
Decentralised Runtime Monitoring for Access
Control Systems in Cloud Federations

Md Sadek Ferdous, Andrea Margheri, Federica Paci, Mu Yang, Vladimiro Sassone
University of Southampton

{s.ferdous; a.margheri; f.m.paci; mu.yang; vsassone}@soton.ac.uk

Abstract—Cloud federation is an emergent cloud-computing
paradigm where partner organisations share data and services
hosted on their own cloud platforms.

In this context, it is crucial to enforce access control policies
that satisfy data protection and privacy requirements of partner
organisations. However, due to the distributed nature of cloud
federations, the access control system alone does not guarantee
that its deployed components cannot be circumvented while
processing access requests.

In order to promote accountability and reliability of a
distributed access control system, we present a decentralised
runtime monitoring architecture based on blockchain technology.

Index Terms—Access Control, Cloud Federation, Runtime
Monitoring, Blockchain, Security.

I. INTRODUCTION & MOTIVATION

The advent of cloud computing has enabled new collabora-

tive scenarios in which users and organisations share resources,

information and services in order to achieve a common busi-

ness goal or interest. An instance of this trend is provided by

federated clouds [1], [2], [3] which are created dynamically

to achieve such a business goal. However, its adoption can

be hindered by security concerns such as who can access the

shared resources, for what purposes, and what are the potential

consequences of granting access.

An approach typically adopted to address these concerns is

to deploy a federation-wise access control system to enforce

access control policies attached to the federation by the

resource owner [4]. This means that there will be distributed

components that receive, exchange and process access requests

and their corresponding access decisions with the possibility of

being compromised. Indeed, it is possible that the components

are compromised so that access requests or responses are

modified, or the policies and the evaluation process are altered

by a malicious user or software to gain unauthorised access

to federated resources.

To detect such attacks, this paper proposes a runtime

monitoring architecture for distributed access control systems:

Decentralised Runtime Access Monitoring System (DRAMS).
This is achieved by including distributed logging probes which

sense access control activities and intercept access requests

and decisions. These logs are then processed to check the

integrity of the monitored components. A key feature of

DRAMS is that not only it is able to detect attacks to the

components involved in an access control decision, but it

is also resilient to attacks targeting the integrity of the logs

or of the monitoring components. To achieve this, DRAMS

leverages blockchain technologies [5] as an infrastructure

for storing logs and performing non-repudiable monitoring

checks. Blockchain is a novel technology that, besides its

application to cryptocurrency, features fascinating properties

of data integrity, distribution and control along with the

support for so-called smart-contracts, which are arbitrarily

complex programs deployed and executed autonomously on

a blockchain.

DRAMS is proposed upon the access control system of

Federation-as-a-Service (FaaS) [3], a recently proposed ap-

proach to cloud federation devised and developed by the

H2020 project SUNFISH [6]. The FaaS access control system

is based on the eXtensible Access Control Markup Language

(XACML) [7] consisting of Policy Decision Point (PDP) and

Policy Enforcement Point (PEP). Indeed, once a PEP receives

a user’s request, it forwards it to the PDP, which calculates

the access decision. The decision is then enforced by the PEP.

In FaaS, the XACML components are deployed along with

the tenants (i.e., virtual spaces of computing resources belong-

ing to different clouds) underlying a FaaS federation. The PDP

and the policy management is placed in the infrastructural

tenant (i.e., the tenant owned by all federation clouds that

enable the FaaS functionalities). PEPs are instead deployed

in a distributed manner on the tenants edge, thus to intercept

all communications, interact with the distributed sources of

information and enforce the calculated accesses.

In what follows, we present DRAMS architecture and

discuss the main challenges in implementing such architecture

on top of blockchain technology.

II. DRAMS ARCHITECTURE

DRAMS rests on a smart-contract blockchain to store

logs and perform monitoring checks on them. Additionally,

DRAMS is equipped with a formally-grounded policy analyser

that evaluates whether an access decision is correct according

to the semantics of the available policies. Its architecture is

illustrated in Figure 1 which has the following components:

• Logger: consisting of Probing agents for intercepting

and forwarding data to create access logs and Logging
Interface (LI), which exposes to agents endpoints for

storing data and managing security alert events generated

by smart-contracts.

