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ABSTRACT 
This study aimed to establish whether a series of three apnoeas prior to a 400-m 

freestyle time-trial affected swimming performance when compared to, and combined 

with a warm-up. Nine (6 males, 3 females) regional to national standard swimmers 

completed four 400-m freestyle time-trials in 4 randomized conditions: without warm-

up or apnoeas (CON), warm-up only (WU), apnoeas only (AP) and warm-up and 

apnoeas (WUAP). Time-trial performance was significantly improved after WUAP 

(275.79 ±12.88 s) compared to CON (278.66 ±13.31 s, P = 0.035) and AP (278.64 

±4.10 s, P =0.015). However, there were no significant differences between the WU 

(276.01 ±13.52 s, P >0.05), and other interventions. Spleen volume compared to 

baseline was significantly reduced following the apnoeas by a maximum of ~45% in 

the WUAP and by ~20% in WU. This study showed that the combination of a warm-

up with apnoeas could significantly improve 400-m freestyle swim performance 

compared to a control and apnoea intervention. Further investigation into whether long-

term apnoea training can enhance this response is justified. 
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INTRODUCTION 

The difference between a Gold and Silver medal in the men’s 400-m Freestyle 

at the 2016 Rio Summer Olympic Games was 0.13s. This emphasizes the point that in 

elite swimming, marginal improvements are a key priority (10). At Olympic and World 

Championship level many swimmers have similar performance abilities determined by 

combinations of energy availability and technical effectiveness. Therefore, finding 

improvements in the performance of as little as 1% will have a significant effect on the 

race outcome (15).    

The use of a warm-up is now widely accepted as common practice prior to an 

exercise bout (22). Two functions of a warm-up are to decrease the risk of injury and 

to prepare the athlete optimally for the demands of the event. This occurs by increasing 

muscle and body temperature, decreasing viscous resistance, increasing the rate of 

nerve impulses, and increasing efficiency of oxygen delivery (22). The effect of body 

temperature on exercise performance has recently been shown (24). The researchers found 

a significant improvement in jump height (3.8%) and 10-m sprint time (5.5%) when body 

temperature was increased after a warm-up.  Further Research has found that a specific 

warm-up reduced viscous resistance significantly by a shortening of the time taken for 

voluntary contractions (8). 

Research into the effects of an active warm-up on swimming performance has 

sometimes been contradictory, however, it is suggested that the warm-up becomes more 

effective as the distance of the time trial increases (22).  

Apnoea has been proposed as a new potential training method that would 

influence performance (18). Through holding one’s breath, a number of physiological 

processes occur. Due to the reduction of oxygen availability during an apnoea, 

hypoxemia occurs in the kidney and spleen. This response occurs in conjunction with 
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hypercapnia, increased acidosis, bradycardia, reduced SpO2 and a splenic contraction 

(4). During an initial apnoea, the hypoxemia is one of the potential stimuli for a splenic 

contraction. This contraction usually occurs as a stress response, especially when the 

demands of oxygen increase, and is correlated with the release of catecholamines from 

the adrenal gland and the postganglionic fibers in the sympathetic nervous system (23). 

There is an improvement in the body’s ability to transport oxygen due to an 

increased number of circulating erythrocytes, resultant of a splenic contraction. This 

has been confirmed when a 2%-5% increase hemoglobin (Hb) and hematocrit (Hct), 

independent of haemoconcentration, and a reduction in arterial oxygen desaturation, 

were seen after repeated apnoeas (3). This effect was confirmed when comparing 

splenectomized subjects against non-splenectomized subjects. Subjects without a 

spleen did not demonstrate the same hematological changes after an apnoea, or the 

ability to carry out the typical prolongation of repeated apnoeas, compared to their non-

splenectomized counterparts (3, 4).  

