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ABSTRACT 

Qublai Khan Ali Mirza “A CLOUD-BASED INTELLIGENT AND ENERGY EFFICIENT 
MALWARE DETECTION FRAMEWORK” 
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The continuity in the financial and other related losses due to cyber-attacks 

prove the substantial growth of malware and their lethal proliferation 

techniques. Every successful malware attack highlights the weaknesses in the 

defence mechanisms responsible for securing the targeted computer or a 

network. The recent cyber-attacks reveal the presence of sophistication and 

intelligence in malware behaviour having the ability to conceal their code and 

operate within the system autonomously. The conventional detection 

mechanisms not only possess the scarcity in malware detection capabilities, 

they consume a large amount of resources while scanning for malicious 

entities in the system. Many recent reports have highlighted this issue along 

with the challenges faced by the alternate solutions and studies conducted in 

the same area. There is an unprecedented need of a resilient and autonomous 

solution that takes proactive approach against modern malware with stealth 

behaviour.  

This thesis proposes a multi-aspect solution comprising of an intelligent 

malware detection framework and an energy efficient hosting model. The 

malware detection framework is a combination of conventional and novel 

malware detection techniques. The proposed framework incorporates 

comprehensive feature heuristics of files generated by a bespoke static feature 

extraction tool. These comprehensive heuristics are used to train the machine 
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learning algorithms; Support Vector Machine, Decision Tree, and Boosting to 

differentiate between clean and malicious files. Both these techniques; feature 

heuristics and machine learning are combined to form a two-factor detection 

mechanism. This thesis also presents a cloud-based energy efficient and 

scalable hosting model, which combines multiple infrastructure components of 

Amazon Web Services to host the malware detection framework. This hosting 

model presents a client-server architecture, where client is a lightweight 

service running on the host machine and server is based on the cloud.  

The proposed framework and the hosting model were evaluated individually 

and combined by specifically designed experiments using separate 

repositories of clean and malicious files. The experiments were designed to 

evaluate the malware detection capabilities and energy efficiency while 

operating within a system. The proposed malware detection framework and 

the hosting model showed significant improvement in malware detection while 

consuming quite low CPU resources during the operation.   
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CHAPTER 1.  INTRODUCTION 

1.1 Motivation 

The current era of technology, which is also known as “the age of data” has 

changed the entire perception about technology. The amount of data 

generated everyday by devices with limited resources is unprecedented and 

the volume of world’s data doubles in every two years [1]. This means that the 

level of security required to protect the data generation and management 

entities is more than it ever was. The recent attacks by a ransomware known 

as “WannaCry”, which shook the infrastructure of many big organizations 

before it was stopped [2], [3] raises the question on the security mechanisms 

that are used to protect the computing infrastructure and sensitive data.  

The samples of recent lethal malware; WannaCry, Petya [4], [5] or Mirai [6] 

caught in the wild, are not only capable of damaging giant organization or 

causing financial damage to banks, they have the capability of bringing down 

the entire infrastructure of World Wide Web that could possibly trigger a 

catastrophic event [7] . The most disturbing aspect of this scenario is, that 

these malware target the existing vulnerabilities in individual computers 

without even triggering an alert in the security software installed [8]. Not only 

the individual computers, computers part of an enterprise network, or smart 

devices are attacked by such malware, the infected devices are frequently 

used to attack bigger targets [9], such as; internet service providers, 

government organizations and infrastructures, and email servers.   
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A little less than half a million malware are released every day, majority of them 

are variants of previously identified malware but still have the capabilities to 

execute a lethal attack [10]. This cyberwar and successful attacks reveal the 

multidimensional risks that are faced by every consumer of modern 

technology, causing a daunting damage of $1.7 billion only in the UK [11]. This 

number of financial damages caused by cyberattacks are expected to rise 

above $5.8 trillion by 2020 [12]. The damage a malware author can cause 

without even moving from their chair is not only staggering, it is also becoming 

an attractive form of business.  

If there is a successful malware attack on an enterprise network, despite their 

security infrastructure, it takes around six months on average to detect an 

infection, eradicating that infection can take another month [13], [14]. The 

amount of damage caused by a malware infection is directly proportional to 

the amount of time taken to identify and eliminate that infection [15]. One of 

the most relevant example is of Zeus malware, which was initially identified in 

2007 but couldn’t be stopped [16]. According to an estimation by some security 

companies, Zeus infected around 3.6 million PCs only in U.S. and millions 

more around the world [17].  

This scenario raises a serious question on the presence of antiviruses and 

other security software along with the amount of resources they require to 

operate in an individual system or in a network. The current ecosystem of 

technology with an enormous amount of data generation capabilities not only 

requires a higher level of security mechanisms, it also require that mechanism 

to be extremely energy efficient giving it the ability to protect growing number 
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of heterogeneous devices. This study focusses on the limitations of current 

techniques and presents a framework, which consumes less resources and 

provides a higher level of malware detection.  

1.2 Aims and Objectives 

The aim of this study is to identify the current requirements of security against 

malware attack by investigating the anatomy of modern and sophisticated 

malware, which helps to evaluate the performance of current commercial 

antiviruses and identify their limitations against modern malware. This paves 

the way to design, develop, and evaluate a comprehensive and energy 

efficient malware detection framework targeting PE (Portable Executable) 

files, which amalgamates state-of-the-art malware detection techniques with 

the conventional techniques to enhance the detection of modern malware with 

obfuscation abilities. Following objectives had to be fulfilled to achieve this aim:  

a) Understand the occurrence of important anomalies in a malware by 

statically analyzing a large set of malicious PE files.  

b) Examine the malware analysis and detection techniques currently used 

commercially 

c) Analyze the machine learning techniques introduced in malware 

detection by different studies 

d) Design and implement an analysis module that can retrieve a 

comprehensive set of relevant feature anomalies from PE files with 

customized and decisive heuristics 
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e) Design, implement, and evaluate a module that incorporates the 

analysis module with conventional malware detection techniques to 

make accurate and reliable malware detection 

f) Identify efficient and appropriate machine learning algorithms that can 

be trained to recognize anomalies and accurately detect a malicious 

file 

g) Design a classification module that can learn from malware anomalies 

and differentiate between clean and malicious files with the help of 

machine learning algorithms 

h) Develop a framework that amalgamate analysis module and 

classification module to work as a coherent unit  

i) Evaluate the accuracy of the entire framework by testing it against a 

large set of clean and malicious files  

j) Evaluate the commonly used commercial antiviruses for their resource 

consumption 

k) Design and implement a hosting model for the malware detection 

framework that is energy efficient and does not rely on host systems’ 

CPU resources 

l) Deploy the framework on the hosting model and evaluate the energy 

efficiency and performance of the model along with the framework 

operations. 

1.3 Proposed Solution 

The results of current malware detection techniques and software are not quite 

effective [18] in terms of providing security to their consumers. There is a 
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diverse pool of techniques including the conventional malware detection 

techniques that can be used in a combination to enhance the malware 

detection rate on a commercial level for general users [19]. Unfortunately, 

majority of the novel techniques presented in the recent times are only limited 

to a certain aspect of detection or a specific type of files and do not provide an 

approach that targets the multidimensional problem. The problem faced by 

general and enterprise users is not just lack of ability to identify modern and 

previously unknown malware, it also involves the high resource consumption 

by the conventional detection software.  

The signature based malware detection can detect known malware and when 

combined with malware heuristics it can possibly detect new variants of 

previously known malware. However, the level of success of this combination 

is highly dependent on the patterns and rules that are used to formulate the 

heuristics of feature anomalies. Implementation of machine learning 

techniques has also proved to be quite successful in many studies, which is 

also applied on anomaly heuristics, its success is also dependent on patterns 

and heuristics used to apply algorithms.  

This research proposes the implementation of a combination of machine 

learning algorithms on a set of heuristics extracted from a large set of clean 

and malicious files. The proposed framework is based on a two-layer decision 

making process, which includes the first layer of decision making with the help 

of static heuristics analysis and the second layer of machine learning 

algorithms.  
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• An intelligent malware detection framework comprising of two-layered 

detection process was developed. The first layer is comprised of static 

heuristics analysis, which analyzes a file and decides about its 

legitimacy based on the anomalies detected in the feature heuristics. 

The decision made by this analysis is endorsed by external sources 

using the conventional detection techniques. In the second layer, 

machine learning algorithms; SVM (Support Vector Machine), Decision 

Tree, and Boosting on Decision Tree, were applied to make the 

detection process precise and highly reliable. The feature heuristics and 

anomalies extracted from sets of both clean and malicious files are 

used to train the machine learning algorithms, which makes the final 

decision about a file highly accurate. In the design, implementation, and 

evaluation of this part of the research, we trained and tested the 

machine learning algorithms against a large set of clean and malicious 

files.  

• As mentioned above, this research targets two major problems of 

conventional security mechanisms; detection rate and resource 

consumption. In the second part of this study; a cloud-based hosting 

model that strategically combines different components of AWS 

(Amazon Web Services) was designed, implemented, and evaluated as 

a customized hosting model for the malware detection framework. The 

main idea behind this hosting model is to make the framework 

extremely energy efficient and at the same time have the capability of 

scaling the framework for continuous learning. The hosting model 
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allows the framework to work with a dual-aspect. The first aspect of the 

framework trains the algorithms with the feature heuristics, whereas, 

the second aspect allows the framework to work in real-time scenarios. 

The operational requirements of both aspects of the framework were 

evaluated and the resource consumption was compared with the 

resource consumption of commercial antiviruses’ running in their scan 

mode. 

1.4 Contributions 

The key contribution of this research is the design and implementation of an 

intelligent and energy efficient framework for detection of Windows based 

modern malware. To achieve this, we had to divide the work in the following 

two directions: 

1. An intelligent malware detection framework, which initially examines 

the common and unique anomalies found in malware by statically 

analyzing a large set of malware. This helps to identify the use of such 

anomalies in identifying modern malware and the use of machine 

learning to make autonomous decision. This leads to the proposal of a 

framework, which incorporates conventional malware detection 

techniques with customized and comprehensive feature heuristics to 

train multiple machine learning algorithms. This study provides a 

detailed discussion on pivotal heuristics that differentiate a clean file 

from malicious file. This discussion is based on the analysis performed 

on large set of malicious files containing nearly one million files from 

different families of malware. The study presented in Chapter 3, implies 
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that how different important malware features can be combined to form 

patterns that will help machine learning algorithms to train for real-time 

detection. The role of conventional detection techniques in detecting 

known malware is also discussed leading to the integration of 

conventional detection techniques with the analysis module. Moreover, 

the benefits of machine learning algorithms and how they can be 

significant in lowering the false-positive rate and enhancing the 

accuracy if a good combination of heuristics is used to train them, are 

also discussed.  

2. A cloud-based energy efficient hosting model, initially evaluates the 

conventional antiviruses to identify their CPU resource consumption 

while operating in scan mode. This helps to identify one of the main 

weaknesses of commercial antiviruses, which is then targeted to 

propose a hosting model. The hosting model for the framework 

discussed in Chapter 3, which has a client server architecture, 

strategically combines different components of AWS to design a 

bespoke hosting model for the intelligent malware detection framework. 

Each component of the hosting model is specifically designed to host 

each module of malware detection framework with energy efficiency, 

quick response, and scalability as primary goals. The study presented 

in Chapter 4, initially discusses the CPU resource consumption problem 

of commercial antiviruses and implications of their operations on the 

host machine. The specific requirements of individual modules in the 

malware detection framework are then focused, leading to the proposal 
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of a high-level architecture of the cloud-based hosting model. 

Subsequently, the selected components of AWS are discussed, with 

respect to the operational requirements of the individual modules. 

Moreover, the implementation of the hosting model, deployment of the 

framework, and finally the evaluation of both; framework and hosting 

model is presented. The client and server modules of the hosting model 

are separately monitored to evaluate their performance and compare it 

with the commercial antiviruses. 

1.5 Research Scope 

This work solely targets the features and heuristics of PE (Portable 

Executables), commonly known as .exe files. The discussions and 

contributions revolve around the analysis performed on PE files, use of 

proposed approach on other file types or in other environments is out of scope.  

The proposed framework is specifically based on the features and heuristics 

generated through static analysis of PE files in conjunction with signature-

based detection and machine learning algorithms. Dynamic analysis of files is 

out of scope.  

Different datasets of clean and malicious files with known malware were used 

in this research, as discussed in Chapter 3. Different datasets might produce 

slight dissimilar results but they should produce similar level of accuracy and 

energy efficiency. 
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1.6 Thesis Structure 

The remaining parts of the thesis are structured as follows:  

• Chapter 2: Literature Review 

This chapter presents background of the research followed by a 

thorough discussion on the evolution of malware and the techniques 

used by modern malware to avoid getting detected. The discussion on 

different analysis techniques that can be used to analyse files along 

with their implications is then presented. Subsequently, relevant recent 

studies with their benefits and drawbacks are discussed, which lays the 

foundation for the presented research.  

 

• Chapter 3:  An Intelligent Malware Detection Framework 

This chapter presents the design, modelling, and implementation 

details of the intelligent malware detection framework. It starts by 

discussing the background of the proposed framework and why this 

specific approach of detecting malware was taken. The study finally 

presents the evaluation of the entire framework followed by the 

discussion on outcomes. 

 

• Chapter 4: An Energy Efficient Hosting Model for the Malware Detection

  Framework 

Chapter 4 presents a cloud-based energy efficient hosting model for the 

malware detection framework proposed and discussed in Chapter 3. 

The chapter discusses each module and its hosting requirements 
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separately and how they are managed by the hosting model. It then 

evaluates both; framework and the hosting model, while running in real-

time  

 

• Chapter 5: Conclusion and Future Work 

The conclusion presents the discussion on identified problems solved 

by the proposed framework and the hosting model by highlighting the 

benefits of the proposed solutions. It then discusses the limitations of 

the solution and how they can be eliminated. Finally, it presents the 

future enhancements of the entire proposed framework and how it can 

be used for a broader domain.  
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CHAPTER 2. Literature Review 

2.1 Introduction 

The ever-evolving landscape of cyber-attacks requires to be tackled by an ever-

evolving ecosystem of security tools, techniques, and mechanisms. 

Unfortunately, unlike the advancements seen in the malware proliferation in the 

recent past, the security mechanisms are still based on the conventional 

detection techniques used since many years [20]. Recently identified malware 

have used several different types of techniques for infection and propagation and 

their analysis show the innovative techniques they have used to bypass the 

security mechanisms of networks and individual computers [21]. However, such 

innovations are not employed by conventional antiviruses and other security 

mechanisms. Various new and unconventional approaches have been proposed 

in the recent past to stop a malware to infect and propagate but the question of 

their effectiveness persists and how general users can benefit from new 

techniques matters the most. 

One of the better approach would be design techniques based on the modus 

operandi of malware. Different analysis techniques with thorough approaches 

provide deep understanding of malicious pieces of codes [22] but such tools and 

techniques require time and computational resources, which is also one of the 

significant drawbacks of antiviruses. In this chapter, recently proposed analysis 

and detection techniques along with the conventional malware detection 
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techniques are discussed. Techniques including static feature extraction to 

support malware detection process are specifically focused in this chapter. 

2.2 Background 

One piece of software that is legitimate in one computer might be considered 

illegitimate in another computer or network. This logic vaguely identifies what a 

malware is along with its literal meaning; malicious software. Malware target 

vulnerability in a computer or in a network and exploit it to infect the targeted 

machine. This is done to use the computer or the entire network for several 

malicious reasons and usually it takes months, in some cases, years to identify 

that the network is infected. The taxonomy in which the malware are divided is 

based on the techniques they employ to infect their target. The following table 

presents the differences between types of malware present in the wild.  

Type Description 

Virus Viruses are passive in nature, they bind themselves to an existing 

program and propagate by duplicating themselves but requires to 

be copied to spread. They target benign executable files and 

corrupt them by attaching themselves [23]  

Trojan 

Horse 

Trojans act as a legitimate program and trick users to run it. Once 

executed, trojans can create backdoors in the system for different 

malicious reasons [24] 

Worms A computer worm is a standalone and active piece of code, which 

does not need a host program. It has the capability to replicate itself 
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across the network automatically by targeting vulnerabilities [25]. It 

continuously scans through the network for further propagation and 

consumes a lot of resources while doing so [26] 

Spyware Spyware do not necessarily harm the computer or network but they 

hide and monitor activities of individual users or the entire network 

[27]. They can be part of Trojans or worms and send the stolen 

information to their server [28] 

Bots It is derived from the word robot, with malicious intentions of forming 

a bot network otherwise known as botnet. Botnet is a large network 

of geographically dispersed computers working as bots or zombies, 

controlled by a C&C (command and control) server also known as 

botmaster [29]. Forming a botnet is just the foundation, which can 

be used for DDOS and other large scale attacks [30] 

Rootkit  The rootkit is not a simple malware with replication capabilities, it is 

a quite sophisticated software with multiple tools packed inside [31]. 

Once they have infected a computer or network, their embedded 

tools play a vital role to not only hide its processes in legitimate 

processes. It can escalate privileges of its processes without 

alarming the security software [32] 

Adware These are advertising support software designed to autonomously 

deliver advertisements in the form of popups or within a webpage 

[33]. A majority modern adware are used for revenue generation 

and don’t require popping up because they work as a background 
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process [34]. Adware authors also use them to transport spyware, 

which can spy on browser behavior and online transactions [35] 

Ransom

ware 

In the past few years, this specific category of malware have caused 

a lot of damage to many businesses, government services, and 

individuals [36]. Once infected, the system or an entire network 

along with its data can be locked and it will demand a ransom to 

unlock the files [37]. Ransomware encrypt the files in a unique way, 

which are not possible to decrypt using usually available techniques 

[38]. It follows the replication techniques used by a worm to 

proliferate its copies [39].  

 

2.3 Malware Evolution 

Since the first malicious piece of code was written, malware anatomy has evolved 

significantly. This anatomy of malware is continuously evolving to avoid the latest 

eradication techniques used by security organizations [20] [40] [41]. 

Unfortunately, the mainstream security mechanisms generally used do not match 

the advanced evasion and infection techniques used by the modern and lethal 

malware [42]. Every successful malware infection proves that the malware 

authors and their techniques are at least one step ahead of the eradication 

techniques used by their victims.  

The sophisticated detection evasion techniques used by malware signifies that 

the amount of time a malware stays undetected is directly proportional to the 

destruction it causes to the infected machine or network [41]. The anatomy of 
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latest malware reveals amalgamation of several evasion techniques, such as; 

polymorphism, oligomorphism, and metamorphism [43]. The implementation of 

such techniques benefits the malware authors in two different ways; it makes it 

virtually impossible for a conventional antivirus to detect it, malware use these 

techniques to generate their mutated copies for further propagation. Camouflage 

and mutational techniques have two basic objectives; armoring and proliferating 

the malware, these techniques are used by the malware authors for the past three 

decades with continuous and rapid enhancements that can be perceived in the 

analysis of recently discovered malware [44]. Such enhancements and lack of 

timely detection and prevention of modern malware depict the scarcity in the 

conventional defense techniques [45]. 

2.3.1 Malware Obfuscation 

The conventional malware detection techniques identify a malicious piece of 

executable mainly by matching its signature and heuristics with a set of stored 

malicious signatures and heuristics. If a malicious piece of code is modified even 

without changing the primary behavior, apparently it becomes a new malware. 

