

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

A Cloud-Based Intelligent and Energy
Efficient Malware Detection Framework

A Framework for Cloud-Based, Energy Efficient, and
Reliable Malware Detection in Real-Time Based on
Training SVM, Decision Tree, and Boosting using

Specified Heuristics Anomalies of Portable Executable
Files

Qublai Khan Ali Mirza

Submitted for the Degree
Of Doctor of Philosophy

School of Electrical Engineering and Computer
Science

University of Bradford

2017

ii

To my little champ Mujtaba and my lovely wife Saba, thanks for lighting up
my world, this is for you.

 To my parents and their unconditional love and prayers

iii

DECLARATION OF AUTHORSHIP

I, Qublai Khan Ali Mirza, confirm that this thesis contains my own work and

has never been submitted for any other academic award. Any information

derived from other material has been properly referenced.

Signed: Dated:

iv

ABSTRACT

Qublai Khan Ali Mirza “A CLOUD-BASED INTELLIGENT AND ENERGY EFFICIENT
MALWARE DETECTION FRAMEWORK”

Keywords: Malware detection, portable executables, file heuristics, SVM, decision tree,
boosting, cloud computing, energy efficiency, real-time detection, automated static analysis

The continuity in the financial and other related losses due to cyber-attacks

prove the substantial growth of malware and their lethal proliferation

techniques. Every successful malware attack highlights the weaknesses in the

defence mechanisms responsible for securing the targeted computer or a

network. The recent cyber-attacks reveal the presence of sophistication and

intelligence in malware behaviour having the ability to conceal their code and

operate within the system autonomously. The conventional detection

mechanisms not only possess the scarcity in malware detection capabilities,

they consume a large amount of resources while scanning for malicious

entities in the system. Many recent reports have highlighted this issue along

with the challenges faced by the alternate solutions and studies conducted in

the same area. There is an unprecedented need of a resilient and autonomous

solution that takes proactive approach against modern malware with stealth

behaviour.

This thesis proposes a multi-aspect solution comprising of an intelligent

malware detection framework and an energy efficient hosting model. The

malware detection framework is a combination of conventional and novel

malware detection techniques. The proposed framework incorporates

comprehensive feature heuristics of files generated by a bespoke static feature

extraction tool. These comprehensive heuristics are used to train the machine

v

learning algorithms; Support Vector Machine, Decision Tree, and Boosting to

differentiate between clean and malicious files. Both these techniques; feature

heuristics and machine learning are combined to form a two-factor detection

mechanism. This thesis also presents a cloud-based energy efficient and

scalable hosting model, which combines multiple infrastructure components of

Amazon Web Services to host the malware detection framework. This hosting

model presents a client-server architecture, where client is a lightweight

service running on the host machine and server is based on the cloud.

The proposed framework and the hosting model were evaluated individually

and combined by specifically designed experiments using separate

repositories of clean and malicious files. The experiments were designed to

evaluate the malware detection capabilities and energy efficiency while

operating within a system. The proposed malware detection framework and

the hosting model showed significant improvement in malware detection while

consuming quite low CPU resources during the operation.

vi

ACKNOWLEDGEMENTS

I would like to thank Almighty Allah for blessing me with immense patience,

strength, and knowledge to enable me finish this study. I would like to thank

my parents for their unconditional love and prayers throughout this journey that

allowed me to successfully reach this level. I am grateful to my brothers and

most importantly my wife and son for making this journey much easier for me

and inspire me to set my goals high.

I am extremely grateful to my supervisor Prof. Irfan Awan for his professional

support and belief that gave me confidence to continue my research in the

right direction. A big thank you to Dr. Jules Pagna Disso of Nettitude Ltd. for

his expert technical insight in network security and critical analysis of my work

during the entire period of this study and giving me access to data that made

my experiments possible. I am very grateful to Dr. Anitta Namanya my

colleague and friend for guiding me, sharing ideas with me, and most

importantly providing me with technical support in the initial phase of my

research.

I am indebted to all my friends and colleagues in the cyber security research

group for all the fun and laughter that made this journey one of the most

memorable time of my life. I would specially like to thank Bashir Muhammad,

Adeeb Alhomoud, Hamad Al-Mohannadi, and all my friends from the research

group for all the memories.

vii

PUBLICATIONS:

Journal Paper:

1. Q. K. A. Mirza, I. Awan, and M.Younas, “CloudIntell: An intelligent malware

detection system,” Future Generation Computer Systems, Jul. 2017,

http://dx.doi.org/10.1016/j.future.2017.07.016

Conference Papers:
2. Q. K. A. Mirza, G. Mohi-Ud-Din, and I. Awan, “A Cloud-Based Energy

Efficient System for Enhancing the Detection and Prevention of Modern

Malware,” in 2016 IEEE 30th International Conference on Advanced

Information Networking and Applications (AINA), 2016, pp. 754–761.

3. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Pagna-Disso, J; Awan,I

(2016): Detection of Malicious Portable Executables using Evidence

Combinational Theory with Fuzzy Hashing; Future Internet of Things and

Cloud (FiCloud2016), 2016 IEEE 4th International Conference , 22-24

August 2016, Vienna, Austria.

4. Al-Mohannadi, H; Mirza, Q.K.A; Namanya, A.P; Pagna-Disso, J; Awan,I

(2016): Cyber-Attack Modeling Analysis Techniques: An Overview; Future

Internet of Things and Cloud Workshops (W-FiCloud2016), 2016 IEEE 4th

International Conference , 22-24 August 2016, Vienna, Austria.

5. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Cullen, A; Awan,I

(2016): Towards Building a Unified Threat Analysis and Management

Framework; (UKPEW) & Cyber Security Workshop (CyberSecW)

viii

CONTENTS

DECLARATION OF AUTHORSHIP ... iii

ABSTRACT .. iv

ACKNOWLEDGEMENTS .. vi

PUBLICATIONS: ... vii

List of Tables ... xii

List of Figures .. xiv

List of Algorithms .. xvii

CHAPTER 1. INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Aims and Objectives ... 3

1.3 Proposed Solution ... 4

1.4 Contributions ... 7

1.5 Research Scope ... 9

1.6 Thesis Structure .. 10

CHAPTER 2. Literature Review ... 12

2.1 Introduction ... 12

2.2 Background ... 13

2.3 Malware Evolution ... 15

ix

2.3.1 Malware Obfuscation .. 16

2.4 Analysis of Malware .. 26

2.4.1 Static Analysis .. 27

2.4.2 Dynamic Analysis ... 28

2.5 Conventional Detection Techniques ... 30

2.5.1 Signature-Based Malware Detection .. 31

2.5.2 Heuristics-Based Malware Detection .. 33

2.5.3 Behavioural-Based Malware Detection 34

2.6 Recent Research Advancements in Malware Detection 35

2.7 Chapter Summary ... 42

CHAPTER 3. An Intelligent malware detection framework 43

3.1 Introduction ... 43

3.2 Understanding the Anomalies ... 47

3.3 Building Blocks Overview .. 56

3.3.1 Analysis and Features .. 56

3.3.2 Machine Learning ... 59

3.4 Proposed Framework Design.. 62

3.4.1 The Analysis Module .. 63

3.4.2 The Classification Module .. 65

3.5 Modelling the Analysis Module.. 66

x

3.6 Evaluating the Analysis Module .. 77

3.6.1 Data Collection and Experiment Environment 77

3.6.2 Experiment Results and Analysis ... 79

3.7 Evaluating the Framework .. 87

3.7.1 Experimental Design .. 88

3.7.2 Discussion .. 94

CHAPTER 4. An energy efficient hosting model for the malware detection

framework 97

4.1 Introduction ... 97

4.2 Evaluation of Conventional Antiviruses CPU Utilization 99

 .. 100

4.3 Building Blocks Overview .. 102

4.3.1 Amazon Web Services ... 102

4.4 The Hosting Model .. 104

4.4.1 Repository .. 105

4.4.2 Analysis Module ... 106

4.4.3 The Classification Module .. 107

4.4.4 System Architecture ... 108

4.5 Framework Deployment .. 115

4.6 Performance Evaluation .. 121

xi

4.6.1 The First Aspect ... 121

4.6.2 The Second Aspect .. 125

4.7 Discussion .. 131

CHAPTER 5. Conclusion and future work ... 136

5.1 Limitation and Challenges ... 139

5.2 Future Work .. 141

References ... 144

xii

LIST OF TABLES

Table 2.1: Mean AUC and Confidence Interval of KM and MaTR, c.f. [80] .. 39

Table 3.1: Static Analysis Test Bench Details .. 48

Table 3.2: Anti-debug and Suspicious APIs ... 51

Table 3.3: Top Email Addresses Retrieved during Analysis 55

Table 3.4: Notations used in Algorithms ... 66

Table 3.5: Decision Making Matrix for Analysis Module 74

Table 3.6: Distribution of Benign and Malicious Files 77

Table 3.7: Test Bench Details .. 79

Table 3.8: Analysis Report of a Single Malicious File 81

Table 3.9: Analysis Report of a Clean File ... 82

Table 3.10: Result of applying classification techniques on extracted features

of a smaller dataset .. 90

Table 3.11: Result of applying classification techniques on extracted features

of a large dataset ... 91

Table 3.12: Result of applying classification techniques on extracted features

of a obfuscated dataset .. 92

xiii

Table 3.13: Result of applying classification techniques on extracted features

from real-time detection ... 93

xiv

LIST OF FIGURES

Figure 2.1: Sample Code for Obfuscation .. 19

Figure 2.2: Dead-Code Inclusion (Original Code in Figure 2.1) 20

Figure 2.3: Inserting Impractical Commands .. 20

Figure 2.4: Substituting Instructions ... 22

Figure 2.5: Sample Code of Zperm using Jump Instructions 23

Figure 2.6: Mutation and Replication of a Single Malicious Sample 24

Figure 2.7: Anti-Debug APIs .. 25

Figure 2.8: ROC Curves for KM n-gram Retest and MaTR [80] 38

Figure 2.9: MaTR System Flow Diagram, c.f. [80] 39

Figure 3.1: Statistics of Packers used by Malware 50

Figure 3.2: Commonly used Malware Names .. 53

Figure 3.3: Mostly used Section Names in Malware 54

Figure 3.4: Sample JSON File without Extracted Features 57

Figure 3.5: Proposed Framework Design [112] .. 63

Figure 3.6: Obfuscated Part in Extracted Features 64

Figure 3.7: Malware Distribution in the Repository 78

xv

Figure 3.8: Detection Rate Comparison between Analysis Module and

Antiviruses ... 84

Figure 3.9: TP, TN, FP, FN Comparison .. 85

Figure 3.10: Accuracy, Precision, and Recall Comparison of both

Approaches .. 85

Figure 3.11: Comparison of Detection Rate with Respect to Malware

Types ... 86

Figure 3.12: ROC curves for malware classification from a small dataset ... 90

Figure 3.13: ROC Curves ROC curves for malware classification from a

Large Dataset .. 91

Figure 3.14: ROC curves for malware classification from Obfuscated

Dataset ... 92

Figure 3.15: ROC curves for malware classification from Real-Time

Detection .. 93

Figure 4.1: Evaluation Graph of 11 Antiviruses .. 100

Figure 4.2: High Level Architecture .. 110

Figure 4.3: Low Level Architecture of First Aspect 112

Figure 4.4: Low Level Architecture of Second Aspect 113

Figure 4.5: Amazon Linux AMI ... 116

xvi

Figure 4.6: Analysis and Classification Modules .. 116

Figure 4.7: EFS Repository .. 117

Figure 4.8: Request Response Queues ... 118

Figure 4.9: XML Request Message .. 118

Figure 4.10: XML Response Message ... 119

Figure 4.11: Analysis Module CPU Utilization - Clean 122

Figure 4.12: Analysis Module CPU Utilization – Malicious 123

Figure 4.13: Classification Module CPU Utilization 124

Figure 4.14: Comparing Analysis & Classification Module CPU Utilization in

First Aspect .. 125

Figure 4.15: Analysis Module CPU Utilization .. 126

Figure 4.16: Classification Module CPU Utilization 127

Figure 4.17: Analysis & Classification Module CPU Utilization Second

Aspect .. 128

Figure 4.18: Lightweight Agent Performance ... 129

Figure 4.19: Comparing Hosted Framework with Antiviruses 133

xvii

LIST OF ALGORITHMS

Algorithm 1: Feature Extraction .. 69

Algorithm 2: Populating Database of Clean and Malicious Features through

External API ... 71

xviii

CHAPTER 1

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

The current era of technology, which is also known as “the age of data” has

changed the entire perception about technology. The amount of data

generated everyday by devices with limited resources is unprecedented and

the volume of world’s data doubles in every two years [1]. This means that the

level of security required to protect the data generation and management

entities is more than it ever was. The recent attacks by a ransomware known

as “WannaCry”, which shook the infrastructure of many big organizations

before it was stopped [2], [3] raises the question on the security mechanisms

that are used to protect the computing infrastructure and sensitive data.

The samples of recent lethal malware; WannaCry, Petya [4], [5] or Mirai [6]

caught in the wild, are not only capable of damaging giant organization or

causing financial damage to banks, they have the capability of bringing down

the entire infrastructure of World Wide Web that could possibly trigger a

catastrophic event [7] . The most disturbing aspect of this scenario is, that

these malware target the existing vulnerabilities in individual computers

without even triggering an alert in the security software installed [8]. Not only

the individual computers, computers part of an enterprise network, or smart

devices are attacked by such malware, the infected devices are frequently

used to attack bigger targets [9], such as; internet service providers,

government organizations and infrastructures, and email servers.

CHAPTER 1

2

A little less than half a million malware are released every day, majority of them

are variants of previously identified malware but still have the capabilities to

execute a lethal attack [10]. This cyberwar and successful attacks reveal the

multidimensional risks that are faced by every consumer of modern

technology, causing a daunting damage of $1.7 billion only in the UK [11]. This

number of financial damages caused by cyberattacks are expected to rise

above $5.8 trillion by 2020 [12]. The damage a malware author can cause

without even moving from their chair is not only staggering, it is also becoming

an attractive form of business.

If there is a successful malware attack on an enterprise network, despite their

security infrastructure, it takes around six months on average to detect an

infection, eradicating that infection can take another month [13], [14]. The

amount of damage caused by a malware infection is directly proportional to

the amount of time taken to identify and eliminate that infection [15]. One of

the most relevant example is of Zeus malware, which was initially identified in

2007 but couldn’t be stopped [16]. According to an estimation by some security

companies, Zeus infected around 3.6 million PCs only in U.S. and millions

more around the world [17].

This scenario raises a serious question on the presence of antiviruses and

other security software along with the amount of resources they require to

operate in an individual system or in a network. The current ecosystem of

technology with an enormous amount of data generation capabilities not only

requires a higher level of security mechanisms, it also require that mechanism

to be extremely energy efficient giving it the ability to protect growing number

CHAPTER 1

3

of heterogeneous devices. This study focusses on the limitations of current

techniques and presents a framework, which consumes less resources and

provides a higher level of malware detection.

1.2 Aims and Objectives

The aim of this study is to identify the current requirements of security against

malware attack by investigating the anatomy of modern and sophisticated

malware, which helps to evaluate the performance of current commercial

antiviruses and identify their limitations against modern malware. This paves

the way to design, develop, and evaluate a comprehensive and energy

efficient malware detection framework targeting PE (Portable Executable)

files, which amalgamates state-of-the-art malware detection techniques with

the conventional techniques to enhance the detection of modern malware with

obfuscation abilities. Following objectives had to be fulfilled to achieve this aim:

a) Understand the occurrence of important anomalies in a malware by

statically analyzing a large set of malicious PE files.

b) Examine the malware analysis and detection techniques currently used

commercially

c) Analyze the machine learning techniques introduced in malware

detection by different studies

d) Design and implement an analysis module that can retrieve a

comprehensive set of relevant feature anomalies from PE files with

customized and decisive heuristics

CHAPTER 1

4

e) Design, implement, and evaluate a module that incorporates the

analysis module with conventional malware detection techniques to

make accurate and reliable malware detection

f) Identify efficient and appropriate machine learning algorithms that can

be trained to recognize anomalies and accurately detect a malicious

file

g) Design a classification module that can learn from malware anomalies

and differentiate between clean and malicious files with the help of

machine learning algorithms

h) Develop a framework that amalgamate analysis module and

classification module to work as a coherent unit

i) Evaluate the accuracy of the entire framework by testing it against a

large set of clean and malicious files

j) Evaluate the commonly used commercial antiviruses for their resource

consumption

k) Design and implement a hosting model for the malware detection

framework that is energy efficient and does not rely on host systems’

CPU resources

l) Deploy the framework on the hosting model and evaluate the energy

efficiency and performance of the model along with the framework

operations.

1.3 Proposed Solution

The results of current malware detection techniques and software are not quite

effective [18] in terms of providing security to their consumers. There is a

CHAPTER 1

5

diverse pool of techniques including the conventional malware detection

techniques that can be used in a combination to enhance the malware

detection rate on a commercial level for general users [19]. Unfortunately,

majority of the novel techniques presented in the recent times are only limited

to a certain aspect of detection or a specific type of files and do not provide an

approach that targets the multidimensional problem. The problem faced by

general and enterprise users is not just lack of ability to identify modern and

previously unknown malware, it also involves the high resource consumption

by the conventional detection software.

The signature based malware detection can detect known malware and when

combined with malware heuristics it can possibly detect new variants of

previously known malware. However, the level of success of this combination

is highly dependent on the patterns and rules that are used to formulate the

heuristics of feature anomalies. Implementation of machine learning

techniques has also proved to be quite successful in many studies, which is

also applied on anomaly heuristics, its success is also dependent on patterns

and heuristics used to apply algorithms.

This research proposes the implementation of a combination of machine

learning algorithms on a set of heuristics extracted from a large set of clean

and malicious files. The proposed framework is based on a two-layer decision

making process, which includes the first layer of decision making with the help

of static heuristics analysis and the second layer of machine learning

algorithms.

CHAPTER 1

6

• An intelligent malware detection framework comprising of two-layered

detection process was developed. The first layer is comprised of static

heuristics analysis, which analyzes a file and decides about its

legitimacy based on the anomalies detected in the feature heuristics.

The decision made by this analysis is endorsed by external sources

using the conventional detection techniques. In the second layer,

machine learning algorithms; SVM (Support Vector Machine), Decision

Tree, and Boosting on Decision Tree, were applied to make the

detection process precise and highly reliable. The feature heuristics and

anomalies extracted from sets of both clean and malicious files are

used to train the machine learning algorithms, which makes the final

decision about a file highly accurate. In the design, implementation, and

evaluation of this part of the research, we trained and tested the

machine learning algorithms against a large set of clean and malicious

files.

• As mentioned above, this research targets two major problems of

conventional security mechanisms; detection rate and resource

consumption. In the second part of this study; a cloud-based hosting

model that strategically combines different components of AWS

(Amazon Web Services) was designed, implemented, and evaluated as

a customized hosting model for the malware detection framework. The

main idea behind this hosting model is to make the framework

extremely energy efficient and at the same time have the capability of

scaling the framework for continuous learning. The hosting model

CHAPTER 1

7

allows the framework to work with a dual-aspect. The first aspect of the

framework trains the algorithms with the feature heuristics, whereas,

the second aspect allows the framework to work in real-time scenarios.

The operational requirements of both aspects of the framework were

evaluated and the resource consumption was compared with the

resource consumption of commercial antiviruses’ running in their scan

mode.

1.4 Contributions

The key contribution of this research is the design and implementation of an

intelligent and energy efficient framework for detection of Windows based

modern malware. To achieve this, we had to divide the work in the following

two directions:

1. An intelligent malware detection framework, which initially examines

the common and unique anomalies found in malware by statically

analyzing a large set of malware. This helps to identify the use of such

anomalies in identifying modern malware and the use of machine

learning to make autonomous decision. This leads to the proposal of a

framework, which incorporates conventional malware detection

techniques with customized and comprehensive feature heuristics to

train multiple machine learning algorithms. This study provides a

detailed discussion on pivotal heuristics that differentiate a clean file

from malicious file. This discussion is based on the analysis performed

on large set of malicious files containing nearly one million files from

different families of malware. The study presented in Chapter 3, implies

CHAPTER 1

8

that how different important malware features can be combined to form

patterns that will help machine learning algorithms to train for real-time

detection. The role of conventional detection techniques in detecting

known malware is also discussed leading to the integration of

conventional detection techniques with the analysis module. Moreover,

the benefits of machine learning algorithms and how they can be

significant in lowering the false-positive rate and enhancing the

accuracy if a good combination of heuristics is used to train them, are

also discussed.

2. A cloud-based energy efficient hosting model, initially evaluates the

conventional antiviruses to identify their CPU resource consumption

while operating in scan mode. This helps to identify one of the main

weaknesses of commercial antiviruses, which is then targeted to

propose a hosting model. The hosting model for the framework

discussed in Chapter 3, which has a client server architecture,

strategically combines different components of AWS to design a

bespoke hosting model for the intelligent malware detection framework.

Each component of the hosting model is specifically designed to host

each module of malware detection framework with energy efficiency,

quick response, and scalability as primary goals. The study presented

in Chapter 4, initially discusses the CPU resource consumption problem

of commercial antiviruses and implications of their operations on the

host machine. The specific requirements of individual modules in the

malware detection framework are then focused, leading to the proposal

CHAPTER 1

9

of a high-level architecture of the cloud-based hosting model.

Subsequently, the selected components of AWS are discussed, with

respect to the operational requirements of the individual modules.

Moreover, the implementation of the hosting model, deployment of the

framework, and finally the evaluation of both; framework and hosting

model is presented. The client and server modules of the hosting model

are separately monitored to evaluate their performance and compare it

with the commercial antiviruses.

1.5 Research Scope

This work solely targets the features and heuristics of PE (Portable

Executables), commonly known as .exe files. The discussions and

contributions revolve around the analysis performed on PE files, use of

proposed approach on other file types or in other environments is out of scope.

The proposed framework is specifically based on the features and heuristics

generated through static analysis of PE files in conjunction with signature-

based detection and machine learning algorithms. Dynamic analysis of files is

out of scope.

Different datasets of clean and malicious files with known malware were used

in this research, as discussed in Chapter 3. Different datasets might produce

slight dissimilar results but they should produce similar level of accuracy and

energy efficiency.

CHAPTER 1

10

1.6 Thesis Structure

The remaining parts of the thesis are structured as follows:

• Chapter 2: Literature Review

This chapter presents background of the research followed by a

thorough discussion on the evolution of malware and the techniques

used by modern malware to avoid getting detected. The discussion on

different analysis techniques that can be used to analyse files along

with their implications is then presented. Subsequently, relevant recent

studies with their benefits and drawbacks are discussed, which lays the

foundation for the presented research.

• Chapter 3: An Intelligent Malware Detection Framework

This chapter presents the design, modelling, and implementation

details of the intelligent malware detection framework. It starts by

discussing the background of the proposed framework and why this

specific approach of detecting malware was taken. The study finally

presents the evaluation of the entire framework followed by the

discussion on outcomes.

• Chapter 4: An Energy Efficient Hosting Model for the Malware Detection

 Framework

Chapter 4 presents a cloud-based energy efficient hosting model for the

malware detection framework proposed and discussed in Chapter 3.

The chapter discusses each module and its hosting requirements

CHAPTER 1

11

separately and how they are managed by the hosting model. It then

evaluates both; framework and the hosting model, while running in real-

time

• Chapter 5: Conclusion and Future Work

The conclusion presents the discussion on identified problems solved

by the proposed framework and the hosting model by highlighting the

benefits of the proposed solutions. It then discusses the limitations of

the solution and how they can be eliminated. Finally, it presents the

future enhancements of the entire proposed framework and how it can

be used for a broader domain.

CHAPTER 2

12

CHAPTER 2. Literature Review

2.1 Introduction

The ever-evolving landscape of cyber-attacks requires to be tackled by an ever-

evolving ecosystem of security tools, techniques, and mechanisms.

