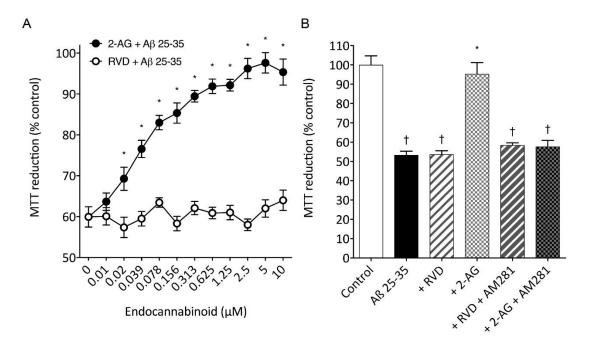
Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol17Issue1abst020P.pdf


Effect of RVD-hemopressin on amyloid-β induced toxicity in human SH-SY5Y neuroblastoma cells

S. J. Werner, S. W. Martin, A. W. Paterson, N. G. Milton. School of Clinical & Applied Sciences, Leeds Beckett University, Leeds, United Kingdom.

Introduction: Previous *in vitro* and *in vivo* studies have demonstrated the protective properties of lipid endocannabinoids against amyloid- β (A β) induced neurotoxicity^{1,2}. Lipid-derived endocannabinoid agonists such as 2-arachidonoylglycerol (2-AG) can exert their effects via both the extra- and intracellular cannabinoid receptor-1 (CB₁)³. Pepcans are a group of haemoglobin derived peptide cannabinoids and are found throughout the CNS³. They are cell-impermeant and act on the extracellular CB₁ receptor^{3,4} as agonists/antagonists. The pepcan RVD-hemopressin (RVD) is a CB₁ receptor agonist³. The aim of this study was to determine whether RVD is protective against $A\beta$ toxicity.

Method: This study employed MTT cell viability assays to investigate the effects of the peptide CB_1 agonist RVD and lipid CB_1 agonist 2-AG plus the CB_1 antagonist AM281 on A β 25-35 induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Data was analyzed by one-way analysis of variance (ANOVA).

Results: RVD (0.01-10μM) had no effect on 10μ M Aβ 25-35 induced neurotoxicity in SH-SY5Y cells, whereas 2-AG (0.02-10μM; P<0.05 vs Aβ 25-35 alone) promoted a concentration dependent inhibition (Figure 1A). The CB₁ antagonist AM281 (10μM) had no effect on RVD (10μM) plus 10μM Aβ 25-35, however it abolished the protective effects of 2-AG (10μM; P<0.05 vs Aβ 25-35 alone) on 10μM Aβ 25-35 induced neurotoxicity (Figure 1B).

Figure 1. (A) Dose-response curves for RVD plus $10\mu M$ Aβ 25-35 and 2-AG plus $10\mu M$ Aβ 25-35 on MTT reduction in SH-SY5Y cells. (B) SH-SY5Y cells were exposed to $10\mu M$ Aβ 25-35 alone, or plus $10\mu M$ RVD alone or $10\mu M$ RVD and $10\mu M$ AM281 or $10\mu M$ 2-AG alone or $10\mu M$ 2-AG and $10\mu M$ AM281 and cell viability determined by MTT reduction. Results are mean \pm SEM (n=8 for each data point); * = P< 0.05 vs Aβ 25-35 alone; † = P<0.05 vs control; (one-way ANOVA).

Conclusion: In conclusion, the peptide cannabinoid RVD is non-protective against A β 25-35 induced neurotoxicity in SH-SY5Y cells. Lipid based endocannabinoids, such as 2-AG, are protective against A β 25-35 induced neurotoxicity ¹. Our results support the suggestion that endocannabinoid neuroprotection against A β involves the intracellular CB₁ receptor rather than the extracellular CB₁ receptor ⁵.

References:

- (1) Milton NGN (2002). Neurosci Letts 332: 127-130.
- (2) van der Stelt M et al. (2006). Cell Mol Life Sci 63: 1410-1424.
- (3) Gomes I et al. (2009). FASEB J. 23: 3020-3029.
- (4) Ma L et al. (2015) Sci Rep 5: 12440.
- (5) Noonan J et al. (2010). J Biol Chem 285: 38543-38554.