The process of malware obfuscation doesn’t change the functionality of the 

malware at all, it only changes the signature of that file. This type of change 

makes the file a completely new entity for antiviruses [46].  

There are many techniques that are collectively or individually used by the 

malware authors to obfuscate their malicious pieces of code. The commonly used 

techniques are discussed in the following sections. 
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2.3.1.1 Encrypted Malware 

Encrypting a file is the basic approach to change its physical appearance. 

Encryption is also one of the pioneering techniques used to evade the detection 

by avoiding signature matching and other similar techniques. An encrypted 

malware is comprised of two parts; the encrypted malware and its decryptor. The 

encrypted malware contains the main body of the malware and the decryptor is 

assigned the task of decrypting the main body once the infected programs 

executes. Usually, encrypted malware use simple XOR and the decryption is 

performed with the encrypted code’s XOR [47]. Although, the simple encryption 

was quite effective for evasion in the early days of obfuscated malware because 

antiviruses only relied on pattern matching. Modern day malware authors 

implement much complicated patterns for this process, which makes the 

decryption for malware analysts nearly impossible. Techniques such as; 

multilayer encryption, customized key generation, embedded message 

encryption is quite significantly used in modern malware [40]. 

2.3.1.2 Oligomorphic Malware 

The initial versions of encrypted malware were hard to detect but with 

advancements in the security mechanisms the basic approach used by encrypted 

malware was outdated. The oligomorphic malware were a newer generation of 

encrypted malware, which used mutated decryptors to encrypt and decrypt the 

main body of the malware [41]. A malware named Whale used one of the famous 

implementation of this technique, it carried many decryptors while propagating in 

a network and using a random decryptor for each instance of encryption and 

decryption. Other implementations of such techniques were more lethal and 
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employed techniques with dynamic generation of decryptors, which avoided the 

need of carrying a large amount of decryptors while propagating making the 

whole concept more efficient [48]. 

2.3.1.3 Polymorphic Malware 

The weaknesses of slight consistency in the oligomorphic malware gave birth to 

the new generation of malware known as polymorphic malware. Polymorphic 

malware use different type of encryption each time while replicating itself across 

the infected machine or network. They use mutation engine while replicating their 

instances, which allows the code to be transformed without the logic being 

changed [48]. While propagating in a network, polymorphic malware replicate 

itself in an encrypted form with a key different than the previous one and the 

decryption technique is embedded in the body. The polymorphic malware can 

evade the detection to a certain extent using such techniques because only a 

certain amount of decryptors can be generated with this technique [49].  

2.3.1.4 Metamorphic Malware 

The use of polymorphism in malware allows them to encrypt/decrypt using 

different techniques but metamorphic malware do not decryption to unpack itself 

in a constant body. Avoiding signature based detection of metamorphic malware 

is much more convenient as compare to the previously discussed types of 

malware, as they can evolve their code dynamically while moving from one 

generation to another [49]. They also can embed their code into one or multiple 

host programs making the malware nearly impossible to detect. Metamorphic 

malware use a combination of different obfuscation techniques to evolve into a 

newer generation, which is considerably dissimilar from its predecessor but 
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possess the same behavior. Following are the techniques that are used by the 

metamorphic malware [50]. 

A. Dead-Code Inclusion 

 

Figure 2.1: Sample Code for Obfuscation 

One of the simplest yet effective technique is including obfuscated or dead-code 

in the main body of the malware to evolve from one generation to another. The 

primary objective of this techniques is to make the evolved version of the code 

significantly different from the original code, which makes it extremely difficult to 

retrieve any operational hexadecimal search string [51]. These iterations in the 

code are identified as obfuscated because they do not change the behavior of 

the malware. The examples in Figure 2.1 and Figure 2.2 present the original and 

the obfuscated code respectively. Figure 2.2 presents the obfuscated version of 

the code, which uses the NOP command but the command doesn’t make any 

difference to the code. This technique does obfuscate the code but it can be 

easily rectified by an antivirus only by eliminating the dead commands before 

performing the analysis.  
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Figure 2.2: Dead-Code Inclusion (Original Code in Figure 2.1) 

To make dead-code inclusion more resilient against detection Figure 2.3 present 

an example, which obfuscates the code with impractical commands that are not 

exactly dead and do flow control for the compiler but doesn’t necessarily make 

any difference to the functionality. This technique is hard to eliminate by 

conventional detection mechanisms because there are some practical 

differences in the both samples of the code.  

 

Figure 2.3: Inserting Impractical Commands 
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B. Registers Swapping 

Another technique used by metamorphic malware is registers swapping, which 

was initially used by RegSwap malware in 1998. Malware using this technique 

will evolve from one generation by using the same code but by switching CPU 

registers [52]. This technique was initially useful for the malware authors but 

there was a weakness. In a conventional signature scan wildcard strings can be 

used to identify malware of newer generations with the signature of its 

predecessors. 

C. Subroutine Permutation 

Original code of a malware can be obfuscated with the help of this technique. By 

using subroutine permutation, a malware with n number of subroutines can 

generate n! number of unique variations of itself [53]. This technique was used 

by a malware Ghost, which had 10 subroutines and it had the ability to generate 

3628800 unique variants of the original version but due to the persistent main 

content of individual subroutine it can be detected by using search strings. 

D. Replacing Instructions 

This technique uses equivalent instructions to substitute original instruction or a 

group of instruction. Instructions like XOR EAX, EA are equivalent to SUB EAX 

EA, if replaced, there will not be any change in the functionality of the code but 

they can generate a dissimilar hexadecimal instruction representation (opcode) 

[52]. Further details of this technique can be found in [54]. Figure 2.4 presents 

the sample code of Figure 2.1 with the application of substituting instructions.  
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Figure 2.4: Substituting Instructions 

E. Adding Jump Instructions 

Another technique introduced to help the malicious code evolve dynamically from 

one generation to another was adding jump instructions in the code. The famous 

Windows 95 malware known as Zperm adopted this technique quite effectively. 

It dynamically adds and removes jump instructions in the main body, all these 

added instructions will point to a new instruction that will point to a new instruction 

[54]. This allows the malware to avoid generating a constant main body, which 

makes it extremely difficult for an antivirus to detect it. Figure 2.5 illustrates an 

example of how Zperm added jump instructions in its code. In each iteration of 

this malware, a new main body is generated that has no functionality difference 

but the control flow in the code is completely different. 
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Figure 2.5: Sample Code of Zperm using Jump Instructions 

F. Mutating Host Code 

Mutating the host software code is another lethal technique used by metamorphic 

malware. This technique was pioneered by a malware known as Win95/Bistro 

that evolved rapidly into newer generations after infecting the host but while 

evolving and mutating its own code dynamically, it also evolved the host software 

by mutating its main body in every iteration [55]. This make things more 

complicated for security software to identify, random transformation of code was 

used by the mutation engine to generate new variants for this malware. 

Recovering the host software from this infection is nearly impossible as the 

malware not only mutates the main body of the host, it also obfuscates host’s 

entry point, which doesn’t allow the disinfection process to be completed [56]. 

Figure 2.6 presents a simple illustration of mutation and replication of a single 

malware sample.  
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Figure 2.6: Mutation and Replication of a Single Malicious Sample 

G. Code Integration 

Infection of a malware using host code mutation is hard to detect but impossible 

to disinfect. Whereas, a more sophisticated and nearly impossible to detect 

techniques is code integration, which was pioneered by Win95/Zmist. The 

mutation engine of this malware has the ability to dissect an executable file into 

individual sections, it then substitutes itself with small code blocks in each section 

of the dissected executable and then rebuilds it [46]. This technique, if used 

properly, can allow a malware to flawlessly integrate its malicious code in the 

individual sections of the host executable, which is not only exceptionally hard to 

disinfect, it is impossible to even detect such infection by only using conventional 

detection techniques [56].  

Apart from the obfuscation techniques used by modern malware to avoid 

detection, malware use some additional techniques to evade the efforts to 

understand their structure, characteristics and behaviour with the help of different 
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types of analysis. Anti-debugging is one of the techniques used by malware to 

avoid getting analysed. Figure 2.7 presents the anti-debugging APIs retrieved 

after statically analysing a malicious file. The advance analysis techniques 

discussed in the later section employ debugging tools to go through instructions 

contained in a file to operate in a system. The anti-debugging technique is 

implemented by using code checksums in runtime, decryption key generation 

with help of interrupts, monitoring API routines in debugging, monitoring registry 

keys. Many legitimate programs also use anti-debugging techniques in their code 

to avoid piracy but a legitimate and illegitimate file using anti-debugging 

techniques can be differentiated by comparing their implementations [57]. The 

anti-debugging APIs used mostly by malware are listed below.  

 

Figure 2.7: Anti-Debug APIs 

Another most commonly used techniques by modern malware to avoid getting 

analysed is anti-virtual machine. Behavioural analysis techniques used against 

malware execute the malicious file in a virtualized environment to understand its 

objectives [58]. Anti-virtual machine technique is used by malware to avoid 

getting their objectives that could reveal their identity and variants identified. 

These techniques get activated as soon as malware identifies that it’s been 

executed in a virtual environment, which stops the file to be completely unpacked. 
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2.4 Analysis of Malware 

In the previous section, we discussed the evolution of malware over the period of 

decades and how many malware pioneered different obfuscation techniques to 

evade the detection mechanisms. In this section, we discuss different techniques 

that are used to understand the behaviours, characteristics, and objectives of a 

malware.  

While analysing a malware it is pivotal to understand that one malware has a 

family of variants that could be in millions and it is practically impossible to capture 

and analyse each variant. The positive thing in this scenario is that the entire 

family of variants of one malware might have the same behaviour but the 

alarming thing is that each variant could have a separate objective while 

operating in an infected network or individual computer. Another thing that should 

be considered is that one malware can have various behaviours. Literature [59] 

claims that a single malware executing a set of malicious commands over the 

weekend can be replaced by a set of completely different commands that it 

executes on Mondays. This behaviour is usually observed in malware variants 

that specifically target enterprise networks and mainly perform their malicious 

activities during the weekend when continuous network monitoring is not 

possible. A similar approach is used by a malware, which goes in hibernation 

mode during the office hours and activates during night time to perform all the 

malicious tasks.  

There are mainly two different types of analysis that can be performed on a 

malware; one to understand the behaviour and the other one for identifying the 

characteristics, they are known as dynamic and static analysis respectively. Both 
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types have their own benefits and play a significant role in comprehensively 

understanding a malware to detect it and prevent it from infecting and 

propagating. 

2.4.1 Static Analysis 

Statically analysing a malware is the most common technique that is used to 

understand its characteristics. Static analysis not only retrieves the basic 

characteristics of a file, it can give a comprehensive report that contains quite 

decisive information. As the name suggests, static analysis doesn’t require the 

file to be executed and it only gathers the static information about the file [60]. 

There are several online and offline tools available that can be used to perform 

static analysis, many highly effective open-source tools can also be used for 

static analysis. Tools such as; VirusTotal [61], PEFrame [62], PEiD [63], 

PEStudio [64], Mastiff [65], and Pyew [66] straightforwardly generate analysis 

reports that can help to understand many simple yet decisive characteristics 

about a file. Many of these tools have graphical user interface that allows new 

analysts to grasp the idea of feature extraction. These malware analysis tools 

provide fully automated analysis with a limited requirement of setting up a simple 

laboratory, without the need of a high-performance computer. VirusTotal 

eliminates the need of setting up even a simple laboratory by providing a web 

platform for static analysis. This Google powered web platform uses a 

comprehensive engine comprised of fifty-nine antiviruses and provides thorough 

reports starting from basic string analysis to fully automated analysis. It also 

provides an API that can be integrated with any supporting tool or even through 

a command line. Static analysis is simple to perform and can provide a detailed 
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report of the static features of a malicious or clean file without the need of an 

isolated analysis environment, however, the behaviour of a file cannot be 

understood by a static analysis.  

A much advance level of static analysis is performed in the form of reverse 

engineering, which uses disassembler to examine an executable’s complete 

cycle of execution along with the embedded commands to understand the core 

objectives of the malware [67]. It is essential to know about the targeted operating 

system beforehand along with the system architecture, instruction sets, and 

assembly language. Reverse engineering is usually performed with the help of 

specialized tools, such as; OllyDbg [68], IDA [69], GDB [70], Immunity Debugger 

[71], and WinDbg. These programs can generate CFG (Control Flow Graph) that 

identifies the potential flow of the analysed executable. This not only helps to 

identify the possible behaviour of the executable, it can quite effectively identify 

the variants from one family of malware [55].  

One of the obfuscation techniques known as instruction replacement, as 

discussed above, can cause obscurity in a CFG if it is implemented in the 

analysed executable. Additionally, malware that can dynamically change their 

code as they propagate within a single computer cannot produce a consistent 

CFG, which makes their overall behaviour hard to document. 

2.4.2 Dynamic Analysis 

Dynamic analysis is a much-detailed type of analysis and requires the file to be 

executed. It not only retrieves the physical characteristics, it can also identify the 

behaviour of a file. Unlike static analysis, dynamic analysis requires a sandbox, 
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which is a controlled environment and doesn’t allow the malware to effect its 

surrounding with its infection while it’s running [72]. Executing the malware in a 

sandbox allows the analyst to understand how a malware infects, how it 

propagates the infection, how it operates within a network or individual computer, 

and what its objectives are. This gives a detailed information about a malicious 

file and how it can be stopped.  

Like static analysis, dynamic analysis also starts from a basic analysis and can 

go up to a quite comprehensive level. The basic level of dynamic analysis has 

the objective of identifying malware operations within a system [73]. This is 

performed in a virtualized environment, which replicates the original system and 

the original state of that environment is preserved. The malware is executed in 

that environment and once it is executed, the original state of the machine is 

compared with the new state to identify the changes made by the malware. This 

process doesn’t give a detailed information about the malware as compared to 

the advanced dynamic analysis techniques but it is quite helpful to eradicate the 

infection of a malware from a system by identifying the changes it has made to a 

clean system [74]. This not only help to remove malware infections, it also doesn’t 

require the resources usually required by a detailed analysis. This level of 

dynamic analysis is important like basic static analysis to gain the basic 

understanding of a malware, which allows to stop a malware and its further 

propagation.  

Unlike the basic level of dynamic malware analysis, the advance level of dynamic 

analysis comprises of tools based on multiple techniques. In this level of analysis, 

each state of a malware while it’s running in a controlled environment is 
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monitored closely, which includes the state of malware’s code. The advance 

analysis is quite extensive, which is another reason that it runs in a controlled 

environment that allows the analysts to monitor each and every aspect of its 

functionalities and their implications on the system [75]. The detailed reports of 

such analysis contains the aspects of external API calls, function calls, internal 

and external network traffic, creation of new directories, alteration of existing 

directories, unauthorised ports access, changes in registry, dropped files, and 

state changes during the operational period [73]. This allows to understand the 

primary objectives of a malware based on its interaction with the system files, and 

entities within a network and outside the network. As discussed earlier, a single 

malware typically has a huge family of variants and analysing the entire family of 

variants that quite easily be in millions is practically impossible. This type of 

analysis gives a detailed understanding of malware behaviour, which not only 

allows to identify variants from the same family it also assists in formulating a 

solution to bring down the entire family of variants. Automated tools running as a 

web-service like Malwr [76] are quite useful and convenient for new and 

experienced analysts, as they don’t require a sandboxed environment to be 

developed for dynamic analysis and they quite quickly provide detailed reports 

on many variants from a single malware family based on their behaviour [76]. 

2.5 Conventional Detection Techniques 

In the modern era of computing malware infection is inevitable and so is the 

presence of at least one security software on individual computers. The 

discussion in the previous sections imply that avoiding a malware infection or 

even detecting an infection and removing it is merely impossible and the 
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detection techniques usually used cannot reach the level of stealth maliciousness 

of modern malware [20]. However, the conventional detection techniques used 

by antiviruses and other security software do protect the host systems against 

malicious attacks to a certain extent. These techniques are effective against 

previously known malware or the malware whose signatures and other apparent 

features are available in the database of security software. Major security 

software giants, such as; BitDefender, Symantec, Kaspersky, McAfee, etc. have 

a wide range of security software for both businesses and individual users. These 

software claim to provide a shield against modern malware and disinfect any 

previous infection by returning the affected software to its previous and legitimate 

state [77]. The techniques, which are used by these software are from a limited 

pool of techniques that is shared by all the security service providers. Although, 

many of these security service providers have some unique proprietary 

techniques and different implementations of conventional techniques, which 

makes them different from each other and distinguish their results but that doesn’t 

raise the overall bar of malware detection rate.  

Following section discusses the techniques that are most effectively used by 

antiviruses and other security software for malware detection and prevention. 

2.5.1 Signature-Based Malware Detection 

Signature detection is one of the commonly used techniques in antiviruses and 

other similar security software. It relies on sequences of specific byte codes that 

are unique to every file whether it’s clean or malicious, these static footprints of 

malware samples are used to detect similar files in the host machine or network 

[78]. A small modification in the code can change the signature of the file, 
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however, it can still be detected based on the separate and accumulated 

signatures of individual sections of a file. The unique byte code sequences are 

used as a representation for each sample and stored in the database of 

antiviruses. If a file containing the similar signature is found in the host system 

and or network by an antivirus then it is classified as malicious [79]. Similar 

approach is used to identify clean files along with the authenticity of their 

publishers’ certificate. Signature detection requires a comprehensive set of up to 

date signature that are regularly updated considering the massive number of 

malware captured every day. This gives rise to another problem that regularly 

updating and storing a large number of signatures requires access to similar 

amount network resources and storage space on the host machine. If the 

antivirus’s signature database is not up-to-date with the latest signatures, which 

is usually the case, then it will not be able to detect majority of new threats faced 

by its users [77].  

Lack of up-to-date signatures is not the only problem with this approach, as 

discussed earlier, the detection evasion techniques used by modern malware can 

dodge this technique by changing its source-code dynamically. The obfuscation 

techniques used by malware with metamorphic behaviour that can change their 

code dynamically as they propagate don’t leave a static footprint as move laterally 

in a network or in a single machine. The signature of one of its sample is 

completely different from another sample and it can cause ambiguity for analysts 

and antiviruses. One of the approaches that can be taken is to target the mutation 

engine of such malware and detect them through their mutation engine [75]. 

However, many of these malware randomly choose their mutation engines from 



CHAPTER 2 

33 

 

a large pool of dynamically evolving engines, a mutation engine based detection 

can add on the existing problem of large resource consumption by these 

solutions. 

2.5.2 Heuristics-Based Malware Detection 

Heuristics detection is mainly used a supporting technique besides signature 

detection to make the detection process quick and accurate. The term heuristics-

based detection doesn’t accurately define the process because the main 

objective of this technique is to use defined algorithms to identify patterns of files 

that match the already identified patterns of malicious files [45]. Malware 

signatures are generated after a thorough static analysis, which also generate 

several patterns from each sample that are collectively called heuristics. These 

patterns are then incorporated with the signature database in antiviruses to 

support the process of detection. This type of detection doesn’t necessarily use 

the collective patterns from one malware sample to detect similar malware, it also 

breaks down the patterns for detection [80].  

