

Edinburgh Research Explorer

Automatic matching of legacy code to heterogeneous APIs: An
idiomatic approach
Citation for published version:
Ginsbach, P, Remmelg, T, Steuwer, M, Bodin, B, Dubach, C & O'Boyle, M 2018, Automatic matching of
legacy code to heterogeneous APIs: An idiomatic approach. in 23rd ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS'18). ACM, pp. 139-
153, The 23rd ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Williamsburg, United States, 24-28 March. DOI: 10.1145/3173162.3173182

Digital Object Identifier (DOI):
10.1145/3173162.3173182

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
23rd ACM International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS'18)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/157855804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3173162.3173182
https://www.research.ed.ac.uk/portal/en/publications/automatic-matching-of-legacy-code-to-heterogeneous-apis-an-idiomatic-approach(74bf9dba-7d61-46f3-883b-0f6fff11dec1).html

Automatic Matching of Legacy Code to Heterogeneous APIs:
An Idiomatic Approach

Philip Ginsbach
The University of Edinburgh
philip.ginsbach@ed.ac.uk

Toomas Remmelg
The University of Edinburgh
toomas.remmelg@ed.ac.uk

Michel Steuwer
University of Glasgow

michel.steuwer@glasgow.ac.uk

Bruno Bodin
The University of Edinburgh

bbodin@ed.ac.uk

Christophe Dubach
The University of Edinburgh
christophe.dubach@ed.ac.uk

Michael F. P. O’Boyle
The University of Edinburgh

mob@ed.ac.uk

Abstract
Heterogeneous accelerators often disappoint. They provide the
prospect of great performance, but only deliver it when using
vendor specific optimized libraries or domain specific languages.
This requires considerable legacy code modifications, hindering the
adoption of heterogeneous computing.

This paper develops a novel approach that automatically detects
opportunities to exploit accelerators. We focus on calculations that
are well supported by established APIs: sparse and dense linear
algebra, stencils and generalized reductions and histograms. We call
such opportunities idioms and use a custom constraint-based Idiom
Description Language (IDL) to discover them within user code.
Detected idioms are then mapped to BLAS libraries, cuSPARSE and
clSPARSE and two DSLs: Halide and Lift.

We implemented the approach in LLVM and evaluated it on the
NAS and Parboil sequential C/C++ benchmarks, where we detect 60
idiom instances. In those cases where idioms are a significant part
of the sequential execution time, we generate code that achieves
1.26× to over 20× speedup on integrated and external GPUs.

CCS Concepts • Computer systems organization→Hetero-
geneous (hybrid) systems; • Software and its engineering→
Domain specific languages;

ACM Reference Format:
Philip Ginsbach, Toomas Remmelg,Michel Steuwer, Bruno Bodin, Christophe
Dubach, and Michael F. P. O’Boyle. 2018. Automatic Matching of Legacy
Code to Heterogeneous APIs: An Idiomatic Approach. In Proceedings of
2018 Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS’18). ACM, New York, NY, USA, 13 pages. https://doi.org/http:
//dx.doi.org/10.1145/3173162.3173182

1 Introduction
Heterogeneous accelerators provide great potential performance.
However, achieving that potential is difficult. Although general
purpose languages such as OpenCL [37] provide portability, the
achieved performance frequently disappoints [30]. This shortfall
has led many vendors to deliver specialized libraries to bridge the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3173162.3173182

gap [2]. Alternatively, domain specific languages (DSLs) [17, 44]
have been proposed, attempting to deliver both portability and
performance [41].

Hardware becomes increasingly heterogeneous, (e.g. TPU [26]).
This means library or DSL based programming is likely to become
far more common and future programmers are expected to target
those APIs.

However, there are problems with such a trend. Firstly, users
have to learn several specialized DSLs or vendor-specific libraries.
Secondly, users have to restructure and rewrite their applications
to use them. Having to learn and understand several new APIs
and then rewrite existing applications is a severe impediment to
the wide-spread efficient exploitation of heterogeneous hardware.
Ideally, we would like a mechanism that automatically maps exist-
ing code to heterogeneous hardware using the appropriate APIs
without user effort.

Our approach is based on detecting specific structures or idioms
in user code that correspond to the functionality of existing APIs
for heterogeneous acceleration. We focus on idioms that are well
supported by library and DSL developers. By construction, these
are likely to be both relevant to existing code bases and have effi-
cient heterogeneous implementations. We consider the following
well known idioms: sparse and dense linear algebra, stencils and
generalized reductions and histograms.

At the heart of our approach is the ability to describe each idiom
in a concise Idiom Description Language (IDL). After the user’s
C/C++ program has been compiled down to LLVM IR, our tool reads
in an IDL program and translates into a set of constraints. These
are passed to a fast solver to search the user’s program, detecting
all idiom instances.

Once detected, the idioms are mechanically translated into the
appropriate DSL or replaced with a library call. This optimized code
is then linked into the original program. We currently target the
libraries cuSparse, clSparse, cuBLAS, clBLAS for sparse and dense
linear algebra and target the DSL Halide [41] for stencil computa-
tions.We also target Lift [46] - a data parallel language that supports
generalized reductions as well as stencils and linear algebra. This
allows the freedom to target many APIs for the same idiom and
pick the implementation that best suits the target platform.

New idioms can be easily added thanks to the flexibility of IDL.
This provides a powerful means of determining whether a new
heterogeneous API matches existing code without touching the
core compiler. The idioms addressed in this paper can be expressed
in less than 500 lines of IDL code. Our approach is also highly robust,
it has been applied to the entire NAS and Parboil benchmark suites
and is evaluated on three platforms.

https://doi.org/http://dx.doi.org/10.1145/3173162.3173182
https://doi.org/http://dx.doi.org/10.1145/3173162.3173182
https://doi.org/http://dx.doi.org/10.1145/3173162.3173182

We present a novel approach that:

• Defines the Idiom Description Language (IDL), a custom
programming language for specifying code idioms
• Implements common idioms in IDL to automatically discover
opportunities for accelerator exploitation
• Efficiently translates and maps the detected idioms to APIs
for heterogeneous systems

While there has been much research in using constraints for
program analysis [35], there is little prior work in its use for idiom
detection. In [18], constraints are used for detecting reductions, but
this is tightly coupled to a specialized code generation phase for
small-scale multi-core systems.

The work most similar in approach concerns discovery of stencil
computation and mapping to the Halide DSL. Helium [32] recovers
stencils from image-processing binaries. This requires large scale
dynamic analysis of binary traces and replacing them with Halide
calls. This is significantly extended in [28] which detects stencils
in FORTRAN. In this work the focus is on inferring post invariants
based on syntax guided synthesis in translation to Halide. However,
it uses a narrow approach to selecting code snippets and relies
on well structured FORTRAN with occasional user annotations.
Our approach is distinct in that we use an external programming
language to describe the idioms we are interested in. This allows an
unbounded set of idioms to be considered across arbitrary programs
and is not restricted to stencils.

To summarize, this paper presents an automatic approach that
discovers idioms in legacy code and maps them to heterogeneous
platforms via libraries and DSLs. We apply it to 21 C/C++ programs
from the NAS and Parboil benchmark suites and demonstrate that
it detects more reductions, stencils, matrix multiplications and
sparse matrix-vector computations than existing schemes. For the
idioms that dominate execution time, we generate code and evaluate
on 3 platforms: a multi-core CPU, an integrated and an external
GPU. Overall we detect 60 idioms. In 10 programs these dominate
sequential execution time and are worth exploiting. This results in
speedups ranging from 1.26× to over 20×.

2 Overview
Our approach is automatic and has been implemented inside the
LLVM compiler infrastructure. It takes arbitrary sequential C/C++
programs as input. Using the clang compiler, the input source code
is compiled into a Single Static Assignment (SSA) intermediate
representation. We then search this representation for particular
idioms which are replaced with calls to specific APIs. Finally, the
code generated by the LLVM compiler and the output of the idiom
specific code generators/libraries are linked together into a binary,
producing an optimized program. LLVM was chosen as it is the
best supported SSA-based compiler; the methodology could easily
be transferred to other infrastructures such as gcc.

