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Abstract
We propose a new algorithm for minimizing reg-
ularized empirical loss: Stochastic Dual Newton
Ascent (SDNA). Our method is dual in nature: in
each iteration we update a random subset of the
dual variables. However, unlike existing methods
such as stochastic dual coordinate ascent, SDNA
is capable of utilizing all curvature information
contained in the examples, which leads to strik-
ing improvements in both theory and practice –
sometimes by orders of magnitude. In the spe-
cial case when an L2-regularizer is used in the
primal, the dual problem is a concave quadratic
maximization problem plus a separable term. In
this regime, SDNA in each step solves a prox-
imal subproblem involving a random principal
submatrix of the Hessian of the quadratic func-
tion; whence the name of the method. If, in addi-
tion, the loss functions are quadratic, our method
can be interpreted as a novel variant of the re-
cently introduced Iterative Hessian Sketch.

1. Introduction
Empirical risk minimization (ERM) is a fundamental
paradigm in the theory and practice of statistical infer-
ence and machine learning (Shalev-Shwartz & Ben-David,
2014). In the “big data” era it is increasingly common in
practice to solve ERM problems with a massive number of
examples, which leads to new algorithmic challenges.

State-of-the-art optimization methods for ERM include i)
stochastic (sub)gradient descent (Shalev-Shwartz et al.,

2011; Takáč et al., 2013), ii) methods based on stochastic
estimates of the gradient with diminishing variance such
as SAG (Schmidt et al., 2013), SVRG (Johnson & Zhang,
2013), S2GD (Konečný & Richtárik, 2014), proxSVRG
(Xiao & Zhang, 2014), MISO (Mairal, 2014), SAGA
(Defazio et al., 2014), minibatch S2GD (Konečný et al.,
2014a), S2CD (Konečný et al., 2014b), and iii) variants
of stochastic dual coordinate ascent (Shalev-Shwartz &
Zhang, 2013d; Zhao & Zhang, 2014; Takáč et al., 2013;
Shalev-Shwartz & Zhang, 2013b;a; Lin et al., 2014; Qu
et al., 2014; Shalev-Shwartz & Zhang, 2013c).

There have been several attempts at designing methods that
combine randomization with the use of curvature (second-
order) information. For example, methods based on run-
ning coordinate ascent in the dual such as those mentioned
above and also (Richtárik & Takáč, 2014; 2012; Fercoq
& Richtárik, 2013b; Tappenden et al., 2014; Richtárik &
Takáč, 2013a;b; Fercoq & Richtárik, 2013a; Fercoq et al.,
2014; Qu et al., 2014; Qu & Richtárik, 2014a) use cur-
vature information contained in the diagonal of a bound
on the Hessian matrix. Block coordinate descent methods,
when equipped with suitable data-dependent norms for the
blocks, use information contained in the block diagonal of
the Hessian (Tappenden et al., 2013).

A more direct route to incorporating curvature information
was taken by Schraudolph et al. (2007) in their stochastic
L-BFGS method, by Byrd et al. (2014) and Sohl-Dickstein
et al. (2014) in their stochastic quasi-Newton methods
and by Fountoulakis & Tappenden (2014) who proposed
a stochastic block coordinate descent methods. While typ-
ically efficient in practice, none of the methods mentioned
above are equipped with complexity bounds (bounds on the
number of iterations). An exception in this regard is the
work of Bordes et al. (2009), who give a O(1/ε) complex-
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ity bound for a Quasi-Newton SGD method.

1.1. Contributions

The main contribution of this paper is the design and anal-
ysis of a new algorithm—stochastic dual Newton ascent
(SDNA)—for solving a regularized ERM problem with
smooth loss functions and a strongly convex regularizer
(primal problem). Our method is stochastic in nature and
has the capacity to utilize all curvature information inher-
ent in the data. While we do our analysis for an arbitrary
strongly convex regularizer, for the purposes of the intro-
duction we shall describe the method in the case of the L2
regularizer. In this case, the dual problem is a concave
quadratic maximization problem with a strongly concave
separable penalty.

SDNA in each iteration picks a random subset of the
dual variables (which corresponds to picking a mini-
batch of examples in the primal problem), following
an arbitrary probability law, and maximizes, exactly,
the dual objective restricted to the random subspace
spanned by the coordinates. Equivalently, this can be
seen as the solution of a proximal subproblem involving a
random principal submatrix of the Hessian of the quadratic
function. Hence, SDNA utilizes all curvature informa-
tion available in the random subspace in which it oper-
ates. Note that this is very different from the update strat-
egy of parallel / minibatch coordinate descent methods. In-
deed, while these methods also update a random subset of
variables in each iteration, they instead only utilize curva-
ture information present in the diagonal of the Hessian.

As we will explain in detail in the text, SDCA-like meth-
ods need more iterations (and hence more passes through
data) to convergence as the minibatch size increases. How-
ever, SDNA enjoys the opposite behavior: with increas-
ing minibatch size, SDNA needs fewer iterations (and
hence fewer passes over data) to convergence. This ob-
servation can be deduced from the complexity results we
prove for SDNA, and is also confirmed by our numerical
experiments. In particular, we show that the expected du-
ality gap decreases at a geometric rate which i) is better
than that of SDCA-like methods such as SDCA (Shalev-
Shwartz & Zhang, 2013d) and QUARTZ (Qu et al., 2014),
and ii) improves with increasing minibatch size. This im-
provement does not come for free: as we increase the mini-
batch size, the subproblems grow in size as they involve
larger portions of the Hessian. We find through experi-
ments that for some, especially dense problems, even rel-
atively small minibatch sizes lead to dramatic speedups
in actual runtime.

We show that in the case of quadratic loss, and when
viewed as a primal method, SDNA can be interpreted
as a variant of the recently introduced Iterative Hessian

Sketch algorithm (Pilanci & Wainwright, 2014).