Heuristics-based malware detection is based on static analysis, which makes it 

quite quick. It also can find variants from the same family based on pattern 

matching. As discussed above, the patterns generated after malware analysis, 

they are broken down and used to identify similar features present in a different 

file [81]. Unlike signature detection, heuristic detection is not static and 

predefined, it improvises based on the environment it is operating, which makes 

it hard for a malware to escape from it.  
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The techniques used by modern malware avoid signature detection by 

dynamically mutating themselves, which doesn’t leave any static footprint on the 

system. With the help of heuristics generation a generic signature can be 

produced, which can be used against many, if not all, variants of a single family 

[82]. Although, there is a possibility of having several false positive with the 

implementation of this technique.  

Based on the above discussion heuristic detection play a vital role in combination 

with signature detection to accurately detect malware but the reason why modern 

malware are still able to evade this combination is the limited amount of 

information that is used to generate the heuristics. A large majority of malicious 

files hook themselves with the legitimate files and if analysed the generated 

heuristics are a combination of patterns from clean and malicious files [80]. If 

such heuristics are used to detect malicious files, the malware that corrupt a small 

portion of legitimate files will be able to evade the detection. Consequently, if files 

are classified as malicious based on the small amount of alleged maliciousness 

then number of false-positive will significantly rise. Therefore, the combination of 

patterns used to generate heuristics need to be enhanced significantly to make 

more accurate decisions but this also means that more resources will be required 

to run such techniques. 

2.5.3 Behavioural-Based Malware Detection 

Behavioural detection is a technique that can successfully penetrate the detection 

evasion shield created by malware through obfuscation. It performs dynamic 

analysis of files to perceive their activities and behaviours in different operating 

environments, which are used to develop patterns to identify similar behavioural 
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patterns in other executables. As mentioned above, behavioural detection is 

based on dynamic analysis of executables that requires time and resources [59]. 

Although this technique can bypass the obfuscation techniques implemented by 

malware, it requires a detailed ruleset that explains the normal behaviours of 

executables in usual execution environments as compared to controlled or 

sandboxed environments. Without defining such parameters, it is significantly 

hard to identify a normal and an unsafe behaviour of an executable in a specific 

environment. 

2.6 Recent Research Advancements in Malware Detection 

In the previous sections, we have discussed different techniques used by modern 

malware to avoid getting detected by antiviruses and other security software, we 

also discussed analysis techniques that are used to understand the 

characteristics and behaviours of malicious executables. Additionally, we 

presented a discussion on different conventional detection techniques that are 

quite commonly used by security software to detect a malicious code, along with 

the foundations of these detection techniques. In this section, we are going to 

discuss different recent researches conducted that are relevant to our research 

along with their benefits and weaknesses. Our work focusses on different static 

analysis based heuristics extracted from a large sample of clean and malicious 

files to define rules to differentiate between both types. These heuristics are then 

used in conjunction with a combination of different machine learning algorithms. 

We specifically discuss recently conducted researches in the same area.  

Use of different types of features extracted through static analysis or other 

methodologies has been proposed in several different studies [44], [24], [3], [83], 



CHAPTER 2 

36 

 

[48], [49], [74]. Many studies have proposed customised rules based on different 

features and heuristics from clean and malicious files [82], [81], [45], [86], [87], 

[88]. Machine learning has also been applied on a small set of heuristics by some 

studies to differentiate between clean and malicious files.  

Using machine learning for the identification of malware has been proposed using 

several different techniques by many researchers [84], [85], [22], [89], [90], [52], 

[53]. Each of these studies have their own methodologies to approach the 

problem of malware identification, by increasing the true positive, and reducing 

the false positive rate. Majority of the research in malware detection is based on 

windows-based malware and only focus on the detection of one type of malicious 

code. However, more than 90% of the industrial environment is based on 

windows, therefore, the threat of windows-based malware is significantly higher. 

The conventional techniques of malware detection, also known as signature-

based detection used by antiviruses are still quite useful and it can flawlessly 

detect a known malware. These techniques are not very helpful when there is an 

attack from a new or unknown malware, which is why there is a huge gap in the 

industry, despite several studies in this area. 

One of the most relevant studies in this area were conducted by Kolter and Maloof 

(hereon KM) [93]. They drew techniques from machine learning and data mining 

and applied them on their collection. In their study, they used a common text 

classification practice, n-grams, which tested the results of various classifiers on 

malware detection. The techniques included in their research were; SVM, 

decision trees, Naïve Bayes, and then applying boosting on each of the 
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techniques [84] [93]. The KM approach used the AUC (Area under Curve) of an 

ROC (Receiver Operating Characteristic) to evaluate the performance of their 

classifier, which they tested based on the highest information gains n-grams 

They treated the presence or absence of the specified n-gram as Boolean on 

their classifier for boosted decision tree. As per their results, their model of 

boosted decision tree was able accomplish the finest accuracy rate out of all, 

achieving a 95% confidence interval AUC i.e. 0.9958 ± 0.0024. Boosting 

significantly enhances the performance of weak or unstable classifiers by 

decreasing their variance and bias but it can affect inversely on the stable 

classifiers, KM approach claims to improve the stable classifiers through boosting 

as well. The samples both benign and malicious used by them comprised of 1971 

benign files and 1651 malicious files. The benign executables were retrieved from 

Windows OS (XP, 2000), and other online resources. Whereas, the malicious 

collection was obtained from MITRE Corporation and VX Heavens online 

repository. The KM research also used their approach of static heuristics 

technique for identifying payload functionality of malware. It identifies the 

functionality without dynamically analysing malware, which is an efficient way 

because it doesn’t utilize resources required for sandboxing and eliminates the 

threats involved in dynamic analysis. They could identify payload functionality 

with the help of reverse engineering analysis reports of a subset of their complete 

collection. The KM approach showed promising results in two different directions; 

malware detection and payload identification. However, there are some 

weaknesses in this approach, considering the small sample size, missing 6 out 

of 291 malicious files is a real game changer in real life detection. This means if 
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the dataset is bigger, it can significantly increase the number of malicious files 

missed in a scan, which should be the main concern while detecting malware. 

Moreover, KM approach is not very effective for obfuscated malware and can 

easily omit such malicious files during the detection process. 

MaTR approach is another noteworthy contribution in this domain in which they 

recreated the experimental environment of KM using same dataset and the same 

formula presented in equation 1 to highlight their weaknesses. MaTR approach 

used 31193 malicious and 25195 clean files in the initial experiment and 

compared their results with KM approach, which showed improvements over KM 

with the following mean and confidence intervals. 

 

Figure 2.8: ROC Curves for KM n-gram Retest and MaTR [80] 

The MaTR approach outperforms the KM approach and prove it by recreating the 

KM experiments, as presented in Figure 2.8 and Table 2.1. MaTR system design 

introduces an interesting approach by adding a human component in its system 

as illustrated in Figure 2.9. The reason behind introducing a human component 

is to give the system a capability of real-time detection [80]. This means that with 

the help of a human operator continuously monitoring the system logs, decisions 
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on legitimacy of the files can be made by looking at live anomalies occurring in 

the network. The human operator in this case provides appropriate responses for 

the type of malware rather than an automated and fixed response for all type of 

malware.  

Table 2.1: Mean AUC and Confidence Interval of KM and MaTR, c.f. [80]  

 

 

 

Figure 2.9: MaTR System Flow Diagram, c.f. [80] 

For the classification of malware, MaTR approach uses bagged decision tree 

classifiers, which can enhance the performance of simple decision tree and make 

the results more accurate. The MaTR approach heavily relies on the human 

operator to take decision based on the detection results, which can be its main 
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weakness. In the live environment, when a malware attacks a system or an 

enterprise network an automated response is necessary because when it comes 

to malware detection time is a key component. A malware can propagate and 

replicate itself within minutes inside a network or in a single machine, which 

means that an automated response is necessary [85]. In MaTR approach, the 

parameter of response time and its affects are not mentioned. Additionally, the 

classification methodology of MaTR claims a very high detection rate, however, 

the performance on obfuscated malware is not present and it lacks the ability to 

do so. 

There are several different studies that have used machine learning in malware 

detection by using different types of classifiers in their work. One of the studies 

have applied Decision Tree, Random Forest, Bagging, and Adaboost on the 

headers extracted from 32-bit PE files to differentiate between clean and 

malicious files. One of the main problem with this technique is that it compares 

the approach with antiviruses by highlighting its weaknesses but doesn’t cover 

all the identified weaknesses. Additionally, the proposed approach in this study 

does produce promising results but as initial hypothesis of this study focussed on 

real-life implications, there is clear limitation of 32-bit PE files, new malware 

samples, and resource consumption.  

Techniques such as [22], do have the ability to identify a vast range of previously 

unidentified malware by using a combination of static and dynamic malware 

analysis but one of the main limitations that are not covered in this approach is 

the amount of time needed to identify a malicious file in real-time, not to mention 

the amount of resources required for such a thorough and resource intensive 
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approach. This is a serious issue in malware detection, as the amount of time 

taken to detect an infection is directly proportional to the amount of damage 

caused by that infection.  

Another relevant study [94] uses opcode generation through malware analysis 

and implements quite efficient machine learning algorithms. The results of this 

study are quite promising as well but one of the main weakness of this approach 

is the limitation of type of malware it’s tested against. The collection of data used 

in this research is comprised of unpacked disabled malware and malware 

obfuscation is completely excluded, which raises the question about the benefits 

of this approach. Generating opcodes through statically analysing malware to 

train and test machine learning algorithms is an efficient approach but excluding 

a whole family of malware, which dominates the taxonomy of all malware families 

doesn’t justify the application of this study.  

As mentioned earlier, there are many studies that claim to effectively differentiate 

between clean and malicious files. Several of them use machine learning, fuzzy 

logic, and other techniques on statically or dynamically extracted features from 

both benign and malicious files. Nearly all of them target the vulnerabilities of 

conventional malware detection techniques that are commercially available. 

However, none of these studies present a solution that eliminates the generally 

highlighted weaknesses of conventional methodologies. One of the main 

weaknesses of antiviruses is the resource consumption of the host system while 

running in scan mode, which is an addition to the frequently discussed weakness, 

deficiency in detection rate. The studies claim to produce enhanced detection 

rate, quite often, lack the discussion about the real-time performance of their 
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approach, which includes the detection rate and more importantly the resources 

of host machine consumed while running in scan mode. 

2.7 Chapter Summary 

In this chapter, several aspects of malware infection, detection, and analysis 

relevant to our study have been discussed. Discussion starts with the evolution 

of malware and how the detection and infection techniques used by malware 

have enhanced in the past few decades. Numerous detection evasion techniques 

that have been used by malware over the years along with the combination of 

techniques that are currently used by modern malware to evade the detection 

process are also part of the discussion. Discussion also targets different analysis 

techniques that are used to analyse malware to extract their characteristics along 

with their behaviours and objectives, which led to the malware detection 

techniques that are generally used. Additionally, many conventional malware 

detection techniques generally used individually or in a combination by different 

antiviruses are discussed.  

Later in the discussion, some recent research studies relevant to our work, which 

used features and heuristics extracted from clean and malicious files through 

static or dynamic analysis and later applied several different machine learning 

algorithms to enhance malware detection rate. With the help of detailed analysis 

of recent studies, we could identify the weaknesses still present in this domain, 

which helped us to design and implement a comprehensive solution comprising 

of an intelligent malware detection framework and its hosting model targeting 

multiple dimensions of the identified problem.  
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CHAPTER 3. AN INTELLIGENT MALWARE DETECTION FRAMEWORK 

3.1 Introduction 

A recent report claims that more than 7000 malware attacks are detected every 

hour and this number is for the attacks that are only targeting mobile devices [15]. 

This number is exponentially higher if the domain is broader, such as; personal 

computers, enterprise networks, web server, and other web enabled devices and 

infrastructure [10]. Out of millions of malware collected each year, majority of 

them are evolved versions of their predecessor [95], [96]. When a malware code 

is released in public, many of these malware are combined with a mutation 

engine, which allows other people with malicious intent to generate their version 

of that specific malware, such engines don’t require a lot of programming or 

technical knowledge for doing so [97]. Majority of modern malware are equipped 

with automated mutation engines, allowing them to recurrently change their 

appearance, location, and other apparent features dynamically [98]. Obfuscation 

and replication techniques are used to change the apparent features of malware 

dynamically to avoid getting detected by antiviruses and even if a single instance 

of a malware is detected, multiple, yet very different, instances of the same 

malware are generated making it nearly impossible for the security software or 

the security analyst to detect it [99], [100].  

Detecting a malware and preventing its infection or further propagation in a local 

network and in the wild requires an understanding of the infection and 

propagation techniques, which includes a comprehensive understanding of all 

the apparent features of malicious files along with how they behave in an 
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individual system or networked environment. The static and dynamic analysis of 

malware generate apparent and behavioral features of malicious files 

respectively, which allows the malware analysis and security experts to 

understand the dynamics of different types of vulnerabilities and the malware that 

exploit those vulnerabilities [91]. Both these analysis techniques are useful in 

different scenarios but if the main purpose is to accurately and rapidly detect a 

malware with minimum resource consumption, then static analysis is a better and 

reliable choice given that the tool used for analysis has a comprehensive and in-

depth approach [101].  

Analyzing a file statically doesn’t guarantee that it is going to be perfectly 

identified as malicious or safe. Moreover, for a system to identify whether the file 

is safe or malicious, it must first learn how to distinguish between the two types 

by understanding the difference between their apparent features [101].   

Integrating a combination of existing machine learning algorithms in the 

framework that will not only allow the framework to be rigorously trained to identify 

and differentiate between clean and malicious files, the comprehensive 

parameters used in the learning processes will help the framework to efficiently 

identify any unknown threats [92]. It is pivotal to use a rich set of features to train 

the algorithms, which could be produced with the help of a static analysis tool 

specifically customized to generate clean and comprehensive reports comprising 

of extremely relevant features [86].  

Large enterprise networks and even individual computers generate a large 

amount of network and process logs, which are analyzed by security analysts 
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and administrators to detect any malicious behavior. These logs and similar data 

if analyzed properly can protect the system against many, if not every, type of 

attacks. The main drawback in this scenario is the dependency on analysts, 

which makes the whole process extremely slow and less reliable. Many 

researchers and corporate sector entities are incorporating machine learning for 

malware detection and to predict any future attacks with very high true positive 

rate [102], [103], [104], [105]. Proposed framework incorporates an optimum 

combination of machine learning algorithms that can efficiently detect a malicious 

activity without consuming a lot of system resources. 

The approach taken in this research is a combination of conventional and novel 

techniques used for malware detection. This approach integrates the detection 

techniques generally used by antiviruses with state-of-the-art machine learning 

algorithms to develop a coherent framework that can be resilient and decisive 

against modern malware. The framework implements machine learning 

algorithms along with conventional detection techniques on a rich set of features 

extracted from clean and malicious files. To extract features from multiple files 

rapidly and accurately, an automated feature extraction tool was developed and 

later integrated with some open-source classes to make it more comprehensive. 

With the help of this static analysis based feature extraction tool a rich and diverse 

set of features were extracted from individual files from both classes; benign and 

malicious. The subsequent sections in this chapter present a thorough discussion 

of the overall framework comprising of classification methodology along with the 

analysis module that runs the feature extraction tool. 
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The proposed framework is more appealing as compared to many similar 

approaches for the following reasons: 

• Although, dynamic analysis can retrieve a huge number of behavioral 

characteristics from a malicious file but the implications of this type of 

analysis include higher resource consumption along with analyst’s 

involvement in the process. The comprehensiveness and automation in 

static analysis techniques can generate a set of features that can be used 

to identify a malware with much lesser resources. 

• Real-time environment requires a detection mechanism with preemptive 

behavior that can detect a malware without any supervision. A framework 

that can learn from the heuristics of clean and malicious files and can 

differentiate between the two, can identify a malicious file without an in-

depth analysis consuming time and other resources. 

• The unique combination of multiple machine learning algorithm along with 

a rigorous validation technique ensures an unbiased and accurate 

prediction of threats.   

• The comprehensive mechanism of classifying a file as malicious or safe, 

verifies the authenticity of the system along with the generation of detailed 

analysis reports, which are also used for real-time detection and 

prevention of known and unknown threats.  

• Not many systems with such features generate output which can further 

be used for the enhancement of other systems or research objectives. The 

analysis report generation in an appropriate and easy to understand 

manner could facilitate the sharing of threat intelligence data on a larger 
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scale, which can also enhance the overall ability of the proposed 

framework.  

In this chapter, we propose and evaluate an intelligent framework that can 

accurately detect both known and unknown malware threats. The framework is 

divided into two modules; first module uses an extensive tool which extracts the 

features from files that are later used to identify a clean or malicious file, second 

module use a unique combination of three different machine learning algorithms 

to identify a threat. The first module, which analyzes the files and generate a 

thorough report of their apparent features also can perform a basic classification 

that is useful in the long run, especially in the real-time detection. Whereas, the 

second module, which is defined as the classification module simultaneously 

apply machine learning algorithms; SVM, decision trees, and boosting on the 

extracted features to identify a malicious file. In the next section, we discuss the 

analysis results of around one million malicious files to understand the anomaly 

heuristics of such files. 

3.2 Understanding the Anomalies 

Before proposing and discussing the framework for detecting modern malware, 

it is essential to understand the anomalies that highlight the difference between 

the legitimate and malicious files. To develop a solution that accurately 

differentiates between the two file types, the fundamental step is to make the 

system learn about the features that make a file benign or malicious. As 

discussed previously, there are millions of malware captured every year and even 

though majority of them are just evolved versions of old and previously identified 
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malware, they do have some unique characteristics that allow them to stealthily 

penetrate a system or a network. Thoroughly analyzing a file statically can 

produce a rich set of characteristics for both benign and malicious file types and 

if both set of characteristics are compared, anomalies in the malicious set 

become evident given that, relevant and significant characteristics are compared. 

In this section, we discuss the features extracted through a thorough static 

analysis and their significance in the process of threat identification.  

To understand and identify the characteristics of malicious files, we gathered 

many malware samples from various sources and analyzed them with PEframe, 

which is an open-source static analysis tool. We analyzed nearly one million PE 

files and generated a comprehensive set of quantifiable data. The details of test 

bench for this analysis are presented in Table 3.1.  

Table 3.1: Static Analysis Test Bench Details 

Tool/Machine Details 

Host Machine Intel Core i7 4790 CPU @ 3.60 

GHz  

RAM 16 GB, Hard Disk – 2 TB  

Operating System Ubuntu 14.04 LTS, 64 bit 

Static Analysis Tool PEframe with Python Scripts 

Number of Samples 917705 
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The analysis performed on around 917705 malware samples produced a 

comprehensive set of data, which is pivotal for the methodology design. The main 

idea behind analyzing many malware samples is to retrieve features along with 

the conventional signatures, which can be used to differentiate between a benign 

and malicious file. The data produced after the analysis comprised of a good 

number of heuristics with some known and unknown anomalies. One of the major 

characteristic seen in nearly every modern malware and its variant is that they 

are packed and even if the basic behavioral characteristics are same, their 

appearance might be different because of different packers used for packing. 

With the help of this analysis, we retrieved the top 20 packers used by malware. 

