1	Analysis of sequential active and passive arching in granular soils
2	K. Aqoub ¹ , M. Mohamed ² * and T. Sheehan ³
3	¹ PhD research student, School of Engineering, Faculty of Engineering and Informatics, University of
4	Bradford, Bradford, West Yorkshire, BD7 1DP, UK.
5	² Senior Lecturer, School of Engineering, Faculty of Engineering and Informatics, University of Bradford,
6	Bradford, West Yorkshire, BD7 1DP, UK.
7	³ Lecturer, School of Engineering, Faculty of Engineering and Informatics, University of Bradford,
8	Bradford, West Yorkshire, BD7 1DP, UK.
9	
10	* Corresponding author
11	Dr Mostafa Mohamed
12	Email: m.h.a.mohamed@bradford.ac.uk
13	Phone: +44(0) 1274 233856
14	Fax: +44(0) 1274 2341111
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	Re-submission
25	25 April 2018

Analysis of sequential active and passive arching in granular soils

K. Aqoub, M. Mohamed and T. Sheehan

28

29 ABSTRACT: Arching in soils has received great attention for several decades due to its significance on 30 the soil-underground structure-interaction. However, soil layers underneath such an underground 31 structure might undergo cycles of swelling and shrinking resulting in the generation of alternating 32 active and passive modes of soil-underground structure-interaction. Consequently, the stresses on 33 the underground structure and adjoining regions of ground become complex. The state of stress on 34 underground structures as a result of cycles of active and passive arching was neither explored nor 35 systematically assessed. In the present study, comprehensive investigation was carried out to 36 examine; i. the effects of direction of initial displacement to induce an initial active or passive 37 arching, ii. the behaviour of subsequent arching, iii. the effect of magnitude of initial displacement on the formation of arching and iv. the influence of soil height on sequential active & passive arching. 38 39 The experimental results showed clearly that the magnitude of displacement of the yielding region 40 significantly affects the formation of the arch and the degree of stress redistribution. Alternating the 41 displacement of the underground inclusion exacerbated the formation of active and passive arching leading to a substantial reduction in shear resistance and stress redistribution. It is noted that the 42 43 greatest loss in shear resistance occurs from the second cycle and remains virtually the same with 44 further cycles. Sequentially alternating displacement of the underground inclusion is found to be 45 detrimental to the formation of full active and passive arches irrespective of the burial height.

46 **KEYWORDS:** Arching of soil, Trapdoor displacement, Lateral earth pressure coefficient, Active
47 arching, Passive arching, Sequential active and passive soil arching.

48 **1. INTRODUCTION**

49 Underground structures such as buried conduits, tunnels, piled embankments, shelters and vertical anchors are increasingly built and utilised for prosperity of societies all over the world. It is 50 51 paramount that such an underground structure is designed sustainably, efficiently and effectively. 52 One of the major uncertainties in the design is the interaction between underground structure and 53 surrounding soils which is dependent on the type and shape of structure, type of surrounding soils 54 and free field stresses. Arching mechanisms play a pivotal role in the interaction between 55 surrounding soils and underground structures/inclusions (e.g., Lee et al. 2006; Meguid et al. 2008; 56 Costa et al. 2009; Van Eekelen 2015 & Fattah et al. 2016). Depending upon the relative displacement 57 between the underground structure/inclusion and adjacent soils, redistribution of stresses would 58 occur as a result of the formation of either active or passive arching. For instance, if an underground 59 inclusion subsides, a reduction in vertical stress occurs on the yielding area or the region of the 60 underground inclusion in comparison with the anticipated undisturbed overburden pressure in the 61 free field due to active arching. The relative movement between the yielding region and the adjacent 62 less deformable regions of the ground mobilises shear stresses. The evolving shear stress tends to 63 minimise and/or prevent the settlement of the yielding part by reducing the pressure on this yielding 64 region of the inclusion as well as increasing the pressure on the relatively stationary soil regions (Terzaghi 1943). In contrast, if an underground inclusion is stiffer than the adjacent soil regions, an 65 66 increase in the loads/vertical stress occurs on the underground inclusion alongside a reduction in the 67 stresses on the adjacent soil regions (passive arching) (Iglesia et al. 2014). The additional loads due to 68 passive mode may lead to damage of the buried structures if care is not undertaken (Clark 1971).

Several experimental, analytical and numerical investigations were conducted with different perspectives including developing analytical equations (e.g.; Terzaghi 1943; Iglesia et al. 1999; Pirapakaran and Sivakugan 2007a,b & Cui et al. 2017), studying the shape of soil arching (e.g.; Handy 1985 & Iglesia et al. 2014), quantifying the effect of soil type (e.g.; Stone and Muir Wood 1992; Iglesia et al. 2014; Pardo and Saez 2014 & Wang et al. 2017) and studying the mode of arching (e.g.;

Vardoulakis et al 1981; Koutsabeloulis and Griffith 1989; Costa et al. 2009 & Dalvi & Pise 2012).
Studying the arching effect in granular soils was performed experimentally by Terzaghi using a
trapdoor test (Terzaghi 1936). Terzaghi then proposed an analytical solution based on his trapdoor
experimental results. It was assumed that the behaviour of the soil was within the plastic state.
Terzaghi's equation for plane strain situation is given by Equation 1.