En route to developing SDNA which we describe in Sec-
tion 4, we also develop several other new algorithms:
two in Section 2 (where we focus on smooth problems),
one in Section 3 (where we focus on composite problems).
Besides SDNA, we also develop and analyze a novel mini-
batch variant of SDCA in Section 4, for the sake of find-
ing suitable method to compare SDNA to. SDNA is equiv-
alent to applying the new method developed in Section 3 to
the dual of the ERM problem. However, as we are mainly
interested in solving the ERM (primal) problem, we addi-
tionally prove that the expected duality gap decreases at a
geometric rate. Our technique for doing this is a variant
of the one use by Shalev-Shwartz & Zhang (2013d), but
generalized to an arbitrary sampling.

1.2. Notation

Vectors. By e1, . . . , en we denote the standard basis vec-
tors in Rn. For any x ∈ Rn, we denote by xi the ith el-
ement of x, i.e., xi = e>i x. For any two vectors x, y of
equal size, we write 〈x, y〉 = x>y =

∑
i xiyi, and by x ◦ y

we denote their Hadamard (i.e., elementwise) product. We
also write u−1 = (u−11 , . . . , u−1n ).

Matrices. I is the identity matrix in Rn×n and D(w) is
the diagonal matrix in Rn×n with w ∈ Rn on its diagonal.
We will write M � 0 (resp. M � 0) to indicate that M is
positive semidefinite (resp. positive definite).

Subsets of coordinates. Let S be a nonempty subset of
[n] := {1, 2, . . . , n}. For any matrix M ∈ Rn×n we write
MS for the matrix obtained from M by retaining elements
Mij for which both i ∈ S and j ∈ S and zeroing out all
other elements. Clearly, MS = ISMIS . Moreover, for
any vector h ∈ Rn we write

hS := ISh =
∑n
i=1 hiei. (1)

Note that we can thus write

(hS)>MhS = h>ISMISh = h>MSh, (2)

and that for x, y ∈ Rn we have

〈xS , y〉 = 〈ISx, y〉 = 〈x, ISy〉 = 〈x, yS〉. (3)

By (MS)−1 we denote the matrix in Rn×n for which

(MS)−1MS = MS(MS)−1 = IS . (4)

2. Minimization of a Smooth Function
In this section we consider unconstrained minimization of
a differentiable convex function:

min
x∈Rn

f(x). (5)
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In particular, we shall assume smoothness (Lipschitz con-
tinuity of the gradient) and strong convexity of f :

Assumption 1 (Smoothness). There is a positive definite
matrix M ∈ Rn×n such that for all x, h ∈ Rn,

f(x+ h) ≤ f(x) + 〈∇f(x), h〉+
1

2
〈Mh, h〉 (6)

Assumption 2 (Strong convexity). There is a positive def-
inite matrix G ∈ Rn×n such that for all x, h ∈ Rn,

f(x) + 〈∇f(x), h〉+
1

2
〈Gh, h〉 ≤ f(x+ h). (7)

2.1. Three stochastic algorithms

We now describe three algorithmic strategies for solving
problem (5), the first two of which are new. All these
methods have the form

xk+1 ← xk + hk, (8)

where hki is only allowed to be nonzero for i ∈ Sk, where
{Sk}k≥0 are i.i.d. random subsets of [n] := {1, 2, . . . , n}
(“samplings”). That is, all methods in each iteration up-
date a random subset of the variables. The four methods
will only differ in how the update elements hki for i ∈ Sk
are computed. If we wish the methods to work, we neces-
sarily need to require that every coordinate has a positive
probability of being sampled. For certain technical reasons
that will be apparent later, we will also assume that Sk is
nonempty with probability 1.

Assumption 3 (Samplings). The random sets {Sk}k≥0 are
i.i.d., proper (i.e., Prob(i ∈ Sk) > 0 for all i ∈ [n]) and
nonvacuous (i.e., Prob(Sk = ∅) = 0).

Much of our discussion will depend on the distribution of
Sk rather than on k. As {Sk}k≥0 are i.i.d., we will write
Ŝ for a sampling which shares their distribution. We will
write p = (p1, . . . , pn) where

pi := Prob(i ∈ Ŝ), i ∈ [n]. (9)

By Assumption 3, we have pi > 0 for all i. We now de-
scribe the methods.

Method 1. We compute (MSk)−1 and set

hk = −(MSk)−1∇f(xk). (Method 1)

Note that the update only involves the inversion of a ran-
dom principal submatrix of M of size |Sk| × |Sk|. Also,
we only need to compute elements i ∈ Sk of the gradi-
ent ∇f(xk). If |Sk| is reasonably small, the update step is
cheap.

Method 2. We compute the inverse of E[MŜ ] and set

hk = −ISk(E[MŜ ])−1D(p)∇f(xk). (Method 2)

This strategy easily implementable when |Ŝ| = 1 with
probability 1 (i.e., if we update a single variable only). This
is because then E[MŜ ] is a diagonal matrix with the (i, i)
element equal to piMii. Hence, the update step simplifies
to hki = − 1

Mii
〈ei,∇f(xk)〉 for i ∈ Sk and hki = 0 for

i /∈ Sk. For more complicated samplings Ŝ, however, the
matrix E[MŜ ] will be as hard to invert as M.

Method 3. We compute a vector v ∈ Rn for which

E[MŜ ] � D(p)D(v) (10)

and then set

hk = −ISk(D(v))−1∇f(xk). (Method 3)

Assuming v is easily computable (this should be done be-
fore the methods starts), the update is clearly very easy to
perform. Indeed, the update can be equivalently written as
hki = − 1

vi
〈ei,∇f(xk)〉 for i ∈ Sk and hki = 0 for i /∈ Sk.

Method 3 is known as NSync (Richtárik & Takáč, 2013b).
For a calculus allowing the computation of closed form for-
mulas for v as a function of the sampling Ŝ we refer the
reader to (Qu & Richtárik, 2014b).

Note that all three methods coincide if |Ŝ| = 1 with prob-
ability 1.

2.2. Three linear convergence rates

We shall now show that, putting the issue of the cost of each
iteration of the three methods aside, all enjoy a linear rate
of convergence. In particular, we shall show that Method
1 has the fastest rate, followed by Method 2 and finally,
Method 3.

