting regions for the Low and High-

Ti suites were controlled by non-uniform thinning along the rift axis during the Late 

Palaeocene to Early Eocene. The lateral and vertical juxtaposition of the lava suites on both 

the Faroe Islands and East Greenland were fed by magmas sourced in separate melting 

regions which fed magmas in some cases potentially tens to hundreds of km laterally, either 

through the lithosphere, across the surface, or both, away from their original melting regions. 

Significant lateral migration of magma within volcanic rifted margin settings is becoming 

widely recognised within the literature, (e.g. Schofield et al., 2015; Magee et al., 2016), 

supporting a greater role for lateral migration and inter-digitation of associated magma 

geochemical signatures (e.g. Hole et al., 2015). 

No clear correspondence between flow facies type and chemical groups has been 

observed within the Enni Formation sample profiles. This suggests that the separate magma- 

suites did not impart a diagnostic or differentiable set of eruption dynamics onto the resulting 

lava flows, unlike for example in the cases of the older Malinstindur (compound braided lava 

dominated) and Beinisvørð (simple tabular lava dominated) Formations of the FIBG. The 
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resulting variations in the areal distribution of the separate lava flow facies within the Enni 

Formation, has imparted a strong facies control on the correlation potential of the separate 

magma types across the islands.  

These results have implications for the potential of lava chemistry as a tool for 

stratigraphic correlation within extrusive lava flow sequences, along with questioning the 

likely representativeness of individual vertical or composite profiles in similar settings. In 

many settings worldwide, correlation within extrusive lava flow packages in the sub-surface 

of LIPs forms an important requirement for resource management as for example in the case 

of both inter-lava (e.g. Schofield & Jolley, 2013; Ebinghaus et al., 2014) and intra-lava 

(Burns et al., 2012) hosted reservoirs. Geophysical logging data from boreholes penetrating 

volcanic intervals may in some cases provide useful information for attempting inter-well 

correlation based for example on gamma log variations which record the U, Th and K 

contents of separate flow packages and soil horizons (e.g. Buckley & Oliver, 1993; Helm-

Clark et al., 2004). However, in many other cases, the uniformly low primary gamma 

response of thick lava packages (e.g. Planke, 1994; Nelson et al., 2009; Millett et al., 2015) 

may limit the viability of geophysical means for borehole correlation, outside of facies 

characterization (e.g. Nelson et al., 2009) which, as demonstrated by this study, does not form 

a robust criteria for correlation by itself. Seismic data, where available forms the most 

commonly used method for sub-surface correlation, however, imaging challenges relating to 

the heterogeneous velocity, density and structure of thick volcanic sequences commonly 

results in poor resolution imaging of volcanic sequences (Davison et al., 2010). Where drill 

cuttings of sufficiently good quality (Millett et al., 2014), core or sidewall core data are 

available from boreholes, the chemical composition of thick lava sequences may be revealed 

(e.g. Millett et al., 2015). In such cases, lava flow geochemistry opens the potential for 

igneous geochemistry to play an important role in subsurface correlation. In the current study, 
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we highlight the importance of integrating volcanic facies with chemical stratigraphy to 

enable correlation within basaltic LIP sequences. Our results highlight the potential but also 

the limitations for chemical correlation where competing magmatic plumbing systems erupt 

mixed facies lava flows across extensive subaerial regions. The implications of the current 

study stretch beyond the FIBG and the NAIP and have general implications for field or sub-

surface correlations within large igneous province flow fields in general.  

 

Conclusions 

 By systematic stratigraphic sampling of the youngest preserved lava sequences of the 

Enni Formation, this study has investigated the temporal and spatial development of 

magmatism during the syn-rift volcanism. From this study the following conclusions may be 

drawn: 

1. Based on major and trace element systematics, one Low-Ti and four High-Ti lava 

groups are identified which cannot be related by simple upper crustal magmatic 

processes such as fractionation, contamination or crystal accumulation. 

