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SIMPLIFYING VERY DEEP CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES
FOR ROBUST SPEECH RECOGNITION

Joanna Rownicka, Steve Renals, Peter Bell

The Centre for Speech Technology Research, University of Edinburgh, United Kingdom

ABSTRACT

Very deep convolutional neural networks (VDCNNs)
have been successfully used in computer vision. More re-
cently VDCNNSs have been applied to speech recognition,
using architectures adopted from computer vision. In this
paper, we experimentally analyse the role of the components
in VDCNN architectures for robust speech recognition. We
have proposed a number of simplified VDCNN architectures,
taking into account the use of fully-connected layers and
down-sampling approaches. We have investigated three ways
to down-sample feature maps: max-pooling, average-pooling,
and convolution with increased stride. Our proposed model
consisting solely of convolutional (conv) layers, and with-
out any fully-connected layers, achieves a lower word error
rate on Aurora 4 compared to other VDCNN architectures
typically used in speech recognition. We have also extended
our experiments to the MGB-3 task of multi-genre broadcast
recognition using BBC TV recordings. The MGB-3 results
indicate that the same architecture achieves the best result
among our VDCNNSs on this task as well.

Index Terms— Robust Speech Recognition, Very Deep
Convolutional Neural Networks, Aurora 4, MGB Challenge

1. INTRODUCTION

Convolutional neural networks (CNNs) were the one of the
first successfully used deep neural network architectures,
originally used for image processing, computer vision, and
document understanding [1, 2], and since about 2012 they
have defined the state-of-the-art for many computer vision
tasks [3, 4]. CNNs take account of the local input structure
by using local receptive fields to model spatially local corre-
lations. Combining this local modeling with weight sharing
and pooling enables invariances to be exploited across the
structure of the input, typically leading to better generaliza-
tion to unseen data compared to fully-connected deep neural
networks (DNNs).

CNNSs have been applied to speech recognition by treat-
ing time-frequency representations analogously to images [5,
6,7,8,9, 10], and also through learning one-dimension struc-
ture of sequences, an approach referred to the time-delay neu-
ral network (TDNN) [11, 12]. There is experimental evidence

that convolutional structure of CNNs allows better solutions
to be learned compared with DNNs. For instance, Huang
et al. [9] estimated both CNN and DNN acoustic models on
a speech recognition task, training both networks on about
1000 h of data — an amount possibly big enough for a DNN
to learn all the necessary invariances. The CNN resulted in re-
duced word error rates compared to the DNN; moreover for a
distant speech recognition task the gain of CNNs over DNNs
increased in direct proportion to the speaker-microphone dis-
tance.

Very deep convolutional neural networks (VDCNNs)
have been shown to improve the recognition accuracy com-
pared to CNNs with fewer layers for both image recogni-
tion [13, 14] and speech recognition [15, 16, 17, 18]. The
key concept of VDCNNs is to replace a single kernel from a
classical CNN model with a stack of convolutional kernels of
smaller size. Such a stack of small kernels can have a similar
effective receptive field as a single larger kernel but with a
reduced number of independent parameters. Moreover, stack-
ing convolutional layers enables more complex features to be
learned due to the additional non-linearities in the model.

Simplifying a typical CNN architecture (with pooling and
fully-connected layers) to an architecture consisting solely of
convolutional layers has been shown to achieve state-of-the-
art accuracy on several image recognition tasks — for instance,
GoogleNet [14], is a convolutional network which uses av-
erage pooling instead of fully-connected layers, eliminating
the majority of trainable parameters of the network without
reducing object recognition accuracy. Deep residual learn-
ing (ResNet) [19], is another example of a VDCNN without
fully-connected layers at the top of the network.