Figure 3.1 presents the most popular packers used by modern malware, which is 

a very important attribute to consider. However, the most popular packers 

amongst malware are legitimate and belong to either Microsoft or other popular 

software providers that cannot be flagged as malicious just by identifying the 

name but majorly malware tend to use older versions of legitimate packers. This 

technique is specifically used to exploit a legitimate software, which is not 

supported by its publishing organization anymore, such software are not usually 

considered a threat by the antiviruses. Malware authors also use multiple packers 

to pack one malware to deceive antiviruses with legitimate packer on top of a 

packer originally used to pack the malware.  
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Figure 3.1: Statistics of Packers used by Malware 

Many malware authors use techniques to avoid analysts understand their 

intentions by performing any type of analysis or reverse engineering on their 

packed code, which are known as anti-debug technique carried out with the help 

of APIs. Such techniques are also identified in the analysis, even though many 

analysis tools are not able to go past this point but they can retrieve if there is 

such technique used in an analyzed sample. The anti-debug technique is also 

used by many legitimate software publishers to avoid any attempt of piracy 

making it difficult to identify legitimate anti-debug and illegitimate anti-debug. 

However, a thorough static analysis can return the legitimacy of the APIs that are 

used by the analyzed file to implement anti-debug. Table 3.2 present the APIs 

and suspicious APIs retrieved from the malicious files, which denotes that a 

majority of these APIs are suspicious. This means that considering inclusion of 

APIs in the feature set can be quite useful.  
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Table 3.2: Anti-debug and Suspicious APIs 

API Name Number of 

Malware 

Suspicious APIs 

GetProcAddress 86000 GetProcAddress 

Sleep 78000 Sleep 

ExitProcess 76000 ExitProcess 

CloseHandle 74500 CloseHandle 

GetLastError 72301 GetLastError 

WriteFile 69845 WriteFile 

GetCurrentProcess 67458 GetCurrentProcess 

GetModuleFileNameA 65472 GetModuleFileNameA 

MultiByteToWideChar 63248 MultiByteToWideChar 

GetCommandLineA 62147 GetCommandLineA 

GetCurrentThreadid 61984 GetCurrentThreadid 

WideCharToMultiByte 61547 WideCharToMultiByte 

SetLastError 61471 SetLastError 

FreeLibrary 61243 FreeLibrary 

LoadLibraryA 61178 LoadLibraryA 

GetCurrentProcessid 60521 GetCurrentProcessid 

GetModuleHandleA 60341 GetModuleHandleA 
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UnhandledExceptionF

ilter 

60314 UnhandledExceptionF

ilter 

TlsGetValue 60158 TlsGetValue 

ReadFile 60014 ReadFile 

 

The tool used for analysis has a database of suspicious API signatures, which 

allows it to identify any API that falls under the category of being suspicious. All 

the files analyzed in this experiment were malicious, therefore, the analysis tool 

identified all the anti-debug APIs as suspicious. Even though legitimate files also 

use anti-debug feature but their APIs are not identified as suspicious and this 

specific feature can help identify a file as malicious.  

Nearly all malware camouflage themselves to penetrate a network by using 

names that seem legitimate and important to the user. The analysis showed that 

many names used by modern malware to camouflage themselves recur quite 

frequently as presented in the Figure 3.2. These recurring names are quite 

relevant when trying to match and understand anomalies in a system or a 

network.  
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Figure 3.2: Commonly used Malware Names 

Although, solely depending on these filenames is not a wise approach but it is 

important to flag an executable with a name such as; dll.exe, books.exe, 

music.exe, test.exe, etc. that are evidently suspicious. Another important aspect 

is the multiple sections in a malicious file and their names, as shown in Figure 

3.3, these names denote the type of functionality each section holds that can be 

used to vaguely understand the motives of a malware.  
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Figure 3.3: Mostly used Section Names in Malware 

Malware these days are persistent in nature with long-term motives, after 

infecting a network their focus is to maintain the access by trying to connect to a 

command and control center, expand infection by importing more malicious data, 

exporting important data. Consequently, scrutinizing any IP address, URL, or 

email address retrieved from analysis can play a significant part in identifying a 

malicious file and can also be used to match with the similar data retrieved from 

newly analyzed files. Table 3.3 presents the top email addresses retrieved by 

performing the analysis.  
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Table 3.3: Top Email Addresses Retrieved during Analysis 

Email Addresses 

admin@mictosoft.com 

info@microsott.com 

support@gnail.com 

claimnow@nationailottery.co.uk 

admin@getwebcake.com 

server@mitcsoftware.com 

admin@rjlsoftware.com 

accountrecovery@yontoo.com 

sales@applee.com 

iphone@aaple.com 

account@yaah00.com 

jdeb@autoscript.com 

pop@harzing.com 

sales@totusoft.com 

sandy-cyf@163.com 

sales@annazon.co.uk 

returns@amazone.com 

voucher@amazom.com 

claim@iebay.com 
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The anomalies extracted through static analysis from a large set of malware are 

not significant when considered individually, however, if used collectively within 

a framework, the accurate classification decisions can pivot on such anomalies.  

3.3 Building Blocks Overview 

In the previous section, we discussed the features extracted after a thorough 

static analysis performed on a large set of malicious files. The discussion 

presented in the previous section shows the significance of each features or 

anomaly detected by the static analysis tool and how it can be used to 

differentiate between a malicious and a clean file. In this section, we present an 

overview of the building blocks used in the design and development of the 

framework proposed in this chapter. The framework proposed later in this chapter 

is based on two main modules; a) the analysis module and b) the classification 

module. Both these modules have their own significance, which is based on the 

uniqueness of the building blocks integrated to develop a comprehensive 

framework for malware detection. 

3.3.1 Analysis and Features 

The approach proposed later in this study primarily relies on the features 

extracted through static analysis. To extract the most relevant and pivotal 

features from the comprehensive set of benign and malicious files, a python-

based automated analysis tool was developed that thoroughly analyzed the files 

statically and retrieve a rich set of decisive features, which are stored in separate 

files in a JSON format. These features are human readable and they are used 

for training, testing, and detection purposes by the classification module. To make 
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the static analysis and feature extraction tool more powerful and precise, some 

of the classes from an existing open-source tool PEFrame were integrated with 

the tool. After integration with open-source classes, the automated tool could 

work as an independent module in the overall framework. This feature extraction 

tool also integrates the private API of VirusTotal to endorse some of its many 

extracted results from a trusted third-party. Figure 3.4 [106] presents the features 

(without data) that are extracted after the analysis is performed on a single file.  

 

Figure 3.4: Sample JSON File without Extracted Features 

Along with the conventional signatures used by the antiviruses for malware 

detection, this tool generates features that are not usually extracted by analysis 

tools and not as well used for generally detecting a malicious file. This not only 

makes this module unique, it also allows the classification module to use machine 



CHAPTER 3 

58 

 

learning algorithms on a unique and more relevant feature-set making the 

detection more accurate with much lesser probability of false positives.  

We discussed the significance of packers and how malware authors use packers. 

Our analysis module not only identifies that the file under analysis is packed, it 

also identifies the name and version of the packer, along with using a third-party 

API to check the legitimacy of that specific packer. Additionally, our analysis 

module uses an updated list of packers generally used by malware [107] and the 

list is updated automatically with the help of the API. It is also used to identify if 

the analyzed malware is a variant of previously analyzed malware or belongs to 

a similar family of malware. The list of packers is stored in the database, which 

has a list of both malicious and legitimate packers updated frequently with every 

analysis supported by external API.  

Some of the analysis tools extract the suspected API that the malware might try 

to access while executing. Similarly, our tool also extracts such APIs and to make 

the detection more accurate, we store the detected APIs in our database divided 

into clean APIs and malicious APIs. Therefore, when the analysis module 

extracts the APIs from a file it can be checked whether it’s a malicious or non-

malicious file and if the local database doesn’t have any of the detected APIs the 

external sources are requested for legitimacy of the detected APIs.  

Like APIs, our analysis module also extracts all the IPs the analyzed file is 

supposed to connect once it’s executed. Such IP addresses may belong to a set 

of command and control servers controlling a botnet or something similarly 

malicious. These extracted IP addresses are stored in the database with two 

classes of IP addresses; clean and malicious, and then later matched whether 
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the detected IP address is malicious or clean. The database is continuously 

updated with every analysis.  

The vital features from individual analysis are stored in the database and allows 

the system to identify a variant of an existing or previously analyzed malware. 

With the help of stored features, such as; hashes, packers, APIs, and IP 

addresses, the analysis module identifies if the currently analyzed file is a variant 

of previously analyzed malware.  

As mentioned earlier, to endorse our results and initial classifications, we use 

external API powered by VirusTotal. With the help of this API we can implement 

the conventional detection techniques used by antiviruses by running the 

samples against an external engine comprising of 57 antiviruses. This API 

provides us with a verdict based on its own analysis, which plays a significant 

role in identifying the malicious file. 

3.3.2 Machine Learning 

The features extracted through static analysis play a significant part in the 

proposed framework. These features are then used to apply three different 

machine learning techniques used in this framework. The features extracted from 

PE files contain both malicious and clean features, which are divided into 

corresponding fields. We then use SVM (Support Vector Machine), decision tree, 

and boosting on decision tree to identify a malicious file. 

3.3.2.1 SVM 

Support vector machines, is a training algorithm which presents a decision 

boundary by maximizing the margin amongst training patters. The algorithm 
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presented by [108], has performed in an optimal fashion in many conventional 

scenarios, along with some studies similar to ours [93], [80], [109]. SVM creates 

a linear classifier, therefore, vector of weight 𝑤𝑤��⃗  is its concept description and a 

threshold or an intercept, 𝑏𝑏. To make the problem linearly separable, a kernel 

function is used by the SVMs for mapping training data into a higher-dimensioned 

space. To set 𝑤𝑤��⃗  and 𝑏𝑏 that hyperplane’s margin is ideal, quadratic programming 

is used, which means that distance to the closest examples of negative and 

positive classes is maximum from the hyperplane. While running, if 〈𝑤𝑤��⃗  . �⃗�𝑥〉 − 𝑏𝑏 >

0, positive class is predicted and if vice versa negative class is selected by the 

method. However, for larger set of problems, quadratic programming can be 

complex and expensive, whereas, to train SVM efficiently, SMO (Sequential 

Minimal Optimization) is a much better algorithm [110], it computes the 

probability of positive and negative class during execution [111]. For 

performance, we used implementation proposed in [111] for computing each 

class’s probability and then we used positive class’s probability as the rating. We 

used the following linear SVM formula to predict the positive classes:  

𝑡𝑡(𝑥𝑥) =  ∑ 𝜔𝜔𝑛𝑛 𝐾𝐾𝑁𝑁
𝑛𝑛=1 (𝑥𝑥, 𝑥𝑥𝑛𝑛) + 𝜔𝜔0 (1) 

Where 𝑡𝑡(𝑥𝑥) is the class label, which is either +1 (malicious) or -1 (benign), n=1 to 

N represent the sum of sample from 1 to N,  𝜔𝜔𝑛𝑛 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛) is the weight of SVM and 

the kernel dot product and 𝜔𝜔0 is the bias.  

3.3.2.2 Decision Tree 

A decision tree is decision support mechanism with nodes that represent 

attributes and the leaf nodes that represent the class labels. Branches of the tree 
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that lead to children represent the values of the attribute. Values of the attributes 

and those attributes of an instance are used by the performance element to 

navigate in a tree starting from root and leading to leaves or an individual leaf. By 

choosing the attribute that perfectly separates the training samples into their 

appropriate classes, this is how a learning element generates a tree. Node, 

branches, and children are created for the attribute and the value of the attribute, 

the attribute is then eliminated from additional consideration, and the examples 

are distributed to the relevant child node [112]. This process runs in a loop until 

the same class examples are stored in a node and then class label is stored. 

Many implementation of decision trees remove subtrees which are expected to 

perform inaccurately on test samples, which avoids the overtraining of the whole 

algorithm. We have used MATLAB decision tree implementation for training and 

testing. 

3.3.2.3 Boosting 

Boosting is used for combining multiple classifiers to enhance the performance 

as compare to individual classifiers [113]. It uses ensemble methods, which 

significantly increase the overall performance, which has been tested and 

endorsed by many studies [114], [115], [116], [117]. By repetitively learning from 

a weighted dataset of a model, it creates a set of weighted models by assessing, 

and revising the dataset based on the performance of the model. During 

execution of the method, to predict the highest weight class, it uses a set of 

models and their weights. We only applied boosting on decision tree 

implementation, as our initial experiments didn’t show any significance of 
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applying boosting on SVM. We used AdaBoost.M1 algorithm’s [113] 

implementation in MATLAB to boost decision tree. 

3.4 Proposed Framework Design 

In the earlier section, we discussed the anomalies found when malware samples 

were statically analyzed. These anomalies play a vital role when combined to 

detect any previously known or unknown malware. However, relying on just these 

file anomalies is not enough to accurately detect a malicious file or an attack. As 

mentioned earlier, conventional detection techniques used by antiviruses are 

also important, if not sufficient, to differentiate between a legitimate and 

illegitimate file. If a framework is developed, which learns from the data retrieved 

through static analysis and conventional detection mechanisms then it will be 

able to accurately detect any malicious activity even if it was previously unknown. 

Therefore, we propose an intelligent malware detection framework, which 

integrates the mechanism of retrieving features and signatures through static 

analysis with conventional detection techniques used by multiple antiviruses 

along with three quite effective machine learning algorithms. This unique 

combination not only makes the whole process more reliable, it will make the 

detection mechanism more decisive and accurate. 
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Figure 3.5: Proposed Framework Design [112] 

Figure 3.5 presents the design of the proposed framework, which is comprised 

of two main components supported by the repository containing the clean 

malicious files. The analysis module performs static analysis of clean and 

malicious files generating comprehensive reports, which are then used by the 

classification module. The classification module uses machine learning 

algorithms to intelligently differentiate between clean and malicious files [106]. 

3.4.1 The Analysis Module 

The analysis module comprises of the feature extraction tool, which statically 

analyzes portable executable files and generate a comprehensive set of 

heuristics based on the algorithms that are discussed in the later section. 
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3.4.1.1 Preparing a File 

As illustrated in Figure 3.5 in the analysis module once the file is retrieved from 

the repository it is prepared for the analysis, which is extremely important and 

this technique is usually not present in other automated static analysis tools. The 

malicious files that are caught from the wild apparently use multiple obfuscation 

techniques, such techniques divert the analyst attention from the main file by 

placing multiple non-malicious files with garbage data stored in a zipped folder, 

which facilitates in generating ambiguous results if not removed. This, although, 

looks like a trivial step, but it makes the analysis more efficient, reliable and avoid 

any irrelevant analysis reports to be processed and stored in the database. 

3.4.1.2 Extracting Features 

The main function of this module is to perform a comprehensive static analysis 

of individual files by using a specifically designed static analysis tool and extract 

a rich set of features, which are stored in the respective JSON-based files. 

Although, this is the main function of the analysis module and does perform a 

comprehensive analysis but it doesn’t require a lot of resources for doing so. The 

analysis is performed rapidly without the consumption of noticeable amount of 

CPU resources. 

 

Figure 3.6: Obfuscated Part in Extracted Features 
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3.4.1.3 Removing Obfuscation 

The features extracted after the comprehensive analysis contain a lot of 

parameters along with the obfuscated parts embedded in the malicious file, which 

makes it difficult for any analysis tool to identify the relevant features to classify 

a file as malicious or clean. Additionally, if the obfuscated parts are present in the 

feature set of a file then it will complicate the training of the entire classification 

module. The analysis module, after extracting the features from a file, identifies 

the obfuscation and removes it.  Figure 3.6 presents the eradicated piece from 

the analysis report containing the obfuscated part. After removing the obfuscated 

parts, it reorganizes the contents of the JSON file to make it more 

comprehensible and in a proper sequence for later use. 

3.4.2 The Classification Module 

The classification module is a combination of machine learning algorithms 

applied on the large set of feature heuristics generated by the analysis module. 

Following is the sequence of operation of the classification module. 

3.4.2.1 File Retrieval 

The classification module works based on how well the machine learning 

algorithms are trained. The analysis reports of clean and malicious files 

containing their feature heuristics are stored in the analysis repository. Each file 

is retrieved and transferred to the classification part of the project. 

3.4.2.2 Classification Techniques 

This is the primary part of the classification module, which simultaneously runs 

the machine learning algorithms to differentiate between clean and malicious 
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files. The features presented earlier in Figure 3.4, are used to train support vector 

machine, decision tree, and boosting. SVM and decision tree run simultaneously, 

whereas, boosting is applied on decision tree to strengthen the weak classifiers. 

The implementation of these techniques is defined in the later section. 

3.4.2.3 Classification Module Final Verdict 

The final verdict of the classification module is based on the outcome of the 

machine learning algorithms. There are three algorithms using different 

techniques for classification in this module, the consensus from these algorithms 

generates the verdict, which is the final verdict of the entire framework. This 

verdict decides that whether a file is clean or malicious. 

3.5 Modelling the Analysis Module 

This section presents the design and implementation details of the analysis 

module. We will discuss the individual steps that are combined to form this 

module and the algorithms on which each step is based. Table 3.4 presents the 

notation used in the algorithms.   

Table 3.4: Notations used in Algorithms 

Notation Meaning 

𝐹𝐹 Set of all files 

𝑓𝑓 A single file 

𝐹𝐹𝑀𝑀 Dataset containing all malware 
samples 

𝐹𝐹𝐶𝐶 Dataset containing all clean samples 

𝐸𝐸𝐹𝐹𝑀𝑀 Dataset containing analysis reports of 
all malware samples 

𝐸𝐸𝐹𝐹𝐶𝐶 Dataset containing analysis reports of 
all clean samples 
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𝐸𝐸𝐹𝐹𝑐𝑐 Extracted features of a single clean file 

𝐸𝐸𝐹𝐹 Extract features 

𝑓𝑓𝑚𝑚 Single malicious file 

𝑓𝑓𝑐𝑐 Single clean file 

𝐸𝐸𝐹𝐹𝑚𝑚 Extracted features of a single 
malicious file 

𝑂𝑂𝑏𝑏𝐹𝐹𝑚𝑚 Obfuscated elements in extracted 
features 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 Identified malicious features 

𝑓𝑓𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑛𝑛 Identified clean features 

𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 Database of malicious features 

𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝐷𝐷𝐷𝐷 Database of clean features 

𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) Hashes of a file �𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑆𝑆𝐻𝐻𝑆𝑆256, 𝑀𝑀𝑀𝑀5� 

𝑓𝑓(𝐸𝐸𝑥𝑥𝑡𝑡𝑆𝑆𝐸𝐸𝐸𝐸) Function to call external API 

𝐸𝐸𝑥𝑥𝐻𝐻𝑀𝑀𝐻𝐻ℎ𝑚𝑚𝑀𝑀𝑀𝑀 Hashes of malicious file pulled from 
external API �𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑆𝑆𝐻𝐻𝑆𝑆256, 𝑀𝑀𝑀𝑀5� 

𝑆𝑆𝐶𝐶𝑆𝑆𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) Hashes of individual sections in a file 
�𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑀𝑀𝑀𝑀5� 

𝐸𝐸𝐸𝐸(𝑓𝑓) IP addresses present in a file 

𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑚𝑚𝑀𝑀𝑀𝑀 Malicious IP address pulled from 
external API 

𝐸𝐸𝑀𝑀𝑆𝑆𝑃𝑃(𝑓𝑓) Packer used by a file 

𝐸𝐸𝑥𝑥𝐸𝐸𝑀𝑀𝑆𝑆𝑃𝑃𝑚𝑚𝑀𝑀𝑀𝑀 Packer used by malware endorsed by 
external API 

𝐸𝐸𝑥𝑥𝑆𝑆𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  Malicious API identified through 
external API 

𝑆𝑆𝐸𝐸𝐸𝐸(𝑓𝑓) APIs extracted from a file 
�𝑆𝑆𝐶𝐶𝑡𝑡𝑑𝑑𝑏𝑏𝑑𝑑, 𝑆𝑆𝐶𝐶𝑡𝑡𝑖𝑖𝑉𝑉𝑀𝑀, 𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀� 

𝑈𝑈𝑈𝑈𝑈𝑈(𝑓𝑓) URL extracted from a file 

𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝑡𝑡 Compile time 

𝑆𝑆𝐶𝐶𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 Anti-debug API 
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𝑆𝑆𝐶𝐶𝑡𝑡𝑖𝑖𝑣𝑣𝑚𝑚 Anti-VM API 

𝐸𝐸𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 Malicious URL identified through 
external API 

𝐸𝐸𝑥𝑥𝑡𝑡𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 External verdict  

𝐹𝐹𝑖𝑖𝐶𝐶𝑀𝑀𝑀𝑀𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 Final verdict 

 

The analysis module not only extracts features of individual files, it also provides 

a verdict about the legitimacy of each file. The verdict provided by this module is 

based on a thorough process involving an external verdict supported by the 

private API of VirusTotal.com and an internal verdict based on a comprehensive 

decision-making matrix, which is discussed later in this section. There are series 

of different phases that complete this module and conclude the tasks that are 

required from it. Every individual file goes through these phases before it is 

classified as safe or malicious by this module. 