2. Integration of sample profiles into a high resolution 3D ArcGIS model for the Faroe 

Islands, including the regionally extensive Argir Beds marker unit, has enabled 

detailed stratigraphic comparisons between the separate islands. 

3. Low-Ti lava flows dominate in the north of the islands, but at times formed a 

continuous flow field across the islands stretching south beyond the current FIBG 

exposures towards the Faroe-Shetland Basin. 

4. High-Ti lava flows dominate the central and southern Enni Formation and display a 

general progression from larger (High-Ti1 and High-Ti2) to smaller (High-Ti3 and 

High-Ti4) melt fractions consistent with the general progression identified from East 

Greenland. 
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5. Overlap in the progression of the lava flows from the four High-Ti groups suggests 

that they are not chronostratigraphically constrained and, therefore cannot be directly 

used as formation equivalents to East Greenland, albeit that the dominant progression 

appears broadly equivalent. 

6. Correlation is restricted to the local (10’s km scale) within the Enni Formation as a 

consequence of the number of chemically distinct magmatic systems and their mixed 

compound/tabular lava flow facies.  

7. The incursion of Low-Ti lava flows across the Faroe Islands accompanied the onset of 

significant lithospheric thinning and was also contemporaneous with High Ti lava 

flows produced beneath thicker lithosphere on the rift flanks of the Faroe Islands and 

East Greenland. 

8. The Low-Ti lava flows may have separated near identical High-Ti melt columns on 

either side of the rift, or alternatively, could have been fed across a broader area of 

still relatively thick lithosphere associated with a strike-slip zone between the FIBG 

and Blosseville Kyst region of East Greenland. 

 

Figure Captions 

Figure 1. a. Location map showing the position of the Faroe Islands within the North Atlantic 

Igneous Province (modified after Larsen et al. 1999), BPIP; British Palaeogene Igneous 

Province. b. Geological map of the Faroe Islands Basalt Group (FIBG) showing the distribution 

of the main formations (after Passey & Jolley 2009) and the sample locations from this study. c. 

Composite stratigraphic section through the FIBG (Passey & Jolley 2009). d. Field example of 

the Argir Beds outcropping on Sandoy. 

Figure 2. Summary facies logs for the sample profiles through the Enni Formation showing 

the volcanic facies type, sample locations and general petrographic properties of each 

sample transect relative to the Argir Beds 3D GIS surface.  
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Figure 3. a. Sample transect showing the location of the Argir Beds and hillside flow 

morphology examples from the sample transect up the Enni mountain on Viðoy, NE Faroe 

Islands. Solid lines represent sampling profiles, dashed line represents the tie-line between 

the two sample profiles. b. Cliff side examples of mixed simple (S) and compound (C) braided 

lava flow morphologies from the southern end of Svínoy. The occurrence of thin reddened 

volcaniclastic sedimentary units is significantly clearer in cliff sections compared to the 

weathered hillside section. c. Detail of the clear colour variations between differing 

compositions of lavas (in this example brown-weathering: Low-Ti; pale weathering: High-

Ti1) exposed in the upper section of the sample profile on Viðoy (Fig. 3.a). d. Annotated 

close-up examples of compound and simple lava flow facies from Svínoy (Fig. 3.b). 

Figure 4. Selected major and trace element plots for the Enni Formation. a. Mobile elements 

Sr ppm and K2O wt.% versus incompatible Zr ppm for different LOI wt.% ranges. b. Al2O3 

wt.% versus MgO wt. % with vectors showing the effect of An70 plagioclase addition. c. P2O5 

wt.% versus Zr ppm displays a strong linear regression intersecting the origin. d. Ba/Zr 

versus SiO2 wt.% with the range of data from variably crustally contaminated ODP Leg 152 

basalts plotted for comparison (Larsen et al., 1998). All presented major element data has 

been recalculated to 100 wt. % on a dry basis with a fixed oxidation ratio of Fe2O3/FeO = 

0.15. 