79
$$\sigma_{v} = \frac{\gamma B}{2ktan\phi} \left(1 - e^{-2ktan\phi \frac{H}{B}} \right)$$
(1)

where; σ_v is the vertical stress on the trapdoor, B is the trapdoor width, y is the unit weight of 80 81 granular soil, ϕ is the friction angle of sand, k is the ratio between horizontal and vertical stresses and 82 H is the height of the sand bed. Later on Pirapakaran and Sivakugan (2007a, b) extended Terzaghi's 83 solution to a 3-D situation where the vertical load was placed on a rectangular trapdoor of finite 84 length and width (L x B). Although Equation 1 has been widely used in calculating the stresses on 85 yielding inclusions, it requires an accurate value for the earth pressure coefficient (k) which proves to 86 be an issue to most engineers. Terzaghi (1943) assumed that an empirical value of k equals to 1.0 for 87 practical applications whereas Krynine (1945) assumed a k value higher than the value of active earth 88 pressure based on an inclined shearing surface. Russell and Pierpoint (1997) extended Terzaghi's 89 solution by using a square arrangement of square columns supporting the embankment and 90 recommended the use of a k value equals to 1.0 as proposed by Terzaghi (1943). Russell et al. (2003) 91 suggested that the k value is to be taken 0.50. Recently, Potts and Zdravkovic (2008) showed that a 92 coefficient of lateral pressure equal to unity gave comparable results to those obtained from a plane 93 strain numerical analysis to arching over a void. Vardoulakis et al. (1981) proposed expressions for 94 the distributions of the soil loads on the trapdoor in active and passive modes based on shear bands. 95 The expression for active arching is consistent with Terzaghi's (1943) equation when K=1.0. However, 96 the proposed equation for passive arching involves a correction factor which was proposed to be 97 1~1.5. Tanaka and Sakai (1993) discussed the progressive failure of the arching of granular soil and 98 the scale effect experimentally and numerically and found that the earth pressure distribution in the 99 experimental results was in agreement with numerical outcome. Iglesia et al. (1999); Chevalier et al. 100 (2008, 2009, 2012) and Moradi et al. (2015) studied the behaviour of arching in soils in the plane 101 strain case during the trapdoor displacement and it was concluded that the soil arching goes through 102 a series of phases e.g. initial arch, maximum arching, recovery stage and final stage. Horgan & Sarby 103 (2002) conducted an experimental plane strain model by using a trapdoor test for two types of 104 granular materials and found the critical height for both soils to be located between 1.545 and 1.92 105 times the width between the supports. Sadrekarimi & Abbasnejad (2008) studied the effects of soil 106 density and trapdoor width on the arching of soil. The results showed that the ultimate stress on the 107 trapdoor decreased as the relative density increased. The width of the trapdoor and relative density 108 influence the formation of a stable arch.

109 Despite all the aforementioned studies, the focus was on investigating distinctive modes of arching 110 e.g. either active or passive mode separately upon isolation of external environmental influences. For 111 example, underground inclusions or structures may undergo cycles of upward and downward 112 movement due to swelling and shrinking of expansive soil layers. Expansive soil layers that exist 113 beneath the underground inclusions are prone to cycles of swelling and shrinking upon slight change 114 in moisture content. This may in turn change the arching mechanism from active to passive mode or 115 vice versa and deviate the stresses from those that were determined based on one of the two 116 recognised arching mechanisms. The focus of this paper is to investigate experimentally using the 117 well-developed trapdoor set-up various scenarios for the effect of sequentially alternating active and 118 passive arching on redistribution of stresses. This study therefore aims to i) quantify the effect of a 119 sequentially alternating arching mode on redistribution of loads exerted on underground inclusions, 120 ii) investigate the influence of displacement and soil height on the resulting stresses during 121 sequentially alternating active and passive arching, and iii) explore potential impacts for the number 122 of alternating cycles of active and passive arching on stress reduction. The results from the 123 comprehensive testing programme are presented and discussed hereafter.

124

125 2. TESTING APPROACH

126 The testing setup used in this study is fundamentally similar to the trapdoor setup used in previous 127 experimental studies (e.g.; Terzaghi 1936; Evans 1983; Stone 1988; Dewoolkar et al. 2007; Chevalier 128 et al. 2008; Costa et al. 2009 & Iglesia et al. 2014). Figure 1 shows a schematic drawing of the testing 129 set-up. The test setup consisted of a wooden tank with the front wall made of thick Plexiglass in 130 order to enable visual observation and measurement of the soil deformation. The utilised testing 131 tank had a length of 700 mm, a width of 250 mm and a height of 600 mm as shown in Figure 1. The 132 trapdoor with a width of 100 mm was centred and located at the base of the testing tank. The 133 trapdoor itself was designed to move downward or upward at a constant rate of 1.0 mm/min by a 134 ball screw actuator in order to release or induce pressure on the trapdoor as a result of active and 135 passive arching mechanisms respectively. A load cell was mounted to the base of the trapdoor to 136 measure the applied load on the trapdoor as shown in Figure 1. In order to avoid or minimise 137 frictional resistance and to prevent ingress of fine sand particles between the trapdoor edges and the 138 opening side walls a fibre seal that covered all four edges of the trapdoor was used.