The use of VDCNNSs for noise-robust speech recognition
was investigated by Qian and Woodland [18] for the Aurora 4
robust speech recognition and AMI distant speech recogni-
tion corpora, with a specific focus on optimal VDCNN ar-
chitectures — the kernel sizes, pooling and padding strategies,
and the size of the input feature map. Most VDCNN acoustic
models have used architectures in which the upper hidden lay-
ers are fully-connected [15, 16, 18]; in contrast, Yu et al. [17]
use an architecture without any fully-connected layers. Fur-
thermore, they also do not employ pooling layers — convolu-
tional layers with a larger stride are used to downsample the
feature maps. However Yu et al. compare the resultant acous-



tic model architecture to DNN and long short-term memory
(LSTM) recurrent neural network (RNN) models, with no
comparison across CNN architectures, which makes it diffi-
cult to assess the contribution of the novel CNN architectural
components that they use — it is not clear whether removing
fully-connected layers and replacing pooling layers with con-
volutional layers improves or degrades the accuracy of the
speech recognition system.

In this paper we investigate VDCNNSs to find out which
components are necessary to achieve the state-of the art ac-
curacy for robust speech recognition. Specifically, we want
to learn the role and the importance of different components
of the network (fully-connected layers, pooling layers, convo-
lution stride) in noisy speech recognition applied to the Au-
rora 4 and multi-genre broadcast (MGB) data sets.

2. CONVOLUTIONAL NEURAL NETWORKS FOR
SPEECH RECOGNITION

In comparison to other state-of-the-art neural network acous-
tic models, such as RNNs/LSTMs, CNNs are often easier to
train because of their feed-forward nature. Moreover, the key
properties of CNN models (locality, weight sharing, and pool-
ing) can contribute to improved noise robustness and reduced
overfitting of the models.

2.1. Acoustic features, locality and weight sharing

The feature map input to CNN acoustic models typically em-
ploys a sub-sequence of log mel filterbank (FBANK) fea-
tures (often concatenated with their first and second tempo-
ral derivatives) arranged in a two-dimension array (feature
map) whose size is time X freq (where time is the width
of the time context window and freq is the number of fre-
quency bins in the FBANK). FBANK features are more suit-
able for CNN models than decorrelated features such as mel-
frequency cepstral coefficients (MFCCs).

CNNs with FBANK inputs can exploit the local spectral
representation structure when learning the weights of the hid-
den layers. For robust speech recognition, this locality can
enable the network to model the situation in which noise or
distortion is more apparent in some bands of the spectrum
than in others, allowing representations to be computed from
the cleaner parts of the spectrum. The shared weight structure
of a convolutional layer enables translation invariance to be
captured, by extracting the same feature at all points of the
input feature map. Although this is less important for acous-
tic modeling, compared with image recognition, it does en-
able some robustness to different speakers and speaking styles
which may be manifested as variations in activity in different
frequency bands. Moreover, weight sharing and the use of lo-
cal receptive fields reduces the number of the parameters of
the model which can contribute to the reduction in overfitting
of the model.

2.2. Convolutional layer

Convolutional layers are based on a weighted sum of their
inputs, similar to fully-connected (FC) layers, with the differ-
ence that hidden units in the convolutional layer are connected
only to a subregion of the input feature map (the receptive
field) and the hidden units share weights across the local re-
ceptive fields in order to extract the same feature across the
input representation. Each feature map hidden unit value h; ;
in a CNN model is computed as

m—1m—1

hij = Z Z S (Wi itn 1 + big) D
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where f is the activation function, wy, ; are items of the shared
m x m weight matrix W, b; ; is the shared bias, and x; 1, ;1
is the input at position ¢ + k, j + [. We use k and [ to index
into the receptive field, whose top left corner is at z; ;. X
denotes a matrix of input values within local receptive field. ®
denotes cross-correlation and this is the operation performed
by convolutional layers in our models.!

2.3. Padding

Padding input representations with zeros around the border
enables the size of the output feature map to match the size
of the input feature map, which is important for deep con-
volutional architectures; moreover it ensures that information
is not lost from the edges of the input feature map. This is
sometimes referred to as SAME padding, in contrast to a valid
convolution which does not use padding and thus results in a
smaller output feature map.