Figure 5. Selected major elements (wt. %) plotted versus Mg# (100* atomic Mg2+/ 

(Mg2++Fe2+)). Petrolog3 (Danyushevsky, 2001) liquid line-of-descent forward models for 

crystallization of Enni low TiO2 primary magma for sample GL-1-11 at variable pressures 

are shown for CaO vs. Mg#. Details of the calculation of primary magma to sample GL-1-11 

are given in Hole & Millett, (2016).  The primary magma was formed at a mantle potential 

temperature TP = 1551°C and represents an accumulated melt fraction of 0.27. The initial 

pressure of the intersection of the dry peridotite solidus was 4.5 GPa and the final pressure 
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of melting was 2.8 GPa.  Petrolog3 model parameters; olivine – melt KD, Beattie (1993); 

plagioclase – melt KD and clinopyroxene – melt KD, Danyuchevsky (2001); QFM buffer, 

Borisov & Shapkin (1990). All presented major element data has been recalculated to 100 wt. 

% on a dry basis with a fixed oxidation ratio of Fe2O3/FeO = 0.15. 

Figure 6. Nb and Y versus Zr along with Y versus Nb and Nb/Y versus V for the Enni 

Formation lava flows. Lines display constant inter-element ratios intersecting the origin for 

separate groups. Data fields from Søager & Holm (2009 & 2011) are presented for 

comparison. 

Figure 7. a. REE multi-element plot showing representative samples from the main chemical 

groups, all elements normalized to primitive mantle (PM) after McDonough & Sun (1995). b. 

PM normalised Dy/Ybn versus La/Ybn for the Enni Formation groups. Curves show non-modal 

incremental batch melting of a slightly depleted PM source, from a nominal starting composition 

of 75% PM (McDonough & Sun (1995) + 25% DMM (Workman & Hart 2005). 2% melt was 

retained within the residue after each 1% melting increment. Initial mineral modes for PM and 

DMM are from Fram & Lesher (1993) and Workman & Hart (2005) respectively. Partition 

coefficients for olivine (ol), clinopyroxene (cpx), orthopyroxene (opx) and garnet (gt) are from 

Halliday et al. (1995) and those for spinel (sp) are from McKenzie & O’Nions (1991). Arbitrary 

mixing lines between the garnet+spinel and spinel field melts are plotted to demonstrate the 

potential contributions from separate depth regions. The non-modal batch melting models and 

mixing lines derived by Waight & Baker (2012) for East Greenland Low-Ti melts are presented 

in pale blue as a closer representation for the MORB-like Low-Ti lava flows. Crosses display 1% 

increments on the melting lines and 10% increments on the mixing lines. Inset displays extension 

of same plot. 

Figure 8. Geochemical stratigraphic correlation panel for the late stage FIBG development. 

Breaks in the solid colour bars next to each stratigraphic section represent intervals where 

the samples comprise high LOI, high Al2O3, are undefined or where exposure gaps were 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

encountered. Where high LOI and Al2O3 samples fit into one of the main groups, this is 

noted within the supplementary data. The correlation tie lines therefore represent a minimum 

complexity scenario in each case. 

Figure 9. Schematic representation of selected flow field features which may restrict the 

lateral continuity of lava flows or flow groups.  

Figure 10. Simplified conceptual cross sections highlighting possible variations in melt 

production localization between East Greenland and the Faroe Islands during the syn-rift 

phase development. A. Scenario displaying a region of Low-Ti melt generation beneath 

thinned lithosphere separating two near-symmetrical regions of High-Ti melting. Inset map 

showing continuous zone of Low-Ti melt production between the Faroe Islands and East 

Greenland (base map after Jolley & Morton, 2007). B. Non-uniform thinning scenario 

whereby thinning is focused to the west of the Faroe Islands during early rifting, allowing a 

near-continuous zone of High-Ti melt production beneath thickened lithosphere between the 

Faroe Islands and East Greenland prior to full continental rupture. 

Table 1. Selected XRF major and trace element data and ICP-MS REE data for examples from each of 

the main chemical groups. Full analyses for all samples including international reference runs are 

available within the online supplementary resources. 