2.1 Compiler Flow
The structure of our approach is described in more detail in Figure 1.
Our compiler takes two programs as inputs: the first is the user’s
program source code, the second describes the idioms we wish to
detect using our idiom description language (section 3). The same
idioms, of course, can be detected across many user programs, so
the IDL program does not have to change from one run to the next.

C/C++ IDL

optimized
LLVM IR

Input
Program

Idiom
Description

Constraint
Formula

Constraints
Solver

Code extraction

LLVM IR +
lib call

Binary

lib
object

lib
object

Vendor Libraries

Domain Specific
Code Generators

LLVM IR +
DSL code

Figure 1.Workflow of our system

The program source code is compiled to optimized LLVM IR
code while the idiom description is translated into constraints and
represented internally as a C++ object. The C++ representation
of the constraints and the user program LLVM IR code are then
passed as inputs to a backtracking solver [18], which detects all
cases where the idioms can be found in the LLVR IR.

The recognized idioms as well as the LLVM IR code are then
passed on to the transformation phase of our system. The sections
of code that correspond to computational idioms are extracted and
reformulated for the appropriate heterogeneous APIs. For library
APIs this means replacing the code covered by the idiom with a
library call. For domain specific language interfaces, things are a
little more involved. As before, we first extract the code associated
with the idiom and replace it with a function call. This extracted
code is now translated into the appropriate DSL and then passed
on to the external DSL compiler which optimizes and generates
code. The generated code is then linked with the object code from
the main program.

Determining the best heterogeneous APIs to use for a given
platform and the best idioms to exploit will become a major issue as
the number of idioms and APIs grows. Currently, in this paper, we
just try all applicable libraries and DSLs and pick the best executing
code. Determining the best option is future work.

2.2 IDL Example
At the core of our approach is IDL, which is described in section 3.
A fundamental part of its design is the ability to detect complex
idioms. Here we first focus on a simple example to show how IDL
works. Consider the standard factorizing optimization that applies
the algebraic rule of distributivity

(x ∗ y) + (x ∗ z) = x ∗ (y + z)

to simplify calculations by reducing the number of multiplications
in an expression. The established way of implementing such an
optimization is to hard code a detection compiler pass. In LLVM,
this is 47 lines of code inside the instcombine pass.

1 Constraint FactorizationOpportunity
2 ({sum} is add instruction and
3 {left_addend} is first argument of {sum} and
4 {left_addend} is mul instruction and
5 {right_addend} is second augment of {sum} and
6 {right_addend} is mul instruction and
7 ({factor} is first argument of {left_addend} or
8 {factor} is second argument of {left_addend}) and
9 ({factor} is first argument of {right_addend} or
10 {factor} is second argument of {right_addend}))
11 End

Figure 2. IDL formulation of (x*y)+(x*z) pattern

Using IDL, we can formulate this in only a few lines of an easily
understandable program (Figure 2). For this simple example, the
underlying constraint problem is immediately visible: There are
four variables sum, left_addend, right_addend, factor
and nine individual constraints that are combined with boolean
operators.

From this description, the IDL compiler generates constraints
that are passed to a constraint solver. For a given section of user
code, this solver returns the set of factorization opportunities, each
containing four entries sum, left_addend, right_addend,
factor that refer to values inside the user code. Figure 3 shows a
simple example of its application. The incoming C code is translated
to optimized LLVM IR. The solver then finds a single solution to
the constraint problem.

Original C code:
1 int example(int a, int b, int c) {
2 int d = a;
3 return (a*b) + (c*d);
4 }

Resulting LLVM IR:
1 define i32 @example(i32 %a, i32 %b, i32 %c) {
2 %1 = mul i32 %a, %b
3 %2 = mul i32 %c, %a
4 %3 = add i32 %1, %2
5 ret i32 %3
6 }

Detected factorization opportunities:
1 { "sum" : %3,
2 "left_addend" : %1,
3 "right_addend" : %2,
4 "factor" : %a }

Figure 3. Demonstration of simple idiom detection

In this case, the variable sum is matched to the value %3, an add
instruction, while left_addend and right_addend match
the left and right operands %1 and %2 of this instruction.

Lines 7 and 8 of Figure 2 say that factor can either be the
first argument OR the second argument of the left_addend. As
the left_addend is %1, then factor can be either %a or %b.
Similarly lines 9 and 10 of Figure 2 say that factor can be be the
first argument OR the second argument of the right_addend.
As the right_addend is %1, then factor can be either %c or
%a. As all constraints are connected by ANDs, they must all hold.

((f actor = a)∨(f actor = b))

∧((f actor = c)∨(f actor = a))

=⇒ f actor = a

The only value of factor that satisfies Lines 7 to 10 is factor
= %a. We have detected our factorization opportunity.

1 for (j = 0; j < m; j++) {
2 d = 0.0;
3 for (k = rowstr [j]; k < rowstr[j+1]; k++)
4 d = d + a[k]*z[colidx[k]];
5 r[j] = d; }

1 ; <label>:2:
2 %j = phi i64 [%j_next, %12], [0, %1]
3 %j_cond = icmp slt i64 %j, %m
4 br i1 %j_cond, label %3, label %13

5 ; <label>:3:
6 %4 = getelementptr i32, i32* %rowstr, i64 %j
7 %5 = load i32, i32* %4
8 %j_next = add nuw nsw i64 %j, 1
9 %6 = getelementptr i32, i32* %rowstr, i64 %j_next
10 %7 = load i32, i32* %6
11 %k_begin = sext i32 %5 to i64
12 %k_end = sext i32 %7 to i64
13 br label %8

14 ; <label>:8:
15 %k = phi i64 [%k_next, %9], [%k_begin, %dnext]
16 %d = phi double [0.0, %3], [%d_next, %9]
17 %k_cond = icmp slt i64 %iv, %k_end
18 br i1 %k_cond, label %9, label %12

19 ; <label>:9:
20 %a_addr = getelementptr double, double* %a, i64 %k
21 %a_load = load double, double* %a_addr
22 %cix_addr = getelementptr i32, i32* %colidx, i64 %k
23 %cix_load = load i32, i32* %cix_addr
24 %10 = sext i32 %cix_load to i64
25 %z_addr = getelementptr double, double* %z, i64 %10
26 %z_load = load double, double* %z_addr
27 %11 = fmul double %a_load, %z_load
28 %d_next = fadd double %d, %11
29 %k_next = add nsw i64 %k, 1
30 br label %8

31 ; <label>:12:
32 %r_addr = getelementptr double, double* %r, i64 %j
33 store double %d, double* %r_addr
34 br label %2

Figure 4. Sparse linear algebra in C and LLVM IR

Idiom detection with IDL program in Figure 11

Variable Name Assigned IR Value
iterator %j
inner.iter_begin %k_begin
inner.iter_end %k_end
inner.iterator %k
idx_read.value %cix_load
indir_read.value %a_load
seq_read.value %z
output.address %r_addr
iter_begin 0
iter_end %m
idx_read.base_pointer %colidx
seq_read.base_pointer %a
indir_read.base_pointer %z
.

Figure 5. Constraint solution for sparse mv

Code generation: insert arguments, replace original code

1 cusparseDcsrmv(context,
2 CUSPARSE_OPERATION_NON_TRANSPOSE, m, n,
3 rowstr[m+1]-rowstr[0], &gpu_1, descr, gpu_a,
4 gpu_rowstr, gpu_colidx, gpu_z, &gpu_0, gpu_r);

Figure 6. Generated function call to cuSPARSE

2.3 Sparse Linear Algebra in IDL
Although the above example illustrates how constraints can be
applied to program analysis, we are concerned with detecting more
complex idioms and mapping them to existing APIs.