Unfortunately, unlike the advancements seen in the malware proliferation in the

recent past, the security mechanisms are still based on the conventional

detection techniques used since many years [20]. Recently identified malware

have used several different types of techniques for infection and propagation and

their analysis show the innovative techniques they have used to bypass the

security mechanisms of networks and individual computers [21]. However, such

innovations are not employed by conventional antiviruses and other security

mechanisms. Various new and unconventional approaches have been proposed

in the recent past to stop a malware to infect and propagate but the question of

their effectiveness persists and how general users can benefit from new

techniques matters the most.

One of the better approach would be design techniques based on the modus

operandi of malware. Different analysis techniques with thorough approaches

provide deep understanding of malicious pieces of codes [22] but such tools and

techniques require time and computational resources, which is also one of the

significant drawbacks of antiviruses. In this chapter, recently proposed analysis

and detection techniques along with the conventional malware detection

CHAPTER 2

13

techniques are discussed. Techniques including static feature extraction to

support malware detection process are specifically focused in this chapter.

2.2 Background

One piece of software that is legitimate in one computer might be considered

illegitimate in another computer or network. This logic vaguely identifies what a

malware is along with its literal meaning; malicious software. Malware target

vulnerability in a computer or in a network and exploit it to infect the targeted

machine. This is done to use the computer or the entire network for several

malicious reasons and usually it takes months, in some cases, years to identify

that the network is infected. The taxonomy in which the malware are divided is

based on the techniques they employ to infect their target. The following table

presents the differences between types of malware present in the wild.

Type Description

Virus Viruses are passive in nature, they bind themselves to an existing

program and propagate by duplicating themselves but requires to

be copied to spread. They target benign executable files and

corrupt them by attaching themselves [23]

Trojan

Horse

Trojans act as a legitimate program and trick users to run it. Once

executed, trojans can create backdoors in the system for different

malicious reasons [24]

Worms A computer worm is a standalone and active piece of code, which

does not need a host program. It has the capability to replicate itself

CHAPTER 2

14

across the network automatically by targeting vulnerabilities [25]. It

continuously scans through the network for further propagation and

consumes a lot of resources while doing so [26]

Spyware Spyware do not necessarily harm the computer or network but they

hide and monitor activities of individual users or the entire network

[27]. They can be part of Trojans or worms and send the stolen

information to their server [28]

Bots It is derived from the word robot, with malicious intentions of forming

a bot network otherwise known as botnet. Botnet is a large network

of geographically dispersed computers working as bots or zombies,

controlled by a C&C (command and control) server also known as

botmaster [29]. Forming a botnet is just the foundation, which can

be used for DDOS and other large scale attacks [30]

Rootkit The rootkit is not a simple malware with replication capabilities, it is

a quite sophisticated software with multiple tools packed inside [31].

Once they have infected a computer or network, their embedded

tools play a vital role to not only hide its processes in legitimate

processes. It can escalate privileges of its processes without

alarming the security software [32]

Adware These are advertising support software designed to autonomously

deliver advertisements in the form of popups or within a webpage

[33]. A majority modern adware are used for revenue generation

and don’t require popping up because they work as a background

CHAPTER 2

15

process [34]. Adware authors also use them to transport spyware,

which can spy on browser behavior and online transactions [35]

Ransom

ware

In the past few years, this specific category of malware have caused

a lot of damage to many businesses, government services, and

individuals [36]. Once infected, the system or an entire network

along with its data can be locked and it will demand a ransom to

unlock the files [37]. Ransomware encrypt the files in a unique way,

which are not possible to decrypt using usually available techniques

[38]. It follows the replication techniques used by a worm to

proliferate its copies [39].

2.3 Malware Evolution

Since the first malicious piece of code was written, malware anatomy has evolved

significantly. This anatomy of malware is continuously evolving to avoid the latest

eradication techniques used by security organizations [20] [40] [41].

Unfortunately, the mainstream security mechanisms generally used do not match

the advanced evasion and infection techniques used by the modern and lethal

malware [42]. Every successful malware infection proves that the malware

authors and their techniques are at least one step ahead of the eradication

techniques used by their victims.

The sophisticated detection evasion techniques used by malware signifies that

the amount of time a malware stays undetected is directly proportional to the

destruction it causes to the infected machine or network [41]. The anatomy of

CHAPTER 2

16

latest malware reveals amalgamation of several evasion techniques, such as;

polymorphism, oligomorphism, and metamorphism [43]. The implementation of

such techniques benefits the malware authors in two different ways; it makes it

virtually impossible for a conventional antivirus to detect it, malware use these

techniques to generate their mutated copies for further propagation. Camouflage

and mutational techniques have two basic objectives; armoring and proliferating

the malware, these techniques are used by the malware authors for the past three

decades with continuous and rapid enhancements that can be perceived in the

analysis of recently discovered malware [44]. Such enhancements and lack of

timely detection and prevention of modern malware depict the scarcity in the

conventional defense techniques [45].

2.3.1 Malware Obfuscation

The conventional malware detection techniques identify a malicious piece of

executable mainly by matching its signature and heuristics with a set of stored

malicious signatures and heuristics. If a malicious piece of code is modified even

without changing the primary behavior, apparently it becomes a new malware.

The process of malware obfuscation doesn’t change the functionality of the

malware at all, it only changes the signature of that file. This type of change

makes the file a completely new entity for antiviruses [46].

There are many techniques that are collectively or individually used by the

malware authors to obfuscate their malicious pieces of code. The commonly used

techniques are discussed in the following sections.

CHAPTER 2

17

2.3.1.1 Encrypted Malware

Encrypting a file is the basic approach to change its physical appearance.

Encryption is also one of the pioneering techniques used to evade the detection

by avoiding signature matching and other similar techniques. An encrypted

malware is comprised of two parts; the encrypted malware and its decryptor. The

encrypted malware contains the main body of the malware and the decryptor is

assigned the task of decrypting the main body once the infected programs

executes. Usually, encrypted malware use simple XOR and the decryption is

performed with the encrypted code’s XOR [47]. Although, the simple encryption

was quite effective for evasion in the early days of obfuscated malware because

antiviruses only relied on pattern matching. Modern day malware authors

implement much complicated patterns for this process, which makes the

decryption for malware analysts nearly impossible. Techniques such as;

multilayer encryption, customized key generation, embedded message

encryption is quite significantly used in modern malware [40].

2.3.1.2 Oligomorphic Malware

The initial versions of encrypted malware were hard to detect but with

advancements in the security mechanisms the basic approach used by encrypted

malware was outdated. The oligomorphic malware were a newer generation of

encrypted malware, which used mutated decryptors to encrypt and decrypt the

main body of the malware [41]. A malware named Whale used one of the famous

implementation of this technique, it carried many decryptors while propagating in

a network and using a random decryptor for each instance of encryption and

decryption. Other implementations of such techniques were more lethal and

CHAPTER 2

18

employed techniques with dynamic generation of decryptors, which avoided the

need of carrying a large amount of decryptors while propagating making the

whole concept more efficient [48].

2.3.1.3 Polymorphic Malware

The weaknesses of slight consistency in the oligomorphic malware gave birth to

the new generation of malware known as polymorphic malware. Polymorphic

malware use different type of encryption each time while replicating itself across

the infected machine or network. They use mutation engine while replicating their

instances, which allows the code to be transformed without the logic being

changed [48]. While propagating in a network, polymorphic malware replicate

itself in an encrypted form with a key different than the previous one and the

decryption technique is embedded in the body. The polymorphic malware can

evade the detection to a certain extent using such techniques because only a

certain amount of decryptors can be generated with this technique [49].

2.3.1.4 Metamorphic Malware

The use of polymorphism in malware allows them to encrypt/decrypt using

different techniques but metamorphic malware do not decryption to unpack itself

in a constant body. Avoiding signature based detection of metamorphic malware

is much more convenient as compare to the previously discussed types of

malware, as they can evolve their code dynamically while moving from one

generation to another [49]. They also can embed their code into one or multiple

host programs making the malware nearly impossible to detect. Metamorphic

malware use a combination of different obfuscation techniques to evolve into a

newer generation, which is considerably dissimilar from its predecessor but

CHAPTER 2

19

possess the same behavior. Following are the techniques that are used by the

metamorphic malware [50].

A. Dead-Code Inclusion

Figure 2.1: Sample Code for Obfuscation

One of the simplest yet effective technique is including obfuscated or dead-code

in the main body of the malware to evolve from one generation to another. The

primary objective of this techniques is to make the evolved version of the code

significantly different from the original code, which makes it extremely difficult to

retrieve any operational hexadecimal search string [51]. These iterations in the

code are identified as obfuscated because they do not change the behavior of

the malware. The examples in Figure 2.1 and Figure 2.2 present the original and

the obfuscated code respectively. Figure 2.2 presents the obfuscated version of

the code, which uses the NOP command but the command doesn’t make any

difference to the code. This technique does obfuscate the code but it can be

easily rectified by an antivirus only by eliminating the dead commands before

performing the analysis.

CHAPTER 2

20

Figure 2.2: Dead-Code Inclusion (Original Code in Figure 2.1)

To make dead-code inclusion more resilient against detection Figure 2.3 present

an example, which obfuscates the code with impractical commands that are not

exactly dead and do flow control for the compiler but doesn’t necessarily make

any difference to the functionality. This technique is hard to eliminate by

conventional detection mechanisms because there are some practical

differences in the both samples of the code.

Figure 2.3: Inserting Impractical Commands

CHAPTER 2

21

B. Registers Swapping

Another technique used by metamorphic malware is registers swapping, which

was initially used by RegSwap malware in 1998. Malware using this technique

will evolve from one generation by using the same code but by switching CPU

registers [52]. This technique was initially useful for the malware authors but

there was a weakness. In a conventional signature scan wildcard strings can be

used to identify malware of newer generations with the signature of its

predecessors.

C. Subroutine Permutation

Original code of a malware can be obfuscated with the help of this technique. By

using subroutine permutation, a malware with n number of subroutines can

generate n! number of unique variations of itself [53]. This technique was used

by a malware Ghost, which had 10 subroutines and it had the ability to generate

3628800 unique variants of the original version but due to the persistent main

content of individual subroutine it can be detected by using search strings.

D. Replacing Instructions

This technique uses equivalent instructions to substitute original instruction or a

group of instruction. Instructions like XOR EAX, EA are equivalent to SUB EAX

EA, if replaced, there will not be any change in the functionality of the code but

they can generate a dissimilar hexadecimal instruction representation (opcode)

[52]. Further details of this technique can be found in [54]. Figure 2.4 presents

the sample code of Figure 2.1 with the application of substituting instructions.

CHAPTER 2

22

Figure 2.4: Substituting Instructions

E. Adding Jump Instructions

Another technique introduced to help the malicious code evolve dynamically from

one generation to another was adding jump instructions in the code. The famous

Windows 95 malware known as Zperm adopted this technique quite effectively.

It dynamically adds and removes jump instructions in the main body, all these

added instructions will point to a new instruction that will point to a new instruction

[54]. This allows the malware to avoid generating a constant main body, which

makes it extremely difficult for an antivirus to detect it. Figure 2.5 illustrates an

example of how Zperm added jump instructions in its code. In each iteration of

this malware, a new main body is generated that has no functionality difference

but the control flow in the code is completely different.

CHAPTER 2

23

Figure 2.5: Sample Code of Zperm using Jump Instructions

F. Mutating Host Code

Mutating the host software code is another lethal technique used by metamorphic

malware. This technique was pioneered by a malware known as Win95/Bistro

that evolved rapidly into newer generations after infecting the host but while

evolving and mutating its own code dynamically, it also evolved the host software

by mutating its main body in every iteration [55]. This make things more

complicated for security software to identify, random transformation of code was

used by the mutation engine to generate new variants for this malware.

Recovering the host software from this infection is nearly impossible as the

malware not only mutates the main body of the host, it also obfuscates host’s

entry point, which doesn’t allow the disinfection process to be completed [56].

Figure 2.6 presents a simple illustration of mutation and replication of a single

malware sample.

CHAPTER 2

24

Figure 2.6: Mutation and Replication of a Single Malicious Sample

G. Code Integration

Infection of a malware using host code mutation is hard to detect but impossible

to disinfect. Whereas, a more sophisticated and nearly impossible to detect

techniques is code integration, which was pioneered by Win95/Zmist. The

mutation engine of this malware has the ability to dissect an executable file into

individual sections, it then substitutes itself with small code blocks in each section

of the dissected executable and then rebuilds it [46]. This technique, if used

properly, can allow a malware to flawlessly integrate its malicious code in the

individual sections of the host executable, which is not only exceptionally hard to

disinfect, it is impossible to even detect such infection by only using conventional

detection techniques [56].

Apart from the obfuscation techniques used by modern malware to avoid

detection, malware use some additional techniques to evade the efforts to

understand their structure, characteristics and behaviour with the help of different

CHAPTER 2

25

types of analysis. Anti-debugging is one of the techniques used by malware to

avoid getting analysed. Figure 2.7 presents the anti-debugging APIs retrieved

after statically analysing a malicious file. The advance analysis techniques

discussed in the later section employ debugging tools to go through instructions

contained in a file to operate in a system. The anti-debugging technique is

implemented by using code checksums in runtime, decryption key generation

with help of interrupts, monitoring API routines in debugging, monitoring registry

keys. Many legitimate programs also use anti-debugging techniques in their code

to avoid piracy but a legitimate and illegitimate file using anti-debugging

techniques can be differentiated by comparing their implementations [57]. The

anti-debugging APIs used mostly by malware are listed below.

Figure 2.7: Anti-Debug APIs

Another most commonly used techniques by modern malware to avoid getting

analysed is anti-virtual machine. Behavioural analysis techniques used against

malware execute the malicious file in a virtualized environment to understand its

objectives [58]. Anti-virtual machine technique is used by malware to avoid

getting their objectives that could reveal their identity and variants identified.

These techniques get activated as soon as malware identifies that it’s been

executed in a virtual environment, which stops the file to be completely unpacked.

CHAPTER 2

26

2.4 Analysis of Malware

In the previous section, we discussed the evolution of malware over the period of

decades and how many malware pioneered different obfuscation techniques to

evade the detection mechanisms. In this section, we discuss different techniques

that are used to understand the behaviours, characteristics, and objectives of a

malware.

While analysing a malware it is pivotal to understand that one malware has a

family of variants that could be in millions and it is practically impossible to capture

and analyse each variant. The positive thing in this scenario is that the entire

family of variants of one malware might have the same behaviour but the

alarming thing is that each variant could have a separate objective while

operating in an infected network or individual computer. Another thing that should

be considered is that one malware can have various behaviours. Literature [59]

claims that a single malware executing a set of malicious commands over the

weekend can be replaced by a set of completely different commands that it

executes on Mondays. This behaviour is usually observed in malware variants

that specifically target enterprise networks and mainly perform their malicious

activities during the weekend when continuous network monitoring is not

possible. A similar approach is used by a malware, which goes in hibernation

mode during the office hours and activates during night time to perform all the

malicious tasks.

There are mainly two different types of analysis that can be performed on a

malware; one to understand the behaviour and the other one for identifying the

characteristics, they are known as dynamic and static analysis respectively. Both

CHAPTER 2

27

types have their own benefits and play a significant role in comprehensively

understanding a malware to detect it and prevent it from infecting and

propagating.

2.4.1 Static Analysis

Statically analysing a malware is the most common technique that is used to

understand its characteristics. Static analysis not only retrieves the basic

characteristics of a file, it can give a comprehensive report that contains quite

decisive information. As the name suggests, static analysis doesn’t require the

file to be executed and it only gathers the static information about the file [60].

There are several online and offline tools available that can be used to perform

static analysis, many highly effective open-source tools can also be used for

static analysis. Tools such as; VirusTotal [61], PEFrame [62], PEiD [63],

PEStudio [64], Mastiff [65], and Pyew [66] straightforwardly generate analysis

reports that can help to understand many simple yet decisive characteristics

about a file. Many of these tools have graphical user interface that allows new

analysts to grasp the idea of feature extraction. These malware analysis tools

provide fully automated analysis with a limited requirement of setting up a simple

laboratory, without the need of a high-performance computer. VirusTotal

eliminates the need of setting up even a simple laboratory by providing a web

platform for static analysis. This Google powered web platform uses a

comprehensive engine comprised of fifty-nine antiviruses and provides thorough

reports starting from basic string analysis to fully automated analysis. It also

provides an API that can be integrated with any supporting tool or even through

a command line. Static analysis is simple to perform and can provide a detailed

CHAPTER 2

28

report of the static features of a malicious or clean file without the need of an

isolated analysis environment, however, the behaviour of a file cannot be

understood by a static analysis.

A much advance level of static analysis is performed in the form of reverse

engineering, which uses disassembler to examine an executable’s complete

cycle of execution along with the embedded commands to understand the core

objectives of the malware [67]. It is essential to know about the targeted operating

system beforehand along with the system architecture, instruction sets, and

assembly language. Reverse engineering is usually performed with the help of

specialized tools, such as; OllyDbg [68], IDA [69], GDB [70], Immunity Debugger

[71], and WinDbg. These programs can generate CFG (Control Flow Graph) that

identifies the potential flow of the analysed executable. This not only helps to

identify the possible behaviour of the executable, it can quite effectively identify

the variants from one family of malware [55].

One of the obfuscation techniques known as instruction replacement, as

discussed above, can cause obscurity in a CFG if it is implemented in the

analysed executable. Additionally, malware that can dynamically change their

code as they propagate within a single computer cannot produce a consistent

CFG, which makes their overall behaviour hard to document.

2.4.2 Dynamic Analysis

Dynamic analysis is a much-detailed type of analysis and requires the file to be

executed. It not only retrieves the physical characteristics, it can also identify the

behaviour of a file. Unlike static analysis, dynamic analysis requires a sandbox,

CHAPTER 2

29

which is a controlled environment and doesn’t allow the malware to effect its

surrounding with its infection while it’s running [72]. Executing the malware in a

sandbox allows the analyst to understand how a malware infects, how it

propagates the infection, how it operates within a network or individual computer,

and what its objectives are. This gives a detailed information about a malicious

file and how it can be stopped.

Like static analysis, dynamic analysis also starts from a basic analysis and can

go up to a quite comprehensive level. The basic level of dynamic analysis has

the objective of identifying malware operations within a system [73]. This is

performed in a virtualized environment, which replicates the original system and

the original state of that environment is preserved. The malware is executed in

that environment and once it is executed, the original state of the machine is

compared with the new state to identify the changes made by the malware. This

process doesn’t give a detailed information about the malware as compared to

the advanced dynamic analysis techniques but it is quite helpful to eradicate the

infection of a malware from a system by identifying the changes it has made to a

clean system [74]. This not only help to remove malware infections, it also doesn’t

require the resources usually required by a detailed analysis. This level of

dynamic analysis is important like basic static analysis to gain the basic

understanding of a malware, which allows to stop a malware and its further

propagation.

Unlike the basic level of dynamic malware analysis, the advance level of dynamic

analysis comprises of tools based on multiple techniques. In this level of analysis,

each state of a malware while it’s running in a controlled environment is

CHAPTER 2

30

monitored closely, which includes the state of malware’s code. The advance

analysis is quite extensive, which is another reason that it runs in a controlled

environment that allows the analysts to monitor each and every aspect of its

functionalities and their implications on the system [75]. The detailed reports of

such analysis contains the aspects of external API calls, function calls, internal

and external network traffic, creation of new directories, alteration of existing

directories, unauthorised ports access, changes in registry, dropped files, and

state changes during the operational period [73]. This allows to understand the

primary objectives of a malware based on its interaction with the system files, and

entities within a network and outside the network. As discussed earlier, a single

malware typically has a huge family of variants and analysing the entire family of

variants that quite easily be in millions is practically impossible. This type of

analysis gives a detailed understanding of malware behaviour, which not only

allows to identify variants from the same family it also assists in formulating a

solution to bring down the entire family of variants. Automated tools running as a

web-service like Malwr [76] are quite useful and convenient for new and

experienced analysts, as they don’t require a sandboxed environment to be

developed for dynamic analysis and they quite quickly provide detailed reports

on many variants from a single malware family based on their behaviour [76].

2.5 Conventional Detection Techniques

In the modern era of computing malware infection is inevitable and so is the

presence of at least one security software on individual computers. The

discussion in the previous sections imply that avoiding a malware infection or

even detecting an infection and removing it is merely impossible and the

CHAPTER 2

31

detection techniques usually used cannot reach the level of stealth maliciousness

of modern malware [20]. However, the conventional detection techniques used

by antiviruses and other security software do protect the host systems against

malicious attacks to a certain extent. These techniques are effective against

previously known malware or the malware whose signatures and other apparent

features are available in the database of security software. Major security

software giants, such as; BitDefender, Symantec, Kaspersky, McAfee, etc. have

a wide range of security software for both businesses and individual users. These

software claim to provide a shield against modern malware and disinfect any

previous infection by returning the affected software to its previous and legitimate

state [77]. The techniques, which are used by these software are from a limited

pool of techniques that is shared by all the security service providers. Although,

many of these security service providers have some unique proprietary

techniques and different implementations of conventional techniques, which

makes them different from each other and distinguish their results but that doesn’t

raise the overall bar of malware detection rate.

Following section discusses the techniques that are most effectively used by

antiviruses and other security software for malware detection and prevention.

2.5.1 Signature-Based Malware Detection

Signature detection is one of the commonly used techniques in antiviruses and

other similar security software. It relies on sequences of specific byte codes that

are unique to every file whether it’s clean or malicious, these static footprints of

malware samples are used to detect similar files in the host machine or network

[78]. A small modification in the code can change the signature of the file,

CHAPTER 2

32

however, it can still be detected based on the separate and accumulated

signatures of individual sections of a file. The unique byte code sequences are

used as a representation for each sample and stored in the database of

antiviruses. If a file containing the similar signature is found in the host system

and or network by an antivirus then it is classified as malicious [79]. Similar

approach is used to identify clean files along with the authenticity of their

publishers’ certificate. Signature detection requires a comprehensive set of up to

date signature that are regularly updated considering the massive number of

malware captured every day. This gives rise to another problem that regularly

updating and storing a large number of signatures requires access to similar

amount network resources and storage space on the host machine. If the

antivirus’s signature database is not up-to-date with the latest signatures, which

is usually the case, then it will not be able to detect majority of new threats faced

by its users [77].

Lack of up-to-date signatures is not the only problem with this approach, as

discussed earlier, the detection evasion techniques used by modern malware can

dodge this technique by changing its source-code dynamically. The obfuscation

techniques used by malware with metamorphic behaviour that can change their

code dynamically as they propagate don’t leave a static footprint as move laterally

in a network or in a single machine. The signature of one of its sample is

completely different from another sample and it can cause ambiguity for analysts

and antiviruses. One of the approaches that can be taken is to target the mutation

engine of such malware and detect them through their mutation engine [75].

However, many of these malware randomly choose their mutation engines from

CHAPTER 2

33

a large pool of dynamically evolving engines, a mutation engine based detection

can add on the existing problem of large resource consumption by these

solutions.

2.5.2 Heuristics-Based Malware Detection

Heuristics detection is mainly used a supporting technique besides signature

detection to make the detection process quick and accurate. The term heuristics-

based detection doesn’t accurately define the process because the main

objective of this technique is to use defined algorithms to identify patterns of files

that match the already identified patterns of malicious files [45]. Malware

signatures are generated after a thorough static analysis, which also generate

several patterns from each sample that are collectively called heuristics. These

patterns are then incorporated with the signature database in antiviruses to

support the process of detection. This type of detection doesn’t necessarily use

the collective patterns from one malware sample to detect similar malware, it also

breaks down the patterns for detection [80].

Heuristics-based malware detection is based on static analysis, which makes it

quite quick. It also can find variants from the same family based on pattern

matching. As discussed above, the patterns generated after malware analysis,

they are broken down and used to identify similar features present in a different

file [81]. Unlike signature detection, heuristic detection is not static and

predefined, it improvises based on the environment it is operating, which makes

it hard for a malware to escape from it.

CHAPTER 2

34

The techniques used by modern malware avoid signature detection by

dynamically mutating themselves, which doesn’t leave any static footprint on the

system. With the help of heuristics generation a generic signature can be

produced, which can be used against many, if not all, variants of a single family

[82]. Although, there is a possibility of having several false positive with the

implementation of this technique.

