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Abstract

The first part of this thesis focuses on very low-dimensional bottleneck features (BNFs),

extracted from deep neural networks (DNNs) for speech analysis and recognition. Very

low-dimensional BNFs are analysed in terms of their capability of representing speech

and their suitability for modelling speech dynamics. Nine-dimensional BNFs obtained

from a phone discrimination DNN are shown to give comparable phone recognition

accuracy to 39-dimensional MFCCs, and an average of 34% higher phone recognition

accuracy than formant-based features of the same dimensions. They also preserve the

trajectory continuity well and thus hold promise for modelling speech dynamics. Visu-

alisations and interpretations of the BNFs are presented, with phonetically motivated

studies of the strategies that DNNs employ to create these features. The relation-

ships between BNF representations resulting from different initialisations of DNNs are

explored.

The second part of this thesis considers BNFs from the perspective of feature ex-

traction. It is motivated by the observation that different types of speech sounds lend

themselves to different acoustic analysis, and that the mapping from spectra-in-context

to phone posterior probabilities implemented by the DNN is a continuous approxima-

tion to a discontinuous function. This suggests that it may be advantageous to replace

the single DNN with a set of phone class dependent DNNs. In this case, the appro-

priate mathematical structure is a manifold. It is shown that this approach leads to

significant improvements in frame level phone classification accuracy.
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Martin Russell and Dr Peter Jančovič, for their professional guidance, invaluable moral

support, and considerable care. Also a big thank you to Dr Philip Weber, who I regard

as another supervisor to me, for every big and small help he ever offered. Thank you

also to Dr Steve Houghton for his inspiring ideas.

I would like to thank my lovely friends and colleagues in the University of Birming-

ham, for their accompany, encouragement and help. Evangelia Fringi, Dr Hao Fu, Dr

Emilie Jean-Baptiste, Mao Li, Dr Roozbeh Nabiei, Dr Maryam Najafian, Yikai Peng,

Mengjian Qian, Alp Sayin, Chloe Seivwright, Dr Zhongbei Tian, Xizi Wei and Xinyu

Yu, with special thanks to those from the speech group. It has been a great pleasure

working with them.

Finally, thank you to all my families. A special thank you goes to my parents Mr

Xianyu Bai and Mrs Ruixia Tian who give me the most selfless love and always believe

in me, and my husband Yongjing who encourages and supports me all the time. Thank

you all for seeing me though this.

ii



Contents

1 Introduction 1

1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main research questions and contributions . . . . . . . . . . . . . . . . 5

1.2.1 Research question 1 . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Research question 2 . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Research question 3 . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Research question 4 . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Reviews 10

2.1 Automatic speech recognition (ASR) . . . . . . . . . . . . . . . . . . . 10

2.1.1 Review on ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Hidden Markov models (HMM) based ASR . . . . . . . . . . . . 13

2.1.3 Continuous state HMMs . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Neural networks review . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Multi-layer perceptron (MLP) and error back-propagation . . . 20

2.2.3 Deep learning with RBM pre-training . . . . . . . . . . . . . . . 25

2.3 Speech production and Speech representations . . . . . . . . . . . . . . 29

2.3.1 Speech production and English speech sound categories . . . . . 29

iii



Contents iv

2.3.2 Speech representations (speech features) . . . . . . . . . . . . . 33

2.4 Feature visualisation and dimensionality reduction . . . . . . . . . . . . 35

2.4.1 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Linear discriminant analysis (LDA) . . . . . . . . . . . . . . . . 39

2.4.3 t-distributed stochastic neighbour embedding (t-SNE) visualisation 40

2.5 Topological Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Speech Corpus 45

3.1 TIMIT corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 TIMIT phone labels and phone mappings . . . . . . . . . . . . . . . . . 48

4 Very Low-dimensional Bottleneck Neural Network Representation of

Speech 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Experimental setup for extracting very low dimensional BNFs . . . . . 53

4.2.1 Bottleneck neural network structure . . . . . . . . . . . . . . . . 53

4.2.2 Neural network training . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Evaluation of bottleneck outputs with GMM-HMM recognisers . 55

4.2.4 Continuous-State HMM trajectory modelling . . . . . . . . . . . 56

4.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Comparisons between networks with different network inputs and

network functions . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Effect of hidden layer sizes . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Comparison between monophone and triphone models . . . . . . 59

4.3.4 BNFs with delta and delta-deltas . . . . . . . . . . . . . . . . . 60

4.3.5 Comparison between BNFs and formant data . . . . . . . . . . 61

4.3.6 Analysis of the BNFs for modelling speech dynamics . . . . . . 63

4.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Contents v

5 Interpretation of Bottleneck Features and The Neural Network Learn-

ing Behaviour 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Visualisations of BNFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Visualisation of BNFs with LDA . . . . . . . . . . . . . . . . . 68

5.2.2 Visualisation of BNFs with t-SNE . . . . . . . . . . . . . . . . . 72

5.2.3 2-dimensional BNFs . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Exploring the neural network learning behaviour . . . . . . . . . . . . . 78

5.3.1 Optimised neural activations . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Neural network neuron responses at the bottleneck layer . . . . 84

5.3.3 Visualising non-bottleneck hidden layers with LDA . . . . . . . 88

5.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Relationships Between Bottleneck Features From Networks with Dif-

ferent Initialisations 92

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Effect of NN initialisation on BNFs . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Are BNFs corresponding to different weight initialisations the

same? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Do different BNF sets give similar recognition accuracy? . . . . 95

6.3 Linear mappings between BNFs extracted from networks with different

initialisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Piecewise linear mappings between BNFs extracted from networks with

different initialisations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Hierarchical clustering for phone-dependent linear transformations . . . 100

6.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Phone Classification using a Non-Linear Manifold with Broad Phone

Class Dependent DNNs 105



Contents vi

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Experimental setup for learning non-linear manifolds with BPC-dependent

DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Proposed structure of phone classification systems . . . . . . . . 106

7.2.2 Speech corpus and phone class . . . . . . . . . . . . . . . . . . . 109

7.2.3 Neural network training . . . . . . . . . . . . . . . . . . . . . . 111

7.2.4 System evaluation and test of significance . . . . . . . . . . . . 112

7.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 Baseline: a global bottleneck neural network . . . . . . . . . . . 112

7.3.2 Comparisons between the two proposed structures . . . . . . . . 113

7.3.3 Changing the ratio of in-group/out-group data . . . . . . . . . . 114

7.3.4 Including “super” broad classes . . . . . . . . . . . . . . . . . . 116

7.3.5 Comparison between different fusing inputs . . . . . . . . . . . . 118

7.3.6 Neural network visualisations with LDA . . . . . . . . . . . . . 118

7.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Conclusion 125

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Supplementary Figures 129



List of Figures

2.1 General principles of ASR. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The structure of an MLP with two hidden layers. . . . . . . . . . . . . 20

2.3 A simple gradient descent example in 1-D. . . . . . . . . . . . . . . . . 24

2.4 The structure of an RBM. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Alternating Gibbs sampling which can be used to learn the weight of an

RBM. (Hinton, 2012; Yu and Deng, 2014) . . . . . . . . . . . . . . . . 28

2.6 Diagrammatic cross-section of the human head showing the vocal or-

gans (Holmes and Holmes, 2001). . . . . . . . . . . . . . . . . . . . . . 30

2.7 Lexical representations for the words debate, wagon and help. The sylla-

ble structure of each word is schematized at the top (σ=syllable, o=onset,

r=rime) (Stevens, 2002). . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 (a) A vowel space diagram, aggregated over many speakers (University of

California Berkeley, 2011). (b) a text book image of some typical acous-

tic measurements for the vowels in “she”, “who”, “odd”, and “rack”

(symbolized here with the symbols “iy”, “uw”, “aa” and “ae” respec-

tively), overlaid on an x-ray tracing of a vocal track (University of Cal-

ifornia Berkeley, 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Two examples where PCA is not an appropriate choice.(a) when the

separation rather than the variance of the data is more of interest to

learn (Czech Technical University in Prague, 2008); (b) when the data

is not Gaussian-distributed (Yang, 2007). . . . . . . . . . . . . . . . . . 36

vii



List of Figures viii

2.10 The distance between two neighbour points A and B is calculated as

Euclidean distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 The proportion of each broad phone category (calculated by the number

of sampling frames) in TIMIT training (a) and core test (b) set. . . . . 47

4.1 Architecture of the multi-layer bottleneck neural network employed for

speech representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Phone recognition accuracy using BNFs as a function of the number of

neurons in the bottleneck and other hidden layers when using phone-

posterior network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Phone recognition accuracy using BNFs extracted from phone-posterior

network 286-512-B-512-49 when varying the size of the bottleneck layer. 60

4.4 Phone recognition accuracy using BNFs extracted from phone-posterior

network 286-512-B-512-49 when varying the size of the bottleneck layer. 61

4.5 An example of the dwell-transition trajectories recovered by the CS-HMM

when using estimated formant frequencies (a) and BNFs obtained from

phone the discrimination neural network (b) and the reconstruction net-

work (c). Blue lines with dots show the observations (feature values)

and solid red lines the estimated dwell-transition trajectories. TIMIT

phone boundaries are indicated by thin vertical lines, recovered dwell

starts (magenta) and ends (blue) by vertical dashed lines. . . . . . . . . 65

5.1 Visualisations of LDA-based projections (1st vs. 2nd dimension) of 9-

dimensional BNFs from a phone classification DNN of structure 286-

512-9-512-49. Horizontal axis: the 1st dimension of LDA projections;

vertical axis: the 2nd dimension of LDA projections. . . . . . . . . . . . 69



List of Figures ix

5.2 Visualisations of LDA-based projections (1st vs. 2nd dimension) of 9-

dimensional BNFs from a phone classification DNN of structure 286-

512-9-512-49. Plot on one phone category in each figure. Horizontal

axis: the 1st dimension of LDA projections; vertical axis: the 2nd di-

mension of LDA projections. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 2-dimensional t-SNE visualisations of 9-dimensional BNFs from a phone

classification DNN of structure 286-512-9-512-49. . . . . . . . . . . . . 73

5.4 2-dimensional t-SNE visualisations of 9-dimensional BNFs (10% of the

TIMIT training set) from a phone classification DNN of structure 286-

512-9-512-49. Plot on one phone category in each figure. . . . . . . . . 74

5.5 2-dimensional BNFs from a phone classification DNN of structure 286-

512-2-512-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 2-dimensional BNFs from a phone classification DNN of structure 286-

512-2-512-49. Plot on one phone category in each figure. . . . . . . . . 77

5.7 Optimised 2-dimensional BNFs (dots) and feature means of 2-dimensional

BNFs (circles) for each phone for a phone classification DNN of struc-

ture 286-512-2-512-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Optimised 2-dimensional BNFs for each phone for a phone classification

DNN of structure 286-512-2-512-49. . . . . . . . . . . . . . . . . . . . . 83

5.9 Overlaying the shaded area of Figure 5.8 on an x-ray tracing of a vocal

track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.10 Magnitude of average node activations (z-score), for each phone, over a

0.4s window centred on the phone onset (dotted vertical lines). . . . . . 86

5.11 Visualisation of LDA-based projections (1st vs. 2nd dimension) of the 1st

hidden layer activations from a phone classification DNN of structure

286-512-9-512-49. Horizontal axis: the 1st dimension of LDA projec-

tions; vertical axis: the 2nd dimension of LDA projections. . . . . . . . 89



List of Figures x

5.12 Visualisations of LDA-based projections (1st vs. 2nd dimension) of the

3rd hidden layer activations from a phone classification DNN of struc-

ture 286-512-9-512-49. Horizontal axis: the 1st dimension of LDA pro-

jections; vertical axis: the 2nd dimension of LDA projections. . . . . . . 90

6.1 Two sets of 9d BNFs for utterance TRAIN/DR2/MEFG0/SI491, from

network 286-512-9-512-49 with two different initialisations. . . . . . . . 94

6.2 An illustration of how we decide whether two BNF sets are linearly equiv-

alent. If “ASR accuracy 1” and “ASR accuracy 2” are similar, we say

there is an approximately linear relationship between the two sets. . . . 96

6.3 An illustration of how we decide whether two BNF sets are piecewise

linearly equivalent. If “ASR accuracy 1” and “ASR accuracy 2” are

similar, we say there is an approximately piecewise, or phone-dependent

linear relationship between the two sets. . . . . . . . . . . . . . . . . . . 98

6.4 Plot of 9-dimensional BNFs for the train utterance DR2/MEFG0/SI491.

Solid lines are true BNFs of sett B, and dashed lines are transformed

feature using transform TA→B. . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Hierarchical clustering of 49 transform matrices (upper part) and corre-

sponding recognition accuracy (lower part blue) and mean squared error

between transformed and target BNFs (lower part red). . . . . . . . . . 103

7.1 Architecture I of phone classification system exploiting DNN-based man-

ifold learning of speech (first two levels). . . . . . . . . . . . . . . . . . 107

7.2 Architecture II of phone classification system exploiting DNN-based man-

ifold learning of speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Architecture of a “plosive focused” local DNN used in the first level of

the Structure II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Overall phone classification accuracy when varying the ratio of in/out

group data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Figures xi

7.5 Visualisations of 1st vs. 2nd dimension of LDA-based projections of 9-

dimensional BNFs from a single global DNN (a), and Q1 (‘plosive’) local

DNN (b). Plot with data of all phones. . . . . . . . . . . . . . . . . . . 119

7.6 Visualisations of LDA-based projections of 9-dimensional BNFs from

Q1 (‘plosive’) local DNN, for data within plosive class only. 1st vs. 2nd

dimension (a) and 3rd vs. 4th dimension (b) . . . . . . . . . . . . . . . 120

7.7 Visualisations of LDA-based projections (1st vs. 2nd dimension) of the

BNFs from local DNNs. Plots are on all phones (left figures) and in-

group phones (right figures) . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1 Comparing BNFs and formant features with GMM-HMM recognisers.

For almost all phones, the ASR accuracy using these four types of fea-

tures: 9-dimensional BNF > 3-dimensional BNF > 3 formant frequen-

cies+ 3 amplitudes+ 3 bandwidths (9-dimensional) > 3 formant frequen-

cies (3-dimensional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.2 Visualisations of LDA-based projections (3rd and 4th dimension) of 9-

dimensional BNFs from a phone classification DNN of structure 286-

512-9-512-49, on the 10% subset of the training set. Plots are coloured

by their corresponding phone classes. The visualisation of the 3rd and the

4th dimension of the LDA projections does not show separations between

broad phone classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3 Visualisations of LDA-based projections (3rd vs. 4th dimension) of 9-

dimensional BNFs from a phone classification DNN of structure 286-

512-9-512-49. Plot on one phone category in each figure. (*)For silence

only 10% of the data are plotted or clarity. We can observe separations

within phone categories such as “strong fricative”, “semi-vowel”, “short

vowel”, “long vowel”, and “silence” . . . . . . . . . . . . . . . . . . . . 132



List of Figures xii

A.4 Visualisations of LDA-based projections (1st vs. 2nd dimension) of the

first (left column) and the (3rd hidden layer (right column) activations

from a phone classification DNN of structure 286-512-9-512-49. Plot on

one phone category in each figure. The visualisation of the 3rd layer is

less fuzzy than that of the 1st layer. . . . . . . . . . . . . . . . . . . . . 134

A.5 Visualisations of LDA-based projections (3rd vs. 4th dimension) of the

1st (a) and the 3rd (b) hidden layer activations from a phone classifica-

tion DNN of structure 286-512-9-512-49. . . . . . . . . . . . . . . . . . 138

A.6 Phone/class classification accuracy of local DNNs when varying the ratio

of in/out group data. Increasing the proportion of in-class data when

training the BPC-dependent DNNs (from the “original” point to both

directions along the horizonal axis) usually improves their abilities of

classifying the in-class data (red plots), however the performance on all

frames gets worse (green plots) in most cases. It seems that the benefit of

a DNN better at classifying in-class data is not enough to counterweigh

the loss of the DNN worse at classifying in-class data. . . . . . . . . . . 139



List of Tables

2.1 Phone categorisation used in this thesis (Halberstadt and Glass, 1997). 33

2.2 A review of several popular dimensionality reduction techniques. . . . . 37

3.1 Number of speakers, utterances, hours and tokens of speech in TIMIT

training, full test, development, and core test sets, excluding SA sen-

tences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 TIMIT phones and mappings to the 49 and 40 symbol sets. . . . . . . . 49

4.1 ASR performance using BNFs extracted from reconstruction neural net-

works in GMM-HMM recognisers when varying the width of context win-

dow at the input layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 ASR performance using BNFs extracted from phone discrimination neu-

ral networks in GMM-HMM recognisers when varying the width of con-

text window at the input layer. . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Phone recognition performance using BNFs when varying the number of

neurons in the bottleneck and other hidden layers using phone-posterior

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Phone recognition accuracy using BNFs extracted from phone-posterior

network 286-512-B-512-49 when varying the size of the bottleneck layer. 59

4.5 Phone recognition accuracy using BNFs extracted from phone-posterior

network 286-512-B-512-49 when varying the size of the bottleneck layer. 61

xiii



List of Tables xiv

4.6 Recognition performance of an HMM-based ASR system when using for-

mant or bottleneck feature representation. . . . . . . . . . . . . . . . . . 63

6.1 Correlation coefficients between two sets of 9d BNFs for the TIMIT

utterance TRAIN/DR2/MEFG0/SI491, from network 286-512-9-512-49

with two different initialisations (the two sets of BNFs are displayed in

Figure 6.1). Rows and columns correspond to the solid and the dashed

lines in Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Phone recognition performance on the TIMIT core test set with four sets

of BNFs obtained using different random network initialisations. . . . . 95

6.3 Recognition on TIMIT core test using transformed test features, models

trained on BNF set Atr. Baseline1 shows mean and standard deviation

over the four BNF sets, matched train and test. . . . . . . . . . . . . . 97

6.4 GMM-HMM recognition on the TIMIT core test set with transformed

models. HMMs are originally trained on BNF set A. . . . . . . . . . . . 99

7.1 Phonetic broad classes used to define the set of local DNN-based projections.111

7.2 Evaluation of BNFs in a GMM-HMM HTK recogniser on the TIMIT

core test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Global DNN phone classification results on the TIMIT test set. These

are baseline results for experiments in this Chapter. . . . . . . . . . . . 113

7.4 Phone classification performance on the TIMIT core test set. . . . . . . 114

7.5 The sets D1, ..., D5 of BPCs used to train local BPC-dependent DNNs in

the two-level system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6 Phone classification accuracy obtained using all signal frames and using

only the centre frames of each phone, and in each case using Softmax

output and BNF as input to fusion network. . . . . . . . . . . . . . . . 118



List of Abbreviations

ASR automatic speech recognition

BNF bottleneck feature

BP back-propagation

BPC broad phone class

CD contrastive divergence

CNN convolutional neural network

CS-HMM continuous-state hidden Markov model

CTC connectionist temporal classification

DNN deep neuarl network

GMM Gaussian mixtrue model

GRBM Gaussian-binary restricted Boltzmann machine

HMM hidden Markov Model

HTK hidden Markov model toolkit

LDA linear discriminant analysis

LLE locally linear embedding

xv



List of Tables xvi

logFBEs logarithm filter-bank energies

LSTM long-short term memory

MFCC Mel-frequency cepstral coefficient

MLP multi-layer perceptron

NN neural network

PCA principal component analysis

RBM restricted Boltzmann machine

RNN recurrent neural network

SGD stochastic gradient descent

t-SNE t-distributed stochastic neighbour embedding



Chapter 1

Introduction

1.1 Research background

A conventional hidden Markov model (HMM) models the speech signal as a sequence

of piece-wise constant segments. The information about dynamics of speech is typically

incorporated into the feature representation by concatenating features describing the

current signal frame (“static”) with their time derivatives (“delta”). Over the years,

there has been considerable interest in alternative models which aim to model speech

dynamics more accurately (Deng, 2006). In these models, which we refer to as segmen-

tal, the states are associated with sequences of acoustic vectors, or segments, rather

than with individual acoustic feature vectors as in conventional HMMs. A recent addi-

tion to these models is the continuous-state HMM (Weber et al., 2014; Champion and

Houghton, 2015), which can realize segmental models of speech such as the Holmes-

Mattingly-Shearme dwell-transition model (Holmes et al., 1964) as computationally

viable models for speech recognition. Conventional HMM models, segmental models

and continuous-state HMM are briefly reviewed in Section 2.1.

Mel-frequency cepstral coefficients (MFCCs) have been shown to perform well for

speech recognition, however they are less suitable as feature representation for seg-

mental models of speech dynamics. This is due to the fact that in representations of

1
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speech derived through a linear transformation of short-term spectra the articulator

dynamics of speech are manifested indirectly, often as movement between, rather than

within, frequency bands. Representation of speech in terms of formant parameters

(frequencies and amplitudes) or articulatory features, directly describes the process

of speech production and preserves speech dynamics. However, formant features are

notoriously difficult to estimate reliably. Moreover, they are not well defined for some

speech sounds. Therefore, there is a need for compact representations of speech that

can be reliably estimated for all speech sounds. Such low-dimensional representations

reflect the fact that the mechanisms of speech production involve movement of a small

number of speech articulators.

Over the last few years, there has been an intensive research interest on employing

(deep) neural networks (NN/DNN) for speech recognition. As a NN performs a non-

linear mapping, they seem a natural method to employ for our problem of representing

speech. There have been a variety of ways of using NNs investigated, including NNs as

a non-linear feature extractor. For instance, features can be derived from the output

layer (Hermansky et al., 2000), or various intermediate hidden layers of the NNs (Grézl

et al., 2007). Comparisons between different deep NN hidden and output layer features

as well as their concatenations were studied in (Deng and Chen, 2014). Bottleneck

features (BNF) are a particular form of NN features which are extracted from NNs with

a compression layer. The bottleneck structure provides a way to reduce dimensionality.

However, most BN layers are still relatively high-dimensional, for example, 40-80 neu-

rons in (Doddipatla, 2016; Petridis and Pantic, 2016), failing to exploit the fact that

speech is believed to be inherently of much lower dimensionality. It would be interesting

to investigate using very small bottlenecks to extract very low-dimensional BNF and

see if they can well represent speech and preserve speech dynamics. Although recent

years have witnessed remarkable improvements in automatic speech recognition (ASR)

with the use of (deep) neural networks (Hinton et al., 2012; Deng et al., 2013), neural

networks have always been a “black box” and our understanding of how (deep) neural
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networks work has been limited. There has been some progress on visualising and

interpreting networks in image recognition (Karpathy et al., 2015; Zeiler and Fergus,

2014), but analyses of the structures and representations learned for speech recognition

are more scarce (Nagamine et al., 2015; Tan et al., 2015). The work by (Nagamine

et al., 2015) suggests that DNNs learn phonetic structures in acoustic features and

treat different broad phone classes differently, whereas (Tan et al., 2015) argue the

contrary that DNNs have to be stimulated to learn proper phonetic structures.