139

140 3. MATERIALS

141 Sand was used as a testing material in this experimental investigation. The sand utilised in this 142 experimental study had a range of particle sizes between 410 μ m and 710 μ m. The important index 143 properties of the sand are summarized in the Table 1. According to BS EN ISO 14688-2:2004, the sand 144 is classified as uniformly-graded medium sand. Standard Proctor compaction tests revealed that the optimum moisture content and maximum dry unit weight of the sand were 8.0 % and 16.50 kN/m³ 145 146 respectively. In order to prepare samples with uniform dry unit weight, a sand raining technique was 147 utilised by which dry sand was dropped from a predetermined height at a constant rate. The rate of 148 sand raining was controlled by changing the aperture size of the holes in the sand raining box base 149 whilst the dropping height was kept constant by gradually lifting the raining box upward. The unit 150 weight of the formed sand beds was measured at different heights to ensure its uniformity across the 151 whole tank. Measurements were taken at three different points at each level. Table 2 illustrates

values of measured dry unit weight taken from five preliminary tests. Data in Table 2 shows an average dry unit weight of 16.37 ± 0.02 kN/m³ which was considered acceptable. The measured dry unit weight values indicate that adopting the sand raining technique resulted in preparation of dense sand beds with a dry unit weight comparable to the maximum achieved dry unit weight from the standard Proctor Compaction test.

- 157
- 158 4. TESTING PROCEDURE AND PROGRAMME

A sand bed was created by pouring sand particles into the testing tank through the raining box until reaching the required height. Then the surface of the sand bed was levelled off in order to avoid any discrepancy in the overburden pressure. Typically, each test was initiated by moving the trapdoor at a rate of 1.0 mm/min until reaching a predetermined displacement e.g. 10.0 mm. The test was then temporarily stopped and movement of the trapdoor was reversed to perform the opposite stage of arching. Loads on the trapdoor were recorded every 10 seconds. Each test was conducted to simulate 10 cycles of alternating active and passive arching.

166 Thirteen experiments were performed as illustrated in Table 3 in order for a deeper understanding of 167 the behaviour of granular soil arching in sequentially alternating active and passive modes to be 168 acquired. The first series of tests was performed on a sand bed with a thickness of 100 mm to 169 investigate the formation of monotonic active and passive arching in granular soil, the results of 170 which were used as a control. The second Seri/s included testing of two samples with a fixed sand 171 bed thickness of 100 mm to study the effect of the first arching mode on the load transfer onto the 172 inclusion as a function of sequential changes of arching mode. The third series of tests was conducted 173 to investigate the sequential active and passive arching under different trapdoor displacements of 2 174 mm, 10 mm and 20 mm respectively. The last series of experiments was devoted to the effect of 175 burial depth/sand bed thickness on the behaviour of soil arching in sequentially alternating active and passive modes. Six samples of sand beds with different thicknesses were prepared and then 176 177 tested at the same displacement of 10 mm.

179 **5. RESULTS AND DISCUSSIONS**

Of note, data attained from the trapdoor experiments were presented as normalized load against normalized displacement. The normalized load on the trapdoor is determined by dividing the measured load on the trapdoor by its original value at zero displacement which is comparable to that in the free field. The normalized displacement is determined by dividing the trapdoor displacement by the width of the trapdoor. The normalisation of loads and displacements is adopted to enhance the presentation and comparison of data sets and to show clearly the percentage changes in load due to active and passive arching.

187 It is also important to note that the second and fourth series of testing underwent 10 cycles of 188 movement of the trapdoor up to a displacement of 10 mm to simulate sequential active and passive 189 arching. However, the third series of tests underwent 5 cycles of downward and upward movement 190 up to displacements of 2 mm, 10 mm and 20 mm. All measurements were taken every 10 seconds. 191 Hereafter, results are presented and discussed to clearly demonstrate the effects of underground 192 inclusion displacement and height of sand bed on the behaviour of arching of soil under sequential 193 active and passive modes.

194 **5.1. Effect of sequential active and passive arching**

195 In this section, experiments were undertaken with a sand bed of 100 mm as illustrated in Table 2. 196 Two experiments were conducted to ascertain the monotonic active and passive arching in granular 197 soils. Load measurement on the trapdoor at rest conditions prior to the onset of displacement was 198 found to be equivalent to the free field vertical stress times the area of the trapdoor. Figure 2 shows 199 the normalised load against normalised deformation for monotonic active and passive arching. Data 200 presented in Figure 2 show distinctive behaviour for granular soil during active and passive state. It is 201 important to note that minimum load achieved during yielding of the underground inclusion (active 202 arching) is 9.3 % of the original at rest load and was experienced after a settlement of 1 % of the 203 inclusion width which is consistent with previous observations by Terzaghi (1943) and Iglesia et al. 204 (2014). In contrast, the maximum load was found to be 217 % of the original at rest load and was 205 observed at a normalised displacement of 2 %. It is also worth noting that the drop rate in the load 206 during active arching is almost double the rate of increase during the passive arching to reach 207 minimum and maximum load respectively. With further displacement, a relatively stable load is experienced during active and passive modes reaching a higher normalised load of 49% and a lower 208 209 normalised load of 163% during the active and passive modes respectively as showing in Figure 2 210 beyond a normalised displacement of 5%. This is due to the soil mass having reached the critical state 211 and soil particles being re-organised along the slip planes. The results, therefore, suggest that relying 212 on maximum and minimum loads on the inclusion as a result of complete passive and active arching 213 respectively seems to be unsustainable. Careful consideration would need to be taken during the 214 design of underground inclusions, in particular when shallow granular soil cover that is equal to one 215 width of the underground inclusion is used.

