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Originality-Significance Statement 

Archaeal lipids are frequently used as biomarkers in biogeochemistry and microbial ecology, 

with applications ranging from chemotaxonomic characterization and stable isotope probing 

of uncultured and ‘unculturable’ microbial communities to the reconstruction of climatic 

conditions from ancient sediments. Interpretation of these lipid profiles relies on detailed 

knowledge of lipid composition and membrane adjustment mechanisms in cultivated 

archaea. However, the detailed intact polar lipid compositions of widely distributed 

Thaumarchaeota are yet not well characterized. Here we describe in detail the lipidomes of 

ten established thaumarchaeal cultures from soils, hydrothermal springs, and the ocean in 

order to uncover the chemotaxonomic potential of thaumarchaeal lipids as specific 

biomarkers and potential adaptation strategies employed by this environmentally relevant 

archaeal phylum.  
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Summary 

Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse 

habitats and thus represent a major source of archaeal lipids. The scope of lipids as 

taxonomic markers in microbial ecological studies is limited by the scarcity of comparative 

data on the membrane lipid composition of cultivated representatives, including the phylum 

Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) 

inventory of ten ammonia-oxidizing thaumarchaeal cultures representing all four 

characterized phylogenetic clades. IPLs of these thaumarchaeal strains are generally similar 

and consist of membrane-spanning, glycerol dibiphytanyl glycerol tetraethers with 

monoglycosyl, diglycosyl, phosphohexose and hexose-phosphohexose headgroups. 

However, the relative abundances of these IPLs and their core lipid compositions differ 

systematically between the phylogenetic subgroups, indicating high potential for 

chemotaxonomic distinction of thaumarchaeal clades. Comparative lipidomic analyses of 19 

euryarchaeal and crenarchaeal strains suggested that the lipid methoxy archaeol is 

synthesized exclusively by Thaumarchaeota and may thus represent a diagnostic lipid 

biomarker for this phylum. The unprecedented diversity of the thaumarchaeal lipidome with 

118 different lipids suggests that membrane lipid composition and adaptation mechanisms in 

Thaumarchaeota are more complex than previously thought and include unique lipids with as 

yet unresolved properties.  
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Introduction 

Archaea of the phylum Thaumarchaeota are globally distributed microorganisms accounting 

for up to 20% of the picoplankton in the oceans (Karner et al., 2001; Schattenhofer et al., 

2009) and 1-5% of the prokaryotes in soil (Ochsenreiter et al., 2003; Brochier-Armanet et al., 

2008; Lehtovirta et al., 2009; Stahl and de la Torre, 2012). Following the isolation of the first 

representative Ca. Nitrosopumilus maritimus (Könneke et al., 2005), Thaumarchaeota have 

become recognized as major contributors to ammonia oxidation in a wide range of habitats 

including the marine water column and sediment as well as terrestrial, limnic, and geothermal 

systems (Francis et al., 2005; Leininger et al., 2006; Auguet and Casamayor, 2008; de la 

Torre et al., 2008; Hatzenpichler et al., 2008; Prosser and Nicol, 2008; Reigstad et al., 2008; 

Dodsworth et al., 2011; Lehtovirta-Morley et al., 2011). All characterized Thaumarchaeota 

are chemolithoautotrophs generating energy by the oxidation of ammonia to nitrite (Stahl and 

de la Torre, 2012) and fixing CO2 via a hydroxypropionate/hydroxybutyrate cycle (Walker et 

al., 2010; Könneke et al., 2014). The phylum Thaumarchaeota is commonly subdivided into 

several subgroups based on ammonia monooxygenase subunit A (amoA) and 16S rRNA 

gene phylogenies that broadly correlate with habitat types (Fig. 1; Brochier-Armanet et al., 

2008; Spang et al., 2010; Pester et al., 2011; Stahl and de la Torre, 2012). Ca. N. maritimus 

as well as most marine thaumarchaeal sequences, and to a lesser extent soil and lacustrine 

sequences, are affiliated with Group 1.1a (Fig. 1; Francis et al., 2005; Könneke et al., 2005; 

Pester et al., 2012; Stahl and de la Torre, 2012). The SAGMCG-1/Nitrosotalea cluster 

represents a sister group of the Group 1.1a Thaumarchaeota comprising environmental 

sequences from soils and lakes as well as two acidophilic isolates from soil, Ca. Nitrosotalea 

devanaterra and Ca. Nitrosotalea sp. strain Nd2 (Fig. 1; Lehtovirta-Morley et al., 2011, 2014; 

Stahl and de la Torre, 2012; Auguet and Casamayor, 2013). While Group 1.1a 

Thaumarchaeota are also found in soils (e.g., Pester et al., 2011), most sequences from soils 

and other terrestrial environments as well as the isolate Nitrososphaera viennensis (Tourna 

et al., 2011; Stieglmeier et al., 2014) are affiliated with Group 1.1b (Fig. 1; Bintrim et al., 

1997; DeLong, 1998; Stahl and de la Torre, 2012). Additionally, Group 1.1a and 1.1b both 
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contain moderate thermophiles such as Ca. Nitrosotenuis uzonensis and Ca. Nitrososphaera 

gargensis, which grow in a temperature range of 28-52 °C and 35-46 °C, respectively 

(Hatzenpichler et al., 2008; Lebedeva et al., 2013). However, the only cultivated obligate 

thermophile is Ca. Nitrosocaldus yellowstonii (Fig. 1; ThAOA/HWCG-III cluster), which was 

enriched from a Yellowstone hot spring and grows in a temperature range of 60 °C to 74 °C 

(de la Torre et al., 2008). Furthermore, cultivation-independent surveys indicate that several 

additional lineages of Thaumarchaeota occur in the environment for which no cultivated 

representative and limited observational data exist (Schleper et al., 2005; Nicol and 

Schleper, 2006; Stahl and de la Torre, 2012). 

Detection of Thaumarchaeota in the environment is commonly achieved by PCR-based 

marker gene surveys or metagenomic approaches (Ochsenreiter et al., 2003; Francis et al., 

2005) and the analysis of characteristic glycerol dibiphytanyl glycerol tetraether (GDGT, Fig. 

2) membrane lipids (e.g., Leininger et al., 2006; Coolen et al., 2007; Wakeham et al., 2007; 

Schouten et al., 2012). While providing lower taxonomic resolution than molecular biological 

techniques, lipid analysis offers PCR-independent, qualitative and quantitative analysis of 

major clades of Archaea and Bacteria (Sturt et al., 2004). Additionally, carbon isotopic 

analysis of microbial lipids enables insights into predominant metabolisms and activity of 

microorganisms (Hinrichs et al., 1999; Pearson et al., 2001; Biddle et al., 2006; Schubotz et 

al., 2011). GDGTs from planktonic Thaumarchaeota accumulate in sediments and are 

broadly used by geochemists for reconstructing past sea surface temperatures using the 

TEX86 paleothermometer, which is based on temperature-dependent variations in GDGT 

alkyl-chain cyclization (Schouten et al., 2002). Application of these lipid-based approaches to 

complex environmental samples relies on detailed knowledge of the phylogenetic distribution 

of characteristic marker lipids as well as functional and ecological constraints. However, only 

a limited set of lipids, consisting mainly of monoglycosidic, diglycosidic and 

glycophosphatidic GDGTs was reported from cultivated marine and terrestrial 

Thaumarchaeota (Schouten et al., 2008; Pitcher et al., 2011; Sinninghe Damsté et al., 2012).  
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Hitherto, relative abundances of intact polar lipid (IPL) classes as well as their corresponding 

core lipid compositions have been examined in only few Thaumarchaeota. The mesophilic 

marine pure culture Ca. N. maritimus and two related strains have been studied in detail 

(Elling et al., 2014, 2015) by recently developed analytical methods that allow the 

simultaneous quantification of relative abundances of individual IPL classes as well as their 

core GDGT composition (Zhu et al., 2013). For instance, the Ca. N. maritimus lipidome 

analyzed with these methods revealed higher lipid diversity than previously recognized for 

any thaumarchaeon, including major abundances of diether lipids as well as a novel putative 

biomarker for Thaumarchaeota, methoxy archaeol (Elling et al., 2014, 2015). Application of 

these methods to recently cultivated thaumarchaeal cultures from a broad range of habitats 

will enable the screening for novel lipid biomarkers. Furthermore, the characterization of the 

lipid inventory in cultivated Thaumarchaeota will facilitate the interpretation of IPLs 

abundantly detected in environmental samples and their assignment to potential source 

organisms. 