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied. Let
{xk}k≥0 be the sequence of random vectors produced by
Method m, for m = 1, 2, 3 and let x∗ be the optimal solu-
tion of (5). Then

E[f(xk+1)− f(x∗)] ≤ (1− σm)E[f(xk)− f(x∗)],

where

σ1 := λmin

(
G1/2 E

[(
MŜ

)−1]
G1/2

)
, (11)

σ2 := λmin

(
G1/2D(p)

(
E
[
MŜ

])−1
D(p)G1/2

)
, (12)

σ3 := λmin

(
G1/2D(p)D(v−1)G1/2

)
. (13)

The above result means that the number of iterations suffi-
cient for Method m to obtain an ε-solution (in expectation)
is O( 1

σm
log(1/ε)).

In the above theorem (which we prove in Section 2.4),
λmin(X) refers to the smallest eigenvalue of matrix X. It
turns out that in all three cases, the matrix X involved is
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positive definite. However, for the matrices in (11) and (12)
this will only be apparent if we show that E[MŜ ] � 0 and
E[(MŜ)−1] � 0, which we shall do next.

Lemma 1. If Ŝ is a proper sampling, then E
[
MŜ

]
� 0.

Proof. Denote supp{x} = {i ∈ [n] : xi 6= 0}. Since M �
0, any principal submatrix of M is also positive definite.
Hence for any x ∈ Rn\{0}, x>MSx = 0 implies that
supp{x} ∩ S = ∅ for all S ⊆ [n]. If x ∈ Rn is such that

x> E
[
MŜ

]
x =

∑
S⊆[n] Prob(Ŝ = S)x>MSx = 0,

then Prob(supp{x}∩ Ŝ = ∅) = 1. Since Ŝ is proper, this
only happens when x = 0. Therefore, E[MŜ ] � 0.

Lemma 2. If Ŝ is proper and nonvacuous, then

0 ≺ D(p)
(
E
[
MŜ

])−1
D(p) � E

[(
MŜ

)−1]
. (14)

Proof. The first inequality follows from Lemma 1 and the
fact for proper Ŝ we have p > 0 and hence D(p) � 0.
We now turn to the second inequality. Fix h ∈ Rn. For
arbitrary ∅ 6= S ⊆ [n] and y ∈ Rn we have:

1
2h
> (MS)

−1
h = 1

2h
>
S (MS)

−1
hS

= max
x∈Rn
〈x, hS〉 − 1

2x
>MSx ≥ 〈y, hS〉 − 1

2y
>MSy.

Substituting S = Ŝ and taking expectations, we obtain

1
2 E
[
h>
(
MŜ

)−1
h
]
≥ E

[
〈y, hŜ〉 −

1
2y
>MŜy

]
= y>D(p)h− 1

2y
> E

[
MŜ

]
y.

Therefore, 1
2h
> E

[(
MŜ

)−1]
h ≥ maxy∈Rn y

>D(p)h −
1
2y
> E

[
MŜ

]
y = 1

2h
>D(p)

(
E
[
MŜ

])−1
D(p)h.

We now establish an important relationship between the
quantities σ1, σ2 and σ3, which sheds light on the conver-
gence rates of the three methods.

Theorem 2. 0 < σ3 ≤ σ2 ≤ σ1 ≤ 1.

Proof. We have σm > 0 for all m since σm is the
smallest eigenvalue of a positive definite matrix. That
σm ≤ 1 follows as a direct corollary Theorem 1. Fi-

nally, D(p)D(v−1) = D(p)D(p−1)D(v−1)D(p)
(10)
�

D(p)
(
E
[
MŜ

])−1
D(p)

(14)
� E

[(
MŜ

)−1]
.

2.3. Example

Consider the function f : R3 → R given by

f(x) = 1
2x

TMx, M =

(
1.0000 0.9900 0.9999
0.9900 1.0000 0.9900
0.9999 0.9900 1.0000

)
.

Note that Assumption 1 holds, and Assumption 2 holds
with G = M. Let Ŝ be the “2-nice sampling” on [n] =
{1, 2, 3}. That is, we set Prob(Ŝ = {i, j}) = 1

3 . for
(i, j) = (1, 2), (2, 3), (3, 1). A straightforward calculation
reveals that:

E
[(
MŜ

)−1] ≈ ( 1683.50 −16.58 −1666.58
−16.58 33.50 −16.58
−1666.58 −16.58 1683.50

)
,

D(p)
(
E
[
MŜ

])−1
D(p) ≈

(
0.9967 −0.3268 −0.3365
−0.3268 0.9902 −0.3268
−0.3365 −0.3268 0.9967

)
.

It can be verified that (10) holds with v = (2, 2, 2); see
(Richtárik & Takáč, 2012) or (Qu & Richtárik, 2014b).
Therefore, D(p)D(v−1) = 1

3I. Finally, we obtain:

σ1 ≈ 0.3350, σ2 ≈ 1.333 · 10−4, σ2 ≈ 0.333 · 10−4.

Note that: theoretical rate, σ1, of Method 1 is 10,000
times better than the rate, σ3, of parallel coordinate de-
scent (Method 3).

2.4. Proof of Theorem 1

Proof. By minimizing both sides of (7) in h, we get:

f(x)− f(x∗) ≤ 1

2
〈∇f(x),G−1∇f(x)〉. (15)

In view of (6) and (2), for for all h ∈ Rn we have:

f(xk + ISkh) ≤ f(xk) + 〈∇f(xk), ISkh〉+
1

2
〈MSkh, h〉.

(16)
Method 1: If we use (16) with h ← hk :=
−(MSk)−1∇f(xk), and apply (4), we get:

f(xk+1) ≤ f(xk)− 1

2
〈∇f(xk), (MSk)−1∇f(xk)〉.