216 The next series of testing was conducted to investigate the effect of initial movement (yielding or rise 217 of trapdoor) on subsequent behaviour of soil arching. Data captured for the load on the underground 218 inclusion (trapdoor) during the initial release of pressure due to active arching or during initial 219 compression of soil mass by passive arching are presented in Figures 3-a and b respectively. The 220 monotonic active and passive relations presented in Figure 3 show typical behaviour comparable to 221 those presented in Figure 2. It was recorded that prior to the onset of tests, the soil mass seemed to 222 be at rest and the recorded load on the trapdoor was directly related to overburden pressure. 223 However, the relationships for subsequent cycles of active and passive modes are unique and 224 different from those recorded for the monotonic relationships. This suggests a clear dependence of 225 the behaviour of subsequent arching on the stress history.

As the underground inclusion (trapdoor) started to yield, a decreased pressure was observed due to the shear resistance in the soil illustrating the development of active arching (Figure 3a). Due to the initial dense packing of the sand bed with a unit weight of almost 100% of that achieved from Standard Proctor Compaction test, the mass of soil above the trapdoor dilated vertically upon

230 yielding of the inclusion which was recorded by the lower surface settlement rather than the 231 trapdoor displacement. A similar interpretation was made by Villard et al. (2000) in which the rate of 232 dilation was found to be higher than the trapdoor displacement causing the soil to fill the gap under 233 the arching and thus increasing the arching effect. In contrast, the adjacent soil masses on both stationary regions (left and right sides of the inclusion) would dilate horizontally preventing the soil 234 235 mass above the yielding inclusion from moving downwards which resulted in lowering the pressure 236 on the inclusion (trapdoor). This has occurred entirely due to the internal friction and interlocking of 237 sand particles and can be represented by the angle of friction and the angle of dilation. In contrary 238 upon rise of inclusion from a 10% yielding, passive arching started to form rapidly and gradually 239 showed an increased load on the inclusion reaching a maximum normalised load of 193% after 240 undergoing an upward normalised displacement of approximately 6%.

241 The second and subsequent relationships between normalised load and normalised displacement 242 due to cycles of active and passive arching were similar resulting in intermediate but coinciding 243 paths. During second and subsequent active modes, a minimum normalised load did not appear to 244 occur, as evidenced by the data at a normalised displacement of 1%, whereas the measured load at 245 the critical state was similar. The normalized vertical load at a normalized displacement of 1.0 % 246 during the second cycle was about four times greater than that which was observed at a normalized 247 displacement of 1.0 % during the first cycle, as can be seen in Figure 3-a. Similarly, Figure 3-b 248 illustrates that the normalised loads during the second and subsequent cycles of passive mode at a 249 normalised displacement of 2% no longer represented a peak value but were almost half of that 250 measured during the monotonic passive resistance. Careful inspection of Figure 3 illustrates that the 251 normalised load corresponding to 5% normalised displacement is the same during subsequent active 252 and passive modes irrespective of the initial direction of displacement. This indicates that during 253 alternating active and passive modes, the major and minor principal stress change directions based 254 on the direction of the inclusion's movement (trapdoor). To further explain the alteration of principal 255 stresses during the redistribution of stresses, the lateral earth pressure coefficient was determined

256 and plotted in Figure 4 as a function of inclusion's movement for various active and passive arching cycles. The value of coefficient of earth pressure was calculated by the ratio of the horizontal stress 257 258 to the vertical stress which was determined from the measured load on the inclusion that is 259 presented in Figure 3. Evans (1983) measured the horizontal stress during trapdoor tests and found 260 that the horizontal stress remained fairly constant. It seemed therefore reasonable to assume a 261 constant value of horizontal stress which is also consistent with earlier suggestion made by Terzaghi 262 (1943) for the trapdoor test. The horizontal stress was then taken as the initial at rest. Of note, the 263 initial lateral earth pressure coefficient was determined as $k_o=1-\sin\phi$. As a result, a k_o value of 0.46 is 264 used in this investigation which is within the suggested range of 0.4-0.5 by Lambe and Whatman 265 (1969) for sand beds that were created by vertical accumulation of sand particles under no significant 266 lateral compression during sedimentation which is precisely similar to the preparation approach 267 adopted in this investigation.

From Figure 4, it can be seen that the coefficient of earth pressure increased with increasing the downward displacement until reaching a maximum value of 3.0 at a normalized displacement of 0.67%. The increase in the coefficient of lateral earth pressure led to a significant reduction in the vertical load on the trapdoor (underground inclusion). At this stage the soil would behave as an elastic strain material mobilising the peak shear strength to provide maximum frictional resistance and hence the maximum active arching would be developed (Evans 1983).

274 Despite further yielding of the trapdoor, a fairly constant coefficient of lateral pressure was recorded 275 which indicates that the rate of dilation continued but at a lower rate until reaching zero value at a 276 normalised displacement of 5%. Records of surface settlement along the centreline of the trapdoor 277 illustrated that no surface settlement was recorded until reaching a yielding of 5% as shown in Figure 278 5b. Costa et al. (2009) observed significant dilation in the soil region immediately above the trapdoor 279 at failure. A reduced K value resulted in an increased vertical load on the yielding inclusion which can 280 be attributed to a reduction in the angles of friction and dilation as a result of lowered shear strength 281 of the soil. This indicates in turn a reduced arching effect. Due to the decrease in shear strength with

increasing yielding of the inclusion, the soil would behave as a strain softening material (Evans 1983). With additional yielding of the inclusion beyond 5%, the lateral coefficient of pressure reached a constant value of unity which was recommended by a number of researchers including Terzaghi (1943). Furthermore, a relatively constant load was measured on the trapdoor despite the value of normalised displacement indicating that the soil mass had reached the critical state. During this stage, most of inclusion yielding was transferred to the surface settlement as can be observed in Figure 5-c.