Figure 4 shows the C code corresponding to the performance
bottleneck in the NAS Conjugate Gradient (GC) benchmark, as well
as the generated IR code. It implements a standard operation from
sparse linear algebra, namely a multiplication of a sparse matrix in
Compressed Sparse Row (CSR) format with a dense vector.

This code contains several features that make it unsuitable for
most established compiler optimizations: The iteration domain of
the nested loop is memory dependent (line 3) and there is indirect
memory access (line 4). This makes the iteration domain of the loop
nest non-polyhedral and the access structure to memory non-affine.
Under these conditions, simple data dependence models, but also
sophisticated analysis based on the polyhedral model, would fail.

We can express this idiom in IDL (section 4, Figure 11). The
IR code, together with the IDL program, is fed into a constraint
solver, which outputs a constraint solution as shown in Figure 5.
We can see that different parts of the IR have been assigned to IDL
variables.

Figure 6 shows how this solution is used to generate a call to
a cuSPARSE procedure. The solution variables are inserted into
the cusparseDcsrmv code template as function arguments. The
original code is then cut out and replaced with this function call.
The cuSPARSE library is then linked with the object code produced
by the LLVM compiler, resulting in a speedup of 17× on a GPU as
described in section 8.

Central to our approach is the ability to detect idioms. In the
next section we introduce a powerful description language that is
capable of expressing a wide class of idioms that are suitable for
acceleration by heterogeneous hardware.

specification ::= Constraint ⟨s⟩ ⟨constraint⟩ End

constraint ::= ⟨atomic⟩ |
〈
grouping

〉
| ⟨collect⟩ | ⟨rename⟩ | ⟨rebase⟩ | ‘(’ ⟨constraint⟩ ‘)’

grouping ::=
〈
conjunction

〉
|
〈
disjunction

〉
| ⟨inheritance⟩ | ⟨forall⟩ | ⟨forsome⟩ | ⟨forone⟩ | ⟨if⟩

conjunction ::= ‘(’ ⟨constraint⟩ and ⟨constraint⟩ {and ⟨constraint⟩} ‘)’

disjunction ::= ‘(’ ⟨constraint⟩ or ⟨constraint⟩ {or ⟨constraint⟩} ‘)’

inheritance ::= inherits ⟨s⟩ [‘(’ ⟨s⟩ ‘=’ ⟨calculation⟩ {‘,’ ⟨s⟩ ‘=’ ⟨calculation⟩} ‘)’]

forall ::= ⟨constraint⟩ for all ⟨s⟩ ‘=’ ⟨calculation⟩ ‘..’ ⟨calculation⟩

forsome ::= ⟨constraint⟩ for some ⟨s⟩ ‘=’ ⟨calculation⟩ ‘..’ ⟨calculation⟩

forone ::= ⟨constraint⟩ for ⟨s⟩ ‘=’ ⟨calculation⟩

if ::= if ⟨calculation⟩ ‘=’ ⟨calculation⟩ then ⟨constraint⟩ else ⟨constraint⟩ endif

rename ::=
〈
grouping

〉
with ⟨var⟩ as ⟨var⟩ and ⟨var⟩ as ⟨var⟩

rebase ::=
〈
grouping

〉
[with ⟨var⟩ as ⟨var⟩ and ⟨var⟩ as ⟨var⟩] at ⟨var⟩

collect ::= collect ⟨s⟩ ⟨n⟩ ⟨constraint⟩

atomic ::= ⟨var⟩ is (integer | float | pointer) [constant zero]
| ⟨var⟩ is (unused | a constant | a compile time value | an argument | an instruction)
| ⟨var⟩ is (store | load | return | branch | add | sub | mul | fadd | fsub | fmul | fdiv

| select | gep | icmp) instruction
| ⟨var⟩ is [not] the same as ⟨var⟩
| ⟨var⟩ has (data flow | control flow | control dominance | dependence edge) to ⟨var⟩
| ⟨var⟩ is (first | second | third | fourth) argument of ⟨var⟩
| ⟨var⟩ reaches phi node ⟨var⟩ from ⟨var⟩
| ⟨var⟩ [does not] [strictly] [(data flow | control flow)] dominates ⟨var⟩
| all [(data | control)] flow from ⟨var⟩ to ⟨var⟩ passes through ⟨var⟩
| all flow from ⟨varlist⟩ to ⟨varlist⟩ is killed by ⟨varlist⟩

varsingle ::= ⟨s⟩ |
〈
varsingle

〉
‘.’ ⟨s⟩ |

〈
varsingle

〉
‘[’ ⟨calculation⟩ ‘]’

varmulti ::=
〈
varsingle

〉
| ⟨varmulti⟩ ‘[’ ⟨calculation⟩ ‘..’ ⟨calculation⟩ ‘]’

varlist ::= ‘{’ ⟨varmulti⟩ ‘,’ {⟨varmulti⟩ ‘,’} ⟨varmulti⟩ ‘}’

var ::= ‘{’
〈
varsingle

〉
‘}’

calculation ::= ⟨s⟩ | ⟨n⟩ | ⟨calculation⟩ (‘+’ | ‘-’) (⟨s⟩ | ⟨n⟩)

Figure 7. BNF notation of IDL syntax

Constraint SESE

({precursor} is branch instruction and
{precursor} has control flow to {begin} and
{end} is branch instruction and
{end} has control flow to {successor} and
{begin} control flow dominates {end} and
{end} control flow post dominates {begin} and
{precursor} strictly control flow dominates

{begin} and
{successor} strictly control flow post dominates

{end} and
all control flow from {begin} to {precursor}

passes through {end} and
all control flow from {successor} to {end}

passes through {begin})
End

Figure 8. IDL specification of SESE region

Constraint GEMM

(inherits ForNest(N=3) and
inherits MatrixStore

with {iterator[0]} as {col}
and {iterator[1]} as {row}
and {begin} as {begin} at {output} and

inherits MatrixRead

with {iterator[0]} as {col}
and {iterator[2]} as {row}
and {begin} as {begin} at {input1} and

inherits MatrixRead

with {iterator[1]} as {col}
and {iterator[2]} as {row}
and {begin} as {begin} at {input2} and

inherits DotProductLoop

with {loop[2]} as {loop}
and {input1.value} as {src1}
and {input2.value} as {src2}
and {output.address} as {update_address})

End

Figure 9. IDL specification of GEMM

Constraint Histogram

(inherits For and
inherits ConditionalReadModifyWrite

with {indexkernel.output} as {address}
and {kernel.output} as {value} and

collect i

(inherits VectorRead

with {read_value[i]} as {value}
and {iterator} as {idx}
and {begin} as {begin} at {read[i]}) and

inherits Concat

with {read_value} as {in1}
and {old_value} as {in2}
and {kernel.input} as {out} and

inherits KernelFunction

with {begin} as {outer}
and {body.begin} as {inner} at {kernel} and

inherits KernelFunction

with {read_value} as {input}
and {begin} as {outer}
and {body.begin} as {inner} at {indexkernel})

End

Figure 10. IDL specification of generalized histogram

Constraint SPMV

(inherits For and
inherits VectorStore

with {iterator} as {idx}
and {begin} as {begin} at {output} and

inherits ReadRange

with {iterator} as {idx}
and {inner.iter_begin} as {range_begin}
and {inner.iter_end} as {range_end} and

inherits For at {inner} and
inherits VectorRead

with {inner.iterator} as {idx}
and {begin} as {begin} at {idx_read} and

inherits VectorRead

with {idx_read.value} as {idx}
and {begin} as {begin} at {indir_read} and

inherits VectorRead

with {inner.iterator} as {idx}
and {begin} as {begin} at {seq_read} and

inherits DotProductLoop

with {inner} as {loop}
and {indir_read.value} as {src1}
and {seq_read.value} as {src2}
and {output.address} as {update_address})

End

Figure 11. IDL specification of SPMV

Constraint Stencil

(inherits ForNest and
inherits PermMultidStore

with {iterator} as {input}
and {begin} as {begin} at {write} and

collect i

(inherits StencilRead

with {write.input_index} as {input}
and {kernel.input[i]} as {value}
and {begin} as {begin} at {reads[i]}) and

{kernel.output} is first argument of {write.store} and
inherits KernelFunction

with {begin} as {outer}
and {body.begin} as {inner} at {kernel})

End

Figure 12. IDL specification of simple stencil

Constraint Reduction

(inherits For and
collect i

(inherits VectorRead

with {iterator} as {idx}
and {read_value[i]} as {value}
and {begin} as {begin} at {read[i]}) and

inherits InductionVar

with {old_value} as {old_ind}
and {kernel.output} as {new_ind} and

{old_value} is not the same as {iterator} and
inherits Concat

with {read_value} as {in1}
and {old_value} as {in2}
and {kernel.input} as {out} and

inherits KernelFunction

with {begin} as {outer}
and {body.begin} as {inner} at {kernel})

End

Figure 13. IDL specification of scalar reductions

3 Idiom Description Language
Any detection method needs to be robust and work on real code. It
should work in the presence of complex language features, such
as the standard library containers, operator overloading and class
hierarchies in C++, as well as the myriad different ways users can
write the same, common algorithms.