Results 

In this study, we dissected the lipidome of cultivated Thaumarchaeota representing the four 

main phylogenetic subgroups and originating from soils, hydrothermal springs and the 

ocean’s surface water. Thaumarchaeal pure or enrichment cultures were grown in multiple 

laboratories as batch cultures and harvested in late exponential or early stationary phase. 

Using state-of-the-art ultra-high performance liquid chromatography (UPLC) connected to 

ultra-high resolution quadrupole time-of-flight tandem mass spectrometer (MS), the lipid 

inventories of seven previously analyzed strains were significantly extended and the lipid 

compositions of three thaumarchaeal strains were analyzed for the first time (Fig. 3). Relative 

abundances of core and intact polar lipids are tabulated in Table 1 and S1 as well as in the 

supplementary data file. Hierarchical cluster analysis was performed separately on the core 

and intact polar lipid abundances to investigate the relationships between the lipidomes of 

the ten thaumarchaeal strains (Fig. 4). Simpson diversity indices were calculated based on 
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full lipid diversity including individual cyclized core and intact polar GDGTs, respectively 

(Table 1, Fig. S2). The influence of conservative growth parameters (temperature, pH, 

salinity) on lipid composition were investigated by multivariate statistics, including 

redundancy analysis (RDA, assuming a linear model), constrained correspondence analysis 

(CCA, assuming a unimodal model with potential to capture bimodal distributions; Ramette, 

2007), and non-metric multidimensional scaling (NMDS). Results of statistical analyses are 

described separately below for core/apolar and intact polar lipids. 

Common patterns in the lipidomes of cultivated Thaumarchaeota 

A total of 118 individual lipids, representing either core lipids or IPLs or quinones, were 

identified in the ten analyzed thaumarchaeal cultures (Fig. 3, S1). Forty lipid compounds 

were common to all thaumarchaeal strains, while 11 compounds were unique to Group 1.1b 

Thaumarchaeota, 27 compounds were found only in Group 1.1a Thaumarchaeota and there 

were no unique compounds in the SAGMCG-1 and HWCG-III groups (Fig. 3). The most 

complex and diverse lipid inventory was found within the Group 1.1a Thaumarchaeota, 

represented by five marine isolates of the genus Nitrosopumilus, with a total number of 86 

distinct compounds. This diversity does not represent an artifact from the higher number of 

analyzed Group 1.1a Thaumarchaeota compared to the other clades, as all Group 1.1a 

strains produce the same lipid types. The thaumarchaeal lipidome comprises as core lipids, 

among others, acyclic and cyclized GDGTs, glycerol dialkanol diethers (GDDs) and 

archaeols. Common lipid headgroups were monoglycosyl (1G), diglycosyl (2G), hexose-

phosphohexose (HPH), and phosphohexose (PH) and the affiliation of these headgroups 

with cyclized GDGTs varied systematically between strains (Fig. 5).  

Core and apolar lipids  

Analysis of the core lipid fractions derived from hydrolysis of total lipids revealed distinct 

distributions of glycerol diphytanyl diethers (archaeols, AR), GDGTs, hydroxylated GDGTs 

(OH-GDGTs), and glycerol trialkyl glycerol tetraethers (GTGTs, for structures refer to Fig. 2; 
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De Rosa et al., 1983) among the investigated cultures. Major core lipid types found in all 

thaumarchaeal strains were GDGTs with zero to four cyclopentane moieties (GDGT-0 to 

GDGT-4), crenarchaeol (a GDGT containing four cyclopentane moieties and one 

cyclohexane moiety) and methoxy archaeol (MeO-AR). Up to four isomers of each GDGT, 

with so far unresolved stereochemistry, were eluted before and after the typical GDGT peaks 

(Pitcher et al., 2011; Sinninghe Damsté et al., 2012; Becker et al., 2013; Elling et al., 2014). 

The relative abundances of these isomers varied systematically between the thaumarchaeal 

clades (Fig. 6), e.g., the GDGT-2a isomer was more abundant than GDGT-2 in Group 1.1b 

while GDGT-2 was dominant in Group 1.1a Thaumarchaeota (Fig. 6c). MeO-GDGTs were 

detected as trace components (<0.1%) in all strains. Acyclic GTGT (GTGT-0) and 

monounsaturated GTGT-0 (GTGT-0:1; Elling et al., 2014) were detected in all thaumarchaeal 

strains. A GTGT with one cyclopentane moiety was detected in N. viennensis strains EN76 

and EN123. GTGTs with 1-4 cyclopentane moieties were detected in Ca. N. gargensis and 

Ca. N. yellowstonii. The ring-containing GTGTs could be distinguished from unsaturated 

GTGTs by their elution order in reversed phase UPLC, i.e., ring-containing GTGTs eluted 

after the acyclic saturated GTGT while unsaturated GTGTs eluted prior to the acyclic 

saturated GTGT, analogously to unsaturated and ring-containing GDGTs (cf. Zhu et al., 

2013). Ring indices and TEX86 calculated from total GDGTs (excluding isomers other than 

the crenarchaeol regioisomer) differed significantly between the cultures (Table 1); both 

variables were linearly correlated with growth temperature across the different strains when 

data from Ca. N. yellowstonii was excluded (Fig. S2). Group 1.1b Thaumarchaeota showed 

the highest ring indices (4.3-4.8) and TEX86 values (0.97-0.99). The lowest ring index and 

TEX86 values were observed in strain NAOA6 (2.7) and Ca. Nitrosocaldus yellowstonii, 

respectively (0.61). 

Among the forty shared compounds of the thaumarchaeal lipidome, MeO-AR was identified 

as one of the most abundant lipid compounds, accounting for up to 20% in the acidophilic 

thaumarchaeon Ca. N. devanaterra and for 2-11% in the marine strains (Table 1). 

Comparative analysis of 19 cultured representatives of the phyla Crenarchaeota and 
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Euryarchaeota, with lipids extracted and analyzed using the same protocols, revealed that 

MeO-AR, like crenarchaeol, was synthesized exclusively by members of the phylum 

Thaumarchaeota (Table 2). In contrast, GDGT and GTGT biosynthesis was a common, but 

not universal, trait among the three archaeal phyla (Table 2). 

Cluster analysis indicated that the distribution of core lipid types among Thaumarchaeota is 

dependent on phylogeny (Fig. 4). The core lipid compositions of all Group 1.1a 

Thaumarchaeota were closely related to each other with relatively similar distributions of core 

GDGTs, low crenarchaeol regioisomer contents and the occurrence of OH-GDGTs; the 

distributions of these compounds were distinct from the other thaumarchaeal lineages. 

Similarly, MeO-AR contents were higher in Group 1.1a than in most other Thaumarchaeota. 

The low abundance of OH-GDGT core lipids in contrast to the high abundances of IPLs with 

OH-GDGT core structures is likely related to the loss of the hydroxyl group during acid 

hydrolysis (Liu et al., 2012b; Sinninghe Damsté et al., 2012).  

The core lipid composition of the soil thaumarchaeon Ca. N. devanaterra was very similar to 

that of Group 1.1a strains and thus reflected the phylogenetic position of this thaumarchaeon 

in a sister clade of Group 1.1a, SAGMCG-1. However, Ca. N. devanaterra was distinct from 

1.1a Thaumarchaeota by exhibiting higher abundances of GDGT-4 and MeO-AR. In contrast 

to Group 1.1a cultures, the lipidomes of Group 1.1b Thaumarchaeota were highly divergent. 