The strength of the splenic contraction has been suggested to be augmented by 

a series of apnoeas rather than a single breath hold, even though a study found a splenic 

contraction could potentially occur after a single apnoea (4). However, in the same 

study further apnoeas continued to steadily reduce splenic volume, thereby further 

increasing the circulating erythrocytes. The increase in circulating erythrocytes has 

been shown to last between 8-9 min following serial apnoeas (27) suggesting a potential 

method of acutely increasing oxygen transport, to improve short-term competitive 

performance. 

From the involvement of both the central inspiratory and phasic pulmonary 

afferent mechanisms during apnoeas, heart rate becomes slower (Bradycardia). This is 

an essential oxygen conserving part of the diving response. The diving response can be 
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augmented by cold-water (~10°C) face immersion after 25-30 s (19). This occurs due 

to the stimulation of the ophthalmic branch of the trigeminal nerve, situated in the upper 

facial region (2). This sensory output has therefore suggested to be beneficial for free 

divers (20), but also possibly swimmers who spend a large proportion of the race with 

their face immersed.  

Based on the physiological research of the diving response and splenic 

contraction, a plausible assumption can be made that the acute effects of serial apnoeas 

can improve aerobic performance. 

 Sperlich, Zinner, Pfister, Holmberg, and Michels (30) was the first and currently 

the only study to apply the potential acute effects of repeated apnoeas prior to a cycling 

time-trial. The results showed no improvement in performance, as well as no rise in Hct 

or Hb, contradicting previous findings. 

 It is clear there are gaps in the research regarding the effects of a series apnoeas 

on 400-m freestyle time-trial performance. Due to the potential acute physiological 

effects that the apnoeas may have on aerobic exercise, it seems logical for these to be 

placed immediately prior to the time-trial, adding to the potential effects already gained 

by the warm-up. 

The aim of this research is to establish whether a series of apnoeas immediately 

prior to a 400-m freestyle time-trial, affects performance when compared to and 

combined with a warm-up. 
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Experimental Approach to the Problem 

A randomized, repeated measure cross-over design was used for this study. The 

testing took place during an aerobic capacity period of training when the pool was 

configured for short-course (25m). This setup included an indoor pool (Water 

Temperature, 28.37 ±0.26 °C; Air Temperature, 29.13 ±0.42 °C) consisting of anti-

wave lane ropes (AntiWave Pool Products, Constantine, Michigan), OMEGA OSB11 

starting blocks (Swiss Timing LTD, Corgémont, Switzerland) and OMEGA OCP5 

Touchpad's (Swiss Timing LTD, Corgémont, Switzerland). A familiarisation session 

occurred prior to any testing to allow participants to habituate themselves with the 

apnoea protocol (Fig.1). 

Participants were subject to 4 separate test conditions: No warm-up/No apnoeas 

(CON), with warm-up only (WU), apnoeas only (AP) and with warm-up and apnoeas 

(WUAP), on a 400-m freestyle time-trial. Visits were separated by at least 2 days and 

a maximum of 7 days. 

 Prior to each time-trial, the participants were asked to refrain from strenuous 

exercise (24 hours), caffeine (12 hours) and food (2 hours). Swim and land training 

sessions were controlled (low intensity, the rate of Perceived Exertion (RPE) < 12 (21)) 

and replicated 2 days leading into the trials as to not affect the performance outcome. 

In addition, participants were asked to replicate their dietary intake for the 24 hours 

prior to each time-trial.  

Subjects 

Nine well-trained swimmers (6 males, 3 females: Age 19 ± 1 and 19 ± 2 years; 

Stature 1.84 ± 0.05 m and 1.67 ± 0.03 m; Body mass 78.2 ± 7.2 kg and 61.6 ± 2.2 kg, 

respectively) volunteered to participate in this study. Personal best times in the 400-m 

Freestyle event were 257.99 ± 5.58 s and 262.06 ± 13.90 s for the male and female 
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participants respectively.  Participants were aged between 16 to 22 years of age and had 

competed at a regional/national level in middle-distance swimming events. They were 

free from any illnesses and injuries that may have affected their ability to compete in 

this study.  Institutional ethical committee approval was gained for this project. 