Based on the above discussion heuristic detection play a vital role in combination

with signature detection to accurately detect malware but the reason why modern

malware are still able to evade this combination is the limited amount of

information that is used to generate the heuristics. A large majority of malicious

files hook themselves with the legitimate files and if analysed the generated

heuristics are a combination of patterns from clean and malicious files [80]. If

such heuristics are used to detect malicious files, the malware that corrupt a small

portion of legitimate files will be able to evade the detection. Consequently, if files

are classified as malicious based on the small amount of alleged maliciousness

then number of false-positive will significantly rise. Therefore, the combination of

patterns used to generate heuristics need to be enhanced significantly to make

more accurate decisions but this also means that more resources will be required

to run such techniques.

2.5.3 Behavioural-Based Malware Detection

Behavioural detection is a technique that can successfully penetrate the detection

evasion shield created by malware through obfuscation. It performs dynamic

analysis of files to perceive their activities and behaviours in different operating

environments, which are used to develop patterns to identify similar behavioural

CHAPTER 2

35

patterns in other executables. As mentioned above, behavioural detection is

based on dynamic analysis of executables that requires time and resources [59].

Although this technique can bypass the obfuscation techniques implemented by

malware, it requires a detailed ruleset that explains the normal behaviours of

executables in usual execution environments as compared to controlled or

sandboxed environments. Without defining such parameters, it is significantly

hard to identify a normal and an unsafe behaviour of an executable in a specific

environment.

2.6 Recent Research Advancements in Malware Detection

In the previous sections, we have discussed different techniques used by modern

malware to avoid getting detected by antiviruses and other security software, we

also discussed analysis techniques that are used to understand the

characteristics and behaviours of malicious executables. Additionally, we

presented a discussion on different conventional detection techniques that are

quite commonly used by security software to detect a malicious code, along with

the foundations of these detection techniques. In this section, we are going to

discuss different recent researches conducted that are relevant to our research

along with their benefits and weaknesses. Our work focusses on different static

analysis based heuristics extracted from a large sample of clean and malicious

files to define rules to differentiate between both types. These heuristics are then

used in conjunction with a combination of different machine learning algorithms.

We specifically discuss recently conducted researches in the same area.

Use of different types of features extracted through static analysis or other

methodologies has been proposed in several different studies [44], [24], [3], [83],

CHAPTER 2

36

[48], [49], [74]. Many studies have proposed customised rules based on different

features and heuristics from clean and malicious files [82], [81], [45], [86], [87],

[88]. Machine learning has also been applied on a small set of heuristics by some

studies to differentiate between clean and malicious files.

Using machine learning for the identification of malware has been proposed using

several different techniques by many researchers [84], [85], [22], [89], [90], [52],

[53]. Each of these studies have their own methodologies to approach the

problem of malware identification, by increasing the true positive, and reducing

the false positive rate. Majority of the research in malware detection is based on

windows-based malware and only focus on the detection of one type of malicious

code. However, more than 90% of the industrial environment is based on

windows, therefore, the threat of windows-based malware is significantly higher.

The conventional techniques of malware detection, also known as signature-

based detection used by antiviruses are still quite useful and it can flawlessly

detect a known malware. These techniques are not very helpful when there is an

attack from a new or unknown malware, which is why there is a huge gap in the

industry, despite several studies in this area.

One of the most relevant studies in this area were conducted by Kolter and Maloof

(hereon KM) [93]. They drew techniques from machine learning and data mining

and applied them on their collection. In their study, they used a common text

classification practice, n-grams, which tested the results of various classifiers on

malware detection. The techniques included in their research were; SVM,

decision trees, Naïve Bayes, and then applying boosting on each of the

CHAPTER 2

37

techniques [84] [93]. The KM approach used the AUC (Area under Curve) of an

ROC (Receiver Operating Characteristic) to evaluate the performance of their

classifier, which they tested based on the highest information gains n-grams

They treated the presence or absence of the specified n-gram as Boolean on

their classifier for boosted decision tree. As per their results, their model of

boosted decision tree was able accomplish the finest accuracy rate out of all,

achieving a 95% confidence interval AUC i.e. 0.9958 ± 0.0024. Boosting

significantly enhances the performance of weak or unstable classifiers by

decreasing their variance and bias but it can affect inversely on the stable

classifiers, KM approach claims to improve the stable classifiers through boosting

as well. The samples both benign and malicious used by them comprised of 1971

benign files and 1651 malicious files. The benign executables were retrieved from

Windows OS (XP, 2000), and other online resources. Whereas, the malicious

collection was obtained from MITRE Corporation and VX Heavens online

repository. The KM research also used their approach of static heuristics

technique for identifying payload functionality of malware. It identifies the

functionality without dynamically analysing malware, which is an efficient way

because it doesn’t utilize resources required for sandboxing and eliminates the

threats involved in dynamic analysis. They could identify payload functionality

with the help of reverse engineering analysis reports of a subset of their complete

collection. The KM approach showed promising results in two different directions;

malware detection and payload identification. However, there are some

weaknesses in this approach, considering the small sample size, missing 6 out

of 291 malicious files is a real game changer in real life detection. This means if

CHAPTER 2

38

the dataset is bigger, it can significantly increase the number of malicious files

missed in a scan, which should be the main concern while detecting malware.

Moreover, KM approach is not very effective for obfuscated malware and can

easily omit such malicious files during the detection process.

MaTR approach is another noteworthy contribution in this domain in which they

recreated the experimental environment of KM using same dataset and the same

formula presented in equation 1 to highlight their weaknesses. MaTR approach

used 31193 malicious and 25195 clean files in the initial experiment and

compared their results with KM approach, which showed improvements over KM

with the following mean and confidence intervals.

Figure 2.8: ROC Curves for KM n-gram Retest and MaTR [80]

The MaTR approach outperforms the KM approach and prove it by recreating the

KM experiments, as presented in Figure 2.8 and Table 2.1. MaTR system design

introduces an interesting approach by adding a human component in its system

as illustrated in Figure 2.9. The reason behind introducing a human component

is to give the system a capability of real-time detection [80]. This means that with

the help of a human operator continuously monitoring the system logs, decisions

CHAPTER 2

39

on legitimacy of the files can be made by looking at live anomalies occurring in

the network. The human operator in this case provides appropriate responses for

the type of malware rather than an automated and fixed response for all type of

malware.

Table 2.1: Mean AUC and Confidence Interval of KM and MaTR, c.f. [80]

Figure 2.9: MaTR System Flow Diagram, c.f. [80]

For the classification of malware, MaTR approach uses bagged decision tree

classifiers, which can enhance the performance of simple decision tree and make

the results more accurate. The MaTR approach heavily relies on the human

operator to take decision based on the detection results, which can be its main

CHAPTER 2

40

weakness. In the live environment, when a malware attacks a system or an

enterprise network an automated response is necessary because when it comes

to malware detection time is a key component. A malware can propagate and

replicate itself within minutes inside a network or in a single machine, which

means that an automated response is necessary [85]. In MaTR approach, the

parameter of response time and its affects are not mentioned. Additionally, the

classification methodology of MaTR claims a very high detection rate, however,

the performance on obfuscated malware is not present and it lacks the ability to

do so.

There are several different studies that have used machine learning in malware

detection by using different types of classifiers in their work. One of the studies

have applied Decision Tree, Random Forest, Bagging, and Adaboost on the

headers extracted from 32-bit PE files to differentiate between clean and

malicious files. One of the main problem with this technique is that it compares

the approach with antiviruses by highlighting its weaknesses but doesn’t cover

all the identified weaknesses. Additionally, the proposed approach in this study

does produce promising results but as initial hypothesis of this study focussed on

real-life implications, there is clear limitation of 32-bit PE files, new malware

samples, and resource consumption.

Techniques such as [22], do have the ability to identify a vast range of previously

unidentified malware by using a combination of static and dynamic malware

analysis but one of the main limitations that are not covered in this approach is

the amount of time needed to identify a malicious file in real-time, not to mention

the amount of resources required for such a thorough and resource intensive

CHAPTER 2

41

approach. This is a serious issue in malware detection, as the amount of time

taken to detect an infection is directly proportional to the amount of damage

caused by that infection.

Another relevant study [94] uses opcode generation through malware analysis

and implements quite efficient machine learning algorithms. The results of this

study are quite promising as well but one of the main weakness of this approach

is the limitation of type of malware it’s tested against. The collection of data used

in this research is comprised of unpacked disabled malware and malware

obfuscation is completely excluded, which raises the question about the benefits

of this approach. Generating opcodes through statically analysing malware to

train and test machine learning algorithms is an efficient approach but excluding

a whole family of malware, which dominates the taxonomy of all malware families

doesn’t justify the application of this study.

As mentioned earlier, there are many studies that claim to effectively differentiate

between clean and malicious files. Several of them use machine learning, fuzzy

logic, and other techniques on statically or dynamically extracted features from

both benign and malicious files. Nearly all of them target the vulnerabilities of

conventional malware detection techniques that are commercially available.

However, none of these studies present a solution that eliminates the generally

highlighted weaknesses of conventional methodologies. One of the main

weaknesses of antiviruses is the resource consumption of the host system while

running in scan mode, which is an addition to the frequently discussed weakness,

deficiency in detection rate. The studies claim to produce enhanced detection

rate, quite often, lack the discussion about the real-time performance of their

CHAPTER 2

42

approach, which includes the detection rate and more importantly the resources

of host machine consumed while running in scan mode.

2.7 Chapter Summary

In this chapter, several aspects of malware infection, detection, and analysis

relevant to our study have been discussed. Discussion starts with the evolution

of malware and how the detection and infection techniques used by malware

have enhanced in the past few decades. Numerous detection evasion techniques

that have been used by malware over the years along with the combination of

techniques that are currently used by modern malware to evade the detection

process are also part of the discussion. Discussion also targets different analysis

techniques that are used to analyse malware to extract their characteristics along

with their behaviours and objectives, which led to the malware detection

techniques that are generally used. Additionally, many conventional malware

detection techniques generally used individually or in a combination by different

antiviruses are discussed.

Later in the discussion, some recent research studies relevant to our work, which

used features and heuristics extracted from clean and malicious files through

static or dynamic analysis and later applied several different machine learning

algorithms to enhance malware detection rate. With the help of detailed analysis

of recent studies, we could identify the weaknesses still present in this domain,

which helped us to design and implement a comprehensive solution comprising

of an intelligent malware detection framework and its hosting model targeting

multiple dimensions of the identified problem.

CHAPTER 3

43

CHAPTER 3. AN INTELLIGENT MALWARE DETECTION FRAMEWORK

3.1 Introduction

A recent report claims that more than 7000 malware attacks are detected every

hour and this number is for the attacks that are only targeting mobile devices [15].

This number is exponentially higher if the domain is broader, such as; personal

computers, enterprise networks, web server, and other web enabled devices and

infrastructure [10]. Out of millions of malware collected each year, majority of

them are evolved versions of their predecessor [95], [96]. When a malware code

is released in public, many of these malware are combined with a mutation

engine, which allows other people with malicious intent to generate their version

of that specific malware, such engines don’t require a lot of programming or

technical knowledge for doing so [97]. Majority of modern malware are equipped

with automated mutation engines, allowing them to recurrently change their

appearance, location, and other apparent features dynamically [98]. Obfuscation

and replication techniques are used to change the apparent features of malware

dynamically to avoid getting detected by antiviruses and even if a single instance

of a malware is detected, multiple, yet very different, instances of the same

malware are generated making it nearly impossible for the security software or

the security analyst to detect it [99], [100].

Detecting a malware and preventing its infection or further propagation in a local

network and in the wild requires an understanding of the infection and

propagation techniques, which includes a comprehensive understanding of all

the apparent features of malicious files along with how they behave in an

CHAPTER 3

44

individual system or networked environment. The static and dynamic analysis of

malware generate apparent and behavioral features of malicious files

respectively, which allows the malware analysis and security experts to

understand the dynamics of different types of vulnerabilities and the malware that

exploit those vulnerabilities [91]. Both these analysis techniques are useful in

different scenarios but if the main purpose is to accurately and rapidly detect a

malware with minimum resource consumption, then static analysis is a better and

reliable choice given that the tool used for analysis has a comprehensive and in-

depth approach [101].

Analyzing a file statically doesn’t guarantee that it is going to be perfectly

identified as malicious or safe. Moreover, for a system to identify whether the file

is safe or malicious, it must first learn how to distinguish between the two types

by understanding the difference between their apparent features [101].

Integrating a combination of existing machine learning algorithms in the

framework that will not only allow the framework to be rigorously trained to identify

and differentiate between clean and malicious files, the comprehensive

parameters used in the learning processes will help the framework to efficiently

identify any unknown threats [92]. It is pivotal to use a rich set of features to train

the algorithms, which could be produced with the help of a static analysis tool

specifically customized to generate clean and comprehensive reports comprising

of extremely relevant features [86].

Large enterprise networks and even individual computers generate a large

amount of network and process logs, which are analyzed by security analysts

CHAPTER 3

45

and administrators to detect any malicious behavior. These logs and similar data

if analyzed properly can protect the system against many, if not every, type of

attacks. The main drawback in this scenario is the dependency on analysts,

which makes the whole process extremely slow and less reliable. Many

researchers and corporate sector entities are incorporating machine learning for

malware detection and to predict any future attacks with very high true positive

rate [102], [103], [104], [105]. Proposed framework incorporates an optimum

combination of machine learning algorithms that can efficiently detect a malicious

activity without consuming a lot of system resources.

The approach taken in this research is a combination of conventional and novel

techniques used for malware detection. This approach integrates the detection

techniques generally used by antiviruses with state-of-the-art machine learning

algorithms to develop a coherent framework that can be resilient and decisive

against modern malware. The framework implements machine learning

algorithms along with conventional detection techniques on a rich set of features

extracted from clean and malicious files. To extract features from multiple files

rapidly and accurately, an automated feature extraction tool was developed and

later integrated with some open-source classes to make it more comprehensive.

With the help of this static analysis based feature extraction tool a rich and diverse

set of features were extracted from individual files from both classes; benign and

malicious. The subsequent sections in this chapter present a thorough discussion

of the overall framework comprising of classification methodology along with the

analysis module that runs the feature extraction tool.

CHAPTER 3

46

The proposed framework is more appealing as compared to many similar

approaches for the following reasons:

• Although, dynamic analysis can retrieve a huge number of behavioral

characteristics from a malicious file but the implications of this type of

analysis include higher resource consumption along with analyst’s

involvement in the process. The comprehensiveness and automation in

static analysis techniques can generate a set of features that can be used

to identify a malware with much lesser resources.

• Real-time environment requires a detection mechanism with preemptive

behavior that can detect a malware without any supervision. A framework

that can learn from the heuristics of clean and malicious files and can

differentiate between the two, can identify a malicious file without an in-

depth analysis consuming time and other resources.

• The unique combination of multiple machine learning algorithm along with

a rigorous validation technique ensures an unbiased and accurate

prediction of threats.

• The comprehensive mechanism of classifying a file as malicious or safe,

verifies the authenticity of the system along with the generation of detailed

analysis reports, which are also used for real-time detection and

prevention of known and unknown threats.

• Not many systems with such features generate output which can further

be used for the enhancement of other systems or research objectives. The

analysis report generation in an appropriate and easy to understand

manner could facilitate the sharing of threat intelligence data on a larger

CHAPTER 3

47

scale, which can also enhance the overall ability of the proposed

framework.

In this chapter, we propose and evaluate an intelligent framework that can

accurately detect both known and unknown malware threats. The framework is

divided into two modules; first module uses an extensive tool which extracts the

features from files that are later used to identify a clean or malicious file, second

module use a unique combination of three different machine learning algorithms

to identify a threat. The first module, which analyzes the files and generate a

thorough report of their apparent features also can perform a basic classification

that is useful in the long run, especially in the real-time detection. Whereas, the

second module, which is defined as the classification module simultaneously

apply machine learning algorithms; SVM, decision trees, and boosting on the

extracted features to identify a malicious file. In the next section, we discuss the

analysis results of around one million malicious files to understand the anomaly

heuristics of such files.

3.2 Understanding the Anomalies

Before proposing and discussing the framework for detecting modern malware,

it is essential to understand the anomalies that highlight the difference between

the legitimate and malicious files. To develop a solution that accurately

differentiates between the two file types, the fundamental step is to make the

system learn about the features that make a file benign or malicious. As

discussed previously, there are millions of malware captured every year and even

though majority of them are just evolved versions of old and previously identified

CHAPTER 3

48

malware, they do have some unique characteristics that allow them to stealthily

penetrate a system or a network. Thoroughly analyzing a file statically can

produce a rich set of characteristics for both benign and malicious file types and

if both set of characteristics are compared, anomalies in the malicious set

become evident given that, relevant and significant characteristics are compared.

In this section, we discuss the features extracted through a thorough static

analysis and their significance in the process of threat identification.

To understand and identify the characteristics of malicious files, we gathered

many malware samples from various sources and analyzed them with PEframe,

which is an open-source static analysis tool. We analyzed nearly one million PE

files and generated a comprehensive set of quantifiable data. The details of test

bench for this analysis are presented in Table 3.1.

Table 3.1: Static Analysis Test Bench Details

Tool/Machine Details

Host Machine Intel Core i7 4790 CPU @ 3.60

GHz

RAM 16 GB, Hard Disk – 2 TB

Operating System Ubuntu 14.04 LTS, 64 bit

Static Analysis Tool PEframe with Python Scripts

Number of Samples 917705

CHAPTER 3

49

The analysis performed on around 917705 malware samples produced a

comprehensive set of data, which is pivotal for the methodology design. The main

idea behind analyzing many malware samples is to retrieve features along with

the conventional signatures, which can be used to differentiate between a benign

and malicious file. The data produced after the analysis comprised of a good

number of heuristics with some known and unknown anomalies. One of the major

characteristic seen in nearly every modern malware and its variant is that they

are packed and even if the basic behavioral characteristics are same, their

appearance might be different because of different packers used for packing.

With the help of this analysis, we retrieved the top 20 packers used by malware.

Figure 3.1 presents the most popular packers used by modern malware, which is

a very important attribute to consider. However, the most popular packers

amongst malware are legitimate and belong to either Microsoft or other popular

software providers that cannot be flagged as malicious just by identifying the

name but majorly malware tend to use older versions of legitimate packers. This

technique is specifically used to exploit a legitimate software, which is not

supported by its publishing organization anymore, such software are not usually

considered a threat by the antiviruses. Malware authors also use multiple packers

to pack one malware to deceive antiviruses with legitimate packer on top of a

packer originally used to pack the malware.

CHAPTER 3

50

Figure 3.1: Statistics of Packers used by Malware

Many malware authors use techniques to avoid analysts understand their

intentions by performing any type of analysis or reverse engineering on their

packed code, which are known as anti-debug technique carried out with the help

of APIs. Such techniques are also identified in the analysis, even though many

analysis tools are not able to go past this point but they can retrieve if there is

such technique used in an analyzed sample. The anti-debug technique is also

used by many legitimate software publishers to avoid any attempt of piracy

making it difficult to identify legitimate anti-debug and illegitimate anti-debug.

However, a thorough static analysis can return the legitimacy of the APIs that are

used by the analyzed file to implement anti-debug. Table 3.2 present the APIs

and suspicious APIs retrieved from the malicious files, which denotes that a

majority of these APIs are suspicious. This means that considering inclusion of

APIs in the feature set can be quite useful.

0

10

20

30

40

50

60

0

100000

200000

300000

400000

500000

600000

Pe
rc

en
ta

ge
 o

f T
ot

al
 S

am
pl

e

Packer Name

M
al

w
ar

e
Pa

ck
ed

Malware Packers Statistics

Malware Packed Percentage of Total Data

CHAPTER 3

51

Table 3.2: Anti-debug and Suspicious APIs

API Name Number of

Malware

Suspicious APIs

GetProcAddress 86000 GetProcAddress

Sleep 78000 Sleep

ExitProcess 76000 ExitProcess

CloseHandle 74500 CloseHandle

GetLastError 72301 GetLastError

WriteFile 69845 WriteFile

GetCurrentProcess 67458 GetCurrentProcess

GetModuleFileNameA 65472 GetModuleFileNameA

MultiByteToWideChar 63248 MultiByteToWideChar

GetCommandLineA 62147 GetCommandLineA

GetCurrentThreadid 61984 GetCurrentThreadid

WideCharToMultiByte 61547 WideCharToMultiByte

SetLastError 61471 SetLastError

FreeLibrary 61243 FreeLibrary

LoadLibraryA 61178 LoadLibraryA

GetCurrentProcessid 60521 GetCurrentProcessid

GetModuleHandleA 60341 GetModuleHandleA

CHAPTER 3

52

UnhandledExceptionF

ilter

60314 UnhandledExceptionF

ilter

TlsGetValue 60158 TlsGetValue

ReadFile 60014 ReadFile

The tool used for analysis has a database of suspicious API signatures, which

allows it to identify any API that falls under the category of being suspicious. All

the files analyzed in this experiment were malicious, therefore, the analysis tool

identified all the anti-debug APIs as suspicious. Even though legitimate files also

use anti-debug feature but their APIs are not identified as suspicious and this

specific feature can help identify a file as malicious.

Nearly all malware camouflage themselves to penetrate a network by using

names that seem legitimate and important to the user. The analysis showed that

many names used by modern malware to camouflage themselves recur quite

frequently as presented in the Figure 3.2. These recurring names are quite

relevant when trying to match and understand anomalies in a system or a

network.

CHAPTER 3

53

Figure 3.2: Commonly used Malware Names

Although, solely depending on these filenames is not a wise approach but it is

important to flag an executable with a name such as; dll.exe, books.exe,

music.exe, test.exe, etc. that are evidently suspicious. Another important aspect

is the multiple sections in a malicious file and their names, as shown in Figure

3.3, these names denote the type of functionality each section holds that can be

used to vaguely understand the motives of a malware.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of Malware

Common Malware Names

wizard.exe tsuloader.exe dll.exe setup.exe

minecraftdl.exe books.exe opensubtitles.exe music.exe

sfx.exe installer.exe host.exe taskhost.exe

musicvn.exe upload.exe utility.exe test.exe

finance.pdf.exe

CHAPTER 3

54

Figure 3.3: Mostly used Section Names in Malware

Malware these days are persistent in nature with long-term motives, after

infecting a network their focus is to maintain the access by trying to connect to a

command and control center, expand infection by importing more malicious data,

exporting important data. Consequently, scrutinizing any IP address, URL, or

email address retrieved from analysis can play a significant part in identifying a

malicious file and can also be used to match with the similar data retrieved from

newly analyzed files. Table 3.3 presents the top email addresses retrieved by

performing the analysis.

0

10000

20000

30000

40000

50000

60000

70000

80000

Number of Malware

Common Section Names in Malicious Files

.data .text .rdata .rsrc .reloc .ndata .dump .idata .tls DATA

CODE BSS .brdata UPX1 UPX0 .data1 .sync .drop .load

CHAPTER 3

55

Table 3.3: Top Email Addresses Retrieved during Analysis

Email Addresses

admin@mictosoft.com

info@microsott.com

support@gnail.com

claimnow@nationailottery.co.uk

admin@getwebcake.com

server@mitcsoftware.com

admin@rjlsoftware.com

accountrecovery@yontoo.com

sales@applee.com

iphone@aaple.com

account@yaah00.com

jdeb@autoscript.com

pop@harzing.com

sales@totusoft.com

sandy-cyf@163.com

sales@annazon.co.uk

returns@amazone.com

voucher@amazom.com

claim@iebay.com

CHAPTER 3

56

The anomalies extracted through static analysis from a large set of malware are

not significant when considered individually, however, if used collectively within

a framework, the accurate classification decisions can pivot on such anomalies.

3.3 Building Blocks Overview

In the previous section, we discussed the features extracted after a thorough

static analysis performed on a large set of malicious files. The discussion

presented in the previous section shows the significance of each features or

anomaly detected by the static analysis tool and how it can be used to

differentiate between a malicious and a clean file. In this section, we present an

overview of the building blocks used in the design and development of the

framework proposed in this chapter. The framework proposed later in this chapter

is based on two main modules; a) the analysis module and b) the classification

module. Both these modules have their own significance, which is based on the

uniqueness of the building blocks integrated to develop a comprehensive

framework for malware detection.