Shallower CNN acoustic models have tended to use valid
convolution [5, 6, 8], however more recently investigated VD-
CNN models [16, 17, 18] have used SAME padding to pre-
serve the feature map size.

2.4. Downsampling

CNN classifiers require some form of compression or down-
sampling to map a feature map to a classification. This is most
often achieved through the use of pooling layers between con-
volutional layers. Pooling layers discard the exact positional
information of a feature, and may be regarded as smoothing
filters. In practice two types of pooling operations are used
in CNN models: max and average pooling. Max pooling
is sensitive to the existence of some feature in subregion of
the initial representation, and average pooling measures the

UIf the cross-correlation kernel w is flipped horizontally and vertically,
then (2) becomes a convolution. The network learns the kernel appropriate to
its orientation — so if convolution is implemented with a flipped kernel, it will
learn that it is a flipped representation. The specific properties of convolution
but not of cross-correlation (commutativity and associativity) are not required
for a CNN acoustic model.



mean value of existence of a feature in that subregion. In
practice, max pooling has shown better empirical results than
average pooling in many pattern recognition tasks. Alterna-
tively, a feature map can be downsampled using a convolu-
tional layer with a larger stride. For image recognition, it has
been demonstrated that replacing a max-pooling layer by a
convolutional layer with increased stride does not reduce the
classification accuracy [20]. Using convolutional layers in-
stead of pooling layers to downsample feature maps can also
be seen as learning the pooling operation rather than fixing it.
Both these approaches to downsampling maintain trans-
lation invariance and offer a degree of smoothing, and in a
speech recognition context can offer robustness by compen-
sating for variation in the frequency domain arising from the
acoustic environment or speaker characteristics. In addition
downsampling can also reduce the complexity of the model
(although downsampling is often accompanied by an increase
in the number of filters). Pooling layers have been used more
frequently than convolution layers for downsampling in CNN
acoustic modeling; however Yu et al. [17] downsampled us-
ing convolutional layers with stride s = 2 in both time and
frequency dimensions in their VDCNN acoustic model.

3. EXPERIMENTAL SETUP

We use a hybrid neural network (NN) — hidden Markov model
(HMM) speech recognition system. A Gaussian Mixture
Model (GMM) based HMM system is first trained to estimate
the context-dependent phone models, from which a forced
alignments is obtained which provides the targets for training
all our NN-HMM systems. We use Kaldi [21] to train the
GMM-HMM system with ~3.4k (for Aurora 4) or ~9.4k (for
MGB) clustered states using maximum likelihood estimation
criterion and the standard Kaldi MFCC-LDA-MLLT-FMLLR
features. In Aurora 4, decoding was performed with the
task-standard bigram language model. For MGB, a trigram
language model was used, with lattices being later rescored
with a 4-gram language model [22].

In all of our experiments with neural network acoustic
models we used FBANK features as inputs. Following the
fundings in [18], where using only static features was the best
setup for robust speech recognition, we also use only one fea-
ture map at the input. We use 40 filters and 5 frames of con-
text, so the input feature map size is 11 x 40.

We used the TensorFlow software framework [23] to train
the NN models and the tfkaldi software [24] to integrate Ten-
sorFlow neural networks with Kaldi.

3.1. Datasets

To train and evaluate our simplified VDCNN architectures for
the task of robust speech recognition we use the Aurora 4 [25]
and MGB Challenge [22] datasets.