This rules out a syntactic approach. To allow robust detection
of complex idioms, we devised IDL, a domain specific constraint
language that operates on the SSA based LLVM IR. In IDL, idioms
are specified in a modular fashion, exploiting standard compiler
primitives such as types and data and control flow analysis.

IDL was developed with the aim of enabling analysis routines
that are too complex to directly implement by hand. However, it
is still targeted at compiler experts. Writing and debugging IDL
code is challenging, but the modularity mechanisms make it very
suitable for unit testing. The full syntax specification of IDL in BNF
notation is shown in Figure 7.

Terminals The symbols ⟨s⟩ and ⟨n⟩ in the grammar correspond
to arbitrary strings and positive integer literals respectively, the
⟨specification⟩ top level construct of the language binds an
idiom definition to a name. The significant part of the language
specification is everything covered by ⟨constraint⟩.

Atomic Constraints All idiom definitions are eventually built
up by combining atomic constraints. These correspond to basic
boolean predicates that may hold for one or more values in the
IR. The atomic constraints describe standard properties within the
IR. Control flow in our model is evaluated on the granularity of
instructions. This is to reduce the size of the language, there is no
notion of basic blocks. For phi nodes, the incoming basic blocks are
identified with their terminating branch instruction.

Higher Level Constructs Atomic constraints can be combined
with many higher level language constructs. The semantics of
⟨conjunction⟩ and ⟨disjunction⟩ correspond to AND, OR.
The ⟨inheritance⟩ inserts another idiom description into the
current one. Idiom definitions can be parameterized in a way that
is inspired by C++ templates with integers, allowing more concise
descriptions. The ⟨if⟩ constraint has the standard meaning.

The ⟨forall⟩ and ⟨forsome⟩ constructs provide range based
versions of conjunction and disjunction. The contained constraint
formula is duplicated for each index in the provided range and the
contained variable names are modified according to the index (i.e.
if the index occurs in a variable name, it is substituted with the
current iteration value). The duplicated formulas are then combined
with conjunctions or disjunctions respectively.

To allow modularity, complementing the inheritance feature,
there are two mechanisms to change the variable names in the
contained constraint specification. With ⟨rename⟩, the translation
of variable names is done with a simple dictionary, where every
variable that is not explicitly mentioned in the dictionary remains
unchanged. The ⟨rebase⟩ has the same behaviour for variables
in the dictionary, but for every other variable, a prefix is added to
the variable name.

The ⟨collect⟩ construct is more powerful. It is used to capture
all possible solutions of a given constraint for expressions that
require the logical ∀ quantifier. For example, it can be used to
collect all affine array accesses in a given loop.

4 Specification of Idioms in IDL
With the definition of IDL, we can now specify idioms. The complete
set of idioms used in this paper comprises of ≈500 lines of code.
Due to space restrictions, we first show a simple constraint that we
rely on – single entry, single exit regions – and then describe the
top level constraints for each idiom.

4.1 Building Blocks
Before any algorithmic idiom can be specified, we need some basic
control flow constructs. The most fundamental is the single entry
single exit region (SESE) [25] which is used amongst other things to
determine loop bodies. A SESE region is a part of code spanned by
two instructionsA and B such thatA dominates B, B postdominates
A and every cycle containing either A or B also contains the other.
It is defined in Figure 8.

Using simple building blocks such as SESE, we can define more
complex control structures such as loops and important memory
access patterns such as matrix reads. From this we build powerful
idiom definitions that capture complex computational patterns that
can include arbitrary control flow.

4.2 Full Idiom Definition
The generalized matrix multiplication idiom is described in Figure 9.
The control flow is captured by three nested for loops. Inside these
loops, the memory access is characterized by three matrix accesses,
each with a different subset of the loop iterators. The corresponding
MatrixRead and MatrixWrite idioms model generic access
to matrices allowing strides, transposed matrices etc. The actual
computation is encapsulated by the DotProductLoop idiom.
This also contains the linear combination with factors alpha and
beta that is part of the generalized matrix multiplication.

Figure 10 shows the generalized histogram idiom. It is contained
in a for loop and the basic memory access pattern is a read-modify-
write to a bin array. This memory access can be conditional as long
as the condition is well behaved, which is guaranteed by the later
KernelFunction idiom. The histogram uses input data that is
read from input arrays using the loop iterator as a base index (that
can be strided, offset etc.). Finally there are two well behaved kernel
functions in a histogram, one to compute the access index and one
to compute the updated value.

The sparse matrix vector multiplication defined in Figure 11 is
different to the other idioms in that the control flow of the skeleton
of the idiom does not consist of perfectly nested for loops. Instead,
the iteration space of the inner loop is read from an array using the
ReadRange idiom. The actual computation that SPMV performs
is a dot product and thus it uses the same DotProductLoop
idiom as GEMM but the memory access pattern is different, with
indirect memory access in indir_read.

Figure 12 shows the basic stencil idiom. Stencils consist of a loop
nest with a multidimensional memory access to store the updated
cell value. This updated value is computed with a kernel function
using a number of values that are constraint by the StencilRead
idiom, which specifies multidimensional array access with only
constant offsets in all dimensions.

The scalar reduction idiom is specified in Figure 13. We can see
that its structure is similar to the histogram idiom, but instead of
a read-modify-write memory access it operates on an induction
variable that is implemented with the InductionVar idiom.

4.3 Not Syntactic Pattern Matching
The idiom descriptions may at first appear to be shallow syntactic
pattern matching. In fact, because it operates on the IR level, it can
detect idioms that are written in superficially distinct style but are
semantically equivalent. For example, there are two syntactically
distinct programs in Figure 14, which in fact are both implementa-
tions of general matrix multiplication. The IDL in Figure 9 discovers
they are both instances of GEMM and they can both be replaced
with an API call to GEMM.

There are limitations to this semantic matching. In particular,
the use of low level optimizations that circumvent the usual IR
representation, e.g. SIMD compiler intrinsics, would distort the
algorithms beyond recognition by our system. In practice, this is
rarely encountered.

for (int mm = 0; mm < m; ++mm) {
for (int nn = 0; nn < n; ++nn) {

float c = 0.0f;
for (int i = 0; i < k; ++i) {
float a = A[mm + i * lda];
float b = B[nn + i * ldb];
c += a * b;

}
C[mm+nn*ldc] = C[mm+nn*ldc] * beta + alpha * c;

}
}

for(int i = 0; i < 1000; i++)
for(int j = 0; j < 1000; j++) {

M3[i][j] = 0.0f;
for(int k = 0; k < 1000; k++)

M3[i][j]+=M1[i][k]*M2[k][j]; }

Figure 14. Two matching instances of GEMM

4.4 Compilation Process and Implementation
Idiom definitions are compiled to C++ functions that perform idiom
recognition on LLVM IR. In a first step, the compiler eliminates
⟨inheritance⟩, ⟨forall⟩, ⟨forsome⟩, ⟨if⟩, ⟨rename⟩ and
⟨rebase⟩. They are replaced with the simpler ⟨conjunction⟩
and ⟨disjunction⟩ constructs. This also involves removing all
parameterizations from the formula and flattening all variable
names. Next, variables are collected and ordered to assist constraint
solving. The ordering impacts performance, as it determines how
well the search space is pruned. For each variable, all the constraints
associated with the variable are assembled.