3.3.1 Analysis and Features

The approach proposed later in this study primarily relies on the features

extracted through static analysis. To extract the most relevant and pivotal

features from the comprehensive set of benign and malicious files, a python-

based automated analysis tool was developed that thoroughly analyzed the files

statically and retrieve a rich set of decisive features, which are stored in separate

files in a JSON format. These features are human readable and they are used

for training, testing, and detection purposes by the classification module. To make

CHAPTER 3

57

the static analysis and feature extraction tool more powerful and precise, some

of the classes from an existing open-source tool PEFrame were integrated with

the tool. After integration with open-source classes, the automated tool could

work as an independent module in the overall framework. This feature extraction

tool also integrates the private API of VirusTotal to endorse some of its many

extracted results from a trusted third-party. Figure 3.4 [106] presents the features

(without data) that are extracted after the analysis is performed on a single file.

Figure 3.4: Sample JSON File without Extracted Features

Along with the conventional signatures used by the antiviruses for malware

detection, this tool generates features that are not usually extracted by analysis

tools and not as well used for generally detecting a malicious file. This not only

makes this module unique, it also allows the classification module to use machine

CHAPTER 3

58

learning algorithms on a unique and more relevant feature-set making the

detection more accurate with much lesser probability of false positives.

We discussed the significance of packers and how malware authors use packers.

Our analysis module not only identifies that the file under analysis is packed, it

also identifies the name and version of the packer, along with using a third-party

API to check the legitimacy of that specific packer. Additionally, our analysis

module uses an updated list of packers generally used by malware [107] and the

list is updated automatically with the help of the API. It is also used to identify if

the analyzed malware is a variant of previously analyzed malware or belongs to

a similar family of malware. The list of packers is stored in the database, which

has a list of both malicious and legitimate packers updated frequently with every

analysis supported by external API.

Some of the analysis tools extract the suspected API that the malware might try

to access while executing. Similarly, our tool also extracts such APIs and to make

the detection more accurate, we store the detected APIs in our database divided

into clean APIs and malicious APIs. Therefore, when the analysis module

extracts the APIs from a file it can be checked whether it’s a malicious or non-

malicious file and if the local database doesn’t have any of the detected APIs the

external sources are requested for legitimacy of the detected APIs.

Like APIs, our analysis module also extracts all the IPs the analyzed file is

supposed to connect once it’s executed. Such IP addresses may belong to a set

of command and control servers controlling a botnet or something similarly

malicious. These extracted IP addresses are stored in the database with two

classes of IP addresses; clean and malicious, and then later matched whether

CHAPTER 3

59

the detected IP address is malicious or clean. The database is continuously

updated with every analysis.

The vital features from individual analysis are stored in the database and allows

the system to identify a variant of an existing or previously analyzed malware.

With the help of stored features, such as; hashes, packers, APIs, and IP

addresses, the analysis module identifies if the currently analyzed file is a variant

of previously analyzed malware.

As mentioned earlier, to endorse our results and initial classifications, we use

external API powered by VirusTotal. With the help of this API we can implement

the conventional detection techniques used by antiviruses by running the

samples against an external engine comprising of 57 antiviruses. This API

provides us with a verdict based on its own analysis, which plays a significant

role in identifying the malicious file.

3.3.2 Machine Learning

The features extracted through static analysis play a significant part in the

proposed framework. These features are then used to apply three different

machine learning techniques used in this framework. The features extracted from

PE files contain both malicious and clean features, which are divided into

corresponding fields. We then use SVM (Support Vector Machine), decision tree,

and boosting on decision tree to identify a malicious file.

3.3.2.1 SVM

Support vector machines, is a training algorithm which presents a decision

boundary by maximizing the margin amongst training patters. The algorithm

CHAPTER 3

60

presented by [108], has performed in an optimal fashion in many conventional

scenarios, along with some studies similar to ours [93], [80], [109]. SVM creates

a linear classifier, therefore, vector of weight 𝑤𝑤��⃗ is its concept description and a

threshold or an intercept, 𝑏𝑏. To make the problem linearly separable, a kernel

function is used by the SVMs for mapping training data into a higher-dimensioned

space. To set 𝑤𝑤��⃗ and 𝑏𝑏 that hyperplane’s margin is ideal, quadratic programming

is used, which means that distance to the closest examples of negative and

positive classes is maximum from the hyperplane. While running, if 〈𝑤𝑤��⃗ . �⃗�𝑥〉 − 𝑏𝑏 >

0, positive class is predicted and if vice versa negative class is selected by the

method. However, for larger set of problems, quadratic programming can be

complex and expensive, whereas, to train SVM efficiently, SMO (Sequential

Minimal Optimization) is a much better algorithm [110], it computes the

probability of positive and negative class during execution [111]. For

performance, we used implementation proposed in [111] for computing each

class’s probability and then we used positive class’s probability as the rating. We

used the following linear SVM formula to predict the positive classes:

𝑡𝑡(𝑥𝑥) = ∑ 𝜔𝜔𝑛𝑛 𝐾𝐾𝑁𝑁
𝑛𝑛=1 (𝑥𝑥, 𝑥𝑥𝑛𝑛) + 𝜔𝜔0 (1)

Where 𝑡𝑡(𝑥𝑥) is the class label, which is either +1 (malicious) or -1 (benign), n=1 to

N represent the sum of sample from 1 to N, 𝜔𝜔𝑛𝑛 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛) is the weight of SVM and

the kernel dot product and 𝜔𝜔0 is the bias.

3.3.2.2 Decision Tree

A decision tree is decision support mechanism with nodes that represent

attributes and the leaf nodes that represent the class labels. Branches of the tree

CHAPTER 3

61

that lead to children represent the values of the attribute. Values of the attributes

and those attributes of an instance are used by the performance element to

navigate in a tree starting from root and leading to leaves or an individual leaf. By

choosing the attribute that perfectly separates the training samples into their

appropriate classes, this is how a learning element generates a tree. Node,

branches, and children are created for the attribute and the value of the attribute,

the attribute is then eliminated from additional consideration, and the examples

are distributed to the relevant child node [112]. This process runs in a loop until

the same class examples are stored in a node and then class label is stored.

Many implementation of decision trees remove subtrees which are expected to

perform inaccurately on test samples, which avoids the overtraining of the whole

algorithm. We have used MATLAB decision tree implementation for training and

testing.

3.3.2.3 Boosting

Boosting is used for combining multiple classifiers to enhance the performance

as compare to individual classifiers [113]. It uses ensemble methods, which

significantly increase the overall performance, which has been tested and

endorsed by many studies [114], [115], [116], [117]. By repetitively learning from

a weighted dataset of a model, it creates a set of weighted models by assessing,

and revising the dataset based on the performance of the model. During

execution of the method, to predict the highest weight class, it uses a set of

models and their weights. We only applied boosting on decision tree

implementation, as our initial experiments didn’t show any significance of

CHAPTER 3

62

applying boosting on SVM. We used AdaBoost.M1 algorithm’s [113]

implementation in MATLAB to boost decision tree.

3.4 Proposed Framework Design

In the earlier section, we discussed the anomalies found when malware samples

were statically analyzed. These anomalies play a vital role when combined to

detect any previously known or unknown malware. However, relying on just these

file anomalies is not enough to accurately detect a malicious file or an attack. As

mentioned earlier, conventional detection techniques used by antiviruses are

also important, if not sufficient, to differentiate between a legitimate and

illegitimate file. If a framework is developed, which learns from the data retrieved

through static analysis and conventional detection mechanisms then it will be

able to accurately detect any malicious activity even if it was previously unknown.

Therefore, we propose an intelligent malware detection framework, which

integrates the mechanism of retrieving features and signatures through static

analysis with conventional detection techniques used by multiple antiviruses

along with three quite effective machine learning algorithms. This unique

combination not only makes the whole process more reliable, it will make the

detection mechanism more decisive and accurate.

CHAPTER 3

63

Clean Files

Malicious files

Repository

Prepare file Features
Extraction

Extracted
Features

Obfuscated
Parts

Analysis
Repository

Ten-Fold
Cross-

Validation

SVM

Decision
TreeAdaBoost.M1

Classification
Reports

Final
Verdict

Analysis Module

Classification Module

Figure 3.5: Proposed Framework Design [112]

Figure 3.5 presents the design of the proposed framework, which is comprised

of two main components supported by the repository containing the clean

malicious files. The analysis module performs static analysis of clean and

malicious files generating comprehensive reports, which are then used by the

classification module. The classification module uses machine learning

algorithms to intelligently differentiate between clean and malicious files [106].

3.4.1 The Analysis Module

The analysis module comprises of the feature extraction tool, which statically

analyzes portable executable files and generate a comprehensive set of

heuristics based on the algorithms that are discussed in the later section.

CHAPTER 3

64

3.4.1.1 Preparing a File

As illustrated in Figure 3.5 in the analysis module once the file is retrieved from

the repository it is prepared for the analysis, which is extremely important and

this technique is usually not present in other automated static analysis tools. The

malicious files that are caught from the wild apparently use multiple obfuscation

techniques, such techniques divert the analyst attention from the main file by

placing multiple non-malicious files with garbage data stored in a zipped folder,

which facilitates in generating ambiguous results if not removed. This, although,

looks like a trivial step, but it makes the analysis more efficient, reliable and avoid

any irrelevant analysis reports to be processed and stored in the database.

3.4.1.2 Extracting Features

The main function of this module is to perform a comprehensive static analysis

of individual files by using a specifically designed static analysis tool and extract

a rich set of features, which are stored in the respective JSON-based files.

Although, this is the main function of the analysis module and does perform a

comprehensive analysis but it doesn’t require a lot of resources for doing so. The

analysis is performed rapidly without the consumption of noticeable amount of

CPU resources.

Figure 3.6: Obfuscated Part in Extracted Features

CHAPTER 3

65

3.4.1.3 Removing Obfuscation

The features extracted after the comprehensive analysis contain a lot of

parameters along with the obfuscated parts embedded in the malicious file, which

makes it difficult for any analysis tool to identify the relevant features to classify

a file as malicious or clean. Additionally, if the obfuscated parts are present in the

feature set of a file then it will complicate the training of the entire classification

module. The analysis module, after extracting the features from a file, identifies

the obfuscation and removes it. Figure 3.6 presents the eradicated piece from

the analysis report containing the obfuscated part. After removing the obfuscated

parts, it reorganizes the contents of the JSON file to make it more

comprehensible and in a proper sequence for later use.

3.4.2 The Classification Module

The classification module is a combination of machine learning algorithms

applied on the large set of feature heuristics generated by the analysis module.

Following is the sequence of operation of the classification module.

3.4.2.1 File Retrieval

The classification module works based on how well the machine learning

algorithms are trained. The analysis reports of clean and malicious files

containing their feature heuristics are stored in the analysis repository. Each file

is retrieved and transferred to the classification part of the project.

3.4.2.2 Classification Techniques

This is the primary part of the classification module, which simultaneously runs

the machine learning algorithms to differentiate between clean and malicious

CHAPTER 3

66

files. The features presented earlier in Figure 3.4, are used to train support vector

machine, decision tree, and boosting. SVM and decision tree run simultaneously,

whereas, boosting is applied on decision tree to strengthen the weak classifiers.

The implementation of these techniques is defined in the later section.

3.4.2.3 Classification Module Final Verdict

The final verdict of the classification module is based on the outcome of the

machine learning algorithms. There are three algorithms using different

techniques for classification in this module, the consensus from these algorithms

generates the verdict, which is the final verdict of the entire framework. This

verdict decides that whether a file is clean or malicious.

3.5 Modelling the Analysis Module

This section presents the design and implementation details of the analysis

module. We will discuss the individual steps that are combined to form this

module and the algorithms on which each step is based. Table 3.4 presents the

notation used in the algorithms.

Table 3.4: Notations used in Algorithms

Notation Meaning

𝐹𝐹 Set of all files

𝑓𝑓 A single file

𝐹𝐹𝑀𝑀 Dataset containing all malware
samples

𝐹𝐹𝐶𝐶 Dataset containing all clean samples

𝐸𝐸𝐹𝐹𝑀𝑀 Dataset containing analysis reports of
all malware samples

𝐸𝐸𝐹𝐹𝐶𝐶 Dataset containing analysis reports of
all clean samples

CHAPTER 3

67

𝐸𝐸𝐹𝐹𝑐𝑐 Extracted features of a single clean file

𝐸𝐸𝐹𝐹 Extract features

𝑓𝑓𝑚𝑚 Single malicious file

𝑓𝑓𝑐𝑐 Single clean file

𝐸𝐸𝐹𝐹𝑚𝑚 Extracted features of a single
malicious file

𝑂𝑂𝑏𝑏𝐹𝐹𝑚𝑚 Obfuscated elements in extracted
features

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 Identified malicious features

𝑓𝑓𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑛𝑛 Identified clean features

𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 Database of malicious features

𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝐷𝐷𝐷𝐷 Database of clean features

𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) Hashes of a file �𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑆𝑆𝐻𝐻𝑆𝑆256, 𝑀𝑀𝑀𝑀5�

𝑓𝑓(𝐸𝐸𝑥𝑥𝑡𝑡𝑆𝑆𝐸𝐸𝐸𝐸) Function to call external API

𝐸𝐸𝑥𝑥𝐻𝐻𝑀𝑀𝐻𝐻ℎ𝑚𝑚𝑀𝑀𝑀𝑀 Hashes of malicious file pulled from
external API �𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑆𝑆𝐻𝐻𝑆𝑆256, 𝑀𝑀𝑀𝑀5�

𝑆𝑆𝐶𝐶𝑆𝑆𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) Hashes of individual sections in a file
�𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑀𝑀𝑀𝑀5�

𝐸𝐸𝐸𝐸(𝑓𝑓) IP addresses present in a file

𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑚𝑚𝑀𝑀𝑀𝑀 Malicious IP address pulled from
external API

𝐸𝐸𝑀𝑀𝑆𝑆𝑃𝑃(𝑓𝑓) Packer used by a file

𝐸𝐸𝑥𝑥𝐸𝐸𝑀𝑀𝑆𝑆𝑃𝑃𝑚𝑚𝑀𝑀𝑀𝑀 Packer used by malware endorsed by
external API

𝐸𝐸𝑥𝑥𝑆𝑆𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 Malicious API identified through
external API

𝑆𝑆𝐸𝐸𝐸𝐸(𝑓𝑓) APIs extracted from a file
�𝑆𝑆𝐶𝐶𝑡𝑡𝑑𝑑𝑏𝑏𝑑𝑑, 𝑆𝑆𝐶𝐶𝑡𝑡𝑖𝑖𝑉𝑉𝑀𝑀, 𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀�

𝑈𝑈𝑈𝑈𝑈𝑈(𝑓𝑓) URL extracted from a file

𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝑡𝑡 Compile time

𝑆𝑆𝐶𝐶𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 Anti-debug API

CHAPTER 3

68

𝑆𝑆𝐶𝐶𝑡𝑡𝑖𝑖𝑣𝑣𝑚𝑚 Anti-VM API

𝐸𝐸𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 Malicious URL identified through
external API

𝐸𝐸𝑥𝑥𝑡𝑡𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 External verdict

𝐹𝐹𝑖𝑖𝐶𝐶𝑀𝑀𝑀𝑀𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 Final verdict

The analysis module not only extracts features of individual files, it also provides

a verdict about the legitimacy of each file. The verdict provided by this module is

based on a thorough process involving an external verdict supported by the

private API of VirusTotal.com and an internal verdict based on a comprehensive

decision-making matrix, which is discussed later in this section. There are series

of different phases that complete this module and conclude the tasks that are

required from it. Every individual file goes through these phases before it is

classified as safe or malicious by this module.

Phase 1: File Retrieval and Feature Extraction

The whole process of analysis module starts with this phase where the module

pulls an individual file from the repository. The module is connected to a

repository that is divided into two separate sub-repositories; one for malicious

and one for clean files. The module runs simultaneously in two different

instances; one instance retrieves the malicious files 𝑓𝑓𝑚𝑚 from the malicious

repository 𝐹𝐹𝑀𝑀 and the other one retrieves the clean files 𝑓𝑓𝑐𝑐 from the clean

repository 𝐹𝐹𝐶𝐶 as described in Algorithm 1. After every individual file is retrieved,

a through static analysis is performed and a rich set of features are extracted.

The extracted features of an individual malicious or clean file 𝐸𝐸𝐹𝐹𝑚𝑚 and 𝐸𝐸𝐹𝐹𝑐𝑐

CHAPTER 3

69

respectively are stored in their respective repository 𝐸𝐸𝐹𝐹𝑀𝑀 and𝐸𝐸𝐹𝐹𝐶𝐶. The extracted

features of an individual file from any of the two classes contain; 𝐸𝐸𝐹𝐹 ⟵

�Hash, lib, IP, packer, secinfo, antidbg, antivm, API, URL�, which are stored as

individual JSON reports. Many of modern malware samples have include

obfuscated strings to avoid getting analyzed, if the analysis module finds any

obfuscated code or strings during analysis, it eliminates it and rearranges the

whole report for further phases.

Algorithm 1: Feature Extraction
Input: Malicious and Clean File 𝒇𝒇𝒎𝒎 and 𝒇𝒇𝒄𝒄 from 𝑭𝑭𝑴𝑴 and 𝑭𝑭𝑪𝑪

Output: Extracted Features of Malware and Clean files 𝑬𝑬𝑭𝑭𝒎𝒎

and 𝑬𝑬𝑭𝑭𝒄𝒄

Procedure: 𝑬𝑬𝑭𝑭𝒎𝒎 in 𝑬𝑬𝑭𝑭𝑴𝑴 && 𝑬𝑬𝑭𝑭𝒄𝒄 in 𝑬𝑬𝑭𝑭𝑪𝑪

do

 𝑬𝑬𝑭𝑭 of 𝒇𝒇 in 𝑭𝑭 where 𝑭𝑭 ⟵ {𝑭𝑭𝑴𝑴, 𝑭𝑭𝑪𝑪}

 𝑬𝑬𝑭𝑭 ⟵ �𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡, 𝐥𝐥𝐥𝐥𝐥𝐥, 𝐈𝐈𝐈𝐈, 𝐩𝐩𝐡𝐡𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩, 𝐡𝐡𝐩𝐩𝐩𝐩𝐥𝐥𝐢𝐢𝐢𝐢𝐢𝐢, 𝐡𝐡𝐢𝐢𝐚𝐚𝐥𝐥𝐝𝐝𝐥𝐥𝐝𝐝, 𝐡𝐡𝐢𝐢𝐚𝐚𝐥𝐥𝐯𝐯𝐯𝐯, 𝐀𝐀𝐈𝐈𝐈𝐈, 𝐔𝐔𝐔𝐔𝐔𝐔�

while

 𝑭𝑭 count > 0 && 𝑬𝑬𝑭𝑭𝒎𝒎 ∄ 𝑬𝑬𝑭𝑭𝑴𝑴 || 𝑬𝑬𝑭𝑭𝒄𝒄 ∄ 𝑬𝑬𝑭𝑭𝑪𝑪

// 𝑬𝑬𝑭𝑭𝒎𝒎 ∄ 𝑬𝑬𝑭𝑭𝑴𝑴 means there is no repition of extracted features

of a single file

if

𝑶𝑶𝑶𝑶𝑭𝑭𝒎𝒎 ∃ 𝑬𝑬𝑭𝑭𝒎𝒎

 then

 remove 𝑶𝑶𝑶𝑶𝑭𝑭𝒎𝒎

 return 𝑬𝑬𝑭𝑭𝒎𝒎

CHAPTER 3

70

Phase 2: Populating Database with Clean and Malicious Features

After the features are extracted and analysis reports are generated, the next step

is to identify the clean and malicious features in both the repositories. The

features are identified by two different techniques; through data already stored in

𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 containing a rich set of malicious features and with the help of external

API. The data already stored in the 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷was retrieved through a comprehensive

analysis of around one million malware samples. The functionalities of this phase

are also described in Algorithm 2.

As presented in Algorithm 2, after retrieving the analysis report of each file from

its respective repository, which contains the extracted features. The algorithm

matches the individual features by treating them as a separate entity. In this

specific phase, the module extracts the hashes 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) ⟵

{𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑆𝑆𝐻𝐻𝑆𝑆256, 𝑀𝑀𝑀𝑀5} from a single analysis report that is initially checked from

the local database. If the local database of malicious features does not contain

the 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) the request is sent to the external API, which returns the request by

either classifying it as true (malicious) or false (non-malicious). If the request is

returned with true then the 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) is stored in the 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 and the response is

sent to the next part of the module, which is responsible for the verdict. If the

request is returned with a false then the 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) is stored in the 𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝐷𝐷𝐷𝐷. The

next feature that is checked is ℎ(𝑓𝑓) ⟵ {𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑀𝑀𝑀𝑀5}, which is similarly matched

end procedure

CHAPTER 3

71

as the previous one as presented in the Algorithm 2. This process is continued

for three more features 𝐸𝐸𝑀𝑀𝑆𝑆𝑃𝑃(𝑓𝑓), 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇), where 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ⟵

�𝑆𝑆𝐶𝐶𝑡𝑡𝑑𝑑𝑏𝑏𝑑𝑑, 𝑆𝑆𝐶𝐶𝑡𝑡𝑖𝑖𝑉𝑉𝑀𝑀, 𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀�, and 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇). Each of these features are separately

matched with the local and external sources and the results if retrieved from the

external source are stored in the local database and forwarded to the next phase.

Algorithm 2: Populating Database of Clean and Malicious Features through

External API
Input: 𝑬𝑬𝑭𝑭𝒎𝒎 in 𝑬𝑬𝑭𝑭𝑴𝑴 && 𝑬𝑬𝑭𝑭𝒄𝒄 in 𝑬𝑬𝑭𝑭𝑪𝑪

Output: 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 in 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝒇𝒇𝒄𝒄𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄 in 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫

procedure: featureidentification(f)

pull 𝑬𝑬𝑭𝑭𝒎𝒎 in 𝑬𝑬𝑭𝑭𝑴𝑴 || 𝑬𝑬𝑭𝑭𝒄𝒄 in 𝑬𝑬𝑭𝑭𝑪𝑪

 return 𝑬𝑬𝑭𝑭𝒎𝒎 || 𝑬𝑬𝑭𝑭𝒄𝒄

Hash Matching

𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ⟵ {𝑺𝑺𝑯𝑯𝑨𝑨𝑺𝑺, 𝑺𝑺𝑯𝑯𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺, 𝑴𝑴𝑫𝑫𝑺𝑺}

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨)

 if

 𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎

 then

 𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫

 else

 𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫

 end if

return 𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇)

Section Matching

𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇)

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨)

 if

 𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎

 then

 𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫

 else

 𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫

return 𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇)

Packer Matching

 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇)

CHAPTER 3

72

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨)

 if

 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷𝒎𝒎𝒎𝒎𝒎𝒎

 then

 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫

 else

 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫

 end if

return 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇)

API Matching

𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ⟵ �𝑨𝑨𝒄𝒄𝑬𝑬𝒅𝒅𝑶𝑶𝒅𝒅, 𝑨𝑨𝒄𝒄𝑬𝑬𝒊𝒊𝑽𝑽𝑴𝑴, 𝑨𝑨𝑨𝑨𝑨𝑨𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎�

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨)

 if

 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎

 then

 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫

 else

 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫

 end if

return 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇)

URL Matching

𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇)

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨)

 if

 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑼𝑼𝑼𝑼𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎

 then

 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫

 else

 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫

 end if

return 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇)

IP Matching

𝑨𝑨𝑨𝑨(𝒇𝒇)

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨)

 if

 𝑨𝑨𝑨𝑨(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑨𝑨𝑨𝑨(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎

 then

 𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫

 else

 𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫

CHAPTER 3

73

 end if

return 𝑨𝑨𝑨𝑨(𝒇𝒇)

Phase 3: The Verdict

The verdict is the last phase of this module, which basically presents a decision

on a file that whether it is malicious or clean. The decision taken on the legitimacy

of a file goes through a rigorous mechanism before it is finalized. This final verdict

is based on two main conclusions; a) the external and b) the internal or final

verdict, both decisions follow some defined principles.