Phase 1: File Retrieval and Feature Extraction 

The whole process of analysis module starts with this phase where the module 

pulls an individual file from the repository. The module is connected to a 

repository that is divided into two separate sub-repositories; one for malicious 

and one for clean files. The module runs simultaneously in two different 

instances; one instance retrieves the malicious files 𝑓𝑓𝑚𝑚 from the malicious 

repository 𝐹𝐹𝑀𝑀 and the other one retrieves the clean files 𝑓𝑓𝑐𝑐 from the clean 

repository 𝐹𝐹𝐶𝐶 as described in Algorithm 1. After every individual file is retrieved, 

a through static analysis is performed and a rich set of features are extracted. 

The extracted features of an individual malicious or clean file 𝐸𝐸𝐹𝐹𝑚𝑚 and 𝐸𝐸𝐹𝐹𝑐𝑐 
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respectively are stored in their respective repository 𝐸𝐸𝐹𝐹𝑀𝑀 and𝐸𝐸𝐹𝐹𝐶𝐶. The extracted 

features of an individual file from any of the two classes contain;        𝐸𝐸𝐹𝐹 ⟵ 

�Hash, lib, IP, packer, secinfo, antidbg, antivm, API, URL�, which are stored as 

individual JSON reports. Many of modern malware samples have include 

obfuscated strings to avoid getting analyzed, if the analysis module finds any 

obfuscated code or strings during analysis, it eliminates it and rearranges the 

whole report for further phases.   

Algorithm 1: Feature Extraction 
Input: Malicious and Clean File 𝒇𝒇𝒎𝒎 and 𝒇𝒇𝒄𝒄 from 𝑭𝑭𝑴𝑴 and 𝑭𝑭𝑪𝑪 

Output: Extracted Features of Malware and Clean files 𝑬𝑬𝑭𝑭𝒎𝒎      

and 𝑬𝑬𝑭𝑭𝒄𝒄 

Procedure: 𝑬𝑬𝑭𝑭𝒎𝒎 in 𝑬𝑬𝑭𝑭𝑴𝑴 && 𝑬𝑬𝑭𝑭𝒄𝒄 in 𝑬𝑬𝑭𝑭𝑪𝑪 

do  

     𝑬𝑬𝑭𝑭 of  𝒇𝒇  in 𝑭𝑭 where  𝑭𝑭 ⟵ {𝑭𝑭𝑴𝑴, 𝑭𝑭𝑪𝑪} 

        𝑬𝑬𝑭𝑭 ⟵ �𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡, 𝐥𝐥𝐥𝐥𝐥𝐥, 𝐈𝐈𝐈𝐈, 𝐩𝐩𝐡𝐡𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩, 𝐡𝐡𝐩𝐩𝐩𝐩𝐥𝐥𝐢𝐢𝐢𝐢𝐢𝐢, 𝐡𝐡𝐢𝐢𝐚𝐚𝐥𝐥𝐝𝐝𝐥𝐥𝐝𝐝, 𝐡𝐡𝐢𝐢𝐚𝐚𝐥𝐥𝐯𝐯𝐯𝐯, 𝐀𝐀𝐈𝐈𝐈𝐈, 𝐔𝐔𝐔𝐔𝐔𝐔� 

 

while  

       𝑭𝑭 count > 0 && 𝑬𝑬𝑭𝑭𝒎𝒎 ∄ 𝑬𝑬𝑭𝑭𝑴𝑴 || 𝑬𝑬𝑭𝑭𝒄𝒄 ∄  𝑬𝑬𝑭𝑭𝑪𝑪            

 

// 𝑬𝑬𝑭𝑭𝒎𝒎 ∄ 𝑬𝑬𝑭𝑭𝑴𝑴 means there is no repition of extracted features 

of a single file 

if     

𝑶𝑶𝑶𝑶𝑭𝑭𝒎𝒎 ∃ 𝑬𝑬𝑭𝑭𝒎𝒎   

 then        

      remove 𝑶𝑶𝑶𝑶𝑭𝑭𝒎𝒎       

        return 𝑬𝑬𝑭𝑭𝒎𝒎 
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Phase 2: Populating Database with Clean and Malicious Features 

After the features are extracted and analysis reports are generated, the next step 

is to identify the clean and malicious features in both the repositories. The 

features are identified by two different techniques; through data already stored in 

𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 containing a rich set of malicious features and with the help of external 

API. The data already stored in the 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷was retrieved through a comprehensive 

analysis of around one million malware samples. The functionalities of this phase 

are also described in Algorithm 2.  

As presented in Algorithm 2, after retrieving the analysis report of each file from 

its respective repository, which contains the extracted features. The algorithm 

matches the individual features by treating them as a separate entity. In this 

specific phase, the module extracts the hashes 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) ⟵ 

{𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑆𝑆𝐻𝐻𝑆𝑆256, 𝑀𝑀𝑀𝑀5} from a single analysis report that is initially checked from 

the local database. If the local database of malicious features does not contain 

the 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) the request is sent to the external API, which returns the request by 

either classifying it as true (malicious) or false (non-malicious). If the request is 

returned with true then the 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) is stored in the 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 and the response is 

sent to the next part of the module, which is responsible for the verdict. If the 

request is returned with a false then the 𝐻𝐻𝑀𝑀𝐻𝐻ℎ(𝑓𝑓) is stored in the 𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝐷𝐷𝐷𝐷. The 

next feature that is checked is ℎ(𝑓𝑓) ⟵ {𝑆𝑆𝐻𝐻𝑆𝑆1, 𝑀𝑀𝑀𝑀5}, which is similarly matched 

end procedure 

 

 



CHAPTER 3 

71 

 

as the previous one as presented in the Algorithm 2. This process is continued 

for three more features 𝐸𝐸𝑀𝑀𝑆𝑆𝑃𝑃(𝑓𝑓), 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇),  where 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ⟵  

�𝑆𝑆𝐶𝐶𝑡𝑡𝑑𝑑𝑏𝑏𝑑𝑑, 𝑆𝑆𝐶𝐶𝑡𝑡𝑖𝑖𝑉𝑉𝑀𝑀, 𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀�, and 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇). Each of these features are separately 

matched with the local and external sources and the results if retrieved from the 

external source are stored in the local database and forwarded to the next phase.  

Algorithm 2: Populating Database of Clean and Malicious Features through 

External API 
Input: 𝑬𝑬𝑭𝑭𝒎𝒎 in 𝑬𝑬𝑭𝑭𝑴𝑴 && 𝑬𝑬𝑭𝑭𝒄𝒄 in 𝑬𝑬𝑭𝑭𝑪𝑪 

Output: 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 in 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝒇𝒇𝒄𝒄𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄 in 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫 

procedure: featureidentification(f) 

pull  𝑬𝑬𝑭𝑭𝒎𝒎 in 𝑬𝑬𝑭𝑭𝑴𝑴 || 𝑬𝑬𝑭𝑭𝒄𝒄 in 𝑬𝑬𝑭𝑭𝑪𝑪 

             

 return 𝑬𝑬𝑭𝑭𝒎𝒎 || 𝑬𝑬𝑭𝑭𝒄𝒄 

Hash Matching 

𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ⟵ {𝑺𝑺𝑯𝑯𝑨𝑨𝑺𝑺, 𝑺𝑺𝑯𝑯𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺, 𝑴𝑴𝑫𝑫𝑺𝑺} 

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨) 

  if  

    𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎 

   then  

    𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 

      else 

    𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫 

     end if 

return 𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) 

Section Matching 

𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) 

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨) 

  if  

    𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎 

       then  

           𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇)  ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 

   else 

       𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫      

return 𝑺𝑺𝒄𝒄𝒄𝒄𝑯𝑯𝒎𝒎𝑯𝑯𝑯𝑯(𝒇𝒇) 

Packer Matching 

 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) 
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𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨) 

   if  

     𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷𝒎𝒎𝒎𝒎𝒎𝒎 

         then 

             𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 

         else  

             𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫 

          end if  

return 𝑨𝑨𝒎𝒎𝒄𝒄𝑷𝑷(𝒇𝒇)  

API Matching 

𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ⟵ �𝑨𝑨𝒄𝒄𝑬𝑬𝒅𝒅𝑶𝑶𝒅𝒅, 𝑨𝑨𝒄𝒄𝑬𝑬𝒊𝒊𝑽𝑽𝑴𝑴, 𝑨𝑨𝑨𝑨𝑨𝑨𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎� 

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨) 

  if 

     𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎 

  then  

     𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 

  else 

      𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫 

  end if 

return 𝑨𝑨𝑨𝑨𝑨𝑨(𝒇𝒇) 

URL Matching 

𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) 

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨) 

  if 

     𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑼𝑼𝑼𝑼𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎 

  then  

     𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 

  else 

      𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫 

  end if 

return 𝑼𝑼𝑼𝑼𝑼𝑼(𝒇𝒇) 

 

IP Matching 

𝑨𝑨𝑨𝑨(𝒇𝒇) 

𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨) 

  if 

     𝑨𝑨𝑨𝑨(𝒇𝒇) ∄ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 && 𝑨𝑨𝑨𝑨(𝒇𝒇) ∃ 𝑬𝑬𝑬𝑬𝑨𝑨𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎 

  then  

     𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 

  else 

      𝑨𝑨𝑨𝑨(𝒇𝒇) ∈ 𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫 
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  end if 

return 𝑨𝑨𝑨𝑨(𝒇𝒇) 

 

Phase 3: The Verdict  

The verdict is the last phase of this module, which basically presents a decision 

on a file that whether it is malicious or clean. The decision taken on the legitimacy 

of a file goes through a rigorous mechanism before it is finalized. This final verdict 

is based on two main conclusions; a) the external and b) the internal or final 

verdict, both decisions follow some defined principles. 

Phase 3.1: The External Verdict 

The external conclusion is based on the report retrieved through the private API 

of VirusTotal.com, which is the accumulated decision of 57 antiviruses but the 

decision that is returned as a response from this external source isn’t always 

100% positive or negative. Therefore, we further added constraints on the 

response from the external source before adding it as a decision in this module. 

According to our constraints, if the response coming back is positive more than 

40% then the module considers it as a positive response, where positive means 

malicious. If the response is less than 40% then the module considers it as a 

negative response. The reason behind setting the threshold to 40% is that on 

many instances antiviruses suffer with high false-positive rates because they 

identify legitimate applications from unknown publishers as malicious and block 

them causing inconvenience for the users. Consequently, not many antiviruses 

make this mistake on similar type of files therefore there is a disagreement 
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between antiviruses over such file types and to avoid high false-positive rate 40% 

threshold level was decided.  

Phase 3.2: The Internal Verdict 

The internal verdict is more rigorous and deals with a larger number of 

parameters based on which the legitimacy of each file is decided. The matrix 

presented in Table 3.5 defines the idea behind the final decision-making process 

of this module that is based on many elements present in the local 𝑴𝑴𝒎𝒎𝒎𝒎𝑫𝑫𝑫𝑫 and 

𝑪𝑪𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝑫𝑫𝑫𝑫. These elements that are primarily part of the analysis reports of 

different files from both the categories are individually considered and 

accumulated in different combinations to finalize the verdict. In 21 out of 33 cases 

final verdict is contradicting with the external verdict, which means that the matrix 

presented in Table 3.5 does not only rely on the outcome of 57 antiviruses and 

consider the rest of parameters used by this decision-making mechanism equally 

important. In the decision-making matrix, “T” (true) means that the file is malicious 

and “F” (false) means that the file is safe. The matrix presented in Table 3.5 uses 

a novel approach of detecting malware with rigorous heuristic matching.  

Table 3.5: Decision Making Matrix for Analysis Module 
 

Hash Lib IP Packer Section Anti_dbg Anti_vm API URL Ext_ver Inter_ver 

Case 

1 

T T T T T T T T T T T 

Case 

2 

F T T T T T T T T T T 

Case 

3 

F F T T T T T T T T T 
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Case 

4 

F F F T T T T T T T T 

Case 

5 

F F F F T T T T T T T 

Case 

6 

F F F F F T T T T T T 

Case 

7 

F F F F F F T T T T T 

Case 

8 

F F F F F F F T T T T 

Case 

9 

F F F F F F F F T T T 

Case 

10 

F F F F F F F F F T F 

Case 

11 

F F F F F F F F F F F 

Case 

12 

T F F F F F F F F F T 

Case 

13 

T T F F F F F F F F T 

Case 

14 

T T T F F F F F F F T 

Case 

15 

T T T T F F F F F F T 

Case 

16 

T T T T T F F F F F T 

Case 

17 

T T T T T T F F F F T 

Case 

18 

T T T T T T T F F F T 
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Case 

19 

T T T T T T T T F F T 

Case 

20 

T T T T T T T T T F T 

Case 

21 

F F F F F F F T T F T 

Case 

22 

F F F F F F T T T F T 

Case 

23 

F F F F F T T T T F T 

Case 

24 

F F F F T T T T T F T 

Case 

25 

F F F T T T T T T F T 

Case 

26 

F F T T T T T T T F T 

Case 

27 

F T T T T T T T T F T 

Case 

28 

F F F T F F F F F T F 

Case 

29 

F F F T F T T F F T F 

Case 

30 

F T F T T F F F F T F 

Case 

31 

F T F T T T T F F F F 

Case 

32 

F F T F F F F T T F T 

Case 

33 

F F T F F F F F F F T 
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3.6 Evaluating the Analysis Module 

We initially evaluated the analysis module to separately identify its malware 

detection capabilities. In this evaluation, we also compared the results of the 

analysis module with the 57 antiviruses used by Virustotal.com by using the same 

dataset for both. Separately evaluating the analysis module and comparing it with 

conventional malware detection techniques will not only endorse the level of 

competence of the proposed framework on the modular level, it will also highlight 

the possible weaknesses that can be eliminated in the classification module. 

3.6.1 Data Collection and Experiment Environment 

The data for this research consisted of 150000 malicious files and 87000 benign 

executables of Windows PE format. The benign executables were retrieved from 

fresh installation of Windows 7, Windows 8, Windows 10, Windows Server 2008, 

and Windows Server 2012. The malicious files present in the malware repository 

were obtained from our industrial partner Nettitude, which was a combination of 

different malware types. The distribution of both type of files is presented in Table 

3.6. 

Table 3.6: Distribution of Benign and Malicious Files 

1 Benign  87000 

2 Malicious 150000 
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Figure 3.7: Malware Distribution in the Repository 

The experiment environment was like the one discussed in the earlier part of this 

chapter, also presented in Table 3.7, but this time instead of using a standard 

static analysis tool, we tested the entire analysis module equipped with a 

customized and fully automated analysis tool with decision-making mechanism. 

The dataset was smaller than the one used in the initial experiment but it was 

comprised of unique and more recent samples. The dataset used in this set of 

experiments comprised of both malicious and clean files stored in their respective 

repositories. Figure 3.7 presents types of malware used in the experiments and 

their weightage in the dataset. The main idea behind this experiment was to 

evaluate the level of accuracy of the analysis module while it differentiates 

between clean and malicious files. 
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Table 3.7: Test Bench Details 

Tool/Machine Details 

Host Machine Dell PowerEdge T630 Xeon E5-2609V4 1.7GHz 32GB 

RAM 1TB HDD 5U Tower Server  

Operating System Ubuntu 14.04 LTS, 64 bit 

Static Analysis Tool Automated Analysis Module with feature identification 

and decision-making mechanism 

Total Number of 

Samples 

237000 (combined; benign + malicious) 

 

3.6.2 Experiment Results and Analysis 

The experiments performed by testing 237000 files against the analysis module 

returned some remarkable results. The results achieved form this experiment 

helped to evaluate two techniques by using a dataset of clean and malicious files. 

The results show the effectiveness of the analysis module for detection of 

malicious files, it also evaluates the effectiveness of conventional detection 

techniques used by antiviruses. As discussed earlier, the results received from 

the detection module are a combination of conventional detection techniques, 

thorough static analysis, and a decision-making matrix. The experiments 

performed, help to compare the results of both the techniques and identify the 

difference between their overall performances. The results discussed in the 

subsections are divided into two main categories; 1) the analysis module and 2) 
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antiviruses, the results shown under the label of antiviruses present the average 

reports of 57 antiviruses that are implemented by virustotal.com. 

3.6.2.1 Understanding the Test on a Single File 

This section discusses the analysis report of single files from both the categories. 

We performed the analysis on both malicious and clean files simultaneously and 

analysed the initial results to understand and evaluate the outcome and 

performance of our approach.  Table 3.8 and Table 3.9 present the analysis 

report for individual malicious and clean files respectively, which explains the 

parameters used and their significance in the decision-making process. Both 

these tables show the 𝐸𝐸𝑥𝑥𝑡𝑡𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 and the rest of the parameters that are integrated 

based on the rules defined in the decision-making matrix to formulate the 

𝐸𝐸𝐶𝐶𝑡𝑡𝐶𝐶𝐼𝐼𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑. The report of a single malicious file has a combination of outcomes 

present in green and red but the 𝐸𝐸𝐶𝐶𝑡𝑡𝐶𝐶𝐼𝐼𝑣𝑣𝑐𝑐𝑣𝑣𝑑𝑑 is malicious, which means that the 

𝑈𝑈𝑈𝑈𝑈𝑈(𝑓𝑓) classified as malicious by the internal analysis based on the database of 

malicious URLs is not present as a malicious URL in the database of external 

source or not present in its database at all.  This show the combination of both 

the approaches and the difference it makes while deciding on the legitimacy of 

each analysed file. 
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Table 3.8: Analysis Report of a Single Malicious File 
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Table 3.9: Analysis Report of a Clean File
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3.6.2.2 Comparing Malware Detection Performance of the Analysis Module and 

Antiviruses 

In this section, we thoroughly discuss and compare the performance of the 

analysis module proposed and implemented in this study with the conventional 

detection techniques from different aspects. The main objective was to design a 

method that uses the conventional detection techniques and introduce additional 

techniques that could enhance the overall detection rate. The comparison 

presented in Figure 3.8 illustrate the significant difference between the detection 

rate of the analysis module and the detection rate of antiviruses. The difference 

of 23.7% between the two approaches highlights the proof of performance 

enhancements in the analysis module, which detected 87.3% of the 150000 

unique malware samples. This not just proves that the analysis module has a 

higher detection rate as compared to the conventional techniques, it also makes 

it more precise. 