Reversing the direction of movement at a normalised displacement of 10% led to an increase in the measured load due to the formation of passive arching. The major principle stress was then in the vertical direction leading to a value of lateral earth coefficient of 0.25 which is close to that determined by Rankine's theory. With further cycles of active and passive mode, the coefficient of lateral earth pressure stayed relatively stable at 1.0 and 0.25 for active and passive modes respectively excluding the first 4% normalised displacement in each direction due to the instability in the soil mass as a result of dilation and contraction.

296 Figures 5 d-h show pictures of the sand bed after cycles of active and passive modes. It can be seen 297 that soil heave is recorded and observable after completion of the first cycle of active and passive 298 mode. It may also be observed the occurrence of sand disturbance, in particular in the soil region 299 immediately above the inclusion (trapdoor). This means that the volume of soil above the trapdoor 300 was increased resulting in an imminent reduction in the sand density and shear strength. Despite 301 conduction of further cycles of active and passive modes, surface settlement was comparative 302 downward displacement indicating that no further significant change in the volume of the sand bed 303 was evident which means that the shear strength of the sand remained relatively stable. This can be 304 confirmed by the closure k values during active and passive arching as well as the improved 305 steadiness of k values in Figure 4. The results, therefore, suggest that cycles of yielding and the rise of 306 inclusion exacerbate the formation of active and passive arches causing significant changes to the 307 load transfer on the inclusion in particular during the first cycle. This could be attributed to i.

308 localisation of deformation along the same slip planes and causing shear bands as implied from the physical observations taken during the tests ii. Shearing of the soil mass during the first cycle 309 310 reducing the shear resistance along the slip planes and iii. Permanent change in the vertical stress 311 from the previous arching mode. The volume change of sand during shearing leads to dilation or 312 contraction of the soil and hence change in density which affects the sand shear strength. Zhang et 313 al. (2011) observed that dilation leads to significant volume change and consists of reversible and 314 irreversible components. The later was found to gradually increase with continued shearing whereas 315 the reversible dilation depends upon the shearing direction. As a result, change in the angle of 316 friction is imminent due to dilatancy of the soil mass which is influenced by the shearing direction.

317

318 Figure 6 presents the results of sequential active and passive modes on a sample of dense sand with 319 a height of 100 mm over different ranges of inclusion displacements of 2%, 10% and 20%. All three 320 tests were started with yielding of the inclusion to a predetermined displacement to develop an 321 initial active arching followed by reversing the movement so that the sand bed was in a passive 322 mode. A number of cycles of active and passive mode were then performed over the predetermined 323 displacement ranges. It can be seen that irrespective of the yielding displacement, the normalised 324 load relations followed the same load-deformation path for the monotonic active mode. The 325 recorded normalised load on the inclusion is dependent on the magnitude of displacement prior to 326 reaching the relatively stable load which was measured to be around 5% normalised displacement. 327 On reversing the displacement direction for the sand bed to be in the passive mode, different paths 328 were followed up to reaching a maximum pressure on the inclusion of 180%. Subsequent cycles of 329 active and passive arching followed the same paths as those for the second cycle which were 330 consistent with previously discussed results in Figure 3. The data suggest that hysteresis in the 331 relationship between normalised load and normalised displacement exists and is dependent on the 332 displacement and route followed.

333 5.2. Effect of burial height

For the fourth series of experiments, samples of sand beds with different heights were examined to investigate the effect of sand height on sequential active and passive arching. Results of tests with sand bed heights of 0.50B, 1.0B, 2.0B, 3.0B, 4.0B and 5.0B where B is the width of the yielding inclusion (trapdoor) were presented in Figures 7 and 8.

338 Figure 7 shows the normalised load during the initial yielding of the trapdoor. It is clear that 339 increasing the height of the sand bed leads to a substantial reduction in the load on the inclusion 340 because of the formation of a full and deep arch. The results are in agreement with those reported in 341 previous studies (e.g.; Terzaghi 1936; McNulty 1965; Ladanyi & Hoyaux 1969; Adachi et al. 1997 & 342 Iglesia et al. 2014). The data in Fig 7 also illustrate that with the increase in sand height, the relative 343 change in normalised load with increasing yield displacement reduced greatly. This could be 344 attributed to formation of a virtually stable arch which would be the case for deeply buried underground inclusions. 345

346 Results for full cycles of active and passive modes are presented in Figure 8. Data for the passive 347 mode when the direction of movement was reversed to initiate passive mode showed different 348 features as a function of sand bed height. For shallow heights up to H/B = 2.0, the normalised load 349 responded quickly to the upward displacement leading to a rapid increase in the measured load. 100 350 % normalised load was observed to be reached within 1.5% of normalised displacement. However, 351 with increasing the burial height, a large movement in the range of 4% was required to reach 100% 352 normalised load. This could be attributed to the formation of a full arch in the case of high burial 353 depths leading to significant dilation of the soil region immediately above the inclusion during the 354 previous yielding and to the requirement for a large displacement to compress the soil under the 355 arch prior to the transfer of load to the soil mass in the passive mode. In other words, small burial 356 heights are only able to result in partial formation of active arching. Costa et al. 2009 noted that the 357 behaviour of active arching of soil with shallow heights $((H/B) \le 2)$ is different from the behaviour of 358 active arching of soil with deep heights ((H/B) \geq 2) which is in agreement with the results presented 359 above.