Procedures 

The first visit was a familiarisation session to habituate the participants to the 

study protocol as none of the participants had any previous breath holding experience. 

This included carrying out the full apnoea protocol (fig.1) until they were confident 

with the procedure. The participants were screened when they first arrived to ensure 

they were healthy enough to complete the task. This screening protocol included a 

questionnaire established by using the American College of Sports Medicine (ACSM) 

Guidelines (1) and measurements of the participants’ stature, mass and blood pressure 

were taken. Body mass was recorded to the nearest 0.1kg using Seca Scales 709 (Seca 

Ltd, Birmingham, UK). Stature was measured using a Harpeden Portable Stadiometer 

(Holtain Limited, Pembrokeshire, UK) to the nearest 0.01m. 

During experimental trials, four different types of pre-time-trial condition were 

followed by an individual 400-m freestyle time-trial from a dive start. The order in 

which the participant carried out these trials was randomized. The participants carried 

out their time-trial at the same time of day to ensure their normal circadian rhythms did 

not affect the results. A schematic of the protocols can be seen in Figure 1.  

Condition A was a control trial where neither the apnoea intervention nor pre-

race warm-up occurred. Physiological measurements of Heart Rate (HR; Polar V800 

HR monitor, Polar Electro, Kempele, Finland), SpO2 (Nonin 8500 Hand Held Digital 

Oximeter, Plymouth, USA), Blood Lactate (BL; Lancet and Lactate Plus Meter, Nova 

Biomedical Corporation, USA), Hb (HemoCue, Radiometer Group, Sweden) taken 
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from the ear and Spleen volume (Vivid I, GE Healthcare, General Electric, Fairfield, 

CT, USA) were all taken in a seated postition at baseline, pre and immediately post 

time-trial with the addition of RPE (6) taken post time-trial in all conditions.  

Condition B introduced the standardized race warm-up (table 1). Here the 

physiological measurements were taken pre and post warm-up and pre and immediately 

post time-trial. In both conditions A and B, there was a 20-min seated passive rest 

period to stimulate a call room before the time-trial. During this passive rest, 

participants remained in their racing suits plus a towel that covered their bodies from 

their shoulders to waist, to ensure different items of clothing affected the results.  

Condition C involved the apnoea intervention independent of a warm-up. The 

apnoea intervention consisted of three seated maximal breath-holds, until voluntary 

cessation. Between each apnoea, there was 2-min passive rest period.  Physiological 

measurements were taken at baseline, pre and immediately post time-trial. HR, SpO2 

and spleen volume was measured pre, post and 1-min post each apnoea 

Condition D was a combination of the interventions where both a standardized 

race warm-up and a series of apnoeas were carried out prior to the 400-m time-trial. 

The 400-m freestyle time-trial splits were taken every 50-m, by using the 

OMEGA OCP5 Touchpads. Time-trial analysis (stroke rate, distance per stroke and 

stroke index) was carried out during and immediately after the time-trial. Stroke rate 

(SR) was obtained using the stopwatch function on the Finis 3 x 300m stopwatch (Finis 

Inc, California, USA). This was computed by calculating the elapsed time for three 

stroke cycles. The timing started as the swimmers right hand entered the water and then 

stopped after the same hand had entered the water for the fourth time, thereby 

completing the three arm cycles. The measurements were taken between 10-m and 20-

m to eliminate the effects of the start and turns. The SR values were then divided by 60 
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to get the SR per cycle (s.cycle-1). Distance per stroke (DPS) and stroke index (SI) were 

obtained using a method devised by Vitor and Böhme (32). The 50-m splits from the 

time-trial were converted to swimming speed (m.s-1), which allowed for DPS and SI to 

be calculated. Using the equation: swimming speed divided by SR, this gave a value 

for DPS (m.cycle-1). SI (m2.s-1) was then calculated by multiplying swimming speed 

(m.s-1) by DPS. 