The evaluations are performed based on the following equations:  

False Positive Rate (FPR): negative samples classified as positive. 

FPR = FPTN
FP
+          

Recall/ True Positive Rate: actual positive samples detected.  

Recall =    FNTP
TP
+          

Precision/ Positive Predictive Value (PPV): actual positive samples for all the 

positive detections.  
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Precision/ PPV =  FPTP
TP
+           

Accuracy: a measure of the true detections. 

Accuracy (ACC) = FNFPTNTP
TNTP

+++
+

       

 

 

Figure 3.8: Detection Rate Comparison between Analysis Module and 

Antiviruses 

Results presented in Figure 3.9 compare the difference between the two 

approaches in terms of TP, TN, FP, and FN. The figure identifies that apart from 

the true positive rate of both the approaches, the analysis module has higher 

accuracy in identifying the benign files as non-malicious with a 6% higher rate. 

The FP and FN comparison also shows a higher level of accuracy by the 

proposed approach. 
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Figure 3.9: TP, TN, FP, FN Comparison 

 

Figure 3.10: Accuracy, Precision, and Recall Comparison of both Approaches 
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Figure 3.11: Comparison of Detection Rate with Respect to Malware Types 

The comparison of results presented in Figure 3.8, Figure 3.9, Figure 3.10, and 

Figure 3.11 illustrate the outcomes of both the approaches and identifies efficacy 

of the analysis module. In Figure 3.11, we have presented detection rate with 

respect to different malware types that were present in the repository. This 

comparison presents an interesting set of numbers, which shows the 

weaknesses of conventional techniques and strengths of our approach in specific 

areas. The antiviruses result show that they perform comparatively well while 

detecting some specific types of malware such as; spyware and worm. However, 

the conventional approach didn’t perform well while detecting viruses, 

downloader, and trojan. Trojans are in majority in our repository and in the wild, 

however, antiviruses combined were only able to detect 59% of these files, 

whereas, the analysis module detected 87% of trojans. This difference of 22% in 
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detecting trojan is significant and demonstrate the strengths of the proposed 

module.  

As discussed earlier, the analysis module is combination of conventional 

detection techniques and a decision-making matrix. The decision-making matrix 

calculates the final verdict based on the parameters generated through 

comprehensive static analysis and external API, which gives the verdict of 57 

antiviruses. The difference in performance of commercial antiviruses and the 

analysis module shows the effectiveness of the decision-making matrix. The 

decision-making matrix has not only enhanced the overall detection rate, it has 

also enhanced the level of accuracy in detecting different types of malware. 

However, if the numbers in Figure 3.8, Figure 3.9, and Figure 3.10 are compared 

and analysed, it is understandable that although the performance is much better 

as compared to the conventional technique, the analysis module doesn’t have 

the optimal output. The 9% and 12% false positive and negative are still quite 

high if real world scenarios such as enterprise networks are considered. To lower 

the numbers of false positives and negatives and further enhance the positive 

detection, it is required to add a layer that could use a different type of scrutinizing 

procedure. 

3.7 Evaluating the Framework 

Previous sections present the details of architecture and methodology of the 

approach we have proposed in this research. In this section, we present the 

observations of multiple experiments performed to evaluate the methodology 

proposed. We performed four different experiments on a standard experimental 
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design to help us evaluate the methodology from different aspects. In our first 

experiments, we used a smaller dataset of both benign and malicious 

executables and applied all the classification techniques. In the second 

experiments, we used a larger dataset to apply the classification techniques to 

monitor the enhancement in the detection rate. In the third experiment, we 

introduced obfuscated malicious files that are previously unknown and make the 

overall dataset much larger, which allowed us to observe the performance of the 

classification techniques against a much difficult dataset. The fourth experiment 

was performed on real-time data where we left the system running for more than 

two months. 

3.7.1 Experimental Design 

To validate the classification techniques used in this framework and generate 

unbiased classification reports, we implemented stratified ten-fold cross-

validation. The cross-validation technique assesses the predictive models by 

distributing the dataset of samples into two sets; one for training and one for 

testing. This technique is executed based on K-folds and the original sample is 

divided into K size subsamples. Out of these K size subsets, one of the subset is 

kept for testing and K-1 subsets are used for training purpose. The whole process 

of cross-validation is reiterated K times to ensure that each of the subset is used 

exactly once as a testing set. The results after the process are then accumulated 

and averaged to calculate a final estimation. The main benefit of this technique 

is that all the samples are used for both training and testing processes and each 

of the sample is used for testing exactly once, which removes any chances of 

biased calculation and validates the predictive model rigorously.  
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To further evaluate the model, we used a formal analysis technique known as 

ROC (Receiver Operating Characteristic) analysis [118], which presented the 

true-positive rate of the model against the false positive rate. 
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3.7.1.1 Small Dataset 

 

Figure 3.12: ROC curves for malware classification from a small dataset 

 

 

 

Table 3.10: Result of applying classification techniques on extracted features of 

a smaller dataset 

Method Area Under Curve (AUC) 

Decision Tree 0.9708 

SVM 0.9727 

Boosting 0.9747 

 

 

 



CHAPTER 3 

91 

 

3.7.1.2 Large Dataset 

 

Figure 3.13: ROC Curves ROC curves for malware classification from a Large 

Dataset 

 

 

Table 3.11: Result of applying classification techniques on extracted features of 

a large dataset 

Method Area Under Curve (AUC) 

Decision Tree  0.9775 

SVM 0.9896 

Boosting 0.9969 
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3.7.1.3 Obfuscated Dataset 

 

Figure 3.14: ROC curves for malware classification from Obfuscated Dataset 

 

 

Table 3.12: Result of applying classification techniques on extracted features of 

a obfuscated dataset 

Method Area Under Curve (AUC) 

Decision Tree  0.9740 

SVM  0.9823 

Boosting  0.9910 
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3.7.1.4 Real-Time Detection 

 

Figure 3.15: ROC curves for malware classification from Real-Time Detection 

 

 

Table 3.13: Result of applying classification techniques on extracted features 

from real-time detection 

Method Area Under Curve (AUC) 

Decision Tree AUC1 0.9765 

SVM AUC 0.9892 

Boosting AUC2 0.9963 
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3.7.2 Discussion 

We performed four different experiments to evaluate the performance of our 

framework. The results presented in the previous section prove that the 

classification methodology proposed in this chapter satisfy the initial hypothesis 

of accurate malware detection. The first experiment tested the framework with a 

smaller dataset to understand the effectiveness of the overall approach.  

After extracting the features, all the parameters required to perform the 

experiments were achieved. We separated a set of 500 files from each category 

to conduct the initial experiment by starting with ten-fold cross-validation and then 

applying classification techniques. The ROC curves of this experiment are 

presented in Figure 3.12 and the areas under curves are presented in Table 3.10. 

It can be observed from the table that applying boosting on Decision Tree 

enhance the outcome. Decision tree achieved an AUC of 0.9708 while SVM and 

boosting achieved 0.9727 and 0.9747 respectively. The experiment performed 

on the small sample of clean and malicious files gave a satisfactory output 

considering the learning samples were just 500, which shows that the 

classification techniques proposed in this research have the potential to perform 

much better if they are well trained with higher number of samples.  

The results achieved from the experiments performed on the smaller dataset 

were satisfactory, but not better than the similar experiments performed by [85], 

[93], which achieved a better AUC as compare to our approach. However, the 

reason our initial experiment lack better AUC was the scarcity in training and 

testing dataset, which required a higher number of features for training. This was 

proved in the second experiment performed on a large dataset.  
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The results of second experiment presented in Figure 3.13 and Table 3.11 show 

remarkable improvement over the previous experiment and comparing to [93], 

[85]. SVM achieved a better rate than decision tree but the implementation of 

boosting on decision tree significantly enhanced the performance by producing a 

much higher detection rate. As discussed earlier, boosting can enhance the 

performance of unstable classifiers by decreasing their variance and bias but it 

can work inversely on stable classifiers [113], which is why we only applied 

boosting on decision tree and not on SVM.  

Our experimental results prove that the proposed methodology can scale in 

performance on a larger set of files. The training and testing performed on larger 

dataset was extremely rigorous because of the feature set and techniques used, 

which also proved that modern obfuscated malware can also be identified with 

accuracy, as illustrated in Figure 3.14 and Table 3.12, presenting the result of 

applying techniques on obfuscated dataset. Evaluating classification 

methodologies based on machine learning against obfuscated and mutated 

dataset has not been performed by [93], [85] and many studies [109], [91], [90], 

[119], [120], [102], [121]. This also shows the versatility of our approach and its 

application on dealing with multiple security threats and can identify not just 

known but it can also predict unknown threats accurately.  

To evaluate the methodology against live threats, we left the entire system 

running for more than four months. The main objective behind this experiment 

was to evaluate the framework against live and unknown threats. The proposed 

methodology showed extremely good results outperforming [93], in their similar 

experiments of real-time detection of malware. The proposed framework 
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achieved a highest of 0.9963 AUC from boosting, followed by 0.9892 and 0.9765 

from SVM and decision tree respectively, as presented in Figure 3.15 and Table 

3.13. 
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CHAPTER 4. AN ENERGY EFFICIENT HOSTING MODEL FOR THE 

MALWARE DETECTION FRAMEWORK 

4.1 Introduction 

In the current era of technology, securing an enterprise network or even an 

individual computer against different types of advance malware attacks is 

becoming extremely resource intensive [122]. If an enterprise is willing to spend 

a lot of resources to acquire tools and licenses for sophisticated network 

monitoring and protection then surely, they can enhance the level of security of 

their organizational network but at the same time such tools require a serious 

amount of resources, such as; dedicated servers, network bandwidth, continuous 

log management, trained human resources, etc [122], [123]. Similarly, a common 

user faces the similar type of threats on a smaller scale that are much difficult to 

identify. Such users can only acquire a license or subscription for an antivirus to 

protect personal data and other digital valuables against sophisticated attacks 

[124].   

When it comes to higher security performance versus resource efficiency, there 

is always a tradeoff but the most important aspect of such scenario is how the 

impact of that tradeoff can be minimized. In the previous chapter, we discussed 

the malware detection capabilities of antiviruses and their effectiveness in the 

case of a malware attack. Another thing that is pivotal in this scenario is the 

impact of antiviruses on the host computers. Lack of malware detection 

capabilities is not the only problem in antiviruses, while scanning the host 

computers for malicious software these security software consume a significant 
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amount of CPU resources of the host machines. Operating systems give priority 

to antiviruses to perform their tasks and while doing so the OS is left with fewer 

resources, which makes the system vulnerable against several different threats. 

This means that not only the conventional security mechanism has a weak 

scanning outcome, it also implies that while performing a scan the antivirus is 

making the host system more vulnerable against several different threats.  

The framework proposed in the previous chapter proves the initial hypothesis of 

enhanced accuracy in malware detection but the framework only solves half of 

the problem. To make the framework a complete solution that can replace 

conventional detection tools and techniques a hosting model is required that can 

cater the operational needs of the proposed framework. The primary objective 

while designing the hosting model was to use an approach which is less resource 

intensive and highly responsive, especially in a real-time scenario.  The hosting 

model should be able to distribute the resource intensive tasks in an efficient way 

that would avoid burdening the host computer.  

The approach discussed in this chapter is an amalgamation of different cloud-

based services. In this approach, we present a comprehensive cloud-based 

architecture to host the intelligent malware detection framework discussed in the 

previous chapter along with a lightweight client powered by a rich engine running 

the malware detection framework. The client agent works as service, which 

replicates some of the main services of the framework for independent malware 

detection. 

In the following sections of this chapter, we have evaluated conventional 

antiviruses followed by the description of the building blocks used to design and 
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implement the hosting model. After building blocks, design and implementation 

of the hosting model is presented, which is followed by the deployment of the 

malware detection framework on the hosting model. The next section presents a 

thorough discussion on the performance evaluation of both aspects of the hosting 

model, which is then compared by similar evaluation performed on conventional 

antiviruses.  

4.2 Evaluation of Conventional Antiviruses CPU Utilization 

It is important to evaluate the performance of current security mechanisms, 

specifically antiviruses, before presenting a solution. Majority of antiviruses 

currently leading the industry are host based, which means that they perform their 

signature generation, comparison, storage, and other resource intensive tasks 

on the host machine. Even the antiviruses that claim to be cloud-based perform 

some of the resource intensive tasks on the clients’ computers. We selected 

eleven mostly used antiviruses and evaluated them against the repository of 

clean and malicious files to identify their CPU utilization. The experiment lasted 

for five hours, same dataset was used for all antiviruses evaluated, and 

antiviruses were running on 11 separate computers [18].   
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Figure 4.1: Evaluation Graph of 11 Antiviruses 
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The graph presented in Figure 4.1 [18] illustrates the comparison of antiviruses 

while running on scan mode continuously for five hours. The graph represents 

the averages of CPU consumption recorded from all eleven machines every thirty 

minutes. It is quite clear from the comparison that the antiviruses most commonly 

used in industry and personal computers have one of the highest CPU 

consumption in scan modes regardless of their malware detection statistics, 

which are not impressive as well. Antiviruses such as McAfee, Norton, 

Kaspersky, and Bitdefender have one of the highest CPU utilization average, 

which means that while the scan is running the host computer is only left with half 

the resources it originally has. The reason why the evaluation experiments lasted 

for five hours was because we wanted to check whether the CPU utilization 

decreases after the scan is continuously running but there was no noticeable 

change recorded. The antiviruses that claim to rely on their cloud-based engines, 

such as; Panda and Webroot, utilized more than 20% of the CPU in the scan 

mode.  

The evaluation of antiviruses based on the amount of CPU resources they utilize 

reveals that low malware detection rate of antiviruses is not the only issue. The 

framework proposed and discussed in the previous chapter requires a hosting 

model that can overcome the issue of significantly high CPU utilization while 

satisfying all the operational requirements of the framework including the real-

time operational requirements of the framework. 
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4.3 Building Blocks Overview 

As discussed in the earlier section, the approach proposed later in this chapter is 

an amalgamation of different services of cloud infrastructure. We have used 

different cloud services offered by Amazon to design a thorough and scalable 

architecture to host the intelligent malware detection framework. Before 

discussing the design and implementation details of the said architecture, it is 

important to discuss the building blocks used in the proposed architecture. This 

section presents an overview of the building blocks used in this architecture. 

4.3.1 Amazon Web Services 

In this section, we are going to discuss the cloud-based web services we have 

used from Amazon in the proposed architecture. We have used multiple 

instances of three different cloud-based web services and connected them to 

design a cloud-based scalable network capable of hosting and executing 

resource intensive tasks. Following is the description of services we have used: 

4.3.1.1 SQS (Simple Queuing Service) 

Amazon SQS is a purpose-built service for message queues, fully managed by 

Amazon. It works flawlessly between different distributed applications and micro 

servers. Amazon’s SQS has elastic capabilities that allow the queues to 

dynamically scale up or down based on system’s overall requirements [125]. SQS 

allows client application or software components to send, receive, and store 

messages between multiple components without losing any messages or 

needing other connected services to be consistently available throughout [126]. 

This queuing service transports messages with embedded jobs, allowing 
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software components to trigger different functionalities through messages, 

making a distributed system work as a single, well synchronized software 

component. One of the main concerns in queue-based task processing is the 

execution of duplicated messages [127]. SQS FIFO queues are specifically 

designed and configured to ensure at-most-once message processing, with very 

limited throughput and in the same order as delivered. We have used SQS to 

implement the queuing mechanism in the architecture, explained in the later 

section. 

4.3.1.2 EC2 (Elastic Compute Cloud) 

Amazon EC2 is a cloud-based service that offers dynamically resizable 

computing space in the cloud. EC2 is a platform providing virtual dedicated-

server hosting that runs instances of virtual machines also known as AMIs 

(Amazon Machine Images). Amazon offers a rich group of virtual machines 

preconfigured for several different tasks, such as; Ubuntu desktop, Ubuntu 

server, Windows server, etc. [127], [125]. Apart from the virtual machines, the 

primary function of EC2 is the computing platform for the VMs. Amazon offers 

hosting services with different sizes of computing and storage. The size of 

storage and computing can be selected based on the requirements of the hosted 

applications. The most beneficial aspect of EC2 is its elasticity, which allows the 

specific compute plan to dynamically scale if required allowing the hosted 

application to expand in size, network bandwidth, and computing power without 

any hindrance [128]. It uses pay-as-you-go approach and cost the user only for 

the time the service was up and running. Apart from the elasticity benefit, EC2 is 
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extremely quick to setup and launch, it also offers facilities to implement fault 

tolerant mechanism and applications that are resilient to failure [129], [127]. 

4.3.1.3 EFS (Elastic File System) 

As the name suggests, EFS is a file system service with elastic features, which 

offers simple and scalable file storage service. EFS is specifically designed to be 

integrated with EC2 instances to work as a single cloud application [130]. EFS is 

one of the most convenient file system in the cloud and can easily be mounted 

with multiple cloud-based applications. If there is an application hosted on EC2 

and EFS is mounted on that instance, it’ll offer a standard interface for file system 

and access semantics for file system. This allows seamless integration of this file 

system with existing tools and applications. Moreover, a single EFS can be linked 

with multiple applications on EC2 instances or single application on multiple EC2 

instances, allowing a common data source to cater the needs of distributed 

applications [131]. The elastic file system can also be linked with the local 

datacenter that are not linked with the cloud, which can also be used to 

conveniently migrate large data sets to the cloud. The versatility of this service 

allows it to be used for a broader domain range, such as; web applications, media 

processing, enterprise applications and services, big data and analytics, data 

storage, etc. [132]. 

4.4 The Hosting Model 

The idea of developing a framework that implements multiple techniques to 

detect malware and integrates their result to enhance the accuracy in detection 

and consumes significantly less CPU and network resources while doing so, is 

incomplete without a hosting model. The concept of energy efficiency is 
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dependent on how the framework is hosted and the level of its scalability. This 

section presents a cloud-based hosting model, which is not only able to host the 

framework discussed in the previous chapter, it possesses a dynamic behavior 

allowing it to scale itself in runtime without affecting the performance of hosted 

framework. To design and configure the hosting model proposed in this section, 

we have used Amazon’s cloud infrastructure along with its web services. Before 

discussing the model, it is important to understand hosting requirements of the 

malware detection framework.  