The compiler then emits C++ code which is passed to a generic
solver based on [18] to search for idiom instances. This solver is
based on standard backtracking. As shown in the results section,
this increases compilation time, but the overhead is modest. 1

5 Targeted Heterogeneous APIs
After idiom detection, we must transform the user program to
exploit the relevant API. Two types of heterogeneous APIs are
currently targeted: libraries and domain specific languages with
their optimizing compilers.

5.1 Domain Specific Libraries
Libraries provide narrow interfaces but are often highly optimized.
For example, the cuBLAS library is only suitable for a limited
set of dense linear algebra operations and only works on Nvidia
1Our impementation of IDL is available as open source on https://github.com/
asplos18ginsbach.

GPUs, but its implementation provides outstanding performance.
For sparse linear algebra we use the vendor provided cuSPARSE,
clSPARSE, and MKL libraries. For dense BLAS routines cuBLAS,
clBLAS, CLBlast, and MKL are used.

5.2 Domain Specific Code Generators
Domain Specific Languages provide wider interfaces than libraries
and allow problems to be expressed as composition of dedicated
language constructs. An optimizing compiler then specializes the
program for the target hardware. We currently support Halide and
Lift as domain specific code generators.
Halide [41] is a language and optimizing compiler targeted at
image processing applications. Optimized code is generated for
CPUs as well as GPUs. Halide separates the functional description
of the problem from the description of the implementation which
is called a schedule. This allows retargeting of Halide programs to
different platforms. We translate some of the stencil idioms and
linear algebra idioms into Halide. Stencils involving control flow in
their computations are not easily expressible in Halide.
Lift [45? , 46] is an optimizing code generator based on rewrite
rules. The Lift language consists of functional parallel patterns such
as map and reduce which express a range of parallel applications.
For this work we translate stencil idioms, complex reductions and
linear algebra idioms to Lift.

6 Translating Computational Idioms
This section describes how the detected idioms are mapped to the
previously described library APIs domain specific languages. The
two types of APIs (library interfaces and domain specific languages)
are treated individually.

6.1 Library
For library call interfaces, the original code is removed and an
appropriate function call is inserted instead. The solution that is
generated by the solver using the IDL program contains both the
IR instructions to remove as well as the arguments that are to be
used for the function call.

For example, in the case of theGEMM program, the original code is
removed by deleting the IR instruction at output.store, which
captures the store instruction of the MatrixStore subprogram,
and leaving the rest to dead code elimination. The arguments that
specify the matrix dimensions are taken from ForNest in combi-
nation with the stride and offset determined by MatrixRead and
MatrixWrite.

The mapping of solution variables to function call arguments is
implemented individually for each backend, as we have no way to
describe it in IDL itself. Once the code is replaced, LLVM continues
with code generation as usual.

6.2 DSL
For domain specific languages, the situation is a bit more involved.
Reduction, histogram and stencil idioms are higher order functions
that contain a kernel function or reduction operator that has to be
represented for the DSL.

For each individual combination of idiom and DSL there is a
parameterized skeleton program. This skeleton is then specialized
for the appropriate data types and numeric parameters as well as
the kernel function or reduction operator.

https://github.com/asplos18ginsbach
https://github.com/asplos18ginsbach

Numerical parameters are picked from the constraint solution
in the same way that was described previously for library call
interfaces. Also from the constraint solution, we have the loop
body that contains the kernel function or reduction operator, as
well as the input values and the result value used. We use this
information to cut out the kernel function that is then used to
generate code appropriate for the DSL backends:

Lift expects stencil kernels or reduction operators to be sequential
C code with a specific function interface that is used internally by
Lift when generating OpenCL code. We therefore implemented a
rudimentary LLVM IR to C backend for generating this function.

Halide is a language embedded in C++ and essentially requires
building a syntax tree of the kernel functions using a class hierarchy.

1 float mult(float x, float y) { return x*y; }
2 float add(float x, float y) { return x+y; }
3
4 gemm_in_lift(A, B, C, alpha, beta) {
5 map(fun(a_row, c_row) {
6 map(fun(b_col, c) {
7 map(fun(ab){ add(mult(alpha, ab), mult(beta, c))},
8 reduce(add, 0.0f, map(mult, zip(a_row, b_col))))
9 }, zip(transpose(B), c_row))
10 }, zip(A, C))
11 }

Figure 15. Example of matrix multiplication translated to Lift.

After code for the DSLs is generated, it is passed to the DSL code
generator. Figure 15 shows an example of the Lift code generated for
GEMM (gemm_in_lift). It performs a dot product (expressed
in line 8 using the Lift skeletons zip, map, and reduce) for each
row of matrix A (a_row) and column of matrix B (b_col). This
code is compiled by Lift into optimized OpenCL code.

Finally, we again replace the idiom code in the user’s code with
a call to the code generated by the DSL and continue once again
with LLVM code generation.

6.3 Aliasing
Since idiom detection works statically, we are unable to fully rule
out aliasing of pointers, which can make transformations unsound.
For dense linear algebra this is easily solved with some basic run
time checks for non-overlapping memory. However, for sparse
linear algebra this is not as straightforward and in corner cases our
approach is unsound. In practice this did not cause problems on any
of the benchmark programs, however this means that optimizations
based on these techniques will have to provide appropriate feedback
to the programmer.

7 Experimental Setup
Benchmarks We applied our approach to all of the sequential
C/C++ versions of the NAS Parallel Benchmarks. We use the SNU
NPB implementation by the Seoul National University, containing
the original 8 NAS benchmarks plus two of the newer unstructured
components UA and DC. We also evaluated our approach on all
Parboil benchmarks, giving 21 programs in total.

Platform and Evaluation We use an AMD A10-7850K APU
with a multi-core CPU and an integrated Radeon R7 GPU on the
same die using driver version 1912.5, as well as an Nvidia GTX
Titan X as an external GPU using driver version 375.66. We report
the median runtime of 10 executions for each program.

Alternative detection approaches There are no easily available
compilers to compare against that perform idiom detection. Instead,
we consider two well known parallelizing compilers and examine
whether they detect idioms as part of their parallelization approach.
As their goal is parallelization and not idiom detection, this should
be borne in mind in the results section.

Polly [15] is an LLVM based polyhedral compiler capable of find-
ing parallel loops and reductions in static control flow (SCoP) parts
of programs. This allows comparison against another approach that
uses the same compiler infrastructure. We gathered the SCoPs that
Polly detected with the compiler options -O3 -mllvm -polly
-mllvm -polly-export and manually inspected the reported
SCoPs for stencil like parallel loops and reduction operations. When
Polly captured such a loop as a SCoP, we counted it as an idiom
detection, although Polly itself has no concept of idioms. This gives
an optimistic estimate as to what idiom coverage a polyhedral based
approach can achieve.

The Intel C++ Compiler (ICC) is a mature industry strength
compiler that provides a detection mechanism for parallelizing
reduction idioms based on data dependency analysis. We use the
-parallel -qopt-report command line options and checked
in the optimization report files whether the corresponding loop is
considered a parallelizable reduction.

8 Results
We first evaluate how often our approach is able to detect idioms
and its compile time cost. We then investigate the runtime coverage
of the idioms to see where exploitation might be beneficial. Where
runtime coverage is substantial, we report speedups compared to
the sequential C code and compare the performance of each of the
targets APIs. We also compare against the handwritten OpenMP
andOpenCL implementations that are includedwith the benchmark
suites as reference implementations.