Phase 3.1: The External Verdict

The external conclusion is based on the report retrieved through the private API

of VirusTotal.com, which is the accumulated decision of 57 antiviruses but the

decision that is returned as a response from this external source isn’t always

100% positive or negative. Therefore, we further added constraints on the

response from the external source before adding it as a decision in this module.

According to our constraints, if the response coming back is positive more than

40% then the module considers it as a positive response, where positive means

malicious. If the response is less than 40% then the module considers it as a

negative response. The reason behind setting the threshold to 40% is that on

many instances antiviruses suffer with high false-positive rates because they

identify legitimate applications from unknown publishers as malicious and block

them causing inconvenience for the users. Consequently, not many antiviruses

make this mistake on similar type of files therefore there is a disagreement

CHAPTER 3

74

between antiviruses over such file types and to avoid high false-positive rate 40%

threshold level was decided.

Phase 3.2: The Internal Verdict

The internal verdict is more rigorous and deals with a larger number of

parameters based on which the legitimacy of each file is decided. The matrix

presented in Table 3.5 defines the idea behind the final decision-making process

of this module that is based on many elements present in the local 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 and

𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫. These elements that are primarily part of the analysis reports of

different files from both the categories are individually considered and

accumulated in different combinations to finalize the verdict. In 21 out of 33 cases

final verdict is contradicting with the external verdict, which means that the matrix

presented in Table 3.5 does not only rely on the outcome of 57 antiviruses and

consider the rest of parameters used by this decision-making mechanism equally

important. In the decision-making matrix, “T” (true) means that the file is malicious

and “F” (false) means that the file is safe. The matrix presented in Table 3.5 uses

a novel approach of detecting malware with rigorous heuristic matching.

Table 3.5: Decision Making Matrix for Analysis Module

Hash Lib IP Packer Section Anti_dbg Anti_vm API URL Ext_ver Inter_ver

Case

1

T T T T T T T T T T T

Case

2

F T T T T T T T T T T

Case

3

F F T T T T T T T T T

CHAPTER 3

75

Case

4

F F F T T T T T T T T

Case

5

F F F F T T T T T T T

Case

6

F F F F F T T T T T T

Case

7

F F F F F F T T T T T

Case

8

F F F F F F F T T T T

Case

9

F F F F F F F F T T T

Case

10

F F F F F F F F F T F

Case

11

F F F F F F F F F F F

Case

12

T F F F F F F F F F T

Case

13

T T F F F F F F F F T

Case

14

T T T F F F F F F F T

Case

15

T T T T F F F F F F T

Case

16

T T T T T F F F F F T

Case

17

T T T T T T F F F F T

Case

18

T T T T T T T F F F T

CHAPTER 3

76

Case

19

T T T T T T T T F F T

Case

20

T T T T T T T T T F T

Case

21

F F F F F F F T T F T

Case

22

F F F F F F T T T F T

Case

23

F F F F F T T T T F T

Case

24

F F F F T T T T T F T

Case

25

F F F T T T T T T F T

Case

26

F F T T T T T T T F T

Case

27

F T T T T T T T T F T

Case

28

F F F T F F F F F T F

Case

29

F F F T F T T F F T F

Case

30

F T F T T F F F F T F

Case

31

F T F T T T T F F F F

Case

32

F F T F F F F T T F T

Case

33

F F T F F F F F F F T

CHAPTER 3

77

3.6 Evaluating the Analysis Module

We initially evaluated the analysis module to separately identify its malware

detection capabilities. In this evaluation, we also compared the results of the

analysis module with the 57 antiviruses used by Virustotal.com by using the same

dataset for both. Separately evaluating the analysis module and comparing it with

conventional malware detection techniques will not only endorse the level of

competence of the proposed framework on the modular level, it will also highlight

the possible weaknesses that can be eliminated in the classification module.

3.6.1 Data Collection and Experiment Environment

The data for this research consisted of 150000 malicious files and 87000 benign

executables of Windows PE format. The benign executables were retrieved from

fresh installation of Windows 7, Windows 8, Windows 10, Windows Server 2008,

and Windows Server 2012. The malicious files present in the malware repository

were obtained from our industrial partner Nettitude, which was a combination of

different malware types. The distribution of both type of files is presented in Table

3.6.

Table 3.6: Distribution of Benign and Malicious Files

1 Benign 87000

2 Malicious 150000

CHAPTER 3

78

Figure 3.7: Malware Distribution in the Repository

The experiment environment was like the one discussed in the earlier part of this

chapter, also presented in Table 3.7, but this time instead of using a standard

static analysis tool, we tested the entire analysis module equipped with a

customized and fully automated analysis tool with decision-making mechanism.

The dataset was smaller than the one used in the initial experiment but it was

comprised of unique and more recent samples. The dataset used in this set of

experiments comprised of both malicious and clean files stored in their respective

repositories. Figure 3.7 presents types of malware used in the experiments and

their weightage in the dataset. The main idea behind this experiment was to

evaluate the level of accuracy of the analysis module while it differentiates

between clean and malicious files.

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%

Percentage

65.82%
22.67%

8.66%
1.21%

0.56%
0.41%
0.39%
0.28%

PERCENTAGE

M
AL

W
AR

E
TY

PE
S

MALWARE DISTRIBUTION

Spyware Exploit Dropper Virus Downloader Worm Adware Trojan

CHAPTER 3

79

Table 3.7: Test Bench Details

Tool/Machine Details

Host Machine Dell PowerEdge T630 Xeon E5-2609V4 1.7GHz 32GB

RAM 1TB HDD 5U Tower Server

Operating System Ubuntu 14.04 LTS, 64 bit

Static Analysis Tool Automated Analysis Module with feature identification

and decision-making mechanism

Total Number of

Samples

237000 (combined; benign + malicious)

3.6.2 Experiment Results and Analysis

The experiments performed by testing 237000 files against the analysis module

returned some remarkable results. The results achieved form this experiment

helped to evaluate two techniques by using a dataset of clean and malicious files.

The results show the effectiveness of the analysis module for detection of

malicious files, it also evaluates the effectiveness of conventional detection

techniques used by antiviruses. As discussed earlier, the results received from

the detection module are a combination of conventional detection techniques,

thorough static analysis, and a decision-making matrix. The experiments

performed, help to compare the results of both the techniques and identify the

difference between their overall performances. The results discussed in the

subsections are divided into two main categories; 1) the analysis module and 2)

CHAPTER 3

80

antiviruses, the results shown under the label of antiviruses present the average

reports of 57 antiviruses that are implemented by virustotal.com.

3.6.2.1 Understanding the Test on a Single File

This section discusses the analysis report of single files from both the categories.

We performed the analysis on both malicious and clean files simultaneously and

analysed the initial results to understand and evaluate the outcome and

performance of our approach. Table 3.8 and Table 3.9 present the analysis

report for individual malicious and clean files respectively, which explains the

parameters used and their significance in the decision-making process. Both

these tables show the 𝐸𝐸𝑥𝑥𝑡𝑡𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 and the rest of the parameters that are integrated

based on the rules defined in the decision-making matrix to formulate the

𝐸𝐸𝐶𝐶𝑡𝑡𝐶𝐶𝐼𝐼𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑. The report of a single malicious file has a combination of outcomes

present in green and red but the 𝐸𝐸𝐶𝐶𝑡𝑡𝐶𝐶𝐼𝐼𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 is malicious, which means that the

𝑈𝑈𝑈𝑈𝑈𝑈(𝑓𝑓) classified as malicious by the internal analysis based on the database of

malicious URLs is not present as a malicious URL in the database of external

source or not present in its database at all. This show the combination of both

the approaches and the difference it makes while deciding on the legitimacy of

each analysed file.

CHAPTER 3

81

Table 3.8: Analysis Report of a Single Malicious File

CHAPTER 3

82

Table 3.9: Analysis Report of a Clean File

CHAPTER 3

83

3.6.2.2 Comparing Malware Detection Performance of the Analysis Module and

Antiviruses

In this section, we thoroughly discuss and compare the performance of the

analysis module proposed and implemented in this study with the conventional

detection techniques from different aspects. The main objective was to design a

method that uses the conventional detection techniques and introduce additional

techniques that could enhance the overall detection rate. The comparison

presented in Figure 3.8 illustrate the significant difference between the detection

rate of the analysis module and the detection rate of antiviruses. The difference

of 23.7% between the two approaches highlights the proof of performance

enhancements in the analysis module, which detected 87.3% of the 150000

unique malware samples. This not just proves that the analysis module has a

higher detection rate as compared to the conventional techniques, it also makes

it more precise.

The evaluations are performed based on the following equations:

False Positive Rate (FPR): negative samples classified as positive.

FPR = FPTN
FP
+

Recall/ True Positive Rate: actual positive samples detected.

Recall = FNTP
TP
+

Precision/ Positive Predictive Value (PPV): actual positive samples for all the

positive detections.

CHAPTER 3

84

Precision/ PPV = FPTP
TP
+

Accuracy: a measure of the true detections.

Accuracy (ACC) = FNFPTNTP
TNTP

+++
+

Figure 3.8: Detection Rate Comparison between Analysis Module and

Antiviruses

Results presented in Figure 3.9 compare the difference between the two

approaches in terms of TP, TN, FP, and FN. The figure identifies that apart from

the true positive rate of both the approaches, the analysis module has higher

accuracy in identifying the benign files as non-malicious with a 6% higher rate.

The FP and FN comparison also shows a higher level of accuracy by the

proposed approach.

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%

Detection Rate

63.60%

87.30%

Detection Rate Comparison

Analysis Module Antiviruses

CHAPTER 3

85

Figure 3.9: TP, TN, FP, FN Comparison

Figure 3.10: Accuracy, Precision, and Recall Comparison of both Approaches

87.31

90.81

9.19

12.7

63.6

84.36

15.64

36.4

0 10 20 30 40 50 60 70 80 90 100

TP

TN

FP

FN

TP, TN, FP, FN Comparison

Antiviruses Analysis Module

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Analysis Module

Antiviruses

87.30%

63.60%

94.24%

87.50%

88.58%

71.22%

Comparing Accuracy, Precision, and Recall

Accuracy Precision Recall

CHAPTER 3

86

Figure 3.11: Comparison of Detection Rate with Respect to Malware Types

The comparison of results presented in Figure 3.8, Figure 3.9, Figure 3.10, and

Figure 3.11 illustrate the outcomes of both the approaches and identifies efficacy

of the analysis module. In Figure 3.11, we have presented detection rate with

respect to different malware types that were present in the repository. This

comparison presents an interesting set of numbers, which shows the

weaknesses of conventional techniques and strengths of our approach in specific

areas. The antiviruses result show that they perform comparatively well while

detecting some specific types of malware such as; spyware and worm. However,

the conventional approach didn’t perform well while detecting viruses,

downloader, and trojan. Trojans are in majority in our repository and in the wild,

however, antiviruses combined were only able to detect 59% of these files,

whereas, the analysis module detected 87% of trojans. This difference of 22% in

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Analysis Module

Antivurses

87%

59%

83.60%

72.47%

87.88%

76.69%

93.81%

55.37%

89.51%

65%

88.25%

66.18%

84%

52.31%

84.40%

62.08%

Comparison of Detecting Different Malware
Types

Spyware Exploit Dropper Virus Downloader Worm Adware Trojan

CHAPTER 3

87

detecting trojan is significant and demonstrate the strengths of the proposed

module.

As discussed earlier, the analysis module is combination of conventional

detection techniques and a decision-making matrix. The decision-making matrix

calculates the final verdict based on the parameters generated through

comprehensive static analysis and external API, which gives the verdict of 57

antiviruses. The difference in performance of commercial antiviruses and the

analysis module shows the effectiveness of the decision-making matrix. The

decision-making matrix has not only enhanced the overall detection rate, it has

also enhanced the level of accuracy in detecting different types of malware.

However, if the numbers in Figure 3.8, Figure 3.9, and Figure 3.10 are compared

and analysed, it is understandable that although the performance is much better

as compared to the conventional technique, the analysis module doesn’t have

the optimal output. The 9% and 12% false positive and negative are still quite

high if real world scenarios such as enterprise networks are considered. To lower

the numbers of false positives and negatives and further enhance the positive

detection, it is required to add a layer that could use a different type of scrutinizing

procedure.

3.7 Evaluating the Framework

Previous sections present the details of architecture and methodology of the

approach we have proposed in this research. In this section, we present the

observations of multiple experiments performed to evaluate the methodology

proposed. We performed four different experiments on a standard experimental

CHAPTER 3

88

design to help us evaluate the methodology from different aspects. In our first

experiments, we used a smaller dataset of both benign and malicious

executables and applied all the classification techniques. In the second

experiments, we used a larger dataset to apply the classification techniques to

monitor the enhancement in the detection rate. In the third experiment, we

introduced obfuscated malicious files that are previously unknown and make the

overall dataset much larger, which allowed us to observe the performance of the

classification techniques against a much difficult dataset. The fourth experiment

was performed on real-time data where we left the system running for more than

two months.

3.7.1 Experimental Design

To validate the classification techniques used in this framework and generate

unbiased classification reports, we implemented stratified ten-fold cross-

validation. The cross-validation technique assesses the predictive models by

distributing the dataset of samples into two sets; one for training and one for

testing. This technique is executed based on K-folds and the original sample is

divided into K size subsamples. Out of these K size subsets, one of the subset is

kept for testing and K-1 subsets are used for training purpose. The whole process

of cross-validation is reiterated K times to ensure that each of the subset is used

exactly once as a testing set. The results after the process are then accumulated

and averaged to calculate a final estimation. The main benefit of this technique

is that all the samples are used for both training and testing processes and each

of the sample is used for testing exactly once, which removes any chances of

biased calculation and validates the predictive model rigorously.

CHAPTER 3

89

To further evaluate the model, we used a formal analysis technique known as

ROC (Receiver Operating Characteristic) analysis [118], which presented the

true-positive rate of the model against the false positive rate.

CHAPTER 3

90

3.7.1.1 Small Dataset

Figure 3.12: ROC curves for malware classification from a small dataset

Table 3.10: Result of applying classification techniques on extracted features of

a smaller dataset

Method Area Under Curve (AUC)

Decision Tree 0.9708

SVM 0.9727

Boosting 0.9747

CHAPTER 3

91

3.7.1.2 Large Dataset

Figure 3.13: ROC Curves ROC curves for malware classification from a Large

Dataset

Table 3.11: Result of applying classification techniques on extracted features of

a large dataset

Method Area Under Curve (AUC)

Decision Tree 0.9775

SVM 0.9896

Boosting 0.9969

CHAPTER 3

92

3.7.1.3 Obfuscated Dataset

Figure 3.14: ROC curves for malware classification from Obfuscated Dataset

Table 3.12: Result of applying classification techniques on extracted features of

a obfuscated dataset

Method Area Under Curve (AUC)

Decision Tree 0.9740

SVM 0.9823

Boosting 0.9910

CHAPTER 3

93

3.7.1.4 Real-Time Detection

Figure 3.15: ROC curves for malware classification from Real-Time Detection

Table 3.13: Result of applying classification techniques on extracted features

from real-time detection

Method Area Under Curve (AUC)

Decision Tree AUC1 0.9765

SVM AUC 0.9892

Boosting AUC2 0.9963

CHAPTER 3

94

3.7.2 Discussion

We performed four different experiments to evaluate the performance of our

framework. The results presented in the previous section prove that the

classification methodology proposed in this chapter satisfy the initial hypothesis

of accurate malware detection. The first experiment tested the framework with a

smaller dataset to understand the effectiveness of the overall approach.

After extracting the features, all the parameters required to perform the

experiments were achieved. We separated a set of 500 files from each category

to conduct the initial experiment by starting with ten-fold cross-validation and then

applying classification techniques. The ROC curves of this experiment are

presented in Figure 3.12 and the areas under curves are presented in Table 3.10.

It can be observed from the table that applying boosting on Decision Tree

enhance the outcome. Decision tree achieved an AUC of 0.9708 while SVM and

boosting achieved 0.9727 and 0.9747 respectively. The experiment performed

on the small sample of clean and malicious files gave a satisfactory output

considering the learning samples were just 500, which shows that the

classification techniques proposed in this research have the potential to perform

much better if they are well trained with higher number of samples.

The results achieved from the experiments performed on the smaller dataset

were satisfactory, but not better than the similar experiments performed by [85],

[93], which achieved a better AUC as compare to our approach. However, the

reason our initial experiment lack better AUC was the scarcity in training and

testing dataset, which required a higher number of features for training. This was

proved in the second experiment performed on a large dataset.

CHAPTER 3

95

The results of second experiment presented in Figure 3.13 and Table 3.11 show

remarkable improvement over the previous experiment and comparing to [93],

[85]. SVM achieved a better rate than decision tree but the implementation of

boosting on decision tree significantly enhanced the performance by producing a

much higher detection rate. As discussed earlier, boosting can enhance the

performance of unstable classifiers by decreasing their variance and bias but it

can work inversely on stable classifiers [113], which is why we only applied

boosting on decision tree and not on SVM.

Our experimental results prove that the proposed methodology can scale in

performance on a larger set of files. The training and testing performed on larger

dataset was extremely rigorous because of the feature set and techniques used,

which also proved that modern obfuscated malware can also be identified with

accuracy, as illustrated in Figure 3.14 and Table 3.12, presenting the result of

applying techniques on obfuscated dataset. Evaluating classification

methodologies based on machine learning against obfuscated and mutated

dataset has not been performed by [93], [85] and many studies [109], [91], [90],

[119], [120], [102], [121]. This also shows the versatility of our approach and its

application on dealing with multiple security threats and can identify not just

known but it can also predict unknown threats accurately.

To evaluate the methodology against live threats, we left the entire system

running for more than four months. The main objective behind this experiment

was to evaluate the framework against live and unknown threats. The proposed

methodology showed extremely good results outperforming [93], in their similar

experiments of real-time detection of malware. The proposed framework

CHAPTER 3

96

achieved a highest of 0.9963 AUC from boosting, followed by 0.9892 and 0.9765

from SVM and decision tree respectively, as presented in Figure 3.15 and Table

3.13.

CHAPTER 4

97

CHAPTER 4. AN ENERGY EFFICIENT HOSTING MODEL FOR THE

MALWARE DETECTION FRAMEWORK

4.1 Introduction

In the current era of technology, securing an enterprise network or even an

individual computer against different types of advance malware attacks is

becoming extremely resource intensive [122]. If an enterprise is willing to spend

a lot of resources to acquire tools and licenses for sophisticated network

monitoring and protection then surely, they can enhance the level of security of

their organizational network but at the same time such tools require a serious

amount of resources, such as; dedicated servers, network bandwidth, continuous

log management, trained human resources, etc [122], [123]. Similarly, a common

user faces the similar type of threats on a smaller scale that are much difficult to

identify. Such users can only acquire a license or subscription for an antivirus to

protect personal data and other digital valuables against sophisticated attacks

[124].

When it comes to higher security performance versus resource efficiency, there

is always a tradeoff but the most important aspect of such scenario is how the

impact of that tradeoff can be minimized. In the previous chapter, we discussed

the malware detection capabilities of antiviruses and their effectiveness in the

case of a malware attack. Another thing that is pivotal in this scenario is the

impact of antiviruses on the host computers. Lack of malware detection

capabilities is not the only problem in antiviruses, while scanning the host

computers for malicious software these security software consume a significant

CHAPTER 4

98

amount of CPU resources of the host machines. Operating systems give priority

to antiviruses to perform their tasks and while doing so the OS is left with fewer

resources, which makes the system vulnerable against several different threats.

This means that not only the conventional security mechanism has a weak

scanning outcome, it also implies that while performing a scan the antivirus is

making the host system more vulnerable against several different threats.

The framework proposed in the previous chapter proves the initial hypothesis of

enhanced accuracy in malware detection but the framework only solves half of

the problem. To make the framework a complete solution that can replace

conventional detection tools and techniques a hosting model is required that can

cater the operational needs of the proposed framework. The primary objective

while designing the hosting model was to use an approach which is less resource

intensive and highly responsive, especially in a real-time scenario. The hosting

model should be able to distribute the resource intensive tasks in an efficient way

that would avoid burdening the host computer.

The approach discussed in this chapter is an amalgamation of different cloud-

based services. In this approach, we present a comprehensive cloud-based

architecture to host the intelligent malware detection framework discussed in the

previous chapter along with a lightweight client powered by a rich engine running

the malware detection framework. The client agent works as service, which

replicates some of the main services of the framework for independent malware

detection.

In the following sections of this chapter, we have evaluated conventional

antiviruses followed by the description of the building blocks used to design and

CHAPTER 4

99

implement the hosting model. After building blocks, design and implementation

of the hosting model is presented, which is followed by the deployment of the

malware detection framework on the hosting model. The next section presents a

thorough discussion on the performance evaluation of both aspects of the hosting

model, which is then compared by similar evaluation performed on conventional

antiviruses.

4.2 Evaluation of Conventional Antiviruses CPU Utilization

It is important to evaluate the performance of current security mechanisms,

specifically antiviruses, before presenting a solution. Majority of antiviruses

currently leading the industry are host based, which means that they perform their

signature generation, comparison, storage, and other resource intensive tasks

on the host machine. Even the antiviruses that claim to be cloud-based perform

some of the resource intensive tasks on the clients’ computers. We selected

eleven mostly used antiviruses and evaluated them against the repository of

clean and malicious files to identify their CPU utilization. The experiment lasted

for five hours, same dataset was used for all antiviruses evaluated, and

antiviruses were running on 11 separate computers [18].

CHAPTER 4

100

Figure 4.1: Evaluation Graph of 11 Antiviruses

0 10 20 30 40 50 60

Bitdefender

Kespersky

Webroot

Emsisoft

F-Secure

MalwareByte

Mcafee

TrendMicro

Panda

VoodooSoft

Norton

CPU Usage %

An
tiv

iru
se

s

Bitdefen
der

Kespersk
y Webroot Emsisoft F-Secure Malware

Byte Mcafee TrendMic
ro Panda VoodooS

oft Norton

5 33 48 21 36 24 24 33 34 25 23 41
4.5 32 47 22 37 23 24 33 35 27 26 42
4 32 45 22 36 23 22 32 36 25 24 42
3.5 28 45 25 38 24 26 32 34 26 24 43
3 29 46 21 39 20 25 35 34 26 23 41
2.5 31 48 21 40 21 24 33 36 25 25 41
2 28 45 19 37 22 25 34 35 29 25 44
1.5 26 44 21 36 21 23 37 36 27 23 42
1 30 46 23 38 23 27 36 35 29 24 43

Evaluating Antiviruses

5 4.5 4 3.5 3 2.5 2 1.5 1Number of Hours

CHAPTER 4

101

The graph presented in Figure 4.1 [18] illustrates the comparison of antiviruses

while running on scan mode continuously for five hours. The graph represents

the averages of CPU consumption recorded from all eleven machines every thirty

minutes. It is quite clear from the comparison that the antiviruses most commonly

used in industry and personal computers have one of the highest CPU

consumption in scan modes regardless of their malware detection statistics,

which are not impressive as well. Antiviruses such as McAfee, Norton,

Kaspersky, and Bitdefender have one of the highest CPU utilization average,

which means that while the scan is running the host computer is only left with half

the resources it originally has. The reason why the evaluation experiments lasted

for five hours was because we wanted to check whether the CPU utilization

decreases after the scan is continuously running but there was no noticeable

change recorded. The antiviruses that claim to rely on their cloud-based engines,

such as; Panda and Webroot, utilized more than 20% of the CPU in the scan

mode.

The evaluation of antiviruses based on the amount of CPU resources they utilize

reveals that low malware detection rate of antiviruses is not the only issue. The

framework proposed and discussed in the previous chapter requires a hosting

model that can overcome the issue of significantly high CPU utilization while

satisfying all the operational requirements of the framework including the real-

time operational requirements of the framework.

CHAPTER 4

102

4.3 Building Blocks Overview

As discussed in the earlier section, the approach proposed later in this chapter is

an amalgamation of different services of cloud infrastructure. We have used

different cloud services offered by Amazon to design a thorough and scalable

architecture to host the intelligent malware detection framework. Before

discussing the design and implementation details of the said architecture, it is

important to discuss the building blocks used in the proposed architecture. This

section presents an overview of the building blocks used in this architecture.