The malware detection framework is comprised of three main modules that are 

further divided into submodules and have their separate requirements when it 

comes to hosting them. Following subsections define the individual requirements 

of each module:  

4.4.1 Repository 

The first module in the framework is the repository, the repository is further 

divided into three submodules; clean files repository, malicious files repository, 

and the analysis repository. As the name suggest, all three of these submodules 

store different type of files that are later used by other modules. As mentioned in 

the previous chapter, the clean and malicious files repositories contain clean and 

malicious files respectively, which are later analyzed. After regular intervals, 

these sub-repositories are populated by a new batch of hundreds of thousands 

of new clean and malicious files stored in their respective repositories. Moreover, 

the analysis repository contains the analysis reports of every clean and malicious 

file separately, with each batch of clean and malicious files stored in the 

repository the same amount of analysis reports is stored in the analysis 
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repository, once the analysis is performed. Therefore, to host such a mechanism, 

a large and secure filesystem is required, however, these repositories not always 

require a huge storage space. The storage is only required when the files are 

present in the repository and once the analysis is performed on all stored files, 

they are not required to be stored. Consequently, having a dedicated large 

storage is not feasible for such mechanism and requires something that is 

available on-demand with high reliability. 

4.4.2 Analysis Module 

Analysis module is the first line of defense while identifying a malware and runs 

a customized tool, which retrieve files from repositories, prepares them to be 

analyzed, extract rich set of features by performing analysis, and removes any 

obfuscation present in the extracted features. Analysis module extract features 

from both clean and malicious files simultaneously, therefore, two instances of 

this module need to be operational concurrently. As discussed in the previous 

chapter, the main detection process starts from this module, which means the 

next module is dependent on the outcome of analysis module. Moreover, the 

customized analysis tool running in this module also incorporates external APIs 

to get endorsement on some of the results from external sources, which means 

that there is a requirement of internet connectivity. Based on these requirements, 

the analysis module requires dual instances of a similar server along with reliable 

internet connection. It also requires flexible but reliable system resources, which 

means that the CPU power and memory should be readily available for the 

module but only when required. These resources are only required when the 

analysis module is running and it only runs when there is a new batch of clean 
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and malicious files in the repository or a single file identification is required. 

Therefore, when the analysis module is running the requirements should be 

fulfilled but when it’s not running the hosting platform should be intelligent enough 

to manage the resources. 

4.4.3 The Classification Module 

The classification module is the final phase of the framework and it’s a 

combination of different machine learning algorithms that are applied on the 

analysis reports produced by the analysis module to enhance the level of 

accuracy while identifying clean and malicious files. This module is linked with 

the analysis module through the analysis repository, which is the submodule of 

repository module. Moreover, the machine learning algorithms in the 

classification module run simultaneously to produce the accurate malware and 

benign file identification, which means that dedicated resources are required for 

this module. As discussed in the previous chapter, this module as two aspects 

while operational; first it uses the reports generated from the analysis of large 

number of clean and malicious files to train and test the accuracy of algorithms, 

and secondly it identifies the individual files analyzed separately. This whole 

process with both the aspects is recursive and continuously repeats itself in 

cycles. Therefore, like the analysis module, the classification module also 

requires a hosting platform that is dynamically scalable, cost effective, fault 

tolerant, easily coupled with the other modules.  

The hosting requirements of three main modules of the intelligent malware 

detection framework discussed above clearly highlight the primary needs, which 

will make the framework seamlessly coherent and efficient in terms of 



CHAPTER 4 

108 

 

performance. There are certain unique and some common requirements for each 

of these modules, the most important things in these set of requirements is that 

all these modules are required to work together as a single unit, two out of the 

three main modules require internet connectivity, and the scalability of resources. 

These main requirements, along with the other requirements discussed above 

are specifically considered when designing the architecture of the hosting model. 

4.4.4 System Architecture 

This section presents the architecture of the hosting mechanism, specifically 

design for the intelligent malware detection framework. It caters for the needs of 

every individual module of the framework, identified and discussed in the 

previous chapter and provide the most relevant and reliable mechanism. We 

have used AWS (Amazon Web Services), the cloud platform of Amazon to design 

the hosting mechanism. As discussed in the previous section, the framework 

might require flexible storage and computing resources that can dynamically 

scale up and down along with internet connectivity to connect with external APIs 

used in the framework. Amazon provides cloud services that are extremely 

relevant in this scenario and are convenient when it comes to scalability. Earlier 

in this chapter, we discussed the building blocks that we have used to design the 

hosting model, we now discuss how we have used those building blocks. 

The three building blocks discussed earlier are combined to build this hosting 

model. There are two phases in proposing this architecture; we first discuss the 

design and implementation of this model, and in the second phase we deployed 

the framework on the model designed. The model is based on a client/server 
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architecture and in this scenario server is the primary component because only 

this component hosts the framework. 

4.4.4.1 Server 

Figure 4.2 presents the high level of architecture of the hosting model, which 

illustrate the components of Amazon’s cloud computing platform that are linked 

together to host the complete framework. Each unique component of the cloud 

platform is expected to host one or more components of the malware detection 

framework. The three components of AWS; SQS, EC2, EFS host queues, 

detection engine, and repositories respectively. The framework presented in the 

previous chapter in Figure 3.5, supposedly doesn’t require any queues but to 

implement the framework to be used and evaluated in real-time, it is required that 

the framework should be able to receive requests and send responds to either 

local or remote clients. To make the hosting model efficient in terms of 

performance, we introduced queues to manage the large number of requests 

coming from multiple client, allowing the hosting model to be scalable 

dynamically. There are multiple queues presented in Figure 4.2 [106], which 

illustrate the dynamic behavior of the hosting model. The first three queues from 

Q1 to Qn are the request queues and R is the response Q, which makes the 

overall queues four. However, if there is only one remote client connected to this 

cloud-based framework then there are only two queues one for request and one 

for response. The architecture is designed to be dynamically scalable and can 

cater many clients without manually changing anything in the hosting model. 

Therefore, if the number of clients trying to couple with the framework hosted on 
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the cloud hosting model, the number of queues will dynamically increase based 

on the number of requests sent by the clients.  

 

Figure 4.2: High Level Architecture 

The analysis and classification modules are hosted on Amazon’s EC2, which is 

mentioned as the detection engine in Figure 4.2. The high-level architecture in 

Figure 4.2, also presents multiple detection engines. Similar to the queues, for a 

single client, one detection engine is enough and even if the single client is 

continuously sending a large amount of requests that might exceed the 

bandwidth quota initially allotted to the SQS and EC2, the initial bandwidth quota 

will dynamically increase without any latency in the service and will subsequently 

be reduced to the initial level when the number of requests will reduce. Similarly, 
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if the number of clients increase significantly, the number of detection engines 

will also increase dynamically.  

There are three repositories in the framework; clean files repository, malicious 

files repository, and analysis repository. All these repositories are held separately 

in a single repository hosted on Amazon’s EFS. The elastic file system, as the 

name suggests, can expand and contract as required based on the number of 

files stored. The requirements of these repositories vary based on the number of 

files stored and don’t always require huge storage capacity on the cloud-based 

storage that why EFS is a perfect choice. Unlike, detection engine and queues, 

repositories don’t require multiple instances if number of clients, or requests 

increase even significantly. Repositories are used just to store and retrieve 

clean/malicious files and their analysis reports and don’t require computation.  

There are two different operational aspects of the intelligent malware detection 

framework; in the first one, it uses a large sum clean and malicious files to 

generate analysis reports and that are used to train and test the machine learning 

algorithms, in the second one, a single file is sent to the framework to get 

identified as clean or malicious. The hosting model accommodates both these 

aspects by using a combination of different building blocks.  

In the first aspect of the framework, as depicted in Figure 4.3, the analysis module 

retrieves the clean and malicious files from the respective repositories and 

generate analysis reports for every file analyzed. In this phase, there is a 

requirement for the analysis module to be running on two active instances 

simultaneously, allowing the module to process clean and malicious files in a 

segregated environment with a much rapid pace. In this aspect, there are 
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hundreds of thousands of files in each repository and to make the process 

efficient, two active instances of this module are required. As discussed earlier, 

Amazon’s EC2 is used to host the detection engine, which contain both analysis 

and classification modules. However, the lower level architecture of the first 

aspect in Figure 4.3 illustrate both the module separately to elaborate their 

individual functionalities.  

 

Figure 4.3: Low Level Architecture of First Aspect 

EC2-based analysis modules for both clean and malicious files retrieve the files 

from the respective repositories simultaneously to perform the thorough analysis. 

Each of these instances of the analysis modules also seek help from a third-party 

private API of Virustotal.com to get endorsement on some of its results. Once the 

analysis is complete, the analysis report generated by the clean or malicious 

analysis module is stored in the respective analysis repository. After all files in 
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both repositories are analyzed, the classification module is triggered and uses 

the extracted features in the analysis reports to train and test the machine 

learning algorithms. Once the cycle of training and testing is complete, the 

classification module becomes fully trained to be used in real-time malware 

detection, details of which are discussed in the previous chapter.  

 

Figure 4.4: Low Level Architecture of Second Aspect 

In the second aspect of the framework, the main objective is to identify the 

malicious software in the client. The lightweight agent running on the client’s 

computer sends the suspicious file to the cloud-based server running the 

framework. The request is received by the queue system hosted on SQS, which 

organizes the messages from the clients on FIFO bases and send it to the 

available detection engine. If there is only one detection engine running, then the 

queuing system doesn’t need to prioritize. Once the message, which contains the 
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suspicious file, is received by the detection engine. The file is first treated by the 

analysis module as shown in Figure 4.4 where a thorough analysis is performed 

and assisted by the external API and a preliminary decision is made and the 

analysis report is submitted to the analysis repository, as discussed in the 

previous chapter. If required, the control is then transferred to the classification 

module that uses the machine learning algorithms fully trained in the first aspect 

and classify the file as malicious or benign. Once the decision is made the 

response is sent to the response queue, which sends it to the client. The request 

message sent from the client contains unique client ID along with a unique 

message ID, which is used by the response queues to identify the corresponding 

client. These IDs are also used when the analysis report is submitted and 

retrieved to and from the analysis repository.  

Both these aspects discussed above are part of the same architectural setting, 

the difference illustrated in Figure 4.3 and Figure 4.4 shows how the same cloud-

based components are used differently to fulfil the tasks required by two aspects 

of the intelligent malware detection framework. 

4.4.4.2 Client 

Another module in this architecture is the client module that triggers the second 

aspect of the framework. The client module in this architecture is a simple and 

lightweight agent that works as a service in the client’s system. Unlike 

conventional antiviruses, this lightweight agent is only comprised of four main 

components; a browser extension, process monitor, local cache, and file scanner. 

All four of these components work as a coherent unit and identify suspicious files 

with the help of local cache, requiring quite small amount of CPU resources of 
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the host system. The three components of this module; browser extension, 

process monitor, and file scanner search for files. Local cache is populated with 

the brief information of files, such as; signatures and basic heuristics, which are 

already analyzed by the server in the first aspect. This brief information of clean 

and malicious files helps the lightweight to decide about file’s legitimacy locally, 

without sending the file to the server. Browser extension monitors any file user or 

software is trying to download and checks in the local cache if it is a malicious or 

benign file. If the file is present in the cache as malicious it is straightaway 

blocked, if the file is not present in the local cache, it is sent to the server module 

for further analysis and classification. Process monitor checks all the processes 

currently active and match their IDs against the local cache of malicious files and 

simultaneously sends it to the server for further verification. File scanner scan the 

existing files and follow the same procedure of local identification and then server 

identification. The main reason the client module is lightweight and doesn’t 

require a lot of host machine CPU and storage resources is because it doesn’t 

decompress or emulate the files locally and the signatures and heuristics are not 

stored locally in a descriptive format. 

4.5 Framework Deployment 

In the previous section, we discussed the proposed architecture to host the 

intelligent malware detection framework. In this section, we deploy the complete 

framework on the proposed cloud architecture as discussed above and evaluate 
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the overall performance.  

 

Figure 4.5: Amazon Linux AMI 

We chose Amazon Linux OS for the EC2 instance to host the analysis module 

and classification module. Both clean and malicious analysis module along with 

the classification module were hosted on different EC2 instances running the 

same AMI as shown in the Figure 4.5.  

 

Figure 4.6: Analysis and Classification Modules 

As shown in Figure 4.6, both analysis modules and the classification module are 

running on the EC2 AMIs. We launched the EFS and named it main repository, 
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which is further divided into two three sub-repositories; clean file repository, 

malicious file repository, and analysis repository. We then migrated our collection 

of clean and malicious files to the EFS-based repositories with an accumulated 

size of 623GB, as shown in Figure 4.7. In the next step, we set up the request 

and response FIFO queues using SQS FIFO, both these queues are configured 

to dynamically replicate if the overall requirement exceeds. The replication of the 

queues is triggered by the number of requests increasing the threshold level. 

Figure 4.8 depicts the deployment of the queues on AWS console. 

 

Figure 4.7: EFS Repository 
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Figure 4.8: Request Response Queues 

Once all the components of the framework were deployed, we then mounted the 

repositories with EC2 instances hosting the analysis and classification modules. 

The repositories hosted on EFS integrate and operate with EC2 seamlessly and 

work as a component of EC2, which means that after the mounting process is 

completed there is no extra command or process needed to store or retrieve a 

file to or from the repository. The elastic file system allows thousands of EC2 

instances to be connected to a single EFS concurrently with file locking 

mechanism. Therefore, if the EC2 instances are dynamically increasing, they will 

be connected to the EFS based repositories, even if the number of EC2 instances 

is in thousands.  

 

Figure 4.9: XML Request Message 

After mounting the EFS with the EC2, we connected the request and response 

queues with the analysis and classification modules. The architecture uses FIFO 
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queues for request and response, which plays a vital role to prioritize the queries 

sent by the clients and also guarantees that the tasks of identifying a clean or 

malicious file sent by the client is only processed exactly-once. As one of the 

main objectives of this hosting architecture is energy efficiency, it is pivotal to 

avoid processing duplicated messages. SQS FIFO queues have a built-in 

feature, which ensures that all messages are delivered to the destination at least 

once but once delivered, the duplicates of every message are removed. This 

completes the server side connections complete and fully mounted, we now need 

to connect the client(s) with the cloud-based server.  

 

Figure 4.10: XML Response Message 

Although the whole architecture is based on client-server approach, the main idea 

is to make both the components coupled together in a way that all the distributed 

modules work as a single component. We designed lightweight XML messages 

which are sent by the client through the queues and because the queues are 

connected to the analysis and classification modules, they automatically add a 

header to each message defining which EC2 instance is going to receive the 
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message, based on the availability of each running instance. The message 

presented in Figure 4.9 is the request message sent by the queue to the analysis 

engine. The message is in a hierarchical form showing nested child XML 

elements, which contain another job. The jobs are processed as per the hierarchy 

and the task type, which means that the first task in Figure 4.9 is for the analysis 

module which takes the file AccessDatabaseEngine_x64.exe and analyzes it. 

Once the analysis is performed the analysis report in JSON format is stored in 

the analysis repository. Consequently, the same message is then forwarded to 

the classification module because the job ID 2 has the classification task attached 

triggering the control transfer from analysis to the classification module. When 

the message is received by the classification module, the parent elements of the 

XML message are ignored and only the child elements are processed. The 

classification modules retrieve the analysis report of 

AccessDatabaseEngine_x64.exe from the analysis repository, which is stored 

with the name AccessDatabaseEngine_x64.JSON and runs it against the fully 

trained classification algorithms. When the classification module has completed 

the task, it sends the verdict in an XML based response message presented in 

Figure 4.10, it contains three main things from sever; the status of the job, ID of 

the message, and the verdict of both the modules. The status of the job shows 

whether it was a success or a failure, the message ID is for the queue to identify 

the sender and the order in which the message was processed, and the verdict 

is either CLEAN or MALICIOUS based on the classification. Once the message 

is received by the sending client, it looks for the message tag which contains the 
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verdict and if the verdict is CLEAN the file can be used by the user and if it’s 

malicious, the client module blocks and removes it from the system. 

4.6 Performance Evaluation 

The hosting model proposed in this chapter was successfully able to host the 

intelligent malware detection framework and initial messages were sent and 

received. This section evaluates the operational performance of the framework 

while hosted on the cloud-based hosting model. As discussed earlier in this 

chapter, there are two aspects of the hosting model, therefore, this section will 

separately evaluate the first and the second aspect based on their operations. 

4.6.1 The First Aspect 

The first aspect of this hosting model is designed to support the training and 

testing of the classification module which relies on the analysis reports generated 

by the analysis module. Each cycle of this aspect retrieves the clean and 

malicious files from the respective repositories and reports are stored in the 



CHAPTER 4 

122 

 

analysis repositories, which are used by the classification module for training and 

testing.   

 

Figure 4.11: Analysis Module CPU Utilization - Clean 

The start of this aspect of the hosting model revolves around analysis module 

along with clean and malicious files repositories. In this evaluation, we performed 

analysis of 100000 malicious and 75000 benign windows executables stored in 

their respective repositories hosted on EFS. There were two cloned EC2 

instances of analysis module running simultaneously, one for each class of files. 

Analysis is thorough process involving feedback of external APIs and some of 

the files that are bigger in size take more time to get analyzed. Figure 4.11 and 

Figure 4.12 present the CPU utilization graph generated by Amazon EC2 

monitoring tool, which represents the performance of clean and malicious 

instances of analysis module. Cycles for both these modules lasted for about 24 

hours and as presented in both these figures, the highest CPU consumption 

during the clean and malicious file analysis was 19% and 23% respectively and 

that only for a very short period. This clearly shows that the analysis module 
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doesn’t require a lot of CPU resources while performing the most resource 

intensive task. The multiple instances used for clean and malicious file analysis 

manage the load, save time, and consume less CPU power simultaneously. Few 

spikes shown in both Figure 4.11 and Figure 4.12 are caused by some 

exceptionally large files present in both the repositories, which is in fact not a 

usual occurrence in such scenarios. This shows that the hosting model and the 

hosted framework have the potential to manage resource intensive tasks.   

 

Figure 4.12: Analysis Module CPU Utilization – Malicious 

In the first aspect, after the analysis is performed, the analysis repository is 

populated with a large sum of analysis reports that used by the classification 

module to train and test the classification algorithms. Figure 4.13 presents the 

CPU utilization of the classification module during the process of training and 

testing, it can be seen that the graph is not consistent and there are a few spikes 

reaching up to 43.7%. It can be seen in Figure 4.13, that at the start of this 

process the CPU consumption reaches its highest point and after some time it 

drops. The highest point of CPU consumption show that the training and testing 
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process is at its peak and the sudden drop show the interruption, which is caused 

by the large amount of data extracted from a single file during analysis. The 

classification module further cleans the files and prepare them for training and 

testing. 

 

Figure 4.13: Classification Module CPU Utilization 

After individually evaluating both the modules against the operations of first 

aspect, Figure 4.14 presents the comparison of both these modules in real-time. 

The orange line in the graph is the analysis module and the blue line is the 

classification module. The highest spike in the starting point of the orange line 

suggests that the analysis has started randomly with the heaviest file utilizing 

45% of the CPU and then it dropped to the regular files. The occasional spike in 

this analysis module graph suggest the analysis of heavier files. The blue line 

starts after the analysis module has finished analyzing all the files in the 

repository and takes around 50% of the CPU power to start the training and 

testing process and immediately comes down to 25% right before the 

classification module is fully trained to identify clean and malicious files.  
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Figure 4.14: Comparing Analysis & Classification Module CPU Utilization in 

First Aspect 

The first aspect of the hosting model is more resource intensive as compare to 

the second aspect, which deals with the real-time detection. Even though the first 

aspect hypothetically requires more CPU resources, it reached above 40% very 

few time, based on the type of file it was analyzing. This shows that the first 

aspect of this model, which is required to perform operations in real-time 

environments is energy efficient. Additionally, the on-demand elasticity of EC2 

provides an ideal hosting mechanism for this model. 