8.1 Idiom Detection
Table 1 shows the number of idioms found by our approach, Polly,
and ICC. Polly finds 3 scalar reductions and 6 stencils while ICC
which just considers scalar reduction finds 28. Polly is unable to
perform idiom specific optimizations on GEMM. Other approaches
do not detect any histograms or sparse matrix operations, because
such code involves indirect and thus non-affine memory accesses.
This fundamentally contradicts assumptions that these tools rely
on and is not merely an implementation artifact. Our IDL approach
detects 60 idioms overall with the compile time cost shown in figure
Table 2. On average, the compilation time is increased by 82%, which
can be reduced further by optimizing the solver.

Figure 16 shows the different idioms detected across the bench-
marks. We detect both scalar and histogram reductions as well as
stencils, dense matrix operations and sparse matrix-vector multi-
plication. While Polly and ICC are only capable of detecting simple
scalar reductions we are able to detect histogram reductions, e.g.
in the histo benchmark as well. For stencils, Polly detects two in
lbm and stencil while our approach detects all the stencils in lbm,
stencil and MG. Unlike any existing approach, we detect sparse
matrix-vector operations in CG and spmv as well as dense matrix
operations in sgemm. It is worth repeating, however, that both Polly
and ICC are parallelizing compilers, not idiom recognition tools.

BT CG DC EP FT IS LU MG SP UA bfs cutcp histo lbm mri−g mri−q sad sgemm spmv stencil tpacf

0

2

4

6

8

10

#
 D

e
te

c
te

d
 I
d

io
m

s

Idiom Type Scalar Reduction Histogram Reduction Stencil Matrix Operations Sparse Matrix Operations

Figure 16. The different computational idioms found in all benchmarks.

BT CG DC EP FT IS LU MG SP UA bfs cutcp histo lbm mri−g mri−q sad sgemm spmv stencil tpacf

0

25

50

75

100

R
u

n
ti
m

e
 C

o
ve

ra
g

e
 (

%
)

Figure 17. Runtime coverage of the detected idioms in all benchmarks.

Scalar
Reduction

Histogram
Reduction

Stencil Matrix
Op.

Sparse
Matrix Op.

Polly 3 — 5 — —
ICC 28 — — — —
IDL 45 5 6 1 3

Table 1. Idioms detected by IDL, ICC, Polly

8.2 Runtime Coverage
To determine if the detected idioms are actually important, Figure 17
shows the percentage of time spent in the detected computational
idiom. This data shows that either the detected idioms have a low
runtime contribution or they dominate almost the entire execution.
EP is the only exception where about 50% of the runtime is spent
inside a detected histogram reduction. We focus on the 10 programs
which spend a significant amount of time in the detected idioms,
as only these can reasonably expect a performance gain using our
approach.

8.3 Performance Results
Speedup vs. Sequential Figure 18 shows the end-to-end speedup
obtained by accelerating idioms with heterogeneous APIs on a CPU,
an integrated GPU, and an external GPU. All results include data
transfer overhead to and from the GPUs. Here the best performing
API is shown; Table 3 provides detailed results for all APIs.

For five benchmarkswe obtainmoderate speedups from 1.26× for
histo up to 4.5× for IS. All of these benchmarks (besidesMG) have a
scalar or histogram reduction as their performance bottleneck and
are, therefore, not computationally expensive. Interestingly, we can
see that different hardware is beneficial for different benchmarks:
for tpcaf the CPU is the best platform, beating the GPU for which
the data transfer time dominates; for MG and histo the integrated
GPU strikes the right balance between computational power while
avoiding the movement of data to the external GPU; and, finally,
for EP and IS the data transfer to the GPU pays off exploiting the
high GPU internal memory bandwidth. These results emphasize
the significance of heterogeneous code generation flexibility.

BT CG DC EP FT IS LU MG SP UA bfs cutcp

without IDL 1.9 0.5 1.0 0.3 0.6 0.3 1.9 0.8 1.6 2.7 0.4 0.4
with IDL 4.0 0.8 1.6 0.6 1.2 0.5 3.9 4.5 3.2 7.3 0.5 0.6

overhead in % 116 77 57 77 93 62 103 484 97 169 30 65

histo lbm mri-g mri-q sad sgemm spmv stencil tpacf

without IDL 0.2 0.3 0.2 0.2 0.4 0.6 0.3 0.2 0.2
with IDL 0.2 0.6 0.4 0.3 0.6 0.7 0.7 0.2 0.4

overhead in % 35 87 100 52 58 24 115 36 54

Table 2. Compile time cost in seconds

For five benchmarks we achieve significantly higher speedups,
from 17× for CG and up to over 275× for sgemm. These benchmarks
are computationally expensive and the external GPU is always
clearly the fastest architecture.

The red highlighting in the plot indicates an important runtime
optimization: redundant data transfers for the iterative CG, lbm,
spmv and stencil benchmarks. All of these benchmarks execute
computations inside a for loop and do not require access to the data
on the CPU between iterations. We manually applied a straightfor-
ward lazy copying technique by flagging memory objects to avoid
redundant transfers, similar to [24]. As can be seen this runtime
optimization is crucial for achieving high performance for these
benchmarks.

API performance comparison Table 3 provides a breakdown of
the performance of each API on each program and platform. Not all
APIs target all platforms, e.g. cuSPARSE only targets NVIDIA GPUs
and in the case of Halide, the current version that we have access
to failed to generate valid GPU code for any of the benchmarks
we tried. The best performing API is highlighted in bold in the
table entries. The spmv benchmark uses an unusual sparse matrix
format, so that we implemented a custom library libSPMV for this
benchmark.

CG EP IS MG histo lbm sgemm spmv stencil tpacf

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

 0

 1

 2

 0

 10

 20

 30

 0

 10

 20

 30

 40

 50

 0

 50

100

150

200

250

 0

 10

 20

 30

 0

 1

 0

 1

 2

 0

 1

 2

 3

 4

 0

 1

 0

 5

 10

 15

S
p
e

e
d
u
p

 v
s
.
S

e
q

u
e
n
ti
a
l

Figure 18. Speedup compared to the sequential C program. Results for the best performing heterogeneous API on each device are shown.
The red bars indicate a manual runtime optimization for avoiding unnecessary data transfers.

0.25 0.00 0.07 0.02

CG EP IS MG histo lbm sgemm spmv stencil tpacf

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

1

10

100

1000

S
p

e
e
d

u
p
 v

s
.

S
e
q
u
e

n
ti
a
l

Figure 19. Speedup of our constraints based approach (executed on the best hardware and highlighted in red) compared to handwritten
parallel OpenCL (executed on the GPU) and OpenMP (executed on the CPU) implementations.

CPU iGPU GPU
MKL libSPMV Halide clBLAS CLBlast Lift clSPARSE libSPMV clBLAS CLBlast Lift cuSPARSE libSPMV cuBLAS Lift

CG 1504.21 — — — — — 644.02 — — — — 113.51 — — —

EP — — — — — 32762.50 — — — — 30983.40 — — — 24680.70

IS — — 426.95 — — 1765.61 — — — — 547.28 — — — 99.95

MG — — — — — 4699.63 — — — — 1439.58 — — — 2211.56

histo — — — — — 27.42 — — — — 17.20 — — — 19.54

lbm — — — — — 6457.93 — — — — 5335.09 — — — 590.60

sgemm 53.50 — — 1661.75 660.44 1339.15 — — 14.73 19.03 15.04 — — 5.99 7.87

spmv — 218.17 — — — — — 102.233 — — — — 18.437 — —

stencil — — 5760.81 — — 21951.80 — — — — 2261.48 — — — 279.38

tpacf — — — — — 19276.40 — — — — 61111.90 — — — 23358.20

Table 3. Detailed performance results for each heterogeneous API used in milliseconds. Fastest implementations for each benchmark and
target hardware are highlighted in bold.