Furthermore, as one would expect, both network parameters and BNFs would be

different when a different initialisation is applied, and thus it is less convincing to ex-

plore and interpret only one network and one set of BNFs. However, experiments using

neural networks seem to suggest that NN initialisations do not affect the final ASR

results much (Weber et al., 2016). It is interesting to ask if there are any relation-

ships between the differently initialised NNs, and specifically in our case, relationships

between BNFs extracted from NNs with different initialisations. If the BNFs can be

mapped to one another, the interpretation would be much more meaningful and ap-

plicable, and the mappings may give us more insight into the neural networks learning

mechanism.

Most state-of-the-art automatic speech recognition (ASR) systems use a single deep

neural network (DNN) to map the acoustic space to the decision space. However, dif-

ferent phonetic classes employ different production mechanisms and are best described

by different types of features. Hence it may be advantageous to replace this single

DNN with several phone class dependent DNNs.

The non-linear function T realized by the DNN maps the “acoustic space” A (for

example, the space of short sequences of vectors of log filter-bank energies) to the BNF

space B (en route to the space of vectors of phone posterior probabilities). Although

this is a single continuous mapping, in practice the DNN is trained to approximate

a discontinuous function whose outputs jump between 0 and 1 across triphone state

boundaries. Therefore, assuming that acoustic space A is connected (which we don’t
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actually know), it may be advantageous to think of T as a set of continuous functions

{T1, ..., TN}, where each Ti is defined on a subset Ai ⊆ A and A =
⋃
iAi. In this case the

appropriate mathematical structure is a non-linear topological manifold. Intuitively,

one might hope that the subsets Ai correspond to broad phone classes (BPCs), in which

case the mappings Ti implement phone-class dependent feature extraction. The idea of

phone-dependent feature extraction is well-established. For example, while vocal tract

resonance frequencies provide a natural description of vowels, unvoiced consonants are

better described in terms of duration and mean energies in key frequency bands (Li

et al., 2010, 2012; Stevens and Blumstein, 1978; Heinz and Stevens, 1961; Raphael,

1972; Wilde, 1995; Khasanova et al., 2014). There are also a number of studies that

use BPC-dependent classifiers to focus on subtle differences between phones within a

BPC (Scanlon et al., 2007).

A two-level linear computational model that is motivated by these considerations

is presented in (Huang et al., 2016). The first level comprises a set of discriminative

linear transforms W T
j , one for each of a set of overlapping BPCs Qj, j = 1, ..., N , that

are used for feature extraction. The transforms W T
j are obtained using variants of

linear discriminant analysis (LDA). An acoustic feature vector t is transformed using

each W T
j to obtain tj = W T

j t and k-nearest neighbour methods are used to estimate

p(Qj|tj) and p(c|Qj, tj) for each specific phone class c. These probabilities are combined

in the second level to estimate the posterior probabilities p(c|tj) and hence to classify

t. In acoustic feature vector phone classification experiments on TIMIT (Garofolo

et al., 1993), the two-level linear classifier obtained slightly better results when BPC-

specific linear transforms were learned, compared to a single transform. The authors

of (Huang et al., 2016) speculate that better performance would be achieved using

non-linear DNN-based transformations.

The above background leads to our four research questions, which are stated in the

following section.
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1.2 Main research questions and contributions

1.2.1 Research question 1

Is a bottleneck neural network capable of extracting very low-dimensional

speech features that are good for speech recognition and preserve speech

dynamics?

Bottleneck neural networks are built and bottleneck features (BNFs) are extracted

and analysed in terms of their capability of representing speech and their suitability

for modelling speech dynamics. Experimental evaluations are performed on the TIMIT

speech corpus (Garofolo et al., 1993) which is later described in chapter 3.1.

It is demonstrated that the low-dimensional BNFs obtained from phone classifica-

tion networks give on average 33.7% improvement in phone accuracies compared with

formant-based features of the same dimensionality, and 9-dimensional BNFs have been

shown to perform similarly to 39-dimensional conventional Mel frequency cepstral coef-

ficients (MFCCs), both in a conventional HMM-based ASR system. It is also observed

that the BNFs preserve better the trajectory continuity and fit better the CS-HMM

modelling assumptions than formants. The BNFs provide a compact speech represen-

tation in terms of the number of model parameters, can be consistently obtained for all

speech sounds and they seem to be in overall well suited to be employed for segmental

models of speech dynamics.

1.2.2 Research question 2

Can we interpret the very low-dimensional BNFs and bottleneck neural

network learning behaviours from the perspective of phonetics?

Bottleneck activations are visualised and analysed. A new use of back-propagation

is proposed to obtain “cardinal” neural activations under a trained neural network.

Z-scores are estimated and plotted to visualise neuron responses. Linear discriminant
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analysis (LDA) and t-distributed stochastic neighbour embedding (t-SNE) have been

applied to visualise BNFs. Compressing the bottleneck layer to as small as 2 units

is also attempted to achieve dimensionality reduction. The experimental results show

that the networks and BNFs can be interpreted in a phonically meaningful way, which

may correspond to phone production mechanisms.

1.2.3 Research question 3

Are there any relationships between BNFs obtained from neural networks

trained with different initialisations?

The relationships between these sets of BNFs are explored. It is shown that the rela-

tionship between them is approximately piecewise linear. The results of experiments in

which hierarchical clustering is applied to phone-dependent linear transformations be-

tween BNF sets are presented. The combined linear transforms that emerge correspond,

in general, to phonetically meaningful phone classes. In addition, it is observed that the

biggest decreases in phone recognition accuracy occur when transforms corresponding

to categories that differ significantly in their phonetic properties are combined. This

result suggests that the type of feature extraction applied by the network to extract

BNFs is different for different phone categories.

1.2.4 Research question 4

Is it better to use several phone class dependent DNNs instead of a single

DNN for phone classification tasks?

A manifold-inspired approach to phone classification using bottleneck neural networks

is applied by using a set of phone class dependent DNNs. Various ways of designing and

training the DNNs are assessed, and the results show a small but significant improve-

ment compared with a single DNN, when a non-linear manifold structure incorporating

multiple BPC-dependent DNNs is used for phone classification. A new way to decide
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whether one system is significantly better than another is proposed, with the effect of

NN initialisations taken into consideration. By visualising the BNFs from local BPC-

dependent DNNs and making comparisons to the BNFs from a single global DNN, we

show that local BPC-dependent DNNs learn clearer structures of local broad phone

classes.

1.3 Thesis outline

The outline of this thesis is listed in this section, with brief introductions to each of

the chapters.

Background chapter

Chapter 2 is the background chapter, which reviews theories and algorithms that are

relevant to this thesis.

� Section 2.1 reviews main concepts and techniques used in automatic speech

recognition (ASR). The hidden Markov model (HMM) commonly used in ASR

is specifically described, including acoustic modelling with Gaussian mixture

model (GMM)-based HMM and deep neural network (DNN)-based HMM. The

Continuous-State HMM (CS-HMM), being a recent speech model modelling speech

dynamics, is also described in this section. The GMM-HMM and CS-HMM mod-

els are used in the experiments covered in Chapter 4 in this thesis.

� Section 2.2 reviews neural networks and their developments in ASR. In particular,

multi-layer perceptrons (MLP) trained by standard back-propagation and deep

belief networks (DBN) trained with restricted Boltzmann machine (RBM) pre-

training are described. The MLP, DBN and their relevant training techniques

are used throughout the work in this thesis.

� Section 2.3 first reviews speech production mechanisms of phones and phonetic
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categories, then several types of speech representations (i.e. speech features).

These are used as frameworks for studying dynamic properties and phonetic

interpretation of BNFs in this thesis.

� Section 2.4 reviews techniques for dimensionality reduction and high-dimensional

data visualisation. In particular, linear discriminant analysis (LDA) and t-

distributed stochastic neighbour embedding (t-SNE) are described. They are

used in the visualisation tasks covered in Chapter 5.

� Section 2.5 describes the mathematical formalism of manifolds. The experiments

in Chapter 6 are inspired by the idea of a manifold.

Experimental chapters

� Chapter 3 describes the speech corpus used in the experiments in this thesis,

namely the TIMIT corpus.

� Chapter 4 addresses research question 1. This chapter reports how the very low-

dimensional BNFs are extracted using bottleneck neural networks, their ASR

performance in conventional GMM-HMM systems, and whether they fit the as-

sumption of the CS-HMM speech model. The material contained in this chapter

also appears in (Bai et al., 2015).

� Chapter 5 addresses research question 2. This chapter presents the 2-dimensional

visualisations and interpretations of 9-dimensional BNFs using LDA and t-SNE,

and 2-dimensional BNFs extracted from 2-node bottleneck layer, and explores

how the bottleneck neural networks learn for the phone discrimination task. Some

of the material contained in this chapter also appears in (Weber et al., 2016).

� Chapter 6 addresses research question 3. This chapter explores relationships

between two BNF sets obtained from neural networks with different training

initialisations.
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� Chapter 7 addresses research question 4. This chapter presents phone classifi-

cation experiments using a set of broad phone class (BPC) dependent neural

networks. This BPC-dependent neural network structure, inspired by the idea

of a manifold, is compared to the global single network, from the perspective

of phone classification accuracy and LDA visualisations of BNFs. The material

contained in this chapter also appears in (Bai et al., 2017).

� Chapter 8 concludes the thesis by summarising the major contributions and sug-

gesting possible future works.

1.4 Publications

Some of the ideas and results in this thesis have appeared in other articles, published

at various stages during the period of study for this thesis. They are as listed below:

� L. Bai, P. Jančovič, M.J. Russell and P. Weber, Analysis of a low-dimensional

bottleneck neural network representation of speech for modelling speech dynam-

ics, in Interspeech, Dresden, Germany, 2015, pp. 583-587

� P. Weber, L. Bai, M. Russell, P. Jančovič, and S. M. Houghton, Interpretation of

low dimensional neural network bottleneck features in terms of human perception

and production, in Interspeech, San Francisco, CA, USA, 2016, pp. 3384-3388

� L. Bai, P. Jančovič, M.J. Russell, P. Weber, and S. M. Houghton, Phone Classi-

fication using a Non-Linear Manifold with Broad Phone Class Dependent DNNs,

in Interspeech, Stockholm, Sweden, 2017, pp. 319-323



Chapter 2

Literature Reviews

2.1 Automatic speech recognition (ASR)

2.1.1 Review on ASR

The goal of Automatic Speech Recognition (ASR) is to transform the speech (i.e.

spoken words) to text automatically using machines. It has been a goal of research for

more than six decades and has always been considered as an important task towards

better machine-involved communications and artificial intelligence.

A general ASR process is depicted in Figure 2.1. There are mainly three com-

ponents: signal processing/feature extraction, model generation and pattern match-

ing/decoding. Firstly, acoustic feature vectors X are extracted from the speech signal

– these are also referred to in this thesis as speech representations. A brief review on

speech representations is given in Section 2.3.2. The following model generation stage

models speech statistically at the acoustic and syntactic levels based on training data,

and creates acoustic models and language models (sometimes also lexical models). The

decoding stage can be considered as a mapping that is determined by the models and

maps observed features X to a sequence of words W . It aims to return the most

10
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Figure 2.1: General principles of ASR.

probable word sequence Ŵ corresponding to X, i.e.

Ŵ = arg max
W

P (W |X). (2.1)

In this thesis we use P for probabilities and p for probability densities. Using Bayes

rule, we have

P (W |X) =
p(X|W )P (W )

p(X)
, (2.2)

where p(X), the probability of the observation vectors is a constant; p(X|W ) is achieved

by acoustic models; P (W ) is determined by some linguistic criteria and modelled by

language models. Therefore, a good ASR system requires p(X|W )P (W ) maximised,

namely a good acoustic model score and a good language model score.

For decades, the hidden Markov model (HMM) has played a dominating role in

ASR acoustic modelling. The HMM was first developed in the 1960s by (Baum and

Eagon, 1967) and has been applied in speech recognition since the mid-1970s (Baker,

Baker; Bahl and Jelinek, 1975). Gaussian mixture model (GMM)-based HMMs were

the mainstream ASR approach for over four decades, before deep learning and deep neu-
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ral networks (DNN)-based HMMs showed breakthrough improvements in ASR in the

2010s (Deng et al., 2013; Hinton et al., 2012) and became popular. The GMM-HMM

ASR systems are also referred to as conventional ASR systems. GMM-HMMs and

DNN-HMMs are to be described later in this section. In very recent research (for ex-

ample Lu et al., 2015; Zhang et al., 2017; Pundak and Sainath, 2017; Hori et al., 2017),

ASR systems based on convolutional neural networks (CNN, LeCun et al., 2015)1,

recurrent neural networks (RNN) with long-short term memory (LSTM, Gers et al.,

2000; Hochreiter and Schmidhuber, 1997; Sak et al., 2014)2 and connectionist temporal

classification (CTC, Graves et al., 2006)3 have shown even better performance, some

of which do not include the use of HMMs4.

Another important topic in acoustic modelling is modelling speech dynamics. Gen-

erally a dynamic model refers to a dynamic characteristic and something dynamic

means it changes according to some function over time. Considerable research effort

has been devoted to developing models of speech dynamics which more faithfully re-

flect the properties of speech structure than conventional HMMs. Such dynamic models

of speech aim in various ways to reduce the assumptions that speech is a piece-wise

stationary process and that the observations are temporally independent, as well as

improve duration modelling. A comprehensive survey of many different types of sta-

tistical models of speech dynamics is given in (Deng, 2006). This includes segmental

HMMs (for example, Ostendorf et al., 1996), trajectory models (for example, Deng

and Ma, 2000; Gales and Young, 1993; Richards and Bridle, 1999), intermediate state

models (for example, Henter and Kleijn, 2011), Gaussian process dynamical models

(for example, Henter et al., 2012) and more recently Continuous-State HMMs (We-

ber et al., 2014; Champion and Houghton, 2015). In this thesis, the Continuous-State

HMM (CS-HMM) is used to perform an initial analysis of the temporal dynamic of bot-

1A CNN is a feed-forward DNN with layers applying convolution operation to the input.
2A RNN is a neural network with feedback connections. LSTM is an algorithm that provides an

efficient way to train RNNs. A good review of RNN and LSTM can be found in (Schmidhuber, 2017)
3CTC is a type of neural network output and associated scoring function that concerns label

sequences without learning boundaries and timings.
4for example, A CTC-fitted neural network could be an alternative approach to HMM.
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tleneck features. A further review on segmental models and continuous-state models

is presented in Section 2.1.3.

Language models define the probability of a word sequence. An N -gram language

model is a widely used language model, which defines the probability of each word

given the N − 1 preceding words. A bi-gram model is used in this thesis.

Decoding is the process that finds the most likely word sequence according to the

given acoustic and language models. In HMM based ASR, it is achieved by the Viterbi

algorithm. A dictionary is needed for word ASR, to express words in the vocabulary

in terms of the phone-level units that are modelled. After the most likely sequence

is decided, a scoring process is usually applied to evaluate recognition performance.

Three types of errors are considered: deletions (D), insertions (I) and substitutions

(S). The formulas to calculate recognition rates are (Young et al., 1997)

%Corr =
N −D − S

N
× 100%, (2.3)

and

%Acc =
N −D − S − I

N
× 100%. (2.4)

The word error rate (WER) is defined as

WER = 100%−%Acc. (2.5)

2.1.2 Hidden Markov models (HMM) based ASR

A more general definition of HMM used in ASR

A hidden Markov model statistically models an assumed Markov process with unob-

served (hidden) states. In an HMM it is assumed that the occurrence of a state is only

dependent of the previous state and that the state transition probabilities are indepen-

dent of actual time. An N state HMM model is usually defined by state probabilities,
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state transition probabilities and an initial state distribution (Rabiner, 1989).

A traditional way to describe HMMs is presented in (Rabiner, 1989). We now

describe the HMM framework in a way that enables to cover both the GMM-HMM

and DNN-HMM systems. Let us consider an HMM λ, in which the underlying N state

Markov process is supplemented by a mapping f : X → RN , where X is the set of

observation vectors, such that

f(x) =



f1(x)

f2(x)

...

fN(x)


, x ∈ X (2.6)

The fi(x) denotes the probability of observing x when state i (1 ≤ i ≤ N) is entered,

fi(x) = p(x|i). (2.7)

The decoding process aims to find the most probable sequence of hidden state given

the model λ. An observation sequence x = (x1, x2, ..., xT ) can only be generated via a

path q = (q1, q2, ..., qT ), where qt ∈ S = {1, 2..., N}. The joint probability p(x, q|λ) is

then given by

p(x, q|λ) = p(x|λ, q)P (q|λ), (2.8)

where p(x|λ, q) is the state conditional probability and P (q|λ) the transition probabil-

ity. Equation 2.8 becomes

p(x, q|λ) =
T∏
t=1

fqt(xt)
T∏
t=1

aqtqt+1 , (2.9)

where fi(x) is the probability of observing x when state i is entered, aij is the transition

probability from state i to state j.
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We want to find the optimum path q̂ such that

q̂ = arg max
q
p(x, q|λ). (2.10)

The above process of searching for the optimum path is achieved using a Viterbi

decoder. The Viterbi algorithm is the decoding technique used in HMM based ASR

systems.

Acoustic modelling with GMM-HMM

A GMM is a universal approximator of density distributions (Bilmes et al., 1998). It

is a weighted sum of its component Gaussian probability density functions

p(x) =
M∑
m=1

wmpm(x), (2.11)

where M is the number of Gaussian mixture components and
∑M

m=1wm = 1(wm > 0).

In the case of a standard GMM-HMM system, HMM states are represented by

Gaussian mixture models

fi(x) ∼ gi(x), (2.12)

where gi is GMM probability density function for the ith state whose parameters are

optimised by the Baum-Welch algorithm which looks for a local maximum of p(xtr|λ),

where xtr denotes the training set.

A monophone GMM-HMM model uses a GMM to model a monophone state. For

example, when modelling N monophones using 3-state HMMs, there would be 3N

GMMs. In contrast to monophones, triphones are defined with coarticulatory effects

taken into consideration. For example, the /k/ in “ticket” would be the triphone “ih-

k+ax” (/k/ as it occurs when preceded by /ih/ and followed by /ax/). A triphone

GMM-HMM models triphone states.
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Acoustic modelling with DNN-HMM

In the case of a DNN-HMM system, HMM states correspond to the output of neural

network nodes. Classification neural networks are usually used and thus the output of

the network is a set of posterior probabilities. The output of network is

o(x) =



o2(x)

o2(x)

...

oN(x)


, (2.13)

where the state probability oi(x) is the output of the node i:

oi(x) = P (i|x). (2.14)

As the HMM requires p(x|i), Bayes rule is applied

p(x|i) =
P (i|x)p(x)

P (i)
=
oi(x)p(x)

P (i)
, (2.15)

where P (i) is the prior probability of each state estimated from the training set (calcu-

lated by P (i) = number of frames labeled as state i
total number of frames

); p(x) is independent of the word

sequence and can be ignored. Thus we have

fi(x) ∼ oi(x)

P (i)
. (2.16)

A single DNN is needed to estimate the conditional state posterior probabilities for

all states. It is different from the GMMs discussed before where a different GMM is

needed for each different state.

In a standard DNN-HMM ASR system (Yu and Deng, 2014), we need to train

a GMM-HMM system first to prepare the DNN training labels. DNNs are usually

applied to a triphone system after decision tree tying of the states. The resulting tied
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states are called senones, and every HMM state is identified with a senone. The output

targets for the DNN correspond to posterior probability distributions over the senones.

A more detailed review of DNN and its training techniques are covered in Sec-

tion 2.2.1 and 2.2.3.

2.1.3 Continuous state HMMs

Conventional HMMs model speech as a sequence of constant segments, associating

states with individual acoustic feature vectors which are assumed independent. Seg-

mental models (Ostendorf et al., 1996) try to overcome the independence assumption

with a segment by assuming that a segment is a noisy realisation of an underlying tra-

jectory. However, segmental HMMs cannot enforce continuity across segment bound-

aries. A continuous state HMM, as proposed by (Champion and Houghton, 2015), is

able to enforce continuity by including the (continuous) trajectory value in its state and

using a more complex decoder. Such models aim to be more faithful to the dynamics of

the speech signal arising from slow, continuous movement of a few human articulators

between target positions for the various speech sounds.

The CS-HMM algorithm considers the speech to fit a dwell-transition timing model,

where dwells represent phone targets and transitions the smooth migration from one

dwell to the next. d-dimensional input features are assumed to be noisily distributed

around underlying dwell “realisations” for a phone instance, or around transitions.

Dwell realisations are also assumed to be noisily distributed around reference targets

for each phone.

A sequential branching algorithm is used to recover a sequence of alternating dwells

and transitions, the times of changes between them, and the sequence of phones which

could have generated them. We assume dwell start and initialise one hypothesis per

phone, and then update hypothesis to take account of observations.

At time t, the hypothesis can branch, either it remains in a dwell/transition or a

new dwell/transition begins. A hypothesis contains the probability information of a
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set of states, where discrete components of the states store the current phone identity,

time since previous phone, and phone history. In a parametric form,

αt(~x) = Kt n
(
~x− ~µt, ~Pt

)
, (2.17)

where Kt is the sum of probabilities of paths consistent with the hypothesis, ~x is the

realised dwell/transition target, n is a Gaussian distribution with parameters ~µt, and

~Pt being mean and precision of distribution over state.