The two investigated Group 1.1b Thaumarchaeota from soil, N. viennensis strains EN76 and 

EN123, were characterized by high abundances of GDGT-4, the crenarchaeol regioisomer, 

and GDDs. In contrast, the lipidome of the moderately thermophilic Group 1.1b 

thaumarchaeon Ca. N. gargensis was nearly completely composed of crenarchaeol and its 

regioisomer. The thermophilic Thaumarchaeota of the HWCG-III cluster were distinct from 

the other thaumarchaeal clades due to GTGTs being their dominant core lipids as well as 

relatively high amounts of crenarchaeol compared to the other GDGTs.  

CCA and RDA indicated temperature and salinity as major factors driving core lipid 

composition (Fig. S4a, Table S2-S5), with RDA yielding lower explanatory power, potentially 
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indicating non-linearity. In particular, high salinity was associated with high relative 

abundances of GDGT-0 through GDGT-2 and OH-GDGTs while high temperature was 

associated with GTGTs. The strong correlation of core lipid composition with salinity is not 

observed in single Group 1.1a species grown at different salinities (Elling et al., 2015) and 

might thus reflect a phylogenetic or physiological divide between Group 1.1a and other 

Thaumarchaeota.  

Intact polar lipids (IPLs) and respiratory quinones 

Reversed phase UPLC-MS analyses revealed a high diversity of IPLs among the 

investigated thaumarchaeal strains (Fig. 4b, S1). The major IPLs in all strains were GDGTs 

with monoglycosyl (1G), diglycosyl (2G), phosphohexose (PH) and hexose-phosphohexose 

(HPH) headgroups. However, small amounts of intact polar archaeols with 1G and PH 

headgroups were detected in all thaumarchaeal strains, while no intact polar GTGTs were 

observed. 2G-GDGTs and 2G-OH-GDGTs each consisted of two series of isomers that were 

separated chromatographically but yielded similar MS2 fragmentation spectra (Elling et al., 

2014; Fig. S1). Intact polar GDGTs containing modified glycosidic headgroups, such as 

methylated- (1MeG-1G- and 1MeG-2G-GDGTs) and deoxy-sugars (1deoxyG-GDGTs), were 

detected as trace components in some Thaumarchaeota (Fig. 3). In addition, minor amounts 

of OH-GDDs were detected in the total lipid extracts of all investigated Group 1.1a 

Thaumarchaeota as well as Ca. N. devanaterra, but were not detected in the hydrolyzed lipid 

extracts. Two isoprenoid naphthoquinones were detected in all thaumarchaeal strains and 

were identified as menaquinones with fully unsaturated (MK6:0) and monounsaturated (MK6:1) 

side chains composed of six isoprenoid units (Elling et al., 2016). While the relative 

abundances of these quinones varied between different strains, MK6:0 was more abundant 

than MK6:1 in all thaumarchaeal strains (Table S1). 

In contrast to the core lipids, cluster analysis of the IPLs indicated that the thaumarchaeal 

strains could be divided into three major groups related to habitat type/growth conditions 

(Fig. 4): terrestrial thermophiles, marine mesophiles, and soil mesophiles. The terrestrial 
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thermophiles were characterized by relatively high abundances of 1G-GDGTs and HPH-

GDGTs as well as intact polar archaeols. All marine mesophiles shared high abundances of 

2G-GDGTs and 2G-OH-GDGTs compared to the other Thaumarchaeota, while HPH-GDGTs 

were abundant only in some strains. The soil Thaumarchaeota (N. viennensis EN76 and 

EN123, Ca. N. devanaterra) were characterized by high relative abundances of 1G-GDGTs 

and 2G-GDGTs as well as 1G-GDDs in N. viennensis. While these groupings were in part 

related to phylogeny (e.g., all investigated marine mesophiles are Group 1.1a 

Thaumarchaeota), the distinct clustering suggests that IPL composition in Thaumarchaeota 

may reflect habitat type, i.e., combined effects of a set of environmental constraints. 

However, neither RDA, CCA, or NMDS revealed significant correlations of relative 

abundances of major IPL groups or individual IPLs with temperature, pH, or salinity. This 

implies that IPL modification patterns are not consistent across major clades and may only 

be assessed in distinct sub-clades or species.  

Discussion 

Chemotaxonomic characteristics of the thaumarchaeal lipidome 

We discovered an unprecedented diversity of membrane lipids in the phylum 

Thaumarchaeota and extended the thaumarchaeal lipidome by characterizing 118 

structurally different lipids. Despite the overall similarity in the types of lipids synthesized by 

the major thaumarchaeal clades, membrane lipid composition varies widely among 

phylogenetic clades and thus our study supports the potential of thaumarchaeal membrane 

lipids as chemotaxonomic markers and their application in microbial ecology. The 

interpretation of the lipid profiles reported here is limited by the fact that replicate cultures 

were available only for some strains (N. maritimus SCM1, NAOA2, NAOA6). However, 

duplicate cultivation and our previous studies show that lipid relative abundances and TEX86 

are reproducible (Elling et al., 2014, 2015). The variability between batches, including all 

biological and analytical artifacts, is lower (<10%, Fig. S3) than the variability observed 

between major clades of Thaumarchaeota and among most Group 1.1a strains (Fig. 4). The 
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compositions of growth media were kept as similar as possible, with all Group 1.1a 

Thaumarchaeota grown on the same medium and the other strains grown on media derived 

from SCM, with only small variations owing to pH, salinity and specific growth requirements 

(e.g., supplementation of pyruvate to Nitrososphaera spp. media). Importantly, the chemical 

species of essential nutrients, such as phosphorous (as KH2PO4), nitrogen (as NH4Cl), sulfur 

(as SO4
2-), and inorganic carbon (as NaHCO3) were identical and provided in a similar 

concentration range. In contrast, changes in environmental parameters and growth state 

(Elling et al., 2014, 2015; Qin et al., 2015; Hurley et al., 2016) could significantly blur 

differences in lipid abundances between thaumarchaeal clades. Additionally, the effects of 

low levels of bacterial contaminants in the studied enrichment cultures are not known. 

Considering these limitations, we emphasize that the lipid profiles shown here reflect the 

capacities of each strain under optimal laboratory conditions. 

Comparison of the ten investigated lipidomes indicates that the core lipid compositions of 

Thaumarchaeota reflect their affiliation with phylogenetic subgroups (Fig. 4a). In contrast, 

IPLs appear to reflect the habitat type or growth conditions (Fig. 4b), but this assessment 

hinges on the placement of just two strains, Ca. N. gargensis and Ca. N. devanaterra, while it 

is not driven by the large number of marine Group 1.1a Thaumarchaeota, which all originate 

from a marine habitat. Future analysis of Group 1.1a Thaumarchaeota from soil (e.g., Ca. 

Nitrosoarchaeum koreensis; Jung et al., 2011) and hot springs (Ca. N. uzonensis; Lebedeva 

et al., 2013) may allow evaluation of whether thaumarchaeal IPLs may be used as habitat-

specific biomarkers. 

In most thaumarchaeal strains investigated here, 1G-GDGTs are the most abundant IPLs. 