• Smart-contract blockchain: it is the smart-contract

blockchain system storing and comparing logs, using

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/157856283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Infrastructure Tenant

AnalyserAnalyser

PDPPRP

Section 1

Section 2

PEP

Tenant 1

PEP

Smart-contract 
Blockchain

Smart-
contract

Tenant 2

PEP

Logger

LI

LI

AgentAgent

AgentAgent

Logger LI
AgentAgent

Logger

Logger
LI

AgentAgent

Infrastructure Tenant

Analyser

PDPPRP

Section 1

Section 2

PEP

Tenant 1

PEP

Smart-contract 
Blockchain

Smart-
contract
Smart-

contract

Tenant 2

PEP

Logger

LI

LI

Agent

Agent

Logger LI
Agent

Logger

Logger
LI

Agent

Figure 1: DRAMS architecture deployed on the access control system of a FaaS cloud federation (where ’Section i’ stands for

a set of computing resources belonging to a cloud ‘i’, while LI stands for Logging Interface)

expressly devised algorithms, thus to mitigate threat that

modifies access control decisions or responses.

• Analyser: it checks the correctness of the access decisions

calculated for the intercepted requests, with respect to the

policies currently in force in the system to mitigate threats

that alter the policy enforced or the policy evaluation

process.

Indeed, the key element of the system is the blockchain

infrastructure: it is connected via the LI, placed in each tenant,

to all the other components. The agents are distributed in each

tenant where the monitored access control components (i.e.,

PDP and PEP) are placed.

The LI also provides symmetric encryption and decryption

functions, which are exploited by the other components to

store/retrieve encrypted data in/from smart-contracts. Indeed,

as data stored on a blockchain are visible to all users, encryp-

tion is used to protect data confidentiality.

The Analyser is a standalone entity logically placed within

the Infrastructural Tenant, but deployed within a different

cloud section with respect to the access control components.

It dynamically consumes and evaluates the gathered logs to

ensure the correct enforcement of access decisions. On the

base of a logical representation of the access control policies

evaluated by the PDP, the Analyser checks if for a given

request the calculated response is the expected one using the

formally-grounded analysis framework for XACML presented

in [8].

III. DISCUSSION

We discuss here the main challenges in implementing the

DRAMS architecture.

System Integrity. Even though the smart-contract of DRAMS

is immutable, the integrity of the other components, e.g. the

LI, cannot be guaranteed by-design, because they are deployed

off-chain. Similarly, as all the LI instances share a symmetric

key K, its management is of paramount importance.

To mitigate both difficulties, we can introduce a trusted

hardware platform (e.g., Trusted Platform Module) within the

system. On the one hand, it can be leveraged to store the

symmetric keys by increasing the overall system security. On

the other hand, this platform can be utilised to guarantee the

integrity of the off-chain components.

Log Size. The key parameter highly affecting the monitoring

system is the size of the log. In fact, the bigger the size is, the

higher is the latency to store the log on the blockchain. By re-

lying on a private blockchain, where all PoW (Proof-of-Work)

parameters can be dynamically tuned according to the needs,

the latency can be maintained under control. However, due

to the limited size of the network and a possibly lightweight

PoW, this solution does not ensure strong integrity guarantees.

Alternatively, a hybrid approach combining classical database

with blockchain system should offer an adequate flexibility

to find a trade-off between latency, integrity guarantees and,

in case of public chain, cost. A preliminary design to such a

system is presented in [9].

ACKNOWLEDGMENT

This work has been supported by the EU H2020 Programme

under the SUNFISH project, grant agreement N. 644666.

REFERENCES

[1] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud
architectures to enable cross-federation,” in CLOUD. IEEE, 2010, pp.
337–345.

[2] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze, “Cloud
Federation,” in Cloud Computing, GRIDs, and Virtualization, 2011, pp.
32–38.

[3] F. P. Schiavo, V. Sassone, L. Nicoletti, and A. Margheri (Eds.), “Faas:
Federation-as-a-service,” CoRR, vol. abs/1612.03937, 2016.

[4] B. Suzic, A. Reiter, F. Reimair, D. Venturi, and B. Kubo, “Secure data
sharing and processing in heterogeneous clouds,” Procedia Computer
Science, vol. 68, pp. 116–126, 2015.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
available at https://bitcoin.org/bitcoin.pdf.

[6] “SecUre iNFormatIon SHaring in federated heterogeneous private clouds
(SUNFISH),” Accessed on 16 January, 2017, http://www.sunfishproject.
eu/.

[7] Bill Parducci,Hal Lockhart, “eXtensible Access Control Markup Lan-
guage (XACML) Version 3.0,” 22 January, 2013, http://docs.oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[8] A. Margheri, M. Masi, R. Pugliese, and F. Tiezzi, “A rigorous framework
for specification, analysis and enforcement of access control policies,”
CoRR, vol. abs/1612.09339, 2016.

[9] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “Blockchain-based database to ensure data integrity in cloud
computing environments,” in ITA-SEC. CEUR-WS.org, To Appear.