Taking expectations on both sides with respect to Sk yields:

Ek[f(xk+1)]

≤ f(xk)− 1

2
〈∇f(xk),E[

(
MŜ

)−1
]∇f(xk)〉

(11)
≤ f(xk)− σ1

2
〈∇f(xk),G−1∇f(xk)〉

(15)
≤ f(xk)− σ1

(
f(xk)− f(x∗)

)
,

where Ek denotes the expectation with respect to Sk. It
remains to rearrange the inequality and take expectation.
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Method 2: Let D = D(p). Taking expectations on
both sides of (16) with respect to Sk, we see that for
all h ∈ Rn the following holds: Ek[f(xk + ISkh)] ≤
f(xk) + 〈D∇f(xk), h〉 + 1

2 〈E[MSk ]h, h〉. Note that the
choice h̃k := −(E[MŜ ])−1D∇f(xk) minimizes the right
hand side of the inequality in h. Since hk = ISk h̃

k,

Ek[f(xk+1)]

≤ f(xk)− 1

2
〈∇f(xk),D

(
E[MŜ ]

)−1
D∇f(xk)〉

(12)
≤ f(xk)− σ2

2
〈∇f(xk),G−1∇f(xk)〉

(15)
≤ f(xk)− σ2

(
f(xk)− f(x∗)

)
.

Method 3: The proof is the same as that for Method
2, except in the first inequality we replace E[MSk ] by
D(p)D(v) (see (10)).

3. Minimization of a Composite Function
In this section we consider the following composite mini-
mization problem:

min
x∈Rn

F (x) ≡ f(x) +

n∑
i=1

ψi(xi). (17)

We assume that f satisfies Assumptions 6 and 7. The dif-
ference from the setup in the previous section is in the in-
clusion of the separable term

∑
i ψi.

Assumption 4. For each i, ψi : R → R ∪ {+∞} is
closed and γi-strongly convex for some γi ≥ 0. Let
γ = (γ1, . . . , γn) ∈ Rn+.

For ease of presentation, in this section we only consider
uniform sampling Ŝ, which means that Prob(i ∈ Ŝ) =
Prob(j ∈ Ŝ) for all i, j ∈ [n]. In particular, this implies
that Prob(i ∈ Ŝ) = E[|Ŝ|]

n for all i. Let τ := E[Ŝ].

3.1. New algorithm

We now propose Algorithm 1, which a variant of Method
1 applicable to problem (17). If ψi ≡ 0 for all i, the meth-
ods coincide. The following result states that the method
converges at a geometric rate, in expectation.

Theorem 3. Let Assumptions 1, 2, 3 and 4 be satisfied.
Then the output sequence {xk}k≥0 of Algorithm 1 satisfies:

E[F (xk+1)− F (x∗)] ≤ (1− σprox1 )E[F (xk)− F (x∗)],

where x∗ is the solution of (17), σprox1 := τ min(1,s1)
n and

s1 := λmin

[(n
τ
E[MŜ ] + D(γ)

)−1
(D(γ) + G)

]
.

Algorithm 1 Proximal version of Method 1

1: Parameters: uniform sampling Ŝ
2: Initialization: choose initial point x0 ∈ Rn
3: for k = 0, 1, 2, . . . do
4: Generate a random set of blocks Sk ∼ Ŝ
5: Compute: hk = arg minh∈Rn〈∇f(xk), hSk〉 +

1
2 〈h,MSkh〉+

∑
i∈Sk ψi(x

k
i + hi)

6: Update: xk+1 := xk + hkSk
7: end for

Note for positive definite matrices X,Y, we have
λmin(X−1Y) = λmin(Y1/2X−1Y1/2). It is this latter
form we have used in the formulation of Theorem 1. In the
special case when γ ≡ 0 (ψi are merely convex), we have
σprox1 = min{ τn ,

τ2

n2λmin(G1/2(E[MŜ ])−1G1/2)}. Note
that while this rate applies to a proximal/composite vari-
ant of Method 1, its rate is best compared to the rate σ2 of
Method 2. Indeed, looking at (12), and realizing that for
uniform Ŝ we have D(p) = τ

nI, we get

σ1 ≥ σ2 = τ2

n2λmin(G1/2(E[MŜ ])−1G1/2) ≥ σprox1 .

So, the rate we can prove for the composite version of
Method 1 (σprox1 ) is weaker than the rate we get for Method
2 (σ2), which by Theorem 2 is weaker than the rate of
Method 1 (σ1). We believe this is a byproduct of our anal-
ysis rather than the weakness of Algorithm 1.

3.2. PCDM

We will now compare our new Algorithm 1 with the Par-
allel Coordinate Descent Method (PCDM) of Richtárik &
Takáč (2012), which can also be applied to problem (17).

Algorithm 2 PCDM (Richtárik & Takáč, 2012)

1: Parameters: uniform sampling Ŝ; v ∈ Rn++

2: Initialization: choose initial point x0 ∈ Rn
3: for k = 0, 1, 2, . . . do
4: Generate a random set of blocks Sk ∼ Ŝ
5: Compute for i ∈ Sk

hki = arg min
hi∈R

e>i ∇f(xk)hi+
vi
2
|hi|2+ψi(x

k
i +hi)

6: Update: xk+1 := xk +
∑
i∈Sk h

k
i ei

7: end for

Proposition 1. Let the same assumptions as those in The-
orem 3 be satisfied. Moreover, assume v ∈ Rn++ is a vector
satisfying (10). Then the output sequence {xk}k≥0 of Al-
gorithm 2 satisfies

E[F (xk+1)− F (x∗)] ≤ (1− σprox3 )E[F (xk)− F (x∗)],

where σprox3 := τ min(1,s3)
n and

s3 := λmin

[
(D(v + γ))

−1
(D(γ) + G)

]
.
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Proof. Sketch: The proof is a minor modification of the
arguments in (Richtárik & Takáč, 2012).

3.3. Comparison of the rates of Algorithms 1 and 2

We now show that the rate of linear (geometric) conver-
gence of our method is better than that of PCDM.

Proposition 2. σprox1 ≥ σprox3 .

Proof. Since pi = τ
n for all i, we have D(p) = τ

nI and
hence from (10) we deduce that:

n

τ
E[MŜ ] + D(γ)

(10)
� D(v) + D(γ) = D(v + γ),

whence s1 ≥ s3, and the claim follows.