On the multicore CPUs, the Intel MKL library gives the best
linear algebra performance, outperforming the other libraries and
Lift. Halide achieves good performance for the NPB IS and Parboil
stencil benchmarks on the CPU, outperforming Lift due to its more
advanced vectorization capabilities. In the programs where scalar
reductions dominate, Lift performs well. On the iGPU, clBLAS
provides a better matrix-multiplication implementation than either
CLBlast or Lift. On the external GPUs, the libraries provide better
linear algebra implementations, while Lift performs well on stencils
and reductions.

Speedup vs. Parallel Handwritten Implementations Figure 19
shows the performance of our approach compared to hand-written
reference OpenMP and OpenCL implementations. For some of the
benchmarks, the parallel versions are significantly modified using
different algorithms beyond the domain of automation. We can

see that for benchmarks where the handwritten implementation
does not make algorithmic changes (CG, histo, lbm, sgemm, spmv,
stencil), we achieve comparable – or better – performance. For four
benchmarks (EP, IS, MG, and tpacf) it is beneficial to parallelize the
entire application – which is beyond the scope of this paper. Future
work will examine outer loop parallelism as an idiom to exploit.

For the sgemm and stencil benchmarks we improved the baseline
implementation provided by the benchmarks as these had extremely
poor performance. A simple interchange of two loops improved
performance by almost 20 times.

Summary We detect 60 idioms across the benchmark suites and
are able to achieve significant performance improvements for those
benchmarks where idioms dominate execution time by targeting
different heterogeneous APIs.

9 Related and Future Work
Domain specific Languages DSLs have received much atten-
tion in recent years, ranging from SPIRAL [38], a DSL for Fast
Fourier Transforms, over Lift [45? , 46] to UFL [1], a DSL for partial
differential equations. Stencils in particular have received much
attention [34?], the best known of which is Halide [41]. DSLs to
exploit complex reductions are less studied. In [11] they introduce
a type of DSL via annotations that allow expression of complex
reductions based on the Platform-Neutral Compute Intermediate
Language [4]. In the case of matrix multiplication, this is a well
specified idiom supported by specific libraries [2, 23, 36].

Generation of Performance Portable Code for Heterogeneous
Hardware Recent research has highlighted the challenges of gen-
erating code that performs well on different heterogeneous hard-
ware architectures. PetaBricks [?] is one of the first languages to
address this performance portability challenge by encoding algorith-
mic choices which are then empirically evaluated and automatically
taken by the compiler. Similarly [?] explores automatic selection of
code variants using machine learning. In a similar spirit, Lift [45]
uses rewrite rules to explore optimization choices automatically.

Functional Code Generation Approaches There exist multiple
functional approaches for generating code for heterogeneous hard-
ware. Accelerate is a Haskell embedded domain specific language
aimed at generating efficient GPU code [10, 31]. Recently, Nvidia
introduced NOVA [13], a new functional language targeted at code
generation for GPUs, and Copperhead [8], a data parallel language
embedded in Python. Delite [7, 9] is a system that enables the
creation of domain-specific languages using functional parallel pat-
terns and targets multi-core CPUs or GPUs. In contrast, to these
approaches, we require no rewriting of legacy programs.

Idiom Detection Idiom based optimization [39] has fallen out of
fashion, with more systematic approaches based on SSA [29] and
polyhedral representations [6]. They were largely based on syn-
tactic pattern matching and not robust in the presence of complex
control and dataflow. More recently, [3] describes a compiler based
parallelization approach for heterogeneous computing, based on
an idiomatic intermediate representation called KIR. It is not clear
how such an approach would work on general C/C++ programs.

Stencils Stencil detection has been driven by the introduction of
DSLs such as Halide. Helium [32] tackles the challenging task of
detecting stencils in binary code. It relies on dynamic analysis and
cannot easily be extended to other idioms. Another closely related
paper is [28], which detects stencils in FORTRAN by the verified
lifting of code segments to a representation that can be mapped to
Halide DSL. It uses syntax guided synthesis to verify translation
with added constrains to ensure that it can be mapped to Halide. It
however requires nested loops without conditionals in well behaved
FORTRAN and in some cases requires user annotations.

Reductions Discovering and exploiting scalar reductions in pro-
grams has been studied for many years based on dependence analy-
sis and idiom detection [16, 40, 48]. Alongside this data dependence
based approach, there has also been a large body of work explor-
ing mapping of reductions in a polyhedral setting [27, 43] The
treatment of more general reduction operations has received less
attention. Work has focused on exploitation rather than discovery

[20–22], examining trade-offs in implementation [51] or exploita-
tion of novel hardware [42, 50]. Recent work [18] shows that more
complex reductions can be detected, but this is tied to an ad hoc
non-portable code generation phase.

Polyhedral Approaches Polyhedral compilers [5, 49] perform
advanced loop optimizations and have been used for the generation
of fast GPU kernels. More recently, extensions to the polyhedral
framework have been proposed, allowing it to capture reduction
computations [12, 19, 47]. Such efforts are described in [15], but
they are fragile in the presence of non static control flow.

Future Work Although idioms can be described concisely with
IDL, we currently have to implement a separate translation scheme
for each API. While much of the translation code is common, it
would be preferable to have an API description language similar
to IDL that allows automatic generation of API translators. This
would allow rapid evaluation of different APIs for the same idiom.

As the number of APIs and idioms grows, a profitability heuristic
will be needed to determine the best API to use for each program
and platform. Machine learning approaches are an obvious starting
point as they easily adapt to changing targets.

This paper restricts its attention to five common idioms. Other
idioms such as graph processing can also be described. Given that
IDL works on the compiler IR, loop and function parallelism can
also be described as idioms. In those cases where user codes do not
quite match the platform API and associated idioms, we can apply
program transformations to refactor or rejuvenate code to fit.

To be a robust approach to heterogeneous programming, we
need to ensure correctness. Syntax guided synthesis is a promising
means of verifying the idiom translation.

It would be interesting to see to whether our approach could be
used for binary optimization or applied to heavily optimized and
complex code bases. Another research direction is investigating
explicitly parallel legacy codes.

10 Conclusion
This paper develops a compiler based approach that automatically
detects a wide class of idioms supported by libraries or domain
specific languages for heterogeneous processors. This approach is
based on a constraint based description language that identifies
program subsets that adhere to idiom specifications. Once detected,
the idioms are mechanically translated into API calls to external
libraries or code generated by DSL compilers.

This approach is robust and was evaluated on C/C++ versions of
two well known benchmark suites: NAS and Parboil. We detected
more stencils, sparse matrix operations and generalized reductions
and histograms than existing approaches and generated fast code.

Future work will extend the constraint formulation to consider
other common idioms. As the number of idioms detected and of
implementations available grows, a smart profitability analysis will
be needed and is the subject of future work.

Acknowledgements
This work was supported in part by the EPSRC Centre for Doctoral
Training in Pervasive Parallelism, funded by the UK Engineering
and Physical Sciences Research Council (grant EP/L01503X/1) and
the University of Edinburgh. Some of the hardware used for this
research was donated by the NVIDIA Corporation.

References
[1] Martin S. Alnæs, Anders Logg, Kristian B. Olgaard, Marie E. Rognes, and Garth N.

Wells. Unified form language: A domain-specific language for weak formulations
of partial differential equations. ACM Trans. Math. Softw., 40(2):9:1–9:37, March
2014.

[2] AMD. clBLAS.
[3] JosÃľ M. AndiÃşn. Compilation Techniques for Automatic Extraction of Parallelism

and Locality in Heterogeneous Architectures. PhD thesis, University of A CoruÃśa,
2015.

[4] Riyadh Baghdadi, Albert Cohen, Tobias Grosser, Sven Verdoolaege, Anton
Lokhmotov, Javed Absar, Sven Van Haastregt, Alexey Kravets, and Alastair
Donaldson. PENCIL Language Specification. Research Report RR-8706, INRIA,
May 2015.

[5] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic
C-to-CUDA code generation for affine programs. CC/ETAPS. Springer-Verlag,
2010.