Table 2. Chemical criteria used for distinguishing the separate chemical groups within this 

study. 
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Table 1. Selected XRF major and trace element data and ICP-MS REE data for the main chemical groups. 

Sample SV12-

1-13 GL-1-16 SN-3-3 VD12-1-6 EY12-1-

8 SN-1-2 GL-1-8 SD12-

1-1 
NY-1-

2 
SD12-

1-18 
SD12-

1-9 TJ1-5 HM1-1 

Island Svínoy Streymoy Sandoy 

(Sandur) Viðoy Eysturoy Sandoy 

(Sandur) Streymoy Sandoy 

(Dalur) Nólsoy Sandoy 

(Dalur) 
Sandoy 

(Dalur) 

Nolsoy 

(Tjørnunes-1 

borehole) 

Nolsoy 

(Høsmøl-1 

borehole) 

Distance 

to Argir 

Beds (m) 
215 197 253 -164 18 2 100 372 335 680 459 302 338 

Group Low-

Ti Low-Ti Low-Ti Low-Ti 

(contaminated) 
High-

Ti1 High-Ti1 High-Ti2 High-

Ti2 
High-

Ti3 
High-

Ti3 
High-

Ti4 High-Ti4 Transitional 

XRF 

majors              
SiO2 48.25 47.50 49.01 51.60 47.82 48.66 46.63 48.03 47.63 46.54 46.45 46.20 48.51 

TiO2 0.99 1.10 1.41 1.02 2.86 3.05 2.43 2.46 2.82 3.25 3.92 3.93 1.63 

Al2O3 14.86 14.82 14.15 15.70 13.92 13.84 14.76 13.60 14.70 14.49 13.00 12.74 13.72 

Fe2O3 11.91 11.99 12.90 9.84 14.16 15.18 14.30 14.83 13.78 14.57 17.07 17.40 13.83 

MnO 0.18 0.18 0.19 0.16 0.20 0.20 0.19 0.21 0.19 0.19 0.23 0.24 0.21 

MgO 8.49 8.39 7.66 6.88 5.89 6.23 6.32 6.55 7.24 6.01 5.95 5.96 6.90 

CaO 12.57 12.17 12.19 10.00 8.95 10.16 10.85 10.99 10.81 10.99 10.70 10.70 11.73 

Na2O 1.84 1.83 1.99 2.09 3.42 2.78 2.16 2.33 2.34 2.43 2.12 2.46 2.36 

K2O 0.10 0.12 0.24 0.94 0.21 0.36 0.22 0.33 0.31 0.17 0.23 0.25 0.16 

P2O5 0.07 0.08 0.11 0.11 0.25 0.27 0.20 0.22 0.28 0.29 0.34 0.37 0.14 

LOI 0.49 1.42 1.35 1.06 1.78 0.00 1.64 0.08 0.26 0.52 0.00 -0.28 0.02 

Total 99.74 99.61 101.19 99.40 99.45 100.75 99.70 99.64 100.35 99.44 100.01 99.97 99.21 