4. Empirical Risk Minimization
We now turn our attention to the empirical risk minimiza-
tion problem:

min
w∈Rd

P (w) := 1
n

n∑
i=1

φi(a
>
i w) + λg(w). (18)

We assume that g : Rd → R is a 1-strongly convex func-
tion with respect to the L2 norm and each loss function
φi : R → R is convex and 1/γ-smooth. Each ai is a d-
dimensional vector and for ease of presentation we write
A = (a1, . . . , an) =

∑n
i=1 aie

>
i . Let g∗ and {φ∗i }i be

the Fenchel conjugate functions of g and {φi}i, respec-
tively. In the case of g, for instance, we have g∗(s) =
supw∈Rd〈w, s〉−g(w). The (Fenchel) dual problem of (18)
can be written as:

max
α∈Rn

D(α) := 1
n

n∑
i=1

−φ∗i (−αi)− λg∗
(

1
λnAα

)
. (19)

4.1. SDNA: A new algorithm for ERM

Note that the dual problem has the form (17)

min
α∈Rn

F (α) ≡ f(α) +

n∑
i=1

ψi(αi), (20)

where F (α) = −D(α), f(α) = λg∗( 1
λnAα) and ψ(αi) =

1
nφ
∗
i (−αi). It is easy to see that f satisfies Assumption 1

with M := 1
nX, where X := 1

λnA
>A. Moreover, ψi is

γ
n -strongly convex. We can therefore apply Algorithm 1 to
solve the dual (20). This is what Algorithm 3 does.

If α∗ is the optimal solution of (19), then the optimal solu-
tion of (18) is given by:

w∗ = ∇g∗
(

1
λnAα

∗) . (21)

Algorithm 3 Stochastic Dual Newton Ascent (SDNA)

1: Parameters: proper nonvacuous sampling Ŝ
2: Initialization: α0 ∈ Rn; ᾱ0 = 1

λnAα
0

3: for k = 0, 1, 2, . . . do
4: Primal update: wk = ∇g∗(ᾱk)
5: Generate a random set of blocks Sk ∼ Ŝ
6: Compute:

∆αk = arg min
h∈Rn

〈(A>wk)Sk , h〉+ 1
2h
>XSkh

+
∑
i∈Sk φ

∗
i (−αki − hi)

7: Dual update: αk+1 := αk + (∆αk)Sk
8: Average update: ᾱk+1 = ᾱk + 1

λn

∑
i∈Sk ∆αki ai

9: end for

With each proper sampling Ŝ we associate the number:

θ(Ŝ) := min
i

piλγn

vi + λγn
, (22)

where (p1, . . . , pn) is the vector of probabilities defined
in (9) and v = (v1, . . . , vn) ∈ Rn++ is a vector satisfying:

E[(A>A)Ŝ ] � D(p)D(v). (23)

Closed-form expressions for v satisfying this inequal-
ity, as a function of the sampling Ŝ chosen, can be
found in (Qu & Richtárik, 2014b). A rather conservative
choice which works for any Ŝ, irrespective of its distribu-
tion, is vi = min{τ, λ′(A>A)}‖ai‖2, where λ′(Y) :=
maxh{h>Yh : h>D(Y)h ≤ 1} and τ is a number for
which |Ŝ| ≤ τ with probability 1 (see Theorem 5.1 in the
aforementioned reference). Better bounds (with smaller v)
can be derived for special classes of samplings.

Now we can state the main result of this section:
Theorem 4 (Complexity of SDNA). Let Ŝ be a uniform
sampling and let τ := E[|Ŝ|]. The output sequence
{wk, αk}k≥0 of Algorithm 3 satisfies:

E[P (wk)−D(αk)] ≤ (1− σprox1 )
k

θ(Ŝ)
(D(α∗)−D(α0)),

where σprox1 := τ min(1,s1)
n and

s1 = λmin

[(
1

τγλ
E[(A>A)Ŝ ] + I

)−1]
. (24)

In the case of quadratic losses and quadratic regularizer, we
can sharpen the complexity bound:
Theorem 5. When both φi and g are quadratic functions,
the output sequence {wk, αk}k≥0 of Algorithm 3 satisfies:

E[P (wk)−D(αk)] ≤ (1− σ1)k

θ(Ŝ)

(
D(α∗)−D(α0)

)
where

σ1 := λmin

[
E
[((

1
λnA

>A + γI
)
Ŝ

)−1 ( 1
λnA

>A + γI
)]]

.
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4.2. Complexity analysis

We first establish that SDNA is able to solve the dual.

Lemma 3. Let Ŝ be a uniform sampling and τ := E[|Ŝ|].
The output sequence {αk}k≥0 of Algorithm 3 satisfies:

E[D(α∗)−D(αk)] ≤ (1− σprox1 )
k

(D(α∗)−D(α0)),

where σprox1 is as in Theorem 4.

Proof. If Ŝ is uniform, then the output of Algorithm 3 is
equivalent to the output of Algorithm 1 applied to (20).
Therefore, the result is obtained by applying Theorem 3
with M = 1

λn2A
>A, G = 0 and γi = γ

n for all i.

We now prove a sharper result in the case of quadratic loss
and quadratic regularizer.

Lemma 4. If {φi}i and g are quadratic, then the output
sequence {αk}k≥0 of Algorithm 3 satisfies:

E[D(α∗)−D(αk)] ≤ (1− σ1)k(D(α∗)−D(α0)),

where σ1 is as in Theorem 5.

Proof. If {φi}i and g are all quadratic functions, then the
dual objective function is quadratic with Hessian matrix
given by ∇2D(α) ≡ 1

λn2A
>A + γ

nI. It suffices to apply
Theorem 1(11), with M = G = ∇2D(α).

We now prove a more general version of a classical result
in dual coordinate ascent methods which bounds the duality
gap from above by the expected dual increase.

Lemma 5. The output sequence {wk, αk}k≥0 of Algo-
rithm 3 satisfies:

Ek[D(αk+1)−D(αk)] ≥ θ(Ŝ)(P (wk)−D(αk)).

The proof of the this lemma is provided in the supplemen-
tary material. Theorem 4 (resp. Theorem 5) now follows
by combining Lemma 3 (resp. Lemma 4) and Lemma 5.