360 The maximum normalised load on the passive mode is directly related to the burial depth. The data 361 illustrate that despite the increase in the number of cycles, the normalized load was relatively 362 constant regardless of the burial height of the soil as shown in Figure 8. To enhance the discussion, 363 surface settlement is plotted against the normalised soil height after the first and tenth cycles of 364 sequential active and passive arching as demonstrated in Figure 9. A significant reduction in the 365 measured settlement is experienced when the burial height increases beyond a normalised height of 366 2.50. Van Eekelen et al. (2003)'s study showed that shallow burial heights were not able to mobilize 367 shear stress noticeably and the development of soil arching was incomplete. The data suggest that 368 the critical height that is often considered to be the height at which the settlement is equal to zero, is 369 between a normalised height of 2~3. Under repeated sequential active and passive arching cycles, 370 surface settlement started to appear and increased with the number of cycles. No critical height 371 could be confirmed after ten cycles of active and passive arching due to increased surface settlement 372 as the surface settlement was recorded to be 4.0 mm after ten cycles. This means that the critical 373 height was not only dependent on the burial height but also on the number of active and passive 374 cycles, which is in line with the previous observation of a weakened arching mechanism under cyclic 375 alterations of active and passive resistance.

In addition, the stress reduction ratio (SRR) is determined by dividing the vertical load on the trapdoor by the initial at rest overburden pressure during the active mode under repeated sequential active and passive arching. If the SRR is equal to zero this means that all load was transferred to the fixed sides (full arching). When SRR is equal to one this means that no arching is developed (Low et al. 1994). SRR provides a useful illustration of the effect of cycle number on the maximum arching of soil:

382

$$SRR = \frac{\delta_v}{\nu H}$$
(2)

where; σ_v is the vertical pressure on the trap door, γ is the soil unit weight and H is the height of the soil bed. Figure 10 presents the results of the Stress reduction ratio (SRR) with the number of cycles for different heights of soil under repeated sequential active and passive arching. It can be seen that most of load increase occurs in the second cycle in comparison with loads measured during the first cycle. This means that arching in soil is substantially decreased during the first few active and passive cycles irrespective of the sand bed height. Increasing bed height has a minor influence on the stress reduction ratio. A slight effect was noted with further alteration of active and passive cycles due to weakened arches. Minor reliance was also observed on the burial height as shown in Figure 10.

391

392 6. CONCLUSIONS

A comprehensive laboratory investigation was conducted to explore the effects of sequential active and passive arching on the load transfer and re-distribution of stresses using the well-known trapdoor test. The following conclusions can be drawn from the presented results and discussion:

Despite attainment of classical relationships for the normalised load during monotonic active
 and passive modes, a significant change on the redistribution of loads occurs under
 sequentially alteration of active and passive resistance. This highlights that relying on
 maximum resistance and minimum loads on the inclusion as a result of complete passive and
 active arching respectively seems to be unsustainable and requires special care.

2. The results suggested that substantial weakening of soil arching occurs during the second cycle of active and passive arching onwards. This could be attributed to i. localisation of deformation along the same slip planes, causing slip bands, ii. Shearing of the soil mass during the first cycle reducing the shear resistance along the slip planes and iii. Permanent change in the vertical stress from the previous arching mode, whether active or passive.

The lateral earth pressure coefficient is a good analogue reflecting changes of principal stress during active and passive modes. It is clear that the suggested value of *k*=1.0 by Terzaghi
1943 is still appropriate for sedimentary granular materials at large displacement. Likewise, a value of k=0.25 would appear to be reasonable for passive resistance during the passive mode.

- 4. Increasing the displacement of the yielding inclusion had a limited effect on redistribution ofthe loads and soil arching due to reaching the ultimate state.
- 5. The load on the inclusion is dependent on the magnitude of displacement prior to reaching
 the relatively stable load. The data suggest that hysteresis in the relationship between
 normalised load and normalised displacement exists and is dependent on the displacement
 and route followed. Different paths are followed up to reaching maximum or minimum
 pressure on the inclusion.
- 418 6. The critical height was affected significantly under repeated conditions of active and passive
 419 modes due to the collapse and/or reduction of soil arching.
- 420 7. The results suggested that dilation of the soil improves with increasing burial height as a
- 421 result of formation of full arching and leading to lower loads on the inclusion during yielding,
- 422 improving the capacity to absorb upward displacement during the passive mode.
- 423
- 424
- 425