Suppose in a dwell state at time t−1, observation ~yt is made. Assuming Gaussian

measurement error, ~yt is drawn from the distribution n(~x,E) where E is the measure-

ment precision. We update hypotheses to account for ~yt, by

αt(~x) = Kt−1 n
(
~x− ~µt−1, ~Pt−1

)
n(~yt − ~x,E)

= Kt n(~x− ~µt, Pt) ,
(2.18)

where

Pt = Pt−1 + E, (2.19)

~µt = P−1
t (Pt−1~µt−1 + E~yt) , (2.20)

Kt = Kt−1 n
(
~yt − ~µt−1,

(
P−1
t−1 + E−1

)−1
)
. (2.21)

Discrete components of the state store the current phone identity, time since previ-

ous phone, and phone history. Following each observation all hypotheses are split, to

model the alternatives of continuing the current dwell or transition, or changing from

dwell to transition or vice versa. For every new dwell, a hypothesis is created for every

phone in the inventory, while for a new transition a d-dimensional vector of slope values

is appended to ~x, and marginalised out at the end of the transition. Low probability

hypotheses are “pruned” to maintain computational efficiency.
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2.2 Deep neural networks

2.2.1 Neural networks review

An artificial neural network (or neural network, NN for short) is an information process-

ing paradigm that is inspired by the way biological nervous systems (such as a brain)

process information. It was first proposed as a mathematical model by (McCulloch

and Pitts, 1943).

One early NN is Rosenblatt’s perceptron (Rosenblatt, 1962) where the input units

are connected directly to the output units (single-layer perceptron, SLP). SLP is

the simplest form of neural network, and is limited to classifying linearly separable

data (Bishop et al., 2006).

A multi-Layer Perceptron (MLP) is a feed-forward neural network with hidden

layers between the input layer and the output layer. With the addition of the hid-

den layers, MLPs can learn arbitrarily complex decision boundaries between different

classes. MLPs were popularised by (Rumelhart et al., 1985), who introduced the use

of error back-propagation to adjust NN parameters. MLP and error back-propagation

are described in Section 2.2.2.

With more applications of neural networks in different fields, researchers found that

back-propagation has some limitations that make NN training difficult. For example, it

takes a long time to train and there tends to be a vanishing gradient problem when the

network has many hidden layers. The next development milestone of neural networks

is when Hinton made a breakthrough with his deep learning techniques (Hinton, 2007).

The deep learning approach provides a better way to initialise deep neural networks

(DNN) to provide a better starting point for error back-propagation. This is achieved

by treating each adjacent pair of DNN layers as a restricted Boltzmann machine (RBM)

that is trained using contrastive divergence. More details about DNNs are provided in

Section 2.2.3.

Neural networks have been applied in speech recognition and made progress since
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the early 1990s (Bourlard and Morgan, 1993). The recent decade has witnessed suc-

cesses of DNNs in the context of speech recognition, where ASR performance has been

largely improved (Hinton et al., 2012; Deng et al., 2013). Meanwhile different types

of DNNs (for example, RNNs, LSTM-RNNs, CTCs) are developed and used in speech

recognition. It is also noticeable that apart from the introduction of machine learning

algorithms, computing capability also plays a significant role in the history of artificial

neural networks.

2.2.2 Multi-layer perceptron (MLP) and error back-propagation

General structures of MLPs and the forward propagation process

The multi-layer perceptron (MLP) is one of the most important structures used in

this thesis. As defined in (Bishop, 1995), multi-layered feed-forward networks having

either threshold or sigmoid-like activation functions5 are generally called MLPs. They

are feed-forward neural network that map a set of inputs onto a set of outputs. The

structure of an MLP with two hidden layers is shown in Figure 2.2. Layers between

the input layer and the output layer are called hidden layers and units at hidden layers

are called hidden units. The nth layer is fully connected to the (n+ 1)th layer.

Figure 2.2: The structure of an MLP with two hidden layers.

5For example, sigmoid, tanh.
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Assume a l-layer MLP with l−2 hidden layers between the input and output layers.

Let Lm denote the layer m after the input (m ≥ 0), such that L0 is the input layer, Ll−1

is the output layer. Let Wm and bm be the weight matrix and bias vector respectively,

between layer Lm and Lm+1. Let am denote the neuron activations of layer Lm, and a0

is the neural network input.

For a hidden layer Lm(0 < m < l− 1), the linear output of this layer om is given by

om = am−1Wm−1 + bm−1, (2.22)

to which a logistic sigmoid function is applied element-wise:

am =
1

1 + e−om
. (2.23)

For the output layer Ll−1, we also calculate the linear output first:

ol−1 = al−2Wl−2 + bl−2. (2.24)

The activation function varies according to actual cases. In particular, for classification

networks in which the NN outputs are posterior probabilities, the softmax function is

usually used after the linear regression:

al−1 = Softmax(ol−1), (2.25)

where the softmax function is defined as

Softmax(z) : σ(z)j ≡
exp(zj)∑K
k=1 exp(zk)

for j = 1, ..., K (2.26)

The softmax function makes the maximum output more distinguishing and ensures that

the outputs σ(z)j are within the range (0, 1) and that the summation of all outputs are

always be equal to 1.0. This leads to a form of discriminative training, as probability of
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one node can only be big if the other probabilities are small. In addition, the softmax

function is differentiable to train by gradient descent. These characteristics make it

suitable to use for classification or discrimination neural networks.

Error back-propagation (BP)

Training an MLP is a supervised learning process which needs both input samples and

their corresponding required output. It is based on an error function whose value is

minimised with respect to the weights and biases (Bishop, 1995). As long as the acti-

vation functions are differentiable, evaluating the derivatives of the error with respect

to the weights and biases is possible. These derivatives can then be used to find the

optimal weights and biases that locally minimise the error function. It should be noted

that this optimum is a local optimum, and at least for now there is no way for us to

find the global optimum.

The algorithm for evaluating the derivatives of the error function is known as back-

propagation (BP). It was popularised in the mid-1980s by (Rumelhart et al., 1985).

The term back-propagation could be used to stand for various of things, for example

an MLP structure, or the training of MLP using gradient descent applied to a sum-

of-squares error function (Rumelhart et al., 1985). However, in this thesis we use the

term back-propagation to stand for the BP algorithm or the process of BP, regardless

of what error function or optimisation algorithms are used.

The calculation of derivatives of error with respect to weights and biases can be

done using the chains rule (Apostol, 1974). Now we continue with the MLP structure

and denotations in the “forward propagation process” described earlier in this section.

Taking the case of classification as an example, we use the softmax function at the

output layer, and cross-entropy as the cost function. The cross-entropy error criterion

to minimise is:

C = −
∑

(tln(al−1) + (1− t)ln(1− al−1)), (2.27)

summing over the network outputs. t is the one-hot target vector in which the target
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phone has probability 1. 1 is a vector of ones of the same dimension.

Using equations 2.22 to 2.27 and the chains rule, derivatives of the error with respect

to weights and biases wm = [Wm; bm]can be calculated as:

∂C

∂wl−2

=
∂C

∂ol−2

∂ol−2

∂wl−2

= (al−1 − t)al−2, (2.28)

and

∂C

∂wl−2−i
=

∂C

∂wl−2

∂wl−2

∂wl−3

...
∂wl−1−i

∂wl−2−i

= (al−1 − t)wl−2[al−3(1− al−2)al−2]...[al−2−i(1− al−1−i)al−1−i]

(0 < i 6 l − 2),

(2.29)

Gradient descent optimisation algorithms

Regarding how derivatives are used to find the cost function local minimum, there

are several back-propagation algorithms such as gradient descent, conjugate gradient,

quasi-Newton algorithms etc. (Bishop, 1995). Mini-batch stochastic gradient descent

(SGD) is by far the most popular and common way to optimise neural networks.

Figure 2.3 shows a simple 1-dimensional case of searching for local minimum of

error E(w) using the gradient descent algorithm.

We usually start with some initial guess for the weight vector (could be chosen at

random), and iteratively update it with

w(t+1) = w(t) + ∆w(t), (2.30)

where w denotes the parameters to be adjusted (i.e. weights and biases), the (t) index

indicates the values at training iteration t, and

∆w(t) = −η∇E(w(t)) + ν∆w(t−1). (2.31)
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Figure 2.3: A simple gradient descent example in 1-D.

∇E denotes the gradient of E in weight space, η denotes the learning rate (η > 0)

and ν denotes the momentum. The term −η∇E(w(t)) indicates a small step in the

direction of the negative gradient, in which the learning rate η determines how big the

step is. Parameters are updated iteratively till it reaches a local optimum. Gradient

descent can also be used without momentums or with adaptive learning rates.

Ordinary gradient descent performs each update based on the entire dataset, and

stochastic gradient descent (SGD) performs one parameter update for each training

example. The former one works slowly and is not suitable for big training set, whereas

the latter one updates too frequently that it would result in high variance and therefore

a heavy fluctuation in the objective function (Ruder, 2016).

Mini-batch SGD performs an update for every mini-batch of n training examples,

and it takes the advantages of both the conventional gradient descent and the SGD

mentioned above (Ruder, 2016). Therefore it is the most efficient among the three.

Equation 2.31 is modified to:

∆w(t) = −η∇E(w(t), x[i×batch size:(i+1)×batch size]) + ν∆w(t−1). (2.32)
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The experiments in this thesis use mini-batch SGD for training neural networks.

2.2.3 Deep learning with RBM pre-training

MLP, DNN and DBN

Neural networks with at least two hidden layers can be called deep neural networks

(DNN), and it is a rather general concept. MLPs with multiple hidden layers is ar-

guably just one type of DNN. The more layers a neural network has, the “deeper” it

is. Sometimes DNN specifically indicates neural networks trained by layer-wise pre-

training techniques, which is usually called deep learning and will be touched later

in this section. As mentioned in Section 2.2.1, deep learning does a better job than

conventional error back-propagation because the pre-training would end up at a better

initialisation and therefore result in a better “local optimum”. Moreover, the layer-wise

training overcomes lots of problems back-propagations tend to have when networks are

deep, and the generative unsupervised learning reduces the requirements of labels.

The deep belief network (DBN) is a classic deep learning structure and is another

important structure used in this thesis. A DBN is a stack of RBMs (Hinton et al., 2006).

It is usually used for DNN pre-training, which results in a better weight initialisation

for further supervised training. After the pre-training, an output layer is added on

top of the DBN, followed by the fine-tuning process with labels and back-propagation

algorithm to finish the training of this DNN. A DNN trained with DBN is called a

DBN-DNN, or simply a DBN. More descriptions on these deep learning techniques are

covered later in this Section 2.2.3

Restricted Boltzmann machine (RBM)

The restricted Boltzmann machines (RBM) was proposed by (Ackley et al., 1985). It is

a variant of the Boltzmann machine with the restriction that there should be no visible-

visible or hidden-hidden connections. They are named after the Boltzmann distribution

(also called Gibbs distribution) in statistical mechanics which is their theoretical basis.
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Figure 2.4: The structure of an RBM.

An RBM can be regarded as a two-layer neural network, with one visible layer (input

layer) and one hidden layer. A simple RBM is shown in Figure 2.4. Each possible joint

configuration of a visible unit v and a hidden unit h has a hop-field energy E(v, h),

which determines the probability that the network will choose the configuration:

P (v, h) =
e−E(v,h)∑
v,h e

−E(v,h)
, (2.33)

then

P (v) =
∑
h

P (v, h). (2.34)

From equations 2.33 and 2.34, we have

P (h|v) =
e−E(v,h)∑
h e
−E(v,h)

. (2.35)

The hidden neurons usually take binary values and follow Bernoulli distributions,

whereas the visible neurons take binary or real values, resulting in a Bernoulli-Bernoulli

RBM or a Gaussian-Bernoulli RBM. In the case of a Bernoulli-Bernoulli RBM,

E(v, h) = −aTv − bTh− hTWv, (2.36)

where a and b are the visible and hidden layer bias vectors, and W is a weight matrix
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that connects visible and hidden layer. In the case of a Gaussian-Bernoulli RBM,

E(v, h) =
1

2
(v − a)T (v − a)− bTh− hTWv. (2.37)

As hidden layer nodes take binary values, it can be easily derived from Equation 2.35

that

P (h = 1|v) =
1

1 + e−(Wv+b)
. (2.38)

Note that Equation 2.38 holds for both Bernoulli-Bernoulli and Gaussian-Bernoulli

RBMs, and also has the same form as the logistic sigmoid function (Equation 2.23).

Therefore, weights of RBMs can be used to initialise a feed-forward neural network

with sigmoid hidden units.

For the binary visible neuron case, a completely symmetric derivation can be made

and we have

P (v = 1|h) =
1

1 + e−(WT h+a)
. (2.39)

For the Gaussian visible neurons, P (v|h) can be estimated as

P (v|h) = n(v;W Th+ a, I), (2.40)

where n stands for a Gaussian distribution and I is the appropriate identity covariance

matrix, in other words, random variable v follows a Gaussian distribution with mean

vector W Th+ a and covariance matrix I.

RBM training and Contrastive Divergence (CD)

To train an RBM is to learn parameters W , a, b that most likely to generate what

has been observed (reconstruction). In other words, run the Gibbs sampler to have a

Gibbs distribution as close to the input visible distribution as possible. A picture of

alternating Gibbs sampling is shown in Figure 2.5.

A straightforward approach to RBM training is to do a Maximum Likelihood learn-
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Figure 2.5: Alternating Gibbs sampling which can be used to learn the weight of an RBM. (Hinton,
2012; Yu and Deng, 2014)

ing: Measure the frequency of vi and hj being on together, which we annotate as 〈vihj〉

and use the expectations from the data 〈vihj〉0 and that from the model 〈vihj〉∞ to

adjust weighs so that the distribution of the model gets close to that of the data.

SGD can be performed to minimise the negative log likelihood, i.e. −logP (v).

∂[−logP (v)]

∂wij
= −[〈vihj〉0 − 〈vihj〉∞]. (2.41)

However, 〈vihj〉∞ takes too long time to compute. A much more efficient approach is

widely used, which is Contrastive Divergence (CD) (Hinton, 2006). The approximation

made by the one-step CD algorithm is that

∂[−logP (v)]

∂wij
= −[〈vihj〉0 − 〈vihj〉∞]

≈ −[〈vihj〉0 − 〈vihj〉1].

(2.42)

Note that there could be more than one step but one step is usually enough, and that

it is not a maximum likelihood learning but it works well (Hinton, 2006).

DBN-DNN and fine-tuning

A Deep Belief Network (DBN) consists of a stack of RBMs, where the hidden layer of

each RBM performs as the visible layer in the next RBM (Hinton et al., 2006). That

makes the number of DBN hidden layers equal to the number of RBMs.

We call this layer-wise RBM training of DBN pre-training and this is only for

finding a better network initialisation. An output layer is added on top of the DBN



Chapter 2. Literature Reviews 29

with the weights between them initialised to zeros. The final supervised training is

called fine-tuning. Fine-tuning is done by standard error back-propagation.

The idea of fine-tuning may also be used to adapt a trained network to fit a partic-

ular training set. That is to say, after training on dataset A, by resetting the output

layer and applying a few more epochs of error back-propagation using dataset B as the

training data, the DNN may be fine tuned to work better on data similar to B.

2.3 Speech production and Speech representations

2.3.1 Speech production and English speech sound categories

The main organs of the human body responsible for producing speech are the lungs,

larynx, pharynx, nose and various parts of the mouth (Holmes and Holmes, 2001),

which are illustrated in Figure 2.6. Humans produce speech by coordinating these

organs. However, these organs are not specialised for speech production - they play

also significant roles in vital human functions such as the respiratory system (breathing)

or the digestive system. From the perspective of human revolution, it is more likely that

our ancestors found ways to make good use of these organs to achieve communications

through speech, where articulations are limited by the organs.

These organs form an intricately shaped “tube” extending from the lungs to the

lips. Vocal tract is the part of the tube that lies above the larynx and consists of the

pharynx, mouth and nose (Denes and Pinson, 1993). The shape of the vocal tract can

be varied extensively by moving the soft palate, tongue, lips and jaw, which are collec-

tively called the articulators, and the process of adjusting the shape of vocal tract to

produce different speech sound is called articulation (Denes and Pinson, 1993). Ken-

neth Stevens proposed using bundles of binary distinctive features to specify phonetic

segments (Stevens, 2002), where each bundle of features indicates the positions of ar-

ticulators of phonetic segments. An example of such features is shown Figure 2.76.

6This example copies the “TABLE V” from (Stevens, 2002)
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Figure 2.6: Diagrammatic cross-section of the human head showing the vocal organs (Holmes and
Holmes, 2001).

A phone is defined to represent such phonetic segments that have a certain mode of

production (articulation) despite of the difference between speakers, whereas a phoneme

is defined as the smallest unit in language where substitution of one unit for another

might make a distinction of words (Holmes and Holmes, 2001). A phoneme can cor-

respond to many phones due to different individuals’ speaking habits, for example

accents.

English phones can be categorised by the type of excitation and their manners and

places of articulation. Vowels—Consonants is a two-class phone categorisation. As

defined in (Johns, 1975), “a vowel in normal speech is a voiced sound in forming which

the air issues in a continuous stream through the pharynx and mouth, there being no

obstruction and no narrowing such as would cause audible friction”; all other sounds

are called consonants. Vowels and consonants are to be discussed later in this section.

In this thesis we use the phone symbols according to the Arpabet symbol set developed

for speech recognition uses (Shoup, 1980) and write phone symbols between oblique

lines, for example, /aa/.
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Figure 2.7: Lexical representations for the words debate, wagon and help. The syllable structure of
each word is schematized at the top (σ=syllable, o=onset, r=rime) (Stevens, 2002).

Vowels

Vowels are made without any constriction in the vocal tract. The shape of vocal

tract enhances some harmonics of fundamental, while suppressing others. The regions

of enhanced harmonics are called formants and will be described in Section 2.3.2.

Formants frequencies are related to position of tongue and lips. According to the

tongue positions when producing vowels, vowels are called high or low, front or back,

and central (also called neutral) vowels. For example, /iy/ is a high front vowel, and

/aa/ is a low back vowel. A vowel space diagram is shown in Figure 2.8(a).
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(a) (b)

Figure 2.8: (a) A vowel space diagram, aggregated over many speakers (University of California
Berkeley, 2011). (b) a text book image of some typical acoustic measurements for the vowels in
“she”, “who”, “odd”, and “rack” (symbolized here with the symbols “iy”, “uw”, “aa” and “ae”
respectively), overlaid on an x-ray tracing of a vocal track (University of California Berkeley, 2011)

It should be noticed that the absolute positions of phones could be different on

different vowel space diagrams due to the variance in human vocal tracts. However,

the general relative positions stay the same pattern.

Consonants

The consonants of English are best described by specifying their place of articulation

and manner of articulation. The categories of manner-of-articulation are plosive (also

called stop), fricative, affricate, nasal, and approximant (Denes and Pinson, 1993).

The plosives are made by blocking the air pressure and then suddenly releasing

it (Denes and Pinson, 1993). Plosives can be voiced (for example, /b/, /d/, /g/) or

unvoiced (for example, /p/, /t/, /k/). When labelling speech, there are also transcrip-

tion such as TIMIT labelling (Garofolo et al., 1993, to be described in chapter 3.1)

that separate the “blocking stage” and the “releasing stage”, resulting in closures (in

TIMIT labels: /bcl/, /dcl/, /gcl/, /p/, /t/, /k/) and releases (/b/, /d/, /g/, /p/, /t/,

/k/).

The fricatives are articulated by constricting the air flow which causes turbulence

and thereby produce a sound of hissy quality (Denes and Pinson, 1993). There are also
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both voiced (/z/, /zh/) and unvoiced fricatives (/s/, /f/, /th/).

The affricates are /ch/ and /jh/. They are made by a brief stop followed by a

fricative (Denes and Pinson, 1993).

The nasals are produced by lowering the soft palate thereby coupling the nasal

cavities to the pharynx and allowing air flow through the nose (Denes and Pinson,

1993). Examples are /m/, /n/, /ng/, /en/.

The approximants are the consonants /w/, /y/, /r/, /l/. They are voiced conso-

nants and are also regarded as “semi-vowels” as they have some vowel-like structure.

Phone categorisation used in this thesis

In this thesis, we use the categorisation by (Halberstadt and Glass, 1997). Table 2.1

shows how they define phone categories and what phones are included in each category.

Table 2.1: Phone categorisation used in this thesis (Halberstadt and Glass, 1997).

Phone category Phone label

Plosive /g/, /d/, /b/, /k/, /t/, /p/
Strong fricative /s/, /z/, /sh/, /zh/, /ch/, /jh/
Weak fricative /f/, /v/, /th/, /dh/, /hh/
Nasal/Flap /m/, /n/, /en/, /ng/, /dx/
Semi-vowel /l/, /el/, /r/, /w/, /y/
Short vowel /ih/, /ix/, /ae/, /ah/, /ax/, /eh/, /uh/, /aa/
Long vowel /iy/, /uw/, /ao/, /er/, /ey/, /ay/, /oy/, /aw/, /ow/
Silence /sil/, /epi/, /q/, /vcl/, /cl/

2.3.2 Speech representations (speech features)

Speech representations for ASR are a sequence of feature vectors that are to be used

to represent speech. The phonetic features and formant frequencies that have been

mentioned in the previous section are both speech representations. However, there are

various of speech features and their combinations, and there are even research using

raw waveforms as neural network input (for example, Graves et al., 2012; Graves and

Jaitly, 2014).
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Filter bank energies (usually with a Mel scale) and Mel-scaled frequency cepstral

coefficients (MFCCs) are two classic spectral features. Mel frequencies are used to

take human perception sensitivity with respect to frequencies into consideration. In

conventional GMM-HMM ASR systems, MFCCs of 39 dimensions are used as acoustic

features. In recent DNN-HMM hybrid ASR systems, spectral features in all kinds of

forms (for example with delta features, with contextual frames, with dimensionality

reduction and with speaker normalisation) are used as the input to neural networks.

In this thesis, we use filter bank energies as the input features to neural networks. A

more detailed description of the features we use can be found in Section 4.2.

Formant frequencies are classic non-spectral features. As mentioned in Section 2.3.1,

formants correspond to the resonances of the vocal tract. They are numbered from the

low frequency end, and usually the first three or four formant frequencies are adequate

for satisfactory perception (Holmes et al., 1997; Sjölander and Beskow, 2000). While

formant frequencies provide a natural description of vowels, unvoiced consonants7 are

better described in terms of duration and mean energies in key frequency bands.

Neural networks are also used as feature extractors. Output of a hidden layer

can be treated as a high-level feature and used in further task (for example, Deng

and Chen, 2014). Particularly, a compression bottleneck layer can be used to obtain

features of lower dimensions (Grézl et al., 2007; Jiang et al., 2014). This neural network

architecture is known as bottleneck neural network and the output of the bottleneck

layer is called bottleneck features (BNFs). In recent research, most BN-NNs have tens

to hundreds of neurons at the bottleneck layer, such as (Grézl et al., 2007; Liu et al.,

2014; Doddipatla, 2016; Petridis and Pantic, 2016).