 

 

9 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 HERE 
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TABLE 1 HERE 

 

 

 

 

 

Statistical Analysis 

Statistical analysis was performed using SPSS software (version 22: SPSS Inc, 

Chicago, IL), with significance set at P≤0.05. Time-trial data were analyzed using a 

repeated-measures analysis of variance (ANOVA) with a post hoc Bonferroni 

correction to compare differences between the conditions.  A pair-sample t-test was 

used when only two conditions were being compared. 

Magnitude-based inferences (MBI), were calculated to establish whether the 

effects of the interventions on the time-trial were meaningful (5). Hopkins (5) created 

a spreadsheet that was used by converting the p-value into 90% confidence intervals 

(CI).  To establish whether the effect was beneficial, trivial, or harmful, verbal 

descriptors were used according to the following scale: < 0.5 %, ‘almost certainly not’; 

0.5 – 5 %, ‘very unlikely not’; 5 – 25 %, ‘unlikely’; 25 – 75 %, ‘possibly’; 75 – 95 %, 

‘likely’; ’95-99.5 %’, ‘very likely’ > 99.5 %, ‘almost certainly’.  When an odds ratio of 

benefit to harm of < 66 was identified the effect was deemed unclear, this corresponds 

to a 25 % chance of benefit and 0.5 % risk of harm (11). Based on the reduced 

inferential error rates compared with null-hypothesis significance testing MBI has been 

supported within exercise science and is used to facilitate direct interpretation of the 
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magnitude of changes and whether these are meaningful (13). Subsequently, this 

approach was utilized and prioritized for evaluating TT performance. 

20 swimmers (10 Male, 10 females) from the British swimming results database 

who have raced the 400-m freestyle in the past 12 months were analyzed to establish 

the typical error of this event. The swims were only included if it was in a short course 

pool (25-m) and was in the aerobic training phase (high volume, low intensity - phase 

agreed with by coach). The analysis using Hopkins “Spreadsheets for Analysis of 

Validity and Reliability” (12) gave a log-transformed typical error as a coefficient of 

variation, which was 0.6% between trials. All data are presented as mean and standard 

deviations (mean ± SD). 

RESULTS 

Time-Trial Performance 

The 400-m freestyle time-trial results are shown in Fig 2. The time swam in the 

WUAP time-trial (275.79 ±12.88 s) was significantly faster than the CON (278.66 

±13.31 s, P = 0.035) and the AP time-trial (278.64 ±4.10 s, P =0.015). With a mean 

difference between the CON and WUAP of 2.87 s, the intervention was deemed very 

likely beneficial (96.0%), very unlikely trivial (3.2%), very unlikely negative (0.8%)). 

There was no significant difference between the WU (276.01 ±13.52 s,) and any of the 

other conditions. Even though it was not significant (P = 0.097) against the CON 

intervention, the WU intervention was still deemed likely beneficial when analyzed 

using MBI (likely beneficial (90.8%), unlikely trivial (6.7%), very unlikely negative 

(2.5%)). When compared to CON, the experimental conditions resulted in the following 

performance improvements: 1.03% (WUAP), 0.95% (WU) and 0.01% (AP).  

Comparing the WUAP and WU conditions there were no significant differences (P = 
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0.99) with the WUAP intervention being deemed unclear (Possibly beneficial (50%) or 

possibly negative (50%)).  

 

 

 

 

FIGURE 2 HERE 

 

 

 

Stroke parameters (SR, DPS, and SI) and swimming speed are shown in Fig. 3. 

SR was significantly higher (P = 0.002) on the 7th 50m and DPS was significantly 

greater on the 7th (P = 0.036) and 8th 50m (P = 0.011) for WUAP than in the AP 

intervention.  SI was found to be higher in the WUAP than the CON throughout the 

trial, significantly in the 8th 50m (P = 0.038).    