XRF 

traces              
Rb 1 0 3 10 2 3 3 4 6 1 4 1.9 1 

Sr 102 112 111 181 242 280 235 228 276 316 226 222 169 

Y 26.1 25.4 32.6 24.6 36.1 37.9 32.4 33.3 30.2 35.1 49.0 49.9 29.6 

Zr 53 59 76 99 192 198 151 147 172 199 239 248.8 103.2 

Nb 2.0 2.6 3.5 3.9 14.6 15.5 11.7 12.2 20.1 22.1 23.0 22.9 8.2 

Ba 22 19 29 208 78 112 60 68 86 83 89 106.6 53.9 

Pb 2 1 3 3 2 4 4 1 3 3 6 9.4 4.1 

Th 0 2 3 3 2 3 2 3 4 4 3 0.6 4.4 

U 1 0 1 1 2 1 2 2 2 2 3 1.4 0 

Sc 47 46 49 34 35 38 36 43 32 36 43 44.4 44.2 

V 301 300 364 231 399 411 371 382 330 379 476 458.9 393.8 

Cr 359 351 266 227 90 150 143 160 225 153 125 138.6 156.6 

Co 48 43 43 39 35 39 37 43 44 41 40 32.8 38.7 

Ni 131 121 114 83 73 94 97 87 133 95 93 86.8 87.1 

Cu 148 106 187 77 116 196 206 221 198 253 338 324.6 176.9 

Zn 73 69 77 67 101 111 94 102 97 106 130 127.7 87.8 

Ga 17 17 18 21 21 24 21 24 22 22 25 23.9 19.5 

ICP-MS 

REE 
  

         
  La 1.54 1.78 2.35 

 

13.34 13.89 10.53 11.08 15.12 16.96 18.57 18.99 6.59 

Ce 4.63 5.31 6.81 

 

34.11 35.33 27.93 28.02 37.76 41.99 47.21 47.31 16.06 

Pr 0.86 1.00 1.26 

 

5.11 5.27 4.13 4.17 5.33 6.02 6.77 6.90 2.49 

Nd 5.06 5.90 7.44 

 

24.13 24.88 19.23 19.36 23.62 27.20 31.02 31.81 12.08 
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Sm 2.17 2.31 2.99 

 

6.46 6.56 5.30 5.32 5.87 6.86 8.09 8.31 3.55 

Eu 0.88 0.92 1.12 

 

2.12 2.15 1.83 1.78 1.96 2.21 2.45 2.48 1.25 

Gd 3.24 3.30 4.15 

 

6.97 6.98 5.80 5.85 6.04 7.01 8.70 8.68 4.22 

Tb 0.62 0.62 0.78 

 

1.11 1.14 0.95 0.96 0.94 1.11 1.42 1.45 0.76 

Dy 4.12 4.02 5.00 

 

6.46 6.47 5.48 5.71 5.38 6.30 8.31 8.38 4.65 

Ho 0.92 0.88 1.09 

 

1.30 1.30 1.09 1.19 1.06 1.27 1.71 1.72 1.01 

Er 2.66 2.49 3.10 

 

3.47 3.41 3.00 3.23 2.86 3.34 4.69 4.69 2.89 

Yb 2.44 2.20 2.77 

 

2.86 2.80 2.56 2.81 2.35 2.77 4.05 3.99 2.56 

Lu 0.35 0.33 0.40 

 

0.40 0.40 0.36 0.40 0.33 0.39 0.58 0.58 0.38 
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Table 2. Chemical criteria used for distinguishing the separate chemical groups within 

this study. 

Chemical group Distinguishing criteria 

Low-Ti Zr/Y < 2.6, TiO2 < 1.5 wt% and La/Smn <0.6. 

High-Ti1 Zr/Nb 12.1-15, Nb/Y 0.34-0.43, Zr/Y 4.95-5.4 and TiO2 2.7-3.8 wt% 

High-Ti2 Zr/Nb 10.4-13.3, Nb/Y 0.34-0.43, Zr/Y 4.4-5 and TiO2 2-2.6 wt% 

High-Ti3 Zr/Nb 8.5-10.6, Nb/Y 0.47-0.66, V < 420ppm and TiO2 2.8-3.6 wt% 

High-Ti4 Zr/Nb 9.8-10.9, Nb/Y 0.45-0.52, V > 450ppm and TiO2 3.79-4 wt% 
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Highlights 

 New stratigraphically constrained major and trace element data from the Enni Formation of 

the Faroe Islands are presented  

 One Low-Ti and four High-Ti melt groups are identified based on trace element signatures 

and linked to the East Greenland stratigraphy 

 Chemical correlation potential in large igneous provinces is strongly affected by facies 

architecture 

 Non-uniform lithospheric thinning during continental rupture may have delayed the onset of 

Low-Ti melting between the Faroe Islands and East Greenland  