7For example, stop consonants are studied in (Li et al., 2010; Stevens and Blumstein, 1978) and
fricative consonants are studied in (Li et al., 2012; Heinz and Stevens, 1961; Wilde, 1995).
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2.4 Feature visualisation and dimensionality reduc-

tion

2.4.1 Dimensionality reduction

Dimensionality reduction means to use a d-dimensional vector yi to represent a D-

dimensional vector xi, where d� D. Generally, there are two ways to achieve dimen-

sionality reduction: one is to select a subset of the original variables, and the other

one is to apply a transformation from the higher dimensional space to a lower dimen-

sional space. We only consider the latter in this thesis. The main purposes of using

dimensionality reduction include: to reduce the amount of variables for less storage

requirement and faster computing, to throw away redundant or distracting data, and

to visualise high-dimensional data. Dimensionality reduction techniques are important

in data analysis and data classification.

Popular dimensionality reduction techniques include principal component analysis

(PCA), linear discriminant analysis (LDA), Isomap, locally linear embedding (LLE),

t-distributed stochastic neighbour embedding (t-SNE), and neural networks. Table 2.2

lists a set of popular dimensionality reduction techniques and compares their charac-

teristics.

Principal component analysis (PCA) is perhaps the most popular linear dimen-

sionality reduction technique. PCA tries to find the linear projection that maximises

the variance of the projected data, so as to keep as much information in the original

data as possible. However, it is mainly concerned with large pairwise distances and is

sometimes not appropriate to use, for example Figure 2.9 shows two cases where PCA

is not an appropriate choice.

The structure in Figure 2.9(a) can be learned with linear discriminant analysis

(LDA), which learns with label information and tries to maximise the separation be-

tween classes. LDA is further described in Section 2.4.2. Non-linear techniques such

as Isomap, LLE and t-SNE are needed to learn the structure in Figure 2.9(b). Among
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(a) (b)

Figure 2.9: Two examples where PCA is not an appropriate choice.(a) when the separation rather
than the variance of the data is more of interest to learn (Czech Technical University in Prague,
2008); (b) when the data is not Gaussian-distributed (Yang, 2007).

them t-SNE is the best to use for visualisations (van der Maaten and Hinton, 2008).
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Neural networks with compressed hidden layers, i.e. what we call bottleneck lay-

ers can be used for dimensionality reduction. The part from the high-dimensional

input to the compressed layer defines a mapping from the high-dimensional space to

a lower dimensional space. Auto-encoders learn in an unsupervised manner with the

data only, trying to preserve as much information as possible in the original data for

reconstruction. This is like what PCA does but in a non-linear way. Classification neu-

ral networks, on the other hand, learn with class labels aiming to distinguish between

classes. This is like what LDA does but in a non-linear way.

Neural networks have been discussed in Section 2.2. In this thesis, LDA and t-SNE

are also used and therefore will be described in detail in Section 2.4.2 and 2.4.3.

2.4.2 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a widely used dimensionality reduction tech-

nique. As mentioned in Table 2.2, it aims to find a projection that maximises the sep-

arability of known categories. LDA was first proposed by (Fisher, 1936) for two-class

problems in which data are projected from a D-dimensional space to a 1-dimensional

space, and was later generalised for multi-class problems (for example, Rao, 1948).

To obtain a projection vector W that projects D dimensional data to d dimensional,

the main idea is to find d eigenvectors that most dominate the ratio of the between-

class and within-class covariance. By introducing a between-class covariance Sb and a

within-class covariance Sw, the ratio of the between-class covariance and within-class

covariance is

S = SbS
−1
w . (2.43)

Sw and Sb are also called within-class and between-class scatters (scatter matrices).

A decomposition of the form S = V AV T can be applied, where the eigenvalues in A

indicate the ratio of the between-class over within-class variance along the direction

of the corresponding eigenvectors. The d eigenvectors corresponding to the largest d
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eigenvalues are selected to form the projection vector W .

For a c-class problem, the within-class covariance is calculated as

Sw =
c∑
i=1

Si, (2.44)

where c is the number of classes, and Si is the scatter matrix of class i,

Si =
∑
x∈i

(x−mi)(x−mi)
T , (2.45)

where mi is the mean of the vectors in class i;

The between-class covariance is

Sb =
c∑
i=1

Ni(mi −m)(mi −m)T , (2.46)

where Ni is the number of samples in class i, and mi and m are the mean of each class

and the overall mean, respectively.

2.4.3 t-distributed stochastic neighbour embedding (t-SNE)

visualisation

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a non-linear dimensionality

reduction algorithm that was developed by (van der Maaten and Hinton, 2008) and is

particularly well suited for the visualisation of high-dimensional datasets.

The t-SNE algorithm tries to map the original data space RD to a 2-dimensional

or 3-dimensional space Rd (we call it the map space or the map), where D and d are

the dimensionality of the spaces. We denote a data point in the original data space as

xi ∈ RD and a map point in the map space yi ∈ Rd. There is a bijection between the

data points and the map points. If two data points xi and xj are close in RD, we want

the two corresponding map points yi and yj also to be close.

To measure how close (i.e. how similar) the two data points are, first a conditional
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similarity pj|i is defined:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
, (2.47)

where ‖xi − xj‖ is the Euclidean distance between xi and xj, and σi is the variance

of the Gaussian distribution around xi. This variance is set differently for every point

to keep the perplexity fixed and thus adapt to different densities in different parts of

the space. A larger perplexity indicates a bigger amount of data concerned in the

neighbourhoods.

Then the similarity is defined as a symmetrised version of the conditional similarity:

pij =
pi|j + pj|i

2N
, (2.48)

where N is the number of samples in the whole. In this way, we get a similarity matrix

for the original space, which is obviously a symmetric matrix.

The similarity matrix for the map space is defined by

qij =
f(‖yi − yj‖)∑
k 6=i f(‖yi − yk‖)

, (2.49)

where

f(z) =
1

1 + z2
. (2.50)

This is the same idea as for the original space, but with a Student’s t-distribution (with

one degree of freedom) instead of a Gaussian distribution. The t-distribution differs

from the Gaussian in a way that forces close points (in the dense region) to be closer

(denser) and in the sparse region (tails) further apart (sparser).

Intuitively, we want the values in the two similarity matrices qij and pij to be as

close as possible, so that the structure of the map to be as similar as possible to the

structure of the data. The difference between the two similarity matrices qij and pij is
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measured by Kullback Leibler divergence:

KL(P ||Q) =
∑
i

∑
j 6=i

pijlog
pij
qij
. (2.51)

Points in the map space are moved around to minimise the KL(P ||Q), and this is

done by gradient descent which has been described in Section 2.2.2. The asymmetric

measurement of the difference leads to a learning that focuses on local structures. For

example, when a large pij is modelled by a small qij, it leads to a big penalty, but when

a small pij is modelled by a large qij, the penalty would be small.

One limitation of the t-SNE algorithm described above is that it is not efficient

when dealing with large data set (for example, more than 5000 objects) as it needs to

consider all pairwise interactions between points in every gradient update which would

be very computationally intensive. For large datasets, t-SNE can be implemented via

Barnes-Hut approximations. Basically, what the Barnes-Hut algorithm does is to find

a set of “centre” points, with each one ŷj representing a cluster of points that are very

close to each other but are relatively far away from the point yi that is of interest, so

that the interaction between this point yi and the cluster of points can be approximated

as the interaction between ŷj and yi times the number of points involved in the cluster.

The Barnes-Hut t-SNE is able to learn embeddings of data sets with millions of objects.

It should also be noticed that t-SNE applies a non-parametric learning, which means

there is no such training process that learns mapping functions or models. Therefore,

if one wants to include new data, the whole process has to be restarted from the very

beginning.

2.5 Topological Manifolds

In mathematics an n-dimensional manifold is a topological space that is locally equiv-

alent to n dimensional real Euclidean space Rn (see example, Lee, 2010). A simple

example of a 1-dimensional manifold is a circle C embedded in the plane (Figure 2.10),



Chapter 2. Literature Reviews 43

because any point on C has a neighbourhood that can be “straightened out” to be an

open interval in R = R1. However note that C cannot be embedded as a whole as a

subset of R1.

Figure 2.10: The distance between two neighbour points A and B is calculated as Euclidean distance.

Formally, a manifold consists of a topological space M such that for each x ∈

M there is a neighbourhood Ux and bijection φx : Ux → Rn that establishes the

equivalence between Ux and Rn. Normally additional restrictions are placed on φx to

ensure that it preserves relevant mathematical structure. Thus, in topology φx would

be a homeomorphism (φx and φ−1
x are both continuous) but for the purposes of calculus

it would need to be a diffeomorphism (φx and φ−1
x are also both differentiable). There is

also a “consistency” property. If x, y ∈M and Ux∩Uy 6= ∅ then φxφ
−1
y : φy(Ux∩Uy)→

φx(Ux∩Uy) is a bijection with the same additional properties as φx and φy that ensures

that the overlap Ux ∩ Uy is treated equivalently by φx and φy.

In speech processing there are a number of computational models where an acoustic

space M is embedded into Rn for some n by a single global mapping φ. For example,

in speaker or language identification M is the set of sequences of acoustic vectors

corresponding to a spoken utterance, φ : M → Rn maps x ∈M to its i-vector φ(x), or

M is the set of acoustic feature vectors in context, φ : M → Rn is implemented by a

DNN and φ(x) is a bottleneck feature representation of x ∈M . In contrast, the linear

model described in (Huang et al., 2016) is one of few examples which attempt to exploit

the varying local structure offered by a manifold. In their work they defined a set of

overlapping neighbourhoods according to phone classes and applied linear learning to
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each of them to achieve a phone classification task. Our work presented in Chapter 7 is

also inspired by the manifold structure and can be regarded as a non-linear extension

of the work in (Huang et al., 2016).



Chapter 3

Speech Corpus

This chapter describes the speech corpus used throughout the thesis - TIMIT.

3.1 TIMIT corpus

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT - Texas In-

struments/Massachusetts Institute of Technology) is a corpus of read speech (Garofolo

et al., 1993). It contains recordings of phonetically-balanced prompted English speech,

and was recorded at 16 kHz rate with 16 bit sample resolution using a Sennheiser

close-talking microphone.

TIMIT contains a total of 6300 sentences (5.4 hours), from 630 speakers represent-

ing 8 major dialect divisions of American English, each speaking 10 phonetically-rich

sentences. 70% of the speakers are male and 30% are female.

The prompts for the 6300 utterances consist of 2 dialect sentences (SA, spoken by all

speakers), 450 phonetically compact sentences (SX) and 1890 phonetically-diverse sen-

tences (SI). Each sentence has an associated orthographic transcription, time-aligned

word boundary transcription and time-aligned phonetic transcription where a 61-phone

Arpabet-based phone list is used (The phone list is included in Table 3.2). The phone

level segmentation was done manually.

Train and test sets are suggested in the TIMIT corpus. A “core test set” is given

45
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as an abridged test set which includes 192 utterances from 24 speakers (2 males and

1 female from each dialect). We followed the train/test division but excluded all SA

sentences in both training and test process in order to avoid any bias due to their

identical content. Table 3.1 shows details of the train, full test and core test set.

Table 3.1: Number of speakers, utterances, hours and tokens of speech in TIMIT training, full test,
development, and core test sets, excluding SA sentences.

Set # speakers # utterences (non-SA) # hours # tokens
Train 462 3696 3.14 142910

Test (full) 168 1344 0.81 51680
Development test 50 400 0.34 15334

Core test 24 192 0.16 7333

Using the categorisation described in Table 2.1 in Section 2.3.1, we calculated the

proportion of each category in the training set1, presented in Figure 3.1.

It is true that the TIMIT corpus is a small dataset and may seem “old fashioned”

from the perspective of volume and recording method. However, it has always been

a significant database in tasks with phonetic targets, as it is the most widely used

dataset with hand labelling. Especially in recent years when the DNN approaches get

popular, the TIMIT dataset is of great use having faithful labellings and there are

many baseline DNN-based development using TIMIT. Particularly, the TIMIT corpus

is preferred in research with emphasis on science discovery, whereas for works focusing

more on practical use, it may be beneficial to use bigger corpus to train systems. The

research in this thesis belongs to the former, therefore the TIMIT corpus was chosen

as the speech corpus.

1This is calculated by counting the number of frames resulting from the front-end analysis sampling
at 16 kHz using a 25ms-width window with a 10ms frame rate
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(a) TIMIT training set (non-SA)

(b) TIMIT core test set (non-SA)

Figure 3.1: The proportion of each broad phone category (calculated by the number of sampling
frames) in TIMIT training (a) and core test (b) set.
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3.2 TIMIT phone labels and phone mappings

In the TIMIT database, there are phone-level labels with segmentation information.

TIMIT uses a 61-symbol set which is shown in the first column in Table 3.2. When

using the TIMIT corpus, the usual convention is to use the 49-symbol set (Holmes,

1997) to build models and score on the 40-symbol set (Lee and Hon, 1989), as TIMIT

makes distinctions between very similar sounds, whose confusion is not considered

important in the context of ASR.

Table 3.2 lists TIMIT phone labels and phone mappings that we use to map the

61-symbol set in TIMIT labels to the 49-symbol set and to the 40-symbol set in this

thesis.

In many experiments in this thesis, we use the phone segmentations provided in the

TIMIT database. Particularly, in some of the phone classification experiments, we use

only feature vectors corresponding to the centre frames of the TIMIT phone segments

(this will be described in detail in Section 7.2.2).
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Table 3.2: TIMIT phones and mappings to the 49 and 40 symbol sets.

61-symbol set 49-symbol set 40-symbol set

ih ih
ih

ix ix

iy iy iy

ae ae ae

ah
ah

ahax-h

ax ax

eh eh eh

uh uh uh

uw
uw uw

ux

aa aa
aa

ao ao

er
er er

axr

ey ey ey

ay ay ay

oy oy oy

aw aw aw

ow ow ow

p p p

t t t

next page
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Table 3.2(continued)

61-symbol set 49-symbol set 40-symbol set

k k k

b b b

d d d

dx dx dx

g g g

pcl

cl

sil

tcl

kcl

bcl

vcldcl

gcl

q q

pau
sil

h#

epi epi

f f f

v v v

s s s

z z z

sh sh sh

zh zh zh

th th th

dh dh dh

ch ch ch

next page
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Table 3.2(continued)

61-symbol set 49-symbol set 40-symbol set

jh jh jh

m
m m

em

n
n

nnx

en en

ng
ng ng

eng

l l
l

el el

r r r

w w w

y y y

hh
hh hh

hv



Chapter 4

Very Low-dimensional Bottleneck

Neural Network Representation of

Speech

4.1 Introduction

As mentioned in the background in Section 1.1, there is a need for a compact repre-

sentation of speech, suitable for segmental models, that can be estimated for all speech

sounds. In this chapter, low-dimensional features extracted from the bottleneck of

neural networks are analysed, with the focus on their capability of representing speech

and their suitability for modelling speech dynamics. Various ways of designing and

training the network are assessed. This includes varying: 1. the input to the neu-

ral network; 2. the neural network output target, i.e. neural network function; 3.

the size of bottleneck and intermediate hidden layers. Bottleneck features (BNFs) are

evaluated by a GMM-HMM phone recogniser (described in Section 2.1.2) and are com-

pared with MFCC features and formant features in respect to ASR accuracies. The

suitability of the BNFs to be used in a Continuous-State HMM (CS-HMM, described

in Section 2.1.3) system is assessed. Experimental evaluations are performed on the

52
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TIMIT speech corpus (described in Section 3.1).

We demonstrate that in a conventional HMM-based ASR system, 9-dimensional

BNFs can give comparable phone recognition performance to 39-dimensional conven-

tional MFCCs, and BNFs give on average 33.7% improvement in phone accuracies

compared with formant-based features of the same dimensionality. It is observed that

the BNFs preserve well the trajectory continuity and fit the CS-HMM modelling better

than formants. The BNFs provide a compact representation in terms of the number of

model parameters and they seem overall to be well suited to be employed for segmental

models of speech dynamics.

Section 4.2 describes the experimental setup, explaining briefly how the BNFs are

obtained and evaluated. Section 4.3.1 to Section 4.3.5 analyses the bottleneck repre-

sentation of speech using conventional GMM-HMM recognisers. Section 4.3.6 explores

if the BNFs fit the assumption of CS-HMM for modelling speech dynamics.

4.2 Experimental setup for extracting very low di-

mensional BNFs

4.2.1 Bottleneck neural network structure

The architecture of the bottleneck neural network that was used is depicted in Fig-

ure 4.1. BNFs are the output of the compression layer of a bottleneck neural network.

There could be either no layers or several layers between the bottleneck layer and the

input/output layer.

In experiments in this thesis, the input to the network is a vector containing the 26

Mel-scaled logarithm filter-bank energies (logFBEs), implemented based on the Fourier

transform. The TIMIT corpus sampled at 16 kHz was analysed using a 25-ms Hamming

window with a 10-ms frame rate.

Two approaches to training the network were explored, one aimed at the recon-
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Figure 4.1: Architecture of the multi-layer bottleneck neural network employed for speech
representation.

struction of the input spectrum and the other at discrimination between phones. In

the case of reconstruction, when the input logFBEs cover more than one signal frame,

i.e. contain context frames, the target is either the logFBEs of the current signal frame

or the full context (same as the input). In the case of phone discrimination, the targets

are the posterior probabilities of the 49 phones. These were obtained based on the

labels and time-stamp information supplied with TIMIT. The mapping of 61 to 49

phones and the mapping of 49 to 40 phones were performed as described in (Holmes,

1997; Lee and Hon, 1989). The mappings are described in Section 3.2. The Softmax

function was used at the last layer in the phone discrimination neural networks.

4.2.2 Neural network training

Filter bank energies of different forms were used as the input to the neural networks.

They were normalised to have zero mean and unit variance based on the entire training

set. 90% of the TIMIT training set (random 90% of the training sample frames for each

gender in each dialect) was used as the neural network training set, and the remaining

10% as validation set.
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The neural networks were trained using the Theano Toolkit (Bastien et al., 2012)

with GPU computing (Bergstra et al., 2010). The use of GPU enables much faster

neural network training without affecting the training results. Stochastic gradient

descent was used as the back-propagation training algorithm.

The learning rate was set to 0.01 and the maximum number of epochs was set

to 3000. These were chosen empirically after exploring suitable values. The training

stopped when the error on the validation set started to rise or when the epoch reached

the maximum. In most cases, the error was still decreasing very slowly when the epoch

reached the maximum of 3000, but the error curve was almost flat and the classification

error would reduce very little if we continue training.

4.2.3 Evaluation of bottleneck outputs with GMM-HMM recog-

nisers

We evaluated BNFs quantitatively on their capability of representing speech, using

an ASR phone recognition system. Speech recognition experiments were performed

using a standard GMM-HMM system built using HTK (Young et al., 1997). BNFs

were fed into the recognition system as acoustic features. HMMs were built for the

49 phone set (Holmes, 1997), each model consisting of 3 states. The number of GMM

components per state was set to increase from 1 in powers of 2 up to 512. The number

of components for silence was twice that for phones. A bi-gram language model was

used. For evaluating recognition performance, recognition rates were scored on the 40

phone set which was mapped from the 49 set according to (Lee and Hon, 1989) as

described in Section 3.2. Percent correct and percent accuracy, shown as “%Corr” and

“%Acc” in the tables, were calculated following equations 2.3 and 2.4. The reported

results, if not specified, are on the core test set using the number of GMM components

corresponding to the best accuracy achieved on the development test set.
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4.2.4 Continuous-State HMM trajectory modelling

In this work we use a Continuous-State Hidden Markov Model (CS-HMM, as described

in Section 2.1.3) to recover the dwell-transition trajectory that best fits the features,

ignoring phone targets. To do this we supply the model with an inventory with a flat

prior, consisting of a single phone target with very high variance. The top hypothesis

with the same number of dwells as there are TIMIT labelled phones in the utterance

was returned. Note that a distinguishing feature of the dwell-transition CS-HMM used

in this work is that continuity is preserved across the segment boundaries.

4.3 Experiments and results

4.3.1 Comparisons between networks with different network

inputs and network functions

Varying context window widths were assessed on reconstruction neural networks and

phone discrimination neural networks. For both the neural network structures, the

49 phone set was used when training neural networks and HMM models then the 40

phone set was used when scoring. Table 4.1 and Table 4.2 show how BNFs perform in

GMM-HMM recognisers when using various widths of context windows in the neural

network input. All networks used three hidden layers, and are denoted by the number

of neurons at each layer, for example, “26-32-4-32-26” represents a neural network in

which the numbers of neurons at the input layer, three hidden layers and the output

layer are 26, 32, 4, 32 and 26 respectively.

Table 4.1 indicates that including context input in the reconstruction neural net-

works has little effect on the ASR recognition performance using BNFs. However,

having context input in the phone discrimination networks does improve the ASR per-

formance as the width of context window increases from 0 to 15 frames, as shown in

Table 4.2. We use the context window width of ±5 frames in the following experiments
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Table 4.1: ASR performance using BNFs extracted from reconstruction neural networks in
GMM-HMM recognisers when varying the width of context window at the input layer.

Exp Context frames NN target NN size
monophone
%Corr %Acc

A1 0 centre frame logFBEs 26-32-4-32-26 43.44 40.93
A2 ±1 centre frame logFBEs 78-32-4-32-26 43.00 40.85
A3 ±2 centre frame logFBEs 130-32-4-32-26 42.24 40.27
A4 ±5 centre frame logFBEs 286-32-4-32-26 43.00 40.68
A5 ±1 same as input 78-32-4-32-78 44.05 41.37

in this thesis. This was chosen with consideration of a balance between reasonable error

rate and efficiency of experiments (time and memory). The context window width of

±5 frames gives reasonable error, and the results in this thesis are not dependent on

having the absolute minimum error here.

Table 4.2: ASR performance using BNFs extracted from phone discrimination neural networks in
GMM-HMM recognisers when varying the width of context window at the input layer.