[6] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and
Cédric Bastoul. The polyhedral model is more widely applicable than you think.
In International Conference on Compiler Construction, pages 283–303. Springer,
2010.

[7] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. A heterogeneous parallel framework for
domain-specific languages. PACT. ACM, 2011.

[8] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: Compiling
an embedded data parallel language. PPoPP. ACM, 2011.

[9] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.
Atreya, and Kunle Olukotun. A domain-specific approach to heterogeneous
parallelism. PPoPP. ACM, 2011.

[10] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. Accelerating Haskell array codes with multicore GPUs. DAMP.
ACM, 2011.

[11] Michael Kruse Chandan Reddy and Albert Cohen. Reduction drawing: Language
constructs and polyhedral compilation for reductions on gpus. In Proceedings of
the 25rd International Conference on Parallel Architectures and Compilation, PACT
’16, 2016.

[12] Lam Chi-Chung, P Sadayappan, and Rephael Wenger. On optimizing a class of
multi-dimensional loops with reduction for parallel execution. Parallel Processing
Letters, 7(02):157–168, 1997.

[13] Alex Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea.
NOVA: A functional language for data parallelism. ARRAY. ACM, 2014.

[14] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[15] Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. Polly’s
polyhedral scheduling in the presence of reductions. CoRR, abs/1505.07716, 2015.

[16] Allan L Fisher and Anwar M Ghuloum. Parallelizing complex scans and reduc-
tions. In ACM SIGPLAN Notices, volume 29, pages 135–146. ACM, 1994.

[17] Franz Franchetti, FrÃľdÃľric de Mesmay, Daniel McFarlin, and Markus PÃĳschel.
Operator language: A program generation framework for fast kernels. In IFIP TC
2 Working Conference on Domain-Specific Languages. Springer, 2009.

[18] Philip Ginsbach and Michael F. P. O’Boyle. Discovery and exploitation of general
reductions: A constraint based approach. In Proceedings of the 2017 Interna-
tional Symposium on Code Generation and Optimization, CGO ’17, pages 269–280,
Piscataway, NJ, USA, 2017. IEEE Press.

[19] Gautam Gupta and Sanjay V Rajopadhye. Simplifying reductions. In POPL,
volume 6, pages 30–41, 2006.

[20] E. Gutiérrez, O. Plata, and E. L. Zapata. A compiler method for the parallel
execution of irregular reductions in scalable shared memory multiprocessors.
In Proceedings of the 14th International Conference on Supercomputing, ICS ’00,
pages 78–87, New York, NY, USA, 2000. ACM.

[21] Eladio Gutiérrez, O Plata, and Emilio L Zapata. Optimization techniques for
parallel irregular reductions. Journal of systems architecture, 49(3):63–74, 2003.

[22] Eladio Gutiérrez, Oscar Plata, and Emilio L Zapata. An analytical model of
locality-based parallel irregular reductions. Parallel Computing, 34(3):133–157,
2008.

[23] Intel. Math Kernel Library.
[24] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.

Beard, and David I. August. Automatic CPU-GPU communication management
and optimization. In PLDI, 2011.

[25] Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree:
Computing control regions in linear time. In Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, PLDI ’94,
pages 171–185, New York, NY, USA, 1994. ACM.

[26] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle

Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017, pages
1–12, 2017.

[27] Pierre Jouvelot and Babak Dehbonei. A unified semantic approach for the
vectorization and parallelization of generalized reductions. In Proceedings of the
3rd international conference on Supercomputing, pages 186–194. ACM, 1989.

[28] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. Ver-
ified lifting of stencil computations. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’16, pages
711–726, New York, NY, USA, 2016. ACM.

[29] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization, 2004.
CGO 2004. International Symposium on, pages 75–86. IEEE, 2004.

[30] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a
compiler framework for automatic translation and optimization. PPoPP. ACM,
2009.

[31] Trevor L.McDonell, ManuelM.T. Chakravarty, Gabriele Keller, and Ben Lippmeier.
Optimising purely functional GPU programs. ICFP. ACM, 2013.

[32] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan Ragan-
Kelley, Sylvain Paris, Qin Zhao, and Saman Amarasinghe. Helium: Lifting high-
performance stencil kernels from stripped x86 binaries to halide dsl code. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, pages 391–402, New York, NY, USA, 2015.
ACM.

[33] Jason Merrill. Generic and gimple: A new tree representation for entire functions.
In Proceedings of the 2003 GCC DevelopersâĂŹ Summit, pages 171–179, 2003.

[34] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Automatic
optimization for image processing pipelines. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, pages 429–443, New York, NY, USA, 2015. ACM.

[35] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program
analysis. Springer, 2015.

[36] Nvidia. cuBLAS.
[37] Nvidia. Nvidia OpenCL Best Practices Guide, 2011.
[38] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus

Püschel. SPIRAL in Scala: Towards the systematic construction of generators for
performance libraries. In International Conference on Generative Programming:
Concepts & Experiences, GPCE, 2013.

[39] Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization
using idioms. ACM Trans. Program. Lang. Syst., 16(3):305–327, May 1994.

[40] Bill Pottenger and Rudolf Eigenmann. Idiom recognition in the polaris paralleliz-
ing compiler. In Proceedings of the 9th international conference on Supercomputing,
pages 444–448. ACM, 1995.

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 519–530, New York, NY, USA, 2013.
ACM.

[42] Vignesh T Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal. Compiler and
runtime support for enabling generalized reduction computations on hetero-
geneous parallel configurations. In Proceedings of the 24th ACM international
conference on supercomputing, pages 137–146. ACM, 2010.

[43] Xavier Redon and Paul Feautrier. Scheduling reductions. In Proceedings of the
8th international conference on Supercomputing, pages 117–125. ACM, 1994.

[44] Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled dsls. Commun. ACM, 55(6),
2012.

[45] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Gener-
ating performance portable code using rewrite rules: From high-level functional
expressions to high-performance OpenCL code. ICFP, 2015.

[46] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: a functional
data-parallel IR for high-performance GPU code generation. In CGO, pages
74–85. ACM, 2017.

[47] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fabrice Rastello,
Jagannathan Ramanujam, and Ponnuswamy Sadayappan. A framework for
enhancing data reuse via associative reordering. In ACM SIGPLAN Notices,
volume 49, pages 65–76. ACM, 2014.

[48] Toshio Suganuma, Hideaki Komatsu, and Toshio Nakatani. Detection and global
optimization of reduction operations for distributed parallel machines. In Pro-
ceedings of the 10th international conference on Supercomputing, pages 18–25.
ACM, 1996.

[49] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Chris-
tian Tenllado, and Francky Catthoor. Polyhedral parallel code generation for
cuda. ACM TACO, 9(4), 2013.

[50] Huo X., Ravi V., and Agrawal G. Porting irregular reductions on heterogeneous
cpu-gpu configurations. In Proceedings of the 18th IEEE International Conference
on High Performance Computing, 2011.

[51] Hao Yu and Lawrence Rauchwerger. An adaptive algorithm selection framework
for reduction parallelization. IEEE Transactions on Parallel and Distributed Systems,
17(10):1084–1096, 2006.

	Abstract
	1 Introduction
	2 Overview
	2.1 Compiler Flow
	2.2 IDL Example
	2.3 Sparse Linear Algebra in IDL

	3 Idiom Description Language
	4 Specification of Idioms in IDL
	4.1 Building Blocks
	4.2 Full Idiom Definition
	4.3 Not Syntactic Pattern Matching
	4.4 Compilation Process and Implementation

	5 Targeted Heterogeneous APIs
	5.1 Domain Specific Libraries
	5.2 Domain Specific Code Generators

	6 Translating Computational Idioms
	6.1 Library
	6.2 DSL
	6.3 Aliasing

	7 Experimental Setup
	8 Results
	8.1 Idiom Detection
	8.2 Runtime Coverage
	8.3 Performance Results

	9 Related and Future Work
	10 Conclusion
	References