4.3. New Algorithm: SDCA with Arbitrary Sampling

When |Ŝ| = 1 with probability 1, SDNA reduces to
a proximal variant of stochastic dual coordinate ascent
(SDCA) (Shalev-Shwartz & Zhang, 2013d). However, a
minibatch version of standard SDCA in the ERM setup
we consider here has not been previously studied in the
literature. Takáč et al. (2013) developed such a method
but in the special case of hinge-loss (which is not smooth
and hence does not fit our setup). Shalev-Shwartz & Zhang
(2013b) studied minibatching but in conjunction with ac-
celeration and the QUARTZ method of Qu et al. (2014),
which has been analyzed for an arbitrary sampling Ŝ, uses

a different primal update than SDNA. Hence, in order to
compare SDNA with an SDCA-like method which is as
close a match to SDNA as possible, we need to develop
a new method. Algorithm 4 is an extension of SDCA to
allow it handle an arbitrary uniform sampling Ŝ.

The complexity of Minibatch SDCA (we henceforth just
write SDCA) is given in Theorem 6.
Theorem 6. If (23) holds, then the output sequence
{wk, αk}k≥0 of Algorithm 4 satisfies:

E[P (wk)−D(αk)] ≤ (1− θ(Ŝ))k

θ(Ŝ)

(
D(α∗)−D(α0)

)
.

Algorithm 4 Minibatch SDCA

1: Parameters: uniform sampling Ŝ, vector v ∈ Rn++

2: Initialization: α0 ∈ Rn; set ᾱ0 = 1
λnAα

0

3: for k = 0, 1, 2, . . . do
4: Primal update: wk = ∇g∗(ᾱk)
5: Generate a random set of blocks Sk ∼ Ŝ
6: Compute for each i ∈ Sk

hki = arg min
hi∈R

hi(a
>
i w

k) +
vi
2
|hi|2 +φ∗i (−αki −hi)

7: Dual update: αk+1 := αk +
∑
i∈Sk h

k
i ei

8: Average update: ᾱk+1 = ᾱk + 1
λn

∑
i∈Sk h

k
i ai

9: end for

4.4. SDNA vs SDCA

We now compare the rates of SDNA and SDCA. The next
result says that the rate of SDNA is always superior to
that of SDCA. We also see that the rate is better in the
quadratic case covered by Theorem 5.
Theorem 7. If Ŝ is uniform sampling with τ = E[|Ŝ|], then

θ(Ŝ) ≤ σprox1 ≤ σ1.

Proof. Since Ŝ is a uniform sampling, we have pi = τ
n for

all i ∈ [n]. In view of (22), we have 1 ≤ n
τ θ(Ŝ). Next,

s1
(24)+(23)
≥ λmin

(
1

τλγ
D(v)D(p) + I

)−1
(22)
=

n

τ
θ(Ŝ).

Therefore, σprox1 = τ
n min(1, s1) ≥ θ(Ŝ). In order to

establish σprox1 ≤ σ1, we use Lemma 2 and the fact that
E[IŜ ] = τ

nI to obtain

τ
n

(
1
τγλ E[(A>A)Ŝ ] + I

)−1
= τ2

n2

(
E
[(

1
γλnA

>A + I
)
Ŝ

])−1
(Lemma 2)

� E
[((

1
γλnA

>A + I
)
Ŝ

)−1]
� E

[((
A>A + γλnI

)
Ŝ

)−1
(A>A + γλnI)

]
,

The rest of the argument is similar.
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5. SDNA as Iterative Hessian Sketch
We now apply SDNA to the least squares problem:

min
w∈Rd

1

2n
‖A>w − b‖2 +

λ

2
‖w‖2, (25)

and show that the resulting primal update can be interpreted
as an iterative Hessian sketch, alternative to the one pro-
posed by Pilanci & Wainwright (2014). We first need to
establish a simple duality result.

Lemma 6. Let α∗ be the optimal solution of

min
α∈Rn

1

2n
‖α‖2 − 1

n
〈b, α〉+

1

2λn2
‖Aα‖2, (26)

then the optimal solution w∗ of (25) is w∗ = 1
λnAα

∗.

Proof. Problem (25) is a special case of (18) for g(w) ≡
1
2‖w‖

2 and φi(a) ≡ 1
2 (a−bi)2 for all i ∈ [n]. Problem (26)

is the dual of (25) and the result follows from (21).

The interpretation of SDNA as a variant of the Iterative
Hessian sketch method of Pilanci & Wainwright (2014) fol-
lows immediately from the following theorem.

Theorem 8. The output sequence {wk, αk}k≥0 of Algo-
rithm 3 applied on problem (25) satisfies:

wk+1 = arg min
w∈Rd

{ 1

2n
‖S>k (A>w − b)‖2 +

λ

2
‖w‖2

+ 〈w, 1

n
AISkα

k − λwk〉}, (27)

where Sk denotes the n-by-|Sk| submatrix of the identity
matrix In with columns in the random subset Sk.

Proof. We know that S>k ∆αk is the optimal solution of

min
h∈Rτ

1

2
‖h‖2 + 〈S>k (A>wk +αk− b), h〉+ 1

2λn
‖ASkh‖2

Let τ = |Sk|. By Lemma 6, the optimal solution of

min
w∈Rd

1

2|Sk|
‖S>kA>w+S>k (A>wk+αk−b)‖2+

λn

2|Sk|
‖w‖2,

is given by 1
λnASkS

>
k∇αk, which equals ᾱk+1 − ᾱk and

thus equals wk+1 − wk. Hence,

wk+1 = arg min
w∈Rd

{ 1
2n‖S

>
k (A>w+αk−b)‖2+λ

2 ‖w−w
k‖2},

which is equivalent to (27) since (In)Sk = SkS
>
k .
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Figure 1. Comparison of SDNA and SDCA for minibatch sizes τ = 1, 32, 256

on a real (left) and synthetic (right) dataset. The methods coincide for τ = 1.
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Figure 2. Time it takes for SDNA and SDCA to process a singe epoch as a func-

tion of the minibatch size τ .