4.6.2 The Second Aspect 

The second aspect primarily performs real-time malware detection based on the 

accomplished tasks of the first aspect. The main differences in the evaluation 

environment between the two aspects are; presence of request and response 

queues, requests from clients, single instance of analysis module, and 

classification module with an additional task of providing verdict to the client 

through the response queue.  
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Figure 4.15: Analysis Module CPU Utilization 

To evaluate the performance of the framework and the hosting model for second 

aspect, a large amount of request messages was sent simultaneously to the 

cloud-based framework. The request messages sent from multiple clients 

contained the suspicious files required to be identified as clean or malicious by 

the framework. We used 35 virtual machines running on physical machines, as 

clients to continuously and simultaneously send request messages. These virtual 

machines stored a combination of 93200 clean and malicious files. The main idea 

behind sending these simultaneous request messages was not to evaluate the 

malware identification accuracy of the framework, it was to evaluate how the 

framework and the hosting model perform in a real-time environment while fully 

trained and tested in the first aspect. Figure 4.15 presents the CPU utilization 

graph of the analysis module while it processes the request messages. As 

illustrated in Figure 4.15, the analysis module initially consumes around 19% of 

the CPU but after a while drops to under 1% and then in the middle and at the 

end it hikes up to 4% and 15% respectively. The reason it starts with a 
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comparatively higher CPU utilization is that the files under analysis are newer 

and don’t have any previous analysis history stored in the system, therefore, the 

analysis module is thoroughly analyzing the files. However, as discussed earlier 

in this thesis, majority of the modern malware are variants of old malware and 

that’s why similar type of files don’t require a lot of processing while analyzing 

such files, it consumes much lesser CPU resources. This is also the reason why 

there are hikes in the middle and at the end of the graph.  

 

Figure 4.16: Classification Module CPU Utilization 

Unlike first aspect, in the second aspect the classification module doesn’t have 

to wait for the analysis module to finish analyzing a large sum of files. The whole 

framework in the second aspect works on the basis on individual requests, which 

makes this framework even more energy efficient. Figure 4.16 presents the CPU 

utilization percentage of the classification module while operating in the second 

aspect. As illustrated in Figure 4.16, the classification module started with a 

relatively higher CPU consumption but after a while drops to 1%. Over the period 

of 6 hours it didn’t go above 5%, which happened because the classification 
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module is already fully trained and the tasks needed to be accomplished by the 

classification module in second aspect are not resource intensive.  

 

Figure 4.17: Analysis & Classification Module CPU Utilization Second Aspect 

For a thorough performance evaluation of the framework and the hosting model 

in the second aspect we used the same approach of multiple clients with 

continuous request but this time we left the system running for more than 24 

hours. The objectives behind letting the system run for a longer span were to 

identify overall CPU utilization from both the modules, how synchronously both 

modules work, and how the system behaves while operating completely 

unsupervised. The graph presented in Figure 4.17 illustrate the CPU utilization 

comparison of both the modules, the blue and orange line represent classification 

and analysis module respectively. It can be observed from the graph that the 

analysis module is active in the start and after each request the control is 

transferred to the classification module, therefore, classification module graph 

fluctuate. Throughout the graph, there is a continuous fluctuation in both the lines 

which shows how synchronously both modules are operating. Moreover, 

throughout this runtime, neither of the modules utilized more than 2.5% of the 
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CPU resources, which shows that the framework and the hosting model perform 

significantly as the number of cycles per module increase. Additionally, another 

important thing worth mentioning here is that the framework hosted on a third-

part cloud hosting model was running unsupervised for more than 24 hours, 

throughout this period thousands of messages containing a wide variety of clean 

and malicious files were sent from the clients. Many of the files sent from the 

client were quite complex with embedded subdirectories that require separate 

analysis, the sudden hikes in the graph represent the amount of additional 

resources consumed while analyzing and classifying such files but despite such 

scenarios the overall system remained stable and performed well.  

 

Figure 4.18: Lightweight Agent Performance 

The performance of all 35 clients running the lightweight local agent was quite 

similar, Figure 4.18 presents the evaluation results of lightweight agents by 

illustrating their CPU consumption and local detection rate. As discussed earlier, 
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it stores a brief cache of clean and malicious files, which facilitates local detection 

without sending requests to the cloud-based framework. The lightweight agent is 

evaluated based on the number of cycles, in each cycle the lightweight agent 

sent random number of local files as individual messages to the server for 

identification. It can be seen in the graph that the local detection rate in the first 

three cycles is zero, which means that the local agent is sending all the files to 

the server for identification and at the same time it utilizes 7% of the CPU. After 

first three cycles, there is a sudden increase in local detection and the lightweight 

local agent is able to identify 10% of the files locally reducing the CPU utilization 

to 5%. As the framework starts to run in real-time the local cache of the lightweight 

agent gets populated with the brief analysis features making it possible for the 

local agent to differentiate between clean and malicious files independently. 

Consequently, local detection percentage increase with each cycle reaching up 

to 60% in the thirteenth cycle and dropping the CPU utilization to 3% while 

continuously operational for 24 hours.  

These evaluations not only show that the framework and the hosting model are 

consistently energy efficient, it also shows that although the hosting model is 

based on a client server architecture, however, the client can work independently 

to some extent. This makes the system extremely resilient against targeted 

attacks or scenarios where the client module gets disconnected with the cloud-

based framework. Additionally, the accumulated CPU utilization of all the 

modules of second aspect of the hosting model, which runs the framework in real-

time, is much lesser than the CPU utilization of a majority of host base antiviruses 

that are discussed earlier in this chapter. Such features make the proposed 
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framework and its hosting model highly instrumental in both industrial and 

research environments. 

4.7 Discussion 

The intelligent malware detection framework required a flexible hosting model in 

terms of computational and storage resources. In the previous chapter, the 

framework discussed, proved to be extremely accurate in identifying clean and 

malicious files, it focused on the weaknesses initially identified in the similar 

solutions available, specifically; antiviruses. The cloud-based hosted model 

discussed in this chapter has the capability of hosting the intelligent malware 

detection framework proposed, implemented, and discussed in the previous 

chapter. At the same time, this hosting model was required to be energy efficient 

in terms of consuming the CPU resources, unlike the antiviruses evaluated earlier 

in this chapter. The hosting model proposed is based on the Amazon cloud 

platform consuming messaging, compute, and storage services that were 

combined to design this hosting model. The hosting model designed successfully 

hosted the malware detection framework and produced quick requests and 

responses.  

One of the main objectives was to design and implement a hosting model that 

can host the intelligent malware detection framework and at the same time be 

energy efficient. The energy efficiency in this context means that wherever the 

framework is hosted it should utilize minimum CPU resources possible. The 

client-server based architecture, where the server is based on the Amazon’s 

cloud and the client is a lightweight agent running on the host machine, did prove 

to be energy efficient based on the evaluations performed. The first aspect of the 
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hosting model which can be called the initial configuration of the whole system to 

support the second aspect, consumed comparatively higher CPU resources as 

compared to the second aspect. However, the high CPU consumption by both 

analysis and classification module, which marked between 40 to 50%, was only 

for a short period of time and only once in the twenty-four-hour span. Whereas, 

the second aspect, which operates in a real-time environment showed concrete 

evidence of energy efficiency on both, client and server sides of the model. When 

left running for twenty-four hours, the analysis and classification module 

consumed a maximum of 2.5% of CPU resources while stably operating in an 

unsupervised environment. The client module also showed promising results by 

starting with 7% CPU consumption and 0% local detection, which later reached 

3% CPU consumption and 60% local detection in fifteen cycles of running in a 

twenty-four-hour span.  
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Figure 4.19: Comparing Hosted Framework with Antiviruses 

In the final test, we compared the hosting model with antiviruses evaluated earlier 

in this chapter by running them simultaneously against the same repository of 

clean and malicious files, both the compared entities were left running for five 

hours and an average was taken every thirty minutes. The purpose of this 

evaluation was only to compare the CPU utilization of the proposed hosting 

model against the major antiviruses in the market. We only compared the second 

aspect of the hosting model because of its real-time application. The graph 

presented in Figure 4.19 shows the average CPU utilization of eleven antiviruses 

and the average of accumulated CPU utilization of client and server modules of 

second aspect. It can be observed from the values illustrated in the Figure 4.19 

that the average CPU utilization of antiviruses is between 30 and 35% continuous 

for five hours. Whereas, the maximum combine CPU utilization of the second 
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aspect is 5% and that too in the first hour. The proposed hosting model along 

with the malware detection framework has shown significant efficiency in 

managing the CPU consumption. In the first hour of evaluation, the proposed 

system did reach a maximum of 5% CPU utilization but in the later hours 

consumption dropped to 3%. The first two hours of evaluation the average 

consumption was 5 and 3% respectively but the later three hours were 

significantly more energy efficient and the overall average was 1.26%. However, 

like the previous evaluation, there was no significant change in the CPU utilization 

of antiviruses during the five hours of evaluation and the utilization fluctuated 

between 30 and 32%.  

The proposed hosting model proved to be extremely energy efficient, especially 

when compared with the major antiviruses. Along with being energy efficient, this 

hosting model is categorically quick in responding to the request messages from 

the clients, if clients send the request and couldn’t differentiate between a clean 

and malicious file locally.  

Although, the hosting model has fulfilled the primary objectives behind its design, 

there are some weaknesses that could be resolved to make the overall hosting 

model industrial scale. The client module currently has limited functionality and 

cannot scan the complete filesystem of a computer, we were able to identify the 

files in a limited filesystem to evaluate the framework and the hosting model but 

in an actual real-time environment, this lightweight client module wouldn’t be able 

to identify the malicious files hidden deep in the filesystem of a computer. 

Additionally, the current structure of the client module doesn’t allow it to be used 

in a networked environment and only supports individual computers, we were 
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able to run it on 35 separate machines but running on separate machines in a 

network is not quite efficient. A better approach would be to make the client 

module a lightweight network service that is supported by the cloud-based 

framework, which has the capability of scanning ports and other exposed 

vulnerabilities of a network or a single machine in a network. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

The growing number of malware attacks on enterprise and general users, raises 

concern over the presence of several security software to protect one system. 

The financial damages caused by such attacks are continuously rising, recent 

catastrophic attacks by Mirai, WannaCry, and Petya are few of many instances 

where security software and organizations were penetrated by the techniques 

used by these modern malware [7], [3], [5]. The present commercial antiviruses 

are good in detecting known malware but when it comes to newly released 

malware or a completely evolved version of previously known malware, the 

conventional detection techniques used by antiviruses become obsolete. As the 

information flow is increasing significantly, there is a need for better security 

mechanisms that can accurately detect known and unknown malware and their 

infection.  

Additionally, another drawback of conventional antiviruses is the CPU resources 

they consume while running in scan mode. The percentage of CPU resources 

commercial antiviruses consume is significantly high, most of these antiviruses 

consume 35 to 50% of CPU resources while scanning the host system for 

infections [18]. Along with the scarcity in detection capability, this high resource 

consumption makes the host system more vulnerable against advanced threats 

by leaving the system with less resources for other high priority services.  

Using machine learning techniques to identify malicious activity in a system or in 

a network have proved to be quite effective [121], [120], [105], [93], [109]. The 

framework proposed in this study approaches both the problems; a) accurately 
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identifying malware, and b) energy efficiency. The intelligent malware detection 

framework used machine learning techniques to enhance the malware detection 

rate and a cloud-based hosting model to support the operational requirements of 

the framework.  

The framework is built around the heuristics generated by the analysis module 

through a bespoke feature extracting tool, which extracts a comprehensive set of 

features from a file through statically analysing it [106]. These heuristics are used 

to train the machine learning algorithms for accurately differentiating between 

clean and malicious files. We used decision trees, SVM, and then applied 

boosting on decision trees to improve the performance of weak classifiers. The 

analysis module can eliminate the obfuscated parts found in a malware to avoid 

any inaccurate information in the generated heuristics [106].  

We designed multiple experiments to test our proposed framework from different 

perspectives. We tested our techniques against a dataset of malicious and clean 

files and applied ten-fold cross-validation followed by above mentioned machine 

learning algorithms for an unbiased set of experimental results. We used 150000 

malicious and 87000 benign executables for training and testing.  

SVM performed better than decision tree but applying boosting on decision tree 

improved the performance by generating the best result of 0.9969 area under the 

ROC curve. To evaluate the framework against much difficult dataset, we used a 

dataset of obfuscated malware, using the training of previous experiment. In the 

obfuscated experiment, boosting on decision tree generated 0.9910 area under 

the ROC curve. This not only proves the better performance against a difficult 

dataset of advanced malware, it also suggests that previous training was enough 
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to detect a different set of malware making it close to real-time detection. The 

real-time detection generated 0.9963 area under the ROC curve.  

The performance of the framework was tested after deploying it on the hosting 

model, which evaluated both; framework and the hosting model. In this 

experiment, we initially evaluated the resource consumption of the framework 

while doing a thorough analysis along with training and testing of the algorithms. 

In this aspect, which was tested for 24 hours, there were two instances that the 

resource consumption went 40% to 50% while performing the analysis and 

training/testing of algorithms. Apart from this instance, the CPU utilization was 

under 10%.  

We evaluated the real-time performance of the framework and the hosting model. 

In this evaluation, we tested the performance of the lightweight client agent along 

with the server side of the hosting model and how it caters the requirements of 

the framework. The fully trained and tested framework was left running for more 

than 24 hours and 35 separate clients were recursively sending clean and 

malicious files to be tested. The maximum combine CPU utilization of both 

lightweight agent and server side of hosting model was 5% in the first hour which 

later dropped to 3% in the next 3 hours and 1.26% in the rest of 20 hours of 

evaluation, while running in scan mode. These results show significant 

improvement as compared to the commercial antiviruses that on average 

consume 32% while running in scan mode.  

Finally, we evaluated the individual performance of the lightweight client agent to 

identify local detection rate and CPU resource consumption of the host machine. 

In the initial cycles, the lightweight client agent consumed 7% of CPU resources 
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while sending all the files to the server for detection. After three cycles, the local 

agent started detecting 10% of the malware locally while consuming 5% of the 

CPU resources. After running it for fifteen cycles, this lightweight agent was 

detecting 60% of the files locally while consuming merely 3% of the CPU 

resources. 

5.1 Limitation and Challenges 

The proposed framework along with its hosting model not only presents 

promising results with enhanced malware detection abilities, it has the potential 

to provide an alternate platform for personal and enterprise level computer 

security. However, there are certain limitations and challenges that are required 

to be eradicated to make this framework ready to be adopted.  

One of the fundamental things in this framework is the type of files it can analyse, 

which was mentioned in the start of this research that the framework only 

considers PE or .exe file format. This makes the framework limited to work for 

Windows based environments only and unable to analyse or identify another 

format of file. The intelligent malware detection framework relies on the heuristics 

generated by the analysis module to train the machine learning algorithms. 

Therefore, by making the analysis module to also identify and analyse non-PE 

based files along with adding some heuristics in algorithms, will make the entire 

framework capable of operating in broader domains.  

Although, the framework can operate independently in real-time, which is also 

discussed in the evaluation of the framework and hosting model, the entire 

framework is not completely autonomous. The first aspect of the framework 
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requires the algorithms to be trained and tested to make real-time detection 

possible, however, this step is performed by manually storing large sets of clean 

and malicious files in their respected repositories, which are later used to 

generate heuristics. To make the system perform independently in long term 

against modern malware, it requires constant update of heuristics, which can be 

done by adding automated heuristics update from third-party APIs or honeypots.  

The evaluation of the framework presents effective results in malware detection, 

which can be enhanced by constantly updating several heuristics and patterns. 

However, if previously unknown malware are successful in proliferating their 

variants then understanding their behaviour is the key to identify and block their 

entire network. This can be done by dynamically analysing malware, which is a 

resource intensive tasks and currently replaced by static analysis in our 

framework. A better approach will be to add a module in the hosting model that 

can cater the needs of a sandbox environment for dynamic analysis. This 

approach will be much energy efficient in terms of accommodating dynamic 

analysis processes.  

Another limitation specifically in the hosting model is that it can only cater 

individual machines. This allow each client to be directly connected to the server 

but at the same time in a networked environment it can be time consuming. 

Lightweight client agent requires to be enhanced to work in a networked 

environment autonomously. 
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5.2 Future Work 

The main objectives behind proposed framework were to overcome the problems 

currently faced by the users of commercial antiviruses by enhancing the malware 

detection rate and making the entire process less resource intensive. The 

proposed framework satisfies all the requirements initially defined, however, 

there are certain aspects that can be enhanced to make this framework suitable 

for different environments.  

The current framework is hosted on a client/server architecture where client is a 

lightweight service and the server is hosted on a cloud-based hosting model. 

Currently the cloud-based framework has the ability to be scaled to support a 

large number of clients but the client module only support individual computers 

separately. This can be enhanced in future to support large enterprise networks 

with heterogeneous devices. This enhancement should only be successful if the 

initial idea of energy efficiency is followed, which is possible with the help of 

service replication [133]. The lightweight host agent can be replaced by a network 

service that replicates the framework hosted on the cloud. The replicated services 

will hypothetically consume similar resources as the current lightweight agent but 

to make it more efficient, dynamic server allocation can be used [134]. This idea 

is adopted from P2P botnets that change their domain dynamically after regular 

intervals and each of these domains are not malicious servers [135], in fact, the 

new domain is a legitimate network node making it extremely hard to stop [136]. 

The services of the entire framework can be replicated on dynamically allocated 

nodes with the help of open-source service replication tool, such as; Zookeeper 

that can replicate the services with limited resources [137] [138].  
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As mentioned, the idea is to make the framework appropriate for the modern 

enterprise networks with heterogeneous devices, such as; smart phones, 

laptops, and other smart devices with a diverse set of operating environments. 

By making the framework recognize and analyse different file formats, we will be 

able to make it support a heterogeneous environment. The current hosting model 

is capable of providing services for multiple large enterprise networks and it can 

scale if required.  

The current framework performs very well against obfuscated malware but as 

discussed earlier malware are rapidly evolving, therefore, it is required to rapidly 

evolve the malware detection mechanisms. One of the best solution is to make 

the anomaly heuristics more elaborative by adding behavioural patterns of 

malicious software, which can be achieved by dynamically analysing malware. 

Third-party APIs can be used to perform the dynamic analysis on new and more 

obfuscated malware samples to generate a much thorough set of heuristics [76]. 

This will make the framework more resilient against modern and more 

complicated malware.  

The future directions mentioned in this section are not only the aspects in which 

the proposed framework can be enhanced. Different enhancements discussed 

can open a new paradigm in security making it more open, resilient, and cross-

platform. One of the primary reasons malware are successful against security 

systems is that they rely on open-source rather than proprietary. The diverse set 

of heuristics generated through static and dynamic analysis, as suggested in this 

section, can support security research community along with making malware 

identification more efficient.  
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