3.1.1. Aurora 4

Aurora 4 is a medium-vocabulary task based on the Wall
Street Journal (WSJ) corpus. The training set contains 7 138
utterances from 83 speakers. The clean-condition training set
is equivalent to the SI-84 WSJ corpus with an overall audio
duration of about 15 h. The multi-condition training set was
designed to study the effects of variation in microphone and
noise. Its overall duration is equal to the clean-condition
training set duration. It consists of selected utterances from
the clean-condition training set (recorded with the primary
Sennheiser microphone) and utterances from 18 different
microphone types (with the same linguistic content). 75%
of utterances recorded with a primary microphone were cor-
rupted using six noise types at different SNR levels (10-20
dB). The same noise distortion is applied to the mismatched
microphone subset. Unless otherwise stated, in our experi-
ments we use the GMM-HMM forced alignments generated
from multi-condition training set.

The test set (test_eval92) was grouped into 4 subsets: 330
clean utterances selected from SI-84 WSJ corpus, 330 x 6
utterances with 6 types of additive noise at 5-15 dB SNR,
330 utterances recorded with a different microphone, 330 x
6 utterances recorded with a different microphone and with 6
types of additive noise at 5-15 dB SNR. Those test set subsets
are referred to as A, B, C, and D, respectively. The overall
test set audio duration for all four subsets was about 9 h.

3.1.2. MGB-3 and MGB-1

The MGB datasets consist of multi-genre BBC English TV
recordings from the MGB Challenge competitions in 2015
(MGB-1) and 2017 (MGB-3). In this paper we train models
on the MGB-3 training set, which contains recordings from
around 750 episodes (about 350 hours). Note that it is sub-
stantially smaller than the original MGB-1 training set. We
evaluate our models on both the MGB-3 development set and
MGB-1 test set. The MGB-3 dev set consists of about 5 h and
MGB-1 test set about 19 h of multi-genre TV episodes.

3.2. Architectures and training

Fig. 1 shows the architectures of the convolutional models
analysed in this work. For the hidden units, all the net-
works used a rectifier linear unit (ReLU) non-linear activa-
tion function. The baseline DNN model (DNN) comprised
6 hidden layers with 2048 nodes each. The baseline CNN
model (CNN) followed Sainath et al. [10] and comprised
two convolutional layers with kernel sizes 9 x 9 and 3 x 4
respectively. There were 256 feature maps in the first convo-
lutional layer and 512 in the second one. In the baseline CNN
model we used overlapping pooling and valid convolutions
(no padding). In the first convolutional layer, the kernels were
applied using a stride of 1. In the second convolutional layer,
the kernel’s strides were Syjme = 1 and sfpeq = 4.



Table 1. Number of independent parameters (# params) and
training times for Aurora 4 (t Ayroraa) and MGB-3 (tyrap—3)
datasets for the baseline models (DNN, CNN, VDCNN-max-
4FC) and our VDCNN models (avg, max, max-addconv, all-
conv).

Model # params  tayroras  tMGB—3
DNN 24.7M 8h 57h
CNN 23.8M - -
VDCNN-max-4FC 20.1M 17h 155h
VDCNN-avg 6.1M 55h 147 h
VDCNN-max 6.1M 16 h 131h
VDCNN-max-addconv 7.6M 31h -
VDCNN-allconv 7.6M 20 h 215h

For all VDCNN models we use non-overlapping pooling,
together with zero-padding at the output of each convolutional
layer to ensure feature map size consistency within each CNN
block. A CNN block is a stack of convolutional layers with
kernel stride size Sijme = 1 and sfp¢q = 1 (stride 1 x 1). In
all our models we use 5 CNN blocks with 2-3 convolutional
layers in each block. CNN blocks were alternated with down-
sampling layers: max pooling, average pooling, convolutional
layers reducing the feature maps size only in frequency di-
mension (stride 1 x 2), or convolutional layers reducing the
feature maps size in both time and frequency (stride 2 x 2).