Similarly, 1G-GDGTs, in particular 1G-crenarchaeol, are often the most abundant archaeal 

lipids detected in the marine water column (Schubotz et al., 2009; Schouten et al., 2012; 

Wakeham et al., 2012; Basse et al., 2014; Xie et al., 2014). However, 1G-GDGTs have been 

suggested to be more refractory than 2G- and HPH-GDGTs when released into the 

environment after cell lysis, and may therefore be less suitable for tracing living biomass than 

Page 12 of 43

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



 

13 

 

other thaumarchaeal polar lipids (e.g., Schouten et al., 2012). Relatively high abundances of 

HPH-GDGTs during growth of Ca. N. maritimus compared to the stationary phase suggest 

that HPH-GDGTs might be indicators of metabolically active Thaumarchaeota (Elling et al., 

2014). Examination of the five marine planktonic thaumarchaeal strains in our dataset 

indicates that HPH-GDGT abundances are highly variable in Group 1.1a Thaumarchaeota 

(Fig. 4), i.e., the dominant thaumarchaeal clade in the ocean. Therefore, changes in HPH-

GDGT abundances in the marine water column might not only be related to thaumarchaeal 

abundances and metabolic activity but may also reflect changes in thaumarchaeal 

community composition. Thus, 2G-GDGTs and 2G-OH-GDGTs seem to be most suitable for 

tracing planktonic thaumarchaeal biomass due to their high relative abundances in all strains. 

OH-GDGTs and their intact polar derivatives appear to be exclusively synthesized by Group 

1.1a (Fig. 3 and 4), consistent with previous investigations in soil and sedimentary 

thaumarchaeal cultures (Pitcher et al., 2011; Sinninghe Damsté et al., 2012), and appear to 

be well suited for tracing this group in aquatic settings. Complimentary analysis of the 

thermophile Ca. N. uzonensis could reveal whether OH-GDGTs are specific for mesophilic 

Group 1.1a Thaumarchaeota or if they are a common feature of this thaumarchaeal clade. 

Thaumarchaeal communities in soil are commonly dominated by Group 1.1b 

Thaumarchaeota related to N. viennensis (e.g., Pester et al., 2012), but the distribution of 

Thaumarchaeota related to Ca. N. devanaterra (SAGMCG-1 cluster) may largely be 

restricted to acidic soils (e.g., Gubry-Rangin et al., 2011). Both clades may be distinguishable 

in environmental samples by their distinct lipid compositions. While both groups synthesize 

predominantly 1G-GDGTs with GDGT-4 and crenarchaeol as core lipids, Ca. N. devanaterra 

synthesizes 2G-GDGTs predominantly with GDGT-3 as the core lipid, in contrast to 2G-

GDGT with GDGT-4 in N. viennensis (Fig. 5). Furthermore, N. viennensis contains high 

abundances of 1G- and 2G-derivatives of the crenarchaeol regioisomer as well as 1G-GDDs, 

while Ca. N. devanaterra contains high proportions of MeO-AR (Fig. 4, Table 1). Additionally, 

small amounts of 3G-GDGTs are found only in Group 1.1b Thaumarchaeota.  
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Thermophilic Thaumarchaeota associated with the HWCG-III cluster and Group 1.1b have 

overall similar IPL profiles but are distinguished by the high abundance of the crenarchaeol 

regioisomer in Group 1.1b Thaumarchaeota and high abundances of acyclic and ring-

containing GTGTs in HWCG-III Thaumarchaeota. The high abundances of GTGTs in 

HWCG-III Thaumarchaeota are unprecedented among cultivated archaea (Table 2; cf. De 

Rosa and Gambacorta, 1988; Knappy et al., 2011, 2015; Feyhl-Buska et al., 2016) and have 

previously been interpreted to reflect sub-optimal growth conditions of Ca. N. yellowstonii (cf. 

de la Torre et al., 2008). However, growth conditions for Ca. N yellowstonii were optimal in 

our experiment and cells were harvested during late growth phase (Fig. S5). The role of 

GTGTs remains unresolved but their high abundance might represent a unique characteristic 

of this thermophilic thaumarchaeal clade. Alternatively, GTGTs could represent intermediates 

or side products of GDGT biosynthesis formed by incomplete side chain linkage of two 

archaeol moieties (cf. Pearson, 2014). Furthermore, Ca. N. gargensis (Group 1.1b) 

synthesizes trace amounts of intact polar GDGTs with a combination of methylated and non-

methylated glycosidic headgroups (1MeG-1G- and 1MeG-2G-GDGTs; cf. Pitcher et al., 

2010), which were not detected in any other characterized thaumarchaeal strain. 

High abundances of core and 1G-GDDs are characteristic of both N. viennensis strains and 

distinguish them from other Thaumarchaeota. GDD core lipids were initially detected in 

marine sediments (Knappy and Keely, 2012; Liu et al., 2012a, 2012c) and in soils (Yang et 

al., 2014; Coffinet et al., 2015). Because of their chemical structure, GDDs have been 

discussed to represent either intermediates of GDGT biosynthesis (Liu et al., 2012a; Meador 

et al., 2014b; Villanueva et al., 2014) or degradation products of GDGTs (Knappy and Keely, 

2012; Liu et al., 2012a, 2016; Yang et al., 2014). GDDs were also reported in several 

methanogens (Liu et al., 2012a; Bauersachs et al., 2015) and as 1G-GDDs in Ca. N. 

maritimus (Elling et al., 2014; Meador et al., 2014b). The abundance of 1G-GDDs in various 

thaumarchaeal cultures indicates that GDDs may be regular membrane components and that 

IPL-GDDs detected in marine sediments and soils may thus originate from living 

Thaumarchaeota. 
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Diagnostic lipid biomarkers for Thaumarchaeota 

Comparison of the thaumarchaeal lipidome with the lipid inventory of 19 crenarchaeal and 

euryarchaeal species revealed that Thaumarchaeota harbor distinct biomarkers as well as 

lipids common to all archaea. 

Regarding unique lipid compounds with potential to serve as biomarker for the phylum 

Thaumarchaeota, our study confirmed the presence of crenarchaeol, a well-established lipid 

biomarker initially reported to occur in pelagic archaea (Sinninghe Damsté et al., 2002, 2012; 

Pitcher et al., 2011), in all thaumarchaeal but not in any euryarchaeal or crenarchaeal 

species investigated (Table 2). It has previously been suggested that crenarchaeol and other 

GDGTs are also produced by uncultured Marine Group 2 Euryarchaeota based on the co-

variation of 16S rRNA gene and GDGT abundances at Hawaii Ocean Time-series Station 

ALOHA (Lincoln et al., 2014a). However, the relative contributions of Marine Group 1 

Thaumarchaeota and Marine Group 2 Euryarchaeota to the marine GDGT pool remain 

disputed (Lincoln et al., 2014b; Schouten et al., 2014). All analyzed thaumarchaeal strains 

synthesized the same suite of respiratory quinones, the menaquinones MK6:0 and MK6:1 

(Table 2, S1). While MK6:0 and MK6:1 are minor quinones in some thermophilic Crenarchaeota 

(e.g., Desulfurococcales) and Euryarchaeota (e.g., Archaeoglobales), they have not been 

detected in other cultivated mesophilic archaea (Elling et al., 2016). Therefore, these 

menaquinones, especially when dominating quinone distributions, may be regarded as 

biomarkers for the phylum Thaumarchaeota in low-temperature marine and terrestrial 

habitats.  

The apolar lipid MeO-AR (Elling et al., 2014) was present in all investigated thaumarchaeal 

strains but not in any analyzed crenarchaeal or euryarchaeal species (Table 2). Hence, 

MeO-AR has a high potential as a diagnostic biomarker for members of the phylum 

Thaumarchaeota. Because of its relatively high abundance in Group 1.1a Thaumarchaeota 

(Table 1), MeO-AR could be used for determining the contribution of Thaumarchaeota to 

total archaeal biomass, e.g., by relating the abundance of MeO-AR to that of archaeol, a 
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universal archaeal lipid biomarker (Table 2). In contrast to the core GDGT crenarchaeol, 

MeO-AR represents a major thaumarchaeal lipid that can be analyzed by gas 

chromatography, e.g., for isotopic analysis without the need of previous ether cleavage or 

derivatization. 