426 **REFERENCES**

- Adachi, T., Kimura, M., Nishimura, T., Koya, N., & Kosaka, K. 1997. Trap door experiment under
 centrifugal conditions. Deformation and Progressive Failure in Geomechnics, IS-Nagoya'97,
 pp.725-730.
- BSI (British Standards Institution) 1990. BS 1377:1990. Methods of test for soils for civil engineering
 purposes-Part 2: Classification tests. London: *British Standards Institution.*
- BSI (British Standards Instituation) 2004. BS EN ISO 14688 2:2004 Geotechnical investigation testing
 Identification and classification of soil, Part 2: Principles for a classification of soil
- Chevalier, B., Combe, G., & Villard, P. 2008. Experimental and numerical studies of load transfers
 and arching effect. In Proc., 12th Int. Conf. of the Int. Association for Computer and Advances *in Geomechanics* (IACMAG), Goa, India (pp. 273-280). Tucson, AZ: IACMAG.
- Chevalier, B., Combe, G., & Villard, P. 2009. Experimental and numerical study of the response of
 granular layer in the trap-door problem. Powders and Grains 2009: Proc., 6th Int. *Conf. on the Micromechanics of Granular Media*, M. Nakagawa and S. Luding, eds., American Institute of
 Physics, Melville, NY, 649–652
- Chevalier, B., Combe, G., Villard, P. 2012. Experimental and discrete element modeling studies of the
 trapdoor problem: influence of the macro-mechanical frictional parameters. *Acta Geotechnica*, 7(1), pp.15-39.
- Clark, C. M. 1971. Expansive-soil effect on buried pipe. *Journal-American Water Works Association*.
 1971 Jul 1; 63(7):424-7
- 446 Costa, Y. D., Zornberg, J. G., Bueno, B. S., & Costa, C. L. 2009. Failure mechanisms in sand over a deep
 447 active trapdoor. *Journal of Geotechnical and Geoenvironmental Engineering*. 2009 Apr
 448 27;135(11):1741-53.
- 449 Cui, Z. D., Yuan, Q., & Yang, J. Q. 2017. Laboratory model tests about the sand embankment 450 supported by piles with a cap beam. *Geomechanics and Geoengineering*, pp.1-13.
- 451 Dalvi, R. S., & Pise, P. J. 2012. Analysis of arching in soil-passive state. Indian Geotechnical Journal,
 452 42(2), pp.106-112
- Dewoolkar, M.M., Santichaianant. K., & Ko, H.Y. 2007. Centrifuge modeling of granular soil response
 over active circular trapdoors. *Soils and foundations*. 2007;47(5):931-45.
- Evans, C. H. 1983. An examination of arching in granular soils. S.M. thesis, Dept. of Civil Engineering,
 MIT, Cambridge, MA.
- Fattah, M.Y., Mohammed, H. A., & Hassan, H. A. 2016. Load transfer and arching analysis in
 reinforced embankment. *Proceedings of the Institution of Civil Engineers-Structures and Buildings*, 169(11), pp.797-808.
- Gaoxiao, H., Quanmei, G., & Shunhua, Z. 2011. Mechanical analysis of soil arching under dynamic
 loads. In Pan-Am CGS Geotechnical Conference.
- 462 Handy, R. L. 1985. The arch in soil arching. *Journal of Geotechnical Engineering*, 111(3), 302-318.
- Horgan, G. J., & Sarsby, R. W. 2002. The arching effect of soils over voids and piles incorporating
 geosynthetic reinforcement. *Geosynthetics 7th ICG Delmas, Gourc and Girard (eds), Swets*& *Zeitlinger*, Lisse ISBN 90 5809 523 1, pp. 373-378.
- 466 Iglesia, G. R., Einstein, H. H., & Whitman, R. V. 1999. Determination of vertical loading on
 467 underground structures based on an arching evolution concept. Proceedings 3rd National
 468 Conference on Geo-Engineering for Underground Facilities, pp. 495-506.
- Iglesia, G. R., Einstein, H. H., & Whitman, R. V. 2014. Investigation of soil arching with centrifuge tests.
 Journal of Geotechnical and Geoenvironmental engineering. 140(2).
- Jenck, O., Combe, G., Emeriault, F., & De Pasquale, A, (2014). January. Arching effect in a granular soil
 subjected to monotonic or cyclic loading: kinematic analysis. In C. Gaudin and D. White eds., *8th international conference on physical modelling in Geotechnics*
- Koutsabeloulis, N. C., & Griffiths, D. V. (1989). Numerical modelling of the trap door problem.
 Geotechnique, 39(1), pp.77-89.