Exp Context frame NN size
monophone

%Corr %Acc

B1 0 26-32-4-32-49 59.84 54.63
B2 ±1 78-32-4-32-49 61.33 56.85
B3 ±2 130-32-4-32-49 61.97 57.18
B4 ±5 286-32-4-32-49 63.03 58.52
B5 ±6 338-32-4-32-49 63.56 59.44
B6 ±7 390-32-4-32-49 63.63 59.80

4.3.2 Effect of hidden layer sizes

Next, the effect of varying the number of neurons in hidden layers of the network was

explored. Experiments were carried out using the phone discrimination network. In

this part, all networks used three hidden layers, denoted as H-B-H, where ‘B’ stands

for the bottleneck layer. The number of neurons in both “H” hidden layers was fixed

to 32, 128, 512, 1024, and 2048 in turn. The number of neurons in the bottleneck layer

was set to 4, 9, 16, and 32. Experiments used the context of 5 frames before and 5

frames after the current frame in the input layer, i.e. the input layer was of size 286.

The output layer of the phone discrimination NNs was of size 49. The results achieved
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by monophone HMMs are listed in Table 4.3, and a corresponding graph is depicted

in Figure 4.2.

Table 4.3: Phone recognition performance using BNFs when varying the number of neurons in the
bottleneck and other hidden layers using phone-posterior network.

Exp
NN: 286-H1-B2-H3-49 monophone
H1, H3 B2 %Corr %Acc

1 32 4 62.18 58.17
2 32 9 69.71 65.61
3 32 16 69.96 65.88
4 32 32 70.27 65.96
5 128 4 65.85 61.88
6 128 9 70.88 67.61
7 128 16 72.88 69.69
8 128 32 73.60 69.94
9 512 4 68.51 64.55
10 512 9 73.70 70.08
11 512 16 74.16 71.01
12 512 32 73.30 70.70
13 1024 4 68.21 64.14
14 1024 9 74.04 70.21
15 1024 16 73.84 70.82
16 1024 32 74.79 71.01
13 2048 4 68.31 64.60
14 2048 9 73.47 70.57
15 2048 16 73.71 70.62
16 2048 32 73.87 70.58

For phone posterior neural networks, it can be seen that a considerable improve-

ment in ASR performance is obtained when the bottleneck layer increases from 4 to

9 neurons. Increasing the bottleneck further beyond 9 neurons gives only minor im-

provements. Increasing the size of the other two hidden ‘H’ layers from 32 to 512 also

gives a great improvement in ASR performance, but only minor improvements are seen

when the size is above 512.

Note also that in experiments described in Section 7.3.1, we found that the position

of the bottleneck layer also affects the ASR performance using BNFs, and that training

DNNs with deep belief networks (DBNs) provides a small improvement of the ASR

performance. In the next chapters however, we use the NN structure of 286-512-B-512-
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Figure 4.2: Phone recognition accuracy using BNFs as a function of the number of neurons in the
bottleneck and other hidden layers when using phone-posterior network.

49 trained by standard back-propagation, where B, the size of the bottleneck layer,

varies in different experiments. Although the resulting ASR performance is slightly

lower, it does not affect how we analyse the BNFs in the relevant chapters.

4.3.3 Comparison between monophone and triphone models

Table 4.4 and Figure 4.3 show the ASR performance with BNFs obtained from the

phone-posterior network when using monophone and triphone modelling in the ASR

system. The network configuration 286-512-B-512-49 was used, varying the bottleneck

layer size.

Table 4.4: Phone recognition accuracy using BNFs extracted from phone-posterior network
286-512-B-512-49 when varying the size of the bottleneck layer.

Exp
286-512-X-512-49 monophone GMM-HMM triphone

X %Corr %Acc %Corr %Acc

1 4 68.51 64.55 64.69 59.63
2 9 73.70 70.08 72.27 67.72
3 16 74.16 71.01 75.01 70.14
4 32 73.30 70.70 75.13 70.40
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Figure 4.3: Phone recognition accuracy using BNFs extracted from phone-posterior network
286-512-B-512-49 when varying the size of the bottleneck layer.

Interestingly, the use of triphone models gives lower recognition accuracies than

monophone models, especially for very low-dimensional BNFs. This suggests that the

contextual information which is required by triphone modelling in the ASR process

may have been discarded to some extent during the neural network training due to the

very low-feature dimensionality. Also the network was trained to distinguish between

monophones, and this could also have made the neural network more suitable for

monophone recognisers.

4.3.4 BNFs with delta and delta-deltas

Table 4.5 and Figure 4.4 compare the ASR performance using BNFs obtained from the

phone discrimination network when using static and static plus delta information in

the ASR modelling. For the latter, we calculated deltas on the BNFs, as part of the

ASR system training. The network configuration 286-512-B-512-49 was used, varying

the bottleneck layer size.

It can be seen that appending ∆ and ∆∆ to BNFs gives improvement between 2%
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Table 4.5: Phone recognition accuracy using BNFs extracted from phone-posterior network
286-512-B-512-49 when varying the size of the bottleneck layer.

Exp
286-512-X-512-49 with BNF with BNF+∆+∆∆

X %Corr %Acc %Corr %Acc

1 4 68.51 64.55 73.51 68.31
2 9 73.70 70.08 76.89 72.84
3 16 74.16 71.01 78.02 73.10
4 32 73.30 70.70 78.20 72.93

to 4% (absolute), depending on the size of bottleneck. Note that the results obtained

using 9-dimensional BNFs are better than using 4-dimensional BNFs appended by ∆

and ∆∆, i.e., 12-dimensional features. This suggests that the BNFs are containing

information about both the spectral and temporal properties of speech.
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Figure 4.4: Phone recognition accuracy using BNFs extracted from phone-posterior network
286-512-B-512-49 when varying the size of the bottleneck layer.

4.3.5 Comparison between BNFs and formant data

The BNFs have been compared with MFCCs in the above sections. This section

compares BNFs with formant features (the dimensions of the two types of features are
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kept the same). Formant features are accepted to capture the true speech dynamics

(in voiced sounds).

First, we compare the phone recognition performance using the bottleneck and

formant features in a conventional HMM-based ASR system. Results are presented in

Table 4.6. Bottleneck neural networks with 3 nodes at the bottleneck layer were trained

and 512 nodes were used at the non-bottleneck layers. Experiments were performed

on both phone discrimination neural networks and logFBEs reconstruction neural net-

works. The former achieved better results and as such only these are reported here.

Experiments were performed with formants estimated using the Wavesurfer (Sjölander

and Beskow, 2000) and Praat (Boersma and Weenik, 2013) tools. The former achieved

better results and as such only these are reported here.

Comparing line 1 under the “Formants” section in Table 4.6 to line 1 under the

“BNFs” section, we can see that the use of 3 BNFs obtained from the phone dis-

crimination neural network considerably outperforms the use of 3 formant frequencies

(around 20% absolute or 50% comparative advantage in recognition accuracy). It in-

dicates that the BNFs are able to encode more information than formant frequencies,

We hypothesise that this extra information may include amplitudes and bandwidths.

Thus we also performed experiments with formant-based features containing the

formant frequencies, amplitudes and bandwidths. Comparing line 3 in the “Formants”

section to line 1 and 3 in the “BNFs” section in Table 4.6, we see that the use of BNFs

of both 3 and 9 dimensions considerably outperform the use of 3 formant frequencies

plus amplitudes and bandwidths (9 dimensions in total). The use of 3 BNFs outper-

forms 9 formant features by 8.9% (absolute) in recognition accuracies, and BNFs of

the same dimension (9-dimension) provide a further accuracy increase of 9.6% (abso-

lute). Experiments were also performed with formant-based features containing the

formant frequencies, amplitudes and bandwidths with delta features, resulting in a 27-

dimensional feature vector (with delta and delta-delta) and compared with the same

dimensionality BNFs (with delta and delta-delta). The results are in the bottom lines
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in the sections “Formants” and “BNFs” in Table 4.6. Again, the use of BNF-based

features provides much better ASR accuracy than formant-base features

It can be seen that BNFs considerably outperformed formant-based features. The

use of the bottleneck-based feature representation results, on average, in a 33.7% com-

parative improvement in phone accuracies compared with formant-based features with

the same dimension.

In addition, the confusion matrices from the recognition results showed that the

BNFs achieved nearly uniform improvement over formant-based features across all

phones. A figure illustrating ASR recognition accuracies of individual phones using

3 BNFs, 9 BNFs, 3 Formant frequencies and 3 Formant frequencies plus 3 amplitudes

and 3 bandwidths is shown in Appendix A .

Table 4.6: Recognition performance of an HMM-based ASR system when using formant or bottleneck
feature representation.

Feature representation Dim. Recognition
Corr (%) Acc (%)

MFCC + ∆ + ∆∆ 39 76.23 70.95
Formants

3 freq 3 49.30 40.71
3 freq + ∆ + ∆∆ 9 56.32 51.12
3 freq & amp & bw 9 55.96 52.04
3 freq & amp & bw+ ∆ + ∆∆ 27 65.06 60.43

BNFs
3 BNFs 3 65.02 60.94
3 BNFs + ∆ + ∆∆ 9 70.87 65.73
9 BNFs 9 74.37 70.57
9 BNFs + ∆ + ∆∆ 27 76.77 73.07

4.3.6 Analysis of the BNFs for modelling speech dynamics

Having demonstrated that bottleneck neural networks can be used to extract very

low-dimensional speech features (i.e. BNFs) that perform relatively well for phone

recognition in conventional ASR systems, we now try to analyse if the BNFs are suitable

for modelling speech dynamics. Exploring speech dynamics is not the main scope of
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this thesis, so we will only be using the CS-HMM models, and we explore whether the

BNFs fit the assumption of the CS-HMM models.

The CS-HMM has been described in Section 2.1.3. How we performed the experi-

ment has been described in Section 4.2.4. Figure 4.5 shows an example of trajectories

recovered by the CS-HMM when using formant frequencies (F1, F2, F3), 3-dimensional

BNFs from the phone discrimination neural network and the logFBEs reconstruction

neural network, top to bottom. The size of hidden layers in both NN structures is

512-3-512. The example utterance is TRAIN/DR1/MKLW0/SI1571. The beginning

and ending silence “h#” has been removed for clearer display.

The formant frequencies are estimated using Wavesurfer (Sjölander and Beskow,

2000). The formants range from 0 to 4000 Hz, while the BNFs are in the range [0, 1]

but plotted shifted on the vertical axis for clarity. These plots suggest that BNFs,

especially those obtained from phone discrimination networks, fit the dwell-transition

model (described in Section 2.1.3) considerably better than the formant features, for all

of the speech sounds shown. While the formant trajectories are smooth in the voiced

regions (where they can be more reliably estimated), they vary widely in the unvoiced

regions. This seems to affect their fit to the model, since the CS-HMM algorithm tries

to fit additional segments in the regions of high variability, necessitating a coarser fit

in the low-variability regions, and an overall poorer fit to the trajectory.
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(a)

(b)

(c)

Figure 4.5: An example of the dwell-transition trajectories recovered by the CS-HMM when using
estimated formant frequencies (a) and BNFs obtained from phone the discrimination neural network
(b) and the reconstruction network (c). Blue lines with dots show the observations (feature values)
and solid red lines the estimated dwell-transition trajectories. TIMIT phone boundaries are indicated
by thin vertical lines, recovered dwell starts (magenta) and ends (blue) by vertical dashed lines.



Chapter 4. Very Low-dimensional Bottleneck Neural Network Representation of Speech 66

4.4 Summary and discussion

Segmental models of speech hold promise for speech recognition due to their ability

to parsimoniously model speech dynamics. However they have been hampered by lack

of a good representation. Formants model voiced sounds well, but are inappropriate

for unvoiced speech, while articulatory parameters are difficult to obtain. This chapter

presents results of ASR experiments using very low-dimensional BNFs extracted from

neural networks, and an initial analysis of their temporal dynamics. The results show

that when the networks are trained to predict phone posteriors, BNFs significantly

outperform formant features of similar dimensionality, and 9-dimensional BNFs can

give comparable ASR performance to 39-dimensional MFCCs in a conventional ASR

system.



Chapter 5

Interpretation of Bottleneck

Features and The Neural Network

Learning Behaviour

5.1 Introduction

In this chapter, several approaches are applied to visualise bottleneck features (BNFs)

and interpret BNFs and the neural network learning behaviour.

In Section 5.2, linear discriminant analysis (LDA) and t-distribution stochastic

neighbour embedding (t-SNE) are applied to visualise 9-dimensional BNFs, and a

neural network with a narrower bottleneck layer of 2 neurons is used to generate 2-

dimensional BNFs that can be directly visualised. Through the BNF visualisations, it

is shown that the BNFs obtained from phone discrimination neural networks convey

phonetic-related information.

Section 5.3 explores some details of how the neural networks extract BNFs. We

first propose a method to obtain representative BNFs for individual phones. Then we

look at the neural network neuron responses at the bottleneck layer. We also applied

LDA to non-bottleneck layer activations.

67
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5.2 Visualisations of BNFs

5.2.1 Visualisation of BNFs with LDA

In this subsection we show 2-dimensional visualisations of LDA projections of 9-dimensional

BNFs obtained from a phone-discrimination neural network with layers of structure

286-512-9-512-491, which was trained in the same way as described in Chapter 4. The

LDA mapping was trained on the same training set as used in the neural network

training, and was later applied to the core test set.

Both the BNFs for the training set and for the core test set were visualised.

Figure 5.1 shows the 1st and the 2nd dimension of the LDA-based projections of 9-

dimensional BNFs from a phone classification DNN. Figures (a) and (b) are plots of

training set and core test set, respectively. For clarity, only a random 10% of the frames

in the training set are plotted in Figure 5.1(a). The LDA mapping was learned based

on the TIMIT labels of 49 phones (Holmes, 1997), before the projection was applied to

the 9-dimensional BNFs of the corresponding dataset. The plotted points are coloured

by their broad phone categories according to (Halberstadt and Glass, 1997).

We can see that the overall structures of the training and the test data are alike. For

each category, there is a “cloudy” distribution of BNFs. Vowels, consonants and silences

are fairly well separated. However there are many overlaps among the sub-categories

of vowels, especially long vowels and short vowels, and among plosive and fricatives,

especially plosive and weak fricatives. These overlaps indicate that the overlapping

data are alike in some way and may lead to confusions in speech recognition using

these features between the broad phone categories. In addition, the 1st LDA dimension

(horizontal axis) seems to indicate voicing, with voiced phones on the left and unvoiced

on the right. Moving from left to right, we observe vowels, nasals, then fricatives and

plosives, and finally silences.

1As defined in Section 4.3.1, “286-512-9-512-49” represents a neural network in which the numbers
of neurons at the input layer, three hidden layers and the output layer are 286, 512, 9, 512 and 49
respectively.
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(a) BNFs of the TIMIT training set (random 10%)

(b) BNFs of the TIMIT core test set

Figure 5.1: Visualisations of LDA-based projections (1st vs. 2nd dimension) of 9-dimensional BNFs
from a phone classification DNN of structure 286-512-9-512-49. Horizontal axis: the 1st dimension
of LDA projections; vertical axis: the 2nd dimension of LDA projections.
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Figure 5.2 shows the 1st and the 2nd dimension of LDA visualisations for each

category. Each figure represents a phone category, with individual phones coloured

differently. We only show plots of the training set, as the test set has approximately

the same structure. For clarity, the plot for silence is on a random 10% of the training

set for a reduced number of points, while others are on the full training set.

We can see some clusters within phone categories, though not as clear as the struc-

ture between them as shown in Figure 5.1. It seems that the BNF features separate out

to some extent the individual phones, but there are considerable overlaps, especially

in figures for strong fricatives, nasal/flaps, short vowels.

(a) Plosive (b) Weak Fricative

Figure 5.2: Visualisations of LDA-based projections (1st vs. 2nd dimension) of 9-dimensional BNFs
from a phone classification DNN of structure 286-512-9-512-49. Plot on one phone category in each
figure. Horizontal axis: the 1st dimension of LDA projections; vertical axis: the 2nd dimension of
LDA projections.



Chapter 5. Interpretation of Bottleneck Features and The Neural Network Learning Behaviour 71

(a) Strong Fricative (b) Nasal, Flap

(c) Semi-vowel (d) Short Vowel

(e) Long Vowel (f) Silence (*)

Figure 5.2 (cont.): Visualisations of LDA-based projections (1st vs. 2nd dimension) of 9-dimensional
BNFs from a phone classification DNN of structure 286-512-9-512-49. Plot on one phone category
in each figure. (*)For silence only 10% of the data are plotted or clarity. Horizontal axis: the 1st

dimension of LDA projections; vertical axis: the 2nd dimension of LDA projections.
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The visualisations of the 3rd and the 4th dimension of the LDA-based projections

are included in Appendix A.

5.2.2 Visualisation of BNFs with t-SNE

In the previous section, we visualised the 9-dimensional BNFs with LDA. In this sec-

tion, we visualise the 9-dimensional BNFs with another technique - t-SNE. The t-SNE

algorithm is described in Section 2.4.3. Note that LDA applies a linear mapping and

is trained with class labels (i.e. supervised training), whereas t-SNE applies unsuper-

vised training and non-linearly maps high-dimensional data into a 2-dimensional or

3-dimensional space.

Figure 5.3 shows 2-dimensional t-SNE visualisations of BNFs obtained from the

same network as in Section 5.2.1. The t-SNE experiment was performed on the 10% of

TIMIT training data. The main parameters for t-SNE training, perplexity and training

iterations were set to 50 and 2000, respectively. These were chosen empirically after

exploring suitable values. Note that the t-SNE is an unsupervised learning technique,

and the labels were only used when colouring the 2-dimensional vectors after the t-SNE

dimensionality reduction process. The definition of phone categories and colours are

the same as used in Section 5.2.1.

We can see from Figure 5.3 that with an unsupervised dimensionality reduction by

t-SNE, the 2-dimensional visualisations of BNFs show fairly clear separations between

phone categories. Similar to what we observed in Figure 5.1, there tends to be con-

fusions between the vowel subcategories (semi-vowels, short vowels and long vowels),

and plosive are sometimes mixed with weak fricatives.

The detailed plots for individual phones in each category are shown in Figure 5.4.

They are subsets of the points shown in Figure 5.3. We can see that most data for

phones within a category is quite strongly clustered. The visualisations of BNF features

using t-SNE provide clearer separations between phones in each phone categories than

using LDA.
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Figure 5.3: 2-dimensional t-SNE visualisations of 9-dimensional BNFs from a phone classification
DNN of structure 286-512-9-512-49.

Note that the sizes of clusters and distances between them, in a t-SNE plot, cannot

be directly related to the size or importance of clusters in the original high-dimensional

data (Wattenberg et al., 2016). The t-SNE algorithm tries to learn local structures and

map similar data close together in the low-dimensional space, while separating non-

similar data.
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(a) Plosive (b) Weak Fricative

(c) Strong Fricative (d) Nasal, Flap

(e) Semi-vowel (f) Short Vowel

Figure 5.4: 2-dimensional t-SNE visualisations of 9-dimensional BNFs (10% of the TIMIT training
set) from a phone classification DNN of structure 286-512-9-512-49. Plot on one phone category in
each figure.
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(a) Long Vowel (b) Silence

Figure 5.4 (cont.): 2-dimensional t-SNE visualisations of 9-dimensional BNFs (10% of the TIMIT
training set) from a phone classification DNN of structure 286-512-9-512-49. Plot on one phone
category in each figure.

5.2.3 2-dimensional BNFs

In the previous subsections we mapped the 9-dimensional BNFs into a 2-dimensional

space to try to visualise the BNFs. Since a bottleneck neural network itself is an

approach to dimensionality reduction and producing low-dimensional features, it would

be interesting to visualise 2-dimensional BNFs. Thus a phone discrimination network

of structure 286-512-2-512-49 was trained and 2-dimensional BNFs were extracted. To

keep consistency with the plots in the previous sections, when plotting all phones we

use the same 10% of the TIMIT training set, and the plot of these 2-dimensional BNFs

is shown in Figure 5.5. The definition of phone categories and colours are the same as

used in Section 5.2.1 and 5.2.2.

From Figure 5.5 we can see fairly clear organisations of phone categories: vowels

(red, black, and orange) are distributed at the left top half, nasals (green) at the right

top corner, strong fricatives (cyan) at the lower left, plosive (purple) somewhere at

lower middle, some weak fricatives (blue) mixing up with plosive and some at the mid

lower edge, and silence takes the right lower part of the figure.

The BNFs are constrained within the range of [0,1], due to the “squashing effect” of
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Figure 5.5: 2-dimensional BNFs from a phone classification DNN of structure 286-512-2-512-49.

the sigmoid function. “Concentrated” edges along the four sides of the square appear to

indicate “hard” or “certain” decisions made by the sigmoid for those BNFs. Moreover,

the direction from top-left to bottom-right seems to indicate voicing.

We plot individual phones in each phone category in Figure 5.6. Again for silence

we use the same subset of TIMIT data as was used in Section 5.2.1, i.e. 10% of the

TIMIT training set for silence and full training data for the others.
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(a) Plosive (b) Weak Fricative

(c) Strong Fricative (d) Nasal, Flap

(e) Semi-vowel (f) Short Vowel

Figure 5.6: 2-dimensional BNFs from a phone classification DNN of structure 286-512-2-512-49.
Plot on one phone category in each figure.
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(a) Long Vowel (b) Silence (*)

Figure 5.6 (cont.): 2-dimensional BNFs from a phone classification DNN of structure
286-512-2-512-49. Plot on one phone category in each figure. (*)For silence only 10% of the data
are plotted.

The 2-dimensional BNFs are visually more structured than the 2-dimensional LDA

projection of the 9-dimensional BNFs, especially for individual phones in named cat-

egories. We propose a way to obtain “representative” features in the following Sec-

tion 5.3.1, where more detailed interpretation of the 2-dimensional BNFs will be made.

5.3 Exploring the neural network learning behaviour

5.3.1 Optimised neural activations

Neural networks for phone classification are usually trained to optimise the weights to

maximise phone posterior probabilities given input of spectra-in-context, and learn an

intermediate representation at each layer. We now ask, given a neural network, what

pattern of activation in the hidden layers would be optimal to maximise the probability

of the network predicting each phone? These activations would represent the “best”

or “cardinal” phone representations under this network.

An approach using gradient descent back-propagation is proposed to obtain such

optimised activations at a given layer. By keeping the network weights fixed and
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calculating the derivatives of errors with respect to the layer activations, the layer

activations can be adapted.

The process works as follows: Assume a trained l-layer neural network with l − 2

hidden layers between the input and output layers. Let Lm denote the layer m after the

input (m ≥ 0), such that L0 is the input layer, Ll−1 is the output layer. Let Wm and bm

be the weight matrix and bias vector respectively, between layer Lm and Lm+1. Take

the case optimising the activations am at layer Lm to maximise the output probability

of phone φ as an example. The process can be divided into a forward propagation

process and a back-propagation process that run alternately.