In addition to lipids specific for the phylum Thaumarchaeota, we found at least minor 

amounts of archaeol in all investigated archaea (Fig. 4). This finding contrasts with those of 

prior studies that did not report the occurrence of archaeol in most cultivated 

Thaumarchaeota, including some of the same strain studied here (Pitcher et al., 2011; 

Sinninghe Damsté et al., 2012; Villanueva et al., 2014; Lehtovirta-Morley et al., 2016). 

Instead, our results, combined with previously published data (Shimada et al., 2002; Koga 

and Morii, 2005; Tarui et al., 2007), indicate that archaeol may be regarded as a universal 

lipid of the domain Archaea. 

Implications for the TEX86 paleotemperature proxy 

Fossil core GDGTs of marine planktonic Thaumarchaeota preserved in sediments are 

valuable biomarkers for reconstructing ancient ocean temperatures using the TEX86 index. 

This proxy is based on the fact that many thermophilic archaea, and by extension also 

mesophilic Thaumarchaeota, regulate GDGT cyclization in response to temperature (De 

Rosa et al., 1980; Schouten et al., 2002; Oger and Cario, 2013, and references therein). The 

specific ratio indexed in TEX86, i.e., the relative abundances of GDGT-2 and GDGT-3 versus 

GDGT-1 through GDGT-3 and the crenarchaeol regioisomer, found in core-top sediments 

yielded the best correlation with sea surface temperature (Schouten et al., 2002). In the 

strains studied here, the weak linear correlation between TEX86 and temperature contrasted 

with the more robust relationship between GDGT cyclization and temperature (Table 1, Fig. 

S2), suggesting that the TEX86 ratio does not uniformly reflect membrane response to 

temperature across a diverse group of marine and non-marine Thaumarchaeota. Similarly, 

previous studies have shown that TEX86-temperature relationships (slopes and offsets) differ 

even among closely related Group 1.1a Thaumarchaeota (Elling et al., 2015; Qin et al., 2015; 
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Zhu et al., 2016). Taken together, these observations indicate that the deviations and scatter  

in the environmental TEX86 signal and global calibration could be driven both by deviations  

from optimum growth conditions and differences in community composition.   

Moreover, in the marine and terrestrial mesophilic Thaumarchaeota studied here, each intact  

polar GDGT class is preferentially associated with specific core GDGTs (Fig. 5). Differences  

in degradation rates of intact polar GDGTs (e.g., phosphatidic versus glycosidic; Logemann  

et al., 2011; Schouten et al., 2012; Xie et al., 2013) may influence the release rates of core  

GDGTs from their polar precursors and thus impact the TEX86 index (cf. Elling et al., 2014).  

Although degradation rates of intact polar GDGTs remain unknown, ocean or lake surface  

temperatures may be significantly overestimated in environments with high terrigenous input,  

either due to the higher relative abundance of the crenarchaeol regioisomer in soil Group  

1.1b versus marine Group 1.1a Thaumarchaeota (Fig. 4a), as previously demonstrated for  

the Yellow river (Wu et al., 2014), or due to the higher ratio of GDGT-3 over GDGT-2 in  

Group 1.1b (Fig. 5). Terrigenous input of GDGTs could be identified based on the profound  

differences in the distribution of GDGT isomers among the major thaumarchaeal clades (Fig.  

6) and its effect on TEX86 could be reduced by employing advanced chromatographic  

methods that allow separate quantification of GDGT isomers (e.g., Becker et al., 2013;  

Hopmans et al., 2016), which co-elute using standard methods.  

Patterns in thaumarchaeal membrane lipid adaptation  

Thaumarchaeota inhabit a broad range of habitats covering large gradients of temperature  

(~-2-97 °C; DeLong et al., 1994; Murray et al., 1998; Reigstad et al., 2008), salinity  

(freshwater to hypersaline; Auguet et al., 2010; Ngugi et al., 2015), and pH (~2-8; Nicol et al.,  

2008; Reigstad et al., 2008; Lehtovirta-Morley et al., 2011) and thus must employ a variety of  

mechanisms for regulating optimal membrane functionality.   

In contrast to the prevalence of bilayer-forming archaeols in other mesophilic archaea (Koga  

and Morii, 2005), all thaumarchaeal species studied here contain membrane-spanning  
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GDGTs as their dominant lipids (Table 1, S1). These isoprenoid lipids form monolayer-

membranes with highly reduced water and proton permeability compared to (non-isoprenoid) 

bilayer membranes (Yamauchi et al., 1993; van de Vossenberg et al., 1998; Mathai et al., 

2001; Konings et al., 2002), thus maximizing the maintenance of proton motive force and 

facilitating pH homeostasis (van de Vossenberg et al., 1998; Van de Vossenberg et al., 1998; 

Baker-Austin and Dopson, 2007; Boyd et al., 2011). Cycloalkylation of GDGTs further 

reduces membrane fluidity and proton permeability by enabling higher packing densities 

(Chong, 2010, and references therein).  

The high degree of GDGT cycloalkylation (ring index) observed in Thaumarchaeota even at 

mesophilic growth temperatures (Table 1) may reflect a physiological response to reduce the 

requirement of reducing equivalents from reverse electron flow at low respiration rates 

(Hurley et al. 2016). In addition, membranes with a high proportion of cyclic GDGTs offer a 

high efficiency to maintain the chemiosmotic potential, owing to the low energetic yield of 

ammonia oxidation (Valentine, 2007).  

Similar to thermophilic Euryarchaeota and Crenarchaeota (De Rosa et al., 1980; Oger & 

Cario 2013, and references therein), Thaumarchaeota acclimatize to high temperatures by 

further increasing GDGT cycloalkylation (Elling et al., 2015). Accordingly, the thermophiles 

Ca. N. yellowstonii and Ca. N. gargensis contain the highest abundances of crenarchaeol 

relative to other GDGTs (Table S1). However, the highest ring indices were not observed in 

Ca. N. yellowstonii, the thaumarchaeal culture grown at the highest temperatures (72 °C), but 

in the Group 1.1b Thaumarchaeota N. viennensis (37 °C) and Ca. N. gargensis (46 °C; Table 

S1, Fig. S2). These three species each contain high abundances of specific lipids with 

unknown properties (e.g., GTGTs, crenarchaeol regioisomer; Fig. 4, Table S1), suggesting 

that membrane lipid adjustment strategies may vary greatly between thaumarchaeal 

phylotypes. Analogously to temperature, the high abundance of GDGT-4 in Ca. N. 

devanaterra has previously been suggested to reflect acclimatization to low pH by lowering 

proton permeability (Lehtovirta-Morley et al., 2016). However, GDGT-4 is similarly abundant 
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in the neutrophile N. viennensis (Fig 4a), indicating that high GDGT-4 abundance may not 

represent a specific response to low pH. Still, the ring indices of Ca. N. devanaterra are 

higher than those of the investigated, neutrophilic 1.1a Thaumarchaeota (Table 1), 

suggesting that like in other archaea, an increase in overall GDGT cycloalkylation in 

Thaumarchaeota is a common membrane modification mechanism to minimize permeability 

to protons and other ions in response to a number of physico-chemical and physiological 

stressors (temperature, pH, energy limitation). 

On the phylum level, temperature appears to be a defining parameter of the thaumarchaeal 

lipidome: Simpson Diversity indices calculated from the relative abundances of all core lipid-

headgroup combinations are inversely correlated with (optimal) growth temperatures (Table, 

Fig. S2 and S4b). Further, controlling for either pH or temperature during CCA (Table S6, S7) 

showed that both factors could explain similar amounts of variance, suggesting that both 

factors may simultaneously influence lipid diversity, although not linearly. This relationship is 

analogous to inverse correlations between genome size and optimal growth temperature 

(Sabath et al., 2013). The causality behind genomic size reduction in thermophiles remains 

unclear, but may be related to reduced cell size and associated reduced maintenance energy 

expenditure (Sabath et al., 2013; Giovannoni et al., 2014). Similarly, requirements for 

membrane stability and optimized proton permeability may constrain lipid diversity of 

Thaumarchaeota (cf. Valentine, 2007) and may represent a phenotypic expression of 

genomic streamlining. Alternatively, the correlation may represent an artifact resulting either 

from the phylogenetic dependency of the strains studied here or from the differential genomic 

capabilities to biosynthesize lipids such as OH-GDGTs, which may have evolved or may 

have been lost after divergence of the major thaumarchaeal clades. Further research into the 

relationship between lipid diversity and temperature should include multiple, yet-to-be-

isolated thermophiles from all major thaumarchaeal clades and could be expanded by 

including other archaeal phyla, bacteria, or environmental samples. 