6. Numerical Experiments
In our first experiment (Figure 1) we compare SDNA
and our new minibatch version of SDCA on one real
(mushrooms; d = 112, n = 8, 124) and one synthetic
(d = 1, 024, n = 2, 048) dataset. In both cases, we
used λ = 1/n as the regularization parameter and g(w) =
1
2‖w‖

2. As τ increases, SDNA requires less passes over
data (epochs), while SDCA requires more passes over data.
It can be shown that this behavior can be predicted from the
complexity results for these two methods. The difference
in performance depends on the choice of the dataset and
can be quite dramatic.

In the second experiment (Figure 2), we investigate how
much time it takes for the methods to process a single
epoch, using the same datasets as before. As τ increases,
SDNA does more work as the subproblems it needs to solve
in each iteration involve a τ × τ submatrix of the Hessian
of the smooth part of the dual objective function. On the
other hand, the work SDCA needs to do is much smaller,
and does nearly does not increase with the minibatch size τ .
This is because the subproblems are separable. As before,
all experiments are done using a single core (however, both
methods would benefit from a parallel implementation).

Finally, in Figure 3 we put the insights gained from the
previous two experiments together: we look at the perfor-
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Figure 3. Runtime of SDNA for minibatch sizes τ = 1, 4, 16, 32, 64 .

mance of SDNA for various choices of τ by comparing
runtime and duality gap error. We should expect that in-
creasing τ would lead to faster method in terms of passes
over data, but that this would also lead to slower iterations.
The question is, is does the gain outweight the loss? The
answer is: yes, for small enough minibatch sizes. Indeed,
looking at Figure 3, we see that the runtime of SDNA im-
proved up to the point τ = 16 for both datasets, and then
starts to deteriorate. In situations where it is costly to fetch
data from memory to a (fast) processor, much larger mini-
batch sizes would be optimal.
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Bordes, Antoine, Bottou, Léon, and Gallinari, Patrick. Sgd-

qn: Careful quasi-newton stochastic gradient descent.
JMLR, 10:1737–1754, 2009.

Byrd, R.H., Hansen, S.L., Nocedal, Jorge, and Singer,
Yoram. A stochastic quasi-newton method for large-
scale optimization. arXiv:1401.7020, 2014.

Defazio, Aaron, Bach, Francis, and Lacoste-Julien, Si-
mon. Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives.
arXiv:1407.0202, 2014.
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APPENDIX: Proof of Theorem 3
It follows directly from Assumption 1 and the update rule xk+1 = xk + (hk)Sk in Algorithm 1 that:

LHS := f(xk+1) +

n∑
i=1

ψi(x
k+1
i )− f(xk)−

∑
i/∈Sk

ψi(x
k
i )

≤ 〈∇f(xk), (hk)Sk〉+
1

2
〈hk,XSkh

k〉+
∑
i∈Sk

ψi(x
k
i + hki ).

Since hk is defined as the minimizer of the right hand side in the last inequality, we can further bound this term by replacing
hk with h = λ(x∗ − xk) for arbitrary λ ∈ [0, 1]:

LHS ≤ λ〈(∇f(xk))Sk , x
∗ − xk〉+

∑
i∈Sk

ψi(x
k
i + λ(x∗i − xki )) +

λ2

2
〈x∗ − xk,XSk(x∗ − xk)〉. (28)

Now we use the fact that ψi is γi-strongly convex to obtain:

F (xk+1)− F (xk) = f(xk+1) +

n∑
i=1

ψi(x
k+1
i )− f(xk)−

n∑
i=1

ψi(x
k
i )

(28)
≤ λ〈(∇f(xk))Sk , x

∗ − xk〉+ λ
∑
i∈Sk

[ψi(x
∗
i )− ψi(xki )]

−λ(1− λ)

2
〈x∗ − xk,D(γ)Sk(x∗ − xk)〉+

λ2

2
〈x∗ − xk,XSk(x∗ − xk)〉.

By taking expectations in Sk on both sides of the last inequality, we see that for any λ ∈ [0, 1], the following holds:

Ek[F (xk+1)− F (xk)] ≤ λτ

n

(
〈(∇f(xk)), x∗ − xk〉+

n∑
i=1

(
ψi(x

∗
i )− ψi(xki )

))

−λ(1− λ)

2
〈x∗ − xk,E

[
D(γ)Ŝ

]
(x∗ − xk)〉+

λ2

2
〈x∗ − xk,E

[
XŜ

]
(x∗ − xk)〉

≤ λτ

n

(
F (x∗)− F (xk)− 1

2
〈x∗ − xk,G(x∗ − xk)〉

)
+
λ2

2
〈x∗ − xk,E

[
XŜ + D(γ)Ŝ

]
(x∗ − xk)〉 − λ

2
〈x∗ − xk,E

[
D(γ)Ŝ

]
(x∗ − xk)〉

≤ λτ

n

(
F (x∗)− F (xk)

)
− λ

2
〈x∗ − xk, τ

n
(D(γ) + G)(x∗ − xk)〉

+
λ2

2
〈x∗ − xk,E

[
XŜ +

τ

n
D(γ)

]
(x∗ − xk)〉,

where the second to last inequality follows from Assumption 7 and in the last one we used the fact that E[D(γ)Ŝ ] = τ
nD(γ).

It remains to replace λ by min(1, s).

APPENDIX: Proof of Lemma 5
Recall that M = 1

nX, where X = 1
λnA

>A.