A significant difference was found between the post-trial RPE scores, with 

lower scores being reported in the WU time-trial (17.6 ±0.53) compared against the 

CON time-trial (18.4 ±0.53, P = 0.013) and AP time-trial (18.3 ±0.50, P = 0.004). Yet 

no difference was found between the WU and WUAP (17.9 ±0.78, P =0.99) 
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FIGURE 3 HERE 
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Physiological Results 

HR (Fig. 4A) was significantly lower in the AP compared to the WUAP in the 

1-min rest after the first apnoea (75 ±16 bpm vs 87 ±16 bpm; P = 0.04), the second 

apnoea (68 ±15 bpm vs 85 ±19, P = 0.003), before the third apnoea (86 ±14 bpm vs 

104 ±11 bpm, P = 0.002) and finally after the third apnoea (71 ±15 bpm vs 80 ±20 bpm, 

P = 0.047). No other significant differences were found. 

In the AP intervention, SpO2 (Fig. 4B) was significantly higher (94 ±4%) than 

the WUAP (90 ±4%) after the first apnoea (P = 0.03). No other differences were found. 

Spleen Volume (Fig. 4C) was significantly lower in the WUAP after the third 

apnoea compared to AP (150.90 ±31.84 ml vs 177.87 ±44.50 ml, P = 0.027), and in the 

WUAP (159.71 ±37.63 ml, P = 0.005) than in the CON (209.94 ±33.84 ml) pre-trial. 

Spleen volume was also significantly lower (20% - 37%) from baseline to post-trial in 

all interventions (CON (P = 0.013), WU (P = 0.001), AP (P = 0.001), WUAP (P < 

0.001)). 
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FIGURE 4 HERE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No significant differences were found across the four conditions for BL (Table 2) and 

Hb (Table 3) when comparing the same time points across the protocol. 
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TABLE 2 & TABLE 3 HERE 

 

 

 

 

 

Apnoea duration showed no differences when comparing the same time point 

in both interventions. However, in the WUAP each apnoea was longer than the one 

preceding it (1st to 2nd Apnoea (P < 0.001), 2nd to 3rd Apnoea (P = 0.016)). This was 

similar in the AP where the first apnoea was significantly shorter than the second 

apnoea (P =0.014) and third (P = 0.014), nevertheless, the third apnoea was not 

significantly longer in duration than the second (P =0.06). 
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FIGURE 5 HERE 

 

 

 

 

 

 

Discussion 

This is the first study to show that a combination of a warm-up with a series of 

three apnoeas can improve 400-m freestyle swimming performance against a control. 

The finding that a warm-up and apnoea combination improves performance 

against a control is not consistent with previous research (30). Sperlich, Zinner, Pfister, 

Holmberg, and Michels (30) found no subsequent performance improvements after 

carrying out four maximal apnoeas after a warm-up.  

  It would be expected at a competition that an athlete would carry out a warm-

up before a race, and although it was not significant in this study the warm-up improved 

performance by 0.95% compared to the CON. Yet, with the addition of a series of three 

apnoeas alongside a warm-up, performance was improved by 1.03% against the CON, 

yielding a statistically significant outcome. In elite sport, it has been shown that 

marginal improvements are key to increasing a swimmers chance of achieving an 

Olympic medal (26). Pyne (26) originally showed that a swimmer should improve their 

performance by 1% within a competition, then approximately 1% within the year 

leading up to the Olympics. A further enhancement of 0.4% would substantially 
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increase the medal prospects of the swimmer. When putting this 1.03% improvement 

in the context of competition results, the improvement would have potentially allowed 

the second placed swimmer in the 400-m freestyle at both the World Swimming 

Championships 2015 and 2016 Rio Summer Olympic Games to win the gold medal. 

The stroke parameter results in this study agree with Sperlich, Zinner, Pfister, 

Holmberg, and Michels (30) by finding that the stroke became more efficient in the 

WUAP. Initially, in the 7th 50-m repeat both DPS and SR increased in the WUAP group. 