Our baseline VDCNN model VDCNN-max-4FC used
max-pooling; the 2D output of the last pooling layer was
transformed into a vector and fed into three FC hidden layers
before the softmax output layer. The remaining VDCNN
architectures that we investigated did not use any FC hidden
layers after the final downsampling layer. In VDCNN-avg
the max-pooling layers were replaced with average pooling
using the same kernel sizes and strides as in the baseline
VDCNN model; the output of the last pooling layer is fed
directly into the softmax output layer. VDCNN-max differed
from VDCNN-avg by using max-pooling in place of aver-
age pooling, whereas VDCNN-allconv used convolutional
layers instead of pooling layers to perform downsampling.
The strides of the kernels in the down-sampling convolu-
tional layers matched the strides of the pooling layer kernels
in our other VDCNN models, and the number of output
channels of downsampling convolutional layers matched the
number of their input channels. Introducing downsampling
convolutional layers into the model resulted in an increase
of the overall number of parameters. Therefore, to compare
networks of similar complexity, the VDCNN-max-addconv
model contains an additional convolutional layer in each con-
volutional block. The numbers of weights for each model
are summarized in Table 1. By removing FC layers from the
network architectures, our proposed VDCNN models greatly
reduce the number of the independent parameters of the net-
works. In Table 1 we also show the training times for the

[ softmax | [ softmax | [ softmax | [ softmax | [ softmax | [ softmax
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Fig. 1. Architectures of the convolutional models: a) CNN,
b) VDCNN-max-4FC, c) VDCNN-avg, d) VDCNN-max, €)
VDCNN-max-addconv, f) VDCNN-allcony.

models trained on the same GPU (Nvidia TITAN X).

All models were trained using the cross-entropy criterion,
optimised with minibatch stochastic gradient descent using
the Adam algorithm to smooth the gradient estimates. To
keep the scale of the gradients and activations roughly the
same in all layers we used “Xavier” initialization [26] for
the weights. We seeded the random number generator to a
nonnegative integer in all our experiments. The initial learn-
ing rates v € [0.002,0.001, 0.0008, 0.0005] were individu-
ally adapted for each model. The distribution of the outputs
of each layer was normalized using batch normalization [27].
The training termination is conditioned on the development
loss.

4. RESULTS

We evaluated the acoustic models on the Aurora 4 task and on
the much larger MGB tasks. (The MGB-3 training set is over
20 times bigger than the Aurora 4 training set.)



Table 2. Word Error Rates (WERs) [%] for Aurora 4 test sets
A, B, C, D, and the average (AVG) WER for the baseline mod-
els (DNN, CNN, VDCNN-max-4FC) and our VDCNN mod-
els (avg, max, max-addconv, allconv) trained with alignments
generated from multi-condition training set of Aurora 4.

Model A B C D AVG
DNN 347 7.67 7.85 19.73 12.55
CNN 333 6.89 659 1792 11.34
VDCNN-max-4FC 243 592 574 1626 10.09
VDCNN-avg 2775 588 727 1646 10.29
VDCNN-max 256 578 536 1540 9.64
VDCNN-max-addconv 250 6.02 6.95 1635 10.26
VDCNN-allconv 232 545 538 1556 9.55

Table 3. Word Error Rates (WERs) [%] for Aurora 4 test sets
A, B, C, D, and the average (AVG) WER for different mod-
els trained with alignments generated from multi-condition
training set (mc) and synchronized clean-condition training
set (cln) of Aurora 4.

Model A B C D AVG
DNN/mc 347 767 7.85 19.73 12.55
DNN/cin 319 642 7.04 17.04 10.79
VDCNN-max-4FC/mc 243 592 574 1626 10.09
VDCNN-max-4FC/cln 254 533 461 13.77 8.70
VDCNN-allconv/mc 232 545 538 15.56 9.55
VDCNN-allconv/cin 243 443 450 1250 7.75

4.1. Evaluation on Aurora 4

We trained Aurora 4 models using two different alignments.
The results in Table 2 were obtained with alignments pro-
duced by a GMM-HMM systems trained using the multi-
condition Aurora 4 training set. We prefer this approach as
it better matches the usual condition in which synchronized
clean-condition training sets are not available for a task.
However, in order to compare our results with other Aurora 4
results in the literature (which often use clean-condition train-
ing to generate the alignments for the NN-HMM systems),
Table 3 compares some of our multi-condition alignment
results with the results using clean-condition alignments for
NN training.