Forward Propagation process: We first initialise am, for example, with random

samples from a uniform distribution U(0, 1). Then at the next layer, the linear output

is given by

om+1 = amWm + bm, (5.1)

to which a squashing function is applied:

• If m = l − 2:

This means the next layer is the network output layer Ll−1

ol−1 = al−2Wl−2 + bl−2. (5.2)

The Softmax function is then applied for an element-wise normalisation to the

phone posterior probabilities

al−1 = Softmax(ol−1). (5.3)

The cross-entropy error criterion to minimise is:

C = −
∑

(tln(al−1) + (1− t)ln(1− al−1)), (5.4)
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summing over the network outputs. t is the one-hot target vector in which the

target phone has probability 1. 1 is a vector of ones of the same dimension.

• If m < l − 2:

Lm+1 is a hidden layer. The sigmoid function is applied element-wise

am+1 =
1

1 + e−om+1
, (5.5)

and forward the activations to the next layer.

Back-propagation process: From Equations 5.3 and 5.4, we derive the change in

error with respect to th linear (pre-squashing) network outputs. Differentiation and

division act element-wise.

∂C

∂ol−1

=
∂C

∂al−1

∂al−1

∂ol−1

= −
( t− al−1

al−1(1− al−1)

)
al−1(1− al−1)

= al−1 − t.

(5.6)

From Equations 5.2 and 5.6, the change in the error with respect to the activations at

the final hidden layer,
∂C

∂al−2

=
∂C

∂ol−1

∂ol−1

∂al−2

= (al−1 − t)Wl−2.

(5.7)

Then for m < l − 2, relate the activations to the layer backwards,

∂am+1

∂am
=
∂am+1

∂om+1

∂om+1

∂am

= am+1(1− am+1)Wm.

(5.8)

Finally, the change in the error with respect to the activations at arbitrary layer Lm,

can then be calculated:

∂C

∂am
=

∂C

∂al−2

∂al−2

∂al−3

...
∂am+1

∂am
. (5.9)
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A gradient descent algorithm such as

∆a(t)
m = −η

( ∂C
∂am

)(t)
+ ν∆a(t−1)

m , (5.10)

with learning rate η and momentum parameter ν, is used to update the layer activations

following

a(t)
m = a(t−1)

m + ∆a(t)
m , (5.11)

where the (t) index indicates the values at training iteration t. The forward and

backward processes run alternately until the cross entropy error no longer reduces or

the epochs reach the maximum. Optimised hidden layer activations for each phone can

be obtained using this process.

In our experiments, when calculating the “cardinal” bottleneck layer activations,

i.e. BNFs, we applied the back-propagation process twice. First we back-propagate to

the input layer as a pre-training process (with the maximum epoch being 1000), and

then use the bottleneck layer activations resulting from this pre-training as the start

point, to apply back-propagation to the bottleneck layer (with the maximum epoch

being 100), which can be regarded as fine tuning.

Using this method, we obtain 49 2-dimensional BNF vectors representing the 49

phones for the DNN used in Section 5.2.3. We plot them in Figure 5.7 using dots. We

also plot the centroids of the 2-dimensional BNFs (i.e. feature means) of each phone

in the training set in Figure 5.7 using circles. In the figure we link every pair of dot

and circle points that correspond to the same phone for a clearer view.

The circle points in Figure 5.7 actually present the means of the BNFs plotted in

Figure 5.5, and therefore show similar organisations of phone positions to Figure 5.5.

Most dot points are close to the corresponding circle points, and the organisations of

circle points and that of dot points are similar. The direction from top left to bottom

right seems to indicate voicing, with vowels distributing at the top left half of the

graph, and silences being at the right bottom corner. Compared to the feature means
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(circle points), for the “cardinal” features (dot points) the various categories seem to

be pushed to the edges of a local space. The reason may be that “cardinal” features is

trained to provide more certain phone decisions than random BNFs, which forces the

hidden layer to make harder decisions.

Figure 5.7: Optimised 2-dimensional BNFs (dots) and feature means of 2-dimensional BNFs
(circles) for each phone for a phone classification DNN of structure 286-512-2-512-49.

In Figure 5.8, we take only the set of “cardinal” features from Figure 5.7 (dot

points) and analyse them.

We now look at long vowels and short vowels (shaded area) in Figure 5.8. It looks

similar to a “traditional” F1:F2 vowel space diagram used by phoneticians (described

in Section 2.3.1, Figure 2.8(a)), rotated. Vertically from top to bottom, we observe

/ay/, /ey/, /iy/ (left side) and /ao/, /uh/, /uw/ (right side) - that roughly corresponds
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Figure 5.8: Optimised 2-dimensional BNFs for each phone for a phone classification DNN of
structure 286-512-2-512-49.

to the places of articulations (tongue positions) from low to high; horizontally from left

to right, we observe /ey/, /ah/, /ow/ - roughly front to back regarding the places of

articulations. We plot the shaded area (long and short vowels) of Figure 5.8 on top of

an x-ray tracing of a vocal tract to vividly present these interpretations of vowel BNFs

(Figure 5.9)

Strong fricatives are in cyan. /s/ and /z/ are distributed at the left bottom corner,

and they are produced with a flat tongue. /zh/, /jh/, /ch/ and /sh/ are distributed in

mid-lower region, and they are produced with the tip of the tongue curled up. Strong

fricatives at the top (/z/, /zh/, /jh/) are voiced, and those at the bottom (/s/, /sh/,
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Figure 5.9: Overlaying the shaded area of Figure 5.8 on an x-ray tracing of a vocal track.

/ch/) are unvoiced. A similar pattern is seen for the plosives (in purple)- voiced at the

top (/d/, /g/, /b/) and unvoiced at the bottom (/t/, /k/, /p/). For both voiced and

unvoiced plosives, phones are placed horizontally in an order that reflects their place

of articulation (from left to right: teeth, soft palate and lips).

The 2-dimensional BNF space shows distinct regions used for each phonetic cate-

gory. Within each category, the organisation of phones appears to correspond to phone

production mechanisms. However, the interpretations of axes of one phone category do

not simply apply to other categories, and the BNF space seems to be a union of phonetic

category related subspaces that preserve local structures within each subspace.

5.3.2 Neural network neuron responses at the bottleneck layer

In this subsection we analyse the activations in trained networks to show that different

parts of the network are involved in predicting different phonetic categories. We explore

the neural network neuron responses2 at the bottleneck layer.

We measure magnitude of average node responses (z-score) of the neurons in the

bottleneck layer to all phones. The z-score, also known as standard scores, of a raw

2Similar method was used in the work presented in (Nagamine et al., 2015)
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score x is defined as (Kreyszig, 2000)

z =
x− µ
δ

, (5.12)

where µ is the mean of the population and δ is the standard deviation. Let the z-score

for phone φ and neuron b be denoted Z(φ, b), calculated as follows: The frame-level

activation at neuron b is recorded for each qualified frame (for all phones) in the

TIMIT training set. Temporally we can assume the qualified “frames” to be the “start

frames” of phone segment according to the TIMIT labelling. These approximately

143,000 activations are normalised to zero mean and unit variance across the whole

training set. Z(φ, b) is the mean of the normalised activations at neuron b which are

associated by the TIMIT labelling with instances of φ. For each phone we calculate

an averaged and normalised response (“z-score”) from each neuron in the 9-neuron

bottleneck layer.

This is first done for the 286 dimension spectra-in-context network input associated

with the start frames indicated by the TIMIT phone transcriptions, and then repeated

for 20 preceding and succeeding frames, allowing the response to be visualised over

about 0.4 seconds around the phone start boundary. Figure 5.10 shows the z-score

plots for each bottleneck node (9 in total) from a DNN of structure 286-512-9-512-49.

For plots of each node, we arrange the phones by the phone classes they belong to,

annotating them on the left of each z-score plot with different colours. The colours

are the same as used in Section 5.2. Form top to bottom, the broad phone classes

are silence (light pink), plosive (purple), strong fricative (cyan), weak fricative (blue),

nasal (green), semi-vowel (orange), short vowel (black) and long vowel (red).

Figure 5.10 again suggests that the neurons are responsive to phones in a broadly

phonetically-meaningful manner. The structures of excitations are complicated, usually

covering several phone classes, but we can still identify particular patterns exclusively

to related phones. For example, node 1 negatively responds to plosives and most
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vowels; node 2 positively responds to fricatives, closures and unvoiced plosives (/k/,

/t/, /p/), and negatively responds to nasal; node 5 negatively responds to all plosives;

node 6 distinguishes between voiced and unvoiced phones; node 7 negatively responds

to all strong fricatives; node 8 positively responds to closures and strong fricatives and

negatively responds to plosive and most vowels; node 9 positively responds to unvoiced

plosives and strong fricatives.

The z-score patterns are also observed to be similar for networks trained from

different random initialisations, in a sense that each node is sensitive for sets of related

phones. The results suggest that mappings from acoustic space to BNF space for

different classes of phone are implemented by separate parts of the network.

(a) Node 1 of 9 (b) Node 2 of 9 (c) Node 3 of 9

Figure 5.10: Magnitude of average node activations (z-score), for each phone, over a 0.4s window
centred on the phone onset (dotted vertical lines).
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(d) Node 4 of 9 (e) Node 5 of 9 (f) Node 6 of 9

(g) Node 7 of 9 (h) Node 8 of 9 (i) Node 9 of 9

Figure 5.10 (cont.): Magnitude of average node activations (z-score), for each phone, over a 0.4s
window centred on the phone onset (dotted vertical lines).
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5.3.3 Visualising non-bottleneck hidden layers with LDA

In this subsection we apply linear discriminant analysis (LDA) to non-bottleneck layers

to investigate what main information are carried through these layers. We use the same

DNN as used in Sections 5.2.1, 5.2.2 and 5.3.2. The DNN hidden layer size was 512-

9-512, thus we now visualise the 1st and the 2nd dimensions of the LDA projection for

the two 512-node layers. The LDA projection was learned on a random 10% of the

frames in the TIMIT training set. The plots in this subsection use the same subset.

Figure 5.11 shows the 1st and the 2nd dimension of the LDA-based projections of the

activations of the first hidden layer, plotted on the same 10% of the training set as in

Section 5.2.1. The same process is applied to the 3rd hidden layer, giving Figure 5.12.

Both figures show a clear “triangular” shape with similar structures, where vowels,

strong fricatives and silences each occupy a corner of the triangle. Along the horizontal

axis, from left to right, we see silence and fricatives first and then vowels, which could

be interpreted as from unvoiced to voiced, or energy in low frequency bands increasing;

Along the vertical axis, from upper to lower, we see silence first, and then vowels, finally

fricatives - this could be interpreted as energy in high frequency bands increasing.

As the horizontal and vertical axis correspond to the first two dimensions of LDA,

such interpretations may indicate that energies in low and high frequency bands are

two main pieces of information learned by the DNN. Another interpretation of this

triangular shape could be that there is some inherent 3 dimensionality structure in the

high dimensional data, corresponding to 3 properties of phones: silence, frication and

voicing.

Comparing Figure 5.11 and 5.12, we can see the triangular plot of the third hidden

layer is much less fuzzy than that of the first hidden layer. One explanation is that as

hidden layer moves towards the output layer, it gets forced to make harder decisions

towards the phone classification goal. Specifically, in the 512-dimensional hypercube

representing the activations of the third hidden layer, the 512-dimensional features are

pushed towards the edging limit of “0”s and “1”s which is constrained by sigmoid func-
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Figure 5.11: Visualisation of LDA-based projections (1st vs. 2nd dimension) of the 1st hidden layer
activations from a phone classification DNN of structure 286-512-9-512-49. Horizontal axis: the 1st

dimension of LDA projections; vertical axis: the 2nd dimension of LDA projections.

tion. As a result, the 2-dimensional LDA projection of the “more confident activations”

would be less fuzzy.

Plots of individual phones for each category are included in Appendix A, along with

visualisations of the 3rd and the 4th LDA-based projections for the first and the third

hidden layers.

We also find that this triangular visualisation of the 1st and the 2nd dimension of

the LDA-based projections is always observed when analysing a “bigger” hidden layer

(more than about 30 nodes) from a DNN of a similar structure.
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Figure 5.12: Visualisations of LDA-based projections (1st vs. 2nd dimension) of the 3rd hidden layer
activations from a phone classification DNN of structure 286-512-9-512-49. Horizontal axis: the 1st

dimension of LDA projections; vertical axis: the 2nd dimension of LDA projections.

5.4 Summary and discussion

This chapter explores visualisations and interpretations of BNFs and the neural net-

work learning behaviour. We started from visualising the 9-dimensional BNFs using

LDA and t-SNE, where we observed phonetically meaningful clusters in the projected

2-dimensional spaces. We narrowed the bottleneck layer to 2-unit and extracted 2-

dimensional BNFs. A back-propagation method was developed to obtain BNFs that

are optimal under a particular neural network, by computing the values of the bottle-

neck outputs that are optimised for a particular output target. Using such method,
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we obtained one “cardinal” 2-dimensional BNF for each phone and interpreted these

BNFs. The 2-dimensional BNF space shows distinct regions used for each phonetic

category, where within each category the organisations of phones appear to correspond

to phone production mechanisms. We also investigated the neural network neuron re-

sponses at the bottleneck layer and visualisations of non-bottleneck layer activations.

We demonstrate that different parts of the network are involved in capturing different

phonetic information, or information for different phonetic categories.



Chapter 6

Relationships Between Bottleneck

Features From Networks with

Different Initialisations

6.1 Introduction

Both network parameters and BNFs would be different when training with a different

random initialisation. It is important to ensure the same conclusions can be drawn

from networks trained from multiple random initialisations. Therefore it is interesting

to ask if there are any relationships between differently initialised neural network pairs.

If such relationships exist, then interpretations from one network can be applied onto

other ones trained from any random initialisations. Most neural networks are of huge

size and it is difficult to interpret the differences or similarities between them, whereas

our BNFs are of very low dimensions and it is more convenient to explore relationships

between BNFs from differently initialised neural networks.

In this chapter, the relationships between BNFs obtained from different initial-

isations of the same network are analysed. Experiments are performed on the 9-

dimensional BNFs obtained as described in Chapter 4. It is shown that the resulting

92
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sets of BNFs are different, but that they give similar phone recognition performance

(Section 6.2), and that the relationship between them is not simply linear but ap-

proximately piecewise linear (Section 6.3 and 6.4). Through a hierarchical clustering

of phone-dependent linear transformations, it is shown that the piecewise linear com-

ponents approximately correspond to intuitively meaningful phonetic categories. In

addition, the biggest decreases in phone recognition accuracy occur when transforms

corresponding to categories that differ significantly in their phonetic properties are

combined. This result suggests that the network is able to learn and combine multiple

phone category dependent feature extraction mappings to optimise a low-dimensional

representation for its phone classification task (Section 6.5). This anticipates the con-

sideration of models motivated by topological manifolds in Chapter 7.

6.2 Effect of NN initialisation on BNFs

In this section, the effect of different initialisations on the resulting BNFs is explored.

Networks of the structure NN286-512-9-512-49 are used, with three hidden layers where

the 9-neuron bottleneck layer is the second hidden layer (as described in Chapter 4).

The networks were trained with a standard MLP stochastic gradient descent back-

propagation algorithm (descried in Section 2.2.2).

6.2.1 Are BNFs corresponding to different weight initialisa-

tions the same?

Figure 6.1 depicts an example of two sets of 9-dimensional BNFs of the same speech

utterance.

The BNFs are in the range [0, 1] but plotted shifted on the vertical axis for clarity.

These feature sets were produced from networks with the same structure, but different

random parameter initialisations. We show the correlation coefficients between the two

BNFs in Table 6.1. Correlation coefficients whose absolute values are greater than 0.6
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Figure 6.1: Two sets of 9d BNFs for utterance TRAIN/DR2/MEFG0/SI491, from network
286-512-9-512-49 with two different initialisations.

Table 6.1: Correlation coefficients between two sets of 9d BNFs for the TIMIT utterance
TRAIN/DR2/MEFG0/SI491, from network 286-512-9-512-49 with two different initialisations (the
two sets of BNFs are displayed in Figure 6.1). Rows and columns correspond to the solid and the
dashed lines in Figure 6.1.

1 2 3 4 5 6 7 8 9
1 -0.44 -0.05 -0.93 0.31 0.08 0.12 0.54 -0.23 0.40
2 -0.43 0.07 -0.07 0.11 0.69 0.42 -0.11 -0.09 -0.10
3 0.11 0.22 0.56 -0.12 -0.34 -0.31 -0.68 0.29 -0.37
4 -0.14 0.56 -0.11 0.13 -0.01 -0.65 0.41 -0.48 -0.18
5 -0.62 0.10 -0.33 0.28 0.43 -0.14 0.02 -0.45 0.53
6 -0.02 -0.22 0.72 -0.21 0.07 -0.56 -0.19 0.12 -0.09
7 0.16 0.16 0.35 0.05 -0.62 0.22 -0.14 0.39 0.12
8 0.27 -0.33 0.09 -0.39 -0.42 0.06 -0.35 0.70 -0.55
9 0.19 -0.31 -0.25 0.69 0.09 -0.03 0.44 -0.06 -0.24

are displayed in bold. The two sets are clearly different, and not simply permutations

of each other. There is only one pair that is highly correlated (-0.93 in row 1 column

3), which correspond to the bottom red solid line and the 3rd dashed line (red) from

the bottom.

There is no obvious intuitive interpretation of the features, beyond speculation that

one (the bottom red solid line and the 3rd from the bottom red dashed line in the figure)

may be related to voicing or overall energy of the signal. It is interesting that such

observation is obtained in all BNF sets used in this chapter.
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6.2.2 Do different BNF sets give similar recognition accuracy?

Different BNF sets correspond to different non-linear mappings between the input

spectra-in-context and phone posterior probability targets. Do they give similar recog-

nition accuracies? Four sets of BNFs are tested, where the structure of the network

is the same in each case, but the random initialisation is different. Speech recogni-

tion experiments are performed using a standard GMM-HMM system created using

HTK (Young et al., 1997), as described in Section 4.2.3. For evaluating recognition

performance, the 49 phone set is reduced to 40 in the standard way (Lee and Hon,

1989). Table 6.2 shows ASR performance using four sets of BNFs obtained from four

networks trained with different initialisations.

Table 6.2: Phone recognition performance on the TIMIT core test set with four sets of BNFs
obtained using different random network initialisations.

NN structure BNF set
Recognition Result
%Corr %Acc #GMM

286-512-9-512-49

A 73.12 69.40 512
B 73.76 69.49 256
C 72.24 68.89 128
D 73.14 69.92 128

Table 6.2 suggests that the BNFs from multiple network initialisations give similar

recognition accuracies in a standard GMM-HMM system, in other words, they are ap-

proximately equivalent in terms of ASR performance. It is natural to ask if any simple

relationships exist between them. In the following sections, it is explored whether any

simple relationships exist between them, beginning in Section 6.3 with the simplest, a

linear relationship.

6.3 Linear mappings between BNFs extracted from

networks with different initialisations

In this section, it is explored whether there is a linear relationship between the sets of

BNFs obtained using different random initialisations.
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Consider two sets of m-dimensional BNFs, A and B, of size N frames. A is divided

into training and test sets Atr and Ate, of Ntr and Nte frames respectively. B is divided

likewise. We slightly abuse notation by using the same notation for the matrices

containing the BNFs, i.e. A denotes the m×N matrix containing BNF set A. We say

that these two sets are approximately linearly equivalent if there exists a m×m linear

transform matrix mapping B to A,

TB→A : B → A, (6.1)

such that the phone recognition performance when testing using the transformed fea-

ture set TB→A(Bte) on models trained on the set Atr is similar to using those trained

on Atr and tested on Ate. Figure 6.2 illustrates this process.

Figure 6.2: An illustration of how we decide whether two BNF sets are linearly equivalent. If “ASR
accuracy 1” and “ASR accuracy 2” are similar, we say there is an approximately linear relationship
between the two sets.

Set Atr was chosen to be the fixed set used for training the GMM-HMM models.

From each training set Btr, Ctr and Dtr, a corresponding optimal linear transformation

can be computed: TB→A, TC→A and TD→A by minimising the least square error between

BNF set Atr and the BNFs resulting from the transform, using the pseudo inverse

method (Golub and Kahan, 1965). Phone recognition on the transformed features

TB→A(Bte), TC→A(Cte) and TD→A(Dte) is performed using models trained on Atr.

The recognition results obtained are shown in Table 6.3. A significant reduction of

around 7% (absolute) is apparent between the phone recognition performance obtained

with test features Ate from BNF set A (row 2) and with transformed features from BNF
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setsBte, Cte andDte (rows 3-5), which indicates that information is lost by the mapping.

We conclude that there is not a straightforward single linear mapping between the two

BNF sets.

Table 6.3: Recognition on TIMIT core test using transformed test features, models trained on BNF
set Atr. Baseline1 shows mean and standard deviation over the four BNF sets, matched train and
test.

Test Features (NN286-512-9-512-49) %Corr %Acc

Baseline1 (matched train and test, average) 73.1 (0.6) 69.5 (0.4)
Baseline2 (matched train and test, BNF set A) 73.12 69.40
Bte mapped towards Ate 64.49 60.66
Cte mapped towards Ate 65.54 61.56
Dte mapped towards Ate 64.01 60.06

6.4 Piecewise linear mappings between BNFs ex-

tracted from networks with different initialisa-

tions

Since there is no simple linear relationship between BNF sets, it is natural to ask if

there is any phone-dependent linear relationships, i.e. a piecewise linear relationship

between BNF sets. We begin by estimating three sets of 49 phone-dependent linear

transformations between BNF set A and each of B, C and D. Linear transformations

are computed in the same way as in Section 6.3, but estimate a transform for each

phone. For example, for BNF sets A and B, the linear transform matrix mapping the

features corresponding to phone φ in set B to that in set A is

T φA→B : Aφ → Bφ, (6.2)

and the transform from set A to B is

TA→B = {T φA→B|φ ∈ Φ}. (6.3)
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We use the same set Φ of 49 phones as was used for training the network.