SI was improved by 12% (P = 0.038) during the last 50-m repeated compared to the 

CON. This improvement was due to the increased swimming speed, as well as a 

significantly longer DPS, leading to a more efficient stroke. It has been shown by 

Laffite, Vilas-Boas, Demarle, Silva, Fernandes and Louise Billat (17) that estimated 

anaerobic contribution increases in the final 100-m of a 400-m freestyle time-trial. Even 

though the lower BL was not statistically significant, this could potentially explain why 

the post time-trial BL was 18.96% lower in the WUAP than the WU condition.  

When looking at the physiological results, one difference in the results could be 

caused by the variation of the method of which Splenic volume was calculated (20) in 

Sperlich, Zinner, Pfister, Holmberg, and Michels (30). This method uses a two-

dimensional measurement to calculate spleen volume, and even though this has shown 

to have a strong positive correlation with actual spleen volume, the newly developed 

Pilström equation (28) has been specifically developed for the spleens irregular shape 

by adding a third dimension into the equation. Results from previous research (9, 25) 

have shown that a typical spleen volume in adults is usually between 200 – 250 ml, 

which has been supported by analysis of the participants in this study. However, 

Sperlich, Zinner, Pfister, Holmberg, and Michels (30) found different results with the 

largest mean spleen volume being 72± 10 ml. 
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Similarly, this study and Sperlich, Zinner, Pfister, Holmberg and Michels (30) 

found no change in Hb levels. One proposed explanation for not finding a change in 

the Hb levels after the splenic contraction could be that suggested by Schagatay, 

Richardson, and Lodin-Sundström (28). They showed that trained free divers have a 

stronger splenic contraction compared to their untrained counterparts and thereby 

improve their erythrocyte release. In this study, the participants were not specifically 

trained in carrying out maximal apnoeas. To expose the participants to the feelings of 

hypercapnia and hypoxia they had one familiarisation session until they felt 

comfortable with the protocol. If they had been provided with a longer period of apnoea 

training as in Engan, Richardson, Lodin‐Sundström, Beekvelt, and Schagatay (7) the 

physiological response may have been different.  

Another potential reason for not seeing a Hb change could be the timing of the 

splenic contractions occurring and the taking of blood measurements. Studies have 

shown that a peak can occur up to 15 – 25mins after the spleen has contracted (31).  It 

is believed that this delay is due to the equilibrium between the splenic reservoir and 

the venous circulatory blood pool, yet there is no substantive evidence to back this 

claim (14).   

Due to the participants having had no prior experience in apnoea training, 

hyperventilation prior to the apnoeas was not used. This could be another reason as to 

why Hb levels did not change, with studies showing that blood plasma volume is 

reduced from the prior hyperventilation, which resulted in a higher Hb concentration 

(29).  

Practical Implications 

The inclusions of apnoeas into training should be carried out with caution and 

under the supervision of a trained individual (apnoea coach). This is due to their 
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potential hazards such as blackouts that are associated with this method of training, 

especially with those not experienced in maximal breath holds. Once competent and 

the swimmer is confident and comfortable with apnoeas, they could be integrated into 

the swimmers' pre-race routine for a 400-m freestyle swim. Once integrated the current 

results show that the swimmer could use this method to potentially enhance their 400m 

freestyle performance.  

Conclusions 

This study has shown that a combination of a warm-up with a series of three 

apnoeas (WUAP) can improve 400-m freestyle swimming performance against a 

Control intervention (CON). The WUAP was shown to be significantly faster than 

CON and apnoea (AP) intervention.  

Physiologically there was no change in the level of Hb, yet there was a 

significant reduction in spleen volume in the WU, AP and WUAP conditions 

suggesting the occurrence of a splenic contraction.   