Our baseline models — DNN, CNN, VDCNN-max-4FC —
achieve lower WERSs than the similar models in the litera-
ture. For instance, the best VDCNN model in [28] achieves a
WER of 8.81% (with clean-condition alignments) compared
to our 8.70% for the same network architecture. Similarly, our
DNN baseline gives to our knowledge the lowest DNN WER
on Aurora 4 (10.79% compared to 11.11% in [18] and [28]).
These improvements in accuracy may result from differences
in our training procedure — using the Adam optimizer (rather
than stochastic gradient descent with the NewBOB learning

rate schedule) and batch normalization. The state-of-the-art
WERs reported in [18] are 7.99% with auxiliary feature joint
training, and 7.09% with further LSTM-RNN joint decoding.
Our best VDCNN model, without any additional input fea-
tures nor additional neural network models, achieves a WER
of 7.75%.

We consider the four simplified VDCNN architectures
for robust speech recognition trained using the more realistic
targets obtained from multi-condition alignments (Table 2).
These results indicate that removing the fully-connected lay-
ers from the VDCNN model (VDCNN-max) improves the
accuracy for test subsets B, C, and D. The gain is the most
prominent for the most corrupted test subset D, which in-
dicates that this kind of architecture may be beneficial also
for other datasets corrupted with noise and with mismatched
channels. Removing the majority of the independent parame-
ters of the network resulted in WER reduction over the whole
test set. However, the VDCNN-avg model slightly outper-
forms the baseline VDCNN only for the test subset B; the
overall WER for this model is higher than the baseline WER.
This model performs the worst for subsets A and C. This may
be explained by the smoothing properties of the average pool-
ing layer which for relatively clean test subsets may cause the
performance degradation. Among all models trained with
multi-condition alignments, the average WER over test sub-
sets A, B, C, and D is the lowest for the VDCNN-allconv
model, consisting solely of convolutional layers and a soft-
max layer, and without any fully-connected hidden layers.
The relative improvement over the corresponding baseline
VDCNN model is 5%, with a 16% relative improvement over
the baseline CNN, and 24% over the baseline DNN. The
largest relative WER reduction was over subset B (additive
noise) compared to the VDCNN baseline, making the pro-
posed VDCNN-allconv architecture a promising choice for
other noisy speech recognition tasks. By aggressively reduc-
ing the number of parameters of a network by removing all
FC layers and by introducing five additional convolutional
layers to the VDCNN model, the capacity of the model is
increased without considerably increasing the amount of the
model’s weights. This may enable the model to perform bet-
ter generalizations in training and as a result perform better
on disrupted test sets. The final proposed model, VDCNN-
max-addconv, is worse than the VDCNN baseline for all test
subsets, although this experiment indicates that the perfor-
mance gain for VDCNN-allconv model is not solely due to
model size expansion.

For the clean-condition alignments, the relative improve-
ment for most accurate model is 11% over the corresponding
VDCNN baseline, and 28% over the DNN baseline (Table 3).
These results indicate that the proposed VDCNN-allconv ar-
chitecture benefits the most from the clean alignments setup.
For clean alignments, the relative performance gains over our
VDCNN baseline for test subsets A, B, C, and D are 4%,
17%, 2%, and 9%, respectively. The test subset B (with ad-



ditive noise) and subset D (with additive noise and micro-
phone mismatch) are again the ones benefiting the most from
the proposed VDCNN architecture. For the same models ar-
chitectures, the relative improvements for clean-aligned over
multi-aligned models are 19% for VDCNN-allconv, and 14%
for the baseline VDCNN-max-4FC. The choice of the align-
ments therefore has a major influence on the final WERs in
the Aurora 4 task.