However, in this case, because during testing we do not know the correct phone

category of a feature vector, we transform the models rather than the data. Let A =

{Aφ|φ ∈ Φ} denote the set of per-phone GMM-HMM models trained on BNF set Atr,

and similarly B, C and D. Let

SφA→B : Aφ → Bφ (6.4)

define a linear transform mapping the parameters (GMM means and covariance matri-

ces) of Aφ to those of Bφ, using T φA→B. We consider two sets of BNFs A and B to be

approximately piecewise linearly equivalent if there exists a set of phone-dependent lin-

ear transforms such that the recognition accuracy is similar using models A trained on

BNF set Atr and tested on Ate, or transformed models obtained with the set of trans-

forms SA→B(A) = {SφA→B(A)|φ ∈ Φ} to test on BNF set Bte. Figure 6.3 illustrates

this process.

Figure 6.3: An illustration of how we decide whether two BNF sets are piecewise linearly equivalent.
If “ASR accuracy 1” and “ASR accuracy 2” are similar, we say there is an approximately piecewise,
or phone-dependent linear relationship between the two sets.

We may also apply the set of transforms to the BNFs themselves (rather than the

models), if we know the phone segmentation, using Equation 6.3

Brecovered = TA→B(A) = {T φA→B(Aφ)|φ ∈ Φ}. (6.5)
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Figure 6.4: Plot of 9-dimensional BNFs for the train utterance DR2/MEFG0/SI491. Solid lines are
true BNFs of sett B, and dashed lines are transformed feature using transform TA→B.

Figure 6.4 shows features from the transformed BNF set (dashed lines) for one utter-

ance, against those from the original BNF set B (solid). The transformed features

appear visually quite similar to the original features that are extracted directly from

the neural network.

Table 6.4 shows the GMM-HMM recognition results using the transformed phone

models. The reported results are on the core test set. The baseline results (line 1-

3) are for models trained on Atr, tested on Ate, for 1, 64, and 512 GMM mixture

components. As the number of GMM components increases, the GMMs fit BNF A

better and the recognition accuracy increases. In lines 4-6, phone-dependent linear

transforms are used to map the parameters of the GMM-HMMs trained on BNF set

Atr to be appropriate for testing on BNF sets Bte, Cte and Dte.

Table 6.4: GMM-HMM recognition on the TIMIT core test set with transformed models. HMMs are
originally trained on BNF set A.

Model Transformation Test Set %Corr %Acc #GMM
N/A (baseline) BNF Ate 73.12 69.40 512

BNF Ate 72.24 68.68 64
BNF Ate 70.30 66.56 1

A mapped towards B BNF Bte 72.56 66.97 32
A mapped towards C BNF Cte 72.04 67.39 64
A mapped towards D BNF Dte 72.26 66.93 64

The results show the best accuracies and corresponding number of GMM compo-
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nents, which is maximised with around 64 GMM components. This could be interpreted

as meaning that when there are too many Gaussian mixtures, the models overfit BNF

A and thus fit the other BNF sets less well after transformation. The difference in

accuracies obtained using models A trained and evaluated on BNFs from set A, and

models SA→B(A), SA→C(A), SA→D(A) trained on Atr and then mapped to and evalu-

ated on, BNF sets Bte, Cte and Dte respectively, is between 1% and 2%. We conclude

that the relationship between the BNF sets is approximately piecewise linear.

6.5 Hierarchical clustering for phone-dependent lin-

ear transformations

In the previous section, using phone-dependent linear transforms, we established that

there is an approximately piecewise-linear relationship between the different BNF sets.

In this section we investigate whether a mapping is needed for each phone, or whether

the same linear transform can be used for models corresponding to phones belonging

to broader phonetic classes.

We apply agglomerative hierarchical clustering to the 49 per-phone linear trans-

forms TA→B = {T φA→B|φ ∈ Φ} estimated for later mapping GMM-HMM set A to B.

Let KA→B = {K(i)
A→B|0 < i 6 NK} be the set of clustered piecewise-linear transforms

from A to B, represented by the centroids of the clusters, which is calculated as the

mean of the cluster elements (transform matrices). KA→B initially contains NK = 49

elements (one transform for each phone in Φ ). At each step we merge the two closest

transforms, measured by the Euclidean distance dE between features generated by the

transforms. Let the distance between the two cluster K(i)
A→B and K(j)

A→B be

dE(i, j) =

√√√√ m∑
a=1

Ntr∑
b=1

(K̄(i)
A→B(A)− K̄(j)

A→B(A))2
ab, (6.6)

where K̄(i)
A→B and K̄(j)

A→B denote the transform matrices corresponding to clusters K(j)
A→B
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and K(j)
A→B, m and Ntr are the dimensionality of the BNFs and the number of training

frames respectively, and subscript ab indicates the element in row a, column b of a

matrix. At each step, the number of clusters NK in KA→B decreases by 1. The centroid

transforms are updated at each iteration by re-calculating the means of the transforms

in the merged clusters.

The result of clustering the piecewise linear transforms from BNF set A to B is

depicted in Figure 6.5. The top part describes the clusters formed at each step as

the number of transform matrices decreases from 49 to 1, from left to right. At each

step, two clusters are merged and marked with the same colour. The clustering follows

an approximately phonetic sequence. First to merge is a pair of close vowels (/ih/

and /ix/), the new cluster marked red. Next, nasals /m/ and /n/ are merged and

marked orange, then close vowels /ah/, /eh/ (yellow). The fifth merge (subsuming the

yellow cluster into the red) merges the two-phone clusters /ih/, /ix/ and /ah/,/eh/. As

clustering progresses, we see vowel-like sounds clustered earlier, merging with nasals

and some fricatives relatively early. Consonants are comparatively more “scattered”,

usually merging in pairs and only later forming a big group.

The lower part of Figure 6.5 shows recognition performance using models obtained

by the piecewise linear transformations at each clustering stage (in blue) and mean

square error (MSE) between original and transformed features of the test set (in red).

The recognition accuracy sees a big drop when the number of clusters decreases from 7

to 6, when two relatively large groups are merged - one containing vowels, most nasals,

and some voiced fricatives; the other group, closures, plosive and some fricatives. The

other five clusters contains sibilants, the affricate pair /ch/, /jh/, velar plosive pair

/g/, /k/, and singleton clusters /p/ and /sil/. The plots of MSE evaluates the feature

transformation from another perspective, and the conclusions from it is the same as

the recognition accuracy graph, but to show a direct piecewise linear relationship in

the bottleneck feature space without the help of the model space. Note that the MSE

experiment is only an additional test to the phone recognition experiment, and it cannot
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prove things on its own because it is taking phone label information of the test data.

The hierarchical clustering task has also been applied to other pairs of BNF sets

with similar results. Although the clustering results were not identical, the combined

linear transforms which emerge correspond to intuitively meaningful phonetic cate-

gories. In each case, the biggest decreases in phone recognition accuracy occurs when

combining transforms corresponding to categories that differ significantly in their pho-

netic properties.

The mappings between sets of BNFs are therefore more similar for phonetically

similar phones than for phone in different phonetic categories. It may be that this can

be interpreted as evidence that the networks learn different representations for different

phonetic categories, and that these are generated by phone category-specific mappings

from acoustic to BNF space.
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Figure 6.5: Hierarchical clustering of 49 transform matrices (upper part) and corresponding
recognition accuracy (lower part blue) and mean squared error between transformed and target BNFs
(lower part red).
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6.6 Summary and discussion

This chapter explores the relationships between BNFs resulting from different neural

network weight initialisations. We show that the relationship between them is approx-

imately piecewise linear. We present the results of experiments in which hierarchical

clustering is applied to phone dependent linear transformations between BNF sets,

and show that the combined linear transforms that emerge correspond, in general, to

phonetically meaningful phone classes. In addition, we show that the biggest decreases

in phone recognition accuracy occur when transforms corresponding to categories that

differ significantly in their phonetic properties are combined.

This result suggests that the type of feature extraction applied by the network

to extract BNFs is different for different phone categories. The network is able to

learn and combine multiple phone category dependent feature extraction mappings to

optimise a low-dimensional representation for its phone classification task. This raises

the question of whether it is better to treat from spectra space to bottleneck space as

a single mapping or a set of phone class dependent mappings. If the feature extraction

by DNN changes when it moves across phone categories, is it advantageous to use

different DNNs for different phone classes? In this case the appropriate mathematical

structure is a manifold. We continue with this in the next chapter.



Chapter 7

Phone Classification using a

Non-Linear Manifold with Broad

Phone Class Dependent DNNs

7.1 Introduction

Most state-of-the-art ASR systems use a single DNN to map the acoustic space to

the decision space via a sequence of layers. Likewise in the previous chapters, single

global DNNs were used to map spectra onto BNFs. However, different phonetic classes

employ different production mechanisms, and so may warrant different types of feature

extractions. Therefore, it may be advantageous to replace this single DNN with several

phone class dependent DNNs. The appropriate mathematical formalism for this is a

manifold, which has been described in Section 2.5.

Previous work has considered systems comprising multiple linear phone class depen-

dent mappings (Huang et al., 2016), and our approach in this chapter can be regarded

as a non-linear extension of this work. This chapter extends the previous study of very

low-dimensional BNFs, including phone classification and visualisation and interpreta-

tion. The objective is to determine whether it is advantageous for phone-classification

105



Chapter 7. Phone Classification using a Non-Linear Manifold with Broad Phone Class Dependent DNNs 106

of feature vectors to treat the acoustic space A as a non-linear manifold, in which

several broad phone class (BPC)-dependent DNNs rather than a single DNN are used

for phone classification.

Various ways of designing the system and training the DNNs are assessed, and the

use of different BPC definitions are explored. Also we propose a new way for testing

the significance of improvements for neural network based systems, with the effect of

NN initialisations taken into consideration. The results show a small but significant im-

provement of 3.6% compared with a single DNN, when a non-linear manifold structure

incorporating multiple BPC-dependent DNNs is used for phone classification. Experi-

ment details are in Sections 7.3.1 to 7.3.5. LDA visualisations are applied to the BNFs

from BPC-dependent DNNs and are compared to those from baseline global DNNs. It

is shown that BPC-dependent DNNs learn clearer local structures than a global DNN.

7.2 Experimental setup for learning non-linear man-

ifolds with BPC-dependent DNNs

7.2.1 Proposed structure of phone classification systems

Two neural network structures are proposed for the phone classification task, inspired

by a non-linear manifold model of speech. Both structures take speech spectra with

context as input, as was the case for the experiments in previous chapters. A 9-node

bottleneck layer is used in each BPC-dependent network to enable comparison with

the baseline single global bottleneck neural network.

Structure I

The first structure of phone classification system comprises three levels. The structure

is depicted in Figure 7.1. The first level, shown by the left-hand part of Figure 7.1,

is a BPC classification network that estimates the probability of a phone being in
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Figure 7.1: Architecture I of phone classification system exploiting DNN-based manifold learning of
speech (first two levels).

each broad phone class. In our experiment we used 8 phone classes (as described in

Section 2.3.1), thus we have 8 nodes at the output layer of the first level DNN. We

denote the output of the ith node as Xi(i = 1...8). The second level (right-hand part of

Figure 7.1) is a set of N parallel DNNs, each focusing on a particular part of the speech

acoustic space, i.e. a set of BPC-dependent phone classification networks. The BPC-

dependent DNNs are trained to distinguish between individual phones within each

named phone class. We denote the output of the jth node of the ith BPC-dependent

DNN as Yi,j. Note that in all the BPC-dependent DNNs, there are 49 output nodes

defined on the full phone set. Although in the second level not all output nodes are

involved in the training process, they are needed for the test process.

The third level (not included in Figure 7.1) is only involved in the test process. In

this level we calculate a sum over the output posterior probabilities from the neural

networks in the second level, weighted by the posterior probabilities of phone classes
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according to the first level. For each frame, we calculate

Zj =
8∑
i=1

XiYi,j, (7.1)

resulting in a 49-dimensional vector Zj, where the value of each dimension indicates a

phone probability. The phone that corresponds to ĵ

ĵ = arg maxZj (7.2)

is the phone classification decision to this frame.

Note that both the first and the second level take spectra-in-context as input, and

that during the training process, one BPC-dependent DNN is only trained on one

phone class (within-class data only).

Structure II

The second structure is shown in Figure 7.2. It is in some sense up-ended from Structure

I. It comprises two levels. The first level is a set of N parallel DNNs, which implement

the non-linear local mapping functions φi(i = 1, ..., N), each focusing on a particular

part of the speech acoustic space A. The second level fuses the outputs from the

individual local mappings in the first level to arrive at a final classification decision.

At the first level, all the training data is passed to each network, regardless of which

broad class that network is focussing on. This ensures that a given local network has

information about data which do not belong to its BPC. Suppose that the ith local DNN

implements a mapping φi for the subset Qi of phones which comprise the ith BPC. The

output layer of this network has Ki + 1 nodes, where the first Ki nodes correspond to

each phone in the category Qi and the additional node is used to indicate the “out-of-

class” label used for input features which are not contained in the ith BPC. The targets

in the output layer are the phone or ‘out-of-class’ posterior probabilities. The DNN

structure of a “plosive focused” local DNN is shown in Figure 7.3 as an example.
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Figure 7.2: Architecture II of phone classification system exploiting DNN-based manifold learning of
speech.

The second level of the classification system is a “fusion network” that serves to

provide the final phone classification decision. The input vector passed to this second

level contains information concatenated from all the first level BPC-dependent DNNs.

In out experiments, we used either the outputs of the bottleneck layer, or the softmax

probability outputs from the output layer of each first level networks. This is indicated

by dashed and dot-dashed lines in Figure 7.2. The output of the fusion network is a

vector of posterior phone probabilities of 49 phones.

7.2.2 Speech corpus and phone class

Experiments are performed on the TIMIT corpus (described in Section 3.1) including

the phone level segmentations and labelling, as used in previous chapters. In addition

to the standard TIMIT data, we also use a subset of TIMIT that only contains infor-

mation of phone centres, where the phone centre timings are decided by the TIMIT

labelling. This is obtained by selecting only the spectra-in-context vectors correspond-
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Figure 7.3: Architecture of a “plosive focused” local DNN used in the first level of the Structure II.

ing to the centre frame of each phone segment from the overall spectra-in-context

data. Intuitively, the phone labelling in this “centre frames only” subset should be

more reliable.

The 61-phone set used in TIMIT labels is mapped to the 49-phone set (the mapping

can be found in Section 3.2), before the phones are grouped to BPCs. As the baseline,

the phones are grouped into the 8 non-overlapping BPCs as described in Section 2.3.1.

This is the same as the BPCs used by (Huang et al., 2016). These correspond to

BPCs Q1–Q8 in the upper part of Table 7.1. For structure II, we also use several

“super broad” classes which are unions of two or more BPCs from Q1–Q8. These are

defined in the lower half of Table 7.1. The super broad classes are defined based on

the definition used in (Huang et al., 2016). Plosive and weak fricatives are combined;

short vowels, long vowels and semi-vowels are combined in all possible ways. This way

of defining super broad phone classes echoes the observation we obtained in Chapter 5,

where the visualisations of the BNFs showed confusions (points overlapping) between

plosive and weak fricatives, and between short, long and semi vowels. In addition, one

super broad class is defined to cover all phones (Q14).
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Table 7.1: Phonetic broad classes used to define the set of local DNN-based projections.

Group Phonetic class Phone label

Q1 Plosive /g/, /d/, /b/, /k/, /t/, /p/
Q2 Strong fricative /s/, /z/, /sh/, /zh/, /ch/, /jh/
Q3 Weak fricative /f/, /v/, /th/, /dh/, /hh/
Q4 Nasal/Flap /m/, /n/, /en/, /ng/, /dx/
Q5 Semi-vowel /l/, /el/, /r/, /w/, /y/

Q6 Short vowel
/ih/, /ix/, /ae/, /ah/, /ax/, /eh/,
/uh/, /aa/

Q7 Long vowel
/iy/, /uw/, /ao/, /er/, /ey/, /ay/,
/oy/, /aw/, /ow/

Q8 Silence /sil/, /epi/, /q/, /vcl/, /cl/
Q9 Q5 ∪Q6 ∪Q7: Semi-vowel, Short vowel,

Long vowel
Q10 Q1 ∪Q3: Plosive, Weak fricative
Q11 Q5 ∪Q6: Semi vowel, Short vowel
Q12 Q5 ∪Q7: Semi vowel, Long vowel
Q13 Q6 ∪Q7: Short vowel, Long vowel
Q14 Q1 ∪Q2 ∪ . . . ∪Q8: All phones

7.2.3 Neural network training

We used the same corpus and spectra-in-context data as used in previous chapters

to train DNNs. They are 286-dimensional vectors, containing logFBEs of the current

frame and five preceding and five following frames.

The networks were trained as deep belief networks (DBNs) with Gaussian-binary

restricted Boltzmann machines (GRBMs, for the bottom RBM learning spectra-in-

context) and restricted Boltzmann machines (RBMs, for all the others) pre-training.

Stochastic gradient descent back-propagation was conducted using the Theano toolkit

(Bastien et al., 2012; Bergstra et al., 2010). The learning rates of GRBM, RBM and

fine-tuning were 0.002, 0.02, 0.1 respectively. In the fine-tuning process the training

stopped when the error on the validation set started to rise or when the epoch reached

the maximum of 1001. For the experiments on centre feature vectors, the neural net-

works were further fine-tuned using only feature vectors corresponding to the centre

1This is notably different from the 3000 maximum epochs in previous chapters. Because the pre-
training step has provided a better starting point, it usually takes less than 100 epochs before the
training error on the validation set stop decreasing.
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frames of the TIMIT phone segments.

Most neural networks were trained as DBNs with pre-training. For experiment

using the “centre frames only” data, an additional fine-tune process is included. In

this process we take the weights of the neural network trained on the “all frames” data

as a starting point and train on the “centre frames only” set for a few more times

(maximum epochs was set to 100).

7.2.4 System evaluation and test of significance

The systems were evaluated with respect to their ability of classifying phones at the

feature vector level. This is different from the previous chapters where phone recogni-

tion performance was evaluated. Two sets of experimental evaluations were performed:

i) using all the feature vectors, and ii) using only the centre feature vector from each

TIMIT phone segment. When evaluating phone classification accuracy, the 49 phone

set was reduced to 40 according to (Lee and Hon, 1989).

For the test of significance, DNNs are trained multiple times with various initiali-

sations to reduce the influence caused by DNN training initialisations. Pairwise com-

parisons between global neural networks and local neural network systems are applied

using the McNemar’s significance test (Gillick and Cox, 1989). We say one system is

significantly better than the other if in more than 95% of the pairwise comparisons the

improvement in performance is significant at the 0.05 level according to the test.

7.3 Experiments and results

7.3.1 Baseline: a global bottleneck neural network

We use the DNN structure 286-1024-1024-9-49 trained with deep belief networks (DBN)

as the baseline in the experiments in this chapter, as this was found to achieve best

performance — it was found that using DNNs trained as DBNs (described in Sec-

tion 2.2.3) and with the bottleneck layer placed directly before the output layer, gave
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better results. The settings for the neural network retraining are described in Sec-

tion 7.2.3. Table 7.2 compares the GMM-HMM monophone recognition performance

using 9-dimensional BNFs from this “new baseline” neural network structure and the

structure used in the previous sections (NN286-512-9-512-49 trained by standard SGD

back-propagation), which can be regarded as an extended experimental result for the

experiment in Chapter 4.

Table 7.2: Evaluation of BNFs in a GMM-HMM HTK recogniser on the TIMIT core test set.

NN structure %Corr %Acc
286-512-9-512-49 73.1 69.4

286-1024-1024-9-49 76.3 72.5

In this chapter we report only phone classification performance rather than phone

recognition. The baseline phone classification performance of the single global DNN

is shown in Table 7.3. The results are on TIMIT full and core test sets, averaged

over 20 DNNs with different training initialisations. The 40 phone set was used when

calculating classification accuracies. We obtained results using all frames of the TIMIT

corpus, and on only centre frames of phone segments. As expected, the classification

accuracies on the “centre frames only” data is considerably higher than that on the

“all frames” data. The method for training and testing a DNN on only centre frames

is described in Section 7.2.3.

Table 7.3: Global DNN phone classification results on the TIMIT test set. These are baseline results
for experiments in this Chapter.

Test data #Frame tested %Acc
Full TEST, all frames 410920 67.70

Full TEST, centre frames 51680 76.57
Core TEST, all frames 57919 67.60

Core TEST, centre frames 7333 76.81

7.3.2 Comparisons between the two proposed structures

The 8 non-overlapping BPCs are used to train local BPC-dependent DNNs. Following

the baseline DNN structure, we also use three hidden layers in the BPC-dependent
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DNNs, where the last hidden layer is a bottleneck layer containing 9 neurons. When

deciding the size of non-bottleneck layers, we tried to keep the overall number of pa-

rameters in the different systems as close as possible.

In this experiment, we train 8 parallel BPC-dependent DNNs with a bottleneck

layer, for both Structure I and Structure II. The size of BPC-dependent DNNs is set to

286-256-256-9-X, where X is 49 in the system of Structure I and Ki + 1 in the system

of Structure II, as described in Section 7.2.1. The structure of the BPC classification

neural network in Structure I is 286-256-256-256-8, and the structure of the fusion

network in Structure II is Y-32-49, where Y =
∑

iKi + 8. The fusion network has

only one small hidden layer because there was no benefit observed when enlarging this

hidden layer or using more layers.

The phone classification performance of the two structures are shown in Table 7.4.

We can see that the Structure II outperforms the Structure I in the phone classification

Table 7.4: Phone classification performance on the TIMIT core test set.

Structure %Acc (all frames) %Acc (centre frames) # System parameters
Baseline 67.60 76.81 1,353,203

Structure I 66.85 75.57 1,343,888
Structure II 69.38 77.45 1,136,659

task, with fewer parameters.

We use the Structure II for our phone classification system in the following experi-

ments.

7.3.3 Changing the ratio of in-group/out-group data

As described in Section 7.2.1, the BPC-dependent DNNs in Structure II are trained

on all the training data, regardless of which broad class that network is focussing

on. However, as the “out-of-class” data is usually more than the “in-class” data2, the

BPC-dependent DNNs might be overfitting the “out-of-class” data. Is it beneficial to

2The proportion of data in each BPC is shown in Figure 3.1 in Section 3.1.
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increase the proportion of in-class data when training the BPC-dependent DNNs? We

try to answer this question in this subsection.

We tried different proportions of in-class and out-of-class data for each BPC-

dependent DNN. This was achieved by either repeating the in-class data (double or

four times) while keeping the amount of out-of-class data unchanged, or decreasing

the out-of-class data (half, quarter, and 1/8) while keeping the amount of in-class

data unchanged. The overall system classification performance was tested and the

accuracies are shown in Figure 7.4. The classification performance of the individual

BPC-dependent DNNs were also tested. The results are included in Appendix A.