4.3.1 Amazon Web Services

In this section, we are going to discuss the cloud-based web services we have

used from Amazon in the proposed architecture. We have used multiple

instances of three different cloud-based web services and connected them to

design a cloud-based scalable network capable of hosting and executing

resource intensive tasks. Following is the description of services we have used:

4.3.1.1 SQS (Simple Queuing Service)

Amazon SQS is a purpose-built service for message queues, fully managed by

Amazon. It works flawlessly between different distributed applications and micro

servers. Amazon’s SQS has elastic capabilities that allow the queues to

dynamically scale up or down based on system’s overall requirements [125]. SQS

allows client application or software components to send, receive, and store

messages between multiple components without losing any messages or

needing other connected services to be consistently available throughout [126].

This queuing service transports messages with embedded jobs, allowing

CHAPTER 4

103

software components to trigger different functionalities through messages,

making a distributed system work as a single, well synchronized software

component. One of the main concerns in queue-based task processing is the

execution of duplicated messages [127]. SQS FIFO queues are specifically

designed and configured to ensure at-most-once message processing, with very

limited throughput and in the same order as delivered. We have used SQS to

implement the queuing mechanism in the architecture, explained in the later

section.

4.3.1.2 EC2 (Elastic Compute Cloud)

Amazon EC2 is a cloud-based service that offers dynamically resizable

computing space in the cloud. EC2 is a platform providing virtual dedicated-

server hosting that runs instances of virtual machines also known as AMIs

(Amazon Machine Images). Amazon offers a rich group of virtual machines

preconfigured for several different tasks, such as; Ubuntu desktop, Ubuntu

server, Windows server, etc. [127], [125]. Apart from the virtual machines, the

primary function of EC2 is the computing platform for the VMs. Amazon offers

hosting services with different sizes of computing and storage. The size of

storage and computing can be selected based on the requirements of the hosted

applications. The most beneficial aspect of EC2 is its elasticity, which allows the

specific compute plan to dynamically scale if required allowing the hosted

application to expand in size, network bandwidth, and computing power without

any hindrance [128]. It uses pay-as-you-go approach and cost the user only for

the time the service was up and running. Apart from the elasticity benefit, EC2 is

CHAPTER 4

104

extremely quick to setup and launch, it also offers facilities to implement fault

tolerant mechanism and applications that are resilient to failure [129], [127].

4.3.1.3 EFS (Elastic File System)

As the name suggests, EFS is a file system service with elastic features, which

offers simple and scalable file storage service. EFS is specifically designed to be

integrated with EC2 instances to work as a single cloud application [130]. EFS is

one of the most convenient file system in the cloud and can easily be mounted

with multiple cloud-based applications. If there is an application hosted on EC2

and EFS is mounted on that instance, it’ll offer a standard interface for file system

and access semantics for file system. This allows seamless integration of this file

system with existing tools and applications. Moreover, a single EFS can be linked

with multiple applications on EC2 instances or single application on multiple EC2

instances, allowing a common data source to cater the needs of distributed

applications [131]. The elastic file system can also be linked with the local

datacenter that are not linked with the cloud, which can also be used to

conveniently migrate large data sets to the cloud. The versatility of this service

allows it to be used for a broader domain range, such as; web applications, media

processing, enterprise applications and services, big data and analytics, data

storage, etc. [132].

4.4 The Hosting Model

The idea of developing a framework that implements multiple techniques to

detect malware and integrates their result to enhance the accuracy in detection

and consumes significantly less CPU and network resources while doing so, is

incomplete without a hosting model. The concept of energy efficiency is

CHAPTER 4

105

dependent on how the framework is hosted and the level of its scalability. This

section presents a cloud-based hosting model, which is not only able to host the

framework discussed in the previous chapter, it possesses a dynamic behavior

allowing it to scale itself in runtime without affecting the performance of hosted

framework. To design and configure the hosting model proposed in this section,

we have used Amazon’s cloud infrastructure along with its web services. Before

discussing the model, it is important to understand hosting requirements of the

malware detection framework.

The malware detection framework is comprised of three main modules that are

further divided into submodules and have their separate requirements when it

comes to hosting them. Following subsections define the individual requirements

of each module:

4.4.1 Repository

The first module in the framework is the repository, the repository is further

divided into three submodules; clean files repository, malicious files repository,

and the analysis repository. As the name suggest, all three of these submodules

store different type of files that are later used by other modules. As mentioned in

the previous chapter, the clean and malicious files repositories contain clean and

malicious files respectively, which are later analyzed. After regular intervals,

these sub-repositories are populated by a new batch of hundreds of thousands

of new clean and malicious files stored in their respective repositories. Moreover,

the analysis repository contains the analysis reports of every clean and malicious

file separately, with each batch of clean and malicious files stored in the

repository the same amount of analysis reports is stored in the analysis

CHAPTER 4

106

repository, once the analysis is performed. Therefore, to host such a mechanism,

a large and secure filesystem is required, however, these repositories not always

require a huge storage space. The storage is only required when the files are

present in the repository and once the analysis is performed on all stored files,

they are not required to be stored. Consequently, having a dedicated large

storage is not feasible for such mechanism and requires something that is

available on-demand with high reliability.

4.4.2 Analysis Module

Analysis module is the first line of defense while identifying a malware and runs

a customized tool, which retrieve files from repositories, prepares them to be

analyzed, extract rich set of features by performing analysis, and removes any

obfuscation present in the extracted features. Analysis module extract features

from both clean and malicious files simultaneously, therefore, two instances of

this module need to be operational concurrently. As discussed in the previous

chapter, the main detection process starts from this module, which means the

next module is dependent on the outcome of analysis module. Moreover, the

customized analysis tool running in this module also incorporates external APIs

to get endorsement on some of the results from external sources, which means

that there is a requirement of internet connectivity. Based on these requirements,

the analysis module requires dual instances of a similar server along with reliable

internet connection. It also requires flexible but reliable system resources, which

means that the CPU power and memory should be readily available for the

module but only when required. These resources are only required when the

analysis module is running and it only runs when there is a new batch of clean

CHAPTER 4

107

and malicious files in the repository or a single file identification is required.

Therefore, when the analysis module is running the requirements should be

fulfilled but when it’s not running the hosting platform should be intelligent enough

to manage the resources.

4.4.3 The Classification Module

The classification module is the final phase of the framework and it’s a

combination of different machine learning algorithms that are applied on the

analysis reports produced by the analysis module to enhance the level of

accuracy while identifying clean and malicious files. This module is linked with

the analysis module through the analysis repository, which is the submodule of

repository module. Moreover, the machine learning algorithms in the

classification module run simultaneously to produce the accurate malware and

benign file identification, which means that dedicated resources are required for

this module. As discussed in the previous chapter, this module as two aspects

while operational; first it uses the reports generated from the analysis of large

number of clean and malicious files to train and test the accuracy of algorithms,

and secondly it identifies the individual files analyzed separately. This whole

process with both the aspects is recursive and continuously repeats itself in

cycles. Therefore, like the analysis module, the classification module also

requires a hosting platform that is dynamically scalable, cost effective, fault

tolerant, easily coupled with the other modules.

The hosting requirements of three main modules of the intelligent malware

detection framework discussed above clearly highlight the primary needs, which

will make the framework seamlessly coherent and efficient in terms of

CHAPTER 4

108

performance. There are certain unique and some common requirements for each

of these modules, the most important things in these set of requirements is that

all these modules are required to work together as a single unit, two out of the

three main modules require internet connectivity, and the scalability of resources.

These main requirements, along with the other requirements discussed above

are specifically considered when designing the architecture of the hosting model.

4.4.4 System Architecture

This section presents the architecture of the hosting mechanism, specifically

design for the intelligent malware detection framework. It caters for the needs of

every individual module of the framework, identified and discussed in the

previous chapter and provide the most relevant and reliable mechanism. We

have used AWS (Amazon Web Services), the cloud platform of Amazon to design

the hosting mechanism. As discussed in the previous section, the framework

might require flexible storage and computing resources that can dynamically

scale up and down along with internet connectivity to connect with external APIs

used in the framework. Amazon provides cloud services that are extremely

relevant in this scenario and are convenient when it comes to scalability. Earlier

in this chapter, we discussed the building blocks that we have used to design the

hosting model, we now discuss how we have used those building blocks.

The three building blocks discussed earlier are combined to build this hosting

model. There are two phases in proposing this architecture; we first discuss the

design and implementation of this model, and in the second phase we deployed

the framework on the model designed. The model is based on a client/server

CHAPTER 4

109

architecture and in this scenario server is the primary component because only

this component hosts the framework.

4.4.4.1 Server

Figure 4.2 presents the high level of architecture of the hosting model, which

illustrate the components of Amazon’s cloud computing platform that are linked

together to host the complete framework. Each unique component of the cloud

platform is expected to host one or more components of the malware detection

framework. The three components of AWS; SQS, EC2, EFS host queues,

detection engine, and repositories respectively. The framework presented in the

previous chapter in Figure 3.5, supposedly doesn’t require any queues but to

implement the framework to be used and evaluated in real-time, it is required that

the framework should be able to receive requests and send responds to either

local or remote clients. To make the hosting model efficient in terms of

performance, we introduced queues to manage the large number of requests

coming from multiple client, allowing the hosting model to be scalable

dynamically. There are multiple queues presented in Figure 4.2 [106], which

illustrate the dynamic behavior of the hosting model. The first three queues from

Q1 to Qn are the request queues and R is the response Q, which makes the

overall queues four. However, if there is only one remote client connected to this

cloud-based framework then there are only two queues one for request and one

for response. The architecture is designed to be dynamically scalable and can

cater many clients without manually changing anything in the hosting model.

Therefore, if the number of clients trying to couple with the framework hosted on

CHAPTER 4

110

the cloud hosting model, the number of queues will dynamically increase based

on the number of requests sent by the clients.

Figure 4.2: High Level Architecture

The analysis and classification modules are hosted on Amazon’s EC2, which is

mentioned as the detection engine in Figure 4.2. The high-level architecture in

Figure 4.2, also presents multiple detection engines. Similar to the queues, for a

single client, one detection engine is enough and even if the single client is

continuously sending a large amount of requests that might exceed the

bandwidth quota initially allotted to the SQS and EC2, the initial bandwidth quota

will dynamically increase without any latency in the service and will subsequently

be reduced to the initial level when the number of requests will reduce. Similarly,

CHAPTER 4

111

if the number of clients increase significantly, the number of detection engines

will also increase dynamically.

There are three repositories in the framework; clean files repository, malicious

files repository, and analysis repository. All these repositories are held separately

in a single repository hosted on Amazon’s EFS. The elastic file system, as the

name suggests, can expand and contract as required based on the number of

files stored. The requirements of these repositories vary based on the number of

files stored and don’t always require huge storage capacity on the cloud-based

storage that why EFS is a perfect choice. Unlike, detection engine and queues,

repositories don’t require multiple instances if number of clients, or requests

increase even significantly. Repositories are used just to store and retrieve

clean/malicious files and their analysis reports and don’t require computation.

There are two different operational aspects of the intelligent malware detection

framework; in the first one, it uses a large sum clean and malicious files to

generate analysis reports and that are used to train and test the machine learning

algorithms, in the second one, a single file is sent to the framework to get

identified as clean or malicious. The hosting model accommodates both these

aspects by using a combination of different building blocks.

In the first aspect of the framework, as depicted in Figure 4.3, the analysis module

retrieves the clean and malicious files from the respective repositories and

generate analysis reports for every file analyzed. In this phase, there is a

requirement for the analysis module to be running on two active instances

simultaneously, allowing the module to process clean and malicious files in a

segregated environment with a much rapid pace. In this aspect, there are

CHAPTER 4

112

hundreds of thousands of files in each repository and to make the process

efficient, two active instances of this module are required. As discussed earlier,

Amazon’s EC2 is used to host the detection engine, which contain both analysis

and classification modules. However, the lower level architecture of the first

aspect in Figure 4.3 illustrate both the module separately to elaborate their

individual functionalities.

Figure 4.3: Low Level Architecture of First Aspect

EC2-based analysis modules for both clean and malicious files retrieve the files

from the respective repositories simultaneously to perform the thorough analysis.

Each of these instances of the analysis modules also seek help from a third-party

private API of Virustotal.com to get endorsement on some of its results. Once the

analysis is complete, the analysis report generated by the clean or malicious

analysis module is stored in the respective analysis repository. After all files in

CHAPTER 4

113

both repositories are analyzed, the classification module is triggered and uses

the extracted features in the analysis reports to train and test the machine

learning algorithms. Once the cycle of training and testing is complete, the

classification module becomes fully trained to be used in real-time malware

detection, details of which are discussed in the previous chapter.

Figure 4.4: Low Level Architecture of Second Aspect

In the second aspect of the framework, the main objective is to identify the

malicious software in the client. The lightweight agent running on the client’s

computer sends the suspicious file to the cloud-based server running the

framework. The request is received by the queue system hosted on SQS, which

organizes the messages from the clients on FIFO bases and send it to the

available detection engine. If there is only one detection engine running, then the

queuing system doesn’t need to prioritize. Once the message, which contains the

CHAPTER 4

114

suspicious file, is received by the detection engine. The file is first treated by the

analysis module as shown in Figure 4.4 where a thorough analysis is performed

and assisted by the external API and a preliminary decision is made and the

analysis report is submitted to the analysis repository, as discussed in the

previous chapter. If required, the control is then transferred to the classification

module that uses the machine learning algorithms fully trained in the first aspect

and classify the file as malicious or benign. Once the decision is made the

response is sent to the response queue, which sends it to the client. The request

message sent from the client contains unique client ID along with a unique

message ID, which is used by the response queues to identify the corresponding

client. These IDs are also used when the analysis report is submitted and

retrieved to and from the analysis repository.

Both these aspects discussed above are part of the same architectural setting,

the difference illustrated in Figure 4.3 and Figure 4.4 shows how the same cloud-

based components are used differently to fulfil the tasks required by two aspects

of the intelligent malware detection framework.

4.4.4.2 Client

Another module in this architecture is the client module that triggers the second

aspect of the framework. The client module in this architecture is a simple and

lightweight agent that works as a service in the client’s system. Unlike

conventional antiviruses, this lightweight agent is only comprised of four main

components; a browser extension, process monitor, local cache, and file scanner.

All four of these components work as a coherent unit and identify suspicious files

with the help of local cache, requiring quite small amount of CPU resources of

CHAPTER 4

115

the host system. The three components of this module; browser extension,

process monitor, and file scanner search for files. Local cache is populated with

the brief information of files, such as; signatures and basic heuristics, which are

already analyzed by the server in the first aspect. This brief information of clean

and malicious files helps the lightweight to decide about file’s legitimacy locally,

without sending the file to the server. Browser extension monitors any file user or

software is trying to download and checks in the local cache if it is a malicious or

benign file. If the file is present in the cache as malicious it is straightaway

blocked, if the file is not present in the local cache, it is sent to the server module

for further analysis and classification. Process monitor checks all the processes

currently active and match their IDs against the local cache of malicious files and

simultaneously sends it to the server for further verification. File scanner scan the

existing files and follow the same procedure of local identification and then server

identification. The main reason the client module is lightweight and doesn’t

require a lot of host machine CPU and storage resources is because it doesn’t

decompress or emulate the files locally and the signatures and heuristics are not

stored locally in a descriptive format.

4.5 Framework Deployment

In the previous section, we discussed the proposed architecture to host the

intelligent malware detection framework. In this section, we deploy the complete

framework on the proposed cloud architecture as discussed above and evaluate

CHAPTER 4

116

the overall performance.

Figure 4.5: Amazon Linux AMI

We chose Amazon Linux OS for the EC2 instance to host the analysis module

and classification module. Both clean and malicious analysis module along with

the classification module were hosted on different EC2 instances running the

same AMI as shown in the Figure 4.5.

Figure 4.6: Analysis and Classification Modules

As shown in Figure 4.6, both analysis modules and the classification module are

running on the EC2 AMIs. We launched the EFS and named it main repository,

CHAPTER 4

117

which is further divided into two three sub-repositories; clean file repository,

malicious file repository, and analysis repository. We then migrated our collection

of clean and malicious files to the EFS-based repositories with an accumulated

size of 623GB, as shown in Figure 4.7. In the next step, we set up the request

and response FIFO queues using SQS FIFO, both these queues are configured

to dynamically replicate if the overall requirement exceeds. The replication of the

queues is triggered by the number of requests increasing the threshold level.

Figure 4.8 depicts the deployment of the queues on AWS console.

Figure 4.7: EFS Repository

CHAPTER 4

118

Figure 4.8: Request Response Queues

Once all the components of the framework were deployed, we then mounted the

repositories with EC2 instances hosting the analysis and classification modules.

The repositories hosted on EFS integrate and operate with EC2 seamlessly and

work as a component of EC2, which means that after the mounting process is

completed there is no extra command or process needed to store or retrieve a

file to or from the repository. The elastic file system allows thousands of EC2

instances to be connected to a single EFS concurrently with file locking

mechanism. Therefore, if the EC2 instances are dynamically increasing, they will

be connected to the EFS based repositories, even if the number of EC2 instances

is in thousands.

Figure 4.9: XML Request Message

After mounting the EFS with the EC2, we connected the request and response

queues with the analysis and classification modules. The architecture uses FIFO

CHAPTER 4

119

queues for request and response, which plays a vital role to prioritize the queries

sent by the clients and also guarantees that the tasks of identifying a clean or

malicious file sent by the client is only processed exactly-once. As one of the

main objectives of this hosting architecture is energy efficiency, it is pivotal to

avoid processing duplicated messages. SQS FIFO queues have a built-in

feature, which ensures that all messages are delivered to the destination at least

once but once delivered, the duplicates of every message are removed. This

completes the server side connections complete and fully mounted, we now need

to connect the client(s) with the cloud-based server.

Figure 4.10: XML Response Message

Although the whole architecture is based on client-server approach, the main idea

is to make both the components coupled together in a way that all the distributed

modules work as a single component. We designed lightweight XML messages

which are sent by the client through the queues and because the queues are

connected to the analysis and classification modules, they automatically add a

header to each message defining which EC2 instance is going to receive the

CHAPTER 4

120

message, based on the availability of each running instance. The message

presented in Figure 4.9 is the request message sent by the queue to the analysis

engine. The message is in a hierarchical form showing nested child XML

elements, which contain another job. The jobs are processed as per the hierarchy

and the task type, which means that the first task in Figure 4.9 is for the analysis

module which takes the file AccessDatabaseEngine_x64.exe and analyzes it.

Once the analysis is performed the analysis report in JSON format is stored in

the analysis repository. Consequently, the same message is then forwarded to

the classification module because the job ID 2 has the classification task attached

triggering the control transfer from analysis to the classification module. When

the message is received by the classification module, the parent elements of the

XML message are ignored and only the child elements are processed. The

classification modules retrieve the analysis report of

AccessDatabaseEngine_x64.exe from the analysis repository, which is stored

with the name AccessDatabaseEngine_x64.JSON and runs it against the fully

trained classification algorithms. When the classification module has completed

the task, it sends the verdict in an XML based response message presented in

Figure 4.10, it contains three main things from sever; the status of the job, ID of

the message, and the verdict of both the modules. The status of the job shows

whether it was a success or a failure, the message ID is for the queue to identify

the sender and the order in which the message was processed, and the verdict

is either CLEAN or MALICIOUS based on the classification. Once the message

is received by the sending client, it looks for the message tag which contains the

CHAPTER 4

121

verdict and if the verdict is CLEAN the file can be used by the user and if it’s

malicious, the client module blocks and removes it from the system.

4.6 Performance Evaluation

The hosting model proposed in this chapter was successfully able to host the

intelligent malware detection framework and initial messages were sent and

received. This section evaluates the operational performance of the framework

while hosted on the cloud-based hosting model. As discussed earlier in this

chapter, there are two aspects of the hosting model, therefore, this section will

separately evaluate the first and the second aspect based on their operations.

4.6.1 The First Aspect

The first aspect of this hosting model is designed to support the training and

testing of the classification module which relies on the analysis reports generated

by the analysis module. Each cycle of this aspect retrieves the clean and

malicious files from the respective repositories and reports are stored in the

CHAPTER 4

122

analysis repositories, which are used by the classification module for training and

testing.

Figure 4.11: Analysis Module CPU Utilization - Clean

The start of this aspect of the hosting model revolves around analysis module

along with clean and malicious files repositories. In this evaluation, we performed

analysis of 100000 malicious and 75000 benign windows executables stored in

their respective repositories hosted on EFS. There were two cloned EC2

instances of analysis module running simultaneously, one for each class of files.

Analysis is thorough process involving feedback of external APIs and some of

the files that are bigger in size take more time to get analyzed. Figure 4.11 and

Figure 4.12 present the CPU utilization graph generated by Amazon EC2

monitoring tool, which represents the performance of clean and malicious

instances of analysis module. Cycles for both these modules lasted for about 24

hours and as presented in both these figures, the highest CPU consumption

during the clean and malicious file analysis was 19% and 23% respectively and

that only for a very short period. This clearly shows that the analysis module

CHAPTER 4

123

doesn’t require a lot of CPU resources while performing the most resource

intensive task. The multiple instances used for clean and malicious file analysis

manage the load, save time, and consume less CPU power simultaneously. Few

spikes shown in both Figure 4.11 and Figure 4.12 are caused by some

exceptionally large files present in both the repositories, which is in fact not a

usual occurrence in such scenarios. This shows that the hosting model and the

hosted framework have the potential to manage resource intensive tasks.

Figure 4.12: Analysis Module CPU Utilization – Malicious

In the first aspect, after the analysis is performed, the analysis repository is

populated with a large sum of analysis reports that used by the classification

module to train and test the classification algorithms. Figure 4.13 presents the

CPU utilization of the classification module during the process of training and

testing, it can be seen that the graph is not consistent and there are a few spikes

reaching up to 43.7%. It can be seen in Figure 4.13, that at the start of this

process the CPU consumption reaches its highest point and after some time it

drops. The highest point of CPU consumption show that the training and testing

CHAPTER 4

124

process is at its peak and the sudden drop show the interruption, which is caused

by the large amount of data extracted from a single file during analysis. The

classification module further cleans the files and prepare them for training and

testing.

Figure 4.13: Classification Module CPU Utilization

After individually evaluating both the modules against the operations of first

aspect, Figure 4.14 presents the comparison of both these modules in real-time.

The orange line in the graph is the analysis module and the blue line is the

classification module. The highest spike in the starting point of the orange line

suggests that the analysis has started randomly with the heaviest file utilizing

45% of the CPU and then it dropped to the regular files. The occasional spike in

this analysis module graph suggest the analysis of heavier files. The blue line

starts after the analysis module has finished analyzing all the files in the

repository and takes around 50% of the CPU power to start the training and

testing process and immediately comes down to 25% right before the

classification module is fully trained to identify clean and malicious files.

CHAPTER 4

125

Figure 4.14: Comparing Analysis & Classification Module CPU Utilization in

First Aspect

The first aspect of the hosting model is more resource intensive as compare to

the second aspect, which deals with the real-time detection. Even though the first

aspect hypothetically requires more CPU resources, it reached above 40% very

few time, based on the type of file it was analyzing. This shows that the first

aspect of this model, which is required to perform operations in real-time

environments is energy efficient. Additionally, the on-demand elasticity of EC2

provides an ideal hosting mechanism for this model.

4.6.2 The Second Aspect

The second aspect primarily performs real-time malware detection based on the

accomplished tasks of the first aspect. The main differences in the evaluation

environment between the two aspects are; presence of request and response

queues, requests from clients, single instance of analysis module, and

classification module with an additional task of providing verdict to the client

through the response queue.