4.2. Evaluation on MGB

To ensure the reliability of our results, and to scale to a larger,
more realistic task, we evaluated our models on the MGB
Challenge data. We used the MGB-3 training set to train our
acoustic models and used the language model training data
used for the the MGB-1 Challenge [22]. To provide calibra-
tion for the acoustic and language models used in the MGB
task, we evaluate the models trained on MGB-3 training data
on both the MGB-3 development set and on the MGB-1 test
set. It should be noted, however, that our MGB-1 results
can not be directly compared to the other results in the lit-
erature for MGB-1 task as the training set used in this work
is MGB-3 which contains about 3.5 x less audio data than the
MGB-1 set, drawn from a different set of multi-genre TV pro-
grammes.

WERs for the MGB-3 dev set and the MGB-1 test set
are summarised in Table 4. In those tasks we did not aim
for best possible performance; our objective was to compare
the proposed VDCNN models with a VDCNN baseline and
with each other on a task larger than Aurora 4. (For instance,
further reductions in WER would be obtained through se-
quence training, speaker adaptation, improved test set seg-
mentation, and re-alignment.) For both MGB test sets we ob-
tained the lowest WERSs using our proposed VDCNN-allconv
model which is in line with the Aurora 4 findings above. It
also confirms that this kind of architecture can be beneficial
for other robust speech recognition tasks, with small but con-
sistent gains over the VDCNN - 1.0% WER absolute im-
provement for MGB-3 and 1.2% for MGB-1. The WERs for
average and max pooling are comparable in both MGB tasks.
We also show the results of rescoring our best acoustic model
with a 4-gram language model, giving an additional 2.2% and
2.5% absolute improvement for MGB-3 and MGB-1 tasks,
respectively.

5. CONCLUSIONS

In this paper we investigated very deep CNN architectures
for robust speech recognition. We explored several simplified
architectures to investigate which VDCNN components are
necessary to obtain state-of-the-art results for robust speech
recognition task. We investigated different downsampling
strategies — our experiments demonstrate that max-pooling
performs better than average pooling for smaller, Aurora 4

Table 4. Word Error Rates [%] for MGB-3 dev set and MGB-
1 test set for the baseline model (VDCNN-max-4FC) and
our VDCNN models (avg, max, allconv). The last VDCNN-
allconv-4G model is rescored with a 4-gram LM. All models
trained on MGB-3 training data

Model WER
MGB3-dev MGBI1-test
VDCNN-max-4FC 532 42.4
VDCNN-avg 52.4 41.4
VDCNN-max 52.5 41.4
VDCNN-allconv 52.2 41.2
VDCNN-allconv-4G 50.0 38.7

database, but pooling layers are not necessary at all to achieve
state-of-the-art results for speech recognition with VDCNNSs.
Instead, using convolutional layers with increased stride can
effectively enable the model to learn the necessary invari-
ances. The performance gains resulting from the choice of the
downsampling approach vary depending on the dataset and
the alignments used. In addition, removing fully-connected
layers from a VDCNN architecture, typically used in speech
recognition, contributed most to the performance gains in our
experiments, especially for noisy test data. Our model con-
sisting solely of fifteen 2D convolutional layers with the same
kernels sizes throughout the network and a single softmax
classification layer gives the best performance consistently in
our experiments on the Aurora 4 and MGB tasks.

In future work we want to aim for better MGB-3 task per-
formance, including a more through hyperparameter search
for this task. We plan to investigate the use of more informa-
tion at the input of our simplified VDCNN-allconv network
by expanding the width of the time context window, using
delta and delta-delta FBANK feature maps as additional in-
put channels, and increasing the number of frequency bins
used in FBANK computation. Also, we shall explore training
with auxiliary features (e.g. fMLLR) as the choice of input
features for 2D convolutional layers is limited due to local
correlation requirements.
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