- Krynine, D. P. (1945). Discussion of "Stability and stiffness of cellular cofferdams," by Karl Terzaghi,
 Transactions, ASCE, Vol. 110, pp. 1175- 1178.
- 478 Ladanyi, B., & Hoyaux, B. (1969). A study of the trap-door problem in a granular mass. *Canadian*479 *Geotechnical Journal*, 6(1), pp.1-14.
- 480 Lambe, T. W., & Whitman, R. V. (1969). Soil Mechanics, 553 pp. Jhon Wiley & Sons, N. York.
- Lee, C. J., Wu, B. R., Chen, H. T., & Chiang, K. H. (2006). Tunnel stability and arching effects during
 tunneling in soft clayey soil. *Tunnelling and Underground Space Technology*, 21(2), pp.119132.
- 484 Low, B.K., Tang, S.K., & Choa ,V. (1994). Arching in piled embankments. *ASCE J Geotech Eng* 485 120(11):1917–1938
- 486 McNulty, J. W. (1965). An experimental study of arching in sand (No. AEWES-TR-1-674). ARMY 487 ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS.
- 488 Moradi, G., Bonab, M. H., & Abbasnejad, A. (2015). Experimental Modeling and Measuring Stresses 489 and Strains during Arching Phenomenon. *Geosciences*, 5(2), pp.53-61.
- Meguid, M.A., Saada, O., Nunes, M. A., & Mattar, J. (2008). "Physical Modeling of Tunnels in Soft
 Ground: A Review," Tunn. Undergr. Sp. Tech, Vol. 23, No. 2, pp. 185–198.
- 492 Pardo, G. S., & Sáez, E. (2014). Experimental and numerical study of arching soil effect in coarse
 493 sand. Computers and Geotechnics, 57, pp.75-84
- 494 Pirapakaran, K., & Sivakugan, N. (2007a). "A laboratory model to study arching within a hydraulic fill
 495 stope." *Geotech. Test. J.*, 30(6), 496–503.
- 496 Pirapakaran, K., & Sivakugan, N. (2007b). "Arching within hydraulic fill stopes." *Geotech. Geologic.* 497 *Eng.*, 25(1), 25–35.
- Potts,V. J., & Zdravkovic, L. (2008). Finite element analysis of arching behaviour in soils. The 12th
 International Conference of International Association for Computer Methods and Advances in
 Geomechanics (IACMAG), Goa, India, October, 2008, pp. 3642-3649.
- Russell, D., Naughton, P. J., & Kempton, G. (2003). 'A new design procedure for piled embankments',
 In: Proceedings of the 56th *Canadian Geotechnical Conference* and *2003 NAGS Conference*,
 pp. 858–865.
- Russell, D., & Pierpoint, N. (1997). 'An assessment of design methods for piled embankments',
 Ground Engineering, 30(10), pp. 39-44.
- Sadrekarimi, J., & Abbasnejad, A. (2008). An experimental investigation into the arching effect in
 fine sand. International Journal of Engineering-Transactions B: Applications, 21(4), pp.345 360.
- 509 Stone, K. J. L. (1988). "Modelling of rupture development in soils." Ph.D. Dissertation, Wolfson 510 College, Cambridge Univ., Cambridge, U.K
- 511 Stone, K. J. L., & Muir Wood, D. (1992). "Effects of dilatancy and particle size observed in model 512 tests on sand." *Soils Found.*, 32(4),43–57.
- Tanaka, T., & Sakai, T. (1993). progressive failure and scale effect of trap-door problems with granular
 materials. *soils and foundations*, 33(1), pp.11-22.
- Terzaghi, K. (1936). 'Stress distribution in dry and in saturated sand above a yielding trapdoor',
 Proceeding of the International Conference on Soil Mechanics and Foundation Engineering Bd.1. Cambrigde, pp. 307-311.
- 518 Terzaghi, K. (1943). 'Theoretical Soil Mechanics', John Wiley and Sons, New York.
- Van Eekelen, S. J., Bezuijen, A., & Oung, O. (2003). Arching in piled embankments; experiments and
 design calculations. *Proceedings of Foundations*: Innovations, observations, design and
 practice. 2003 Sep:885-94.
- Van Eekelen , S. J. M. (2015). Basal Reinforced Piled Embankments. Experiments, field studies and the
 development and validation of a new analytical design model (Doctoral dissertation, PhD
 thesis, Delft University of Technology).
- Vardoulakis, I., Graf, B., & Gudehus, G. (1981). Trap-door problem with dry sand: a statical approach
 based upon model test kinematics. *Int J Num Anal Methods Geomech* 5:57–78

- 527 Villard, P., Gourc, J. P., & Giraud, H. (2000). A geosynthetic reinforcement solution to prevent the 528 formation of localized sinkholes. *Canadian Geotechnical Journal*, 37(5), 987-999.
- 529 Wang, L., Leshchinsky, B., Evans, T. M., & Xie, Y. (2017). Active and passive arching stresses in c'- ϕ' 530 soils: A sensitivity study using computational limit analysis. Computers and Geotechnics, 84, 531 47-57.
- 532 Zhang, G., Wang, L. and Zhang, L.M. (2011). Dilatancy of the interface between a structure and 533 gravelly soil. Géotechnique 61(1):75-84.

Table 1. Properties of sand used in this study

Parameter	Value	
d ₁₀ (μm)	570	
d ₃₀ (μm)	630	
d₅₀ (μm)	690	
d ₆₀ (μm)	710	
Uniformity coefficient (c _u)	1.25	
Coefficient of curvature (c _c)	0.98	
Maximum dry Unit weight (kN/m ³)	16.50	
Optimum water content (%)	8.0	
Angle of friction (φ)	33°	

Thickness of sand bed	Measurement level (mm)					Average dry
(mm)	0	100	200	300	400	(kN/m ³)
50	16.36					16.36
100	16.36					16.36
200	16.38	16.36				16.37
300	16.40	16.41	16.35			16.38
400	16.42	16.41	16.38	16.33		16.39
500	16.42	16.41	16.40	16.36	16.32	16.39

Table 2. Measured dry unit weight at different heights

Table 3. Summary of experimental programme

Series	Number of tests	Variable parameters	Fixed parameters
I	2	monotonic active and	<i>H</i> = 100 mm
		passive arching	<i>B</i> = 100 mm
			<i>d</i> = 10 mm
ш	C	initial active mode and	<i>H</i> = 100 mm
11	Z	initial active mode	<i>B</i> = 100 mm
		initial passive mode	<i>d</i> = 10 mm
			<i>n</i> =5
III	3	Normalised displacement	<i>H</i> = 100 mm
		2, 10, 20 %	<i>B</i> = 100 mm
			active & passive
			<i>n</i> =10
IV	6	H = 0.5B, 1B, 2B, 3B, 4B,	<i>d</i> = 10 mm
		5 <i>B</i>	<i>B</i> = 100 mm
			active & passive
			<i>n</i> =5

569 cycles

Figure 5: Evolving of surface deformation during sequential active and passive arching

638 a. Active arching at normalised displacement of 2%, b. Active arching at normalised displacement of 639 5%, c. Active arching at normalised displacement 10%, d. Passive arching at normalised displacement 640 of 10%, e. Second cycle of active arching at normalised displacement 10%, f. Second cycle of passive 641 arching at normalised displacement of 10%, g. Tenth cycle of active arching at normalised 642 displacement 10% and h. Tenth cycle of passive arching at normalised displacement of 10%.

Figure 9: Surface settlement as a function of normalised height after first active arching and tenth
cycle of active and passive arching.

Figure 10: Stress reduction ratio versus cycle number of active and passive arching at 1% normalised
 displacement for various normalised heights.