The findings of this research support the need for further investigation to find 

ways of optimizing the use of apnoeas to enhance performance. 
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FIGURES  

 

 

             

Figure 1. The protocols used in each intervention with measurement time points. Participants completed the interventions at least 2 days apart, 

and a maximum of 7 days. A) Control (No warm-up/apnoeas), B) Warm-Up, C) Apnoeas, D) Warm-up and apnoeas combined. 
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Figure 2. Time taken to complete the 400-m freestyle. Warm-up and Apnoea 
intervention was significantly faster than the control and apnoea intervention. 
Error bars are represented as the SD. Significant differences are denoted by * for 
P < 0.05. 
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 Figure 3.  Shows the race analysis and stroke parameters 

for each 50-m of the 400-m freestyle. A) Shows the 

swimming speed (m.s-1) B) Shows the stroke rate (s.cycle-1) C) Shows the Distance 
Per stroke (DPS) D) Shows the Stroke index (m2.s-1) worked out by multiplying the 

** 
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** 



 

 

28 

DPS by the swimming speed. Error bars represent the ±SD. Significant difference is 

denoted by *for p < 0.05 and ** for p < 0. 
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Figure 4. A) Heart Rate B) SpO2 (error bars are represented as the upper limits of the 

95% CI  due to the large size of the SD and C) Spleen Volume at different time points 

during the interventions. For B) & C) Error bars represent the +SD. Significance is 
denoted by * for P<0.05 and ** for P<0.01. Due to Conditions A and B having no 

apnoeas there are no data at these points. Due to Conditions A & C not including a 
warm-up, there are no data at these points 
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 Figure 5. Shows the apnoea duration in the apnoea intervention and warm-up and 
apnoea combined intervention. Error Bars represent the +SD. Significant Differences 

are denoted by * for p < 0.05 and ** for p < 0.01 
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Tables 

 
 

Table 1. Shows the standardized warm-up used before the 400-m freestyle time trial 

in the warm-up intervention and warm-up and apnoea combined intervention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2. Show mean ± SD (95% CI) of Blood Lactate (mmol.L-1) in all four 

interventions at different time points during the testing protocol 

 
Intervention Time Point 

 Baseline Post-Warm Up Pre Time-Trial Post Time-Trial 

Control 1.23±0.33 

(0.97-1.49) 

 1.18±0.47 

(0.82-1.55) 

9.84±3.67 

(7.02-12.66) 

Warm Up 1.27±0.32 

(1.02-1.52) 

3.20±1.35 

(2.17-4.24) 

1.67±0.55 

(1.25-2.09) 

11.24±2.54 

(9.29-13.19) 

Apnoea 1.26±0.61 

(0.79-1.73) 

 1.16±0.45 

(0.81-1.50) 

9.52±2.12 

(7.89-11.14) 

400m Freestyle 30 Seconds Rest 

200m Pull 30 Seconds Rest 

200m Kick 30 Seconds Rest 

200m Drill 30 Seconds Rest 

200m Individual Medley 30 Seconds Rest 

  

4 x 50 @ 400m Race Pace  On 1 Minute 

  

200m Steady  
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Warm Up & 

Apnoea 

1.01±0.49 

(0.64-1.39) 

2.29±0.88 

(1.61-2.97) 

1.43±0.68 

(0.90-1.96) 

9.11±2.59 

(7.11-11.10) 

 

 

 

 

 

 

 

 

 

 

Table 3. Shows the mean ± SD (95% CI) hemoglobin (g.L-1) levels at different time 

points during the four interventions 
 

Intervention Time Point 

 Baseline Post-Warm Up Pre Time-Trial Post Time-Trial 

Control 155±10 

(143-160) 

 149±11 

(141-157) 

153±12 

(144-162) 

Warm Up 150±13 

(140-161) 

150±11 

(142-159) 

151±15 

(140-163) 

153±10 

(146-161) 

Apnoea 153±12 

(144-164) 

 153±9 

(146-163) 

150±13 

(141-160) 

Warm Up & 

Apnoea 

151±15 

(139-164) 

150±10 

(143-159) 

150±10 

(143-157) 

152±16 

(140-164) 

 
 
 

 
 