In contrast to other archaea (e.g., Langworthy, 1977; Shimada et al., 2002; Koga and Morii, 

2005; Meador et al., 2014a; Becker et al., 2016), the phylum Thaumarchaeota exhibits very 
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low polar headgroup diversity. Further, all studied Thaumarchaeota predominantly 

synthesize glycosidic rather than glycophosphatidic and phosphatidic headgroups, although 

all cultures were grown with sufficient phosphate. Collectively, these characteristics indicate 

that Thaumarchaeota have a reduced biosynthetic demand for phosphorous and are thus 

well adapted to oligotrophic conditions. This hypothesis is supported by  the observation that 

glycosidic GDGTs predominate over phosphatidic GDGTs in the marine water column 

(Schouten et al., 2012; Basse et al., 2014; Xie et al., 2014). 

Several key differences in membrane lipid composition between the major thaumarchaeal 

clades may represent additional, ecosystem-specific adaptation mechanisms. For instance, 

MeO-AR abundance is non-linearly related to temperature across the major phylogenetic 

clades (Fig. S2). Incorporation of the apolar lipid MeO-AR into the membrane of mesophilic 

Thaumarchaeota might represent a mechanism for increasing membrane fluidity at low 

temperatures in a similar way as squalene may increase membrane fluidity in halophilic 

archaea by spacing polar lipids further apart (Lanyi, 1974; Lanyi et al., 1974). Similarly, 

based on molecular dynamics modeling (Huguet et al., 2017) and the observation of high 

relative abundances in high-latitudes (Huguet et al., 2013), OH-GDGTs have been proposed 

to increase membrane fluidity in marine planktonic Thaumarchaeota. While relative 

abundances of OH-GDGTs vary between the strains, they are not related to temperature 

either across the strains studied here (Fig. S4, S9) or in single strains grown at temperatures 

between 18 °C and 35 °C (Elling et al., 2015). Thus, the correlations between temperature 

and OH-GDGT abundance apparent in environmental data could relate to complex effects 

such as latitudinal shifts in community composition or could be limited to yet uncultured 

psychrophilic Thaumarchaeota. Thus, membrane regulation mechanisms in Thaumarchaeota 

appear to be more complex than previously thought and may involve many additional lipids 

with unresolved properties, such as OH-GDGTs, MeO-AR, GTGTs, GDDs and the 

crenarchaeol regioisomer.  

Experimental procedures 
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Cultivation and lipid extraction 

Ca. Nitrosopumilus maritimus strain SCM1 (origin: Seattle Aquarium, USA; Könneke et al., 

2005) and Nitrosopumilus spp. strains NAOA2 and NAOA6 pure cultures (Elling et al., 2015) 

were grown in duplicate at 28 °C in 8.5 l of pH 7.5 HEPES-buffered SCM medium 

supplemented with 1.5 mM NH4Cl as described previously (Könneke et al., 2005; Martens-

Habbena et al., 2009). Cultures were harvested in early stationary phase. 

Ca. Nitrosopumilus piranensis strain D3C and Ca. Nitrosopumilus adriaticus strain NF5 

enrichment cultures (Northern Adriatic Sea surface water; Bayer et al., 2016), were grown at 

30 °C in 2 l of pH 7.2 HEPES-buffered SCM supplemented with 1 mM NH4Cl and harvested 

in late exponential phase.  

A Ca. Nitrososphaera gargensis strain Ga9.2 enrichment culture (Garga hot spring, Russia; 

Hatzenpichler et al., 2008) was grown at 35 °C and 46 °C in 5 l of a pH 7.8 freshwater 

medium (1 mM NH4Cl) as described previously (Elling et al., 2016) and harvested in 

stationary phase. 

Nitrososphaera viennensis strains EN76 (DSM 26422) pure and EN123 enrichment cultures 

(Tourna et al., 2011) were grown at 37 °C in 15-l batch cultures in pH 7.5 HEPES-buffered 

freshwater medium modified from Tourna et al. (Tourna et al., 2011) by addition of 1.5 mM 

pyruvate and 3 mM NH4Cl and slight stirring (150 rpm). N. viennensis biomass was 

harvested in growth phase. 

A Ca. Nitrosotalea devanaterra Nd1 pure culture (acidic soil, Aberdeen, UK; Lehtovirta-

Morley et al., 2014) was grown in batch culture at 25 °C and pH 5.4 in a synthetic medium 

(0.5 mM NH4Cl) modified from Lehtovirta-Morley et al. (2011) by addition of 0.08 g l-1 of 

casamino acids and 1 µM phthalate buffer solution. Ca. N. devanaterra biomass was 

harvested in stationary phase. 

A Ca. Nitrosocaldus yellowstonii strain HL72 enrichment culture (hot spring, Yellowstone 

National Park, USA; de la Torre et al., 2008) was grown in batch culture at 72 °C and pH ~7 
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in 3 l of a synthetic freshwater medium (1 mM NH4Cl), modified from de la Torre et al. (2008) 

by addition of 1 mM pH 7.5 MOPS buffer, with a headspace of 80% N2, 20% CO2, and 2.5 ml 

of 100% O2. Ca. N. yellowstonii biomass was harvested in late growth phase. 

Ca. N. maritimus, strains NAOA2 and NAOA6, and Ca. N. gargensis cultures were harvested 

using a Sartocon Slice cross-flow filtration system (Sartorius, Göttingen, Germany) and 

subsequent centrifugation (Könneke et al., 2014). Ca. N. devanaterra, N. viennensis, Ca. N. 

piranensis, Ca. N. adriaticus, and Ca. N. yellowstonii were harvested by centrifugation and 

subsequently lyophilized.  

Cultivation procedures of crenarchaeal and euryarchaeal species are described in Elling et 

al. (2016). 

The cell pellets were stored at -20 °C until extraction. Lipids from each batch were extracted 

following a modified Bligh & Dyer protocol (Sturt et al., 2004) using a monophasic mixture of 

methanol, dichloromethane, and aqueous buffer (2:1:0.8, v:v:v) and an ultrasonic probe (15 

min sonication; HD2200, Bandelin Electronic, Berlin, Germany). A 50 mM phosphate buffer 

(pH 7.4) was used for the first two extractions while a 50 mM trichloroacetic acid buffer (pH 

2) was used for two additional extractions as described by Sturt et al. (2004). 

Intact polar and core lipid analysis 

Intact polar and core lipids were quantified by injecting 10-20% of the total lipid extract (TLE) 

dissolved in methanol on a Dionex Ultimate 3000 ultra-high performance liquid 

chromatography (UPLC) system connected to a Bruker maXis Ultra-High Resolution 

quadrupole time-of-flight tandem mass spectrometer (MS) equipped with an electrospray 

ionization (ESI) ion source operating in positive mode (Bruker Daltonik, Bremen, Germany). 

The MS was set to a resolving power of 27,000 at m/z 1,222 and each analysis was mass-

calibrated by loop injections of a calibration standard and correction by lock mass, leading to 

a mass accuracy of typically less than 1 ppm (Becker et al., 2013; Zhu et al., 2013). Ion 

source and other MS parameters were optimized by infusion of standards (GDGT-0, 1G-

GDGT-0, 2G-GDGT-0) into the eluent flow from the UPLC system using a T-piece. 
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Analyte separation was achieved using reversed phase UPLC on an ACE3 C18 column (2.1 × 

150 mm, 3 µm particle size, Advanced Chromatography Technologies, Aberdeen, Scotland) 

maintained at 45 °C as described previously (Zhu et al., 2013).  