Figure 7.4: Overall phone classification accuracy when varying the ratio of in/out group data.

From Figure 7.4 we see the overall performance of phone classification, i.e. the

result of the fusion network, goes down whether the proportion of the “in-group” data

is increased or that of the “out-of-the-group” data is decreased. One explanation could

be that the proportion of in-class data for all BPC-dependent DNNs is small in the test

set, thus the system needs the BPC-dependent DNNs in the first level to be capable

of well classifying “out-of-class” data.
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Note that the differences in classification accuracies are actually quite small and

may not indicate a disadvantage of increasing the ratio of in/out group data. Multiple

runs with different initialisations may be needed to see if the differences are significant.

However, we have enough evidence to decide to keep the original ratio of in/out group

data in the following experiments in this chapter.

7.3.4 Including “super” broad classes

In this subsection, we explore if the use of “super” broad phone class could improve

the phone classification system. We consider five different BPC groups, D1 to D5

(Table 7.5). These determine the sets of local BPC-dependent DNNs.

D1 consists of the 8 non-overlapping BPCs Q1 to Q8 (Table 7.1). D2 consists of D1

plus the additional class Q9 which combines the three vowel sub-categories. D3 consists

of D2 plus Q10, which combines plosives with weak fricatives. D5 is the same as that

used in (Huang et al., 2016), with additional classes (Q11, Q12 and Q13) for different

combinations of vowel sub-categories plus a global class Q14 containing all phones. D4

is D5, without the global class Q14.

Table 7.5: The sets D1, ..., D5 of BPCs used to train local BPC-dependent DNNs in the two-level
system.

Broad phone Experimental setup
class D1 D2 D3 D4 D5

Q1 −Q8 X X X X X
Q9 X X
Q10 X X X
Q11 X X
Q12 X X
Q13 X X
Q14 X
# local DNNs 8 9 10 12 13

Table 7.6 shows classification results for all frames and centre frames only for the

single global DNN and the two-level manifold structures corresponding to D1, ..., D5.
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The figures are the averages of experiments performed over 20, 10 and 6 random DNN

parameter initialisations for the global, local (softmax) and local (BNF), respectively.

First we focus on classification results using all frame feature vectors and taking

softmax output from the local DNNs as the input to the fusion network (first column of

the results in Table 7.6). The average phone recognition accuracy for the single global

DNN is 67.60% with standard deviation of 0.48. The two-level structure with local

DNNs gives in all cases better performance, which in many cases presents a significant

improvement (“*” indicates that in 95% of pairwise comparisons between global and

local networks, the difference in performance is significant at the 0.05 level according

to the McNemar’s test (Gillick and Cox, 1989).

The two-level systems corresponding to D2 to D5 give significant improvement

over D1 setup. The best performance (70.01% accuracy) is obtained with D5. These

results indicate that it is useful to include local network(s) that operate on a union

of two or more BPCs, in particular, the union of vowel sub-categories or combination

of pairs of vowel sub-categories, and also plosives with weak fricatives. This reflects

the similarity in production of these sub-categories. The inclusion of such super-broad

class networks may help to account for errors due to possible confusion between broad

phone categories. For instance, the results in (Huang et al., 2016) indicate that there

was a considerable confusion between these categories when performing classification

of BPCs.

The results using only the centre feature vectors of each phone segment show sim-

ilar performance trends to those observed for all feature vectors, however accuracy is

considerably higher. This indicates that the classification error is higher during phone

transitions. This is not surprising because those are the regions of phones that are

more subject to articulation effects and therefore more confusable, in particular with

neighbourhoods.
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Table 7.6: Phone classification accuracy obtained using all signal frames and using only the centre
frames of each phone, and in each case using Softmax output and BNF as input to fusion network.

All frames Centre frames

Global DNN 67.60 (avg) 76.81 (avg)
69.05 (avg+3std) 77.58 (avg+3std)

Local DNNs Fusion net input Fusion net input
Softmax BNF Softmax BNF

D1 (avg) 69.05* 68.78 77.45 77.03
D2 (avg) 69.44* 69.23* 77.85 77.75
D3 (avg) 69.56* 69.24* 78.31* 78.11*
D4 (avg) 69.76* 69.31* 78.59* 78.08
D5 (avg) 70.01* 69.63* 78.93* 78.70*

7.3.5 Comparison between different fusing inputs

We also explored passing different information from the local DNNs to the fusion

network. We attempted using the bottleneck layer outputs and the softmax layer

outputs as the input to the fusion network. The classification results have been listed

in Table 7.6 (“Softmax” columns and ”BNF” columns). We can see that using the

probabilities from the output layer works a little better than using the BNFs obtained

from the layer above the output layer. However, they both perform better in the phone

classification task than the global structure using a single DNN.

7.3.6 Neural network visualisations with LDA

This section explores visualisations of the structures learned by local BPC-based DNNs.

The 9-dimensional BNFs from the local DNNs are projected onto 2-dimensional space

using linear discriminant analysis (LDA). This is conducted in the same way as the

experiment in Section 5.2.1. As was observed in Section 5.2.1, the visualisations of

BNFs for the training set and the test set are again very similar, thus we only show

results for the training set. The plots marked (*) only show 10% of the frames in the

training set for clarity.

Figure 7.5(a) is the 2-dimensional visualisations of the 1st and the 2nd dimension of

LDA projections for the global DNN bottleneck layer (i.e. the baseline DNN). We first
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(a) Global DNN (286-1024-1024-9-49)(*) (b) Local DNN for plosive (286-256-256-9-7)(*)

Figure 7.5: Visualisations of 1st vs. 2nd dimension of LDA-based projections of 9-dimensional BNFs
from a single global DNN (a), and Q1 (‘plosive’) local DNN (b). Plot with data of all phones.

look at an example 2-dimensional visualisations for the BPC Q1 (plosives), shown in

Figure 7.5(b) and Figure 7.6. Figure 7.5(b) shows the first 2 dimensions of the LDA

projections for data from all phones. Plosives are represented in purple. Comparing

Figure 7.5 (a) and (b), we can see that the purple plots representing BNFs of plosives

is better separated from the other phones in the plosive focused DNN (Figure 7.5(b)),

occupying a larger area in the 2-dimensional space. This indicates that the local neural

network for plosives focuses more on the plosive class. Interestingly, although the non-

plosive data were all assigned to ‘out-of-class’ category, the network has structured this

data in an unsupervised manner according to phonetic categories.

Figure 7.6(a) shows data for “plosive” phones only, with each plosive represented

in a different colour. It can be seen from Figure 7.6(a) that /p/, /t/, and /k/ are

placed in an order which reflects their place of articulation (lips, teeth and soft palate,

respectively). The voiced counterparts /b/, /d/, /g/ are placed in the same order but

shifted towards the lower right. Figure 7.6(b) shows the plosive phone data projected

onto LDA dimensions 3 and 4. Again, good separation of each plosive class is evident.

Dimension 4 now seems to indicate voicing, with the unvoiced plosives placed in the

lower part and voiced in the higher part of the figure. Again, the location structure for
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(a) Plosive - 1st vs. 2nd dimension (b) Plosive - 3rd vs. 4th dimension

Figure 7.6: Visualisations of LDA-based projections of 9-dimensional BNFs from Q1 (‘plosive’) local
DNN, for data within plosive class only. 1st vs. 2nd dimension (a) and 3rd vs. 4th dimension (b) .

the unvoiced plosives is the same as for the voiced plosives, but shifted in dimension 4

for voicing.

We display the 2-dimensional visualisations (1st and 2nd dimension of the LDA-

based projections) for other local DNNs focusing on weak fricatives, strong fricatives,

nasals and flaps, semi-vowels, short vowels, long vowels and silences in Figure 7.7. The

left-hand figures plot all phones (all comparable to Figure 7.5(a)), one colour for one

BPC, whereas the right-hand figures plot only phones within the named BPC.

Similar to the local DNN for plosives, in all cases we see a good separation between

the phones in the focused BPC and the other phones (figures on the left), and a fairly

clear structure within the BPC that can be to some extent related to phonetic features

(figures on the right). For example long vowels in Figure 7.7 (k) and (l), plots in (k)

show a good separation between the plots of long vowels (in red) and the others; in (l)

from bottom to top we observe /iy/, /uw/, /ey/, /er/, /ay/, /aw/, which roughly

corresponds to the places of articulations (tongue positions) from high to low.
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(a) Weak fricative NN (blue) - all phones(*) (b) Weak Fricative NN - in-group phones

(c) Strong Fricative NN (cyan) - all phones(*) (d) Strong Fricative NN - in-group phones

(e) Nasal&Flap NN (green) - all phones(*) (f) Nasal&Flap NN - in-group phones
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(g) Semi-vowel NN (orange) - all phones(*) (h) Semi-vowel NN - in-group phones(*)

(i) Short vowel NN (black) - all phones(*) (j) Short vowel NN - in-group phones(*)

(k) Long vowel NN (red) - all phones(*) (l) Long vowel NN - in-group phones(*)
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(m) Silence NN (pink) - all phones(*) (n) Silence NN - in-group phones(*)

Figure 7.7: Visualisations of LDA-based projections (1st vs. 2nd dimension) of the BNFs from local
DNNs. Plots are on all phones (left figures) and in-group phones (right figures)
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7.4 Summary and discussion

Most state-of-the-art automatic speech recognition (ASR) systems use a single deep

neural network (DNN) to map the acoustic space to the decision space. However, It

is generally accepted in the literature that different phonetic classes, corresponding

to different production mechanisms, are best described by different types of features.

Hence it may be advantageous to replace this single DNN with several phone class

dependent DNNs. In this case, the appropriate mathematical structure is a manifold.

Previous work has considered systems comprising multiple linear phone class depen-

dent mapping (Huang et al., 2016), and our approach can be regarded as a non-linear

extension of this work.

This chapter presents phone classification systems inspired by a non-linear manifold

model of speech acoustic space. We presented two structures and chose to use one

of them after an initial comparison. The structure used contained multiple BPC-

dependent DNNs and a data fusion network. The systems used between 8 and 13 BPC-

dependent mappings. Multiple trainings were conducted with different neural network

weight initialisations. Pairwise comparisons between classification results from single

global DNNs and proposed structures were made using the McNemar’s significance test.

The results show that using the BPC-dependent DNNs provides a small but significant

improvement in phone classification accuracy in comparison to a single global DNN,

with an average of 3.6% (comparative) improvement using the best structure obtained.

It is demonstrated that in addition to the use of a set of local DNNs corresponding to

basic BPCs, it is advantageous to also include local DNNs focusing on a combination of

some BPCs, especially, vowel sub-categories. The use of the softmax outputs as input

to the fusion network provides slightly better results than the bottleneck outputs in

this experiment. Visualisations of the structures learned by the local DNNs indicate a

relationship to speech production mechanisms.



Chapter 8

Conclusion

8.1 Contributions

The first aim of the work presented in this thesis is to find compact speech features

that can be reliably estimated for all speech sounds and are suitable for segmental

models of speech that parsimoniously model speech dynamics. In Chapter 4 we show

that phone discrimination bottleneck neural networks can be used to extract very low-

dimensional features containing sufficient information to support high-accuracy phone

recognition. Specifically, 9-dimensional BNFs extracted from a phone discrimination

bottleneck neural network provide better ASR phone accuracies than 39-dimensional

MFCCs. In addition, BNF-based features outperform formant-based features of the

same dimensions, with an averaged improvement of 33.7% (comparative) in ASR phone

recognition accuracies. All the experiments were conducted using a conventional GMM-

HMM recogniser. Subjectively, very low-dimensional BNFs well fit the assumptions of

the Continuous-State HMM model, and can be obtained consistently for all phones.

Despite the remarkable improvements in speech recognition accuracy resulting from

DNNs, our understanding of how (deep) neural networks work and what BNFs mean is

limited. In Chapter 5 we visualise the 9-dimensional BNFs using LDA and t-SNE. We

observe phonetically meaningful clusters in the projected 2-dimensional spaces. Apart
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from mapping the 9-dimensional feature into 2-dimensional spaces, we narrowed the

bottleneck layer to 2-units and extract 2-dimensional BNFs. Using a back-propagation

method that computes the values of a given layer that are optimised for a particular

output target, we obtain one “cardinal” 2-dimensional BNF for each phone and inter-

pret these features. The 2-dimensional BNF space shows distinct regions used for each

phonetic category, where within each category the organisation of phones appeared

to correspond approximately to the phone production mechanisms. We also investi-

gate the neural network neuron responses at the bottleneck layer and visualisations of

non-bottleneck layer activations. We demonstrate that different parts of the network

are involved in capturing different phonetic information, or information for different

phonetic categories.

Neural networks trained with different weight initialisations would result in differ-

ent BNF sets. Experimental results seem to suggest that NN initialisations do not

significantly affect the final ASR results. However, it is a concern that a new initial-

isation may invalidate any phonetic description of BNFs. In Chapter 6 we explore

the relationships between BNF sets resulting from different neural network weight ini-

tialisations. We show that the relationship between them is approximately piecewise

linear. We present the results of experiments in which hierarchical clustering is applied

to phone dependent linear transformations between BNF sets, and show that the com-

bined linear transforms that emerge correspond, in general, to phonetically meaningful

phone classes. In addition, we show that the biggest decreases in phone recognition

accuracy occur when transforms corresponding to categories that differ significantly in

their phonetic properties are combined. This result suggests that the type of feature

extraction applied by the network to extract BNFs is different for different phone cat-

egories. The network is able to learn and combine multiple phone category dependent

feature extraction mappings to optimise a low-dimensional representation for its phone

classification task. In addition, this result suggests that any phonetic description of

BNFs corresponding to particular phone class will remain valid, to within a linear
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transformation, for BNFs resulting from a different initialisation of the same network.

It is generally accepted in the literature that different phonetic classes, correspond-

ing to different production mechanisms, are best described by different types of fea-

tures. In addition, it has already been noted that the mapping from spectra-in-context

to phone posterior probabilities implemented by a DNN is a continuous approxima-

tion to a discontinuous function. All of these suggest that it may be advantageous to

replace this single DNN with several phone class dependent DNNs. In this case, the

appropriate mathematical structure is a manifold. Previous work has considered sys-

tems comprising multiple linear phone class dependent mapping (Huang et al., 2016),

and our approach can be regarded as a non-linear extension of this work.

In Chapter 7 we present phone classification systems using multiple BPC-dependent

DNNs and a data fusion network. The systems use between 8 and 13 BPC-dependent

mappings. The structure is inspired by a non-linear manifold model of acoustic speech

space. Multiple trainings were conducted with different neural network weight initial-

isations. Pairwise comparisons between classification results from single global DNNs

and from the proposed structure comprising multiple BPC-dependent DNNs were made

using the McNemar’s significance test. The results show that using the BPC-dependent

DNNs provides a small but significant improvement in phone classification accuracy in

comparison to a single global DNN, with an average of 3.6% (comparative) improve-

ment using the best structure obtained. It is also demonstrated that in addition to

the use of a set of local DNNs corresponding to basic BPCs, it is advantageous to

also include local DNNs focusing on a combination of some BPCs, especially vowel

sub-categories. Visualisations of the structures learned by the local DNNs indicate

a relationship to speech production mechanisms. The local DNNs learn clearer local

structures than a global DNN.
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8.2 Future work

Although the multiple BPC-dependent DNN structure proposed in this thesis is in-

spired by the notion of manifold, it does not constitute a true topological manifold.

To obtain a true topological manifold, the “local” non-linear mappings φi should ex-

plicitly map subsets Ai of the acoustic space A into the BNF space B, rather than

being determined by sub-classes Qi of phones. This requires a better understanding of

the topology of A and the relationships between its subsets and BPCs, which might

be obtained through topological data analysis. In addition the φis should satisfy the

consistency condition in Section 2.5. The latter could be investigated using “recon-

struction” DNNs in which the targets are equal to the inputs, although this might

compromise the utility of the BNFs for classification.

Experiments need to be conducted to confirm that the benefits of the local DNN

structure for frame-level phone classification transfer to full ASR. Some possible ap-

proaches are discussed in the following paragraphs.

Experiments in this thesis used neural networks learning phone posterior probabil-

ities. We can train neural networks to learn HMM state probabilities instead, which

could be monophone states or triphone states. Therefore the multiple BPC-dependent

DNN model studied in this thesis can be used to create the state-level probabilities

required by a decoder. However, it is not clear that this structure is compatible with

existing ASR toolkits such as Kaldi. The alternative is to develop a custom Viterbi

decoder.

Currently the most successful ASR systems use various types of recurrent neural

networks (RNNs) and convolutional neural networks (CNNs). It would be interesting

to discover whether BNFs created using these types of networks would deliver superior

ASR performance and to what extent they lend themselves to phonetic interpretation.

The experiments in this thesis could be extended to more practical speech data, for

example noisy conversational speech.



Appendix A

Supplementary Figures

In this part, supplementary figures that results from experiments presented in Chap-

ter 4 to 7 are included.
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Figure A.1: Comparing BNFs and formant features with GMM-HMM recognisers. For almost all
phones, the ASR accuracy using these four types of features: 9-dimensional BNF > 3-dimensional
BNF > 3 formant frequencies+ 3 amplitudes+ 3 bandwidths (9-dimensional) > 3 formant
frequencies (3-dimensional)
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Figure A.2: Visualisations of LDA-based projections (3rd and 4th dimension) of 9-dimensional BNFs
from a phone classification DNN of structure 286-512-9-512-49, on the 10% subset of the training
set. Plots are coloured by their corresponding phone classes. The visualisation of the 3rd and the 4th

dimension of the LDA projections does not show separations between broad phone classes.
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(a) Plosive (b) Weak Fricative

(c) Strong Fricative (d) Nasal, Flap

Figure A.3: Visualisations of LDA-based projections (3rd vs. 4th dimension) of 9-dimensional BNFs
from a phone classification DNN of structure 286-512-9-512-49. Plot on one phone category in each
figure. (*)For silence only 10% of the data are plotted or clarity. We can observe separations within
phone categories such as “strong fricative”, “semi-vowel”, “short vowel”, “long vowel”, and “silence”
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(a) Semi-vowel (b) Short Vowel

(c) Long Vowel (d) Silence (*)

Figure A.3 (cont.):Visualisations of LDA-based projections (3rd vs. 4th dimension) of 9-dimensional
BNFs from a phone classification DNN of structure 286-512-9-512-49. Plot on one phone category
in each figure. (*)For silence only 10% of the data are plotted or clarity. We can observe separations
within phone categories such as “strong fricative”, “semi-vowel”, “short vowel”, “long vowel”, and
“silence”.
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(e) Plosive (1st Hidden Layer) (f) Plosive (3rd Hidden Layer)

(g) Weak Fricative (1st Hidden Layer) (h) Weak Fricative (3rd Hidden Layer)

Figure A.4: Visualisations of LDA-based projections (1st vs. 2nd dimension) of the first (left
column) and the (3rd hidden layer (right column) activations from a phone classification DNN of
structure 286-512-9-512-49. Plot on one phone category in each figure. The visualisation of the 3rd

layer is less fuzzy than that of the 1st layer.
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(a) Strong Fricative (1st Hidden Layer) (b) Strong Fricative (3rd Hidden Layer)

(c) Nasal,Flap (1st Hidden Layer) (d) Nasal,Flap (3rd Hidden Layer)

Figure A.4 (cont.):Visualisations of LDA-based projections (1st vs. 2nd dimension) of the first (left
column) and the (3rd hidden layer (right column) activations from a phone classification DNN of
structure 286-512-9-512-49. Plot on one phone category in each figure. The visualisation of the 3rd

layer is less fuzzy than that of the 1st layer.
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(e) Semi-vowel (1st Hidden Layer) (f) Semi-vowel (3rd Hidden Layer)

(g) Short Vowel (1st Hidden Layer) (h) Short Vowel (3rd Hidden Layer)

Figure A.4 (cont.):Visualisations of LDA-based projections (1st vs. 2nd dimension) of the first (left
column) and the (3rd hidden layer (right column) activations from a phone classification DNN of
structure 286-512-9-512-49. Plot on one phone category in each figure. The visualisation of the 3rd

layer is less fuzzy than that of the 1st layer.
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(i) Long Vowel (1st Hidden Layer) (j) Long Vowel (3rd Hidden Layer)

(k) Silence (1st Hidden Layer) (l) Silence (3rd Hidden Layer)

Figure A.4 (cont.):Visualisations of LDA-based projections (1st vs. 2nd dimension) of the first (left
column) and the (3rd hidden layer (right column) activations from a phone classification DNN of
structure 286-512-9-512-49. Plot on one phone category in each figure. The visualisation of the 3rd

layer is less fuzzy than that of the 1st layer.
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(m) 3rd vs. 4th dimension, 1st hidden layer

(n) 3rd vs. 4th dimension, 3rd hidden layer

Figure A.5: Visualisations of LDA-based projections (3rd vs. 4th dimension) of the 1st (a) and the
3rd (b) hidden layer activations from a phone classification DNN of structure 286-512-9-512-49.
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(a) Plosive (b) Weak Fricative

(c) Strong Fricative (d) Nasel/Flap

Figure A.6: Phone/class classification accuracy of local DNNs when varying the ratio of in/out group
data. Increasing the proportion of in-class data when training the BPC-dependent DNNs (from the
“original” point to both directions along the horizonal axis) usually improves their abilities of
classifying the in-class data (red plots), however the performance on all frames gets worse (green
plots) in most cases. It seems that the benefit of a DNN better at classifying in-class data is not
enough to counterweigh the loss of the DNN worse at classifying in-class data.
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(a) Semi-vowel (b) Short Vowel

(c) Long Vowel (d) Silence

Figure A.6 (cont.):Phone/class classification accuracy of local DNNs when varying the ratio of
in/out group data. Increasing the proportion of in-class data when training the BPC-dependent
DNNs (from the “original” point to both directions along the horizonal axis) usually improves their
abilities of classifying the in-class data (red plots), however the performance on all frames gets worse
(green plots) in most cases. It seems that the benefit of a DNN better at classifying in-class data is
not enough to counterweigh the loss of the DNN worse at classifying in-class data.
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Bai, L., P. Jančovič, M. Russell, and P. Weber (2015). Analysis of a low-dimensional

bottleneck neural network representation of speech for modelling speech dynamics.

In Proc. Interspeech, Dresden, Germany, pp. 583–587.
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