For simplicity in this proof we write θ = θ(Ŝ). First, by the 1-strong convexity of the function g we obtain the 1-smoothness
of the function g∗, from which we deduce:

−λg∗(ᾱk+1) + λg∗(ᾱk) + λ〈∇g∗(ᾱk), ᾱk+1 − ᾱk〉 ≥ −λ
2
〈ᾱk+1 − ᾱk, ᾱk+1 − ᾱk〉.
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Now we replace ∇g∗(ᾱk) by wk and ᾱ by 1
λnAα to obtain:

D(αk+1)−D(αk) ≥ 1

n

∑
i∈Sk

[
−φ∗i (−αk+1

i ) + φ∗i (−αki )
]
− 1

n
〈A>wk, αk+1 − αk〉 − 1

2λn2
(αk+1 − αk)>A>A(αk+1 − αk)

= max
h∈Rn

{
1

n

∑
i∈Sk

[
−φ∗i (−αki − hi) + φ∗i (−αki )

]
− 1

n
〈(A>wk)Sk , h〉 −

1

2n
h>XSkh

}
,

where in the last equality we used the dual update rules in Algorithm 3, as well as relations (3) and (2). Therefore, for
arbitrary h ∈ Rn,

Ek[D(αk+1)−D(αk)] ≥ Ek

[
1

n

∑
i∈Sk

[
−φ∗i (−αki − hi) + φ∗i (−αki )

]]
− Ek

[
1

n
〈(A>wk)Sk , h〉 −

1

2n
h>XSkh

]

=
1

n

n∑
i=1

pi
[
−φ∗i (−αki − hi) + φ∗i (−αki )− (a>i w

k)hi
]
− 1

2n
h> E[XŜ ]h.

Let uk ∈ Rn such that uki = ∇φi(a>i wk) ∈ R for all i ∈ [n]. Let s = (s1, . . . , sn) ∈ [0, 1]n with si = θp−1i for all
i ∈ [n], where θ is given in (22). By using hi = −si(αki + uki ) for all i ∈ [n] in (29), we get:

Ek[D(αk+1)−D(αk)] ≥ 1

n

n∑
i=1

pi[−φ∗i
(
−(1− si)αki + siu

k
i

)
+ φ∗i (−αki ) + si〈a>i wk, αki + uki 〉]

− 1

2n
(αk + uk)>D(s)E[XŜ ]D(s)(αk + uk)

From γ-strong convexity of the functions φ∗i we deduce that:

−φ∗i ((1− si)(−αki ) + siu
k
i ) + φ∗i (−αki ) ≥ siφ∗i (−αki )− siφ∗i (uki ) +

γsi(1− si)
2

|uki + αki |2.

Consequently,

Ek[D(αk+1)−D(αk)] ≥ 1

n

n∑
i=1

pisi
[
φ∗i (−αki )− φ∗i (uki ) + 〈a>i wk, αki + uki 〉

]
+

1

n

n∑
i=1

γpisi(1− si)
2

|uki + αki |2

− 1

2n
(αk + uk)>D(s)E[XŜ ]D(s)(αk + uk)

=
θ

n

n∑
i=1

[
φ∗i (−αki ) + φi(a

>
i w

k) + 〈a>i wk, αki 〉
]

+
γθ

2n
〈αk + uk, (I−D(s))(αk + uk)〉

− 1

2n
〈αk + uk,D(s)E[XŜ ]D(s)(αk + uk)〉

where the equality follows from uki = ∇φi(a>i wk). Next, by the definition of θ in (22), we know that:

γI � θγD(p−1) +
θ

λn
D(v ◦ p−1)

= γD(s) +
1

θλn
D(s)D(v ◦ p)D(s)

(23)
� γD(s) +

1

θ
D(s)E[XŜ ]D(s).

Finally, it follows that

Ek[D(αk+1)−D(αk)] ≥ θ

n

n∑
i=1

[
φ∗i (−αki ) + φi(a

>
i w

k) + 〈a>i wk, αki 〉
]

= θ(P (wk)−D(αk)).
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APPENDIX: More insight into the relationship between σ2 and σ3

In the main text we have shown that σ2 ≥ σ3, where σ2 is the rate of Method 2 and σ3 is the rate of Method 3: NSync
(Richtárik & Takáč, 2013b). In this section we give a more detailed description of the relationship between these two
quantities in the case when Ŝ is the τ -nice sampling (Richtárik & Takáč, 2012). That is, Ŝ picks subsets of [n] of cardinality
τ , uniformly at random. For this sampling,

pi := Prob(i ∈ Ŝ) =
τ

n
.

Proposition 3. Suppose that G = M and Ŝ be the τ -nice sampling. Then there exists β ∈ [1, τ ] such that one can choose
vi = βMi,i and

σ2 =
βσ3

(1− τ−1
n−1 ) + n

τ
τ−1
n−1βσ3

.

Proof. As explained in (Richtárik & Takáč, 2012), (10) is always true if we take vi = βMi,i with β = τ but smaller values
(leading to a faster algorithm) may be computable if the problem exhibits a property called “partial separability”.

Let us denote by D the diagonal matrix whose entries are the diagonal entries of M.

(M[Ŝ])i,i =

{
Mi,i = Di,i if i ∈ Ŝ (probability τ

n )
0 otherwise

(M[Ŝ,Ŝ])i,j =

{
Mi,j if i ∈ Ŝ and j ∈ Ŝ (probability τ(τ−1)

n(n−1) )

0 otherwise.

Hence,

E[MŜ ] =
τ

n
D +

τ(τ − 1)

n(n− 1)
(M−D) =

τ

n

(
(1− τ − 1

n− 1
)D +

τ − 1

n− 1
M
)
.

Let us denote A = M−1/2DM−1/2 and α = τ−1
n−1 .

σ3
(13)
=

τ

n
β−1λmin(M1/2D−1M1/2) =

τ

n
β−1

(
λmax(A)

)−1

σ2
(12)
=

τ2

n2
λmin(M1/2(E[MŜ ])−1M1/2) =

τ2

n2
λmin(M1/2n

τ
((1− α)D + αM)−1M1/2)

=
τ

n

(
λmax(M−1/2((1− α)D + αM)M−1/2)

)−1
=
τ

n

(
λmax((1− α)A + αI)

)−1
But we have λmax((1− α)A + αI) = (1− α)λmax(A) + α, so

τ

nσ2
= (1− α)

τ

nβσ3
+ α

nσ2
τ

=
1

(1− α) τ
nβσ3

+ α

σ2 =
σ3

(1− α)β−1 + αnτ σ3
=

βσ3

(1− τ−1
n−1 ) + τ−1

n−1
n
τ βσ3

Note that if σ3 is small, then σ2 is of the order of βσ3

1− τ−1
n−1

> βσ3 .