To determine abundances of core lipid structures relative to total lipids as well as ring index 

and TEX86 of total GDGTs, 10% of the TLE was hydrolyzed with 1 M HCl in methanol at 70 

°C for 3 h to yield core lipids (Elling et al., 2014). The hydrolyzed TLE was then analyzed on 

the same UPLC-MS system under different chromatographic conditions using normal phase 

separation and positive mode atmospheric pressure chemical ionization (APCI) as described 

previously (Becker et al., 2013).  

Lipids were identified by retention time as well as accurate molecular mass and isotope 

pattern match of proposed sum formulas in full scan mode and MS2 fragment spectra. 

Integration of peaks was performed on extracted ion chromatograms of ±10 mDa width and 

included the [M+H]+ ions for normal phase UPLC-MS and additionally [M+NH4]
+ and [M+Na]+ 

ions for reversed phase UPLC-MS. Where applicable, double charged ions were included in 

the integration.  

Lipid abundances were corrected for response factors of commercially available as well as 

purified standards as described previously (Elling et al., 2014). GDGT isomers were summed 

for calculating relative abundances and ring index, while TEX86
H was calculated using only 

the isomer that is dominant in marine sediments, as recommended by (Schouten et al., 

2009). The TEX86
H index was calculated after Schouten et al. (2002) and Kim et al. (2010) 

using the peak areas of GDGT-1, GDGT-2, GDGT-3 and crenarchaeol regioisomer (Cren’), 

with the digit indicating the number of cycloalkyl moieties: 

TEX86
H = log �GDGT-2�+�GDGT-3�+�Cren'�

�GDGT-1�+�GDGT-2�+�GDGT-3�+�Cren'�
     (Eq. 1) 

TEX86
H reconstructed temperatures were calculated using the core-top calibration of Kim et 

al. (2010) recommended for temperatures above 15 °C (TEX86
H): 

SST = 68.4 ×	TEX86
H + 38.6        (Eq. 2) 
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To evaluate GDGT cyclization, we calculated the ring index (RI) according to Pearson et al. 

(2004):  

RI = �GDGT-1�	�	�	×	�GDGT-2�	�	�	×	�GDGT-3�	�	 	×	�GDGT-4�	�	!	×	�Cren	+	Cren'�

�GDGT-0�	�	�GDGT-1�	�	�GDGT-2�	�	�GDGT-3�	�	�GDGT-4�	�	�Cren	�	()*+,�
   (Eq. 3) 

Phylogenetic analysis 

16S rRNA gene sequences were aligned using ClustalW implemented in BioEdit Sequence 

Alignment Editor (Hall, 1999) before removing regions of ambiguous alignment, leaving 1133 

positions. Phylogenetic analyses were performed using General Time Reversible-corrected 

maximum-likelihood (PhyML, Guindon and Gascuel, 2003), parsimony (MEGA5, Tamura et 

al., 2011) and Tamura’s 3-parameter pairwise distance analysis (MEGA5). Where 

appropriate, analyses used estimated variable sites only with gamma-distributed site 

variation and bootstrap support for all methods was calculated 1000 times. 

Statistical analyses 

Cluster analyses were performed on the relative abundances of core lipids (after hydrolysis) 

and intact polar lipids (all core lipid-headgroup combinations including individual cyclized 

GDGTs)  in Matlab R2012b using a Euclidean distance metric and average distance linking. 

Non-metric multidimensional scaling, constrained correspondence, and redundancy analyses 

were performed in R (version 3.3.1; R Core Team, 2013) using the vegan package (version 

2.4.2; Oksanen et al., 2017). Independent variables (temperature, pH, salinity) were z-score 

standardized for constrained correspondence and redundancy analyses. Lipid relative 

abundances or lipid indices were used as dependent variables for all statistical analyses. 

Significance of results from constrained correspondence analyses was tested using the 

anova function of the vegan package. 

Simpson Diversity indices (D) were calculated after Simpson (1949) using relative 

abundances of core lipid-headgroup combinations for each strain (Meador et al., 2014a): 

- = 1 −	∑ 0relative	abundance92::;
<=:         (Eq. 4)  
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The value of the Simpson Diversity Index ranges from 0 (no diversity) to 1 (high diversity). 
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Figure captions 

Fig. 1. Maximum-likelihood phylogenetic analysis of 16S rRNA genes of organisms analyzed 

in this study (in bold) combined with other cultivated Thaumarchaeota with sequenced 

genomes placed with four major AOA lineages. Analyses were performed on 1133 

unambiguously aligned positions and values at major nodes represent the most conservative 

bootstrap support from three methods of analysis (ML, parsimony and distance). The scale 

bar represents 0.05 changes per nucleotide position.  

Fig. 2. Structures of thaumarchaeal glycerol dibiphytanyl glycerol tetraether (GDGT) and 

glycerol diphytanyl diether (archaeol) core lipids (adapted from Elling et al., 2015). GDGTs 

may contain up to four cyclopentane rings or one cyclohexane and four cyclopentane rings 

(crenarchaeol). Derivatives comprise GDGTs containing one (OH-GDGT) or two (2OH-

GDGT) additional hydroxyl groups and zero to four cyclopentane rings in the biphytanyl side 

chain, acyclic or monocyclic glycerol trialkyl glycerol tetraether (GTGT), zero to five ring-

bearing glycerol dialkanol diethers (GDDs) as well as GDGT and archaeol containing a 

methoxy group at the sn-1 position of the glycerol moiety (MeO-GDGT and MeO-AR). 

Monounsaturated (MK6:1) and saturated menaquinone-6 (MK6:0) are isoprenoidal membrane-

soluble electron carriers. Thaumarchaeal intact polar lipids consist of one or two glycosidic or 

glycophosphatidic headgroups attached to the glycerol sn-1 hydroxyl position of a diether or 

tetraether core lipid. 

Fig. 3. Distribution of 118 lipids among the lipidomes of the four major phylogenetic 

subgroups of the phylum Thaumarchaeota with cultivated representatives (based on 

analyses of ten thaumarchaeal cultures). 

Fig. 4. Cluster analyses of the relative abundances of (A) major core lipids (including 

isomers) and (B) intact polar lipid types in ten thaumarchaeal strains (N. gargensis grown at 
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46 °C). Phylogenetically closely related strains share high similarity in their core lipid 

composition, while cultures from similar habitats show close relatedness in their intact polar 

lipid compositions.  

Fig. 5. Distribution of GDGT structural types in the major thaumarchaeal intact polar lipid 

classes 1G-GDGT, 2G-GDGT, 2G-OH-GDGT, and HPH-GDGT as well as in total GDGTs 

derived from hydrolysis in ten cultivated thaumarchaeal strains (N. gargensis grown at 46 °C) 

as well as average composition for Group 1.1a and 1.1b. 

Fig. 6. (A) Extracted ion chromatograms showing elution of GDGT-1, -2, -3, -4, crenarchaeol 

and their isomers (a, b, c, cren‘) in a UPLC-APCI-MS analysis of a Nitrosopumilus maritimus 

total lipid extract harvested in early growth phase (not used for panels B-F, intensity not to 

scale). Uncolored peaks in each chromatogram represent +2 Da isotope peaks of the 

respective lighter GDGT. (B to F) Relative abundances of GDGT-1, -2, -3, -4, and 

crenarchaeol and their isomers in thaumarchaeal hydrolyzed total lipid extracts as 

determined using UPLC-APCI-MS (means of duplicate cultures).  
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Table 1. Abundances of archaeol (AR), methoxy archaeol (MeO-AR), summed crenarchaeol 
and regioisomer (cren + cren’) in thaumarchaeal cultures relative to total lipids derived by 
acid hydrolysis as well as GDGT cyclization degree (ring index), TEX86

H and calculated 
TEX86

H-temperature in total hydrolysis-derived GDGTs (measured using normal phase 
UPLC-APCI-MS), and growth medium parameters (salinity estimated from total weight of 
salts added to the medium). Simpson diversity was calculated based on full lipid diversity 
including individual cyclized core and intact polar GDGTs, respectively, as determined by 
UPLC-ESI-MS. N/A: not available. 