CHAPTER 4

126

Figure 4.15: Analysis Module CPU Utilization

To evaluate the performance of the framework and the hosting model for second

aspect, a large amount of request messages was sent simultaneously to the

cloud-based framework. The request messages sent from multiple clients

contained the suspicious files required to be identified as clean or malicious by

the framework. We used 35 virtual machines running on physical machines, as

clients to continuously and simultaneously send request messages. These virtual

machines stored a combination of 93200 clean and malicious files. The main idea

behind sending these simultaneous request messages was not to evaluate the

malware identification accuracy of the framework, it was to evaluate how the

framework and the hosting model perform in a real-time environment while fully

trained and tested in the first aspect. Figure 4.15 presents the CPU utilization

graph of the analysis module while it processes the request messages. As

illustrated in Figure 4.15, the analysis module initially consumes around 19% of

the CPU but after a while drops to under 1% and then in the middle and at the

end it hikes up to 4% and 15% respectively. The reason it starts with a

CHAPTER 4

127

comparatively higher CPU utilization is that the files under analysis are newer

and don’t have any previous analysis history stored in the system, therefore, the

analysis module is thoroughly analyzing the files. However, as discussed earlier

in this thesis, majority of the modern malware are variants of old malware and

that’s why similar type of files don’t require a lot of processing while analyzing

such files, it consumes much lesser CPU resources. This is also the reason why

there are hikes in the middle and at the end of the graph.

Figure 4.16: Classification Module CPU Utilization

Unlike first aspect, in the second aspect the classification module doesn’t have

to wait for the analysis module to finish analyzing a large sum of files. The whole

framework in the second aspect works on the basis on individual requests, which

makes this framework even more energy efficient. Figure 4.16 presents the CPU

utilization percentage of the classification module while operating in the second

aspect. As illustrated in Figure 4.16, the classification module started with a

relatively higher CPU consumption but after a while drops to 1%. Over the period

of 6 hours it didn’t go above 5%, which happened because the classification

CHAPTER 4

128

module is already fully trained and the tasks needed to be accomplished by the

classification module in second aspect are not resource intensive.

Figure 4.17: Analysis & Classification Module CPU Utilization Second Aspect

For a thorough performance evaluation of the framework and the hosting model

in the second aspect we used the same approach of multiple clients with

continuous request but this time we left the system running for more than 24

hours. The objectives behind letting the system run for a longer span were to

identify overall CPU utilization from both the modules, how synchronously both

modules work, and how the system behaves while operating completely

unsupervised. The graph presented in Figure 4.17 illustrate the CPU utilization

comparison of both the modules, the blue and orange line represent classification

and analysis module respectively. It can be observed from the graph that the

analysis module is active in the start and after each request the control is

transferred to the classification module, therefore, classification module graph

fluctuate. Throughout the graph, there is a continuous fluctuation in both the lines

which shows how synchronously both modules are operating. Moreover,

throughout this runtime, neither of the modules utilized more than 2.5% of the

CHAPTER 4

129

CPU resources, which shows that the framework and the hosting model perform

significantly as the number of cycles per module increase. Additionally, another

important thing worth mentioning here is that the framework hosted on a third-

part cloud hosting model was running unsupervised for more than 24 hours,

throughout this period thousands of messages containing a wide variety of clean

and malicious files were sent from the clients. Many of the files sent from the

client were quite complex with embedded subdirectories that require separate

analysis, the sudden hikes in the graph represent the amount of additional

resources consumed while analyzing and classifying such files but despite such

scenarios the overall system remained stable and performed well.

Figure 4.18: Lightweight Agent Performance

The performance of all 35 clients running the lightweight local agent was quite

similar, Figure 4.18 presents the evaluation results of lightweight agents by

illustrating their CPU consumption and local detection rate. As discussed earlier,

Detection Ratio

0
10
20
30
40
50
60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0
10

16 20 20 24 29

41
47

55
60 60 60

7 7 5 5 5 5 5 5 4 4 4 3 3 3 3

LO
CA

L
DE

TE
CT

IO
N

 P
ER

CE
N

TA
GE

NUMBER OF CYCLES

Lightweight Agent Performance

Detection Ratio CPU Utilizaton

CHAPTER 4

130

it stores a brief cache of clean and malicious files, which facilitates local detection

without sending requests to the cloud-based framework. The lightweight agent is

evaluated based on the number of cycles, in each cycle the lightweight agent

sent random number of local files as individual messages to the server for

identification. It can be seen in the graph that the local detection rate in the first

three cycles is zero, which means that the local agent is sending all the files to

the server for identification and at the same time it utilizes 7% of the CPU. After

first three cycles, there is a sudden increase in local detection and the lightweight

local agent is able to identify 10% of the files locally reducing the CPU utilization

to 5%. As the framework starts to run in real-time the local cache of the lightweight

agent gets populated with the brief analysis features making it possible for the

local agent to differentiate between clean and malicious files independently.

Consequently, local detection percentage increase with each cycle reaching up

to 60% in the thirteenth cycle and dropping the CPU utilization to 3% while

continuously operational for 24 hours.

These evaluations not only show that the framework and the hosting model are

consistently energy efficient, it also shows that although the hosting model is

based on a client server architecture, however, the client can work independently

to some extent. This makes the system extremely resilient against targeted

attacks or scenarios where the client module gets disconnected with the cloud-

based framework. Additionally, the accumulated CPU utilization of all the

modules of second aspect of the hosting model, which runs the framework in real-

time, is much lesser than the CPU utilization of a majority of host base antiviruses

that are discussed earlier in this chapter. Such features make the proposed

CHAPTER 4

131

framework and its hosting model highly instrumental in both industrial and

research environments.

4.7 Discussion

The intelligent malware detection framework required a flexible hosting model in

terms of computational and storage resources. In the previous chapter, the

framework discussed, proved to be extremely accurate in identifying clean and

malicious files, it focused on the weaknesses initially identified in the similar

solutions available, specifically; antiviruses. The cloud-based hosted model

discussed in this chapter has the capability of hosting the intelligent malware

detection framework proposed, implemented, and discussed in the previous

chapter. At the same time, this hosting model was required to be energy efficient

in terms of consuming the CPU resources, unlike the antiviruses evaluated earlier

in this chapter. The hosting model proposed is based on the Amazon cloud

platform consuming messaging, compute, and storage services that were

combined to design this hosting model. The hosting model designed successfully

hosted the malware detection framework and produced quick requests and

responses.

One of the main objectives was to design and implement a hosting model that

can host the intelligent malware detection framework and at the same time be

energy efficient. The energy efficiency in this context means that wherever the

framework is hosted it should utilize minimum CPU resources possible. The

client-server based architecture, where the server is based on the Amazon’s

cloud and the client is a lightweight agent running on the host machine, did prove

to be energy efficient based on the evaluations performed. The first aspect of the

CHAPTER 4

132

hosting model which can be called the initial configuration of the whole system to

support the second aspect, consumed comparatively higher CPU resources as

compared to the second aspect. However, the high CPU consumption by both

analysis and classification module, which marked between 40 to 50%, was only

for a short period of time and only once in the twenty-four-hour span. Whereas,

the second aspect, which operates in a real-time environment showed concrete

evidence of energy efficiency on both, client and server sides of the model. When

left running for twenty-four hours, the analysis and classification module

consumed a maximum of 2.5% of CPU resources while stably operating in an

unsupervised environment. The client module also showed promising results by

starting with 7% CPU consumption and 0% local detection, which later reached

3% CPU consumption and 60% local detection in fifteen cycles of running in a

twenty-four-hour span.

CHAPTER 4

133

Figure 4.19: Comparing Hosted Framework with Antiviruses

In the final test, we compared the hosting model with antiviruses evaluated earlier

in this chapter by running them simultaneously against the same repository of

clean and malicious files, both the compared entities were left running for five

hours and an average was taken every thirty minutes. The purpose of this

evaluation was only to compare the CPU utilization of the proposed hosting

model against the major antiviruses in the market. We only compared the second

aspect of the hosting model because of its real-time application. The graph

presented in Figure 4.19 shows the average CPU utilization of eleven antiviruses

and the average of accumulated CPU utilization of client and server modules of

second aspect. It can be observed from the values illustrated in the Figure 4.19

that the average CPU utilization of antiviruses is between 30 and 35% continuous

for five hours. Whereas, the maximum combine CPU utilization of the second

0 5 10 15 20 25 30 35

Antiviruses

Second Aspect

CPU UTILIZATION PERCENTAGE

Comparing CPU Utilization of Antiviruses
and Second Aspect of Hosting Model

5 4.5 4 3.5 3 2.5 2 1.5 1

Number of Hours

CHAPTER 4

134

aspect is 5% and that too in the first hour. The proposed hosting model along

with the malware detection framework has shown significant efficiency in

managing the CPU consumption. In the first hour of evaluation, the proposed

system did reach a maximum of 5% CPU utilization but in the later hours

consumption dropped to 3%. The first two hours of evaluation the average

consumption was 5 and 3% respectively but the later three hours were

significantly more energy efficient and the overall average was 1.26%. However,

like the previous evaluation, there was no significant change in the CPU utilization

of antiviruses during the five hours of evaluation and the utilization fluctuated

between 30 and 32%.

The proposed hosting model proved to be extremely energy efficient, especially

when compared with the major antiviruses. Along with being energy efficient, this

hosting model is categorically quick in responding to the request messages from

the clients, if clients send the request and couldn’t differentiate between a clean

and malicious file locally.

Although, the hosting model has fulfilled the primary objectives behind its design,

there are some weaknesses that could be resolved to make the overall hosting

model industrial scale. The client module currently has limited functionality and

cannot scan the complete filesystem of a computer, we were able to identify the

files in a limited filesystem to evaluate the framework and the hosting model but

in an actual real-time environment, this lightweight client module wouldn’t be able

to identify the malicious files hidden deep in the filesystem of a computer.

Additionally, the current structure of the client module doesn’t allow it to be used

in a networked environment and only supports individual computers, we were

CHAPTER 4

135

able to run it on 35 separate machines but running on separate machines in a

network is not quite efficient. A better approach would be to make the client

module a lightweight network service that is supported by the cloud-based

framework, which has the capability of scanning ports and other exposed

vulnerabilities of a network or a single machine in a network.

CHAPTER 5

136

CHAPTER 5. CONCLUSION AND FUTURE WORK

The growing number of malware attacks on enterprise and general users, raises

concern over the presence of several security software to protect one system.

The financial damages caused by such attacks are continuously rising, recent

catastrophic attacks by Mirai, WannaCry, and Petya are few of many instances

where security software and organizations were penetrated by the techniques

used by these modern malware [7], [3], [5]. The present commercial antiviruses

are good in detecting known malware but when it comes to newly released

malware or a completely evolved version of previously known malware, the

conventional detection techniques used by antiviruses become obsolete. As the

information flow is increasing significantly, there is a need for better security

mechanisms that can accurately detect known and unknown malware and their

infection.

Additionally, another drawback of conventional antiviruses is the CPU resources

they consume while running in scan mode. The percentage of CPU resources

commercial antiviruses consume is significantly high, most of these antiviruses

consume 35 to 50% of CPU resources while scanning the host system for

infections [18]. Along with the scarcity in detection capability, this high resource

consumption makes the host system more vulnerable against advanced threats

by leaving the system with less resources for other high priority services.

Using machine learning techniques to identify malicious activity in a system or in

a network have proved to be quite effective [121], [120], [105], [93], [109]. The

framework proposed in this study approaches both the problems; a) accurately

CHAPTER 5

137

identifying malware, and b) energy efficiency. The intelligent malware detection

framework used machine learning techniques to enhance the malware detection

rate and a cloud-based hosting model to support the operational requirements of

the framework.

The framework is built around the heuristics generated by the analysis module

through a bespoke feature extracting tool, which extracts a comprehensive set of

features from a file through statically analysing it [106]. These heuristics are used

to train the machine learning algorithms for accurately differentiating between

clean and malicious files. We used decision trees, SVM, and then applied

boosting on decision trees to improve the performance of weak classifiers. The

analysis module can eliminate the obfuscated parts found in a malware to avoid

any inaccurate information in the generated heuristics [106].

We designed multiple experiments to test our proposed framework from different

perspectives. We tested our techniques against a dataset of malicious and clean

files and applied ten-fold cross-validation followed by above mentioned machine

learning algorithms for an unbiased set of experimental results. We used 150000

malicious and 87000 benign executables for training and testing.

SVM performed better than decision tree but applying boosting on decision tree

improved the performance by generating the best result of 0.9969 area under the

ROC curve. To evaluate the framework against much difficult dataset, we used a

dataset of obfuscated malware, using the training of previous experiment. In the

obfuscated experiment, boosting on decision tree generated 0.9910 area under

the ROC curve. This not only proves the better performance against a difficult

dataset of advanced malware, it also suggests that previous training was enough

CHAPTER 5

138

to detect a different set of malware making it close to real-time detection. The

real-time detection generated 0.9963 area under the ROC curve.

The performance of the framework was tested after deploying it on the hosting

model, which evaluated both; framework and the hosting model. In this

experiment, we initially evaluated the resource consumption of the framework

while doing a thorough analysis along with training and testing of the algorithms.

In this aspect, which was tested for 24 hours, there were two instances that the

resource consumption went 40% to 50% while performing the analysis and

training/testing of algorithms. Apart from this instance, the CPU utilization was

under 10%.

We evaluated the real-time performance of the framework and the hosting model.

In this evaluation, we tested the performance of the lightweight client agent along

with the server side of the hosting model and how it caters the requirements of

the framework. The fully trained and tested framework was left running for more

than 24 hours and 35 separate clients were recursively sending clean and

malicious files to be tested. The maximum combine CPU utilization of both

lightweight agent and server side of hosting model was 5% in the first hour which

later dropped to 3% in the next 3 hours and 1.26% in the rest of 20 hours of

evaluation, while running in scan mode. These results show significant

improvement as compared to the commercial antiviruses that on average

consume 32% while running in scan mode.

Finally, we evaluated the individual performance of the lightweight client agent to

identify local detection rate and CPU resource consumption of the host machine.

In the initial cycles, the lightweight client agent consumed 7% of CPU resources

CHAPTER 5

139

while sending all the files to the server for detection. After three cycles, the local

agent started detecting 10% of the malware locally while consuming 5% of the

CPU resources. After running it for fifteen cycles, this lightweight agent was

detecting 60% of the files locally while consuming merely 3% of the CPU

resources.

5.1 Limitation and Challenges

The proposed framework along with its hosting model not only presents

promising results with enhanced malware detection abilities, it has the potential

to provide an alternate platform for personal and enterprise level computer

security. However, there are certain limitations and challenges that are required

to be eradicated to make this framework ready to be adopted.

One of the fundamental things in this framework is the type of files it can analyse,

which was mentioned in the start of this research that the framework only

considers PE or .exe file format. This makes the framework limited to work for

Windows based environments only and unable to analyse or identify another

format of file. The intelligent malware detection framework relies on the heuristics

generated by the analysis module to train the machine learning algorithms.

Therefore, by making the analysis module to also identify and analyse non-PE

based files along with adding some heuristics in algorithms, will make the entire

framework capable of operating in broader domains.

Although, the framework can operate independently in real-time, which is also

discussed in the evaluation of the framework and hosting model, the entire

framework is not completely autonomous. The first aspect of the framework

CHAPTER 5

140

requires the algorithms to be trained and tested to make real-time detection

possible, however, this step is performed by manually storing large sets of clean

and malicious files in their respected repositories, which are later used to

generate heuristics. To make the system perform independently in long term

against modern malware, it requires constant update of heuristics, which can be

done by adding automated heuristics update from third-party APIs or honeypots.

The evaluation of the framework presents effective results in malware detection,

which can be enhanced by constantly updating several heuristics and patterns.

However, if previously unknown malware are successful in proliferating their

variants then understanding their behaviour is the key to identify and block their

entire network. This can be done by dynamically analysing malware, which is a

resource intensive tasks and currently replaced by static analysis in our

framework. A better approach will be to add a module in the hosting model that

can cater the needs of a sandbox environment for dynamic analysis. This

approach will be much energy efficient in terms of accommodating dynamic

analysis processes.

Another limitation specifically in the hosting model is that it can only cater

individual machines. This allow each client to be directly connected to the server

but at the same time in a networked environment it can be time consuming.

Lightweight client agent requires to be enhanced to work in a networked

environment autonomously.

CHAPTER 5

141

5.2 Future Work

The main objectives behind proposed framework were to overcome the problems

currently faced by the users of commercial antiviruses by enhancing the malware

detection rate and making the entire process less resource intensive. The

proposed framework satisfies all the requirements initially defined, however,

there are certain aspects that can be enhanced to make this framework suitable

for different environments.

The current framework is hosted on a client/server architecture where client is a

lightweight service and the server is hosted on a cloud-based hosting model.

Currently the cloud-based framework has the ability to be scaled to support a

large number of clients but the client module only support individual computers

separately. This can be enhanced in future to support large enterprise networks

with heterogeneous devices. This enhancement should only be successful if the

initial idea of energy efficiency is followed, which is possible with the help of

service replication [133]. The lightweight host agent can be replaced by a network

service that replicates the framework hosted on the cloud. The replicated services

will hypothetically consume similar resources as the current lightweight agent but

to make it more efficient, dynamic server allocation can be used [134]. This idea

is adopted from P2P botnets that change their domain dynamically after regular

intervals and each of these domains are not malicious servers [135], in fact, the

new domain is a legitimate network node making it extremely hard to stop [136].

The services of the entire framework can be replicated on dynamically allocated

nodes with the help of open-source service replication tool, such as; Zookeeper

that can replicate the services with limited resources [137] [138].

CHAPTER 5

142

As mentioned, the idea is to make the framework appropriate for the modern

enterprise networks with heterogeneous devices, such as; smart phones,

laptops, and other smart devices with a diverse set of operating environments.

By making the framework recognize and analyse different file formats, we will be

able to make it support a heterogeneous environment. The current hosting model

is capable of providing services for multiple large enterprise networks and it can

scale if required.

The current framework performs very well against obfuscated malware but as

discussed earlier malware are rapidly evolving, therefore, it is required to rapidly

evolve the malware detection mechanisms. One of the best solution is to make

the anomaly heuristics more elaborative by adding behavioural patterns of

malicious software, which can be achieved by dynamically analysing malware.

Third-party APIs can be used to perform the dynamic analysis on new and more

obfuscated malware samples to generate a much thorough set of heuristics [76].

This will make the framework more resilient against modern and more

complicated malware.

The future directions mentioned in this section are not only the aspects in which

the proposed framework can be enhanced. Different enhancements discussed

can open a new paradigm in security making it more open, resilient, and cross-

platform. One of the primary reasons malware are successful against security

systems is that they rely on open-source rather than proprietary. The diverse set

of heuristics generated through static and dynamic analysis, as suggested in this

section, can support security research community along with making malware

identification more efficient.

143

144

REFERENCES

[1] M. Coren, “Data is expected to double every two years for the next
decade,” Quartz, 30-Jul-2017. .

[2] S. R. Symantec, “What you need to know about the WannaCry
Ransomware,” Symantec Security Response, 23-May-2017. [Online].
Available: http://www.symantec.com/connect/blogs/what-you-need-
know-about-wannacry-ransomware. [Accessed: 31-Jul-2017].

[3] I. Sherr, “WannaCry ransomware: Everything you need to know,” CNET,
19-May-2017. [Online]. Available:
https://www.cnet.com/uk/news/wannacry-wannacrypt-uiwix-
ransomware-everything-you-need-to-know/. [Accessed: 31-Jul-2017].

[4] A. Ng, “Petya ransomware slams Windows PCs shut in massive attack,”
CNET, 27-Jun-2017. [Online]. Available:
https://www.cnet.com/uk/news/unprecedented-cyberattack-hits-
businesses-across-europe/. [Accessed: 31-Jul-2017].

[5] S. R. Symantec, “Petya ransomware outbreak: Here’s what you need to
know,” Symantec Security Response, 27-Jun-2017. [Online]. Available:
http://www.symantec.com/connect/blogs/petya-ransomware-outbreak-
here-s-what-you-need-know. [Accessed: 31-Jul-2017].

[6] J. Leyden, “Sh... IoT just got real: Mirai botnet attacks targeting multiple
ISPs,” 12-Feb-2016. [Online]. Available:
http://www.theregister.co.uk/2016/12/02/broadband_mirai_takedown_an
alysis/. [Accessed: 10-Dec-2016].

[7] P. Ducklin, “Deutsche Telekom outage: Mirai botnet goes double-rogue,”
Naked Security, 29-Nov-2016. .

[8] A. Ng, “Ransomware’s global epidemic is just getting started,” CNET, 28-
Jun-2017. [Online]. Available: https://www.cnet.com/uk/news/petya-
goldeneye-wannacry-ransomware-global-epidemic-just-started/.
[Accessed: 31-Jul-2017].

[9] L. H. Newman, “The Botnet That Broke the Internet Isn’t Going Away,”
WIRED, 12-Sep-2016. [Online]. Available:
https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/.
[Accessed: 31-Jul-2017].

[10] V. Harrison and J. Pagliery, “Nearly 1 million new malware threats
released every day,” CNNMoney, 14-Apr-2015. [Online]. Available:
http://money.cnn.com/2015/04/14/technology/security/cyber-attack-
hacks-security/index.html. [Accessed: 10-Dec-2016].

[11] I. Ponemon, “2015 Cost of Cyber Crime Study: Global,” Oct-2015.
[Online]. Available:
http://www.cnmeonline.com/myresources/hpe/docs/HPE_SIEM_Analyst

145

Report-_2015_Cost_of_Cyber_Crime_Study_-_Global.pdf.
[Accessed: 31-Jul-2017].

[12] T. Warren, J. Favole, S. Haber, and E. Hamilton, “Cybercrime Costs More
Than You Think,” Hamilton Place Strategies, 02-Feb-2016. .

[13] L. Zeltser, “4 Steps To Combat Malware Enterprise-Wide,” Jan-2011.
[Online]. Available: https://zeltser.com/malware-in-the-enterprise/.
[Accessed: 31-Jul-2017].

[14] C. Osborne, “Most companies take over six months to detect data
breaches,” ZDNet, 19-May-2015. [Online]. Available:
http://www.zdnet.com/article/businesses-take-over-six-months-to-detect-
data-breaches/. [Accessed: 31-Jul-2017].

[15] O. Ralph, “Malicious attacks account for bulk of data loss,” Financial
Times, 08-Mar-2016. [Online]. Available:
https://www.ft.com/content/7dec0636-e541-11e5-bc31-138df2ae9ee6.
[Accessed: 31-Jul-2017].

[16] H. Binsalleeh et al., “On the analysis of the Zeus botnet crimeware toolkit,”
in 2010 Eighth Annual International Conference on Privacy Security and
Trust (PST), 2010, pp. 31–38.

[17] D. S. Liles, ICCWS2014- 9th International Conference on Cyber Warfare
& Security: ICCWS 2014. Academic Conferences Limited, 2014.

[18] Q. K. A. Mirza, G. Mohi-Ud-Din, and I. Awan, “A Cloud-Based Energy
Efficient System for Enhancing the Detection and Prevention of Modern
Malware,” in 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA), 2016, pp. 754–761.

[19] H. Al-Mohannadi, Q. Mirza, A. Namanya, I. Awan, A. Cullen, and J. Disso,
“Cyber-Attack Modeling Analysis Techniques: An Overview,” in 2016
IEEE 4th International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW), 2016, pp. 69–76.

[20] M. Christodorescu and S. Jha, “Testing Malware Detectors,” in
Proceedings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, New York, NY, USA, 2004, pp. 34–44.

[21] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel Feature Extraction, Selection and Fusion for Effective Malware
Family Classification,” in Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, New York, NY, USA, 2016,
pp. 183–194.

[22] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “OPEM: A
Static-Dynamic Approach for Machine-Learning-Based Malware
Detection,” in International Joint Conference CISIS’12-ICEUTE´12-
SOCO´12 Special Sessions, Springer, Berlin, Heidelberg, 2013, pp. 271–
280.

[23] P. Szor, The Art of Computer Virus Research and Defense. Pearson
Education, 2005.

146

[24] F.-G. Deng, X.-H. Li, H.-Y. Zhou, and Z. Zhang, “Improving the security
of multiparty quantum secret sharing against Trojan horse attack,” Phys.
Rev. A, vol. 72, no. 4, p. 044302, Oct. 2005.

[25] P. K. Kerr, J. Rollins, and C. A. Theohary, The Stuxnet Computer Worm:
Harbinger of an Emerging Warfare Capability. Congressional Research
Service, 2010.