 
Growth 

temperature 
(°C) 

Growth 
pH 

NH4
+ 

(mM) 
HCO3

- 
(mM) 

Salinity 
(g l-1) 

AR 
(%) 

MeO-
AR 
(%) 

Cren+ 
Cren’ 
(%) 

Simpson 
Diversity 

Ring 
index TEX86

H 

TEX86
H-

Temp. 
(°C) 

Nitrosotalea 
devanaterra 25 5.4 0.5 2 2.2 0.3 20.9 7.6 0.89 3.7 

-
0.0458 

35.5 

Nitrosopumilus 

maritimus 28 7.5 1.5 2 37 0.2 2.1 11.0 0.93 3.0 
-

0.0969 
32.0 

Strain NAOA2 28 7.5 1.5 2 37 0.6 2.3 4.7 0.91 2.9 
-

0.0605 
34.5 

Strain NAOA6 28 7.5 1.5 2 37 0.4 4.5 5.0 0.93 2.7 
-

0.0605 
34.5 

Nitrosopumilus 
piranensis 30 7.2 1 2 37 2.4 5.3 4.6 0.90 3.0 

-
0.0862 

32.5 

Nitrosopumilus 
adriaticus 30 7.2 1 2 37 4.2 11.5 6.7 0.90 3.0 

-
0.1079 

31.2 

Nitrososphaera 
viennensis 

EN76 
37 7.5 3 2 2.2 1.5 1.9 7.6 0.85 4.3 

-
0.0044 

38.2 

Nitrososphaera 
viennensis 

EN123 
37 7.5 3 2 2.2 0.3 1.6 8.5 0.84 4.3 

-
0.0044 

38.4 

Nitrososphaera 
gargensis 35 7.8 1 2 10.5 2.1 <0.1 41.4 N/A 4.4 

-
0.0362 

36.1 

Nitrososphaera 
gargensis 46 7.8 1 2 10.5 1.1 0.2 60.3 0.80 4.8 

-
0.0132 

37.6 

Nitrosocaldus 
yellowstonii 

72 7 1 1 2 6.2 0.1 9.1 0.51 3.8 
-

0.2147 
24.1 
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Table 2. Phylogenetic occurrence (+ presence; - absence) of archaeol (AR), 
hydroxyarchaeol (OH-AR), methoxy archaeol (MeO-AR), GDGTs (numbers indicate 
presence of ring-containing GDGTs), GTGTs (numbers indicate presence of regular, ring-
containing GDGTs) crenarchaeol and its regioisomer (Cren/Cren’) and menaquinone-6 
(MK6:1, MK6:0) biosynthesis among cultivated members of the Archaea. Detailed distribution 
of GDGTs and GTGTs in Thaumarchaeota are shown in Table S1. 

Phylum Order/Group Genus/Species Habitat AR 
OH-
AR 

MeO-
AR 

Cren/Cren‘ MK6:0 MK6:1 GDGT GTGT 

Thaumarchaeota Group 1.1a 
Nitrosopumilus maritimus Marine water + - + + + + 0-4 0, 0:1 

 
Strain NAOA2 Marine water + - + + + + 0-4 0, 0:1 

 
Strain NAOA6 Marine water + - + + + + 0-4 0, 0:1 

 
Nitrosopumilus piranensis Marine water + - + + + + 0-4 0, 0:1 

 
Nitrosopumilus adriaticus Marine water + - + + + + 0-4 0, 0:1 

SAGMCG-
1/Nitrosotalea 
cluster 

Nitrosotalea devanaterra Acidic soil + - + + + + 0-4 0, 0:1 

Group 1.1b Nitrososphaera viennensis 

EN76 
Soil + - + + + + 0-4 0-1 

Nitrososphaera viennensis 
EN123 

Soil + - + + + + 0-4 0-1 

Nitrososphaera gargensis 
Terrestrial 
hydrothermal 

+ - + + + + 0-4 0-4 

HWCG-
III/Nitrosocaldus 
cluster 

Nitrosocaldus yellowstonii 
Terrestrial 
hydrothermal 

+ - + + + + 0-4 0-4 

Crenarchaeota Desulfurococcales 
Ignicoccus hospitalis 

Marine 
hydrothermal 

+ - - - + + 0 0 

Staphylothermus marinus 
Marine 
hydrothermal 

+ - - - - - 0 - 

Aeropyrum pernix 
Marine 
hydrothermal 

+ - - - + + 0 - 

Pyrolobus fumarii 
Marine 
hydrothermal 

+ - - - + - 0-2 - 

Sulfolobales 
Metallosphaera prunae 

Heated mine 
tailings 

+ - - - - - 0-4 - 

Sulfolobus acidocaldarius 
Terrestrial 
hydrothermal 

+ (+)* - - - - 0-6** 0 

Sulfolobus solfataricus 
Terrestrial 
hydrothermal 

+ - - - - - 0-6** 0 

Euryarchaeota Thermococcales 
Pyrococcus furiosus 

Marine 
hydrothermal 

+ - - - - - 0-3, 5 - 

Thermococcus kodakarensis 
Terrestrial 
hydrothermal 

+ - - - - - 0-5 0 

Methanopyrales 
Methanopyrus kandleri 

Marine 
hydrothermal 

+ - - - - - 0-4 0 

Methanobacteriales Methanothermobacter 
thermautotrophicus 

Terrestrial 
hydrothermal 

+ - - - - - 0 0 

Methanococcales Methanothermococcus 
thermolithotrophicus 

Marine 
hydrothermal 

+ + - - - - 0-5 0 

Thermoplasmatales 
Thermoplasma acidophilum 

Terrestrial 
hydrothermal 

+ - - - - - 0-4 0, 0:1 

Archaeoglobales 
Archaeoglobus fulgidus 

Marine 
hydrothermal 

+ - - - + + 0 - 

Halobacteriales 
Haloferax volcanii 

Terrestrial 
hypersaline 

+ - - - - - - - 

Halorubrum lacusprofundi 
Terrestrial 
hypersaline 

+ - - - - - - - 

Methanosarcinales 
Methanosarcina acetivorans 

Marine 
sediment 

+ + - - - - 0-3*** - 

Methanosarcina barkeri 
Terrestrial & 
marine 
sediment, soil 

+ + - - - - 0-3*** - 

Methanosarcina mazei 
Terrestrial 
sediment & 
soil 

+ + - - - - 0-3*** - 

*Hydroxyarchaeol was not detected in Sulfolobus acidocaldarius in the present study but reported as a trace component by 
Sprott et al. (1997). **GDGT 0-8 reported in De Rosa et al. (1980, 1983). ***Trace amounts of core GDGTs. 
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Fig. 6. (A) Extracted ion chromatograms showing elution of GDGT-1, -2, -3, -4, crenarchaeol and their 
isomers (a, b, c, cren‘) in a UPLC-APCI-MS analysis of a Ca. N. maritimus total lipid extract harvested in 

early growth phase (not used for panels B-F, intensity not to scale). Uncolored peaks in each chromatogram 

represent +2 Da isotope peaks of the respective lighter GDGT. (B to F) Relative abundances of GDGT-1, -2, 
-3, -4, and crenarchaeol and their isomers in thaumarchaeal hydrolyzed total lipid extracts as determined 

using UPLC-APCI-MS (means of duplicate cultures).  
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