[26] A. Aziz, “Computer worm defense system and method,” US8006305 B2,
23-Aug-2011.

[27] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A Crawler-based
Study of Spyware in the Web.,” in NDSS, 2006, vol. 1, p. 2.

[28] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kemmerer, “Behavior-
based Spyware Detection,” 2006. [Online]. Available:
http://static.usenix.org/legacy/events/sec06/tech/full_papers/kirda/kirda_
html/. [Accessed: 31-Jul-2017].

[29] CISCO, “What Is the Difference: Viruses, Worms, Trojans, and Bots?,”
Cisco, 2010. [Online]. Available:
http://www.cisco.com/web/about/security/intelligence/virus-worm-
diffs.html. [Accessed: 02-Oct-2014].

[30] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command
and Control Channels in Network Traffic.,” in NDSS, 2008, vol. 8, pp. 1–
18.

[31] R. Riley, X. Jiang, and D. Xu, “Multi-aspect Profiling of Kernel Rootkit
Behavior,” in Proceedings of the 4th ACM European Conference on
Computer Systems, New York, NY, USA, 2009, pp. 47–60.

[32] S. Embleton, S. Sparks, and C. C. Zou, “SMM rootkit: a new breed of OS
independent malware,” Secur. Commun. Netw., vol. 6, no. 12, pp. 1590–
1605, Dec. 2013.

[33] E. Erturk, “A case study in open source software security and privacy:
Android adware,” in World Congress on Internet Security (WorldCIS-
2012), 2012, pp. 189–191.

[34] K. Kancherla, J. Donahue, and S. Mukkamala, “Packer identification
using Byte plot and Markov plot,” J. Comput. Virol. Hacking Tech., vol.
12, no. 2, pp. 101–111, May 2016.

[35] G. Mezzour, L. R. Carley, and K. M. Carley, “Longitudinal analysis of a
large corpus of cyber threat descriptions,” J. Comput. Virol. Hacking
Tech., vol. 12, no. 1, pp. 11–22, Feb. 2016.

[36] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting
the Gordian Knot: A Look Under the Hood of Ransomware Attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment,
2015, pp. 3–24.

147

[37] F. Mercaldo, V. Nardone, A. Santone, and C. A. Visaggio, “Ransomware
Steals Your Phone. Formal Methods Rescue It,” in Formal Techniques for
Distributed Objects, Components, and Systems, 2016, pp. 212–221.

[38] C. Everett, “Ransomware: to pay or not to pay?,” Comput. Fraud Secur.,
vol. 2016, no. 4, pp. 8–12, Apr. 2016.

[39] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock (and
Drop It): Stopping Ransomware Attacks on User Data,” in 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS),
2016, pp. 303–312.

[40] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J.
Nazario, “Automated Classification and Analysis of Internet Malware,” in
Recent Advances in Intrusion Detection, vol. 4637, C. Kruegel, R.
Lippmann, and A. Clark, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 178–197.

[41] M. Damshenas, A. Dehghantanha, and R. Mahmoud, “A survey on
malware propagation, analysis, and detection,” Int. J. Cyber-Secur. Digit.
Forensics IJCSDF, vol. 2, no. 4, pp. 10–29, 2013.

[42] R. McMillan, “Is Antivirus Software a Waste of Money?,” WIRED, 02-Mar-
2012. [Online]. Available: http://www.wired.com/2012/03/antivirus/.
[Accessed: 07-Jul-2015].

[43] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and
Classification: A Survey,” J. Inf. Secur., vol. 05, no. 02, pp. 56–64, 2014.

[44] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from
a survey towards an established taxonomy,” J. Comput. Virol., vol. 4, no.
3, pp. 251–266, Aug. 2008.

[45] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey on
heuristic malware detection techniques,” in The 5th Conference on
Information and Knowledge Technology, 2013, pp. 113–120.

[46] M. Schiffman, “A Brief History of Malware Obfuscation: Part 1 of 2,”
blogs@Cisco - Cisco Blogs, 15-Feb-2010. [Online]. Available:
http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation
_part_1_of_2/. [Accessed: 08-Sep-2014].

[47] I. You and K. Yim, “Malware Obfuscation Techniques: A Brief Survey,”
2010, pp. 297–300.

[48] A. Sharma and S. K. Sahay, “Evolution and detection of polymorphic and
metamorphic malwares: A survey,” ArXiv Prepr. ArXiv14067061, 2014.

[49] S. M. Sridhara and M. Stamp, “Metamorphic worm that carries its own
morphing engine,” J. Comput. Virol. Hacking Tech., vol. 9, no. 2, pp. 49–
58, May 2013.

[50] P. Szor, Metamorphic Virus: Analysis and Detection. Pearson Education,
2005.

148

[51] A. H. Toderici and M. Stamp, “Chi-squared distance and metamorphic
virus detection,” J. Comput. Virol. Hacking Tech., vol. 9, no. 1, pp. 1–14,
Feb. 2013.

[52] G. Shanmugam, R. M. Low, and M. Stamp, “Simple substitution distance
and metamorphic detection,” J. Comput. Virol. Hacking Tech., vol. 9, no.
3, pp. 159–170, Aug. 2013.

[53] P. Desai and M. Stamp, “A highly metamorphic virus generator,” Int. J.
Multimed. Intell. Secur., vol. 1, no. 4, pp. 402–427, Jan. 2010.

[54] S. Ibrahim and B. B. Rad, “Camouflage in Malware: from Encryption to
Metamorphism,” Aug. 2012.

[55] D. Bruschi, M. Lorenzo, and M. Monga, “Detecting self-mutating malware
using control-flow graph matching,” in Detection of Intrusions and
Malware & Vulnerability Assessment, vol. 4064, 2006, pp. 129–143.

[56] P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: The Hidden
Malware,” IEEE Secur. Priv., vol. 9, no. 5, pp. 41–47, Sep. 2011.

[57] M. N. Gagnon, S. Taylor, and A. K. Ghosh, “Software Protection through
Anti-Debugging,” IEEE Secur. Priv., vol. 5, no. 3, pp. 82–84, May 2007.

[58] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC, 2008. DSN 2008, 2008, pp.
177–186.

[59] G. Wagener, R. State, and A. Dulaunoy, “Malware behaviour analysis,” J.
Comput. Virol., vol. 4, no. 4, pp. 279–287, Nov. 2008.

[60] A. D. Schmidt et al., “Static Analysis of Executables for Collaborative
Malware Detection on Android,” in 2009 IEEE International Conference
on Communications, 2009, pp. 1–5.

[61] VirusTotal, “VirusTotal - Free Online Virus, Malware and URL Scanner,”
2016. [Online]. Available: https://www.virustotal.com/. [Accessed: 14-Jul-
2016].

[62] G. Amato, “guelfoweb/peframe,” GitHub, 2016. [Online]. Available:
https://github.com/guelfoweb/peframe. [Accessed: 29-Dec-2016].

[63] PEiD, “PEiD - aldeid,” 2007. [Online]. Available:
https://www.aldeid.com/wiki/PEiD. [Accessed: 13-Jul-2017].

[64] M. Williams, “Identifying malware with PEStudio,” 2015. [Online].
Available: https://betanews.com/2015/01/19/identifying-malware-with-
pestudio/. [Accessed: 13-Jul-2017].

[65] L. Zeltser, “SANS Digital Forensics and Incident Response Blog |
Automating Static Malware Analysis With MASTIFF | SANS Institute,”
2013. [Online]. Available: https://digital-
forensics.sans.org/blog/2013/05/07/mastiff-for-auto-static-malware-
analysis. [Accessed: 13-Jul-2017].

149

[66] Joxean, pyew: Official repository for Pyew. 2017.
[67] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic Reverse Engineering

of Malware Emulators,” in 2009 30th IEEE Symposium on Security and
Privacy, 2009, pp. 94–109.

[68] A. Yadav, “Reverse Engineering with OllyDbg,” InfoSec Resources, 01-
Nov-2013. [Online]. Available:
http://resources.infosecinstitute.com/reverse-engineering-ollydbg/.
[Accessed: 13-Jul-2017].

[69] A. Malik, “Reversing Basics - A Practical Approach Using IDA Pro |
www.SecurityXploded.com,” 2009. [Online]. Available:
http://securityxploded.com/reversing-basics-ida-pro.php. [Accessed: 13-
Jul-2017].

[70] A. Gilpin, “gdb Tutorial,” 2004. [Online]. Available:
https://www.cs.cmu.edu/~gilpin/tutorial/. [Accessed: 13-Jul-2017].

[71] Hydrasky, “Immunity Debugger – All things in moderation,” 2017. [Online].
Available: https://hydrasky.com/malware-analysis/immunity-debugger/.
[Accessed: 13-Jul-2017].

[72] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic Analysis of
Malicious Code,” J. Comput. Virol., vol. 2, no. 1, pp. 67–77, Aug. 2006.

[73] M. EGELE, THEODOOR SCHOLTE, ENGIN KIRDA, and
CHRISTOPHER KRUEGEL, “A Survey on Dynamic Malware Analysis
Techniques and Tools,” ACM Comput. Surv., vol. V, 2012.

[74] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based
malware detection using dynamic analysis,” J. Comput. Virol., vol. 7, no.
4, pp. 247–258, Nov. 2011.

[75] B. B. H. Kang and A. Srivastava, “Dynamic Malware Analysis,” in
Encyclopedia of Cryptography and Security, H. C. A. van Tilborg and S.
Jajodia, Eds. Springer US, 2011, pp. 367–368.

[76] honeynet, “Malwr.com: powered by Cuckoo | The Honeynet Project,”
2012. [Online]. Available: https://www.honeynet.org/node/808.
[Accessed: 13-Jul-2017].

[77] R. D. Cambridge, “Method and system for bi-directional updating of
antivirus database,” US7080000 B1, 18-Jul-2006.

[78] D. Venugopal and G. Hu, “Efficient Signature Based Malware Detection
on Mobile Devices,” Mobile Information Systems, 2008. [Online].
Available: https://www.hindawi.com/journals/misy/2008/712353/abs/.
[Accessed: 13-Jul-2017].

[79] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An intelligent PE-malware
detection system based on association mining,” J. Comput. Virol., vol. 4,
no. 4, pp. 323–334, Nov. 2008.

150

[80] T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers,
“Malware target recognition via static heuristics,” Comput. Secur., vol. 31,
no. 1, pp. 137–147, Feb. 2012.

[81] X. Wang and H. Xie, “Heuristic botnet detection,” US8555388 B1, 08-Oct-
2013.

[82] M. Spiegel, B. McCorkendale, and W. Sobel, “Heuristic detection and
termination of fast spreading network worm attacks,” US7159149 B2, 02-
Jan-2007.

[83] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of
malware based on integrated static and dynamic features,” J. Netw.
Comput. Appl., vol. 36, no. 2, pp. 646–656, Mar. 2013.

[84] J. Z. Kolter and M. A. Maloof, “Learning to Detect Malicious Executables
in the Wild,” in Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY,
USA, 2004, pp. 470–478.

[85] T. E. Dube, “A Novel Malware Target Recognition Architecture for
Enhanced Cyberspace Situation Awareness,” Air Force Institute of
Technology, Wright Patterson AFB, OH, USA, 2011.

[86] A. P. Namanya, Q. K. A. Mirza, H. Al-Mohannadi, I. U. Awan, and J. F. P.
Disso, “Detection of Malicious Portable Executables Using Evidence
Combinational Theory with Fuzzy Hashing,” in 2016 IEEE 4th
International Conference on Future Internet of Things and Cloud
(FiCloud), 2016, pp. 91–98.

[87] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features
model for malware detection,” J. Comput. Virol. Hacking Tech., vol. 12,
no. 2, pp. 59–67, May 2016.

[88] A. D. Keromytis and R. Di Pietro, Eds., Security and Privacy in
Communication Networks, vol. 106. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013.

[89] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho, “Analysis of Machine
learning Techniques Used in Behavior-Based Malware Detection,” in
2010 Second International Conference on Advances in Computing,
Control, and Telecommunication Technologies, 2010, pp. 201–203.

[90] D. Gavriluţ, M. Cimpoeşu, D. Anton, and L. Ciortuz, “Malware detection
using machine learning,” in 2009 International Multiconference on
Computer Science and Information Technology, 2009, pp. 735–741.

[91] R. J. Mangialardo and J. C. Duarte, “Integrating Static and Dynamic
Malware Analysis Using Machine Learning,” IEEE Lat. Am. Trans., vol.
13, no. 9, pp. 3080–3087, Sep. 2015.

[92] Z. A. Markel, “Machine Learning Based Malware Detection,” NAVAL
ACADEMY ANNAPOLIS MD, NAVAL ACADEMY ANNAPOLIS MD,
USNA-TSPR-440, May 2015.

151

[93] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify Malicious
Executables in the Wild,” J. Mach. Learn. Res., vol. 7, no. Dec, pp. 2721–
2744, 2006.

[94] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Inf. Sci., vol. 231, pp. 64–82, May 2013.

[95] T. H. Titonis, N. R. Manohar-Alers, and C. J. Wysopal, “Automated
behavioral and static analysis using an instrumented sandbox and
machine learning classification for mobile security,” US9672355 B2, 06-
Jun-2017.

[96] Y. Li, X. D. Tan, and K. Xiao, “Systems and methods for detecting
malware variants,” US8806641 B1, 12-Aug-2014.

[97] P. Natani and D. Vidyarthi, “An Overview of Detection Techniques for
Metamorphic Malware,” in Intelligent Computing, Networking, and
Informatics, Springer, New Delhi, 2014, pp. 637–643.

[98] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, “A Survey of Stealth
Malware Attacks, Mitigation Measures, and Steps Toward Autonomous
Open World Solutions,” IEEE Commun. Surv. Tutor., vol. 19, no. 2, pp.
1145–1172, Secondquarter 2017.

[99] J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao, “Replacement Attacks:
Automatically Impeding Behavior-Based Malware Specifications,” in
Applied Cryptography and Network Security, 2015, pp. 497–517.

[100] J. Fraley, “Improved Detection for Advanced Polymorphic Malware,”
CEC Theses Diss., Jan. 2017.

[101] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
“A comparison of static, dynamic, and hybrid analysis for malware
detection,” J. Comput. Virol. Hacking Tech., vol. 13, no. 1, pp. 1–12, Feb.
2017.

[102] S. Ranjan, “Machine learning based botnet detection using real-time
extracted traffic features,” US8682812 B1, 25-Mar-2014.

[103] S. Dua and X. Du, Data Mining and Machine Learning in Cybersecurity.
CRC Press, 2016.

[104] Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M. Chen, “Malicious
web content detection by machine learning,” Expert Syst. Appl., vol. 37,
no. 1, pp. 55–60, Jan. 2010.

[105] J. Sahs and L. Khan, “A Machine Learning Approach to Android
Malware Detection,” in 2012 European Intelligence and Security
Informatics Conference, 2012, pp. 141–147.

[106] Q. K. A. Mirza, I. Awan, and M. Younas, “CloudIntell: An intelligent
malware detection system,” Future Gener. Comput. Syst., Jul. 2017.

152

[107] L. Sun, S. Versteeg, S. Boztaş, and T. Yann, “Pattern Recognition
Techniques for the Classification of Malware Packers,” in Information
Security and Privacy, 2010, pp. 370–390.

[108] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for
Optimal Margin Classifiers,” in Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, New York, NY, USA, 1992, pp. 144–
152.

[109] M. Kruczkowski and E. N. Szynkiewicz, “Support Vector Machine for
Malware Analysis and Classification,” in 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), 2014, vol. 2, pp. 415–420.

[110] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines,” Microsoft Res., Apr. 1998.

[111] J. C. Platt, “Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods,” in Advances in Large
Margin Classifiers, 1999, pp. 61–74.

[112] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Trans. Syst. Man Cybern., vol. 21, no. 3, pp. 660–
674, May 1991.

[113] Y. Freund and R. E. Schapire, Experiments with a New Boosting
Algorithm. 1996.

[114] M. V. Joshi, V. Kumar, and R. C. Agarwal, “Evaluating boosting
algorithms to classify rare classes: comparison and improvements,” in
Proceedings 2001 IEEE International Conference on Data Mining, 2001,
pp. 257–264.

[115] X. Carreras and L. Marquez, “Boosting Trees for Anti-Spam Email
Filtering,” arXiv:cs/0109015, Sep. 2001.

[116] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
2001, vol. 1, p. I-511-I-518 vol.1.

[117] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in Multiple
Classifier Systems, 2000, pp. 1–15.

[118] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve.,” Radiology, vol. 143, no.
1, pp. 29–36, Apr. 1982.

[119] H. V. Nath and B. M. Mehtre, “Static Malware Analysis Using Machine
Learning Methods,” in Recent Trends in Computer Networks and
Distributed Systems Security, 2014, pp. 440–450.

[120] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of
malware behavior using machine learning,” J. Comput. Secur., vol. 19,
no. 4, pp. 639–668, Jan. 2011.

153

[121] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon,
“Empirical assessment of machine learning-based malware detectors for
Android,” Empir. Softw. Eng., vol. 21, no. 1, pp. 183–211, Feb. 2016.

[122] P. Faruki, V. Kumar, A. B, M. S. Gaur, V. Laxmi, and M. Conti, “Platform
Neutral Sandbox for Analyzing Malware and Resource Hogger Apps,” in
International Conference on Security and Privacy in Communication
Networks, 2014, pp. 556–560.

[123] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, Detection and Analysis of Malware for Smart Devices,” IEEE
Commun. Surv. Tutor., vol. 16, no. 2, pp. 961–987, Second 2014.

[124] X. Chen, B. Mu, and Z. Chen, “NetSecu: A Collaborative Network
Security Platform for In-network Security,” in 2011 Third International
Conference on Communications and Mobile Computing, 2011, pp. 59–
64.

[125] D. Robinson, Amazon Web Services Made Simple: Learn How Amazon
EC2, S3, SimpleDB and SQS Web Services Enables You to Reach
Business Goals Faster. London, UK, UK: Emereo Pty Ltd, 2008.

[126] H. Yoon, A. Gavrilovska, K. Schwan, and J. Donahue, “Interactive Use
of Cloud Services: Amazon SQS and S3,” in 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), 2012, pp. 523–530.

[127] J. Barr, A. Narin, and J. Varia, “Building fault-tolerant applications on
AWS,” Amaz. Web Serv., pp. 1–15, 2011.

[128] J. Varia, “Architecting for the cloud: Best practices,” Amaz. Web Serv.,
vol. 1, pp. 1–21, 2010.

[129] J. Varia and S. Mathew, “Overview of amazon web services,” Amaz.
Web Serv., 2014.

[130] S. Obrutsky, Cloud Storage: Advantages, Disadvantages and
Enterprise Solutions for Business. 2016.

[131] Y.-R. Chen et al., “Developing a Common Repository for Exchangeable
Learning Objects,” in PROCEEDINGS OF THE 9TH IEEE
INTERNATIONAL CONFERENCE ON UBI-MEDIA COMPUTING“
UMEDIA-2016,” 2016, pp. 1–6.

[132] V. Nagaveni and D. V. Pandya, “CLOUD COMPUTING STRATERGY:
CLOUD STORAGE ANDSPECIFICATION REQUIREMENT,” Int. Educ.
Res. J., vol. 2, no. 12, Jan. 2017.

[133] W. T. Tsai, P. Zhong, J. Elston, X. Bai, and Y. Chen, “Service
Replication Strategies with MapReduce in Clouds,” in 2011 Tenth
International Symposium on Autonomous Decentralized Systems, 2011,
pp. 381–388.

154

[134] V. Bortnikov, G. Chockler, D. Perelman, A. Roytman, S. Shachor, and
lya Shnayderman, “FRAPPE: Fast Replication Platform for Elastic
Services,” ArXiv160405959 Cs, Apr. 2016.

[135] C. Yin, “Towards Accurate Node-Based Detection of P2P Botnets,” The
Scientific World Journal, 2014. [Online]. Available:
https://www.hindawi.com/journals/tswj/2014/425491/abs/. [Accessed:
31-Jul-2017].

[136] H. Hang, X. Wei, M. Faloutsos, and T. Eliassi-Rad, “Entelecheia:
Detecting P2P botnets in their waiting stage,” in 2013 IFIP Networking
Conference, 2013, pp. 1–9.

[137] S. Skeirik, R. B. Bobba, and J. Meseguer, “Formal Analysis of Fault-
tolerant Group Key Management Using ZooKeeper,” in 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, 2013, pp. 636–641.

[138] F. Junqueira and B. Reed, ZooKeeper: Distributed Process
Coordination. O’Reilly Media, Inc., 2013.

	DECLARATION OF AUTHORSHIP
	ABSTRACT
	ACKNOWLEDGEMENTS
	PUBLICATIONS:
	List of Tables
	List of Figures
	List of Algorithms
	CHAPTER 1. INTRODUCTION
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Proposed Solution
	1.4 Contributions
	1.5 Research Scope
	1.6 Thesis Structure

	CHAPTER 2. Literature Review
	2.1 Introduction
	2.2 Background
	2.3 Malware Evolution
	2.3.1 Malware Obfuscation
	2.3.1.1 Encrypted Malware
	2.3.1.2 Oligomorphic Malware
	2.3.1.3 Polymorphic Malware
	2.3.1.4 Metamorphic Malware
	A. Dead-Code Inclusion
	B. Registers Swapping
	C. Subroutine Permutation
	D. Replacing Instructions
	E. Adding Jump Instructions
	F. Mutating Host Code
	G. Code Integration

	2.4 Analysis of Malware
	2.4.1 Static Analysis
	2.4.2 Dynamic Analysis

	2.5 Conventional Detection Techniques
	2.5.1 Signature-Based Malware Detection
	2.5.2 Heuristics-Based Malware Detection
	2.5.3 Behavioural-Based Malware Detection

	2.6 Recent Research Advancements in Malware Detection
	2.7 Chapter Summary

	CHAPTER 3. An Intelligent malware detection framework
	3.1 Introduction
	3.2 Understanding the Anomalies
	3.3 Building Blocks Overview
	3.3.1 Analysis and Features
	3.3.2 Machine Learning
	3.3.2.1 SVM
	3.3.2.2 Decision Tree
	3.3.2.3 Boosting

	3.4 Proposed Framework Design
	3.4.1 The Analysis Module
	3.4.1.1 Preparing a File
	3.4.1.2 Extracting Features
	3.4.1.3 Removing Obfuscation

	3.4.2 The Classification Module
	3.4.2.1 File Retrieval
	3.4.2.2 Classification Techniques
	3.4.2.3 Classification Module Final Verdict

	3.5 Modelling the Analysis Module
	3.6 Evaluating the Analysis Module
	3.6.1 Data Collection and Experiment Environment
	3.6.2 Experiment Results and Analysis
	3.6.2.1 Understanding the Test on a Single File
	3.6.2.2 Comparing Malware Detection Performance of the Analysis Module and Antiviruses

	3.7 Evaluating the Framework
	3.7.1 Experimental Design
	3.7.1.1 Small Dataset
	3.7.1.2 Large Dataset
	3.7.1.3 Obfuscated Dataset
	3.7.1.4 Real-Time Detection

	3.7.2 Discussion

	CHAPTER 4. An energy efficient hosting model for the malware detection framework
	4.1 Introduction
	4.2 Evaluation of Conventional Antiviruses CPU Utilization
	4.3 Building Blocks Overview
	4.3.1 Amazon Web Services
	4.3.1.1 SQS (Simple Queuing Service)
	4.3.1.2 EC2 (Elastic Compute Cloud)
	4.3.1.3 EFS (Elastic File System)

	4.4 The Hosting Model
	4.4.1 Repository
	4.4.2 Analysis Module
	4.4.3 The Classification Module
	4.4.4 System Architecture
	4.4.4.1 Server
	4.4.4.2 Client

	4.5 Framework Deployment
	4.6 Performance Evaluation
	4.6.1 The First Aspect
	4.6.2 The Second Aspect

	4.7 Discussion

	CHAPTER 5. Conclusion and future work
	5.1 Limitation and Challenges
	5.2 Future Work

	References
	cover_sheet_thesis.pdf
	University of Bradford eThesis

